Science.gov

Sample records for ii crop productivity

  1. Crop synergism can help dryland crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply is a major constraint for crop production in dryland agriculture across the world, and extensive research has been conducted to improve water use. In the grass steppe of the United States, water use has improved through a series of management advancements, such as preservation of crop ...

  2. Opportunities for woody crop production using treated wastewater in Egypt. II. Irrigation strategies.

    PubMed

    Evett, Steven R; Zalesny, Ronald S; Kandil, Nabil F; Stanturf, John A; Soriano, Chris

    2011-01-01

    An Egyptian national program targets annual reuse of 2.4 billion m3 of treated wastewater (TWW) to irrigate 84,000 ha of manmade forests in areas close to treatment plants and in the desert. To evaluate the feasibility of such afforestation efforts, we describe information about TWW irrigation strategies based on (1) water use of different tree species, (2) weather conditions in different climate zones of Egypt, (3) soil types and available irrigation systems, and (4) the requirement to avoid deep percolation losses that could lead to groundwater contamination. We conclude that drip irrigation systems are preferred, that they should in most cases use multiple emitters per tree in order to increase wetted area and decrease depth of water penetration, that deep rooting should be encouraged, and that in most situations irrigation system automation is desirable to achieve several small irrigations per day in order to avoid deep percolation losses. We describe directed research necessary to fill knowledge gaps about depth of rooting of different species in sandy Egyptian soils and environments, tree crop coefficients needed for rational irrigation scheduling, and depth of water penetration under different irrigation system designs. A companion paper addresses recommendations for afforestation strategies (see Zalesny et al. 2011, this issue). PMID:22046755

  3. WATER USE IN CROP PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is a review of the book "Water Use in Crop Production", which comprises sixteen chapters on the state of research on water use in crop production. The first three chapters are reviews of water conservation principles and practices, crop water use response to carbon dioxide and temperature, and ...

  4. Genetic Engineering and Crop Production.

    ERIC Educational Resources Information Center

    Jones, Helen C.; Frost, S.

    1991-01-01

    With a spotlight upon current agricultural difficulties and environmental dilemmas, this paper considers both the extant and potential applications of genetic engineering with respect to crop production. The nonagricultural factors most likely to sway the impact of this emergent technology upon future crop production are illustrated. (JJK)

  5. Crop Rotation in Row Crop Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop rotation is a system of growing different kinds of crops in recurrent succession on the same land. Thus, in the strictest sense, crop rotation is more than just changing crops from year to year based on current economic situations. Rather, it is a long-term plan for soil and farm management. Cr...

  6. Biotechnology in biomass crop production

    SciTech Connect

    Harry, D.E.; Sederoff, R.R. . Dept. of Forestry; North Carolina State Univ., Raleigh, NC . Dept. of Forestry)

    1989-12-01

    There is great potential for the application of plant genetic engineering to production of biomass crops. Two factors largely determine the feasibility of crop improvement using genetic engineering: (1) the status of technology for the transfer and expression of foreign genetic material in plants, and (2) the level of understanding about genetic factors involved in the process or trait to be manipulated. Although information and technology for exploiting the potential of genetic engineering is in an early developmental phase, new research initiatives can now be taken to make significant advances. In this report we evaluate the nature and status of information and technology relating to specific problems of interest for production of biomass crops. In our discussions, we emphasize woody crops because our expertise is stronger in this area, but we have included information on herbaceous crops as appropriate. Plant genetic engineering has the potential to improve plantation or stand establishment, biomass production, and structural or chemical properties for efficient biomass utilization by either direct combustion or by conversion. Such research programs must be highly interdisciplinary, involving new technologies in laboratory research, in addition to traditional field testing. 119 refs.

  7. The limits of crop productivity

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce; Monje, Oscar

    1992-01-01

    The component processes that govern yield limits in food crops are reviewed and how each process can be individually measured is described. The processes considered include absorption of photosynthetic radiation by green tissue, carbon-fixation efficiency in photosynthesis, carbon use efficiency in respiration, biomass allocation to edible products, and efficiency of photosynthesis and respiration. The factors limiting yields in optimal environments are considered.

  8. Extreme weather events and global crop production

    NASA Astrophysics Data System (ADS)

    Ray, D. K.; Gerber, J. S.; West, P. C.

    2014-12-01

    Extreme weather events can lead to significant loss in crop production and even trigger global price spikes. However it is still not clear where exactly and what types of extreme events have resulted in sharp declines in crop production. Neither is it clear how frequently such extreme events have resulted in extreme crop production losses. Using extreme event metrics with a newly developed high resolution and long time series of crop statistics database we identify the frequency and type of extreme event driven crop production losses globally at high resolutions. In this presentation we will present our results as global maps identifying the frequency and type of extreme weather events that resulted in extreme crop production losses and quantify the losses. Understanding how extreme events affects crop production is critical for managing risk in the global food system

  9. Genetically engineered crops: from idea to product.

    PubMed

    Prado, Jose Rafael; Segers, Gerrit; Voelker, Toni; Carson, Dave; Dobert, Raymond; Phillips, Jonathan; Cook, Kevin; Cornejo, Camilo; Monken, Josh; Grapes, Laura; Reynolds, Tracey; Martino-Catt, Susan

    2014-01-01

    Genetically engineered crops were first commercialized in 1994 and since then have been rapidly adopted, enabling growers to more effectively manage pests and increase crop productivity while ensuring food, feed, and environmental safety. The development of these crops is complex and based on rigorous science that must be well coordinated to create a plant with desired beneficial phenotypes. This article describes the general process by which a genetically engineered crop is developed from an initial concept to a commercialized product. PMID:24579994

  10. Recycling crop residues for use in recirculating hydroponic crop production

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.; Sager, J. C.

    1996-01-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented.

  11. Recycling crop residues for use in recirculating hydroponic crop production.

    PubMed

    Mackowiak, C L; Garland, J L; Sager, J C

    1996-12-01

    As part of bioregenerative life support feasibility testing by NASA, crop residues are being used to resupply elemental nutrients to recirculating hydroponic crop production systems. Methods for recovering nutrients from crop residues have evolved from water soaking (leaching) to rapid aerobic bioreactor processing. Leaching residues recovered the majority of elements but it also recovered significant amounts of soluble organics. The high organic content of leachates was detrimental to plant growth. Aerobic bioreactor processing reduced the organic content ten-fold, which reduced or eliminated phytotoxic effects. Wheat and potato production studies were successful using effluents from reactors having with 8- to 1-day retention times. Aerobic bioreactor effluents supplied at least half of the crops elemental mass needs in these studies. Descriptions of leachate and effluent mineral content, biomass productivity, microbial activity, and nutrient budgets for potato and wheat are presented. PMID:11541570

  12. Double- and relay-cropping oilseed and biomass crops for sustainable energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Economically and environmentally sustainable bioenergy production requires strategic integration of biofuel crops into modern cropping systems. Double- and relay-cropping can offer a means of increasing production efficiency to boost profits and provide environmental benefits through crop diversific...

  13. Water Production Functions for Central Plains Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustaining irrigated agriculture with limited water supplies requires maximizing productivity per unit of water. Relationships between crop production and water consumed are basic information required to maximize productivity. This information can be used to determine if deficit irrigation is eco...

  14. Water Production Function For Central Plains Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustaining irrigated agriculture with limited water supplies requires maximizing productivity per unit of water. Relationships between crop production and water consumed are basic information required to maximize productivity. This information can be used to determine if deficit irrigation is econ...

  15. Fuel production potential of several agricultural crops

    SciTech Connect

    Mays, D.A.; Buchanan, W.; Bradford, B.N.

    1984-11-01

    Data collected on starch and sugar crops indicate that sweet potato and sweet sorghum have the best potential for alcohol production in the TVA area. Of the oil crops evaluated in this series of experiments only sunflower and okara appear to offer potential in the Tennessee Valley for oil production for fuel or other uses. 21 tabs.

  16. Connecting Groundwater, Crop Price, and Crop Production Variability in India

    NASA Astrophysics Data System (ADS)

    Pollack, A.; Lobell, D. B.; Jain, M.

    2015-12-01

    Farmers in India rely on groundwater resources for irrigation and production of staple crops that provide over half of the calories consumed domestically each year. While this has been a productive strategy in increasing agricultural production and maintaining high yields, groundwater resources are depleting at a quicker rate than natural resources can replace. This issue gains relevance as climate variability concurrently adds to yearly fluctuations in farmer demand for irrigation each year, which can create high risk for farmers that depend on consistent yields, but do not have access to dwindling water resources. This study investigates variability in groundwater levels from 2005 to 2013 in relation to crop prices and production by analyzing district-level datasets made available through India's government. Through this analysis, we show the impact of groundwater variability on price variability, crop yield, and production during these years. By examining this nine-year timescale, we extend our analysis to forthcoming years to demonstrate the increasing importance of groundwater resources in irrigation, and suggest strategies to reduce the impact of groundwater shortages on crop production and prices.

  17. Embodied crop calories in animal products

    NASA Astrophysics Data System (ADS)

    Pradhan, Prajal; Lüdeke, Matthias K. B.; Reusser, Dominik E.; Kropp, Jürgen P.

    2013-12-01

    Increases in animal products consumption and the associated environmental consequences have been a matter of scientific debate for decades. Consequences of such increases include rises in greenhouse gas emissions, growth of consumptive water use, and perturbation of global nutrients cycles. These consequences vary spatially depending on livestock types, their densities and their production system. In this letter, we investigate the spatial distribution of embodied crop calories in animal products. On a global scale, about 40% of the global crop calories are used as livestock feed (we refer to this ratio as crop balance for livestock) and about 4 kcal of crop products are used to generate 1 kcal of animal products (embodied crop calories of around 4). However, these values vary greatly around the world. In some regions, more than 100% of the crops produced is required to feed livestock requiring national or international trade to meet the deficit in livestock feed. Embodied crop calories vary between less than 1 for 20% of the livestock raising areas worldwide and greater than 10 for another 20% of the regions. Low values of embodied crop calories are related to production systems for ruminants based on fodder and forage, while large values are usually associated with production systems for non-ruminants fed on crop products. Additionally, we project the future feed demand considering three scenarios: (a) population growth, (b) population growth and changes in human dietary patterns and (c) changes in population, dietary patterns and feed conversion efficiency. When considering dietary changes, we project the global feed demand to be almost doubled (1.8-2.3 times) by 2050 compared to 2000, which would force us to produce almost equal or even more crops to raise our livestock than to directly nourish ourselves in the future. Feed demand is expected to increase over proportionally in Africa, South-Eastern Asia and Southern Asia, putting additional stress on these

  18. Water Production Functions for High Plains Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water Production Functions for High Plains Crops Water consumptive use by a crop can be reduced through limited (deficit) irrigation. If the reduced consumptive use (CU) can be quantified, the saved water can be transferred to other users. If the value of the transferred water is greater than the fa...

  19. Alcohol co-production from tree crops

    SciTech Connect

    Seibert, M.; Folger, G.; Milne, T.

    1982-06-01

    A concept for the sustainable production of alcohol from fermentable substrates produced on an annual basis by the reproductive organs (pods, fruits, nuts, berries, etc.) of tree crops is presented. The advantages of tree-crop systems include suitability for use on marginal land, potential productivity equivalent to row crops, minimal maintenance and energy-input requirements, environmental compatibility, and the possibility of co-product production. Honeylocust, mesquite, and persimmon are examined as potential US tree-crop species. Other species not previously considered, including osage orange and breadfruit, are suggested as tree-crop candidates for North America and the tropical developing world, respectively. Fermentation of tree-crop organs and the economics of tree-crop systems are also discussed. Currently the greatest area of uncertainty lies in actual pod or fruit yields one can expect from large tree farms under real life conditions. However, ballpark ethanol yield estimates of from 880 to 3470 l hectare/sup -1/ (94 to 400 gal acre/sup -1/) justify further consideration of tree crop systems.

  20. Putting mechanisms into crop production models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop simulation models dynamically predict processes of carbon, nitrogen, and water balance on daily or hourly time-steps to the point of predicting yield and production at crop maturity. A brief history of these models is reviewed, and their level of mechanism for assimilation and respiration, ran...

  1. Sensing technologies for precision specialty crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the advances in electronic and information technologies, various sensing systems have been developed for specialty crop production around the world. Accurate information concerning the spatial variability within fields is very important for precision farming of specialty crops. However, this va...

  2. Water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, Kyle; Seveso, Antonio; Rulli, Maria Cristina; D'Odorico, Paolo

    2016-04-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. For food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine what distribution of crops would maintain current calorie production and agricultural value while minimizing the water demand of crop production. In doing this, our study provides a novel tool for policy makers and managers to integrate food security, environmental sustainability, and rural livelihoods by improving the use of freshwater resources without compromising crop calorie production or rural livelihoods.

  3. Natural Products in Crop Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The success of modern agricultural practices is due in part to discovery and adoption of chemicals for pest control. Indeed, the tremendous increase in crop yields associated with the ‘green’ revolution would not have been achieved without the contribution of these synthetic compounds. The abundance...

  4. Belle II production system

    NASA Astrophysics Data System (ADS)

    Miyake, Hideki; Grzymkowski, Rafal; Ludacka, Radek; Schram, Malachi

    2015-12-01

    The Belle II experiment will record a similar quantity of data to LHC experiments and will acquire it at similar rates. This requires considerable computing, storage and network resources to handle not only data created by the experiment but also considerable amounts of simulated data. Consequently Belle II employs a distributed computing system to provide the resources coordinated by the the DIRAC interware. DIRAC is a general software framework that provides a unified interface among heterogeneous computing resources. In addition to the well proven DIRAC software stack, Belle II is developing its own extension called BelleDIRAC. BelleDIRAC provides a transparent user experience for the Belle II analysis framework (basf2) on various environments and gives access to file information managed by LFC and AMGA metadata catalog. By unifying DIRAC and BelleDIRAC functionalities, Belle II plans to operate an automated mass data processing framework named a “production system”. The Belle II production system enables large-scale raw data transfer from experimental site to raw data centers, followed by massive data processing, and smart data delivery to each remote site. The production system is also utilized for simulated data production and data analysis. Although development of the production system is still on-going, recently Belle II has prepared prototype version and evaluated it with a large scale simulated data production. In this presentation we will report the evaluation of the prototype system and future development plans.

  5. FASAL: an integrated approach for crop assessment and production forecasting

    NASA Astrophysics Data System (ADS)

    Parihar, Jai Singh; Oza, Markand P.

    2006-12-01

    monitoring system. Components of FASAL concept have been developed, tested and implemented through a series of exercise and these are i) National wheat and winter potato production forecasting using IRS AWiFS data, ii) National Kharif rice production forecasting using Radarsat SAR data, and iii) District level FASAL implementation in Orissa state. Typically three in-season forecasts are being made. With this the FASAL concept of using the multi source data and techniques has been successfully demonstrated. FASAL implementation has been taken up to make national level multiple forecast of crops like rice, wheat, cotton, sugarcane, rapeseed/mustard, rabi-sorghum, winter-potato and jute. Procedure development for use of remote sensing, weather data - surface measurements as well as derived from satellite data, field and ancillary data to run the crop growth simulation models has been taken up. The programme is sponsored by Ministry of Agriculture, Government of India. Space Applications Centre of Indian Space Research Organisation has provided the scientific leadership to the project. A large team drawn form a number of institutions such as ISRO/Department of Space, State Remote Sensing Applications Centres, State Agricultural Universities and many other institutions are working for the project.

  6. PETRO: Higher Productivity Crops for Biofuels

    SciTech Connect

    2012-01-01

    PETRO Project: The 10 projects that comprise ARPA-E’s PETRO Project, short for “Plants Engineered to Replace Oil,” aim to develop non-food crops that directly produce transportation fuel. These crops can help supply the transportation sector with agriculturally derived fuels that are cost-competitive with petroleum and do not affect U.S. food supply. PETRO aims to redirect the processes for energy and carbon dioxide (CO2) capture in plants toward fuel production. This would create dedicated energy crops that serve as a domestic alternative to petroleum-based fuels and deliver more energy per acre with less processing prior to the pump.

  7. Biomass energy crop production versus food crop production in the Caribbean

    SciTech Connect

    Sammuels, G.

    1983-12-01

    The Caribbean countries have traditionally grown sugar cane, coffee and bananas as major agriculture export crops. Food crop production was sufficient in most cases for domestic consumption. In recent years powerful social and economic changes of increasing population, industrial development and higher living standards have placed pressure on local governments to provide food, clothing, shelter and energy. Energy that is mainly supplied by imported oil. Biomass, primarily as sugar cane, can provide a solution, either partial or total, to the problem. Unfortunately, the arable land area for the majority of the countries is limited. Food crop production is needed for local consumption and export. Possible energy crop production to provide local needs will place an increasing demand on arable land. The objective of this paper is to present the scope of food versus energy crop production and a suggested renewable energy crop program to help achieve a balance within the limited land resources of the Caribbean.

  8. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Forage Production Crop Insurance Provisions If a conflict exists among the policy provisions, the order... 7 Agriculture 6 2010-01-01 2010-01-01 false Forage production crop insurance provisions. 457.117... production crop insurance provisions. The Forage Production Crop Insurance Provisions for the 2001...

  9. Cover crop biomass harvest for bioenergy: implications for crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops, such as rye (Secale cereale), are usually used in conservation agriculture systems in the Southeast. Typically, the cover crop is terminated two to three weeks before planting the summer crop, with the cover biomass left on the soil surface as a mulch. However, these cover crops ...

  10. Methanol and the productivity of tropical crops

    SciTech Connect

    Ferguson, T.U.

    1995-12-31

    Studies are being conducted in Trinidad and Tobago, St. Lucia and St. Kitts/Nevis to determine the effect of aqueous solutions of methanol on the growth and yield of a wide range of vegetable, field and perennial crops. The paper presents a summary of results to data for ten of the crops studied. Six of these crops, lettuce, sweet pepper, tomato, mango and breadfruit, have shown significant increases in growth or yield with methanol application, while others such as pigeon pea, rice, banana and cocoa have shown more limited responses. There appears to be some potential for the use of methanol in tropical crop production but further studies are required before this apparent potential can be harnessed.

  11. Multi-use crops and botanochemical production

    SciTech Connect

    Bagby, M.O.; Buchanan, R.A.; Otey, F.H.

    1981-01-01

    Oil- and hydrocarbon-producing plants are especially attractive as future energy and chemical resources. Plants already supply several products competitive with synthetic petrochemicals. These products include tall oil, naval stores, seed oils, and plant oils. For this discussion, we refer to such products collectively as oils and hydrocarbons. For many years, the US Department of Agriculture has actively pursued a multi-disciplined approach to identify and establish new crops as renewable resources. Patterned after the Department's program to identify annually renewable fibrous plants that could be cultivated for papermaking, an analytical screening program was instituted in 1974 to identify and evaluate species as sources of multi-use oil- and hydrocarbon-producing crops for food material and energy production. The multi-use concept requires plant breeders and agronomists to deal with a variety of new crops, each yielding several different products of varying economic value. In screening plant species as potential crops, a rating system was employed that emphasized potential economy of plant production, total biomass yield, and oil and hydrocarbon content. Subsequently, all candidates were ranked by this rating system. It should be emphasized that vigorous perennials were given preference over annuals, with the concept that seed-bed preparation would be infrequent for perennials. Data for over 300 species have been accumulated, and about 40 species have been identified that have sufficient potential to merit further consideration. Nearly all of these species are being further investigated by USDA plant scientists; meanwhile, the screening program continues.

  12. Toward cropping systems that enhance productivity and sustainability

    PubMed Central

    Cook, R. James

    2006-01-01

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding. PMID:17130454

  13. Crop water productivity and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern irrigation systems offer large increases in crop water productivity compared with rainfed or gravity irrigation, but require different management approaches to achieve this. Flood, sprinkler, low-energy precision application, LEPA, and subsurface drip irrigation methods vary widely in water a...

  14. Crop synergism: a natural benefit to improve crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems in the Great Plains are changing because of no-till. Rotations now include a diversity of crops in contrast with rotations in tilled systems that grow only one or two crops. This change in rotation design has enabled producers to develop population-based weed management and reduce...

  15. Can humic products become mainstream amendments for improving crop production?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic products have been used in cropland production for several decades but only by small numbers of farmers. Appreciable proportions of field studies demonstrate efficacy of the products for numerous crops, justifying their further evaluation. Their adoption by mainstream farmers could be accelera...

  16. Herbicide hormesis-can it be useful in crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yield-enhancing effects of some pesticides may change the focus in their use in crop production, from crop protection to crop enhancement. While such beneficial uses of pesticides are specifically en vogue for fungicides and seed treatments, the use of herbicides for crop enhancement has not yet...

  17. Water Footprint of crop productions: A review.

    PubMed

    Lovarelli, Daniela; Bacenetti, Jacopo; Fiala, Marco

    2016-04-01

    Water Footprint is an indicator recently developed with the goal of quantifying the virtual content of water in products and/or services. It can also be used to identify the worldwide virtual water trade. Water Footprint is composed of three parts (green, blue and grey waters) that make the assessment complete in accordance with the Water Footprint Network and with the recent ISO14046. The importance of Water Footprint is linked to the need of taking consciousness about water content in products and services and of the achievable changes in productions, diets and market trades. In this study, a literature review has been completed on Water Footprint of agricultural productions. In particular, the focus was paid on crops for the production of food and bioenergy. From the review, the development of the Water Footprint concept emerged: in early studies the main goal was to assess products' water trade on a global scale, while in the subsequent years, the goal was the rigorous quantification of the three components for specific crops and in specific geographical areas. In the most recent assessments, similarities about the methodology and the employed tools emerged. For 96 scientific articles on Water Footprint indicator of agricultural productions, this literature review reports the main results and analyses weaknesses and strengths. Seventy-eight percent of studies aimed to quantify Water Footprint, while the remaining 22% analysed methodology, uncertainty, future trends and comparisons with other footprints. It emerged that most studies that quantified Water Footprint concerned cereals (33%), among which maize and wheat were the most investigated crops. In 46% of studies all the three components were assessed, while in 18% no indication about the subdivision was given; in the remaining 37%, only blue or green and blue components were quantified. PMID:26802352

  18. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.

    PubMed

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2016-04-01

    Methane production characteristics and chemical composition of 405 silages from 43 different crop species were examined using uniform laboratory methods, with the aim to characterise a wide range of crop feedstocks from energy crop rotations and to identify main parameters that influence biomass quality for biogas production. Methane formation was analysed from chopped and over 90days ensiled crop biomass in batch anaerobic digestion tests without further pre-treatment. Lignin content of crop biomass was found to be the most significant explanatory variable for specific methane yields while the methane content and methane production rates were mainly affected by the content of nitrogen-free extracts and neutral detergent fibre, respectively. The accumulation of butyric acid and alcohols during the ensiling process had significant impact on specific methane yields and methane contents of crop silages. It is proposed that products of silage fermentation should be considered when evaluating crop silages for biogas production. PMID:26836846

  19. Managing water resources for crop production

    PubMed Central

    Wallace, J. S.; Batchelor, C. H.

    1997-01-01

    Increasing crop production to meet the food requirements of the world's growing population will put great pressure on global water resources. Given that the vast freshwater resources that are available in the world are far from fully exploited, globally there should be sufficient water for future agricultural requirements. However, there are large areas where low water supply and high human demand may lead to regional shortages of water for future food production. In these arid and semi-arid areas, where water is a major constraint on production, improving water resource management is crucial if Malthusian disasters are to be avoided. There is considerable scope for improvement, since in both dryland and irrigated agriculture only about one-third of the available water (as rainfall, surface, or groundwater) is used to grow useful plants. This paper illustrates a range of techniques that could lead to increased crop production by improving agricultural water use efficiency. This may be achieved by increasing the total amount of water available to plants or by increasing the efficiency with which that water is used to produce biomass. Although the crash from the Malthusian precipice may ultimately be inevitable if population growth is not addressed, the time taken to reach the edge of the precipice could be lengthened by more efficient use of existing water resources.

  20. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  1. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  2. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  3. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  4. 7 CFR 457.117 - Forage production crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Forage production crop insurance provisions. 457.117 Section 457.117 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE COMMON CROP INSURANCE REGULATIONS § 457.117...

  5. Crop sequence and tillage influences on dryland spring wheat production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cropping systems and management practices for spring wheat production have changed during the past half century. Greater emphasis on soil and water conservation has helped to stabilize crop yields. Our objectives were to determine the influences of six crop sequences and two tillage practices on spr...

  6. Climate impacts on agriculture: Implications for crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 50 years present a challenge to crop production. Understanding these implications for agricultural crops is critical to being able to develop cropping systems which are resilient to stresses induced by ...

  7. Water usage in southeastern bioenergy crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The southeastern United States with its long growing season and mild winter temperatures has long been able to produce a variety of food, forage, and fiber crops. In addition to these crops, the Southeast is capable of producing a plethora of lignoceullosic-based bioenergy crops for conversion into ...

  8. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Text: Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N)...

  9. Crop rotations that include legumes and reduced tillage improve the energy efficiency of crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern crop production requires large inputs of energy and these inputs represent a substantial cost. Management practices such as crop rotation and choice of tillage practice influence the energy balance for a production system. Legumes support bacteria that are capable of fixing nitrogen (N). This...

  10. Impact of Climate Change and Variability on Crop Productivity

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Song, Y.

    2012-12-01

    Climate change, in terms of increasing levels of CO2, change in temperature and precipitation pattern, is directly influencing crop production through biophysical and phenology effects. At the same time crop production will also influence thermal energy and water exchange between land surface and atmosphere, and thus impact regional and global climate at long term time scale. Therefore, to satisfy the growing need of food production and realize sustainable agriculture under climate change, it is necessary to understand the complex interaction between crop productivity and climate change. While many research studies have been carried out on this area, there are still some unanswered key questions: How will changes in climate (temperature and precipitation) and atmospheric CO2 affect the regional crop yields for each crop types? Will there be a positive, negative, or insignificant interaction between crop yields and climate change? In which climate region(s) will the interaction be most pronounced? How rain-fed crop production will influence water balance between land surface and atmosphere, and thus its production potential? A land surface model with dynamic simulation of crop component (ISAM) has been developed and applied to address these questions. The ISAM model is a process-based, biogeophysical and biogeochemical model, which calculates dynamic crop growth processes as well as carbon, nitrogen, water and energy exchanges between soil, crop-system and atmosphere. The crop-system considered in current version of the ISAM includes corn and soybean. This study will specifically focus on the agricultural regions in the US. The potential productivity of these crops will be assessed under the various atmospheric CO2 and climate change conditions. This study will help to quantify the impact of various environmental factors on row crops and to better understand the spatial and temporal dynamics of crop yields under different climate change conditions.

  11. Hydroponic Crop Production using Recycled Nutrients from Inedible Crop Residues

    NASA Technical Reports Server (NTRS)

    Garland, Jay L.; Mackowiak, Cheryl L.; Sager, John C.

    1993-01-01

    The coupling of plant growth and waste recycling systems is an important step toward the development of bioregenerative life support systems. This research examined the effectiveness of two alternative methods for recycling nutrients from the inedible fraction (residue) of candidate crops in a bioregenerative system as follows: (1) extraction in water, or leaching, and (2) combustion at 550 C, with subsequent reconstitution of the ash in acid. The effectiveness of the different methods was evaluated by (1) comparing the percent recovery of nutrients, and (2) measuring short- and long-term plant growth in hydroponic solutions, based on recycled nutrients.

  12. Exploring the Limits of Crop Productivity 1

    PubMed Central

    Bugbee, Bruce G.; Salisbury, Frank B.

    1988-01-01

    The long-term vegetative and reproductive growth rates of a wheat crop (Triticum aestivum L.) were determined in three separate studies (24, 45, and 79 days) in response to a wide range of photosynthetic photon fluxes (PPF, 400-2080 micromoles per square meter per second; 22-150 moles per square meter per day; 16-20-hour photoperiod) in a near-optimum, controlled-environment. The CO2 concentration was elevated to 1200 micromoles per mole, and water and nutrients were supplied by liquid hydroponic culture. An unusually high plant density (2000 plants per square meter) was used to obtain high yields. Crop growth rate and grain yield reached 138 and 60 grams per square meter per day, respectively; both continued to increase up to the highest integrated daily PPF level, which was three times greater than a typical daily flux in the field. The conversion efficiency of photosynthesis (energy in biomass/energy in photosynthetic photons) was over 10% at low PPF but decreased to 7% as PPF increased. Harvest index increased from 41 to 44% as PPF increased. Yield components for primary, secondary, and tertiary culms were analyzed separately. Tillering produced up to 7000 heads per square meter at the highest PPF level. Primary and secondary culms were 10% more efficient (higher harvest index) than tertiary culms; hence cultural, environmental, or genetic changes that increase the percentage of primary and secondary culms might increase harvest index and thus grain yield. Wheat is physiologically and genetically capable of much higher productivity and photosynthetic efficiency than has been recorded in a field environment. PMID:11537442

  13. Remote estimation of crop gross primary production with Landsat data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An accurate and synoptic quantification of gross primary productivity (GPP) in crops is essential for studies of carbon budgets at regional and global scales. In this study, we developed a model relating crop GPP to a product of total canopy chlorophyll (Chl) content and potential incident photosynt...

  14. Effects of Crop Diversity on Agroecosystem Productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the role of diversity in the functioning of ecosystems has important implications for agriculture. Previous agricultural research has shown that crop rotation and the use of cover crops can lead to increases in yield relative to monoculture; however, few studies have been performed wi...

  15. Sustainable production of grain crops for biofuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  16. Putting mechanisms into crop production models.

    PubMed

    Boote, Kenneth J; Jones, James W; White, Jeffrey W; Asseng, Senthold; Lizaso, Jon I

    2013-09-01

    Crop growth models dynamically simulate processes of C, N and water balance on daily or hourly time-steps to predict crop growth and development and at season-end, final yield. Their ability to integrate effects of genetics, environment and crop management have led to applications ranging from understanding gene function to predicting potential impacts of climate change. The history of crop models is reviewed briefly, and their level of mechanistic detail for assimilation and respiration, ranging from hourly leaf-to-canopy assimilation to daily radiation-use efficiency is discussed. Crop models have improved steadily over the past 30-40 years, but much work remains. Improvements are needed for the prediction of transpiration response to elevated CO₂ and high temperature effects on phenology and reproductive fertility, and simulation of root growth and nutrient uptake under stressful edaphic conditions. Mechanistic improvements are needed to better connect crop growth to genetics and to soil fertility, soil waterlogging and pest damage. Because crop models integrate multiple processes and consider impacts of environment and management, they have excellent potential for linking research from genomics and allied disciplines to crop responses at the field scale, thus providing a valuable tool for deciphering genotype by environment by management effects. PMID:23600481

  17. Genomics Opportunities, New Crops and New Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter describes use of molecular markers and transgenics in development of new cultivars in a survey obtained from public and private sector breeders. It also reviews traits in Rosaceae crops for which markers are currently available for use in developing new crops. The surprising results a...

  18. Allelopathic potential of oil seed crops in production of crops: a review.

    PubMed

    Shah, Adnan Noor; Iqbal, Javaid; Ullah, Abid; Yang, Guozheng; Yousaf, Muhammad; Fahad, Shah; Tanveer, Mohsin; Hassan, Waseem; Tung, Shahbaz Atta; Wang, Leishan; Khan, Aziz; Wu, Yingying

    2016-08-01

    Agricultural production enhancement has been realized by more consumption of fossil energy such as fertilizer and agrochemicals. However, the production provides the present human with sufficient and diversified commodities, but at the same time, deprives in some extent the resources from the future human as well. In the other hand, it is known that synthetic herbicides face worldwide threats to human's health and environment as well. Therefore, it is a great challenge for agricultural sustainable development. The current review has been focussed on various oilseed crop species which launch efficient allelopathic intervention, either with weeds or other crops. Crop allelopathic properties can make one species more persistent to a native species. Therefore, these crops are potentially harmful to both naturalized as well as agricultural settings. On the other side, allelopathic crops provide strong potential for the development of cultivars that are more highly weed suppressive in managed settings. It is possible to utilize companion plants that have no deleterious effect on neighbor crops and can be included in intercropping system, thus, a mean of contributing to agricultural sustainable development. In mixed culture, replacement method, wherein differing densities of a neighbor species are planted, has been used to study phytotoxic/competitive effects. So, to use alternative ways for weed suppression has become very crucial. Allelochemicals have the ability to create eco-friendly products for weed management, which is beneficial for agricultural sustainable development. Our present study assessed the potential of four oilseed crops for allelopathy on other crops and associated weeds. PMID:27263104

  19. Organic no-till production for grain crops in Iowa: Effects on crop productivity and soil quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multi-state, long-term organic experiment was established in 6 states in 2008 to examine effects of organic no-till production on crop productivity, yields, soil quality, and economic performance. Tillage treatments included conventional tillage (CT) and no-till (NT), with cover crop planted in th...

  20. Preliminary process engineering evaluation of ethanol production from vegetative crops

    NASA Astrophysics Data System (ADS)

    Moreira, A. R.; Linden, J. C.; Smith, D. H.; Villet, R. H.

    1982-12-01

    Vegetative crops show good potential as feedstock for ethanol production via cellulose hydrolysis and yeast fermentation. The low levels of lignin encountered in young plant tissues show an inverse relationship with the high cellulose digestibility during hydrolysis with cellulose enzymes. Ensiled sorghum species and brown midrib mutants of sorghum exhibit high glucose yields after enzyme hydrolysis as well. Vegetative crop materials as candidate feedstocks for ethanol manufacture should continue to be studied. The species studied so far are high value cash crops and result in relatively high costs for the final ethanol product. Unconventional crops, such as pigweed, kochia, and Russian thistle, which can use water efficiently and grow on relatively arid land under conditions not ideal for food production, should be carefully evaluated with regard to their cultivation requirements, photosynthesis rates, and cellulose digestibility. Such crops should result in more favorable process economics for alcohol production.

  1. Crop productivity and economics during the transition to alternative cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing economic pressures and continued environmental concerns in agricultural production have heightened the need for more sustainable cropping systems. Research is needed to identify systems that simultaneously improve the economic and social viability of farms and rural communities while prot...

  2. Calorie increase and water savings of redistributing global crop production

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2015-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for 'sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing maximized production has not been considered to date. To this end, we ask: Is it possible to increase calorie production and minimize water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of agro-ecological suitability - a measure of physical and chemical soil fertility - for 15 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvement in calorie production as well as the associated change in water demand. We also consider what distribution of crops would maintain current calorie production while minimizing crop water demand. In doing all of this, our study provides a novel tool for improving crop calorie production without necessarily increasing resource demands.

  3. Targeting Solutions to Improve Crop Production and the Environment

    NASA Astrophysics Data System (ADS)

    West, P. C.; Gerber, J. S.; Mueller, N. D.; Brauman, K. A.; Cassidy, E. S.; Johnston, M.; Ray, D. K.; Foley, J. A.

    2012-12-01

    Several recent studies propose broad strategies for increasing food production and decreasing the environmental impacts of agriculture. Using data sets for crop production, land management practices, and a yield response model, we identify promising locations for reducing environmental effects of agriculture and boosting crop yields. We find that a small number of crops and countries account for over two-thirds of water use, excess nutrients, and greenhouse gas emissions from croplands. Similarly, a small set of crops and regions offers the best opportunities for boosting global production without expanding croplands. These findings can be used to direct policies to specific crops and regions to help meet food security while shifting to more sustainable practices.

  4. Integrating Sunflower Oil Seed Crops into Florida Horticultural Production Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locally produced biodiesel feedstock plant oil creates a unique possibility to integrate multiple-goal oriented cover crops into Florida horticultural production systems. Typically, cover crops are planted to improve soil fertility and the natural suppression of soilborne pests at times when fields...

  5. Fuel ethanol production from crop residues and processing byproducts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007, the production of fuel ethanol from corn starch reached 6.5 billion gallons in the U.S.A. Various crop residues such as corn stover, wheat straw, and barley straw, and crop processing byproducts such as corn fiber and rice hulls can serve as low-cost lignocellulosic feedstocks for conversi...

  6. Remote Sensing of Cover Crop Production on Maryland's Eastern Shore

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of winter cover crops is being promoted throughout Maryland as an effective agricultural best management practice with great promise for reducing nutrient inputs to the Chesapeake Bay. Remote sensing provides a tool for real-time estimation of cover crop productivity and nutrient uptake effi...

  7. Impact of Corn Residue Removal on Crop and Soil Productivity

    NASA Astrophysics Data System (ADS)

    Johnson, J. M.; Wilhelm, W. W.; Hatfield, J. L.; Voorhees, W. B.; Linden, D.

    2003-12-01

    Over-reliance on imported fuels, increasing atmospheric levels of greenhouses and sustaining food production for a growing population are three of the most important problems facing society in the mid-term. The US Department of Energy and private enterprise are developing technology necessary to use high cellulose feedstock, such as crop residues, for ethanol production. Based on production levels, corn (Zea mays L.) residue has potential as a biofuel feedstock. Crop residues are a renewable and domestic fuel source, which can reduce the rate of fossil fuel use (both imported and domestic) and provide an additional farm commodity. Crop residues protect the soil from wind and water erosion, provide inputs to form soil organic matter (a critical component determining soil quality) and play a role in nutrient cycling. Crop residues impact radiation balance and energy fluxes and reduce evaporation. Therefore, the benefits of using crop residues as fuel, which removes crop residues from the field, must be balanced against negative environmental impacts (e.g. soil erosion), maintaining soil organic matter levels, and preserving or enhancing productivity. All ramifications of new management practices and crop uses must be explored and evaluated fully before an industry is established. There are limited numbers of long-term studies with soil and crop responses to residue removal that range from negative to negligible. The range of crop and soil responses to crop residue removal was attributed to interactions with climate, management and soil type. Within limits, corn residue can be harvested for ethanol production to provide a renewable, domestic source of energy feedstock that reduces greenhouse gases. Removal rates must vary based on regional yield, climatic conditions and cultural practices. Agronomists are challenged to develop a protocol (tool) for recommending maximum permissible removal rates that ensure sustained soil productivity.

  8. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  9. The green, blue and grey water footprint of crops and derived crop products

    NASA Astrophysics Data System (ADS)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment is global and improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc min grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the water footprint network. Considering the water footprints of primary crops, we see that global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals} (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51

  10. Crop and cattle production responses to tillage and cover crop management in an integrated crop-livestock system in the southeastern USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrated crop-livestock systems can help achieve greater environmental quality from disparate crop and livestock systems by recycling nutrients and taking advantage of synergies between systems. We investigated crop and animal production responses in integrated crop-livestock systems with two typ...

  11. The Influence of Weather Extremes on Historical Crop Production

    NASA Astrophysics Data System (ADS)

    Ramankutty, N.; Lesk, C.; Rowhani, P.

    2014-12-01

    Climate change is estimated to have already affected crop production adversely. The major way in which climate influences crop production is through extreme weather events such as droughts and frosts. Numerous studies have examined the influence of historical and potential future climate means on crop production. However few have quantified the influence of extreme weather events. We used a statistical approach, "superposed epoch analysis" or compositing, to estimate the relationship between historical weather-related disasters to crop production from 1961-2007. We obtained historical data on floods, droughts, extreme heat, and extreme cold events from the Emergency Events Database, EM-DAT. We related these to historical national-level harvested area, yield, and production statistics for cereal crops from the FAOSTAT database. We found that droughts and extreme heat events have had a substantial influence on cereal crops, on average reducing crop production by 8% and 5% respectively, while cold waves and extreme cold events exhibit no statistically discernible influence. We further find that the influence of droughts is through a combination of reduced harvested area and yields, while extreme heat seems to have mainly affected yields. The underlying reasons for these different crop responses are unknown, as the statistical approach only estimates the revealed relationships and does not explore causes. Nevertheless these findings raise new questions on why certain weather events seem to have had substantial production impacts while others have not. We suggest that greater attention should be paid to studying the influence of actual weather events on crops, rather than the influence of mean climate alone.

  12. Radiation model for row crops: II. Model evaluation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Relatively few radiation transfer studies have considered the impact of varying vegetation cover that typifies row crops, and meth¬ods to account for partial row crop cover have not been well investigated. Our objective was to evaluate a widely used radiation model that was modified for row crops ha...

  13. Integrating soil solarization into crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil solarization remains one of but a handful of nonchemical soil disinfestation methods suitable for high-value crops such as cut-flowers, strawberry and fresh market tomato and pepper. Recognition of soil solarization within the context of an integrated pest management (IPM) approach is paramoun...

  14. Can genomics boost productivity of orphan crops?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in genomics over the past 20 years have enhanced the precision and efficiency of breeding programs in many temperate cereal crops. One of the first applications of genomics-assisted breeding has been the introgression of loci for resistance to biotic stresses or major quantitative trait loc...

  15. Past and present trends of agricultural production and crop residues available for removal in the Mid-American Region

    SciTech Connect

    Posselius, J.H. Jr.

    1981-09-01

    This report consists of two separate studies. Part I discusses past and present trends of agricultural production in the MASEC region, while Part II emphasizes crop residues available for removal in the MASEC region. Part I analyzes agricultural crop and livestock production levels and trends by crop and livestock type on a state level basis. The resource base is divided into three main categories: starch crops, sugar crops, and livestock. The term starch crops refers to crops which are currently grown in significant acreage in the North Central region, such as: barley, beans, corn, oats, rice, rye, grain sorghum, sunflowers, and wheat. The term sugar crops refers to; sugar beets and sweet sorghum, and the term livestock refers to; cattle, dairy, hogs, chickens, and turkeys. The states that comprise the North Central region includes; Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin. Part II estimates the amount of crop residue available for removal in the MASEC region by crop type, on a county and state level basis. Wind and water erosion are considered as are nutrient losses and the net energy aspects of residue removal.

  16. Climate Change Impacts on Crop Production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have

  17. Biomass Crop Production: Benefits for Soil Quality and Carbon Sequestration

    SciTech Connect

    Bandaranayake, W.; Bock, B.R.; Houston, A.; Joslin, J.D.; Pettry, D.E.; Schoenholtz, S.; Thornton, F.C.; Tolbert, V.R.; Tyler, D.

    1999-08-29

    Research at three locations in the southeastern US is quantifying changes in soil quality and soil carbon storage that occur during production of biomass crops compared with row crops. After three growing seasons, soil quality improved and soil carbon storage increased on plots planted to cottonwood, sycamore, sweetgum with a cover crop, switchgrass, and no-till corn. For tree crops, sequestered belowground carbon was found mainly in stumps and large roots. At the TN site, the coarse woody organic matter storage belowground was 1.3 Mg ha{sup {minus}1}yr{sup {minus}1}, of which 79% was stumps and large roots and 21% fine roots. Switchgrass at the AL site also stored considerable carbon belowground as coarse roots. Most of the carbon storage occurred mainly in the upper 30 cw although coarse roots were found to depths of greater than 60 cm. Biomass crops contributed to improvements in soil physical quality as well as increasing belowground carbon sequestration. The distribution and extent of carbon sequestration depends on the growth characteristics and age of the individual biomass crop species. Time and increasing crop maturity will determine the potential of these biomass crops to significantly contribute to the overall national goal of increasing carbon sequestration and reducing greenhouse gas emissions.

  18. Global Simulation of Bioenergy Crop Productivity: Analytical Framework and Case Study for Switchgrass

    SciTech Connect

    Kang, Shujiang; Kline, Keith L; Nair, S. Surendran; Nichols, Dr Jeff A; Post, Wilfred M; Brandt, Craig C; Wullschleger, Stan D; Wei, Yaxing; Singh, Nagendra

    2013-01-01

    A global energy crop productivity model that provides geospatially explicit quantitative details on biomass potential and factors affecting sustainability would be useful, but does not exist now. This study describes a modeling platform capable of meeting many challenges associated with global-scale agro-ecosystem modeling. We designed an analytical framework for bioenergy crops consisting of six major components: (i) standardized natural resources datasets, (ii) global field-trial data and crop management practices, (iii) simulation units and management scenarios, (iv) model calibration and validation, (v) high-performance computing (HPC) simulation, and (vi) simulation output processing and analysis. The HPC-Environmental Policy Integrated Climate (HPC-EPIC) model simulated a perennial bioenergy crop, switchgrass (Panicum virgatum L.), estimating feedstock production potentials and effects across the globe. This modeling platform can assess soil C sequestration, net greenhouse gas (GHG) emissions, nonpoint source pollution (e.g., nutrient and pesticide loss), and energy exchange with the atmosphere. It can be expanded to include additional bioenergy crops (e.g., miscanthus, energy cane, and agave) and food crops under different management scenarios. The platform and switchgrass field-trial dataset are available to support global analysis of biomass feedstock production potential and corresponding metrics of sustainability.

  19. Production of Pharmaceutical Proteins in Solanaceae Food Crops

    PubMed Central

    Rigano, Maria Manuela; De Guzman, Giorgio; Walmsley, Amanda M.; Frusciante, Luigi; Barone, Amalia

    2013-01-01

    The benefits of increased safety and cost-effectiveness make vegetable crops appropriate systems for the production and delivery of pharmaceutical proteins. In particular, Solanaceae edible crops could be inexpensive biofactories for oral vaccines and other pharmaceutical proteins that can be ingested as minimally processed extracts or as partially purified products. The field of crop plant biotechnology is advancing rapidly due to novel developments in genetic and genomic tools being made available today for the scientific community. In this review, we briefly summarize data now available regarding genomic resources for the Solanaceae family. In addition, we describe novel strategies developed for the expression of foreign proteins in vegetable crops and the utilization of these techniques to manufacture pharmaceutical proteins. PMID:23434646

  20. Productivity and nutrient cycling in bioenergy cropping systems

    NASA Astrophysics Data System (ADS)

    Heggenstaller, Andrew Howard

    One of the greatest obstacles confronting large-scale biomass production for energy applications is the development of cropping systems that balance the need for increased productive capacity with the maintenance of other critical ecosystem functions including nutrient cycling and retention. To address questions of productivity and nutrient dynamics in bioenergy cropping systems, we conducted two sets of field experiments during 2005-2007, investigating annual and perennial cropping systems designed to generate biomass energy feedstocks. In the first experiment we evaluated productivity and crop and soil nutrient dynamics in three prototypical bioenergy double-crop systems, and in a conventionally managed sole-crop corn system. Double-cropping systems included fall-seeded forage triticale (x Triticosecale Wittmack), succeeded by one of three summer-adapted crops: corn (Zea mays L.), sorghum-sudangrass [Sorghum bicolor (L.) Moench], or sunn hemp (Crotalaria juncea L.). Total dry matter production was greater for triticale/corn and triticale/sorghum-sudangrass compared to sole-crop corn. Functional growth analysis revealed that photosynthetic duration was more important than photosynthetic efficiency in determining biomass productivity of sole-crop corn and double-crop triticale/corn, and that greater yield in the tiritcale/corn system was the outcome of photosynthesis occurring over an extended duration. Increased growth duration in double-crop systems was also associated with reductions in potentially leachable soil nitrogen relative to sole-crop corn. However, nutrient removal in harvested biomass was also greater in the double-crop systems, indicating that over the long-term, double-cropping would mandate increased fertilizer inputs. In a second experiment we assessed the effects of N fertilization on biomass and nutrient partitioning between aboveground and belowground crop components, and on carbon storage by four perennial, warm-season grasses: big bluestem

  1. Amazon basin soils: management for continuous crop production.

    PubMed

    Sanchez, P A; Bandy, D E; Villachica, J H; Nicholaides, J J

    1982-05-21

    Technology has been developed which permits continuous production of annual crops in some of the acid, infertile soils of the Amazon Basin. Studies in Yurimaguas, Peru, show that three grain crops can be produced annually with appropriate fertilizer inputs. Twenty-one crops have been harvested during the past 8(1/2) years in the same field, with an average annual production of 7.8 tons of grain per hectare. Soil properties are improving with continuous cultivation. The technology has been validated by local farmers, who normally practice shifting cultivation. Economic interpretations indicate large increases in annual family farm income and a high return on the investment of chemical inputs. Other promising land use alternatives include low-input crop production systems, paddy rice production in fertile alluvial soils, and pastures or agroforestry in rolling areas. Stable, continuous food crop production is an attractive alternative to shifting cultivation in humid tropical regions experiencing severe demographic pressures. For each hectare of land managed in a highly productive manner, there may be less need for clearing additional tropical forests to meet food demands. PMID:17819134

  2. Geosensors to Support Crop Production: Current Applications and User Requirements

    PubMed Central

    Thessler, Sirpa; Kooistra, Lammert; Teye, Frederick; Huitu, Hanna; Bregt, Arnold K.

    2011-01-01

    Sensor technology, which benefits from high temporal measuring resolution, real-time data transfer and high spatial resolution of sensor data that shows in-field variations, has the potential to provide added value for crop production. The present paper explores how sensors and sensor networks have been utilised in the crop production process and what their added-value and the main bottlenecks are from the perspective of users. The focus is on sensor based applications and on requirements that users pose for them. Literature and two use cases were reviewed and applications were classified according to the crop production process: sensing of growth conditions, fertilising, irrigation, plant protection, harvesting and fleet control. The potential of sensor technology was widely acknowledged along the crop production chain. Users of the sensors require easy-to-use and reliable applications that are actionable in crop production at reasonable costs. The challenges are to develop sensor technology, data interoperability and management tools as well as data and measurement services in a way that requirements can be met, and potential benefits and added value can be realized in the farms in terms of higher yields, improved quality of yields, decreased input costs and production risks, and less work time and load. PMID:22163978

  3. Diversifying crop rotations with pulses enhances system productivity

    PubMed Central

    Gan, Yantai; Hamel, Chantal; O’Donovan, John T.; Cutforth, Herb; Zentner, Robert P.; Campbell, Con A.; Niu, Yining; Poppy, Lee

    2015-01-01

    Agriculture in rainfed dry areas is often challenged by inadequate water and nutrient supplies. Summerfallowing has been used to conserve rainwater and promote the release of nitrogen via the N mineralization of soil organic matter. However, summerfallowing leaves land without any crops planted for one entire growing season, creating lost production opportunity. Additionally, summerfallowing has serious environmental consequences. It is unknown whether alternative systems can be developed to retain the beneficial features of summerfallowing with little or no environmental impact. Here, we show that diversifying cropping systems with pulse crops can enhance soil water conservation, improve soil N availability, and increase system productivity. A 3-yr cropping sequence study, repeated for five cycles in Saskatchewan from 2005 to 2011, shows that both pulse- and summerfallow-based systems enhances soil N availability, but the pulse system employs biological fixation of atmospheric N2, whereas the summerfallow-system relies on ‘mining’ soil N with depleting soil organic matter. In a 3-yr cropping cycle, the pulse system increased total grain production by 35.5%, improved protein yield by 50.9%, and enhanced fertilizer-N use efficiency by 33.0% over the summerfallow system. Diversifying cropping systems with pulses can serve as an effective alternative to summerfallowing in rainfed dry areas. PMID:26424172

  4. Diversifying crop rotations with pulses enhances system productivity.

    PubMed

    Gan, Yantai; Hamel, Chantal; O'Donovan, John T; Cutforth, Herb; Zentner, Robert P; Campbell, Con A; Niu, Yining; Poppy, Lee

    2015-01-01

    Agriculture in rainfed dry areas is often challenged by inadequate water and nutrient supplies. Summerfallowing has been used to conserve rainwater and promote the release of nitrogen via the N mineralization of soil organic matter. However, summerfallowing leaves land without any crops planted for one entire growing season, creating lost production opportunity. Additionally, summerfallowing has serious environmental consequences. It is unknown whether alternative systems can be developed to retain the beneficial features of summerfallowing with little or no environmental impact. Here, we show that diversifying cropping systems with pulse crops can enhance soil water conservation, improve soil N availability, and increase system productivity. A 3-yr cropping sequence study, repeated for five cycles in Saskatchewan from 2005 to 2011, shows that both pulse- and summerfallow-based systems enhances soil N availability, but the pulse system employs biological fixation of atmospheric N2, whereas the summerfallow-system relies on 'mining' soil N with depleting soil organic matter. In a 3-yr cropping cycle, the pulse system increased total grain production by 35.5%, improved protein yield by 50.9%, and enhanced fertilizer-N use efficiency by 33.0% over the summerfallow system. Diversifying cropping systems with pulses can serve as an effective alternative to summerfallowing in rainfed dry areas. PMID:26424172

  5. Effect of manure vs. fertilizer inputs on productivity of forage crop models.

    PubMed

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-06-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha(-1), respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha(-1) of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha(-1) under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding. PMID:21776208

  6. Effect of Manure vs. Fertilizer Inputs on Productivity of Forage Crop Models

    PubMed Central

    Annicchiarico, Giovanni; Caternolo, Giovanni; Rossi, Emanuela; Martiniello, Pasquale

    2011-01-01

    Manure produced by livestock activity is a dangerous product capable of causing serious environmental pollution. Agronomic management practices on the use of manure may transform the target from a waste to a resource product. Experiments performed on comparison of manure with standard chemical fertilizers (CF) were studied under a double cropping per year regime (alfalfa, model I; Italian ryegrass-corn, model II; barley-seed sorghum, model III; and horse-bean-silage sorghum, model IV). The total amount of manure applied in the annual forage crops of the model II, III and IV was 158, 140 and 80 m3 ha−1, respectively. The manure applied to soil by broadcast and injection procedure provides an amount of nitrogen equal to that supplied by CF. The effect of manure applications on animal feeding production and biochemical soil characteristics was related to the models. The weather condition and manures and CF showed small interaction among treatments. The number of MFU ha−1 of biomass crop gross product produced in autumn and spring sowing models under manure applications was 11,769, 20,525, 11,342, 21,397 in models I through IV, respectively. The reduction of MFU ha−1 under CF ranges from 10.7% to 13.2% those of the manure models. The effect of manure on organic carbon and total nitrogen of topsoil, compared to model I, stressed the parameters as CF whose amount was higher in models II and III than model IV. In term of percentage the organic carbon and total nitrogen of model I and treatment with manure was reduced by about 18.5 and 21.9% in model II and model III and 8.8 and 6.3% in model IV, respectively. Manure management may substitute CF without reducing gross production and sustainability of cropping systems, thus allowing the opportunity to recycle the waste product for animal forage feeding. PMID:21776208

  7. Global crop production forecasting data system analysis

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A. (Principal Investigator); Loats, H. L.; Lloyd, D. G.

    1978-01-01

    The author has identified the following significant results. Findings led to the development of a theory of radiometric discrimination employing the mathematical framework of the theory of discrimination between scintillating radar targets. The theory indicated that the functions which drive accuracy of discrimination are the contrast ratio between targets, and the number of samples, or pixels, observed. Theoretical results led to three primary consequences, as regards the data system: (1) agricultural targets must be imaged at correctly chosen times, when the relative evolution of the crop's development is such as to maximize their contrast; (2) under these favorable conditions, the number of observed pixels can be significantly reduced with respect to wall-to-wall measurements; and (3) remotely sensed radiometric data must be suitably mixed with other auxiliary data, derived from external sources.

  8. Increasing cropping system diversity balances productivity, profitability and environmental health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and can have large negative im...

  9. How Do We Improve Crop Production in a Warming World?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global analysis of crop yields from 1981-2002, showed a negative response of wheat, maize and barley yields to rising temperature, costing an estimated $5 billion per year. An analysis of maize and soybean production in the northern Corn Belt region of the U.S. found that productivity was adversely ...

  10. Productivity of biomass crops as influenced by landscape position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass crops have the potential to produce a variety of products for use in the expanding bioeconomy. Numerous perennial plant species have been identified to serve as dedicated and custom-tailored feedstocks for the production of bioenergy and bioproducts, while also providing numerous positive en...

  11. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission

    USGS Publications Warehouse

    Mariotto, Isabella; Thenkabail, Prasad S.; Huete, Alfredo; Slonecker, E. Terrence; Platonov, Alexander

    2013-01-01

    Precise monitoring of agricultural crop biomass and yield quantities is critical for crop production management and prediction. The goal of this study was to compare hyperspectral narrowband (HNB) versus multispectral broadband (MBB) reflectance data in studying irrigated cropland characteristics of five leading world crops (cotton, wheat, maize, rice, and alfalfa) with the objectives of: 1. Modeling crop productivity, and 2. Discriminating crop types. HNB data were obtained from Hyperion hyperspectral imager and field ASD spectroradiometer, and MBB data were obtained from five broadband sensors: Landsat-7 Enhanced Thematic Mapper Plus (ETM +), Advanced Land Imager (ALI), Indian Remote Sensing (IRS), IKONOS, and QuickBird. A large collection of field spectral and biophysical variables were gathered for the 5 crops in Central Asia throughout the growing seasons of 2006 and 2007. Overall, the HNB and hyperspectral vegetation index (HVI) crop biophysical models explained about 25% greater variability when compared with corresponding MBB models. Typically, 3 to 7 HNBs, in multiple linear regression models of a given crop variable, explained more than 93% of variability in crop models. The evaluation of λ1 (400–2500 nm) versus λ2 (400–2500 nm) plots of various crop biophysical variables showed that the best two-band normalized difference HVIs involved HNBs centered at: (i) 742 nm and 1175 nm (HVI742-1175), (ii) 1296 nm and 1054 nm (HVI1296-1054), (iii) 1225 nm and 697 nm (HVI1225-697), and (iv) 702 nm and 1104 nm (HVI702-1104). Among the most frequently occurring HNBs in various crop biophysical models, 74% were located in the 1051–2331 nm spectral range, followed by 10% in the moisture sensitive 970 nm, 6% in the red and red-edge (630–752 nm), and the remaining 10% distributed between blue (400–500 nm), green (501–600 nm), and NIR (760–900 nm). Discriminant models, used for discriminating 3 or 4 or 5 crop types, showed significantly higher accuracies

  12. Crop Management Effects on Crop Residue Production and Changes in Soil Organic Carbon in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop biomass has been proposed as a source stock for bioethanol production. Acceptable levels of crop residue removal must be determined to prevent loss of soil organic carbon (SOC) and the degradation of soil physical and chemical properties resulting from SOC loss. Crop residue inputs and changes ...

  13. Analysis of Production-Water-Salinity of Index Crops in

    NASA Astrophysics Data System (ADS)

    Sharifan, H.; Ghahreman, B.

    2009-04-01

    One method to investigate the advantages of irrigation in cultivation is to evaluate the amount of increase in productions as a result of irrigation. Such relations which usually characterized by mathematics formulas or curves are called production to water function. In the agricultural analysis like pattern optimization and culture accumulation, we need some function like agricultural crops production, water and salinity. The amount of water used and salinity has influence on crops function, so that by increase in both components in various stages of plant growth, crop function decreases. Many researches have been performed on production-water and production-salinity function, therefore less researches on production-water-salinity components. The equation provided by Letey and Dinar (1986) is a sample of these researches. Their model is a quadratics equation from independent variables of water salinity in irrigation (ECi) and dimensionless proportion of the amount of water used to evaporation in class A (AW/EP) in plant growth stage. Therefore, by using this model and parameters like evaporation, rainfall and also quantity and quality water potential in Golestan farmlands, we obtained production-water-salinity components for each product in three different areas across Golestan province (moisture to dry areas). These products include sunflower, cotton, wheat, barely, potato, tomato, corn, sorgom, water melon, soybean and rice. Finally, these equations were compared by results of previous experiments, some results correspond and others were different. Key Word: production-water, production-salinity and production-water-salinity function, Letey and Dinar, Golestan.

  14. Economic Analysis of Energy Crop Production in the U.S. - Location, Quantities, Price, and Impacts on Traditional Agricultural Crops

    SciTech Connect

    Walsh, M.E.; De La Torre Ugarte, D.; Slinsky, S.; Graham, R.L.; Shapouri, H.; Ray, D.

    1998-10-04

    POLYSYS is used to estimate US locations where, for any given energy crop price, energy crop production can be economically competitive with conventional crops. POLYSYS is a multi-crop, multi-sector agricultural model developed and maintained by the University of Tennessee and used by the USDA-Economic Research Service. It includes 305 agricultural statistical districts (ASD) which can be aggregated to provide state, regional, and national information. POLYSYS is being modified to include switchgrass, hybrid poplar, and willow on all land suitable for their production. This paper summarizes the preliminary national level results of the POLYSYS analysis for selected energy crop prices for the year 2007 and presents the corresponding maps (for the same prices) of energy crop production locations by ASD. Summarized results include: (1) estimates of energy crop hectares (acres) and quantities (dry Mg, dry tons), (2) identification of traditional crops allocated to energy crop production and calculation of changes in their prices and hectares (acres) of production, and (3) changes in total net farm returns for traditional agricultural crops. The information is useful for identifying areas of the US where large quantities of lowest cost energy crops can most likely be produced.

  15. Cover crops in vegetable production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current vegetable production systems require an intensive amount Current vegetable production systems require an intensive amount of work and inputs, and if not properly managed could have detrimental effects on soil and the environment. Practices such as intensive tillage, increased herbicide use, ...

  16. Biorefinery products from the inulin-containing crop Jerusalem artichoke.

    PubMed

    Li, Lili; Li, Li; Wang, Yipeng; Du, Yuguang; Qin, Song

    2013-04-01

    The polysaccharides in Jerusalem artichoke (JA) carry a substantial amount of energy that can be partly accessed through bioconversion into storable fuels. We review the potential for converting inulin into a variety of high value-added biorefinery products, including biofuels and biochemicals, and consider the feasibility of regarding JA as a model species of an inulin-rich crop. We discuss feedstock pretreatment, microorganisms used during fermentation, biorefinery products derived from JA, and how to enhance the economic competitiveness of JA as an energy crop. PMID:23242496

  17. Climate impacts on agriculture: Implications for crop production

    SciTech Connect

    Hatfield, Jerry L.; Boote, Kenneth J.; Kimball, B. A.; Ziska, Lewis A.; Izaurralde, Roberto C.; Ort, Don; Thomson, Allison M.; Wolfe, David W.

    2011-04-19

    Changes in temperature, CO2, and precipitation under the scenarios of climate change for the next 30 years present a challenge to crop production. This review focuses on the impact of temperature, CO2, and ozone on agronomic crops and the implications for crop production. Understanding these implications for agricultural crops is critical for developing cropping systems resilient to stresses induced by climate change. There is variation among crops in their response to CO2, temperature, and precipitation changes and, with the regional differences in predicted climate, a situation is created in which the responses will be further complicated. For example, the temperature effects on soybean could potentially cause yield reductions of 2.4% in the South but an increase of 1.7% in the Midwest. The frequency of years when temperatures exceed thresholds for damage during critical growth stages is likely to increase for some crops and regions. The increase in CO2 contributes significantly to enhanced plant growth and improved water use efficiency; however, there may be a downscaling of these positive impacts due to higher temperatures plants will experience during their growth cycle. A challenge is to understand the interactions of the changing climatic parameters because of the interactions among temperature, CO2, and precipitation on plant growth and development and also on the biotic stresses of weeds, insects, and diseases. Agronomists will have to consider the variations in temperature and precipitation as part of the production system if they are to ensure the food security required by an ever increasing population.

  18. Determining the potential productivity of food crops in controlled environments

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    1992-01-01

    The quest to determine the maximum potential productivity of food crops is greatly benefitted by crop growth models. Many models have been developed to analyze and predict crop growth in the field, but it is difficult to predict biological responses to stress conditions. Crop growth models for the optimal environments of a Controlled Environment Life Support System (CELSS) can be highly predictive. This paper discusses the application of a crop growth model to CELSS; the model is used to evaluate factors limiting growth. The model separately evaluates the following four physiological processes: absorption of PPF by photosynthetic tissue, carbon fixation (photosynthesis), carbon use (respiration), and carbon partitioning (harvest index). These constituent processes determine potentially achievable productivity. An analysis of each process suggests that low harvest index is the factor most limiting to yield. PPF absorption by plant canopies and respiration efficiency are also of major importance. Research concerning productivity in a CELSS should emphasize: (1) the development of gas exchange techniques to continuously monitor plant growth rates and (2) environmental techniques to reduce plant height in communities.

  19. Agroecological zones and the assessment of crop production potential

    PubMed Central

    Sivakumar, M. V. K.; Valentin, C.

    1997-01-01

    The rapidly growing world population puts considerable pressure on the scarce natural resources, and there is an urgent need to develop more efficient and sustainable agricultural production systems to feed the growing population. This should be based on an initial assessment of the physical and biological potential of natural resources, which can vary greatly. The agroecological zonation (AEZ) approach presents a useful preliminary evaluation of this potential, and ensures that representation is maintained at an appropriate biogeographic scale for regional sustainable development planning. The principal AEZs of the world, as described by the Technical Advisory Committee of the Consultative Group on International Agricultural Research, are presented along with their extent and characteristics. Net primary productivity of terrestrial vegetation can be assessed from weather data, and it varies from 1 t dry matter ha-1 yr-1 in high latitude zones and dry regions to 29 t ha-1 yr-1 in tropical wet regions, depending on the climatic conditions. To assess the crop production potential, length of the growing period zones, a concept introduced by the UN Food and Agriculture Organization, is very useful as it describes an area within which rainfall and temperature conditions are suitable for crop growth for a given number of days in the year. These data, combined with the information on soils and known requirements of different food crops, can be used to assess the potential crop productivity. Some perspectives on AEZs and crop production potential are presented by describing the manner in which production potential can be integrated with present constraints. Efforts to intensify production should place emphasis on methods appropriate to the socio-economic conditions in a given AEZ, and on promotion of conservation-effective and sustainable production systems to meet the food, fodder and fuel needs for the future.

  20. From the Academy: Colloquium perspective. Toward cropping systems that enhance productivity and sustainability.

    PubMed

    Cook, R James

    2006-12-01

    The defining features of any cropping system are (i) the crop rotation and (ii) the kind or intensity of tillage. The trend worldwide starting in the late 20th century has been (i) to specialize competitively in the production of two, three, a single, or closely related crops such as different market classes of wheat and barley, and (ii) to use direct seeding, also known as no-till, to cut costs and save soil, time, and fuel. The availability of glyphosate- and insect-resistant varieties of soybeans, corn, cotton, and canola has helped greatly to address weed and insect pest pressures favored by direct seeding these crops. However, little has been done through genetics and breeding to address diseases caused by residue- and soil-inhabiting pathogens that remain major obstacles to wider adoption of these potentially more productive and sustainable systems. Instead, the gains have been due largely to innovations in management, including enhancement of root defense by antibiotic-producing rhizosphere-inhabiting bacteria inhibitory to root pathogens. Historically, new varieties have facilitated wider adoption of new management, and changes in management have facilitated wider adoption of new varieties. Although actual yields may be lower in direct-seed compared with conventional cropping systems, largely due to diseases, the yield potential is higher because of more available water and increases in soil organic matter. Achieving the full production potential of these more-sustainable cropping systems must now await the development of varieties adapted to or resistant to the hazards shown to account for the yield depressions associated with direct seeding. PMID:17130454

  1. Ozone impacts on the productivity of selected crops. [Corn, wheat, soybean and peanut crops

    SciTech Connect

    Heck, W.W.; Cure, W.W.; Shriner, D.S.; Olson, R.J.; Heagle, A.S.

    1982-01-01

    The regional impacts of ozone on corn, wheat, soybean, and peanut crops are estimated by using dose-response functions to relate ambient maximum 7 h/d seasonal ozone concentrations to crop productivity data. Linear dose-response functions were developed from open-top field chamber studies. It was assumed that the limited number of cultivars and growing conditions available for the analysis were representative of major agricultural regions. Hourly ozone data were selected to represent rural concentrations and used to calculate maximum 7-h/d average values. Seasonal ozone averages for counties were extrapolated from approximately 300 monitoring sites. Results must be interpreted with knowledge of these assumptions and sources of uncertainty. Impacts are calculated for county units for the conterminous United States with maps showing patterns and tables summarizing the potential magnitude of ozone effects on selected crop yields. The assessment estimates that approximately three billion dollars of productivity could be gained if current maximum 7 hour per day ozone levels were reduced from present levels to below 25 parts per billion. Dollar values are based on 1978 crop prices, without accounting for price effects, to provide an overall estimate of the impact. Of the estimated economic impact, soybean represents 64%, corn 17%, wheat 12%, and peanuts 7%.

  2. Feeding nine billion: the challenge to sustainable crop production.

    PubMed

    Gregory, Peter J; George, Timothy S

    2011-11-01

    In the recent past there was a widespread working assumption in many countries that problems of food production had been solved, and that food security was largely a matter of distribution and access to be achieved principally by open markets. The events of 2008 challenged these assumptions, and made public a much wider debate about the costs of current food production practices to the environment and whether these could be sustained. As in the past 50 years, it is anticipated that future increases in crop production will be achieved largely by increasing yields per unit area rather than by increasing the area of cropped land. However, as yields have increased, so the ratio of photosynthetic energy captured to energy expended in crop production has decreased. This poses a considerable challenge: how to increase yield while simultaneously reducing energy consumption (allied to greenhouse gas emissions) and utilizing resources such as water and phosphate more efficiently. Given the timeframe in which the increased production has to be realized, most of the increase will need to come from crop genotypes that are being bred now, together with known agronomic and management practices that are currently under-developed. PMID:21841178

  3. Increasing Cropping System Diversity Balances Productivity, Profitability and Environmental Health

    PubMed Central

    Davis, Adam S.; Hill, Jason D.; Chase, Craig A.; Johanns, Ann M.; Liebman, Matt

    2012-01-01

    Balancing productivity, profitability, and environmental health is a key challenge for agricultural sustainability. Most crop production systems in the United States are characterized by low species and management diversity, high use of fossil energy and agrichemicals, and large negative impacts on the environment. We hypothesized that cropping system diversification would promote ecosystem services that would supplement, and eventually displace, synthetic external inputs used to maintain crop productivity. To test this, we conducted a field study from 2003–2011 in Iowa that included three contrasting systems varying in length of crop sequence and inputs. We compared a conventionally managed 2-yr rotation (maize-soybean) that received fertilizers and herbicides at rates comparable to those used on nearby farms with two more diverse cropping systems: a 3-yr rotation (maize-soybean-small grain + red clover) and a 4-yr rotation (maize-soybean-small grain + alfalfa-alfalfa) managed with lower synthetic N fertilizer and herbicide inputs and periodic applications of cattle manure. Grain yields, mass of harvested products, and profit in the more diverse systems were similar to, or greater than, those in the conventional system, despite reductions of agrichemical inputs. Weeds were suppressed effectively in all systems, but freshwater toxicity of the more diverse systems was two orders of magnitude lower than in the conventional system. Results of our study indicate that more diverse cropping systems can use small amounts of synthetic agrichemical inputs as powerful tools with which to tune, rather than drive, agroecosystem performance, while meeting or exceeding the performance of less diverse systems. PMID:23071739

  4. Water Production Functions For High Plains Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Declining water supplies is the critical resource issue for irrigated agriculture in the High Plains and much of the western U.S. Farmers need to maximize production per unit water consumed to remain economically viable and sustain irrigated agriculture. The Agricultural Research Service (ARS) Wat...

  5. Crop and non-crop productivity in a traditional maize agroecosystem of the highland of Mexico

    PubMed Central

    2009-01-01

    Background In Mexico, the traditional maize cultivation system has resisted intensification attempts for many decades in some areas, even in some well-connected regions of the temperate highlands. We suggest that this is due to economics. Methods The total useful biomass of several fields in Nanacamilpa, Tlaxcala, are evaluated for productivity and costs. Results Maize grain production is low (1.5 t ha-1) and does not cover costs. However, maize stover demands a relatively high price. If it included, a profit is possible (about 110 US $ ha-1). We show that non-crop production (weeds for food and forage) potentially has a higher value than the crop. It is only partially used, as there are constraints on animal husbandry, but it diversifies production and plays a role as a back-up system in case of crop failure. Conclusion The diversified system described is economically rational under current conditions and labor costs. It is also stable, low-input and ecologically benign, and should be recognized as an important example of integrated agriculture, though some improvements could be investigated. PMID:19943939

  6. Plastid biotechnology for crop production: present status and future perspectives

    PubMed Central

    Daniell, Henry

    2012-01-01

    The world population is expected to reach an estimated 9.2 billion by 2050. Therefore, food production globally has to increase by 70% in order to feed the world, while total arable land, which has reached its maximal utilization, may even decrease. Moreover, climate change adds yet another challenge to global food security. In order to feed the world in 2050, biotechnological advances in modern agriculture are essential. Plant genetic engineering, which has created a new wave of global crop production after the first green revolution, will continue to play an important role in modern agriculture to meet these challenges. Plastid genetic engineering, with several unique advantages including transgene containment, has made significant progress in the last two decades in various biotechnology applications including development of crops with high levels of resistance to insects, bacterial, fungal and viral diseases, different types of herbicides, drought, salt and cold tolerance, cytoplasmic male sterility, metabolic engineering, phytoremediation of toxic metals and production of many vaccine antigens, biopharmaceuticals and biofuels. However, useful traits should be engineered via chloroplast genomes of several major crops. This review provides insight into the current state of the art of plastid engineering in relation to agricultural production, especially for engineering agronomic traits. Understanding the bottleneck of this technology and challenges for improvement of major crops in a changing climate are discussed. PMID:21437683

  7. Using membrane transporters to improve crops for sustainable food production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the global population predicted to grow by at least 25% by 2050, the need for sustainable production of nutritious foods is critical for human and environmental well-being. Recent advances show that specialized plant membrane transporters can be utilized to enhance yields of staple crops, incre...

  8. Current and future management strategies in intensive crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The root-knot nematode Control and Management Strategy chapter addresses the current and future developments in Meloidogyne spp. control in intensive crop production systems. Discussed are current nematode management strategies such as the use of cultural practices, host plant resistance, applicati...

  9. Production of Woody Nursery Crops in Clean Chip Residual Substrate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Clean chip residual (CCR) is a potential replacement for pine bark (PB) in nursery crop substrates. It is a by-product of in-field forestry harvesting practices and has been shown to produce annual plants and perennials similar in size to plants grown in PB. Studies were conducted in two locations, ...

  10. Operational prediction of crop yields using MODIS data and products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Official crop progress, condition and production estimates for the United States are responsibilities of the U.S. Department of Agriculture’s, National Agricultural Statistics Service (NASS). In addition to weekly and monthly survey-based data, biweekly composite maps of the normalized difference v...

  11. Global Simulation of Bioenergy Crop Productivity: Analytical framework and Case Study for Switchgrass

    SciTech Connect

    Nair, S. Surendran; Nichols, Jeff A. {Cyber Sciences}; Post, Wilfred M; Wang, Dali; Wullschleger, Stan D; Kline, Keith L; Wei, Yaxing; Singh, Nagendra; Kang, Shujiang

    2014-01-01

    Contemporary global assessments of the deployment potential and sustainability aspects of biofuel crops lack quantitative details. This paper describes an analytical framework capable of meeting the challenges associated with global scale agro-ecosystem modeling. We designed a modeling platform for bioenergy crops, consisting of five major components: (i) standardized global natural resources and management data sets, (ii) global simulation unit and management scenarios, (iii) model calibration and validation, (iv) high-performance computing (HPC) modeling, and (v) simulation output processing and analysis. A case study with the HPC- Environmental Policy Integrated Climate model (HPC-EPIC) to simulate a perennial bioenergy crop, switchgrass (Panicum virgatum L.) and global biomass feedstock analysis on grassland demonstrates the application of this platform. The results illustrate biomass feedstock variability of switchgrass and provide insights on how the modeling platform can be expanded to better assess sustainable production criteria and other biomass crops. Feedstock potentials on global grasslands and within different countries are also shown. Future efforts involve developing databases of productivity, implementing global simulations for other bioenergy crops (e.g. miscanthus, energycane and agave), and assessing environmental impacts under various management regimes. We anticipated this platform will provide an exemplary tool and assessment data for international communities to conduct global analysis of biofuel biomass feedstocks and sustainability.

  12. Root architecture and root and tuber crop productivity.

    PubMed

    Villordon, Arthur Q; Ginzberg, Idit; Firon, Nurit

    2014-07-01

    It is becoming increasingly evident that optimization of root architecture for resource capture is vital for enabling the next green revolution. Although cereals provide half of the calories consumed by humans, root and tuber crops are the second major source of carbohydrates globally. Yet, knowledge of root architecture in root and tuber species is limited. In this opinion article, we highlight what is known about the root system in root and tuber crops, and mark new research directions towards a better understanding of the relation between root architecture and yield. We believe that unraveling the role of root architecture in root and tuber crop productivity will improve global food security, especially in regions with marginal soil fertility and low-input agricultural systems. PMID:24630073

  13. Rice production in relation to soil quality under different rice-based cropping systems

    NASA Astrophysics Data System (ADS)

    Tran Ba, Linh; Sleutel, Steven; Nguyen Van, Qui; Thi, Guong Vo; Le Van, Khoa; Cornelis, Wim

    2016-04-01

    Soil quality of shallow paddy soils may be improved by introducing upland crops and thus a more diverse crop cultivation pattern. Yet, the causal relationship between crop performance and enhanced soil traits in rice-upland crop rotations remains elusive. The objectives of this study were to (i) find correlations among soil properties under different rice-upland crop systems and link selected soil properties to rice growth and yield, (ii) present appropriate values of soil parameters for sustainable rice productivity in heavy clay soil, (iii) evaluate the effect of rotating rice with upland crops on rice yield and economic benefit in a long-term experiment. A rice-upland crop rotational field experiment in the Vietnamese Mekong delta was conducted for 10 years using a randomized complete block design with four treatments and four replications. Treatments were: (i) rice-rice-rice (control - conventional system as farmers' practice), (ii) rice-maize-rice, (iii) rice-mung bean-rice, and (iv) rice-mung bean-maize. Soil and plant sampling were performed after harvest of the rice crop at the end of the final winter-spring cropping season (i.e. year 10). Results show differences in rice growth and yield, and economic benefit as an effect of the crop rotation system. These differences were linked with changes in bulk density, soil porosity, soil aggregate stability index, soil penetration resistance, soil macro-porosity, soil organic carbon, acid hydrolysable soil C and soil nutrient elements, especially at soil depth of 20-30 cm. This is evidenced by the strong correlation (P < 0.01) between rice plant parameters, rice yield and soil properties such as bulk density, porosity, penetration resistance, soil organic carbon and Chydrolysable. It turned out that good rice root growth and rice yield corresponded to bulk density values lower than 1.3 Mg m-3, soil porosity higher than 50%, penetration resistance below 1.0 MPa, and soil organic carbon above 25 g kg-1. The optimal

  14. Industrial protein production crops: new needs and new opportunities.

    PubMed

    Herman, Eliot M; Schmidt, Monica A

    2010-01-01

    There are many diverse uses for industrial proteins with new opportunities for novel uses frequently emerging. Prominent among these uses are enzymes catalyzing the processing of food/feed and for the production of cellulosic biofuels. Other significant industrial protein uses include antibodies and other binding proteins for purification and/or clean-up of industrial product streams. Enabling technology is needed to produce these now expensive industrial proteins could be produced cost-effectively. Plant-based production of industrial enzymes offers the prospect of massive, scalable production, coupled with low production cost especially if a co-product, such as seed oil or starch, subsidizes the primary crop production costs. High-protein seeds whose composition is remodeled to produce industrial proteins can be a cost-effective means to produce industrial proteins. There are both technical and regulatory issues to resolve in order to deploy plants and seeds as industrial protein production platforms and many of these issues may be more easily resolved by developing nonfood crops specifically for use as industrial production platforms. An emerging industrial plant, Camelina, has potential as a protein-production platform subsidized by the seed oil co-product. PMID:21912205

  15. Accounting for soil biotic effects on soil health and crop productivity in the design of crop rotations.

    PubMed

    Dias, Teresa; Dukes, Angela; Antunes, Pedro M

    2015-02-01

    There is an urgent need for novel agronomic improvements capable of boosting crop yields while alleviating environmental impacts. One such approach is the use of optimized crop rotations. However, a set of measurements that can serve as guiding principles for the design of crop rotations is lacking. Crop rotations take advantage of niche complementarity, enabling the optimization of nutrient use and the reduction of pests and specialist pathogen loads. However, despite the recognized importance of plant-soil microbial interactions and feedbacks for crop yield and soil health, this is ignored in the selection and management of crops for rotation systems. We review the literature and propose criteria for the design of crop rotations focusing on the roles of soil biota and feedback on crop productivity and soil health. We consider that identifying specific key organisms or consortia capable of influencing plant productivity is more important as a predictor of soil health and crop productivity than assessing the overall soil microbial diversity per se. As such, we propose that setting up soil feedback studies and applying genetic sequencing tools towards the development of soil biotic community databases has a strong potential to enable the establishment of improved soil health indicators for optimized crop rotations. PMID:24408021

  16. Natural and within-farmland biodiversity enhances crop productivity.

    PubMed

    Carvalheiro, Luísa Gigante; Veldtman, Ruan; Shenkute, Awraris Getachew; Tesfay, Gebreamlak Bezabih; Pirk, Christian Walter Werner; Donaldson, John Sydney; Nicolson, Susan Wendy

    2011-03-01

    Ongoing expansion of large-scale agriculture critically threatens natural habitats and the pollination services they offer. Creating patches with high plant diversity within farmland is commonly suggested as a measure to benefit pollinators. However, farmers rarely adopt such practice, instead removing naturally occurring plants (weeds). By combining pollinator exclusion experiments with analysis of honeybee behaviour and flower-visitation webs, we found that the presence of weeds allowed pollinators to persist within sunflower fields, maximizing the benefits of the remaining patches of natural habitat to productivity of this large-scale crop. Weed diversity increased flower visitor diversity, hence ameliorating the measured negative effects of isolation from natural habitat. Although honeybees were the most abundant visitors, diversity of flower visitors enhanced honeybee movement, being the main factor influencing productivity. Conservation of natural patches combined with promoting flowering plants within crops can maximize productivity and, therefore, reduce the need for cropland expansion, contributing towards sustainable agriculture. PMID:21244594

  17. Implications of climate change for crop production in Japan

    SciTech Connect

    Seino, Hiroshi

    1995-12-31

    This study uses climate change scenarios derived from three global climate models (GCMs) to assess the possible impacts of climate change on rice (Oryza sativa L. japonica), maize (Zea mays L.), and wheat (Triticum spp.) production in Japan. Crop models were used to simulate the possible changes in crop yields under different climate change scenarios. Increased temperatures resulted in decreases in simulated crop yield in many regions under the present management systems. While the direct beneficial effects of CO{sub 2} may compensate for the yield decreases in central and northern Japan, the effects did not compensate for the larger yield decreases in southwestern japan, especially in Kyushu. Early planting and irrigation are possible adaptation strategies of the management systems to climate change. In most cases, simulated yields increased under climate change conditions if an earlier planting date was adopted; however, in Kyushu because of high temperature stress, an earlier planting did not improve simulated yields, and the introduction of new cultivars better adapted to the climate change conditions would be required. In Hokkaido, the major upland production area of Japan, climate change increased simulated crop yields under some conditions, depending on the scenario precipitation and irrigation systems.

  18. The components of crop productivity: measuring and modeling plant metabolism

    NASA Technical Reports Server (NTRS)

    Bugbee, B.

    1995-01-01

    Several investigators in the CELSS program have demonstrated that crop plants can be remarkably productive in optimal environments where plants are limited only by incident radiation. Radiation use efficiencies of 0.4 to 0.7 g biomass per mol of incident photons have been measured for crops in several laboratories. Some early published values for radiation use efficiency (1 g mol-1) were inflated due to the effect of side lighting. Sealed chambers are the basic research module for crop studies for space. Such chambers allow the measurement of radiation and CO2 fluxes, thus providing values for three determinants of plant growth: radiation absorption, photosynthetic efficiency (quantum yield), and respiration efficiency (carbon use efficiency). Continuous measurement of each of these parameters over the plant life cycle has provided a blueprint for daily growth rates, and is the basis for modeling crop productivity based on component metabolic processes. Much of what has been interpreted as low photosynthetic efficiency is really the result of reduced leaf expansion and poor radiation absorption. Measurements and models of short-term (minutes to hours) and long-term (days to weeks) plant metabolic rates have enormously improved our understanding of plant environment interactions in ground-based growth chambers and are critical to understanding plant responses to the space environment.

  19. Assimilation of LAI time-series in crop production models

    NASA Astrophysics Data System (ADS)

    Kooistra, Lammert; Rijk, Bert; Nannes, Louis

    2014-05-01

    Agriculture is worldwide a large consumer of freshwater, nutrients and land. Spatial explicit agricultural management activities (e.g., fertilization, irrigation) could significantly improve efficiency in resource use. In previous studies and operational applications, remote sensing has shown to be a powerful method for spatio-temporal monitoring of actual crop status. As a next step, yield forecasting by assimilating remote sensing based plant variables in crop production models would improve agricultural decision support both at the farm and field level. In this study we investigated the potential of remote sensing based Leaf Area Index (LAI) time-series assimilated in the crop production model LINTUL to improve yield forecasting at field level. The effect of assimilation method and amount of assimilated observations was evaluated. The LINTUL-3 crop production model was calibrated and validated for a potato crop on two experimental fields in the south of the Netherlands. A range of data sources (e.g., in-situ soil moisture and weather sensors, destructive crop measurements) was used for calibration of the model for the experimental field in 2010. LAI from cropscan field radiometer measurements and actual LAI measured with the LAI-2000 instrument were used as input for the LAI time-series. The LAI time-series were assimilated in the LINTUL model and validated for a second experimental field on which potatoes were grown in 2011. Yield in 2011 was simulated with an R2 of 0.82 when compared with field measured yield. Furthermore, we analysed the potential of assimilation of LAI into the LINTUL-3 model through the 'updating' assimilation technique. The deviation between measured and simulated yield decreased from 9371 kg/ha to 8729 kg/ha when assimilating weekly LAI measurements in the LINTUL model over the season of 2011. LINTUL-3 furthermore shows the main growth reducing factors, which are useful for farm decision support. The combination of crop models and sensor

  20. Bioethanol production from dedicated energy crops and residues in Arkansas, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Globally, one of the major technological goals is cost-effective lignocellulosic ethanol production from biomass feedstocks. Lignocellulosic biomass of five dedicated energy crops and two crops residues were tested for bioethanol production using cellulose solvent-based lignocellulose fractionation...

  1. Using membrane transporters to improve crops for sustainable food production

    PubMed Central

    Schroeder, Julian I.; Delhaize, Emmanuel; Frommer, Wolf B.; Guerinot, Mary Lou; Harrison, Maria J.; Herrera-Estrella, Luis; Horie, Tomoaki; Kochian, Leon V.; Munns, Rana; Nishizawa, Naoko K.; Tsay, Yi-Fang; Sanders, Dale

    2013-01-01

    With the global population predicted to grow by at least 25 per cent by 2050, the need for sustainable production of nutritious foods is critical for human and environmental health. Recent advances show that specialized plant membrane transporters can be used to enhance yields of staple crops, increase nutrient content and increase resistance to key stresses, including salinity, pathogens and aluminium toxicity, which in turn could expand available arable land. PMID:23636397

  2. Coastal eutrophication in Europe caused by production of energy crops.

    PubMed

    van Wijnen, Jikke; Ivens, Wilfried P M F; Kroeze, Carolien; Löhr, Ansje J

    2015-04-01

    In Europe, the use of biodiesel may increase rapidly in the coming decades as a result of policies aiming to increase the use of renewable fuels. Therefore, the production of biofuels from energy crops is expected to increase as well as the use of fertilisers to grow these crops. Since fertilisers are an important cause of eutrophication, the use of biodiesel may have an effect on the water quality in rivers and coastal seas. In this study we explored the possible effects of increased biodiesel use on coastal eutrophication in European seas in the year 2050. To this end, we defined a number of illustrative scenarios in which the biodiesel production increases to about 10-30% of the current diesel use. The scenarios differ with respect to the assumptions on where the energy crops are cultivated: either on land that is currently used for agriculture, or on land used for other purposes. We analysed these scenarios with the Global NEWS (Nutrient Export from WaterSheds) model. We used an existing Millennium Ecosystem Assessment Scenario for 2050, Global Orchestration (GO2050), as a baseline. In this baseline scenario the amount of nitrogen (N) and phosphorus (P) exported by European rivers to coastal seas decreases between 2000 and 2050 as a result of environmental and agricultural policies. In our scenarios with increased biodiesel production the river export of N and P increases between 2000 and 2050, indicating that energy crop production may more than counterbalance this decrease. Largest increases in nutrient export were calculated for the Mediterranean Sea and the Black Sea. Differences in nutrient export among river basins are large. PMID:25536176

  3. Nitrogen in crop production: An account of global flows

    NASA Astrophysics Data System (ADS)

    Smil, Vaclav

    1999-06-01

    Human activities have roughly doubled the amount of reactive N that enters the element's biospheric cycle. Crop production is by far the single largest cause of this anthropogenic alteration. Inorganic fertilizers now provide 80 Tg N yr-1 (Tg = 1012 g), managed (symbiotic) biofixation adds about 20 Tg N yr-1, and between 28 and 36 Tg N yr-1 are recycled in organic wastes. Anthropogenic inputs (including N in seeds and irrigation water) now supply about 85% of 170 (151-186) Tg N reaching the world's cropland every year. About half of this input, 85 Tg N yr-1, is taken up by harvested crops and their residues. Quantification of N losses from crop fields is beset by major uncertainties. Losses to the atmosphere (denitrification and volatilization) amount to 26-60 Tg N yr-1, while waters receive (from leaching and erosion) 32-45 Tg N yr-1. These N losses are the major reason behind the growing concerns about the enrichment of the biosphere with reactive N. The best evidence suggests that in spite of some significant local and regional losses, the world's agricultural land accumulates N. The addition of 3-4 billion people before the year 2050 will require further substantial increases of N input in cropping, but a large share of this demand can come from improved efficiency of N fertilizer use.

  4. Bio-based and biodegradable plastics for use in crop production.

    PubMed

    Riggi, Ezio; Santagata, Gabriella; Malinconico, Mario

    2011-01-01

    The production and management of crops uses plastics for many applications (e.g., low tunnels, high tunnels, greenhouses, mulching, silage bags, hay bales, pheromone traps, coatings of fertilizers or pesticides or hormones or seeds, and nursery pots and containers for growing transplants). All these applications have led some authors to adopt the term "plasticulture" when discussing the use of plastic materials in agriculture and related industries. Unfortunately, the sustainability of this use of plastics is low, and renewability and degradability have become key words in the debate over sustainable production and utilization of plastic. Recently, researchers and the plastics industry have made strong efforts (i) to identify new biopolymers and natural additives from renewable sources that can be used in plastics production and (ii) to enhance the degradability (biological or physical) of the new ecologically sustainable materials. In the present review, we describe the main research results, current applications, patents that have been applied for in the last two decades, and future perspectives on sustainable use of plastics to support crop production. The article presents some promising patents on bio-based and biodegradable plastics for use in crop production. PMID:21114467

  5. Crop diversity effects on productivity and economic returns under dryland agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing crop diversity has been identified as a method to improve agronomic performance of cropping systems and increase provision of ecosystem services. However, there is a need to understand the economic performance of more diverse cropping systems. Crop productivity and economic net returns we...

  6. 7 CFR 457.128 - Guaranteed production plan of fresh market tomato crop insurance provisions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Guaranteed production plan of fresh market tomato crop... § 457.128 Guaranteed production plan of fresh market tomato crop insurance provisions. The Guaranteed Production Plan of Fresh Market Tomato Crop Insurance FCIC Policies Department of Agriculture Federal...

  7. 7 CFR 457.128 - Guaranteed production plan of fresh market tomato crop insurance provisions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Guaranteed production plan of fresh market tomato crop... § 457.128 Guaranteed production plan of fresh market tomato crop insurance provisions. The Guaranteed Production Plan of Fresh Market Tomato Crop Insurance FCIC Policies Department of Agriculture Federal...

  8. 7 CFR 457.128 - Guaranteed production plan of fresh market tomato crop insurance provisions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Guaranteed production plan of fresh market tomato crop... § 457.128 Guaranteed production plan of fresh market tomato crop insurance provisions. The Guaranteed Production Plan of Fresh Market Tomato Crop Insurance FCIC Policies Department of Agriculture Federal...

  9. 7 CFR 457.128 - Guaranteed production plan of fresh market tomato crop insurance provisions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Guaranteed production plan of fresh market tomato crop... § 457.128 Guaranteed production plan of fresh market tomato crop insurance provisions. The Guaranteed Production Plan of Fresh Market Tomato Crop Insurance FCIC Policies Department of Agriculture Federal...

  10. 7 CFR 457.128 - Guaranteed production plan of fresh market tomato crop insurance provisions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Guaranteed production plan of fresh market tomato crop... § 457.128 Guaranteed production plan of fresh market tomato crop insurance provisions. The Guaranteed Production Plan of Fresh Market Tomato Crop Insurance FCIC Policies Department of Agriculture Federal...

  11. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... crop production. 205.602 Section 205.602 Agriculture Regulations of the Department of Agriculture... organic crop production. The following nonsynthetic substances may not be used in organic crop production... that minimizes chloride accumulation in the soil. (f) Sodium fluoaluminate (mined). (g) Sodium...

  12. Replacing fallow with continuous cropping reduces crop water productivity of semiarid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water supply frequently limits crop yield in semiarid cropping systems; water deficits can restrict yields in drought-affected subhumid regions. In semiarid wheat (Triticum aestivumL.)-based cropping systems, replacing an uncropped fallow period with a crop can increase precipitation use efficiency ...

  13. Long-term impacts of cropping systems and landscape positions on clay-pan soil grain crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  14. Long-term impacts of cropping systems and landscape positions on grain crop production on claypan soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  15. Long-term impacts of cropping systems and landscape positions on claypan-soil grain crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable grain crop production on vulnerable claypan soils requires improved knowledge of long-term impacts of conservation cropping systems (CS) with reduced inputs. Therefore, effects of CS and landscape positions (LP) on corn (Zea mays L.), soybean [Glycine max (L.) Merr.], and wheat (Triticum...

  16. Influence of extreme weather disasters on global crop production.

    PubMed

    Lesk, Corey; Rowhani, Pedram; Ramankutty, Navin

    2016-01-01

    In recent years, several extreme weather disasters have partially or completely damaged regional crop production. While detailed regional accounts of the effects of extreme weather disasters exist, the global scale effects of droughts, floods and extreme temperature on crop production are yet to be quantified. Here we estimate for the first time, to our knowledge, national cereal production losses across the globe resulting from reported extreme weather disasters during 1964-2007. We show that droughts and extreme heat significantly reduced national cereal production by 9-10%, whereas our analysis could not identify an effect from floods and extreme cold in the national data. Analysing the underlying processes, we find that production losses due to droughts were associated with a reduction in both harvested area and yields, whereas extreme heat mainly decreased cereal yields. Furthermore, the results highlight ~7% greater production damage from more recent droughts and 8-11% more damage in developed countries than in developing ones. Our findings may help to guide agricultural priorities in international disaster risk reduction and adaptation efforts. PMID:26738594

  17. Influence of extreme weather disasters on global crop production

    NASA Astrophysics Data System (ADS)

    Lesk, Corey; Rowhani, Pedram; Ramankutty, Navin

    2016-01-01

    In recent years, several extreme weather disasters have partially or completely damaged regional crop production. While detailed regional accounts of the effects of extreme weather disasters exist, the global scale effects of droughts, floods and extreme temperature on crop production are yet to be quantified. Here we estimate for the first time, to our knowledge, national cereal production losses across the globe resulting from reported extreme weather disasters during 1964-2007. We show that droughts and extreme heat significantly reduced national cereal production by 9-10%, whereas our analysis could not identify an effect from floods and extreme cold in the national data. Analysing the underlying processes, we find that production losses due to droughts were associated with a reduction in both harvested area and yields, whereas extreme heat mainly decreased cereal yields. Furthermore, the results highlight ~7% greater production damage from more recent droughts and 8-11% more damage in developed countries than in developing ones. Our findings may help to guide agricultural priorities in international disaster risk reduction and adaptation efforts.

  18. Agricultural sectoral demand and crop productivity response across the world

    NASA Astrophysics Data System (ADS)

    Johnston, M.; Ray, D. K.; Cassidy, E. S.; Foley, J. A.

    2013-12-01

    With an increasing and increasingly affluent population, humans will need to roughly double agricultural production by 2050. Continued yield growth forms the foundation of all future strategies aiming to increase agricultural production while slowing or eliminating cropland expansion. However, a recent analysis by one of our co-authors has shown that yield trends in many important maize, wheat and rice growing regions have begun stagnating or declining from the highs seen during the green revolution (Ray et al. 2013). Additional research by our group has shown that nearly 50% of new agricultural production since the 1960s has gone not to direct human consumption, but instead to animal feed and other industrial uses. Our analysis for GLP looks at the convergence of these two trends by examining time series utilization data for 16 of the biggest crops to determine how demand from different sectors has shaped our land-use and intensification strategies around the world. Before rushing headlong into the next agricultural doubling, it would be prudent to first consult our recent agricultural history to better understand what was driving past changes in production. Using newly developed time series dataset - a fusion of cropland maps with historic agricultural census data gathered from around the world - we can examine yield and harvested area trends over the last half century for 16 top crops. We combine this data with utilization rates from the FAO Food Balance Sheet to see how demand from different sectors - food, feed, and other - has influenced long-term growth trends from the green revolution forward. We will show how intensification trends over time and across regions have grown or contracted depending on what is driving the change in production capacity. Ray DK, Mueller ND, West PC, Foley JA (2013) Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 8(6): e66428. doi:10.1371/journal.pone.0066428

  19. Assessing water footprint of wheat production in China using a crop-model-coupled-statistics approach

    NASA Astrophysics Data System (ADS)

    Cao, X. C.; Wu, P. T.; Wang, Y. B.; Zhao, X. N.

    2014-01-01

    farmland for per kg of wheat production. WFP for irrigated (WFPI) and rain-fed (WFPR) crops are 1.246 and 1.202 m3 kg-1 respectively. We have divided the 30 provinces into three categories according to the relation between WFPI and WFPR: (I) WFPI < WFPR, (II) WFPI is equivalent to WFPR, and (III) WFPI > WFPR. Category II, which contains major wheat producing areas in the North China Plain, contribute nearly 75% of wheat production to the country. Provinces belonging to Category III have to invest 0.478 cubic meters of water in order to harvest 1 kg wheat product. Double benefits of saving water and promoting production can be achieved substantially by irrigating wheat in Category I provinces. Nevertheless, provinces in this category, which should have contributed more, are summed to produce only 1.1% of the national wheat production.

  20. Application Problem of Biomass Combustion in Greenhouses for Crop Production

    NASA Astrophysics Data System (ADS)

    Kawamura, Atsuhiro; Akisawa, Atsushi; Kashiwagi, Takao

    It is consumed much energy in fossil fuels to production crops in greenhouses in Japan. And fl ue gas as CO2 fertilization is used for growing crops in modern greenhouses. If biomass as renewable energy can use for production vegetables in greenhouses, more than 800,000 kl of energy a year (in crude oil equivalent) will be saved. In this study, at fi rst, we made the biomass combustion equipment, and performed fundamental examination for various pellet fuel. We performed the examination that considered an application to a real greenhouse next. We considered biomass as both a source of energy and CO2 gas for greenhouses, and the following fi ndings were obtained: 1) Based on the standard of CO2 gas fertilization to greenhouses, it is diffi cult to apply biomass as a CO2 fertilizer, so that biomass should be applied to energy use only, at least for the time being. 2) Practical biomass energy machinery for economy, high reliability and greenhouses satisfying the conservatism that it is easy is necessary. 3) It is necessary to develop crop varieties and cultivation systems requiring less strict environmental control. 4) Disposal of combustion ash occurring abundantly, effective practical use is necessary.

  1. Climate Trends and Global Crop Production Since 1980

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Schlenker, Wolfram; Costa-Roberts, Justin

    2011-07-01

    Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.

  2. Soil and water quality implications of production of herbaceous and woody energy crops

    SciTech Connect

    Tolbert, V.R.; Lindberg, J.E.; Green, T.H.

    1997-10-01

    Field-scale studies in three physiographic regions of the Tennessee Valley in the Southeastern US are being used to address the environmental effects of producing biomass energy crops on former agricultural lands. Comparison of erosion, surface water quality and quantity, and subsurface movement of water and nutrients from woody crops, switchgrass and agricultural crops began with crop establishment in 1994. Nutrient cycling, soil physical changes, and productivity of the different crops are also being monitored at the three sites.

  3. Researchers fine-tune production of energy crops

    SciTech Connect

    Parish, D.J. )

    1990-04-01

    Renewable energy sources, plant materials that can be processed into liquid fuels, are becoming increasingly important as fossil fuel sources dwindle and environmental impacts of releasing fossilized carbon into the atmosphere become more evident. But which plant species provide the most material and can be grown on land not used to produce food, feed, and fiber Switchgrass exceeds all other herbaceous species we have tested in production of biomass on marginal sites in the Virginia Piedmont reports David J. Parrish, Virginia Tech (Blacksburg, VA) professor of crop and soil environmental sciences. In a study sponsored by the U.S. Department of Energy (DOE) at Virginia Tech, graduate student Steven Nagle, Parrish, professor Dale Wolf, and associate professor W.L. Daniels are comparing the biomass productivity of switchgrass, weeping lovegrass, and tall fescue. Since 1985, the crops - selected for their marginal crop value - have been grown on 12 sites in the Virginia Piedmont. Planting was done using no-till procedures that slice but do not turn the soil, because the sites are subject to erosion. The two warm-season grasses are harvested once a year, the fescue twice. Switchgrass has been the most productive on clay soils, and lovegrass on sandy soil. In a second DOE-sponsored study - this one by graduate student Preston Sullivan, Parish, Wolf, Daniels, and Nagle - the Virginia Tech researchers have begun to investigate planting winter-annual legumes in with switchgrass as a source of nitrogen to reduce cost of production, and as a means to increase biomass. In the fall of 1988, crimson clover, arrowleaf clover, and hairy vetch were planted into the switchgrass stubble. Other plots of switchgrass are being provided with various levels of nitrogen fertilizer to compare those yields with legume-planted plots. Crimson clover had provided the most fall growth, but by mid-May 1989, the hairy vetch had produced a dense webbing of biomass over the new switchgrass.

  4. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.

    PubMed

    Wang, Y B; Wu, P T; Engel, B A; Sun, S K

    2014-11-01

    Water shortages are detrimental to China's grain production while food production consumes a great deal of water causing water crises and ecological impacts. Increasing crop water productivity (CWP) is critical, so China is devoting significant resources to develop water-saving agricultural systems based on crop planning and agricultural water conservation planning. A comprehensive CWP index is necessary for such planning. Existing indices such as water use efficiency (WUE) and irrigation efficiency (IE) have limitations and are not suitable for the comprehensive evaluation of CWP. The water footprint (WF) index, calculated using effective precipitation and local water use, has advantages for CWP evaluation. Due to regional differences in crop patterns making the CWP difficult to compare directly across different regions, a unified virtual crop pattern is needed to calculate the WF. This project calculated and compared the WF of each grain crop and the integrated WFs of grain products with actual and virtual crop patterns in different regions of China for 2010. The results showed that there were significant differences for the WF among different crops in the same area or among different areas for the same crop. Rice had the highest WF at 1.39 m(3)/kg, while corn had the lowest at 0.91 m(3)/kg among the main grain crops. The WF of grain products was 1.25 m(3)/kg in China. Crop patterns had an important impact on WF of grain products because significant differences in WF were found between actual and virtual crop patterns in each region. The CWP level can be determined based on the WF of a virtual crop pattern, thereby helping optimize spatial distribution of crops and develop agricultural water savings to increase CWP. PMID:25112819

  5. 7 CFR 1412.35 - Incorrect or false production evidence of oilseeds and pulse crops.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... false production evidence of oilseeds and pulse crops. (a) If production evidence submitted in... following: (i) Make a further yield reduction for part or all of the designated oilseeds or pulse crops on... and pulse crops. 1412.35 Section 1412.35 Agriculture Regulations of the Department of...

  6. 7 CFR 1412.35 - Incorrect or false production evidence of oilseeds and pulse crops.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... false production evidence of oilseeds and pulse crops. (a) If production evidence submitted in... following: (i) Make a further yield reduction for part or all of the designated oilseeds or pulse crops on... and pulse crops. 1412.35 Section 1412.35 Agriculture Regulations of the Department of...

  7. 7 CFR 1412.35 - Incorrect or false production evidence of oilseeds and pulse crops.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... false production evidence of oilseeds and pulse crops. (a) If production evidence submitted in... following: (i) Make a further yield reduction for part or all of the designated oilseeds or pulse crops on... and pulse crops. 1412.35 Section 1412.35 Agriculture Regulations of the Department of...

  8. Irrigation with Treated Urban Wastewater for Bioenergy Crop Production in the Far West Texas

    NASA Astrophysics Data System (ADS)

    Ganjegunte, G. K.; Clark, J. A.; Wu, Y.

    2011-12-01

    (measured by sodium adsorption ratio or SAR, which ranges from 8 to 12). Irrigation with water having elevated salinity is sustainable if soil is suitable and crops are tolerant to salinity. Amongst the bioenergy crops, U.S. Department of Energy has identified switchgrass (Panicum virgatum L.) as the most promising non-food bioenergy crop. The favorable attributes of switchgrass as a bioenergy crop include demonstrated long-term high biomass production capability across many environments, high net energy return, suitability for marginal land, low water and nutrients requirements, and excellent compatibility with existing agricultural practices. Despite these potential advantages, hardly any information exists on switchgrass performance under irrigation with waters having elevated salinity such as treated wastewater in the arid southwest. This paper presents the preliminary findings of an ongoing project that evaluates (i) the salt tolerance, biomass yield and bioenergy quality of switchgrass; (ii) changes in soil salinity and (iii) potential for groundwater contamination under urban wastewater irrigation carried out under greenhouse conditions.

  9. Hyperspectral signal unmixing for the extraction of crop production parameters

    NASA Astrophysics Data System (ADS)

    Tits, L.; Somers, B.; Stuckens, J.; Verstraeten, W. W.; Coppin, P.

    2010-05-01

    The value of hyperspectral remote sensing in agricultural management has been amply demonstrated. However, the sub-pixel spectral contribution of background soils and shadows hampers the accurate site-specific monitoring of agricultural crop characteristics from aerial or satellite images. Existing unmixing algorithms are able to estimate the ground cover of the crop in a pixel (Area Unmixing). Yet an accurate monitoring of critical cop production parameters demands that undesired spectral background effects (i.e. soils and shadows) are removed from mixed image pixels. To address this problem, the concept of Signal Unmixing (SU) is introduced. The objective is not the estimation of cover fractions, but the extraction of the pure and complete hyperspectral signature (400-2400nm) of the crop from the mixed pixel signal. The technique is evaluated using images generated from ray tracing simulations of a fully calibrated virtual orchard. Comparison between the pure vegetation signals (ground truth) and the extracted vegetation signals showed RRMSE values smaller than 0.075 over the whole spectral range. This is further highlighted when comparing the correlation between the water content of the crop and the water-index NDWI derived from the hyperspectral signal. The correlation between the water content of the orchard trees and the NDWI calculated with the reference pure vegetation signal is R²=0.96, which reduces to R²=0.4 when using the mixed pixel signal. However, when using the pure vegetation signal extracted from the mixed pixel using SU for the calculation of the NDWI, the R² increases again to 0.7, stressing the relevance and feasibility of the SU approach in addressing the mixture problem.

  10. Comparing cropping system productivity of fixed rotations and a flexible fallow system using Aqua-Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the Central High Plains, the predominant crop rotation is winter wheat (Triticum aestivum L.)-fallow. Producers are looking to add diversity and intensity to their cropping systems and improve water use efficiency by adding summer crops, however, the elimination of summer fallow may increase the ...

  11. Use of reclaimed water and sludge in food crop production

    SciTech Connect

    1996-07-01

    This book reviews the practice of reclaiming treated municipal wastewater for agricultural irrigation and using sewage sludge as a soil amendment and fertilizer in the United States. It describes and evaluates treatment technologies and practices; effects on soils, crop production, and ground water; public health concerns from pathogens and toxic chemicals; existing regulations and guidelines; and some of the economic liability, and institutional issues. The recommendations and findings are aimed at authorities at the federal, state, and local levels, public utilities, and the food processing industry.

  12. Removal of Cu(II) from acidic electroplating effluent by biochars generated from crop straws.

    PubMed

    Tong, Xuejiao; Xu, Renkou

    2013-04-01

    The removal efficiency of copper (Cu(II)) from an actual acidic electroplating effluent by biochars generated from canola, rice, soybean and peanut straws was investigated. The biochars simultaneously removed Cu(II) from the effluent, mainly through the mechanisms of adsorption and precipitation, and neutralized its acidity. The removal efficiency of Cu(II) by the biochars followed the order: peanut straw char > soybean straw char > canola straw char > rice straw char > a commercial activated carbonaceous material, which is consistent with the alkalinity of the biochars. The pH of the effluent was a key factor determining the removal efficiency of Cu(II) by biochars. Raising the initial pH of the effluent enhanced the removal of Cu(II) from it. The optimum pyrolysis temperature was 400 degrees C for producing biochar from crop straws for acidic wastewater treatment, and the optimum reaction time was 8 hr. PMID:23923773

  13. Toward agricultural sustainability through integrated crop–livestock systems. II. Production responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensification of cropping and animal production as two separately specialized agricultural systems has led to unacceptable deterioration of the environment due to (i) excessive concentration of nutrients and pathogens in livestock production systems and (ii) loss of natural biodiversity and excess...

  14. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    NASA Astrophysics Data System (ADS)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  15. Productivity, absorbed photosynthetically active radiation, and light use efficiency in crops: implications for remote sensing of crop primary production.

    PubMed

    Gitelson, Anatoly A; Peng, Yi; Arkebauer, Timothy J; Suyker, Andrew E

    2015-04-01

    Vegetation productivity metrics such as gross primary production (GPP) at the canopy scale are greatly affected by the efficiency of using absorbed radiation for photosynthesis, or light use efficiency (LUE). Thus, close investigation of the relationships between canopy GPP and photosynthetically active radiation absorbed by vegetation is the basis for quantification of LUE. We used multiyear observations over irrigated and rainfed contrasting C3 (soybean) and C4 (maize) crops having different physiology, leaf structure, and canopy architecture to establish the relationships between canopy GPP and radiation absorbed by vegetation and quantify LUE. Although multiple LUE definitions are reported in the literature, we used a definition of efficiency of light use by photosynthetically active "green" vegetation (LUE(green)) based on radiation absorbed by "green" photosynthetically active vegetation on a daily basis. We quantified, irreversible slowly changing seasonal (constitutive) and rapidly day-to-day changing (facultative) LUE(green), as well as sensitivity of LUE(green) to the magnitude of incident radiation and drought events. Large (2-3-fold) variation of daily LUE(green) over the course of a growing season that is governed by crop physiological and phenological status was observed. The day-to-day variations of LUE(green) oscillated with magnitude 10-15% around the seasonal LUE(green) trend and appeared to be closely related to day-to-day variations of magnitude and composition of incident radiation. Our results show the high variability of LUE(green) between C3 and C4 crop species (1.43 g C/MJ vs. 2.24 g C/MJ, respectively), as well as within single crop species (i.e., maize or soybean). This implies that assuming LUE(green) as a constant value in GPP models is not warranted for the crops studied, and brings unpredictable uncertainties of remote GPP estimation, which should be accounted for in LUE models. The uncertainty of GPP estimation due to facultative and

  16. Impact of crop production on air quality in life support dynamics in closed habitats

    SciTech Connect

    Volk, T.

    1987-01-01

    Interest in human-designed closed habitats - where the substances needed for human life support are continuously regenerated from waste products - is growing, as apparent from the National Aeronautics and Space Administration's Closed Ecological Life Support Systems Program, the Soviet Union's Bios experiments, and the Biosphere II Project in Arizona. Nuclear-powered bases on the moon and Mars will have food-growing capabilities, and through gas-exchange processes these crops will alter the atmospheric composition. This study focuses on major gases tied to human life support: CO/sub 2/, O/sub 2/, and water vapor. Since actual systems are years and likely decades away, simulation studies can indicate necessary further research and provide instruction about the predicted behavior of such systems. To look at the first-order plant dynamics, i.e., the production of O/sub 2/ and water vapor and the consumption of CO/sub 2/, a simulation model is constructed with crop, human, and waste subsystems. The plant can either share an atmosphere with the humans or be separate, linked by osmotic or mechanical gas exchangers. The crop subsystem is sketched. Stoichiometric equations for the biosynthesis of protein, carbohydrates, and lipids in the edible portion and carbohydrates, fiber, and lignin in the inedible portion govern growth, mimicking that currently observed in the latest hydroponic wheat experiments.

  17. Environmental assessment of two different crop systems in terms of biomethane potential production.

    PubMed

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. PMID:23994820

  18. The integration of remotely sensed soil moisture into the USDA global crop production support system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil moisture is a fundamental data source used in crop growth stage and crop stress models. Currently, the USDA Production Estimates and Crop Assessment Division (PECAD) utilizes a modification of the Palmer two-layer soil moisture model to estimate surface soil moisture. This model uses a simplifi...

  19. The California Biomass Crop Adoption Model estimates biofuel feedstock crop production across diverse agro-ecological zones within the state, under different future climates

    NASA Astrophysics Data System (ADS)

    Kaffka, S.; Jenner, M.; Bucaram, S.; George, N.

    2012-12-01

    Both regulators and businesses need realistic estimates for the potential production of biomass feedstocks for biofuels and bioproducts. This includes the need to understand how climate change will affect mid-tem and longer-term crop performance and relative advantage. The California Biomass Crop Adoption Model is a partial mathematical programming optimization model that estimates the profit level needed for new crop adoption, and the crop(s) displaced when a biomass feedstock crop is added to the state's diverse set of cropping systems, in diverse regions of the state. Both yield and crop price, as elements of profit, can be varied. Crop adoption is tested against current farmer preferences derived from analysis of 10 years crop production data for all crops produced in California, collected by the California Department of Pesticide Regulation. Analysis of this extensive data set resulted in 45 distinctive, representative farming systems distributed across the state's diverse agro-ecological regions. Estimated yields and water use are derived from field trials combined with crop simulation, reported elsewhere. Crop simulation is carried out under different weather and climate assumptions. Besides crop adoption and displacement, crop resource use is also accounted, derived from partial budgets used for each crop's cost of production. Systematically increasing biofuel crop price identified areas of the state where different types of crops were most likely to be adopted. Oilseed crops like canola that can be used for biodiesel production had the greatest potential to be grown in the Sacramento Valley and other northern regions, while sugar beets (for ethanol) had the greatest potential in the northern San Joaquin Valley region, and sweet sorghum in the southern San Joaquin Valley. Up to approximately 10% of existing annual cropland in California was available for new crop adoption. New crops are adopted if the entire cropping system becomes more profitable. In

  20. Potential environmental impacts of bioenergy crop production. Background paper

    SciTech Connect

    Not Available

    1993-09-01

    Bioenergy crops have the potential to improve the environment, increase rural incomes, and reduce Federal budget deficits and the U.S. trade imbalance. In the wake of the devastating Midwest floods, bioenergy crops may also offer a more robust crop for flood-prone regions. Bioenergy crops include annual row crops such as corn, herbaceous perennial grasses (herbaceous energy crops--HECs) such as switchgrass, and short-rotation woody crops (SRWCs) such as poplar. HECs are analogous to growing hay, harvesting the crop for energy rather than for forage. SRWCs typically consist of a plantation of closely spaced (2 to 3 meters apart on a grid) trees that are harvested on a cycle of 3 to 10 years.

  1. GPP estimates in a biodiesel crop using MERIS products

    NASA Astrophysics Data System (ADS)

    Sánchez, M. L.; Pardo, N.; Pérez, I.; García, M. A.; Paredes, V.

    2012-04-01

    Greenhouse gas emissions in Spain in 2008-2009 were 34.3 % higher than the base-year level, significantly above the burden-sharing target of 15 % for the period 2008-2012. Based on this result, our country will need to make a major effort to meet the committed target on time using domestic measures as well as others foreseen in the Kyoto Protocol, such as LULUFC activities. In this framework, agrofuels, in other words biofuels produced by crops that contain high amounts of vegetable oil such as sorghum, sunflower, rape seed and jatropha, appear to be an interesting mitigation alternative. Bearing in mind the meteorological conditions in Spain, sunflower and rape seed in particular are considered the most viable crops. Sunflower cultivated surface in Spain has remained fairly constant in recent years, in contrast to rapeseed crop surface which, although still scarce, has followed an increasing trend. In order to assess rape seed ability as a CO2 sink as well as to describe GPP dynamic evolution, we installed an eddy correlation station in an agricultural plot of the Spanish plateau. Measurements at the plot consisted of 30-min NEE flux measurements (using a LI-7500 and a METEK USA-1 sonic anemometer) as well as other common meteorological variables. Measurements were performed from March to October. This paper presents the results of the GPP 8-d estimated values using a Light Use Efficiency Model, LUE. Input data for the LUE model were the FPAR 8-d products supplied by MERIS, the PAR in situ measurements, and a scalar f varying, between 0 and 1, to take into account the reduction of the maximum PAR conversion efficiency, ɛ0, under limiting environmental conditions. The f values were assumed to be dependent on air temperature and the evaporative fraction, EF, which was considered as a proxy of soil moisture. ɛ0, a key parameter, which depends on biome types, was derived through the results of a linear regression fit between the GPP 8-d eddy covariance composites

  2. Firewood crops: shrub and tree species for energy production

    SciTech Connect

    Not Available

    1980-01-01

    In the face of global concern over the dwindling supply of fuelwood, the rate of forest decimation to provide basic human necessities in developing countries is alarming. We must look upon woody plants as renewable resources that, if effectively managed, could alleviate the problem not only for the present,but for posterity. This report suggests potential significant fuelwood species for introduction to suitable environments, although it does not suggest a solution for the fuelwood crisis. The emphasis is on species suitable for individual crops, but species suited to plantation cultivation for fueling small industrial factories, electric generators, and crop driers are also considered. Most of the plants are little known in traditional forest production. Some are woody shrubs rather than trees, but all are aggressive and quick growing. They should be introduced with care in areas where the climate and soil conditions are not harsh. The substitution of well-designed stoves, kilns, or boilers could improve fuel efficiency. Each species is illustrated with photographs and diagrams. (Refs. 420).

  3. Microbial Diversity-Based Novel Crop Protection Products

    SciTech Connect

    Pioneer Hi-Bred International Inc.; DuPont Experimental Station; Yalpani, Ronald Flannagan, Rafael Herrmann, James Presnail, Tamas Torok, and Nasser; Herrmann, Rafael; Presnail, James; Torok, Tamas; Yalpani, Nasser

    2007-05-10

    Extremophilic microorganisms are adapted to survive in ecological niches with high temperatures, extremes of pH, high salt concentrations, high pressure, radiation, etc. Extremophiles produce unique biocatalysts and natural products that function under extreme conditions comparab le to those prevailing in various industrial processes. Therefore, there is burgeoning interest in bioprospecting for extremophiles with potential immediate use in agriculture, the food, chemical, and pharm aceutical industries, and environmental biotechnology. Over the years, several thousand extremophilic bacteria, archaea, and filamentous fungi were collected at extreme environmental sites in the USA, the Chernobyl Exclusion Zone surrounding the faeild nuclear power plant in Ukraine, in and around Lake Baikal in Siberia, and at geothermal sites on the Kamchatka peninsula in Russia. These organisms were cultured under proprietary conditions, and the cell- free supernatants were screened for biological activities against plant pathogenic fungi and major crop damaging insects. Promising peptide lead molecules were isolated, characterized, and sequenced. Relatively high hit rates characterized the tested fermentation broths. Of the 26,000 samples screened, over thousand contained biological activity of interest. A fair number of microorganisms expressed broad- spectrum antifungal or insecticidal activity. Two- dozen broadly antifungal peptides (AFPs) are alr eady patent protected, and many more tens are under further investigation. Tapping the gene pool of extremophilic microorganisms to provide novel ways of crop protection proved a successful strategy.

  4. PRODUCTION OF NON-FOOD-CHAIN CROPS WITH SEWAGE SLUDGE

    EPA Science Inventory

    Feasibility and market potential were determined for non-food-chain crops cultivated using sewage sludge. Non-food-chain crops that are currently being sold on the open market or that have a good potential for marketability were selected. From a list of 20 crops, 3 were selected ...

  5. Double- and relay-cropping oilseed and biomass crops for sustainable energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Double- and relay-cropping offers a means to produce a biofuel and food or forage crop in a single season on the same land without sacrificing food security, while potentially boosting profits. Field studies were conducted between 2009 and 2012 in Morris, Minnesota (MN), and Prosper and Carrington, ...

  6. Genetic improvement for root growth angle to enhance crop production.

    PubMed

    Uga, Yusaku; Kitomi, Yuka; Ishikawa, Satoru; Yano, Masahiro

    2015-03-01

    The root system is an essential organ for taking up water and nutrients and anchoring shoots to the ground. On the other hand, the root system has rarely been regarded as breeding target, possibly because it is more laborious and time-consuming to evaluate roots (which require excavation) in a large number of plants than aboveground tissues. The root growth angle (RGA), which determines the direction of root elongation in the soil, affects the area in which roots capture water and nutrients. In this review, we describe the significance of RGA as a potential trait to improve crop production, and the physiological and molecular mechanisms that regulate RGA. We discuss the prospects for breeding to improve RGA based on current knowledge of quantitative trait loci for RGA in rice. PMID:26069440

  7. Genetic improvement for root growth angle to enhance crop production

    PubMed Central

    Uga, Yusaku; Kitomi, Yuka; Ishikawa, Satoru; Yano, Masahiro

    2015-01-01

    The root system is an essential organ for taking up water and nutrients and anchoring shoots to the ground. On the other hand, the root system has rarely been regarded as breeding target, possibly because it is more laborious and time-consuming to evaluate roots (which require excavation) in a large number of plants than aboveground tissues. The root growth angle (RGA), which determines the direction of root elongation in the soil, affects the area in which roots capture water and nutrients. In this review, we describe the significance of RGA as a potential trait to improve crop production, and the physiological and molecular mechanisms that regulate RGA. We discuss the prospects for breeding to improve RGA based on current knowledge of quantitative trait loci for RGA in rice. PMID:26069440

  8. Integration of crop production with CELSS waste management

    NASA Astrophysics Data System (ADS)

    Wignarajah, K.; Bubenheim, D. L.

    1997-01-01

    Lettuce plants were grown utilizing water, inorganic elements, and CO_2 inputs recovered from waste streams. The impact of these waste-derived inputs on the growth of lettuce was quantified and compared with results obtained when reagent grade inputs were used. Phytotoxicity was evident in both the untreated wastewater stream and the recovered CO_2 stream. The toxicity of surfactants in wastewater was removed using several treatment systems. Harmful effects of gaseous products resulting from incineration of inedible biomass on crop growth were observed. No phytotoxicity was observed when inorganic elements recovered from incinerated biomass ash were used to prepare the hydroponic solution, but the balance of nutrients had to be modified to achieve near optimal growth. The results were used to evaluate closure potential of water and inorganic elemental loops for integrated plant growth and human requirements.

  9. Modeling the water-satisfied degree for production of the main food crops in China.

    PubMed

    Yu, Guangming; Yang, Yumeng; Tu, Zhenfa; Jie, Yi; Yu, Qiwu; Hu, Xiaoyan; Yu, Hailong; Zhou, Ruirui; Chen, Xiaoxu; Wang, Hongzhi

    2016-03-15

    Water resources are one of the important factors that influence regional crop production and the food security of humans. Most traditional models of crop water demand analysis are built on the basis of a certain crop or macroscopic analysis, which neglect regional crop allocation and the difference of water demand in different crop growing periods. In this paper, a new assessing model, the satisfied degree of crop water requirement, is developed to assess the impacts of water resources on production of six main food crops in China. The six main food crops are spring wheat, winter wheat, corn, early season rice, middle-season rice and late rice. The results show that: (1) there are serious risks of water shortage in China, even in south China with its abundant precipitation; (2) the satisfied degree of crop water demand represents great temporal-spatial changes. On spatial distribution the risks are high in major bases of food production due to influences of cropping system and crop-combinations. Northwest China is a special interesting case. In seasonal fluctuation water shortage is severe in March and September. These risks seriously restrict food production in China. The results also show that the strategic measures of water resources management must be chosen carefully to deal with food security and regional sustainable development in China. PMID:26789359

  10. Effects of modified atmosphere on crop productivity and mineral content

    NASA Astrophysics Data System (ADS)

    Chagvardieff, P.; Dimon, B.; Souleimanov, A.; Massimino, D.; Le Bras, S.; Péan, M.; Louche-Teissandier, D.

    1997-01-01

    Wheat, potato, pea and tomato crops were cultivated from seeding to harvest in a controlled and confined growth chamber at elevated CO_2 concentration (3700 muL.L^-1) to examine the effects on biomass production and edible part yields. Different responses to high CO_2 were recorded, ranging from a decline in productivity for wheat, to slight stimulation for potatoes, moderate increase for tomatoes, and very large enhancement for pea. Mineral content in wheat and pea seeds was not greatly modified by the elevated CO_2. Short-term experiments (17 d) were conducted on potato at high (3700 muL.L^-1) and very high (20,000 muL.L^-1) CO_2 concentration and/or low O_2 partial pressure (~ 20,600 muL.L^-1 or 2 kPa). Low O_2 was more effective than high CO_2 in total biomass accumulation, but development was affected: Low O_2 inhibited tuberization, while high CO_2 significantly increased production of tubers.

  11. Increased Productivity of a Cover Crop Mixture Is Not Associated with Enhanced Agroecosystem Services

    PubMed Central

    Smith, Richard G.; Atwood, Lesley W.; Warren, Nicholas D.

    2014-01-01

    Cover crops provide a variety of important agroecological services within cropping systems. Typically these crops are grown as monocultures or simple graminoid-legume bicultures; however, ecological theory and empirical evidence suggest that agroecosystem services could be enhanced by growing cover crops in species-rich mixtures. We examined cover crop productivity, weed suppression, stability, and carryover effects to a subsequent cash crop in an experiment involving a five-species annual cover crop mixture and the component species grown as monocultures in SE New Hampshire, USA in 2011 and 2012. The mean land equivalent ratio (LER) for the mixture exceeded 1.0 in both years, indicating that the mixture over-yielded relative to the monocultures. Despite the apparent over-yielding in the mixture, we observed no enhancement in weed suppression, biomass stability, or productivity of a subsequent oat (Avena sativa L.) cash crop when compared to the best monoculture component crop. These data are some of the first to include application of the LER to an analysis of a cover crop mixture and contribute to the growing literature on the agroecological effects of cover crop diversity in cropping systems. PMID:24847902

  12. Methodology for calculation of carbon balances for biofuel crops production

    NASA Astrophysics Data System (ADS)

    Gerlfand, I.; Hamilton, S. K.; Snapp, S. S.; Robertson, G. P.

    2012-04-01

    Understanding the carbon balance implications for different biofuel crop production systems is important for the development of decision making tools and policies. We present here a detailed methodology for assessing carbon balances in agricultural and natural ecosystems. We use 20 years of data from Long-term Ecological Research (LTER) experiments at the Kellogg Biological Station (KBS), combined with models to produce farm level CO2 balances for different management practices. We compared four grain and one forage systems in the U.S. Midwest: corn (Zea mays) - soybean (Glycine max) - wheat (Triticum aestivum) rotations managed with (1) conventional tillage, (2) no till, (3) low chemical input, and (4) biologically-based (organic) practices; and (5) continuous alfalfa (Medicago sativa). In addition we use an abandoned agricultural field (successionnal ecosystem) as reference system. Measurements include fluxes of N2O and CH4, soil organic carbon change, agricultural yields, and agricultural inputs (e.g. fertilization and farm fuel use). In addition to measurements, we model carbon offsets associated with the use of bioenergy from agriculturally produced crops. Our analysis shows the importance of establishing appropriate system boundaries for carbon balance calculations. We explore how different assumptions regarding production methods and emission factors affect overall conclusions on carbon balances of different agricultural systems. Our results show management practices that have major the most important effects on carbon balances. Overall, agricultural management with conventional tillage was found to be a net CO2 source to the atmosphere, while agricultural management under reduced tillage, low input, or organic management sequestered carbon at rates of 93, -23, -51, and -14 g CO2e m-2 yr-1, respectively for conventionally tilled, no-till, low-input, and organically managed ecosystems. Perennial systems (alfalfa and the successionnal fields) showed net carbon

  13. Meteorological risks and impacts on crop production systems in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2013-04-01

    Extreme weather events such as droughts, heat stress, rain storms and floods can have devastating effects on cropping systems. The perspective of rising risk-exposure is exacerbated further by projected increases of extreme events with climate change. More limits to aid received for agricultural damage and an overall reduction of direct income support to farmers further impacts farmers' resilience. Based on insurance claims, potatoes and rapeseed are the most vulnerable crops, followed by cereals and sugar beets. Damages due to adverse meteorological events are strongly dependent on crop type, crop stage and soil type. Current knowledge gaps exist in the response of arable crops to the occurrence of extreme events. The degree of temporal overlap between extreme weather events and the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop and its environment. The regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency and magnitude of drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. Since crop development is driven by thermal time, crops matured earlier during the warmer 1988-2008 period than during the 1947-1987 period. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the cropping season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Soil moisture deficit increases towards harvesting, such that earlier maturing winter crops may avoid drought stress that occurs in late spring and summer. This is reflected in a decrease both in magnitude and frequency of soil moisture deficit around the sensitive stages during the 1988-2008 period when atmospheric drought may be compensated for with soil moisture. The risk of drought spells during

  14. CDF II production farm project

    SciTech Connect

    Baranovski, A.; Benjamin, D.; Cooper, G.; Farrington, S.; Genser, K.; Hou, S.; Hsieh, T.; Kotwal, A.; Lipeles, E.; Murat, P.; Norman, M.; /Fermilab /Duke U. /Taiwan, Inst. Phys. /UC, San Diego /Glasgow U. /Frascati

    2006-12-01

    We describe the architecture and discuss our operational experience in running the off-line reconstruction farm of the CDFII experiment. The Linux PC-based farm performs a wide set of tasks,ranging from producing calibrations and primary event reconstruction to large scale ntuple production.The farm control software uses a standard Condor toolkit and the data handling part is based on SAM (Sequential Access via Metadata)software.During its lifetime,the CDFII experiment will integrate a large amount of data (several petabytes)and the data processing chain is one of the key components of the successful physics program of the experiment.

  15. El Nino southern oscillation effects on dryland crop production in the Texas High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Risk adverse dryland crop management in the US Southern High Plains may stabilize year to year productivity, however in some years the full yield potential is unrealized thereby reducing the overall cropping system productivity. Equatorial Pacific sea surface temperature anomalies (SSTA) systematica...

  16. Past and future climate patterns affecting temperate, sub-tropical and tropical horticultural crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial horticultural crop production will be impacted by climate change effects on temperature, water availability, solar radiation, air pollution, and carbon dioxide. Horticultural crop value is derived from both the quantity and the quality of the harvested product; both of which are affected ...

  17. Crop Production Handbook for Peace Corps Volunteers. Appropriate Technologies for Development. Reprint R-6.

    ERIC Educational Resources Information Center

    1982

    This manual, prepared for use by Peace Corps volunteers, provides background information and practical knowledge about crop production. The manual is designed to convey insights into basic crop production, principles, and practices. Primary emphasis is given to providing explanations and illustrations of soil, plant, and water relationships as…

  18. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop...

  19. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop...

  20. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Nonsynthetic substances prohibited for use in organic... AGRICULTURE (CONTINUED) ORGANIC FOODS PRODUCTION ACT PROVISIONS NATIONAL ORGANIC PROGRAM Administrative The... organic crop production. The following nonsynthetic substances may not be used in organic crop...

  1. Levels of organochlorine pesticides in crops and related products from Vojvodina, Serbia: estimated dietary intake.

    PubMed

    Skrbić, B; Predojević, Z

    2008-05-01

    Levels of 16 organochlorine pesticides (OCPs) were investigated in 39 composite samples of agricultural crops, related by-products, and foodstuffs collected in Vojvodina, Serbia, in 2002 through 2004. After extraction and cleanup, OCPs were determined by capillary gas chromatography using electron-capture detection. The highest mean level of 0.971 ng/g whole weight (ww) was found for alpha-HCH in wheat flour samples. OCPs levels were well lower than the respective maximum residue limits set by current European and Serbian regulations. Mean OCP levels were low (<1 ng/g ww) for all sample types. The most frequently determined residue was 4,4'-DDT (identified in 76.9% of all samples analyzed), followed by gamma-HCH (66.7%), beta-HCH (48.7%), and endosulfan II (41.0%). OCP levels were compared with data from other international surveys. Calculated daily intakes of OCPs by way of consumption of the crop products included in this study according to data of the Serbian National Institute for Statistics were compared with the acceptable daily intakes established by the Food and Agriculture Organization/World Health Organization. The average level of contamination of the Vojvodina diet was believed to be harmless regarding the studied food commodities. PMID:18197356

  2. Crop Residue Removal Effects on Production Costs and Soil Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residue has been identified as a near-term source of biomass for renewable fuel, heat, power, chemicals and other bio-materials. Our objective is to examine the potential impacts on the soil resource and nutrient replacement costs for different crop residue management strategies. Preliminary da...

  3. Black oat cover crop management in watermelon production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Black oats (Avena strigosa Schreb.) were sown as a cover crop near Weslaco, Texas (Lat. 26 deg N) in Fall 2010. The cover crop was allowed to senesce naturally and was planted to watermelons in both the spring and in the fall of 2011. Watermelon transplants planted in the spring into mowed black o...

  4. Winter cover crops impact on corn production in semiarid regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops have been proposed as a technique to increase soil health. This study examined the impact of winter brassica cover crop cocktails grown after wheat (Triticum aestivum) on corn yields; corn yield losses due to water and N stress; soil bacteria to fungi ratios; mycorrhizal markers; and ge...

  5. Engineering New Crops for Safe Castor Oil Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Castor (Ricinus communis L.) is an important oilseed crop with significant industrial value. Due to the presence of the ricin toxin and hyper-allergenic 2S albumins in seed, it is desirable to develop a safe castor crop. As part of a genetic approach to eliminate ricin and 2S albumins from castor, ...

  6. An original experiment to determine impact of catch crop introduction in a crop rotation on N2O production fate

    NASA Astrophysics Data System (ADS)

    Tallec, Tiphaine; Le Dantec, Valérie; Zawilski, Bartosz; Brut, Aurore; Boussac, Marion; Ferlicoq, Morgan; Ceschia, Eric

    2015-04-01

    The raise in N2O concentration from the preindustrial era (280 ppb) to nowadays (324 ppb) is estimated to account for approximately 6% of the predicted global warming (IPCC 2014). Worldwide, soils are considered to be the dominant source of N2O, releasing an estimated 9.5 Tg N2O-N y-1 (65% of global N2O emissions), of which 36.8% are estimated to originate from agricultural soils (IPCC 2001). Most N2O originating from agricultural soils is a by- or end-product of nitrification or denitrification. The fate of N2O produced by microbiological processes in the subsoil is controlled by biotic (crop species, occurring soil organic matter, human pressure via mineral and organic nitrogen fertilisation) and abiotic (environmental conditions such as temperature, soil moisture, pH, etc.) factors. In cropland, contrary to forest and grassland, long bare soil periods can occurred between winter and summer crops with a high level of mineral (fertilizer) and organic (residues) nitrogen remaining in the soil, causing important emissions of carbon and nitrogen induced by microbial activities. Introduction of catch crop has been identified as an important mitigation option to reduce environmental impact of crops mainly thanks to their ability to increase CO2 fixation, to decrease mineral nitrogen lixiviation and also reduce the potential fate of N2O production. Uncertainty also remains about the impact of released mineral nitrogen coming from crushed catch crop on N2O production if summer crop seedling and mineral nitrogen release are not well synchronized. To verify those assumptions, a unique paired-plot experiment was carried in the south-west of France from September 2013 to august 2014 to test impact of management change on N2O budget and production dynamic. A crop plot was divided into two subplots, one receiving a catch crop (mustard), the other one remaining conventionally managed (bare-soil during winter). This set-up allowed avoiding climate effect. Each subplot was

  7. Weather based risks and insurances for crop production in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, Anne

    2014-05-01

    Extreme weather events such as late frosts, droughts, heat waves and rain storms can have devastating effects on cropping systems. Damages due to extreme events are strongly dependent on crop type, crop stage, soil type and soil conditions. The perspective of rising risk-exposure is exacerbated further by limited aid received for agricultural damage, an overall reduction of direct income support to farmers and projected intensification of weather extremes with climate change. According to both the agriculture and finance sectors, a risk assessment of extreme weather events and their impact on cropping systems is needed. The impact of extreme weather events particularly during the sensitive periods of the farming calendar requires a modelling approach to capture the mixture of non-linear interactions between the crop, its environment and the occurrence of the meteorological event. The risk of soil moisture deficit increases towards harvesting, such that drought stress occurs in spring and summer. Conversely, waterlogging occurs mostly during early spring and autumn. Risks of temperature stress appear during winter and spring for chilling and during summer for heat. Since crop development is driven by thermal time and photoperiod, the regional crop model REGCROP (Gobin, 2010) enabled to examine the likely frequency, magnitude and impacts of frost, drought, heat stress and waterlogging in relation to the cropping season and crop sensitive stages. The risk profiles were subsequently confronted with yields, yield losses and insurance claims for different crops. Physically based crop models such as REGCROP assist in understanding the links between different factors causing crop damage as demonstrated for cropping systems in Belgium. Extreme weather events have already precipitated contraction of insurance coverage in some markets (e.g. hail insurance), and the process can be expected to continue if the losses or damages from such events increase in the future. Climate

  8. Water Footprints of Cellulosic Bioenergy Crops: Implications for Production on Marginal Lands

    NASA Astrophysics Data System (ADS)

    Hamilton, S. K.; Hussain, M. Z.; Bhardwaj, A. K.; Basso, B.; Abraha, M. G.; Robertson, G. P.

    2014-12-01

    Water availability often limits crop production, even in relatively humid climates, and crops vary in their water demand and water use efficiency. Crop production for biofuel (ethanol or biodiesel) offers an alternative to fossil energy sources but requires large amounts of land, and is therefore a more viable option if such crops could be produced on marginal lands that often have soils of poor water-holding capacity. The selection of an appropriate crop requires information on its water demand, water use efficiency, and drought tolerance, but such information is incompletely available for the suite of cellulosic biofuel crops currently under consideration. This study analyzed soil moisture profiles (time-domain reflectometry) to estimate evapotranspiration and water use efficiency of three leading candidate crops for cellulosic bioenergy production (switchgrass, Miscanthus, and maize) grown in a relatively humid climate (Midwestern United States) over four years (2010-13). These field observations of water use by these annual and perennial crops reveal their water use efficiency for biomass and biofuel production. Total growing season water use was remarkably consistent among crops and across years of varying soil water availability, including very favorable precipitation years as well as a drought year (2012). Water use efficiency was more variable and, for maize, depends on whether the maize serves for both grain and cellulosic biofuel production.

  9. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  10. Controlled environment crop production - Hydroponic vs. lunar regolith

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce G.; Salisbury, Frank B.

    1989-01-01

    The potential of controlled environment crop production in a lunar colony is discussed. Findings on the effects of optimal root-zone and aerial environments derived as part of the NASA CELSS project at Utah State are presented. The concept of growing wheat in optimal environment is discussed. It is suggested that genetic engineering might produce the ideal wheat cultivar for CELSS (about 100 mm in height with fewer leaves). The Utah State University hydroponic system is outlined and diagrams of the system and plant container construction are provided. Ratio of plant mass to solution mass, minimum root-zone volume, maintenance, and pH control are discussed. A comparison of liquid hydrophonic systems and lunar regoliths as substrates for plant growth is provided. The physiological processes that are affected by the root-zone environment are discussed including carbon partitioning, nutrient availability, nutrient absorption zones, root-zone oxygen, plant water potential, root-produced hormones, and rhizosphere pH control.

  11. GM crops, the environment and sustainable food production.

    PubMed

    Raven, Peter H

    2014-12-01

    Today, over 7.1 billion people rely on the earth's resources for sustenance, and nearly a billion people are malnourished, their minds and bodies unable to develop properly. Globally, population is expected to rise to more than 9 billion by 2050. Given the combined pressures of human population growth, the rapidly growing desire for increased levels of consumption, and the continued use of inappropriate technologies, it is not surprising that humans are driving organisms to extinction at an unprecedented rate. Many aspects of the sustainable functioning of the natural world are breaking down in the face of human-induced pressures including our individual and collective levels of consumption and our widespread and stubborn use of destructive technologies. Clearly, agriculture must undergo a redesign and be better and more effectively managed so as to contribute as well as possible to feeding people, while at the same time we strive to lessen the tragic loss of biodiversity and damage to all of its productive systems that the world is experiencing. For GM crops to be part of the solution, biosafety assessments should not be overly politically-driven or a burdensome impedance to delivering this technology broadly. Biosafety scientists and policy makers need to recognize the undeniable truth that inappropriate actions resulting in indecision also have negative consequences. It is no longer acceptable to delay the use of any strategy that is safe and will help us achieve the ability to feed the world's people. PMID:24150918

  12. Soil carbon dioxide emission and carbon content under dryland crops. II. Effects of tillage, cropping sequence, and nitrogen fertilization.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Management practices are needed to reduce soil CO2 emission and increase C sequestration under dryland cropping system. The effects of tillage, cropping sequence, and N fertilization were evaluated on soil surface CO2 flux, soil total C content at 0- to 120-cm depth, and soil temperature and water c...

  13. Effects of Climate Change on Regional Crop Production in Eastern Pennsylvania

    NASA Astrophysics Data System (ADS)

    Ross, S. T.; Mangan, J. M.

    2009-12-01

    Regional climate changes can significantly alter crop yields for agriculturally important areas. Berks County, PA, is an agrarian community whose crop production is typical of southeastern Pennsylvania, with corn as a major crop. Mean annual temperatures in Pennsylvania are predicted to increase by 4 degrees C and precipitation is expected to increase 5% by 2100. We examined changes in 20th Century Berks County crop yields, particularly corn, in response to yearly variations in temperature and precipitation. Crop yields for corn are predicted by models to increase up to a 29 degrees C threshold, beyond which yields will significantly decrease. This study quantifies the effects of recent climate change on Berks County crop production and predicts potential changes for the future. It is important to consider regional climate change effects if we are to fully understand the impacts of global change on food crop production. This study also incorporates anecdotal data from farmers to note their perceptions of crop productivity as related to environmental changes and to determine other factors that may affect farming practices and crop yields.

  14. Alternative scenarios of bioenergy crop production in an agricultural landscape and implications for bird communities.

    PubMed

    Blank, Peter J; Williams, Carol L; Sample, David W; Meehan, Timothy D; Turner, Monica G

    2016-01-01

    Increased demand and government mandates for bioenergy crops in the United States could require a large allocation of agricultural land to bioenergy feedstock production and substantially alter current landscape patterns. Incorporating bioenergy landscape design into land-use decision making could help maximize benefits and minimize trade-offs among alternative land uses. We developed spatially explicit landscape scenarios of increased bioenergy crop production in an 80-km radius agricultural landscape centered on a potential biomass-processing energy facility and evaluated the consequences of each scenario for bird communities. Our scenarios included conversion of existing annual row crops to perennial bioenergy grasslands and conversion of existing grasslands to annual bioenergy row crops. The scenarios explored combinations of four biomass crop types (three potential grassland crops along a gradient of plant diversity and one annual row crop [corn]), three land conversion percentages to bioenergy crops (10%, 20%, or 30% of row crops or grasslands), and three spatial configurations of biomass crop fields (random, clustered near similar field types, or centered on the processing plant), yielding 36 scenarios. For each scenario, we predicted the impact on four bird community metrics: species richness, total bird density, species of greatest conservation need (SGCN) density, and SGCN hotspots (SGCN birds/ha ≥ 2). Bird community metrics consistently increased with conversion of row crops to bioenergy grasslands and consistently decreased with conversion of grasslands to bioenergy row crops. Spatial arrangement of bioenergy fields had strong effects on the bird community and in some cases was more influential than the amount converted to bioenergy crops. Clustering grasslands had a stronger positive influence on the bird community than locating grasslands near the central plant or at random. Expansion of bioenergy grasslands onto marginal agricultural lands will

  15. Regional crop productivity and greenhouse gas emissions from Swiss soils under organic farming

    NASA Astrophysics Data System (ADS)

    Lee, Juhwan; Necpalova, Magdalena; Six, Johan

    2016-04-01

    There is worldwide concern about the increase in atmospheric greenhouse gases (GHG) and their impact on climate change and food security. As a sustainable alternative, organic cropping in various forms has been promoted to minimize the environmental impacts of conventional practices. However, relatively little is known about the potential to reduce GHG emissions while maintaining crop productivity through the large-scale adoption of organic practices. Therefore, we simulated and compared regional crop production, soil organic carbon status, and net soil GHG emissions under organic and conventional practices. Grid-level (2.2 km by 2.2 km) simulation was performed using previously validated DailyDayCent by considering typical crop rotations. Regional model estimates are presented and discussed specifically with the focus on Swiss organic and conventional cropping systems, which differ by type and intensity of manuring, tillage, and cover crop.

  16. Heavy flavor production in CDF II detector

    SciTech Connect

    Gorelov, Igor V.; /New Mexico U.

    2006-01-01

    For data collected with the CDF Run II detector, measurements of the charm and bottom production cross-sections are presented. The results are based both on large samples of fully reconstructed hadron decay products of charm and bottom made available by the tracking triggers and on a calorimeter jet triggered sample tagged by the presence of a secondary vertex. The experimental data are compared with theoretical predictions from recent next-to-leading order (NLO) QCD calculations.

  17. An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems

    SciTech Connect

    Zhang, X; Izaurralde, R. C.; Manowitz, D.; West, T. O.; Thomson, A. M.; Post, Wilfred M; Bandaru, Vara Prasad; Nichols, Jeff; Williams, J.

    2010-10-01

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  18. An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems

    SciTech Connect

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

    2010-09-08

    The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

  19. Ozone phytotoxicity evaluation and prediction of crops production in tropical regions

    NASA Astrophysics Data System (ADS)

    Mohammed, Nurul Izma; Ramli, Nor Azam; Yahya, Ahmad Shukri

    2013-04-01

    Increasing ozone concentration in the atmosphere can threaten food security due to its effects on crop production. Since the 1980s, ozone has been believed to be the most damaging air pollutant to crops. In Malaysia, there is no index to indicate the reduction of crops due to the exposure of ozone. Therefore, this study aimed to identify the accumulated exposure over a threshold of X ppb (AOTX) indexes in assessing crop reduction in Malaysia. In European countries, crop response to ozone exposure is mostly expressed as AOT40. This study was designed to evaluate and predict crop reduction in tropical regions and in particular, the Malaysian climate, by adopting the AOT40 index method and modifying it based on Malaysian air quality and crop data. Nine AOTX indexes (AOT0, AOT5, AOT10, AOT15, AOT20, AOT25, AOT30, AOT40, and AOT50) were analyzed, crop responses tested and reduction in crops predicted. The results showed that the AOT50 resulted in the highest reduction in crops and the highest R2 value between the AOT50 and the crops reduction from the linear regression analysis. Hence, this study suggests that the AOT50 index is the most suitable index to estimate the potential ozone impact on crops in tropical regions. The result showed that the critical level for AOT50 index if the estimated crop reduction is 5% was 1336 ppb h. Additionally, the results indicated that the AOT40 index in Malaysia gave a minimum percentage of 6% crop reduction; as contrasted with the European guideline of 5% (due to differences in the climate e.g., average amount of sunshine).

  20. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation

    NASA Astrophysics Data System (ADS)

    Siebert, Stefan; Döll, Petra

    2010-04-01

    SummaryCrop production requires large amounts of green and blue water. We developed the new global crop water model GCWM to compute consumptive water use (evapotranspiration) and virtual water content (evapotranspiration per harvested biomass) of crops at a spatial resolution of 5' by 5', distinguishing 26 crop classes, and blue versus green water. GCWM is based on the global land use data set MIRCA2000 that provides monthly growing areas for 26 crop classes under rainfed and irrigated conditions for the period 1998-2002 and represents multi-cropping. By computing daily soil water balances, GCWM determines evapotranspiration of blue and green water for each crop and grid cell. Cell-specific crop production under both rainfed and irrigated conditions is computed by downscaling average crop yields reported for 402 national and sub-national statistical units, relating rainfed and irrigated crop yields reported in census statistics to simulated ratios of actual to potential crop evapotranspiration for rainfed crops. By restricting water use of irrigated crops to green water only, the potential production loss without any irrigation was computed. For the period 1998-2002, the global value of total crop water use was 6685 km 3 yr -1, of which blue water use was 1180 km 3 yr -1, green water use of irrigated crops was 919 km 3 yr -1 and green water use of rainfed crops was 4586 km 3 yr -1. Total crop water use was largest for rice (941 km 3 yr -1), wheat (858 km 3 yr -1) and maize (722 km 3 yr -1). The largest amounts of blue water were used for rice (307 km 3 yr -1) and wheat (208 km 3 yr -1). Blue water use as percentage of total crop water use was highest for date palms (85%), cotton (39%), citrus fruits (33%), rice (33%) and sugar beets (32%), while for cassava, oil palm and cocoa, almost no blue water was used. Average crop yield of irrigated cereals was 442 Mg km -2 while average yield of rainfed cereals was only 266 Mg km -2. Average virtual water content of cereal

  1. Crop productivities and radiation use efficiencies for bioregenerative life support

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C.; Prince, R. P.; Knott, W. M.

    NASA’s Biomass Production Chamber (BPC) at Kennedy Space Center was decommissioned in 1998, but several crop tests were conducted that have not been reported in the open literature. These include several monoculture studies with wheat, soybean, potato, lettuce, and tomato. For all of these studies, either 10 or 20 m2 of plants were grown in an atmospherically closed chamber (113 m3 vol.) using a hydroponic nutrient film technique along with elevated CO2 (1000 or 1200 μmol mol-1). Canopy light (PAR) levels ranged from 17 to 85 mol m-2 d-1 depending on the species and photoperiod. Total biomass (DM) productivities reached 39.6 g m-2 d-1 for wheat, 27.2 g m-2 d-1 for potato, 19.6 g m-2 d-1 for tomato, 15.7 g m-2 d-1 for soybean, and 7.7 g m-2 d-1 for lettuce. Edible biomass (DM) productivities reached 18.4 g m-2 d-1 for potato, 11.3 g m-2 d-1 for wheat, 9.8 g m-2 d-1 for tomato, 7.1 g m-2 d-1 for lettuce, and 6.0 g m-2 d-1 for soybean. The corresponding radiation (light) use efficiencies for total biomass were 0.64 g mol-1 PAR for potato, 0.59 g DM mol-1 for wheat, 0.51 g mol-1 for tomato, 0.46 g mol-1 for lettuce, and 0.43 g mol-1 for soybean. Radiation use efficiencies for edible biomass were 0.44 g mol-1 for potato, 0.42 g mol-1 for lettuce, 0.25 g mol-1 for tomato, 0.17 g DM mol-1 for wheat, and 0.16 g mol-1 for soybean. By initially growing seedlings at a dense spacing and then transplanting them to the final production area could have saved about 12 d in each production cycle, and hence improved edible biomass productivities and radiation use efficiencies by 66% for lettuce (to 11.8 g m-2 d-1 and 0.70 g mol-1), 16% for tomato (to 11.4 g m-2 d-1and 0.29 g mol-1), 13% for soybean (to 6.9 g m-2 d-1 and 0.19 g mol-1), and 13% for potato (to 20.8 g m-2 d-1 and 0.50 g mol-1). Since wheat was grown at higher densities, transplanting seedlings would not have improved yields. Tests with wheat resulted in a relatively low harvest index of 29%, which may have been

  2. Automatic corn-soybean classification using Landsat MSS data. I - Near-harvest crop proportion estimation. II - Early season crop proportion estimation

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.

    1984-01-01

    The techniques used initially for the identification of cultivated crops from Landsat imagery depended greatly on the iterpretation of film products by a human analyst. This approach was not very effective and objective. Since 1978, new methods for crop identification are being developed. Badhwar et al. (1982) showed that multitemporal-multispectral data could be reduced to a simple feature space of alpha and beta and that these features would separate corn and soybean very well. However, there are disadvantages related to the use of alpha and beta parameters. The present investigation is concerned with a suitable method for extracting the required features. Attention is given to a profile model for crop discrimination, corn-soybean separation using profile parameters, and an automatic labeling (target recognition) method. The developed technique is extended to obtain a procedure which makes it possible to estimate the crop proportion of corn and soybean from Landsat data early in the growing season.

  3. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    The optimality of irrigation strategies may be sought with respect to a number of criteria, including water requirements, crop yield, and profitability. To explore the suitability of different demand-based irrigation strategies, we link the probabilistic description of irrigation requirements under stochastic hydro-climatic conditions, provided in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 2011;34(2):263-71], to crop-yield and economic analyses. Water requirements, application efficiency, and investment costs of different irrigation methods, such as surface, sprinkler and drip irrigation systems, are described via a unified conceptual and theoretical approach, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. This allows us to analyze irrigation strategies with respect to sustainability, productivity, and economic return, using the same framework, and quantify them as a function of climate, crop, and soil parameters. We apply our results to corn ( Zea mays), a food staple and biofuel source, which is currently mainly irrigated through surface systems. As our analysis shows, micro-irrigation maximizes water productivity, but more traditional solutions may be more profitable at least in some contexts.

  4. Assimilation of AMSR-E Soil Moisture into the USDA Global Crop Production Decision Support System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The monitoring of global food supplies performed by the U. S. Department of Agriculture (USDA) Production Estimates and Crop Assessment Division (PECAD) is essential for early warning of food shortages, and providing greater economic security within the agriculture sector. Monthly crop yield and for...

  5. Integrating choice of variety, soil amendments, and cover crops to optimize organic rice production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have completed our first year of this project to determine the impact of winter cover crops, soil amendments, and rice varieties on organic rice production at Beaumont, TX. Two winter cover crops were established successfully and the amounts of dry biomass produced were 4,690 and 5,157 lb/acre f...

  6. Crop and livestock enterprise integration: Livestock impacts on forage, stover, and grain production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterprise diversity is the key to ensure productive and sustainable agriculture for the future. Integration of crops and livestock enterprises is one way to improve agricultural sustainability, and take advantage of beneficial enterprise synergistic effects. Our objectives were to develop cropping ...

  7. Water use, crop coefficients, and irrigation management criteria for camelina production in arid regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Camelina sativa (L.) Crantz is an oilseed crop touted as being suitable for production in the arid southwestern USA. However, because any significant development of the crop has been limited to cooler, rain-fed climate-areas, information and guidance for managing irrigated-camelina are lacking. This...

  8. Development of new crops and products for the U.S.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New crop development is critical to future sustainability of the United States agriculture system by reducing farmers’ dependence on government subsidies for a select few commodity crops, and by supplementing our need for energy without decreasing food production (food and fuel debate). A series of...

  9. Impacts of humic product application on yields of potato and other field crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial humic products are extracts from organic materials, including immature coals (lignite, leonardite) and composted plant residues. Their application to field crops has been claimed to promote increased crop growth and economic yield, although little published evidence exists. In two indepen...

  10. Bonanza Club: 35 Years of Maximum Crop Production and Extension Education in Southwestern Kansas.

    ERIC Educational Resources Information Center

    Henson, D.; And Others

    1992-01-01

    Describes the success of a county extension crops program, the Bonanza Club, in providing timely and useful information regarding new and successful agronomic practices. The program is cited for its beneficial influence on changing crop-production practices in southwestern Kansas. (MCO)

  11. Issues in the production and conversion of lignocellulosic biomass crops to ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The goal of replacing 30% of 2004 gasoline demand with biofuels by 2030 will require 1 billion tons of biomass annually. Ethanol from lignocellulosic biomass (crop residues and perennial energy crops) will contribute the lion's share of biofuel production. Among challenges to overcome is environment...

  12. Ruminant Grazing of Cover Crops: Effects on Soil Properties and Agricultural Production

    ERIC Educational Resources Information Center

    Poffenbarger, Hanna

    2010-01-01

    Integrating livestock into a cropping system by allowing ruminant animals to graze cover crops may yield economic and environmental benefits. The effects of grazing on soil physical properties, soil organic matter, nitrogen cycling and agricultural production are presented in this literature review. The review found that grazing cover crops…

  13. Best management practices: Managing cropping systems for soil protection and bioenergy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in renewable alternatives to fossil fuels has increased. Crop residue such as corn stover or wheat straw can be used for bioenergy including a substitution for natural gas or coal. Harvesting crop residue needs to be managed to protect the soil and future soil productivity. The amount of bi...

  14. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Guan, K.; Lobell, D. B.; Berry, J. A.; Joiner, J.; Guanter, L.; Zhang, Y.; Grayson, B.

    2014-12-01

    Large scale monitoring of crop growth and yield has relied on empirical correlations between remotely sensed vegetation-indices and yield. However, the determinants of yield are complex with several processes including crop phenology, photosynthesis and respiration contributing to overall crop yield. It has not been possible to delve more deeply into environmental effects on these controls given the limitations of current remote sensing technology. Recent advances in the ability to monitor solar induced chlorophyll fluorescence (SIF) now provides a direct measurement of photosynthetic activity from space and opens up new approaches for understanding the controls on crop yield. Using county-level crop statistics in the United States, we find that spaceborne SIF measurements for 2007-2012 provided improved measures of crop productivity compared with various traditional crop monitoring approaches, despite the fact that SIF sensors are still not optimized for crop monitoring. We also demonstrate that SIF, when combined with other data, can be used to estimate light-use-efficiency and plant autotrophic respiration. SIF thus opens up an unprecedented opportunity for improved crop monitoring and mechanistic understanding of how crops respond to temperature and other climate drivers.

  15. 40 CFR 257.3-5 - Application to land used for the production of food-chain crops (interim final).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... production of food-chain crops (interim final). 257.3-5 Section 257.3-5 Protection of Environment... Application to land used for the production of food-chain crops (interim final). (a) Cadmium. A facility or... for the production of food-chain crops shall not exist or occur, unless in compliance with...

  16. Improving the monitoring of crop productivity using spaceborne solar-induced fluorescence.

    PubMed

    Guan, Kaiyu; Berry, Joseph A; Zhang, Yongguang; Joiner, Joanna; Guanter, Luis; Badgley, Grayson; Lobell, David B

    2016-02-01

    Large-scale monitoring of crop growth and yield has important value for forecasting food production and prices and ensuring regional food security. A newly emerging satellite retrieval, solar-induced fluorescence (SIF) of chlorophyll, provides for the first time a direct measurement related to plant photosynthetic activity (i.e. electron transport rate). Here, we provide a framework to link SIF retrievals and crop yield, accounting for stoichiometry, photosynthetic pathways, and respiration losses. We apply this framework to estimate United States crop productivity for 2007-2012, where we use the spaceborne SIF retrievals from the Global Ozone Monitoring Experiment-2 satellite, benchmarked with county-level crop yield statistics, and compare it with various traditional crop monitoring approaches. We find that a SIF-based approach accounting for photosynthetic pathways (i.e. C3 and C4 crops) provides the best measure of crop productivity among these approaches, despite the fact that SIF sensors are not yet optimized for terrestrial applications. We further show that SIF provides the ability to infer the impacts of environmental stresses on autotrophic respiration and carbon-use-efficiency, with a substantial sensitivity of both to high temperatures. These results indicate new opportunities for improved mechanistic understanding of crop yield responses to climate variability and change. PMID:26490834

  17. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system.

    PubMed

    Bubenheim, D L; Schlick, G; Wilson, D; Bates, M

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. PMID:12580191

  18. Performance of the CELSS Antarctic Analog Project (CAAP) crop production system

    NASA Technical Reports Server (NTRS)

    Bubenheim, D. L.; Schlick, G.; Wilson, D.; Bates, M.

    2003-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant-based, regenerative life support requires resources in excess of allocation proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of the likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system. Both single crop, batch production and continuous cultivation of mixed crops production studies have been completed. The crop productivity as well as engineering performance of the chamber are described. For each scenario, energy required and partitioned for lighting, cooling, pumping, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with 27 different crops under cultivation, 17 m2 of crop area provided a mean of 515 g edible biomass per day (85% of the approximate 620 g required for one person). Enhanced engineering and crop production performance achieved with the CAAP chamber, compared with current state-of-the-art, places plant-based life support systems at the threshold of feasibility. c2002 Published by Elsevier Science Ltd on behalf of COSPAR.

  19. Yield Trends Are Insufficient to Double Global Crop Production by 2050.

    PubMed

    Ray, Deepak K; Mueller, Nathaniel D; West, Paul C; Foley, Jonathan A

    2013-01-01

    Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops-maize, rice, wheat, and soybean-that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands. PMID:23840465

  20. Land Resources for Crop Production. Agricultural Economic Report Number 572.

    ERIC Educational Resources Information Center

    Hexem, Roger; Krupa, Kenneth S.

    About 35 million acres not being cultivated have high potential for crop use and 117 million more have medium potential, according to the 1982 National Resources Inventory (NRI) conducted by the U.S. Department of Agriculture. USDA committees evaluated the economic potential for converting land based on physical characteristics of the soil; size…

  1. Rolled cover crop mulches for organic corn and soybean production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in cover crop mulches has increased out of both economic and soil conservation concerns. The number of tractor passes required to produce corn and a soybean organically is expensive and logistically challenging. Farmers currently use blind cultivators, such as a rotary hoe or flex-tine harr...

  2. Two intelligent spraying systems developed for tree crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  3. Evaluation of gypsum rates on greenhouse crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was to determine the potential of an added value distribution channel for gypsum waste by evaluating various greenhouse crops with captious pH and calcium needs. Three studies consisting of: Zonal geranium (Pelargonium x hortorum) and petunia (Petunia x hybrida); tomato (Solanum lycoper...

  4. FORAGE ENERGY CROPS AS FEEDSTOCKS FOR PRODUCTION OF FUEL ETHANOL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa, reed canarygrass, and switchgrass are perennial herbaceous species that have potential as biomass energy crops in temperate regions. Each forage species was harvested at two or three maturity stages and analyzed for carbohydrates, lignin, protein, lipid, organic acids, and mineral composit...

  5. Methodologies for simulating impacts of climate change on crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecophysiological models of crop growth have seen wide use in IPCC and related assessments. However, the diversity of modeling approaches constrains cross-study syntheses and increases potential for bias. We reviewed 139 peer-reviewed papers dealing with climate change and agriculture, considering si...

  6. DEVELOPING HERBACEOUS ENERGY CROPS AS FEEDSTOCKS FOR BIOETHANOL PRODUCTION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial herbaceous crops with high biomass yields are promising substrates for producing bioethnaol. A variety of biomasses including cool and warm season grasses and a legume are being evaluated for this purpose. As a first approach, biomass materials were pretreated with dilute-sulfuric acid a...

  7. Relative effects of irrigation and intense shade on productivity of alley-cropped tall fescue herbage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The comparative effects of reduced irradiance and soil water on alley cropped herbage are poorly understood. Our objective was to determine effects of irrigation on herbage productivity when tall fescue [Lolium arundinaceum (Schreb.) Darbysh. = Festuca arundinacea Schreb. var. arundinacea Schreb.] ...

  8. Management strategies for crop production in an era of reduced water availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability for agricultural crop production has been challenged by both natural and anthropogenic causes. Recent research findings indicate more frequent and prolonged droughts or lack of precipitation in major agricultural regions from around the world. Increasing demands from industrial,...

  9. Influence of Soil Tillage Systems on Soil Respiration and Production on Wheat, Maize and Soybean Crop

    NASA Astrophysics Data System (ADS)

    Moraru, P. I.; Rusu, T.

    2012-04-01

    Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant, fertilizer etc. The data presented in this paper were obtained on argic-stagnic Faeoziom (SRTS, 2003). These areas were was our research, presents a medium multiannual temperature of 8.20C, medium of multiannual rain drowns: 613 mm. The experimental variants chosen were: A. Conventional system (CS): V1-reversible plough (22-25 cm)+rotary grape (8-10 cm); B. Minimum tillage system (MT): V2 - paraplow (18-22 cm) + rotary grape (8-10 cm); V3 - chisel (18-22 cm) + rotary grape (8-10 cm);V4 - rotary grape (10-12 cm); C. No-Tillage systems (NT): V5 - direct sowing. The experimental design was a split-plot design with three replications. In one variant the area of a plot was 300 m2. The experimental variants were studied in the 3 years crop rotation: maize - soy-bean - autumn wheat. To soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest) using ACE Automated Soil CO2 Exchange System. Soil respiration varies throughout the year for all three crops of rotation, with a maximum in late spring (1383 to 2480 mmoli m-2s-1) and another in fall (2141 to 2350 mmoli m-2s-1). The determinations confirm the effect of soil tillage system on soil respiration, the daily average is lower at NT (315-1914 mmoli m-2s-1), followed by MT (318-2395 mmoli m-2s-1) and is higher in the CS (321-2480 mmol m-2s-1). Productions obtained at MT and NT don't have significant differences at wheat and are higher at soybean. The differences in crop yields are recorded at maize and can be a direct consequence of loosening, mineralization and intensive mobilization of soil fertility. Acknowledgments: This work was supported by CNCSIS

  10. Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production.

    PubMed

    Fita, Ana; Rodríguez-Burruezo, Adrián; Boscaiu, Monica; Prohens, Jaime; Vicente, Oscar

    2015-01-01

    World population is expected to reach 9.2 × 10(9) people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a 'saline agriculture' which will not compete in terms of resources with conventional agriculture. PMID:26617620

  11. Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production

    PubMed Central

    Fita, Ana; Rodríguez-Burruezo, Adrián; Boscaiu, Monica; Prohens, Jaime; Vicente, Oscar

    2015-01-01

    World population is expected to reach 9.2 × 109 people by 2050. Feeding them will require a boost in crop productivity using innovative approaches. Current agricultural production is very dependent on large amounts of inputs and water availability is a major limiting factor. In addition, the loss of genetic diversity and the threat of climate change make a change of paradigm in plant breeding and agricultural practices necessary. Average yields in all major crops are only a small fraction of record yields, and drought and soil salinity are the main factors responsible for yield reduction. Therefore there is the need to enhance crop productivity by improving crop adaptation. Here we review the present situation and propose the development of crops tolerant to drought and salt stress for addressing the challenge of dramatically increasing food production in the near future. The success in the development of crops adapted to drought and salt depends on the efficient and combined use of genetic engineering and traditional breeding tools. Moreover, we propose the domestication of new halophilic crops to create a ‘saline agriculture’ which will not compete in terms of resources with conventional agriculture. PMID:26617620

  12. Residual phosphorus and zinc influence wheat productivity under rice-wheat cropping system.

    PubMed

    Amanullah; Inamullah

    2016-01-01

    Continuous cropping of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) deplete soil fertility and crop productivity. One strategy to increase crop productivity under rice-wheat system is balanced application of crop nutrients. Field experiment was conducted to assess the impact of phosphorus (0, 40, 80, 120 kg P ha(-1)) and zinc (0, 5, 10, 15 kg Zn ha(-1)) on the productivity of rice genotypes (fine and coarse) and their residual effects on the grain yield (GY) and its components (YC) of the succeeding wheat crop under rice-wheat cropping system (RWCS) in North Western Pakistan during 2011-12 and 2012-13. After rice harvest in both years, wheat variety "Siren-2010" was grown on the same layout but no additional P, K and Zn was applied to wheat crop in each year. The GY and YC of wheat significantly increased in the treatments receiving the higher P levels (120 > 80 > 40 > 0 kg P ha(-1)) and Zn (15 > 10 > 5 > 0 kg Zn ha(-1)) in the previous rice crop. The residual soil P and Zn contents after rice harvest, GY and YC of wheat increased significantly under low yielding fine genotype (B-385) as compared to the high yielding coarse genotypes (F-Malakand and Pukhraj). The residual soil P and Zn, GY and of wheat increased significantly in the second year as compared with the first year of experiment. These results confirmed strong carry over effects of both P and Zn applied to the previous rice crop on the subsequent wheat crop under RWCS. PMID:27026947

  13. Farm Crop Production Technology: Field and Forage Crop and Fruit and Vine Production Options. A Suggested 2-Year Post High School Curriculum.

    ERIC Educational Resources Information Center

    Division of Vocational and Technical Education, BAVT.

    Prepared by a junior college under contract with the Office of Education, the curriculum materials are designed to assist school administrators, advisory committees, supervisors, and teachers in developing or evaluating postsecondary programs in farm crop production technology. Information was gathered by visits to the important farm regions and…

  14. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity

    NASA Technical Reports Server (NTRS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-01-01

    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  15. Spatial evaluation of crop maps by the spatial production allocation model in China

    NASA Astrophysics Data System (ADS)

    Tan, Jieyang; Li, Zhengguo; Yang, Peng; Yu, Qiangyi; Zhang, Li; Wu, Wenbin; Tang, Pengqin; Liu, Zhenhuan; You, Liangzhi

    2014-01-01

    The spatial production allocation model (SPAM) is one of the broadest spatial models of crop distribution and applies a cross-entropy method to downscale the global area and yield for multiple crops in the years 2000 and 2005 with a resolution of 5 arc min. To evaluate the allocation accuracy of SPAM for three staple crops (rice, wheat, and maize) in China, we compared these crop maps with remote-sensed cropland data derived from national land cover datasets. This comparison was conducted using a scheme that accounts for spatial differences at the pixel level. Overall, the map of maize has the highest area accuracy, with 64% reasonable pixels (covering 96% of the total maize area); these values were 57% (90% coverage) and 44% (81% coverage) for the wheat and rice maps, respectively. On the provincial scale, the area accuracies of crop maps in the top 10 provinces are better than those of the other provinces. Furthermore, the crop area consistency in rain-fed cropland is better than that in irrigated cropland. These evaluations provide decision makers with information regarding the strengths and weaknesses of SPAM products. This study also recommends priorities for further work to improve the reliability, utility, and periodic repeatability of crop distribution products.

  16. Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity

    NASA Astrophysics Data System (ADS)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Müller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; Khabarov, Nikolay; Olin, Stefan; Schaphoff, Sibyll; Schmid, Erwin; Yang, Hong; Rosenzweig, Cynthia

    2016-08-01

    Rising atmospheric CO2 concentrations ([CO2]) are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated [CO2] and associated climate change projected for a high-end greenhouse gas emissions scenario. We find CO2 effects increase global CWP by 10[047]%-27[737]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rainfed wheat). If realized in the fields, the effects of elevated [CO2] could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modelling the effects of rising [CO2] across crop and hydrological modelling communities.

  17. Yield Trends Are Insufficient to Double Global Crop Production by 2050

    PubMed Central

    Ray, Deepak K.; Mueller, Nathaniel D.; West, Paul C.; Foley, Jonathan A.

    2013-01-01

    Several studies have shown that global crop production needs to double by 2050 to meet the projected demands from rising population, diet shifts, and increasing biofuels consumption. Boosting crop yields to meet these rising demands, rather than clearing more land for agriculture has been highlighted as a preferred solution to meet this goal. However, we first need to understand how crop yields are changing globally, and whether we are on track to double production by 2050. Using ∼2.5 million agricultural statistics, collected for ∼13,500 political units across the world, we track four key global crops—maize, rice, wheat, and soybean—that currently produce nearly two-thirds of global agricultural calories. We find that yields in these top four crops are increasing at 1.6%, 1.0%, 0.9%, and 1.3% per year, non-compounding rates, respectively, which is less than the 2.4% per year rate required to double global production by 2050. At these rates global production in these crops would increase by ∼67%, ∼42%, ∼38%, and ∼55%, respectively, which is far below what is needed to meet projected demands in 2050. We present detailed maps to identify where rates must be increased to boost crop production and meet rising demands. PMID:23840465

  18. Performance of the CELSS Antarctic Analog Project (CAAP) Crop Production System

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Flynn, Michael T.; Bates, Maynard; Schlick, Greg; Kliss, Mark (Technical Monitor)

    1998-01-01

    Regenerative life support systems potentially offer a level of self-sufficiency and a concomitant decrease in logistics and associated costs in support of space exploration and habitation missions. Current state-of-the-art in plant based, regenerative life support requires resources in excess of resource allocations proposed for candidate mission scenarios. Feasibility thresholds have been identified for candidate exploration missions. The goal of this paper is to review recent advances in performance achieved in the CELSS Antarctic Analog Project (CAAP) in light of likely resource constraints. A prototype CAAP crop production chamber has been constructed and operated at the Ames Research Center. The chamber includes a number of unique hardware and software components focused on attempts to increase production efficiency, increase energy efficiency, and control the flow of energy and mass through the system to achieve enhanced performance efficiency. Both single crop, batch production, and continuous cultivation of mixed crops Product ion scenarios have been completed. The crop productivity as well as engineering performance of the chamber will be described. For each scenario, energy required and partitioned for lighting, cooling, pumps, fans, etc. is quantified. Crop production and the resulting lighting efficiency and energy conversion efficiencies are presented. In the mixed-crop scenario, with up to 25 different crops under cultivation, 17 sq m of crop area provided a mean of 515 g edible biomass per day (83% of the approximately 620 g required for one person). Lighting efficiency (moles on photons kWh-1) approached 4 and the conversion efficiency of light energy to biomass was greatly enhanced compared with conventional growing systems. Engineering and biological performance achieved place plant-based life support systems at the threshold of feasibility.

  19. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production.

    PubMed

    Timper, Patricia; Davis, Richard F; Tillman, P Glynn

    2006-03-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were 'Bigbee' berseem clover (Trifolium alexandrinum), 'Paradana' balansa clover (T. balansae), 'AU Sunrise' and 'Dixie' crimson clover (T. incarnatum), 'Cherokee' red clover (T. pratense), common and 'AU Early Cover' hairy vetch (Vicia villosa), 'Cahaba White' vetch (V. sativa), and 'Wrens Abruzzi' rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of increased nematode populations

  20. Optimization based trade-off analysis of biodiesel crop production for managing a German agricultural catchment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural production, the existence of multiple trade-offs among several conflicting objectives, such as food production, water quantity, water quality, biodiversity and ecosystem services, is well known. However, quantification of the trade-offs among objectives in bioenergy crop production i...

  1. Few crop traits accurately predict variables important to productivity of processing sweet corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recovery, case production, and gross profit margin, hereafter called ‘processor variables’, are as important metrics to processing sweet corn as grain yield is to field corn production. However, crop traits such as ear number or ear mass alone are reported in sweet corn production research rather t...

  2. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China.

    PubMed

    Fan, Mingsheng; Shen, Jianbo; Yuan, Lixing; Jiang, Rongfeng; Chen, Xinping; Davies, William J; Zhang, Fusuo

    2012-01-01

    In recent years, agricultural growth in China has accelerated remarkably, but most of this growth has been driven by increased yield per unit area rather than by expansion of the cultivated area. Looking towards 2030, to meet the demand for grain and to feed a growing population on the available arable land, it is suggested that annual crop production should be increased to around 580 Mt and that yield should increase by at least 2% annually. Crop production will become more difficult with climate change, resource scarcity (e.g. land, water, energy, and nutrients) and environmental degradation (e.g. declining soil quality, increased greenhouse gas emissions, and surface water eutrophication). To pursue the fastest and most practical route to improved yield, the near-term strategy is application and extension of existing agricultural technologies. This would lead to substantial improvement in crop and soil management practices, which are currently suboptimal. Two pivotal components are required if we are to follow new trajectories. First, the disciplines of soil management and agronomy need to be given increased emphasis in research and teaching, as part of a grand food security challenge. Second, continued genetic improvement in crop varieties will be vital. However, our view is that the biggest gains from improved technology will come most immediately from combinations of improved crops and improved agronomical practices. The objectives of this paper are to summarize the historical trend of crop production in China and to examine the main constraints to the further increase of crop productivity. The paper provides a perspective on the challenge faced by science and technology in agriculture which must be met both in terms of increased crop productivity but also in increased resource use efficiency and the protection of environmental quality. PMID:21963614

  3. Modeling Regional Groundwater Implications of Biofuel Crop Production in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Parish, A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2013-12-01

    In response to a growing call for renewable sources of energy that do not compete directly with food resources, the use of second-generation 'cellulosic' biofuel feedstocks has gained much attention in recent years. The push to advance the technologies that would make such a transformation possible is motivated by the United States Renewable Fuel Standard mandate to produce 36 billion gallons of biofuels by 2022, an increase of 334 percent from 2009. Many different crops, including maize, miscanthus, switchgrass, and poplar have shown promise as cellulosic feedstocks, and in an attempt to supply the needed biomass to meet the 2022 mandate, production of these crops have been on the rise. Yet little is known about the sustainability of large-scale conversion of land to cellulosic biofuel crop production; more research is needed to understand the effects that these crops will have on the quality and quantity of groundwater. This study presents a model scale-up approach to address three questions: What are the hydrologic and nutrient demands of the primary biofuel crops? Which biofuel crops are more water efficient in terms of demand verses energy produced? What are the types and availabilities of land to expand production of these biofuel crops? To answer these questions, we apply a point-based crop dynamics model in combination with a regional-scale hydrologic model, parameterized using stream discharge and chemistry data collected from two representative watersheds in Wisconsin. Approximately 17 stream sites in each watershed are selected for data collection for model parameterization, including stream discharge, nutrient concentrations, and basic chemical characteristics. We then use the System Approach to Land Use Sustainability (SALUS) model, which predicts crop growth under varying soil and climate conditions, to drive vegetation dynamics and groundwater transport of nutrients within the Integrated Landscape Hydrology Model (ILHM). ILHM predictions of stream

  4. Tillage as a tool to manage crop residue: impact on sugar beet production.

    NASA Astrophysics Data System (ADS)

    Hiel, Marie-Pierre; Chélin, Marie; Degrune, Florine; Parvin, Nargish; Bodson, Bernard

    2015-04-01

    Crop residues and plant cover represent a pool of organic matter that can be used either to restore organic matter in soils, and therefore maintain soil fertility, or that can be valorized outside of the field (e.g. energy production). However, it is crucial that the exportation of residues is not done to the detriment of the system sustainability. Three long term experiments have been settled in the loamy region in Belgium. All of them are designed to study the effect of residues management by several tillage systems (conventional plowing versus reduced tillage) on the whole soil-water-plant system. SOLRESIDUS is a field experiment where we study the impact of crop residue management while in SOLCOUVERT and SOLCOUVERT-BIS, we study the impact of cover crop management. SOLRESIDUS was started in 2008. In this field, four contrasted crop residues managements are tested in order to contrast as much as possible the responses from the soil-water plant system. Two practices characterize the four modalities: soil tillage (ploughing at 25 cm depth or reduce tillage at 10 cm max) and residue management (exportation or restitution). SOLCOUVERT and SOLCOUVERT-BIS were started in 2012 and 2013 respectively. In those fields cover crop management is also diverse: destruction of the cover crop by winter ploughing, spring ploughing, strip tillage (with a chemical destruction if needed) or shallow tillage (with a decompaction before cover crop sowing). Although although the overall project aims at studying the impact of management on the whole soil-water-plant system, here we will only present the results concerning crop production (sugar beet) in SOLCOUVERT experiments. The presented data will include germination rate, crop development (biomass quantification and BBCH stages) weeds population, disease occurrence, pest occurrences, nitrogen uptake by plants, quality and quantity of harvested products.

  5. Assessing the impacts of climate change on winter crop production in Uruguay and Argentina using crop simulation models

    SciTech Connect

    Baethgen, W.E.; Magrin, G.O.

    1995-12-31

    Enhanced greenhouse effect caused by the increase in atmospheric concentration of CO{sub 2} and other trace gases could lead to higher global surface temperature and altered hydrological cycles. Most possible climate change scenarios include higher atmospheric CO{sub 2} concentrations, higher temperatures, and changes in precipitation. Three global climate models (GCMs) were applied to generate climate change scenarios for the Pampas region in southern South America. The generated scenarios were then used with crop simulation models to study the possible impact of climate change on wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) production in the Pampas. The authors evaluated the impact of possible climate change scenarios on wheat and barley production in Uruguay for a wide range of soil and crop management strategies including planting dates, cultivar types, fertilizer management, and tillage practices. They also studied the impact of climate change on wheat production across two transects of the Pampas: north to south transect with decreasing temperature, and east to west transect with decreasing precipitation. Finally, sensitivity analyses were conducted for both, the Uruguayan site and the transects, by increasing daily maximum and minimum temperature by 0, 2, and 4 C, and changing the precipitation by {minus}20, 0, and +20%.

  6. Measurements of CO2 and H2O fluxes of crop plants are essential to understand the impacts of environmental variables on crop productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of CO2 and H2O fluxes of crop plants are essential to understand the impacts of environmental variables on crop productivity. A portable, CETA (Canopy Evapo-Transpiration and Assimilation) chamber system was built and evaluated at Big Spring, TX. This chamber system is an open or flow...

  7. Modeling Agricultural Crop Production in China using AVHRR-based Vegetation Health Indices

    NASA Astrophysics Data System (ADS)

    Yang, B.; Kogan, F.; Guo, W.; Zhiyuan, P.; Xianfeng, J.

    Weather related crop losses have always been a concern for farmers On a wider scale it has always influenced decision of Governments traders and other policy makers for the purpose of balanced food supplies trade and distribution of aid to the nations in need Therefore national policy and decision makers are giving increasing importance to early assessment of crop losses in response to weather fluctuations This presentation emphasizes utility of AVHRR-based Vegetation health index VHI for early warning of drought-related losses of agricultural production in China The VHI is a three-channel index characterizing greenness vigor and temperature of land surface which can be used as proxy for estimation of how healthy and potentially productive could be vegetation China is the largest in the world producer of grain including wheat and rice and cotton In the major agricultural areas China s crop production is very dependent on weather The VHI being a proxy indicator of weather impact on vegetation showed some correlation with productivity of agricultural crops during the critical period of their development The periods of the strongest correlation were investigated and used to build regression models where crop yield deviation from technological trend was accepted as a dependent and VHI as independent variables The models were developed for several major crops including wheat corn and soybeans

  8. Field kites: Crop-water production functions and the timing of water application for supplementary irrigation

    NASA Astrophysics Data System (ADS)

    Smilovic, M.; Gleeson, T.; Adamowski, J. F.

    2015-12-01

    Agricultural production is directly related to water management and water supply. The temporal distribution of water use throughout the growing season can significantly influence crop yield, and the facility to manage both the timing and amount of irrigation water may result in higher yields. The crop-water production function quantitatively evaluates the relationship between seasonal water use and crop yield. Previous efforts have attempted to describe and formalize the crop-water production function as a single-variable function of seasonal water use. However, these representations do not account for the effects of temporal distribution of water use and trivialize the associated variability in yields by assuming an optimized or arbitrary temporal distribution of soil moisture. This over-simplification renders the function inappropriate for recommendations related to irrigation scheduling, water management, economically optimal irrigation, water and agricultural productivity, and assessing the role of full and supplementary irrigation. We propose field kites, a novel representation of the crop-water production function that explicitly acknowledges crop yield variability as a function of both seasonal water use and associated temporal distributions of water use. Field kites are a tool that explicitly considers the farmers' capacity to manage their water resources, to more appropriately evaluate the optimal depth of irrigation water under water-limiting conditions. The field kite for winter wheat is presented both generally and cultivar- and climate-specific for Western Canada. The field kites are constructed using AquaCrop and previously validated cultivar-specific variables. Field kites provide the tools for water authorities and policy makers to evaluate agricultural production as it relates to farm water management, and to determine appropriate policies related to developing and supporting the necessary irrigation infrastructure to increase water productivity.

  9. Energy Product Options for Eucalyptus Species Grown as Short Rotation Woody Crops

    PubMed Central

    Rockwood, Donald L.; Rudie, Alan W.; Ralph, Sally A.; Zhu, J.Y.; Winandy, Jerrold E.

    2008-01-01

    Eucalyptus species are native to Australia but grown extensively worldwide as short rotation hardwoods for a variety of products and as ornamentals. We describe their general importance with specific emphasis on existing and emerging markets as energy products and the potential to maximize their productivity as short rotation woody crops. Using experience in Florida USA and similar locations, we document their current energy applications and assess their productivity as short-term and likely long-term energy and related products. PMID:19325808

  10. [Continuous cropping obstacle and rhizospheric microecology. II. Root exudates and phenolic acids].

    PubMed

    Zhang, S; Gao, Z

    2000-02-01

    This paper discussed the effect of main crop root exudates the relationship between the kinds and amounts of root exudates and the growth of different kinds of crops and their environments. From the aspects of the decompostion of crop residues and the excretion of root systems, the source, form and adsorption mechanism of soil phenolic acids and their effect on crop growth and soil bio-activity were also elaborated. PMID:11766577

  11. Potential Impacts of Droughts on Crop Productivity in the United States over 21st Century

    NASA Astrophysics Data System (ADS)

    Ren, W.; Tian, H.; Yang, J.; Tao, B.; Pan, S.

    2014-12-01

    Crop productivity in the US plays a critical role in ensuring global food security. However, US agricultural ecosystems have experienced frequent and intensive droughts over past decades including extreme droughts in recent two years, which led to large reductions in crop productivity and have been posing unprecedented challenges to US agricultural land. Therefore, there is an increasing concern about how future drought condition would be and how agricultural ecosystems would respond to future droughts. Here, we use the process-based ecosystem model DLEM-Ag (the agricultural module of the Dynamic Land Ecosystem Model) driven by future climate change scenarios, new-released RCPs data from the IPCC Fifth Assessment Report, to examine the impacts of future climate change/extremes on crop productivity and yield in the US during 2015-2099. The preliminary results show that more pervasive global-change-type droughts over the 21st century would be projected to occur in large areas of cropland in the Mississippi River basin and the southeastern US, which would significantly cause adverse impacts on crop productivity, particularly under high emission scenario RCP8.5. Our study implies that the restrictions on anthropogenic greenhouse gases emissions would benefit crop productivity in US.

  12. Modeling of a photosynthetic crop production index for early warning using NDVI and meteorological data

    NASA Astrophysics Data System (ADS)

    Kaneko, Daijiro; Ohnishi, Masao; Ishiyama, Takashi; Tateishi, Ryutaro

    2004-10-01

    This paper aims to develop a remote sensing method of monitoring grain production in the early stages of crop growth. It is important to oversee the quantity of grain in production at an early stage in order to raise the alarm well in advance if a poor harvest is looming, especially in view of the rapid population increase in Asia and the long-term squeeze on water resources. Grain production monitoring would allow orderly crisis management to maintain food security in Japan, which is far from producing enough grain for its own population. We propose a photosynthesis-based crop production index CPI that takes into account all of: solar radiation, effective air temperature, vegetation biomass, the effect of temperature on photosynthesis by leaves of grain plants, low-temperature sterility, and high-temperature injury. These later factors, which extend the model of Rasmussen, are significant around the heading period of crops. The proposed photosynthesis-based crop production index CPI has accurately predicted the rice yield expressed by the Japanese Crop Situation Index in three years, including the worst yield in recent years, at a test site in Japan.

  13. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    SciTech Connect

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  14. Could Crop Height Affect the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, Brian; Lundquist, Julie K.

    2016-03-01

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length in a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. These considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.

  15. Climate change impacts on crop productivity in Africa and South Asia

    NASA Astrophysics Data System (ADS)

    Knox, Jerry; Hess, Tim; Daccache, Andre; Wheeler, Tim

    2012-09-01

    Climate change is a serious threat to crop productivity in regions that are already food insecure. We assessed the projected impacts of climate change on the yield of eight major crops in Africa and South Asia using a systematic review and meta-analysis of data in 52 original publications from an initial screen of 1144 studies. Here we show that the projected mean change in yield of all crops is - 8% by the 2050s in both regions. Across Africa, mean yield changes of - 17% (wheat), - 5% (maize), - 15% (sorghum) and - 10% (millet) and across South Asia of - 16% (maize) and - 11% (sorghum) were estimated. No mean change in yield was detected for rice. The limited number of studies identified for cassava, sugarcane and yams precluded any opportunity to conduct a meta-analysis for these crops. Variation about the projected mean yield change for all crops was smaller in studies that used an ensemble of > 3 climate (GCM) models. Conversely, complex simulation studies that used biophysical crop models showed the greatest variation in mean yield changes. Evidence of crop yield impact in Africa and South Asia is robust for wheat, maize, sorghum and millet, and either inconclusive, absent or contradictory for rice, cassava and sugarcane.

  16. Estimating crop net primary production using inventory data and MODIS-derived parameters

    SciTech Connect

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; Izaurralde, Roberto C.

    2013-06-03

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale and over national and continental extents. Existing satellite-based NPP products tend to underestimate NPP on croplands. A new Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP. The method is documented here and evaluated for corn and soybean crops in Iowa and Illinois in years 2006 and 2007. The method includes a crop-specific enhanced vegetation index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS), shortwave radiation data estimated using Mountain Climate Simulator (MTCLIM) algorithm and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that correspond to the Cropland Data Layer (CDL) land cover product. The modeling framework represented well the gradient of NPP across Iowa and Illinois, and also well represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 980 g C m-2 yr-1 and 420 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Estimated gross primary productivity (GPP) derived from AgI-LUE were in close agreement with eddy flux tower estimates. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  17. Sustainable biochar effects for low carbon crop production: A 5-crop season field experiment on a low fertility soil from Central China

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2014-12-01

    Biochar's effects on improving soil fertility, enhancing crop productivity and reducing greenhouse gases (GHGs) emission from croplands had been well addressed in numerous short-term experiments with biochar soil amendment (BSA) mostly in a single crop season / cropping year. However, the persistence of these effects, after a single biochar application, has not yet been well known due to limited long-term field studies so far. Large scale BSA in agriculture is often commented on the high cost due to large amount of biochar in a single application. Here, we try to show the persistence of biochar effects on soil fertility and crop productivity improvement as well as GHGs emission reduction, using data from a field experiment with BSA for 5 crop seasons in central North China. A single amendment of biochar was performed at rates of 0 (C0), 20 (C20) and 40 t ha-1 (C40) before sowing of the first crop season. Emissions of CO2, CH4 and N2O were monitored with static closed chamber method throughout the crop growing season for the 1st, 2nd and 5th cropping. Crop yield was measured and topsoil samples were collected at harvest of each crop season. BSA altered most of the soil physic-chemical properties with a significant increase over control in soil organic carbon (SOC) and available potassium (K) content. The increase in SOC and available K was consistent over the 5 crop seasons after BSA. Despite a significant yield increase in the first maize season, enhancement of crop yield was not consistent over crop seasons without corresponding to the changes in soil nutrient availability. BSA did not change seasonal total CO2 efflux but greatly reduced N2O emissions throughout the five seasons. This supported a stable nature of biochar carbon in soil, which played a consistent role in reducing N2O emission, which showed inter-annual variation with changes in temperature and soil moisture conditions. The biochar effect was much more consistent under C40 than under C20 and with

  18. Cover crop, soil amendments, and variety effects on organic rice production in Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major challenges in organic rice production include optimization of nutrient utilization, weed management, and variety selection. In this study, we tested the effects of two soil amendment products, two fertilizer rates, and three cover cropping systems (clover, ryegrass, and fallow) on organic ...

  19. Geospatial Assessments of Farmland Soils and Crop Production Systems in Maine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Geospatial assessments of current crop production systems are essential to modeling potential productivity and evaluating core issues of sustainability for local to regional food supply studies. The three-fold objectives of this GIS-based statewide investigation were to: (1) quantify the aerial exte...

  20. Effect of shifting crop production for biofuel demand on soil and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of shifting cropping systems to dominantly corn for biofuels, in particular ethanol production, could have serious implications on soil and water quality. Proper land management for biofuels production in agriculture is critical to achieve because of maintaining the sustainability of lan...

  1. Economic incentives to capture ecosystem services through increased temporal intensification of crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land resources are becoming progressively more constrained with increasing demands for food, feed, fiber, and now fuel production. Developing strategies to intensify crop production without increasing the negative impacts on water, soil, and air resources are critical. Much of the best agricultural ...

  2. Evaluating shade effects on crop productivity in sorghum-legume intercropping systems using support vector machines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum-legume intercropping has the potential to improve forage productivity, resource use efficiency, and forage quality under irrigation in the Southern High Plains of the United States. Crop production is conversion of solar radiation into biomass and solar radiation is wasted early in the seaso...

  3. Processed eucalyptus trees as a substrate component for greenhouse crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast growing eucalyptus species are selected for commercial plantings worldwide and are harvested for a variety of uses. Eucalyptus plantings in south Florida are harvested for landscape mulch production, yet this material may have potential as a container substrate for horticulture crop production....

  4. Selected examples of dispersal of arthropods associated with agricultural crop and animal production

    NASA Technical Reports Server (NTRS)

    Henneberry, T. J.

    1979-01-01

    The economic importance of arthropods in agricultural production systems and the possibilities of using dispersal behavior to develop and manipulate control are examined. Examples of long and short distance dispersal of economic insect pests and beneficial species from cool season host reservoirs and overwintering sites are presented. Significant dispersal of these species often occurring during crop and animal production is discussed.

  5. Impact of shifting crop production for biofuel demand on soil and water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of shifting cropping systems to dominantly corn for biofuels, in particular ethanol production, could have serious implications on soil and water quality. Proper land management for biofuels production in agriculture is critical to achieve because of maintaining the sustainability of lan...

  6. Assessing evapotranspiration, basal crop coefficient, and irrigation efficiency in production peach orchard in California's San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate field scale observations of crop water use are necessary to maximize crop productivity with limited water resources and to parameterize regional and continental satellite models to estimate near real-time crop water use. However, rapid, continuous observations of field-scale water use in Ca...

  7. Use of disease-suppressive Brassica rotation crops in potato production: overview of 10 years of field trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease-suppressive Brassica rotation crops have shown promise for management of soilborne diseases and enhanced yield in a variety of crop production systems. Over the last 10 years, numerous field trials have focused on how to best use Brassica crops in potato rotations in the Northeast, including...

  8. Does the conversion of grasslands to row crop production in semi-arid areas threaten global food supplies?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the world’s semi-arid regions, high crop demands have produced short term economic incentives to convert native grasslands to dryland row crop production, while genetic enhancements and equipment have reduced the risk of crop failure. The objectives of this paper were to discuss: 1) the importanc...

  9. Crops that feed the world 2. Soybean-worldwide production, use, and constraints caused by pathogens and pests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soybean crop is one of the most important crops worldwide.Soybean seeds are important for both protein meal and vegetable oil. The crop is grown on an estimated 6% of the world’s arable land, and since the 1970s, has the highest percentage increase of hectares in production compared to any other...

  10. 7 CFR 1412.34 - Submitting production evidence for establishing direct payment yields for oilseeds and pulse crops.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... oilseeds and pulse crops. (a)(1) Reports of production evidence must be submitted when the owner elects to... designated oilseeds for which a yield was not established by September 30, 2007, and for pulse crops must be... direct payment yields for oilseeds and pulse crops. 1412.34 Section 1412.34 Agriculture Regulations...

  11. 7 CFR 1412.34 - Submitting production evidence for establishing direct payment yields for oilseeds and pulse crops.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... oilseeds and pulse crops. (a)(1) Reports of production evidence must be submitted when the owner elects to... designated oilseeds for which a yield was not established by September 30, 2007, and for pulse crops must be... direct payment yields for oilseeds and pulse crops. 1412.34 Section 1412.34 Agriculture Regulations...

  12. 7 CFR 1412.34 - Submitting production evidence for establishing direct payment yields for oilseeds and pulse crops.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... oilseeds and pulse crops. (a)(1) Reports of production evidence must be submitted when the owner elects to... designated oilseeds for which a yield was not established by September 30, 2007, and for pulse crops must be... direct payment yields for oilseeds and pulse crops. 1412.34 Section 1412.34 Agriculture Regulations...

  13. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can improve the sustainability and resilience of corn and soybean production systems. However, there have been isolated reports of corn yield reductions following winter rye cover crops. Although there are many possible causes of corn yield reductions following winter cereal cover crops,...

  14. Research report on development of sweet sorghum as an energy crop. Volume II. Commercialization studies to US Department of Energy

    SciTech Connect

    McClure, T.A.; Scantland, D.A.; Woodford, P.G.; Gordon, W.A.; Kresovich, S.; Arthur, M.F.; Jackson, D.R.; Lipinsky, E.S.

    1980-07-31

    The following are discussed: economic and agronomic implications of commercial growers' sweet sorghum field tests, economics of sweet sorghum production, marketing and market organization concepts, and the effect of water availability upon potential increased production of sugar crops in Southern Florida and the Texas Rio Grande Valley. (MHR)

  15. A National Assessment of Promising Areas for Switchgrass, Hybrid Poplar, or Willow Energy Crop Production

    SciTech Connect

    Graham, R.L.; Walsh, M.E.

    1999-02-01

    The objective of this paper is to systematically assess the cropland acreage that could support energy crops and the expected farm gate and delivered prices of energy crops. The assessment is based on output from two modeling approaches: (1) the Oak Ridge County-Level Energy Crop (ORECCL) database (1996 version) and (2) the Oak Ridge Integrated Bioenergy Analysis System (ORIBAS). The former provides county-level estimates of suitable acres, yields, and farmgate prices of energy crops (switchgrass, hybrid poplar, willow) for all fifty states. The latter estimates delivered feedstock prices and quantities within a state at a fine resolution (1 km2) and considers the interplay between transportation costs, farmgate prices, cropland density, and facility demand. It can be used to look at any type of feedstock given the appropriate input parameters. For the purposes of this assessment, ORIBAS has been used to estimate farmgate and delivered switchgrass prices in 11 states (AL, FL, GA, IA, M N, MO, ND, NE, SC, SD, and TN). Because the potential for energy crop production can be considered from several perspectives, and is evolving as policies, economics and our basic understanding of energy crop yields and production costs change, this assessment should be viewed as a snapshot in time.

  16. The Interplay of Bioenergy Crop Production and Water Resource Availability in the US

    NASA Astrophysics Data System (ADS)

    Song, Y.; Jain, A. K.; Landuyt, W.; Kheshgi, H. S.

    2014-12-01

    Large-scale growing of bioenergy crops, such as switchgrass (Panicum viragatum) and Miscanthus (Miscanthus x giganteus), may introduce new challenges for water resource availability in the US. However, the strength of the interplay between bioenergy crop production and water resource availability is highly uncertain at the spatial scale and determined by (1) the spatial distribution of land cover types; (2) availability of soil water resources; (3) climate conditions and (4) biophysical characteristics of different bioenergy crops, such as water use efficiency (WUE), tolerances to extreme water and thermal conditions (dry, high temperature, low temperature etc.) and photoperiod adaptability, etc. To address potential water availability concerns the spatial distribution of bioenergy crops needs to be optimized by considering the maximum WUE and the minimum dependence and impact on water resource availability. To address this objective, we apply a coupled biophysical and biogeochemical model (ISAM), to investigate spatial variability in the interplay between water resources and bioenergy crop production in the US. The bioenergy crops considered in this study include Miscanthus, Cave-in-Rock and Alamo switchgrasses, and corn (grain and stover). The interplay between bioenergy crop and corn production with water resources is quantitatively evaluated by calculating WUE and average water stress for different bioenergy crops and change in plant available soil water between bioenergy crops and natural vegetation. Our results indicate that low soil water availability limits production of bioenergy grasses in central and eastern Great Plains. Growing energy grasses here strengthens water depletion and limits its potential production. Miscanthus has the highest WUE in the central Midwest, followed by corn stover and Cave-in-Rock. However, growing Miscanthus and Cave-in-Rock here strengthens soil water depletion and induces water stress on their production. Though production

  17. Climate trends and crop production in China at county scale, 1980 to 2008

    NASA Astrophysics Data System (ADS)

    Zhang, Zhao; Song, Xiao; Tao, Fulu; Zhang, Shuai; Shi, Wenjiao

    2016-01-01

    Our understanding on the impact of climate change on agricultural production, as well as the potential adaption options, can be accelerated by shedding insights on the historical experiences in the past few decades. Here, we used improved datasets of climate, crop phenology, and crop yields to investigate climate-crop yield relationships, recent trends in seasonal climate and their impact on yields of major crops (i.e., rice, wheat, maize, and soybean) by county throughout China during the period of 1980-2008. The temporal and spatial patterns of climate trends and the impact on major crop yields were presented. We found crop yields declined by up to 5-10 % or more for each 1 °C increase in mean temperature over crop growing period at some regions, and trends in mean temperature during the period of 1980-2008 reduced crop yields by up to 2.5-5.0 % or more at some regions. For the whole country, planting area-weighted average of yield change due to trends in mean temperature and precipitation together was about 1.16, -0.31, -0.40, and 0.11 % over the whole period for rice, wheat, maize, and soybean, respectively. Climate trends were large enough at some regions to offset a notable portion of the increases in average yields that arose from technology and other factors. The particular crops and regions that have been most affected and should be the priorities to adapt are maize and wheat in the arid and semi-arid areas of northern and northeastern China, where climate warming-induced droughts are one of major challenges.

  18. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    SciTech Connect

    Bonner, Ian J.; Cafferty, Kara G.; Muth, Jr., David J.; Tomer, Mark; James, David; Porter, Sarah; Karlen, Douglas

    2014-10-01

    Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while increasing biomass yields, benefiting soil and water quality, and increasing biodiversity. Despite these positive traits energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study on Hardin County, Iowa to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. The strategy presented integrates switchgrass (Panicum virgatum L.) into subfield landscape positions where corn (Zea mays L.) grain is modeled to operate at a net economic loss. The results of this analysis show that switchgrass integration has the potential to increase sustainable biomass production from 48 to 99% (depending on the rigor of conservation practices applied to corn stover collection) while also improving field level profitability. Candidate land area is highly sensitive to grain price (0.18 to 0.26 US$ kg-1) and dependent on the acceptable net profit for corn production (ranging from 0 to -1,000 US$ ha-1). This work presents the case that switchgrass can be economically implemented into row crop production landscapes when management decisions are applied at a subfield scale and compete against areas of the field operating at a negative net profit.

  19. The income and production effects of biotech crops globally 1996-2010.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2012-01-01

    A critical feature in evaluating the global value of crop biotechnology in agriculture must include an assessment of its economic impact at the farm level. This paper follows earlier studies which examined economic impacts on yields, key costs of production, direct farm income, indirect (non-pecuniary) farm level income effects and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of biotech crops is continuing to proceed rapidly, with significant changes in the overall level of adoption and impact taking place in 2010. This updated analysis shows that there have been substantial net economic benefits at the farm level amounting to $14 billion in 2010 and $78.4 billion for the 15-year period (in nominal terms). The non-pecuniary benefits associated with the use of the technology have also had a positive impact on adoption (in the US accounting for the equivalent of 22% of the total US direct farm income benefit). Biotech crops are, moreover, making important contributions to increasing global production levels of the four main crops. They have, for example, now added 97.5 million tons and 159 million tons respectively, to the global production of soybeans and corn since the introduction of the technology in the mid-1990s. PMID:22750951

  20. Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability

    DOE PAGESBeta

    Bonner, Ian J.; Cafferty, Kara G.; Muth, Jr., David J.; Tomer, Mark; James, David; Porter, Sarah; Karlen, Douglas

    2014-10-01

    Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while increasing biomass yields, benefiting soil and water quality, and increasing biodiversity. Despite these positive traits energy crops remain largely unaccepted due to concerns over their practicality and cost of implementation. This paper presents a case study on Hardin County, Iowa to demonstrate how subfield decision making can be used to target candidate areas for conversion to energy crop production. The strategy presented integrates switchgrass (Panicum virgatum L.) into subfield landscape positions where corn (Zea mays L.) grain is modeledmore » to operate at a net economic loss. The results of this analysis show that switchgrass integration has the potential to increase sustainable biomass production from 48 to 99% (depending on the rigor of conservation practices applied to corn stover collection) while also improving field level profitability. Candidate land area is highly sensitive to grain price (0.18 to 0.26 US$ kg-1) and dependent on the acceptable net profit for corn production (ranging from 0 to -1,000 US$ ha-1). This work presents the case that switchgrass can be economically implemented into row crop production landscapes when management decisions are applied at a subfield scale and compete against areas of the field operating at a negative net profit.« less

  1. Assessing long-term impacts of increased crop productivity on atmospheric CO2.

    PubMed

    Cavazzoni, J; Volk, T

    1996-05-01

    A full assessment of the impacts of land clearance and crop production on atmospheric CO2 requires a systems approach. By considering long-term soil carbon changes and fossil fuel energy inputs, we show that increased crop productivity will alleviate CO2 release to the atmosphere primarily by preventing additional land cultivation. Each hectare of cropland undergoing a simulated threefold crop productivity increase here prevents a net release on the order of 150-200 Mg C to the atmosphere over 100 years by avoiding additional land cultivation which would otherwise be required. This effective carbon sink would slowly diminish with time due to fossil fuel energy input requirements. However, future self-containment of the energy needs of high-yield crop production may displace on the order of 1.0 Pg C per year of fossil fuel carbon, in addition to the carbon sink attributable to avoided land cultivation. By avoiding land cultivation, high yield crop systems also preserve natural ecosystems. PMID:11539330

  2. Large-scale alcohol production from corn, grain sorghum, and crop residues

    SciTech Connect

    Turhollow, A.F. Jr.

    1982-01-01

    The potential impacts that large-scale alcohol production from corn, grain sorghum, and crop residues may have on US agriculture in the year 2000 are investigated. A one-land-group interregional linear-programming model is used. The objective function is to minimize the cost of production in the agricultural sector, given specified crop demands and constrained resources. The impacts that levels of alcohol production, ranging from zero to 12 billion gallons, have at two projected levels of crop demands, two grain-to-alcohol conversion and two milling methods, wet and dry, rates are considered. The impacts that large-scale fuel alcohol production has on US agriculture are small. The major impacts that occur are the substitution of milling by-products, DDG, gluten feed, and gluten meal, for soybean meal in livestock feed rations. Production of 12 billion gallons of alcohol is estimated to be equivalent to an 18 percent increase in crop exports. Improving the grain-to-alcohol conversion rate from 2.6 to 3.0 gallons per bushels reduces the overall cost of agricultural production by $989 billion when 12 billion gallons of alcohol are produced.

  3. Monitoring of Crop Production Using a new Satellite-Based Climate-Variability Impact Index

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Anderson, B.; Tan, B.; Huang, D.; Myneni, R.

    2005-12-01

    The capabilities of the MODerate resolution Imaging Spectroradiometer (MODIS) present some exciting possibilities for improved and timely monitoring of crop production. A quantitative index is introduced in this paper to study the relationship between remotely-sensed leaf area index (LAI) and crop production. The Climate-Variability Impact Index (CVII), defined as the monthly contribution to anomalies in annual growth, quantifies the percentage of the climatological production either gained or lost due to climatic variability during a given month. By examining the integrated CVII over the growing season, this LAI-based index can provide both fine-scale and aggregated information on vegetation productivity for various crop types. Once the relationship between the CVII and crop production is developed based on the historical record, a trained statistical model can be applied to produce homogeneous production forecasts (in which the model is trained and tested for a particular region), as well as heterogeneous forecasts (in which the model is trained in a particular region and applied to a different region). Both the homogeneous and the heterogeneous model predictions are consistent with USDA/FAO estimates at regional scales. Finally, by determining the estimated production as a function of the growing-season months the CVII can provide significant in-season predictions for end-of-year production. Overall, the high temporal and spatial resolution of the satellite LAI products makes the CVII a useful tool in near-real time crop monitoring and production estimation. Case-studies from recent droughts in Niger and the U.S. Midwest Corn Belt will be presented.

  4. Proximity to forest edge does not affect crop production despite pollen limitation

    PubMed Central

    Chacoff, Natacha P; Aizen, Marcelo A; Aschero, Valeria

    2008-01-01

    A decline in pollination function has been linked to agriculture expansion and intensification. In northwest Argentina, pollinator visits to grapefruit, a self-compatible but pollinator-dependent crop, decline by approximately 50% at 1 km from forest edges. We evaluated whether this decrease in visitation also reduces the pollination service in this crop. We analysed the quantity and quality of pollen deposited on stigmas, and associated limitation of fruit production at increasing distances (edge: 10, 100, 500 and 1000 m) from the remnants of Yungas forest. We also examined the quantitative and qualitative efficiency of honeybees as pollen vectors. Pollen receipt and pollen tubes in styles decreased with increasing distance from forest edge; however, this decline did not affect fruit production. Supplementation of natural pollen with self- and cross-pollen revealed that both pollen quantity and quality limited fruit production. Despite pollen limitation, honeybees cannot raise fruit production because they often do not deposit sufficient high-quality pollen per visit to elicit fruit development. However, declines in visitation frequency well below seven visits during a flower's lifespan could decrease production beyond current yields. In this context, the preservation of forest remnants, which act as pollinator sources, could contribute to resilience in crop production. Like wild plants, pollen limitation of the yield among animal-pollinated crops may be common and indicative not only of pollinator scarcity, but also of poor pollination quality, whereby pollinator efficiency, rather than just abundance, can play a broader role than previously appreciated. PMID:18230596

  5. Using a Decision Support System to Optimize Production of Agricultural Crop Residue Biofeedstock

    SciTech Connect

    Reed L. Hoskinson; Ronald C. Rope; Raymond K. Fink

    2007-04-01

    For several years the Idaho National Laboratory (INL) has been developing a Decision Support System for Agriculture (DSS4Ag) which determines the economically optimum recipe of various fertilizers to apply at each site in a field to produce a crop, based on the existing soil fertility at each site, as well as historic production information and current prices of fertilizers and the forecast market price of the crop at harvest, for growing a crop such as wheat, potatoes, corn, or cotton. In support of the growing interest in agricultural crop residues as a bioenergy feedstock, we have extended the capability of the DSS4Ag to develop a variable-rate fertilizer recipe for the simultaneous economically optimum production of both grain and straw, and have been conducting field research to test this new DSS4Ag. In this paper we report the results of two years of field research testing and enhancing the DSS4Ag’s ability to economically optimize the fertilization for the simultaneous production of both grain and its straw, where the straw is an agricultural crop residue that can be used as a biofeedstock.

  6. Impact of climate change and adaptation strategies on crop production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2012-04-01

    The vulnerability of agricultural to climate change is of particular interest to policy makers because the high social and economical importance of agriculture sector in Nigeria, which contributes approximately 40 percent to total GDP and support 70 percent of the population. It is necessary to investigate the potential climate change impacts in order to identify specific agricultural sectors and Agro-Ecological Zones that will be more vulnerable to changes in climatic conditions and implement and develop the most appropriate policies to cope with these changes. In this framework, this study aimed to assess the climate change impacts on Nigerian agricultural sector and to explore some of potential adaptation strategies for the most important crops in the food basket of the Country. The analysis was made using the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5. Crop simulation models included in DSSAT are tools that allows to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. In this analysis, for each selected crop, the models included into DSSAT-CSM software were ran, after a calibration phase, to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output were "perturbed" with 10 Global Climate Models in order to have a wide variety of possible climate projections for impact analysis. Multiple combinations of soils and climate conditions, crop management and varieties were considered for each Agro-Ecological Zone of Nigeria. The climate impact assessment was made by comparing the yield obtained with the climate data for the present period and the yield obtainable under future changed climate conditions. The models ran by keeping

  7. Simultaneous Improvement in Water Use, Productivity and Albedo Through Crop Structural Modification

    NASA Astrophysics Data System (ADS)

    Drewry, D.; Kumar, P.; Long, S.

    2014-12-01

    Agricultural lands provide a tremendous opportunity to address challenges at the intersection of climate change, food and water security. Global demand for the major grain and seed crops is beginning to outstrip production, while population growth and the expansion of the global middle class have motivated calls for a doubling of food production by the middle of this century. This is occurring as yield gains for the major food crops have stagnated. At current rates of yield improvement this doubling will not be achieved. Plants have evolved to maximize the capture of radiation in the upper leaves, resulting in sub-optimal monoculture crop fields for maximizing productivity and other biogeophysical services. Using the world's most important protein crop, soybean, as an example, we show that by applying numerical optimization to a micrometeorological crop canopy model that significant, simultaneous gains in water use, productivity and reflectivity are possible with no increased demand on resources. Here we apply the MLCan multi-layer canopy biophysical model, which vertically resolves the radiation and micro-environmental variations that stimulate biochemical and ecophysiological functions that govern canopy-atmosphere exchange processes. At each canopy level photosynthesis, stomatal conductance, and energy balance are solved simultaneously for shaded and sunlit foliage. A multi-layer sub-surface model accounts for water availability as a function of root biomass distribution. MLCan runs at sub-hourly temporal resolution, allowing it to capture variability in CO2, water and energy exchange as a function of environmental variability. By modifying total canopy leaf area, its vertical distribution, leaf angle, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, we show that increases in either productivity (7%), water use (13%) or albedo (34%) could be achieved with no detriment to the other objectives, under United

  8. Remote Estimation of Gross Primary Production in Crops at Field and Regional Levels

    NASA Astrophysics Data System (ADS)

    Gitelson, A. A.; Vina, A.; Verma, S. B.; Rundquist, D. C.

    2007-12-01

    Accurate estimation of spatially distributed CO2 fluxes is of great importance for regional and global studies of carbon balance. We have found that in irrigated and rainfed crops (maize and soybean), GPP is closely related to total crop chlorophyll content. The finding allowed development of a new technique for remote estimation of crop chlorophyll specifically for assessing gross primary production. The technique is based on reflectance in two spectral channels: the near-infrared and either the green or the red-edge. The technique provided accurate estimations of daily GPP in both crops. Validation using independent datasets for irrigated and rainfed maize and soybean documented the robustness of the technique. We report also about applying the developed technique for GPP retrieval from data acquired by both an airborne imaging spectrometer (AISA-Eagle) and Landsat ETM+. The Chlorophyll Index, retrieved from Landsat ETM+ data, was found to be an accurate surrogate measure for daily crop GPP with a root mean square error of GPP prediction of less than 1.58 g C m-2d-1 in a GPP range of 1.88 g C m-2d-1 to 23.1 g C m-2d-1. These results suggest new possibilities for analyzing the spatio-temporal variation of the GPP of crops using not only the extensive archive of Landsat Thematic Mapper imagery acquired since the early 1980s but also the 500-m/pixel data currently being acquired by MODIS.

  9. Enhancing Soil Productivity Using a Multi-Crop Rotation and Beef Cattle Grazing

    NASA Astrophysics Data System (ADS)

    Şentürklü, Songül; Landblom, Douglas; Cihacek, Larry; Brevik, Eric

    2016-04-01

    Agricultural production systems that include complimentary plant, soil and animal interaction contribute to sustainability. In sustainable livestock systems integrated with crop production, the soil resource is impacted positively. The goal of this research was to maximize beef cattle and crop economic yield, while improving the soil resource by increasing soil organic matter (SOM) and subsequently seasonal soil nitrogen fertility over a 5-year period (2011-2015). Each experimental crop field used in the study was 1.74 ha. Small-seeded crops were planted using a JD 1590 No-Till drill. Corn (C) and sunflowers (SF) were planted using a JD 7000 No-Till planter. The cropping sequence used in the study was SF, hard red spring wheat (HRSW), fall seeded winter triticale-hairy vetch (T-HV), spring harvested for hay/mid-June seeded 7-species cover crop (CC; SF, Everleaf Oat, Flex Winter Pea, HV, Winfred Forage Rape, Ethiopian Cabbage, Hunter Leaf Turnip), C (85-day var.), and field pea-barley intercrop (PBY). The HRSW and SF were harvested as cash crops and the PBY, C, and CC were harvested by grazing cattle. In the system, yearling beef steers grazed PBY and unharvested C before feedlot entry, and after weaning, gestating cows grazed CC. Seasonal soil nitrogen fertility was measured at 0-15, 15-30, and 30-61 cm depths approximately every two weeks from June to October, 2014. The regression illustrating the relationship between SOM and average seasonal available mineral nitrogen shows that for each percentage increase in SOM there is a corresponding N increase of 1.47 kg/ha. Nitrogen fertilizer applications for the 5-year period of the study were variable; however, the overall trend was for reduced fertilizer requirement as SOM increased. At the same time, grain, oilseed, and annual forage crop yields increased year over year (2011-2015) except for the 2014 crop year, when above average precipitation delayed seeding and early frost killed the C and SF crops prematurely

  10. World crop residues production and implications of its use as a biofuel.

    PubMed

    Lal, R

    2005-05-01

    Reducing and off-setting anthropogenic emissions of CO(2) and other greenhouse gases (GHGs) are important strategies of mitigating the greenhouse effect. Thus, the need for developing carbon (C) neutral and renewable sources of energy is more than ever before. Use of crop residue as a possible source of feedstock for bioenergy production must be critically and objectively assessed because of its positive impact on soil C sequestration, soil quality maintenance and ecosystem functions. The amount of crop residue produced in the US is estimated at 367x10(6) Mg/year for 9 cereal crops, 450x10(6) Mg/year for 14 cereals and legumes, and 488x10(6) Mg/year for 21 crops. The amount of crop residue produced in the world is estimated at 2802x10(6) Mg/year for cereal crops, 3107x10(6) Mg/year for 17 cereals and legumes, and 3758x10(6) Mg/year for 27 food crops. The fuel value of the total annual residue produced is estimated at 1.5x10(15) kcal, about 1 billion barrels (bbl) of diesel equivalent, or about 8 quads for the US; and 11.3x10(15) kcal, about 7.5 billion bbl of diesel or 60 quads for the world. However, even a partial removal (30-40%) of crop residue from land can exacerbate soil erosion hazard, deplete the SOC pool, accentuate emission of CO(2) and other GHGs from soil to the atmosphere, and exacerbate the risks of global climate change. Therefore, establishing bioenergy plantations of site-specific species with potential of producing 10-15 Mg biomass/year is an option that needs to be considered. This option will require 40-60 million hectares of land in the US and about 250 million hectares worldwide to establish bioenergy plantations. PMID:15788197

  11. Global crop production forecasting: An analysis of the data system problems and their solutions

    NASA Technical Reports Server (NTRS)

    Neiers, J.; Graf, H.

    1978-01-01

    Data related problems in the acquisition and use of satellite data necessary for operational forecasting of global crop production are considered for the purpose of establishing a measurable baseline. For data acquisition the world was divided into 37 crop regions in 22 countries. These regions represent approximately 95 percent of the total world production of the selected crops of interest, i.e., wheat, corn, soybeans, and rice. Targets were assigned to each region. Limited time periods during which data could be taken (windows) were assigned to each target. Each target was assigned to a cloud region. The DSDS was used to measure the success of obtaining data for each target during the specified windows for the regional cloud conditions and the specific alternatives being analyzed. The results of this study suggest several approaches for an operational system that will perform satisfactorily with two LANDSAT type satellites.

  12. Simultaneous improvement in productivity, water use, and albedo through crop structural modification.

    PubMed

    Drewry, Darren T; Kumar, Praveen; Long, Stephen P

    2014-06-01

    Spanning 15% of the global ice-free terrestrial surface, agricultural lands provide an immense and near-term opportunity to address climate change, food, and water security challenges. Through the computationally informed breeding of canopy structural traits away from those of modern cultivars, we show that solutions exist that increase productivity and water use efficiency, while increasing land-surface reflectivity to offset greenhouse gas warming. Plants have evolved to maximize capture of radiation in the upper leaves, thus shading competitors. While important for survival in the wild, this is suboptimal in monoculture crop fields for maximizing productivity and other biogeophysical services. Crop progenitors evolved over the last 25 million years in an atmosphere with less than half the [CO2] projected for 2050. By altering leaf photosynthetic rates, rising [CO2] and temperature may also alter the optimal canopy form. Here using soybean, the world's most important protein crop, as an example we show by applying optimization routines to a micrometeorological leaf canopy model linked to a steady-state model of photosynthesis, that significant gains in production, water use, and reflectivity are possible with no additional demand on resources. By modifying total canopy leaf area, its vertical profile and angular distribution, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, increases in productivity (7%) are possible with no change in water use or albedo. Alternatively, improvements in water use (13%) or albedo (34%) can likewise be made with no loss of productivity, under Corn Belt climate conditions. PMID:24700722

  13. Global income and production impacts of using GM crop technology 1996-2014.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2016-01-01

    This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2014. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $17.7 billion in 2014 and $150.3 billion for the 19-year period 1996-2014 (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 65% of the gains have derived from yield and production gains with the remaining 35% coming from cost savings. The technology has also made important contributions to increasing global production levels of the 4 main crops, having, for example, added 158 million tonnes and 322 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:27116697

  14. Global income and production impacts of using GM crop technology 1996-2013.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2015-01-01

    This paper provides an economic assessment of the value of using genetically modified (GM) crop technology in agriculture at the farm level. It follows and updates earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the 4 main crops of soybeans, corn, cotton and canola. The commercialisation of GM crops has continued to occur at a rapid rate since the mid 1990s, with important changes in both the overall level of adoption and impact occurring in 2013. This annual updated analysis shows that there continues to be very significant net economic benefits at the farm level amounting to $20.5 billion in 2013 and $133.4 billion for the 18 years period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. About 70% of the gains have derived from yield and production gains with the remaining 30% coming from cost savings. The technology have also made important contributions to increasing global production levels of the 4 main crops, having added 138 million tonnes and 273 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid 1990s. PMID:25738324

  15. Developing a global crop model for maize, wheat, and soybean production

    NASA Astrophysics Data System (ADS)

    Deryng, D.; Ramankutty, N.; Sacks, W. J.

    2008-12-01

    Recently, the world food supply has faced a crisis due to increasing food prices driven by rising food demand, increasing fuel prices, poor harvests due to climate factors, and the use of crops such as maize and soybean to produce biofuel. In order to assess the future of global food availability, there is a need for understanding the factors underlying food production. Farmer management practices along with climatic conditions are the main elements directly influencing crop yield. As a consequence, estimations of future world food production require the use of a global crop model that simulates reasonably the effect of both climate and management practices on yield. Only a few global crop models have been developed to date, and currently none of them represent management factors adequately, principally due to the lack of spatially explicit datasets at the global scale. In this study, we present a global crop model designed for maize, wheat, and soybean production that incorporates planting and harvest decisions, along with irrigation options based on newly available data. The crop model is built on a simple water-balance algorithm based on the Penman- Monteith equation combined with a light use efficiency approach that calculates biomass production under non-nutrient-limiting conditions. We used a world crop calendar dataset to develop statistical relationships between climate variables and planting dates for different regions of the world. Development stages are defined based on total growing degree days required to reach the beginning of each phase. Irrigation options are considered in regions where water stress occurs and irrigation infrastructures exist. We use a global dataset on irrigated areas for each crop type. The quantity of water applied is then calculated in order to avoid water stress but with an upper threshold derived from total irrigation withdrawal quantity estimated by the global water use model WaterGAP 2. Our analysis will present the model

  16. Reproduction of Meloidogyne incognita on Winter Cover Crops Used in Cotton Production

    PubMed Central

    Timper, Patricia; Davis, Richard F.; Tillman, P. Glynn

    2006-01-01

    Substantial reproduction of Meloidogyne incognita on winter cover crops may lead to damaging populations in a subsequent cotton (Gossypium hirsutum) crop. The amount of population increase during the winter depends on soil temperature and the host status of the cover crop. Our objectives were to quantify M. incognita race 3 reproduction on rye (Secale cereale) and several leguminous cover crops and to determine if these cover crops increase population densities of M. incognita and subsequent damage to cotton. The cover crops tested were ‘Bigbee’ berseem clover (Trifolium alexandrinum), ‘Paradana’ balansa clover (T. balansae), ‘AU Sunrise’ and ‘Dixie’ crimson clover (T. incarnatum), ‘Cherokee’ red clover (T. pratense), common and ‘AU Early Cover’ hairy vetch (Vicia villosa), ‘Cahaba White’ vetch (V. sativa), and ‘Wrens Abruzzi’ rye. In the greenhouse tests, egg production was greatest on berseem clover, Dixie crimson clover, AU Early Cover hairy vetch, and common hairy vetch; intermediate on Balansa clover and AU Sunrise crimson clover; and least on rye, Cahaba White vetch, and Cherokee red clover. In both 2002 and 2003 field tests, enough heat units were accumulated between 1 January and 20 May for the nematode to complete two generations. Both AU Early Cover and common hairy vetch led to greater root galling than fallow in the subsequent cotton crop; they also supported high reproduction of M. incognita in the greenhouse. Rye and Cahaba White vetch did not increase root galling on cotton and were relatively poor hosts for M. incognita. Only those legumes that increased populations of M. incognita reduced cotton yield. In the southern US, M. incognita can complete one to two generations on a susceptible winter cover crop, so cover crops that support high nematode reproduction may lead to damage and yield losses in the following cotton crop. Planting rye or Meloidogyne-resistant legumes as winter cover crops will lower the risk of

  17. Estimating crop net primary production using national inventory data and MODIS-derived parameters

    NASA Astrophysics Data System (ADS)

    Bandaru, Varaprasad; West, Tristram O.; Ricciuto, Daniel M.; César Izaurralde, R.

    2013-06-01

    National estimates of spatially-resolved cropland net primary production (NPP) are needed for diagnostic and prognostic modeling of carbon sources, sinks, and net carbon flux between land and atmosphere. Cropland NPP estimates that correspond with existing cropland cover maps are needed to drive biogeochemical models at the local scale as well as national and continental scales. Existing satellite-based NPP products tend to underestimate NPP on croplands. An Agricultural Inventory-based Light Use Efficiency (AgI-LUE) framework was developed to estimate individual crop biophysical parameters for use in estimating crop-specific NPP over large multi-state regions. The method is documented here and evaluated for corn (Zea mays L.) and soybean (Glycine max L. Merr.) in Iowa and Illinois in 2006 and 2007. The method includes a crop-specific Enhanced Vegetation Index (EVI), shortwave radiation data estimated using the Mountain Climate Simulator (MTCLIM) algorithm, and crop-specific LUE per county. The combined aforementioned variables were used to generate spatially-resolved, crop-specific NPP that corresponds to the Cropland Data Layer (CDL) land cover product. Results from the modeling framework captured the spatial NPP gradient across croplands of Iowa and Illinois, and also represented the difference in NPP between years 2006 and 2007. Average corn and soybean NPP from AgI-LUE was 917 g C m-2 yr-1 and 409 g C m-2 yr-1, respectively. This was 2.4 and 1.1 times higher, respectively, for corn and soybean compared to the MOD17A3 NPP product. Site comparisons with flux tower data show AgI-LUE NPP in close agreement with tower-derived NPP, lower than inventory-based NPP, and higher than MOD17A3 NPP. The combination of new inputs and improved datasets enabled the development of spatially explicit and reliable NPP estimates for individual crops over large regional extents.

  18. Management of Lignite Fly Ash for Improving Soil Fertility and Crop Productivity

    NASA Astrophysics Data System (ADS)

    Ram, Lal C.; Srivastava, Nishant K.; Jha, Sangeet K.; Sinha, Awadhesh K.; Masto, Reginald E.; Selvi, Vetrivel A.

    2007-09-01

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and biofertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. The highest yield LFA dose was 200 t/ha for one-time and repeat applications, the maximum yield being with crop III (combination treatment). One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy-metal contents and in the level of γ-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  19. Management of lignite fly ash for improving soil fertility and crop productivity.

    PubMed

    Ram, Lal C; Srivastava, Nishant K; Jha, Sangeet K; Sinha, Awadhesh K; Masto, Reginald E; Selvi, Vetrivel A

    2007-09-01

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and biofertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. The highest yield LFA dose was 200 t/ha for one-time and repeat applications, the maximum yield being with crop III (combination treatment). One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy-metal contents and in the level of gamma-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner. PMID:17705037

  20. 75 FR 807 - Pesticide Tolerance Crop Grouping Program II; Revision to General Tolerance Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... revising crop groups can be found in the Federal Register of December 7, 2007 (72 FR 69150). Specific..., 2007 (72 FR 69150) and should be used for guidance. EPA has amended the generic crop group regulations...) Cottonseed, Gossypium spp.; (6) Crambe, Crambe hispanica L., Crambe abyssinica Hochst. ex R.E. Fr.;...

  1. Management of mine spoil for crop productivity with lignite fly ash and biological amendments.

    PubMed

    Ram, L C; Srivastava, N K; Tripathi, R C; Jha, S K; Sinha, A K; Singh, G; Manoharan, V

    2006-04-01

    Long-term field trials using lignite fly ash (LFA) were carried out in rice crops during the period 1996-2000 at Mine I, Neyveli Lignite Corporation, Tamil Nadu. LFA, being alkaline and endowed with an excellent pozzolanic nature, silt loam texture, and plant nutrients, has the potential to improve the texture, fertility, and crop productivity of mine spoil. The rice crops were the first, third, fifth, and sixth crops in rotation. The other crops, such as green gram (second) and sun hemp (fourth), were grown as green manure. For experimental trials, LFA was applied at various dosages (0, 5, 10, 20, 50, 100, and 200 t/ha), with and without press mud (10 t/ha), before cultivation of the first crop. Repeat applications of LFA were made at the same dosages in treatments of up to 50 t/ha (with and without press mud) before cultivation of the third and fifth crops. Press mud, a lightweight organic waste product from the sugar industry, was used as an organic amendment and source of plant nutrients. Also, a recommended dosage of chemical fertilizer, along with gypsum, humic acid, and biofertilizer as supplementing agents, was applied in all the treatments, including control. With one-time and repeat applications of LFA, from 5 to 20 t/ha (with and without press mud), the crop yield (grain and straw) increased significantly (p < 0.05), in the range from 3.0 to 42.0% over the corresponding control. The maximum yield was obtained with repeat applications of 20 t/ha of LFA with press mud in the third crop. The press mud enhanced the yield in the range of 1.5-10.2% with various dosages of LFA. The optimum dosage of LFA was 20 t/ha for both one-time and repeat applications. Repeat applications of LFA at lower dosages of up to 20 t/ha were more effective in increasing the yield than the corresponding one-time applications of up to 20 t/ha and repeat applications at 50 t/ha. One-time and repeat applications of LFA of up to 20 t/ha (with and without press mud), apart from

  2. Edaphic and crop production changes resulting from pipeline installation in semiarid agricultural ecosystems

    SciTech Connect

    Zellmer, S.D.; Taylor, J.D.; Carter, R.P.

    1985-01-01

    The effects of pipeline installation on soil properties and crop production are being documented on three transects (pipe ditch, working side, and control) at four sites (dryland row crop, native pasture, dryland wheat, and irrigated cropland) in Beaver County, Oklahoma. Plant-cover data from the native pasture site show a 37% increase in cover on the pipe ditch during the initial growth season; no significant differences in cover were observed when the control and working side transects were compared. Wheat yield on the pipe ditch at the irrigated crop site was significantly higher, a fact attributed to increased moisture-retention capacity and lower bulk density of the pipe ditch soil. The significantly higher grain sorghum yield on the right-of-way at the dryland row crop site may have resulted from the reclamation practice of chisel plowing the right-of-way on croplands following pipeline construction. Data from the initial sampling and first year of monitoring of the Beaver County sites indicate pipeline installations in semiarid agro-ecosystems have either positive or negligible impacts on soil properties and crop production. 22 refs., 1 fig., 3 tabs.

  3. Development of Intelligent Spray Systems for Nursery Crop Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two intelligent sprayer prototypes were developed to increase pesticide application efficiency in nursery production. The first prototype was a hydraulic vertical boom system using ultrasonic sensors to detect tree size and volume for liner-sized trees and the second prototype was an air-assisted sp...

  4. Develop a New Lesquerella fendleri Crop for Castor Oil Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed oil of Lesquerella fendleri contains a valuable hydroxy fatty acid (HFA), lesquerolic acid (20:1OH). The conventional source of HFA is ricinoleic acid (18:1OH) from castor seeds. Ricinoleic acid and its derivatives are used as raw materials for numerous industrial products, such as lubricants, ...

  5. Alfalfa -- a sustainable crop for biomass energy production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Alfalfa (Medicago sativa) has the potential to be a significant contributor to America's renewable energy future. In an alfalfa biomass energy production system, alfalfa forage would be separated into stem and leave fractions. The stems would be processed to produce energy, and the leaves would be s...

  6. Potato Production as Affected by Crop Parameters and Meteoro Logical Elements

    NASA Astrophysics Data System (ADS)

    Pereira, André B.; Villa Nova, Nilson A.; Pereira, Antonio R.

    Meteorological elements directly influence crop potential productivity, regulating its transpiration, photosynthesis, and respiration processes in such a way as to control the growth and development of the plants throughout their physiological mechanisms at a given site. The interaction of the meteorological factors with crop responses is complex and has been the target of attention of many researchers from all over the world. There is currently a great deal of interest in estimating crop productivity as a function of climate by means of different crop weather models in order to help growers choose planting locations and timing to produce high yields with good tuber quality under site-specific atmospheric conditions. In this manuscript an agrometeorological model based on maximum carbon dioxide assimilation rates for C3 plants, fraction of photosynthetically active radiation, air temperature, photoperiod duration, and crop parameters is assessed as to its performance under tropical conditions. Crop parameters include leaf areaand harvest indexes, dry matter content of potato tubers, and crop cycles to estimate potato potential yields. Productivity obtained with the cultivar Itararé, grown with adequate soil water supply conditions at four different sites in the State of São Paulo (Itararé, Piracicaba, TatuÍ, and São Manuel), Brazil, were used to test the model. The results showed thatthe agrometeorological model tested under the climatic conditions of the State of São Paulo in general underestimated irrigated potato yield by less than 10%.This justifies the recommendation to test the performance of the model in study in other climaticregions for different crops and genotypes under optimal irrigationconditions in further scientific investigations. We reached the conclusion that the agrometeorological model taking into account information on leaf area index, photoperiod duration, photosynthetically active radiation and air temperature is feasible to estimate

  7. Topographic and soil influences on root productivity of three bioenergy cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Successful modeling of the carbon (C) cycle requires empirical data regarding species-specific root responses to edaphic characteristics. We address this challenge by quantifying annual root production of three bioenergy cropping systems (continuous corn, sorghum-triticale, switchgrass) arrayed acro...

  8. Sustainable Production of Crop Residue as a Cellulosic Ethanol Feedstock: REAP – Renewable Energy Assessment Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domestic ethanol production is a strategy for reducing dependence on imported energy and release of greenhouse gases from use of fossil-energy-derived motor vehicle fuel. Federal and state governments are encouraging the use of ethanol. Initially energy crops, such as switchgrass, willow, and poplar...

  9. Crop production and economics in Northwest Kansas as related to irrigation capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop production and economics of corn, grain sorghum, soybean, and sunflower under irrigated and dryland conditions were simulated using 34 years (1972-2005) of weather data in Northwest Kansas. Irrigation system capacities ranged from 2.5 to 8.5 mm/day. The simulated long-term annual average net ir...

  10. Management and tillage system influence forage barley productivity and water use in dryland cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Annual cereal forages are resilient in low water use, high water use efficiency (WUE), and weed control compared with grain crops in dryland farming systems. The combined influence of tillage and management systems on annual cereal forage productivity and water use, however, has not been well docume...

  11. Evaluation of Various Feeding Regimens in A Multiple-Batch Cropping System of Channel Catfish Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A four-year pond study was conducted to compare gross production, feed conversion, processing yield, and body composition of channel catfish Ictalurus punctatus fed once daily or every other day to satiation, or # 110 kg/ha per day in a multiple-batch cropping system. The greatest amount of feed fed...

  12. Comparison of rye and legume-rye cover crop mixtures for vegetable production in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rye (Secale cereale L.) is an important cover crop in high-value vegetable production in California but legume-rye mixes have received little research attention. A 2-yr winter study on organic farms in Salinas and Hollister, CA evaluated ground cover, above ground dry matter (DM) and C:N, and weed ...

  13. Enzymatic saccharization of dilute acid pretreated saline crops for fermentable sugar production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four saline crops [athel (Tamarix aphylla L), eucalyptus (Eucalyptus camaldulensis), Jose Tall Wheatgrass (Agropyron elongatum), and Creeping Wild Ryegrass (Leymus triticoides)] that are used in farms for salt uptake from soil and drainage irrigation water have the potential for fuel ethanol product...

  14. Low Energy Technology. A Unit of Instruction on Energy Conservation in Field Crop Production.

    ERIC Educational Resources Information Center

    Davis, George; Scanlon, Dennis C.

    This unit of instruction on energy conservation in field crop production was designed for use by agribusiness and natural resources teachers in Florida high schools and by agricultural extension agents as they work with adults and students. It is one of a series of 11 instructional units (see note) written to help teachers and agents to educate…

  15. Management Team Analysis of Crop Production Systems: A Course in Problem Identification and Resolution.

    ERIC Educational Resources Information Center

    Schweitzer, L. E.

    1986-01-01

    Describes the organization of a crop production systems course for undergraduates in agriculture. Emphasis is placed on problem solving and student interaction and co-operation while working on grain farms and in the classroom. Samples of student evaluations of the course are included. (ML)

  16. Uncertainty analysis of an irrigation scheduling model for water management in crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling tools are critical to allow producers to manage water resources for crop production in an accurate and timely manner. To be useful, these tools need to be accurate, complete, and relatively reliable. The current work presents the uncertainty analysis and its results for the Mis...

  17. Natural Products That Have Been Used Commercially As Crop Protection Agents - A Review

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many compounds derived from living organisms have found a use in crop protection. These compounds have formed the basis of chemical synthesis programmes to derive new chemical products; they have been used to identify new biochemical modes of action that can be exploited by industry led discovery pr...

  18. EVALUATING HERBACEOUS PERENNIALS AS ENERGY CROPS FOR PRODUCTION OF FUEL ETHANOL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Herbaceous perennial forages have potential use as energy crops for producing ethanol. We have examined three species for which production systems exist: alfalfa, reed canarygrass, and switchgrass. These plant species represent a diverse set of physiologies and include a legume and warm and cool ...

  19. The effect of total carbon on microscopic soil properties and implications for crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil structure is a dynamic property affected by physical, chemical, and microbiological processes. Addition of organic matter to soils and the use of different management practices have been reported to impact soil structure and crop production. Moderation in soil temperature and increases in mic...

  20. 7 CFR 1412.35 - Incorrect or false production evidence of oilseeds and pulse crops.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Incorrect or false production evidence of oilseeds and pulse crops. 1412.35 Section 1412.35 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS DIRECT AND COUNTER-CYCLICAL PROGRAM AND...

  1. Activated Carbon Derived from Fast Pyrolysis Liquids Production of Agricultural Residues and Energy Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fast pyrolysis is a thermochemical method that can be used for processing energy crops such as switchgrass, alfalfa, soybean straw, corn stover as well as agricultural residuals (broiler litter) for bio-oil production. Researchers with the Agriculture Research Service (ARS) of the USDA developed a 2...

  2. Description of historical crop calendar data bases developed to support foreign commodity production forecasting project experiments

    NASA Technical Reports Server (NTRS)

    West, W. L., III (Principal Investigator)

    1981-01-01

    The content, format, and storage of data bases developed for the Foreign Commodity Production Forecasting project and used to produce normal crop calendars are described. In addition, the data bases may be used for agricultural meteorology, modeling of stage sequences and planting dates, and as indicators of possible drought and famine.

  3. Comparison of soil bacterial communities under diverse agricultural land management and crop production practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition and structure of bacterial communities was examined in soil subjected to a range of diverse agricultural land management and crop production practices. Length heterogeneity polymerase chain reaction (LH-PCR) of bacterial DNA extracted from soil was used to generate amplicon profile...

  4. Assessing Production and Ecosystem Function for Grain and Bioenergy Feedstock Crops Across Variable Soil Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some soils in the U.S. Midwest region have been especially negatively impacted by grain cropping. The result has been lost productivity and diminished resiliency for ecosystem function. Of note are the degraded soils of the Midwest classed as “claypan soils.” These soils are disproportionate sources...

  5. Assessing trade-offs between crop production and ecological services: the Calapooia Basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to assess the trade-offs between crop production and ecological services within a watershed, one must quantify linkages between conservation practices in grass seed producing areas and biophysical responses including water quality and biological indicators and develop a model to assess trad...

  6. Economic impact of GM crops: the global income and production effects 1996-2012.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2014-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects, and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2012. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $18.8 billion in 2012 and $116.6 billion for the 17-year period (in nominal terms). These economic gains have been divided roughly 50% each to farmers in developed and developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 122 million tonnes and 230 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:24637520

  7. Greenhouse Crop Production; A Teacher's Manual. Teacher Education Series, Volume 10 Number 3t.

    ERIC Educational Resources Information Center

    1969

    Developed by the Department of Agricultural Education of the Pennsylvania State University and field-tested by 54 teachers, this guide is for teacher use in planning a unit in greenhouse crop production. The unit is intended for upper high school and post-high school students interested in careers in this field. Teacher suggestions, references,…

  8. Sunflower, soybean, and grain sorghum crop production as affected by dripline depth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A five-year field study (2004-2008) using irrigation water from an unlined surface reservoir was conducted to examine the effect of dripline depth (0.2, 0.3, 0.4, 0.5, or 0.6 m) on subsurface drip-irrigated rotational crop production of sunflower, soybean, and grain sorghum on a deep silt loam soil ...

  9. Greenhouse Crop Production; A Student Handbook, Teacher Education Series, Volume 10 Number 3s.

    ERIC Educational Resources Information Center

    1969

    This study guide, developed by the Department of Agricultural Education of The Pennsylvania State University and field-tested by 54 teachers, is for student use in a unit on greenhouse crop production. Learning objectives, key questions, vocabulary terms, subject matter, and references are included for each of these problem areas: (1) Occupational…

  10. The global income and production effects of genetically modified (GM) crops 1996-2011.

    PubMed

    Brookes, Graham; Barfoot, Peter

    2013-01-01

    A key part of any assessment of the global value of crop biotechnology in agriculture is an examination of its economic impact at the farm level. This paper follows earlier annual studies which examined economic impacts on yields, key costs of production, direct farm income and effects and impacts on the production base of the four main crops of soybeans, corn, cotton and canola. The commercialization of genetically modified (GM) crops has continued to occur at a rapid rate, with important changes in both the overall level of adoption and impact occurring in 2011. This annual updated analysis shows that there have been very significant net economic benefits at the farm level amounting to $19.8 billion in 2011 and $98.2 billion for the 16 year period (in nominal terms). The majority (51.2%) of these gains went to farmers in developing countries. GM technology have also made important contributions to increasing global production levels of the four main crops, having added 110 million tonnes and 195 million tonnes respectively, to the global production of soybeans and maize since the introduction of the technology in the mid-1990s. PMID:23549349

  11. Ameliorating soil acidity of tropical Oxisols by liming for sustainable crop production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The greatest potential for expanding the world’s agricultural frontier lies in the savanna regions of the tropics, which are dominated by Oxisols. Soil acidity and low native fertility, however, are major constraints for crop production on tropical Oxisols. Soil acidification is an ongoing natural p...

  12. 7 CFR 205.602 - Nonsynthetic substances prohibited for use in organic crop production.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Nonsynthetic substances prohibited for use in organic crop production. 205.602 Section 205.602 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) ORGANIC FOODS...

  13. Land application of sugar beet by-products: effects on nitrogen mineralization and crop yields.

    PubMed

    Kumar, Kuldip; Rosen, Carl J; Gupta, Satish C; McNearney, Matthew

    2009-01-01

    Land application of food processing wastes has become an acceptable practice because of the nutrient value of the wastes and potential cost savings in their disposal. Spoiled beets and pulp are among the main by-products generated by the sugar beet (Beta vulgaris L.) processing industry. Farmers commonly land apply these by-products at rates >224 Mg ha(-1) on a fresh weight basis. However, information on nutrient release in soils treated with these by-products and their subsequent impacts on crop yield is lacking. Field studies were conducted to determine the effects of sugar beet by-product application on N release and crop yields over two growing seasons. Treatments in the first year were two rates (224 and 448 Mg ha(-1) fresh weight) of pulp and spoiled beets and a nonfertilized control. In the second year after by-product application, the control treatment was fertilized with N fertilizer and an additional treatment was added as a nonfertilized control in buffer areas. Wheat (Triticum aestivum L.) was grown in the year of by-product application and sugar beet in the subsequent year. By-product treatments caused a significant reduction in wheat grain yield compared with the control. This was due to a decline in N availability as a result of immobilization. Based on microplots receiving 15N labeled beets, wheat took up <1% of spoiled beet-N (approximately 4.7 kg ha(-1)) during the year of by-product application. In the second cropping year, sugar beet root yields were significantly higher in the fertilized control and by-product treatments than the nonfertilized control. The lack of significant difference in sugar beet yield between the fertilized control and by-product treatments was likely due to the greater availability of N in the second year. Labeled 15N data also showed that the sugar beet crop recovered a 17% of sugar beet-N, an equivalent of 86 kg N ha(-1), during the second cropping year. There was no difference in sugar beet root yield, N uptake, or

  14. Optimizing root system architecture in biofuel crops for sustainable energy production and soil carbon sequestration

    PubMed Central

    To, Jennifer PC; Zhu, Jinming; Benfey, Philip N

    2010-01-01

    Root system architecture (RSA) describes the dynamic spatial configuration of different types and ages of roots in a plant, which allows adaptation to different environments. Modifications in RSA enhance agronomic traits in crops and have been implicated in soil organic carbon content. Together, these fundamental properties of RSA contribute to the net carbon balance and overall sustainability of biofuels. In this article, we will review recent data supporting carbon sequestration by biofuel crops, highlight current progress in studying RSA, and discuss future opportunities for optimizing RSA for biofuel production and soil carbon sequestration. PMID:21173868

  15. Comparing the Net Ecosystem Exchange of Two Cropping Systems for Dairy Feed Production

    NASA Astrophysics Data System (ADS)

    Sulaiman, M. F.; Wagner-Riddle, C.; Brown, S. E.

    2015-12-01

    A three-year study was conducted from 2012 to 2014 to determine the net CO2 fluxes from corn and hay, the two main feed crops used in dairy production. The aim of this study is to better understand the net ecosystem exchange (NEE) in annual and perennial cropping systems used in dairy production to benefit greenhouse gas emission model developments and the life cycle analysis of dairy production. The study was conducted on two 4-ha plots where one plot was a 5-year old hayfield and the other plot was planted in a continuous cycle corn. All plots were continuously monitored using the flux-gradient method deployed with a tunable diode laser trace gas analyzer and sonic anemometers. All plots received dairy manure as fertilizer applied according to common practice. The cumulative NEE for the three years of the study was -873.15 g C m-2 for corn and -409.36 g C m-2 for hay. Differences in respiration between the two cropping systems was found to be the larger factor compared to differences in gross ecosystem production (GEP) that resulted in the contrasting cumulative NEE where cumulative respiration for the three years for hay was 3094.23 g C m-2 as opposed to 2078.11 g C m-2 for corn. Cumulative GEP for the three years was 3503.60 and 2951.31 g C m-2 for hay and corn respectively. Inter-annual and inter-crop variability of the NEE, GEP and respiration will be discussed in relation to biomass production, climatic conditions and crop physiological characteristics.

  16. A probabilistic model framework for evaluating year-to-year variation in crop productivity

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Iizumi, T.; Tao, F.

    2008-12-01

    Most models describing the relation between crop productivity and weather condition have so far been focused on mean changes of crop yield. For keeping stable food supply against abnormal weather as well as climate change, evaluating the year-to-year variations in crop productivity rather than the mean changes is more essential. We here propose a new framework of probabilistic model based on Bayesian inference and Monte Carlo simulation. As an example, we firstly introduce a model on paddy rice production in Japan. It is called PRYSBI (Process- based Regional rice Yield Simulator with Bayesian Inference; Iizumi et al., 2008). The model structure is the same as that of SIMRIW, which was developed and used widely in Japan. The model includes three sub- models describing phenological development, biomass accumulation and maturing of rice crop. These processes are formulated to include response nature of rice plant to weather condition. This model inherently was developed to predict rice growth and yield at plot paddy scale. We applied it to evaluate the large scale rice production with keeping the same model structure. Alternatively, we assumed the parameters as stochastic variables. In order to let the model catch up actual yield at larger scale, model parameters were determined based on agricultural statistical data of each prefecture of Japan together with weather data averaged over the region. The posterior probability distribution functions (PDFs) of parameters included in the model were obtained using Bayesian inference. The MCMC (Markov Chain Monte Carlo) algorithm was conducted to numerically solve the Bayesian theorem. For evaluating the year-to-year changes in rice growth/yield under this framework, we firstly iterate simulations with set of parameter values sampled from the estimated posterior PDF of each parameter and then take the ensemble mean weighted with the posterior PDFs. We will also present another example for maize productivity in China. The

  17. Nutrient resources for crop production in the tropics

    PubMed Central

    Vlek, P. L. G.; Kühne, R. F.; Denich, M.

    1997-01-01

    For the foreseeable future a majority of the population, and almost all the mal- and under-nourished, will continue to be found in the tropics and subtropics. Food security in these parts of the world will have to be met largely from local resources. The productivity of the land is to a large extent determined by the fertlity of the soil, which in turn is mostly determined by its organic matter content and stored nutrients. Soil organic matter is readily lost when organic matter inputs are reduced upon cultivation and more so upon intensification. The concomitant loss of topsoil and possible exposure of subsoil acidity may cause further soil degradation.
    Plant nutrients to replenish what is yearly taken from the soil to meet the demands for food and fibre amount to 230 million tonnes (Mt). Current fertilizer consumption stands at about 130 Mt of N, P2O5,and K2O, supplemented by an estimated 90 Mt of N from biological nitrogen fixation worldwide. Although 80 per cent of the population lives in the developing world, only half the world's fertilizer is consumed there. Yet, as much as 50% of the increase in agricultural productivity in the developing world is due to the adoption of fertilizers. World population growth will cause a doubling in these nutrients requirements for the developing world by 2020, which, in the likely case of inadequate production, will need to be met from soil reserves. Because expansion of the cultivable land area is reaching its limits, the reliance on nutrient inputs and their efficient use is bound to grow.
    With current urban expansion, nutrients in harvested products are increasingly lost from the rural environment as a whole. Estimates of soil nutrient depletion rates for sub-Saharan Africa (SSA) are alarmingly high. The situation may be more favourable in Latin America and Asia where fertilizer inputs are tenfold those of SSA. Closing the nutrient cycle at a community level in rural areas may be tedious; on an inter-regional level

  18. Could crop height affect the wind resource at agriculturally productive wind farm sites?

    DOE PAGESBeta

    Vanderwende, Brian; Lundquist, Julie K.

    2015-11-07

    The collocation of cropland and wind turbines in the US Midwest region introduces complex meteorological interactions that could influence both agriculture and wind-power production. Crop management practices may affect the wind resource through alterations of land-surface properties. We use the weather research and forecasting (WRF) model to estimate the impact of crop height variations on the wind resource in the presence of a large turbine array. A hypothetical wind farm consisting of 121 1.8-MW turbines is represented using the WRF model wind-farm parametrization. We represent the impact of selecting soybeans rather than maize by altering the aerodynamic roughness length inmore » a region approximately 65 times larger than that occupied by the turbine array. Roughness lengths of 0.1 and 0.25 m represent the mature soy crop and a mature maize crop, respectively. In all but the most stable atmospheric conditions, statistically significant hub-height wind-speed increases and rotor-layer wind-shear reductions result from switching from maize to soybeans. Based on simulations for the entire month of August 2013, wind-farm energy output increases by 14 %, which would yield a significant monetary gain. Further investigation is required to determine the optimal size, shape, and crop height of the roughness modification to maximize the economic benefit and minimize the cost of such crop-management practices. As a result, these considerations must be balanced by other influences on crop choice such as soil requirements and commodity prices.« less

  19. Research to develop improved production methods for woody and herbaceous biomass crops

    SciTech Connect

    Ferrell, J.E.; Wright, L.L.; Tuskan, G.A.

    1995-09-01

    DOE`s Biofuels Feedstock Development Program (BFDP) has led the nation in developing short-rotation woody crops (SRWC) and herbaceous energy crops (HEC) as feedstocks for renewable energy. Over the past 15 years, the BFDP has examined the performance of 154 woody species and 35 herbaceous species in field trials across the US. One result of this effort to date has been the prescription of silvicultural systems for hybrid poplars and hybrid willows and agricultural systems for switchgrass. Selected clones of woody species are producing dry weight yields in research plots on agricultural land that are 3 to 7 times greater than those obtained from mixed species stands on forest land, and at least 2 times the yields of southern plantation pines. Selected switchgrass varieties are producing dry weight yields 2 to 7 times greater than average forage grass yields on similar sites. Crop development research is continuing efforts to translate this potential, in a sustainable manner, to larger, more geographically diverse acreage. Research on environmental aspects of biomass crop production are aimed at developing sustainable systems that will contribute to the biodiversity of agricultural landscapes. Systems integration aims to understand all factors affecting bringing the crop to market. Factors affecting price and potential supplies of biomass crops are being evaluated at regional and national scales. Scale-up studies, feasibility analysis and demonstrations are establishing actual costs and facilitating the commercialization of integrated biomass systems. Information management and dissemination activities are facilitating the communication of results among a community of researchers, policymakers, and potential users and producers of energy crops.

  20. Effects of winter cover crop, soil amendment, and variety on organic rice production and greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen supply and disease are two main challenges in organic rice production. Cover crop and soil amendment can be options to increase soil N while keeps rice health. The objective of this study was to test the effects of cover crop and soil amendment on the production of organic rice. Three popul...

  1. Farmers' Perception of Integrated Soil Fertility and Nutrient Management for Sustainable Crop Production: A Study of Rural Areas in Bangladesh

    ERIC Educational Resources Information Center

    Farouque, Md. Golam; Takeya, Hiroyuki

    2007-01-01

    This study aimed to determine farmers' perception of integrated soil fertility and nutrient management for sustainable crop production. Integrated soil fertility (ISF) and nutrient management (NM) is an advanced approach to maintain soil fertility and to enhance crop productivity. A total number of 120 farmers from eight villages in four districts…

  2. Conservation tillage issues: cover crop-based organic rotational no-till grain production in the mid-atlantic region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic producers in the mid-Atlantic region are interested in reducing tillage, labor, and time requirements for grain production. Cover crop-based organic rotational no-till grain production is one approach to accomplishing these goals. Advancements in a system for planting crops into a mat of cov...

  3. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas

  4. Matching Crew Diet and Crop Food Production in BIO-Plex

    NASA Technical Reports Server (NTRS)

    Jones, Harry; Kwauk, Xianmin; Mead, Susan C. (Technical Monitor)

    2000-01-01

    This paper matches the BIO-Plex crop food production to the crew diet requirements. The expected average calorie requirement for BIO-Plex is 2,975 Calories per crewmember per day, for a randomly selected crew with a typical level of physical activity. The range of 2,550 to 3,400 Calories will cover about two-thirds of all crews. The exact calorie requirement will depend on the gender composition, individual weights, exercise, and work effort of the selected crew. The expected average crewmember calorie requirement can be met by 430 grams of carbohydrate, 100 grams of fat, and 90 grams of protein per crewmember per day, for a total of 620 grams. Some fat can replaced by carbohydrate. Each crewmember requires only 2 grams of vitamins and minerals per day. Only unusually restricted diets may lack essential nutrients. The Advanced Life Support (ALS) consensus is that BIO-Plex should grow wheat, potato, and soybean, and maybe sweet potato or peanut, and maybe lettuce and tomato. The BIO-Plex Biomass Production System food production and the external food supply must be matched to the crew diet requirement for calories and nutritional balance. The crop production and external supply specifications can each be varied as long as their sum matches the required diet specification. We have wide flexibility in choosing the crops and resupply. We can easily grow one-half the crew calories in one BIO-Plex Biomass Production Chamber (BPC) if we grow only the most productive crops (wheat, potato, and sweet potato) and it we achieve nominal crop productivity. If we assume higher productivity we can grow a wider variety of crops. If we grow one-half of the crew calories, externally supplied foods can easily provide the other half of the calories and balance the diet. We can not grow 95 percent of the crew calories in two BPCs at nominal productivity while growing a balanced diet. We produce maximum calories by growing wheat, potato, and peanut.

  5. Envisioning a metropolitan foodshed: potential environmental consequences of increasing food-crop production around Chicago

    NASA Astrophysics Data System (ADS)

    Bowen, E. E.; Martin, P. A.; Schuble, T. J.

    2009-12-01

    Nationwide, cities are increasingly developing policies aimed at greater sustainability, particularly focusing on reducing environmental impact. Such policies commonly emphasize more efficiently using energy to decrease the greenhouse gas (GHG) footprint of the city. However, most plans ignore the food system as a factor in regional energy use and GHG emissions. Yet, the food system in the United States accounts for ~20% of per capita greenhouse gas emissions. Local, sustainable food production is cited as one strategy for mitigating GHG emissions of large metropolitan areas. “Sustainable” for regional agriculture is often identified as small-scale, diversified food crop production using best practices management. Localized food production (termed “foodshed”) using sustainable agriculture could mitigate climate change in multiple ways: (1) energy and therefore CO2-intensive portions of the conventional food system might be replaced by local, lower-input food production resulting in carbon offsets; (2) increased regional carbon storage might result from well-managed food crop production vs. commodity crop production; and (3) averted N2O emissions might result from closing nutrient cycles on agricultural lands following changes in management practices. The broader implications for environmental impact of widespread conversion to sustainable food crop agriculture, however, remain largely unknown. We examine the Chicago metropolitan region to quantify the impact of increased local food production on regional energy efficiency and GHG emissions. Geospatial analysis is used to quantify the resource potential for establishing a Chicago metropolitan foodshed. A regional foodshed is defined by minimizing cost through transportation mode (road, rail, or water) and maximizing the production potential of different soil types. Simple biogeochemical modeling is used to predict changes in N2O emissions and nutrient flows following changes in land management practices

  6. Hotspots of inefficiency: Mapping the difference between crop production and food calorie delivery

    NASA Astrophysics Data System (ADS)

    Cassidy, E. S.; Foley, J. A.

    2012-12-01

    Meeting growing demands for food calories will be a substantial challenge. One place to search for solutions is in how we allocate the world's crops, and finding ways to feed more people with current crop production. Currently, a substantial proportion of crop calories are used as animal feed, and only a small fraction of those feed calories ultimately contribute to human diets. Countries like the United States and China, which together produce over a third of the world's meat, eggs and dairy, lose a substantial portion of calories and protein to the feed-to-animal conversion process. This study looks at global croplands that have a large difference between calories grown, and the food calories available for consumption. These hotspots have the potential to feed more people, while reducing environmental impacts of agriculture.;

  7. Decision support system to study climate change impacts on crop production

    SciTech Connect

    Hoogenboom, G.; Tsuji, G.Y.; Pickering, N.B.; Curry, R.B.; Jones, J.W.; Singh, U. |; Godwin, D.C.

    1995-12-31

    Under the auspices of the International Benchmark Sites Network for Agrotechnology Transfer (IBSNAT) Project a Decision Support System for Agrotechnology Transfer (DSSAT) has been developed. DSSAT operates on a personal compute rand includes data base management programs for climate, soil, and cultural practice information; crop simulation models for cereal grains, grain legumes, and root crops; and seasonal strategy and risk analysis programs. The IBSNAT crop models use daily weather data, i.e., maximum and minimum air temperature, solar radiation, and precipitation, as inputs. One of the applications of DSSAT is, therefore, to study the potential impact of climate change on agricultural production. A new and special version of DSSAT (Version 2.5) was developed to facilitate studies of the effect of climate change on crop performance. In this version, the daily canopy photosynthesis and transpiration sections of the CERES and GRO models were modified to respond to changes in CO{sub 2} concentration. The management sections of the models and the strategy analysis program were expanded to include the option to modify weather data interactively. This decision support system has been used to study changes in crop yield, irrigation requirements, and other responses to global climate change in various regional, national, and international research programs. 65 refs., 7 figs., 6 tabs.

  8. Management of lignite fly ash for improving soil fertility and crop productivity

    SciTech Connect

    Ram, L.C.; Srivastava, N.K.; Jha, S.K.; Sinha, A.K.; Masto, R.E.; Selvi, V.A.

    2007-09-15

    Lignite fly ash (LFA), being alkaline and endowed with excellent pozzolanic properties, a silt loam texture, and plant nutrients, has the potential to improve soil quality and productivity. Long-term field trials with groundnut, maize, and sun hemp were carried out to study the effect of LFA on growth and yield. Before crop I was sown, LFA was applied at various doses with and without press mud (an organic waste from the sugar industry, used as an amendment and source of nutrients). LFA with and without press mud was also applied before crops III and V were cultivated. Chemical fertilizer, along with gypsum, humic acid, and bioferfertilizer, was applied in all treatments, including the control. With one-time and repeat applications of LFA (with and without press mud), yield increased significantly (7.0-89.0%) in relation to the control crop. The press mud enhanced the yield (3.0-15.0%) with different LFA applications. One-time and repeat application of LFA (alone and in combination with press mud) improved soil quality and the nutrient content of the produce. The highest dose of LFA (200 t/ha) with and without press mud showed the best residual effects (eco-friendly increases in the yield of succeeding crops). Some increase in trace- and heavy metal contents and in the level of gamma-emitters in soil and crop produce, but well within permissible limits, was observed. Thus, LFA can be used on a large scale to boost soil fertility and productivity with no adverse effects on the soil or crops, which may solve the problem of bulk disposal of fly ash in an eco-friendly manner.

  9. Soil Modification by Native Shrubs Boosts Crop Productivity in Sudano-Sahelian Agroforestry System

    NASA Astrophysics Data System (ADS)

    Bogie, N. A.; Bayala, R.; Diedhiou, I.; Ghezzehei, T. A.; Dick, R.

    2014-12-01

    A changing climate along with human and animal population pressure can have a devastating effect on crop yields and food security in the Sudano-Sahel. Agricultural solutions to address soil degradation and crop water stress are needed to combat this increasingly difficult situation. Significant differences in crop success have been observed in peanut and millet grown in association with two native evergreen shrubs Piliostigma reticulatum, and Guiera senegalensis at the sites of Nioro du Rip and Keur Matar, respectively.We investigate how farmers can increase crop productivity by capitalizing on the evolutionary adaptation of native shrubs to the harsh Sudano-Sahelian environment as well as the physical mechanisms at work in the system that can lead to more robust yields. Soil moisture and water potential data were collected during a dry season millet irrigation experiment where stress was imposed in the intercropped system. Despite lower soil moisture content, crops grown in association with shrubs have increased biomass production and a faster development cycle. Hydraulic redistribution is thought to exist in this system and we found diurnal fluctuations in water potential within the intercropped system that increased in magnitude of to 0.4 Mpa per day as the soil dried below 1.0 Mpa during the stress treatment. An isotopic tracer study investigating hydraulic redistribution was carried out by injecting labeled water into shrub roots and sampling shrubs and nearby crops for isotopic analysis of plant water. These findings build on work that was completed in 2004 at the site, but point to lower overall magnitude of diurnal soil water potential fluctuations in dry soils. Using even the limited resources that farmers possess, this agroforestry technique can be expanded over wide swaths of the Sahel.

  10. Winter Cover Crop Seeding Rate and Variety Affects during 8 Years of Organic Vegetables 1. Cover Crop Biomass Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term research on cover crops (CC) is needed to help farmers design optimal rotations. Winter CC shoot dry matter (DM) of rye (Secale cereale L.), legume-rye, and mustard mixtures was determined in December, January, and February or March during the first 8 yr of the Salinas Organic Cropping Sy...

  11. Crop and cattle responses to tillage systems for integrated crop-livestock production in the Southern Piedmont, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integration of crops and livestock has the potential to provide a multitude of benefits to soil and water conservation and nutrient cycling efficiency, as well as to reducing economic risk and increasing profitability. We conducted a field study from May 2002 to October 2005 to determine crop and ca...

  12. The Products of Manganese (II) Oxidation

    SciTech Connect

    Perkins, A.

    2004-09-03

    Manganese, the second most abundant transition metal in the earth's crust, exists in a number of oxidation states, among which the II, III, and IV oxidation states are of greatest environmental importance. Produced through microbial activity, manganese oxides help to mediate redox reactions with organic and inorganic compounds and help to sequester a variety of metals. The mechanism by which Manganese (II) is oxidized to Manganese (IV) is a biologically catalyzed process. There are at least three different pathways by which Mn(II) can be bacterially oxidized to Mn(IV); the first in which states that Mn(II) can be oxidized to mixed Mn(III, IV), and Mn(IV) oxides and oxyhydroxides. The second of these pathways is that Mn(II) can be directly oxidized to Mn(IV) and the last of these pathways is that Mn(II) follows an enzymatic bond with a Mn(III) intermediate in which Mn(II) oxidizes to Mn(III) and then to Mn(IV). The pathways of focus for this research are the latter two pathways.

  13. Soil Microbial Substrate Properties and Microbial Community Responses under Irrigated Organic and Reduced-Tillage Crop and Forage Production Systems

    PubMed Central

    Ghimire, Rajan; Norton, Jay B.; Stahl, Peter D.; Norton, Urszula

    2014-01-01

    Changes in soil microbiotic properties such as microbial biomass and community structure in response to alternative management systems are driven by microbial substrate quality and substrate utilization. We evaluated irrigated crop and forage production in two separate four-year experiments for differences in microbial substrate quality, microbial biomass and community structure, and microbial substrate utilization under conventional, organic, and reduced-tillage management systems. The six different management systems were imposed on fields previously under long-term, intensively tilled maize production. Soils under crop and forage production responded to conversion from monocropping to crop rotation, as well as to the three different management systems, but in different ways. Under crop production, four years of organic management resulted in the highest soil organic C (SOC) and microbial biomass concentrations, while under forage production, reduced-tillage management most effectively increased SOC and microbial biomass. There were significant increases in relative abundance of bacteria, fungi, and protozoa, with two- to 36-fold increases in biomarker phospholipid fatty acids (PLFAs). Under crop production, dissolved organic C (DOC) content was higher under organic management than under reduced-tillage and conventional management. Perennial legume crops and organic soil amendments in the organic crop rotation system apparently favored greater soil microbial substrate availability, as well as more microbial biomass compared with other management systems that had fewer legume crops in rotation and synthetic fertilizer applications. Among the forage production management systems with equivalent crop rotations, reduced-tillage management had higher microbial substrate availability and greater microbial biomass than other management systems. Combined crop rotation, tillage management, soil amendments, and legume crops in rotations considerably influenced soil

  14. Plant Productivity and Characterization of Zeoponic Substrates after Three Successive Crops of Radish (Raphanus sativus L.)

    NASA Technical Reports Server (NTRS)

    Gruener, J. E.; Ming, Douglas W.; Galindo, C., Jr.; Henderson, K. E.; Golden, D. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has developed a zeolite-based synthetic substrate, termed zeoponics. The zeoponic substrate (consisting of NH4(-) and K-exchanged clinoptilolite, synthetic apatite, and dolomite) provides all of the plant-essential nutrients through mineral dissolution and ion exchange, with only the addition of water. Previous studies have shown high productivity of wheat in zeoponic substrates; however, no experiments have been conducted on other crops. The objective of this study was to determine the productivity and nutrient uptake of radish (Raphanus sativus L.) grown in zeoponic substrates with three successive crops in the same substrate. Radish was chosen because of its sensitivities to NH4(+). Average fresh weights of edible roots were similar for radish grown in zeoponic substrates watered with deionized H2O (10.97 g/plant) and in potting mix control substrate irrigated with nutrient solution (10.92 g/plant). Average fresh weight production of edible roots for radish grown in same zeoponic substrate increased in yield over time with the lowest yield in the first crop (7.10 g/plant) and highest in the third crop (13.90 g/plant). The Ca plant tissue levels in radishes (1.8-2.9 wt. %) grown in zeoponic substrates are lower than the suggested sufficient range of 3.0-4.5 wt. % Ca; however, the Ca level is highest (2.9 wt. %) in radishes grown in the third crop in the same zeoponic substrates. The higher radish yield in the third crop was attributed to a reduction in an NH4(-) induced Ca deficiency that has been previously described for wheat grown in zeoponic substrates. The P levels in plant tissues of radish grown in the zeoponic substrates ranged from 0.94-1.15 wt. %; which is slightly higher than the sufficient levels of 0.3-0.7 wt. %. With the exception of Ca and P, other macronutrient and micronutrient levels in radish grown in zeoponic substrates were well within the recommended sufficient ranges. After three

  15. Impact of nowcasting on the production and processing of agricultural crops. [in the US

    NASA Technical Reports Server (NTRS)

    Dancer, W. S.; Tibbitts, T. W.

    1973-01-01

    The value was studied of improved weather information and weather forecasting to farmers, growers, and agricultural processing industries in the United States. The study was undertaken to identify the production and processing operations that could be improved with accurate and timely information on changing weather patterns. Estimates were then made of the potential savings that could be realized with accurate information about the prevailing weather and short term forecasts for up to 12 hours. This weather information has been termed nowcasting. The growing, marketing, and processing operations of the twenty most valuable crops in the United States were studied to determine those operations that are sensitive to short-term weather forecasting. Agricultural extension specialists, research scientists, growers, and representatives of processing industries were consulted and interviewed. The value of the crops included in this survey and their production levels are given. The total value for crops surveyed exceeds 24 billion dollars and represents more than 92 percent of total U.S. crop value.

  16. Epi-fingerprinting and epi-interventions for improved crop production and food quality

    PubMed Central

    Rodríguez López, Carlos M.; Wilkinson, Mike J.

    2015-01-01

    Increasing crop production at a time of rapid climate change represents the greatest challenge facing contemporary agricultural research. Our understanding of the genetic control of yield derives from controlled field experiments designed to minimize environmental variance. In spite of these efforts there is substantial residual variability among plants attributable to Genotype × Environment interactions. Recent advances in the field of epigenetics have revealed a plethora of gene control mechanisms that could account for much of this unassigned variation. These systems act as a regulatory interface between the perception of the environment and associated alterations in gene expression. Direct intervention of epigenetic control systems hold the enticing promise of creating new sources of variability that could enhance crop performance. Equally, understanding the relationship between various epigenetic states and responses of the crop to specific aspects of the growing environment (epigenetic fingerprinting) could allow for a more tailored approach to plant agronomy. In this review, we explore the many ways in which epigenetic interventions and epigenetic fingerprinting can be deployed for the improvement of crop production and quality. PMID:26097484

  17. Global consumptive water use for crop production: The importance of green water and virtual water

    NASA Astrophysics Data System (ADS)

    Liu, Junguo; Zehnder, Alexander J. B.; Yang, Hong

    2009-05-01

    Over the last 4 decades the use of blue water has received increasing attention in water resources research, but little attention has been paid to the quantification of green water in food production and food trade. In this paper, we estimate both the blue and green water components of consumptive water use (CWU) for a wide range of agricultural crops, including seven cereal crops, cassava, cotton, groundnuts, potatoes, pulses, rapeseed, soybeans, sugar beets, sugarcane, and sunflower, with a spatial resolution of 30 arc min on the land surface. The results show that the global CWU of these crops amounted to 3823 km3 a-1 for the period 1998-2002. More than 80% of this amount was from green water. Around 94% of the world crop-related virtual water trade has its origin in green water, which generally constitutes a low-opportunity cost of green water as opposed to blue water. High levels of net virtual water import (NVWI) generally occur in countries with low CWU on a per capita basis, where a virtual water strategy is an attractive water management option to compensate for domestic water shortage for food production. NVWI is constrained by income; low-income countries generally have a low level of NVWI. Strengthening low-income countries economically will allow them to develop a virtual water strategy to mitigate malnutrition of their people.

  18. Contemporary and projected changes in global water use efficiency and crop productivity induced by land use and climate change

    NASA Astrophysics Data System (ADS)

    Pan, S.; Tian, H.; Ouyang, Z.; Ren, W.; Tao, B.; Yang, J.; Lu, C.; Wang, X.

    2012-12-01

    Much concern has been raised about the impacts of climate and land use changes on water resource and food security through the climate-lwater-food nexus. However, it is short of investigation on the quantitative understanding and assessment of how land use and climate change have affected global water use efficiency and crop productivity, the key measures of water and food security. By using the Dynamic Land Ecosystem Model (DLEM) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop productivity, evapotranspiration (ET) and water use efficiency across the global land surface in the past three decades (1980-2010) and the projected period (2011-2099). Specifically, we have examined the following three questions: 1) How have global crop productivity and ET been affected by climate variability and land use change in the past three decades; 2) How will global crop productivity respond to climate changes (temperature, precipitation, and solar radiation) in the future (2011-2099)? and 3) What are the relative roles of climate change and land us in altering global crop productivity and water use efficiency? Our preliminary results indicate that crop productivity in the past three decades shows an increasing trend primarily due to agricultural intensification including the increased uses of fertilizers and irrigation. However, Crop productivity shows substantially spatial and temporal variations due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop productivity, particularly in South Asia, Northern China, Africa, South America and US. Future climate warming could reduce crop productivity and shift cropland distribution. Our study further suggests that improving water use efficiency through land management practices will be the key for reducing

  19. Productivity and carbon dioxide exchange of leguminous crops: estimates from flux tower measurements

    USGS Publications Warehouse

    Gilmanov, Tagir G.; Baker, John M.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Castro, Saulo; Chen, Jiquan; Eugster, Werner; Fischer, Marc L.; Gamon, John A.; Gebremedhin, Maheteme T.; Glenn, Aaron J.; Griffis, Timothy J.; Hatfield, Jerry L.; Heuer, Mark W.; Howard, Daniel M.; Leclerc, Monique Y.; Loescher, Henry W.; Marloie, Oliver; Meyers, Tilden P.; Olioso, Albert; Phillips, Rebecca L.; Prueger, John H.; Skinner, R. Howard; Suyker, Andrew E.; Tenuta, Mario; Wylie, Bruce K.

    2014-01-01

    Net CO2 exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-response function method. The analyses produced net CO2 exchange data and new ecosystem-scale ecophysiological parameter estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the data from grain crops obtained with the same method demonstrated that CO2 exchange rates and ecophysiological parameters of legumes were lower than those of maize (Zea mays L.) but higher than for wheat (Triticum aestivum L.) crops. Year-round annual legume crops demonstrated a broad range of net ecosystem production, from sinks of 760 g CO2 m–2 yr–1 to sources of –2100 g CO2 m–2 yr–1, with an average of –330 g CO2 m–2 yr–1, indicating overall moderate CO2–source activity related to a shorter period of photosynthetic uptake and metabolic costs of N2 fixation. Perennial legumes (alfalfa, Medicago sativa L.) were strong sinks for atmospheric CO2, with an average net ecosystem production of 980 (range 550–1200) g CO2 m–2 yr–1.

  20. Could Crop Roughness Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2014-12-01

    The high concentration of both large-scale agriculture and wind power production in the United States Midwest region raises new questions concerning the interaction of the two activities. For instance, it is known from internal boundary layer theory that changes in the roughness of the land-surface resulting from crop choices could modify the momentum field aloft. Upward propagation of such an effect might impact the properties of the winds encountered by modern turbines, which typically span a layer from about 40 to 120 meters above the surface. As direct observation of such interaction would require impractical interference in the planting schedules of farmers, we use numerical modeling to quantify the magnitude of crop-roughness effects. To simulate a collocated farm and turbine array, we use version 3.4.1 of the Weather Research and Forecasting model (WRF). The hypothetical farm is inserted near the real location of the 2013 Crop Wind Energy Experiment (CWEX). Reanalyses provide representative initial and boundary conditions. A month-long period spanning August 2013 is used to evaluate the differences in flows above corn (maize) and soybean crops at the mature, reproductive stage. Simulations are performed comparing the flow above each surface regime, both in the absence and presence of a wind farm, which consists of a parameterized 11x11 array of 1.8 MW Vestas V90 turbines. Appreciable differences in rotor-layer wind speeds emerge. The use of soybeans results in an increase in wind speeds and a corresponding reduction in rotor-layer shear when compared to corn. Despite the turbulent nature of flow within a wind farm, high stability reduces the impact of crop roughness on the flow aloft, particularly in the upper portion of the rotor disk. We use these results to estimate the economic impact of crop selection on wind power producers.

  1. The value of high-resolution prediction of weather and crop productivity

    NASA Astrophysics Data System (ADS)

    Garcia-Carreras, Luis; Challinor, Andrew J.; Parkes, Ben J.

    2013-04-01

    Global climate and weather models are a key tool for the prediction of future crop productivity. Convective rainfall systems are too spatially small to be resolved by any current global model and must therefore be parameterised. Parameterisations of convection, however, all exhibit common deficiencies in the spatial and temporal variability of rainfall when compared to observations. Generally, rainfall peaks too early in the day (midday as opposed to the evening) and is too weak and widespread compared to the intense, localized storms which occur in reality. Because the simulated cloud cover is maximized at a different time of day compared to reality there are also knock-on effects on the mean incoming radiation and surface temperatures. Previous modelling studies over West Africa have also shown that these errors can upscale to affect the intensity and structure of the entire regional-scale monsoon circulation. All these factors constitute a significant source of error for any crop model that depends on inputs from global models in order to determine regional scale yields. Furthermore, as these errors are likely to be similar in all global models, they will not be captured in the uncertainty derived from existing climate model intercomparisons. In this study the General Large Area Model for annual crops (GLAM) is driven by Met Office Unified Model atmospheric data from regional-scale simulations of one cropping season over West Africa at different resolutions (40 and 12km with parameterised convection, 12 and 4km with resolved convection). These are used to assess the impact of both model resolution and the use of a parameterisation of convection on the prediction of groundnut yields. The use of two runs with the same resolution but a different representation of convection allows us to separate the impact of resolution from the parameterisation. Observed regional crop yield returns are used to evaluate the skill of the crop model output from the different runs.

  2. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  3. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  4. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  5. 9 CFR 205.107 - Crop year.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Crop year. 205.107 Section 205.107... Regulations § 205.107 Crop year. (a) The crop year, according to which subsection (c)(2)(C)(ii)(IV) requires... calendar year in which it is harvested or to be harvested; (2) For animals, the calendar year in which...

  6. A comprehensive assessment of the correlations between field crop yields and commonly used MODIS products

    NASA Astrophysics Data System (ADS)

    Johnson, David M.

    2016-10-01

    An exploratory assessment was undertaken to determine the correlation strength and optimal timing of several commonly used Moderate Resolution Imaging Spectroradiometer (MODIS) composited imagery products against crop yields for 10 globally significant agricultural commodities. The crops analyzed included barley, canola, corn, cotton, potatoes, rice, sorghum, soybeans, sugarbeets, and wheat. The MODIS data investigated included the Normalized Difference Vegetation Index (NDVI), Fraction of Photosynthetically Active Radiation (FPAR), Leaf Area Index (LAI), and Gross Primary Production (GPP), in addition to daytime Land Surface Temperature (DLST) and nighttime LST (NLST). The imagery utilized all had 8-day time intervals, but NDVI had a 250 m spatial resolution while the other products were 1000 m. These MODIS datasets were also assessed from both the Terra and Aqua satellites, with their differing overpass times, to document any differences. A follow-on analysis, using the Terra 250 m NDVI data as a benchmark, looked at the yield prediction utility of NDVI at two spatial scales (250 m vs. 1000 m), two time precisions (8-day vs. 16-day), and also assessed the Enhanced Vegetation Index (EVI, at 250 m, 16-day). The analyses spanned the major farming areas of the United States (US) from the summers of 2008-2013 and used annual county-level average crop yield data from the US Department of Agriculture as a basis. All crops, except rice, showed at least some positive correlations to each of the vegetation related indices in the middle of the growing season, with NDVI performing slightly better than FPAR. LAI was somewhat less strongly correlated and GPP weak overall. Conversely, some of the crops, particularly canola, corn, and soybeans, also showed negative correlations to DLST mid-summer. NLST, however, was never correlated to crop yield, regardless of the crop or seasonal timing. Differences between the Terra and Aqua results were found to be minimal. The 1000 m

  7. Assessing the impact of climate change on the crop potential productivity in Huang-Huai-Hai Plain in China based on crop model and GIS technique

    NASA Astrophysics Data System (ADS)

    Tian, Zhan; Lei, Xiaotu; Gao, Zhiqiang

    2007-09-01

    The climate is changing due to higher concentrations of greenhouse gases. If concentrations continue to increase, climate models project climate change will be more severe in this century, and with significant impacts on many human sectors, particularly agriculture. Agriculture is a fundamental production sector for society, especially for highly populated countries such as China. Huang Huai-Hai Plain is regarded as the bread basket of China. With only 7.7% water resources of the whole country, it produces 39.2% of national grain production and 32.4% of gross domestic product. According to government predictions, by 2030 this area will have a net population increase of 104 million, while its urbanization rate will be greater than 50%. The total irrigated area will reach about 20 million ha, with a net increase of 2 million ha/year. In this study, DSSAT a dynamic process crop growth model, has been calibrated and validated for current production at ten sites in the major winter wheat and summer maize-growing region of Huang-Huai-Hai Plain in China The IPCC SRES greenhouse gase emission scenarios A2 and B2 were used in the simulation, combining with the Regional Climate Model (PRICES) which provides long term present and future daily weather data. Using the regional crop model and GIS technologies, the crop productivity changes of two main crops winter wheat and summer maize were for simulated 2020s, 2050s and 2080s under both IPCC SRES A2 and B2 greenhouse gases emission scenarios. Simulation results indicated the possibility of significant impacts of climate change on crop production in this region, with marked differences between rainfed and irrigated production. In conclusion, this exercise successfully tested the applicability of standard climate change impact assessment methodology to an important production region of China.

  8. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality.

    PubMed

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere. PMID:26070897

  9. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality

    NASA Astrophysics Data System (ADS)

    Lemaire, Gilles; Gastal, François; Franzluebbers, Alan; Chabbi, Abad

    2015-11-01

    A need to increase agricultural production across the world to ensure continued food security appears to be at odds with the urgency to reduce the negative environmental impacts of intensive agriculture. Around the world, intensification has been associated with massive simplification and uniformity at all levels of organization, i.e., field, farm, landscape, and region. Therefore, we postulate that negative environmental impacts of modern agriculture are due more to production simplification than to inherent characteristics of agricultural productivity. Thus by enhancing diversity within agricultural systems, it should be possible to reconcile high quantity and quality of food production with environmental quality. Intensification of livestock and cropping systems separately within different specialized regions inevitably leads to unacceptable environmental impacts because of the overly uniform land use system in intensive cereal areas and excessive N-P loads in intensive animal areas. The capacity of grassland ecosystems to couple C and N cycles through microbial-soil-plant interactions as a way for mitigating the environmental impacts of intensive arable cropping system was analyzed in different management options: grazing, cutting, and ley duration, in order to minimize trade-offs between production and the environment. We suggest that integrated crop-livestock systems are an appropriate strategy to enhance diversity. Sod-based rotations can temporally and spatially capture the benefits of leys for minimizing environmental impacts, while still maintaining periods and areas of intensive cropping. Long-term experimental results illustrate the potential of such systems to sequester C in soil and to reduce and control N emissions to the atmosphere and hydrosphere.

  10. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass.

    PubMed

    Bubenheim, D L; Wignarajah, K

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to sure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control--growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production. PMID:11542586

  11. Recycling of inorganic nutrients for hydroponic crop production following incineration of inedible biomass

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Wignarajah, K.

    1997-01-01

    The goal of resource recovery in a regenerative life support system is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration is all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match the control treatment, and ash only quality formulated with reagent grade chemicals. When nutrient solutions were formulated using only ash following incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in a suppression of crop growth. When the ash is supplemented with reagent grade chemicals to establish the same balance as in the control - growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals but matching the quality of the ash only treatment resulted in similar growth to that of the ash only treatment. The ash product resulting from incineration of inedible biomass appears to be a suitable form for recycle of inorganic nutrients to crop production.

  12. Evaluation of preservation methods for improving biogas production and enzymatic conversion yields of annual crops

    PubMed Central

    2011-01-01

    Background The use of energy crops and agricultural residues is expected to increase to fulfil the legislative demands of bio-based components in transport fuels. Ensiling methods, adapted from the feed sector, are suitable storage methods to preserve fresh crops throughout the year for, for example, biogas production. Various preservation methods, namely ensiling with and without acid addition for whole crop maize, fibre hemp and faba bean were investigated. For the drier fibre hemp, alkaline urea treatment was studied as well. These treatments were also explored as mild pretreatment methods to improve the disassembly and hydrolysis of these lignocellulosic substrates. Results The investigated storage treatments increased the availability of the substrates for biogas production from hemp and in most cases from whole maize but not from faba bean. Ensiling of hemp, without or with addition of formic acid, increased methane production by more than 50% compared to fresh hemp. Ensiling resulted in substantially increased methane yields also from maize, and the use of formic acid in ensiling of maize further enhanced methane yields by 16%, as compared with fresh maize. Ensiled faba bean, in contrast, yielded somewhat less methane than the fresh material. Acidic additives preserved and even increased the amount of the valuable water-soluble carbohydrates during storage, which affected most significantly the enzymatic hydrolysis yield of maize. However, preservation without additives decreased the enzymatic hydrolysis yield especially in maize, due to its high content of soluble sugars that were already converted to acids during storage. Urea-based preservation significantly increased the enzymatic hydrolysability of hemp. Hemp, preserved with urea, produced the highest carbohydrate increase of 46% in enzymatic hydrolysis as compared to the fresh material. Alkaline pretreatment conditions of hemp improved also the methane yields. Conclusions The results of the present

  13. Impact of Makowal type water system on crop productivity in Shivalik foothills of India.

    PubMed

    Singh, Sher; Singh, Satvinder; Bawa, S S; Sharma, S C; Salaria, Amit

    2015-07-01

    The availability of water through community based water harvesting structure has intensified agriculture and improved livelihood of the surveyed beneficiary households in the Shivalik foothills of India. Before the introduction of Makowal Type Water Harvesting System (before MTWHS), only 83.8% farmers in kharif and 79.7% during rabi season were growing crops but after its introduction (after MTWHS) the corresponding values improved to 100% and 97.3%, respectively, thus increasing cropping intensity from 145% to 189%. Introduction of MTWHS enabled farmers to take paddy and agro-forestry during Kharif, and vegetables and fodder during Rabi season. The increase in cultivated area due to MTWHS was to the tune of 46.1% in Kharif and 36.3% during Rabi, while increase in crop productivity ranged from 55.1% to 111.3% in kharif and 8.6 to 132.0% in Rabiseason. Better availability of irrigation changed varietal spectrum in favour of hybrids and high yielding varieties and farmers started adopting improved agronomic practices targeting better input-use efficiency. The MTWHS produced positive impact on the on-farm (crops, dairy and agro-forestry) sources of income and reduced the relative dependence on off-farm activities (labour, community forest area, etc.) for earnings. This system has brought drinking water very close to hutments of rural women thus reducing their drudgery and saving time. In general, rainwater harvesting from forest watersheds has resulted in quantum jumps in crop and milk production and acted as a catalyst to tie up the economic interest of communities, along with forest protection. PMID:26364477

  14. Industry/government collaborations on short-rotation woody crops for energy, fiber and wood products

    SciTech Connect

    Wright, L.L.; Berg, S.

    1996-12-31

    More than twenty-five organizations can be identified in the US and Canada that have research plantings of 20 ha in size or greater of short-rotation woody crops and most of those are well-established forest products companies. In 1990, only 9 forest products companies had commercial or substantial research plantings of short-rotation woody crops. The recent harvest and use of hybrid poplars for pulp and paper production in the Pacific Northwest has clearly stimulated interest in the use of genetically superior hybrid poplar clones across North America. Industry and government supported research cooperatives have been formed to develop sophisticated techniques for producing genetically superior hybrid poplars and willows suited for a variety of locations in the US. While the primary use of commercially planted short-rotation woody crops is for pulp and paper, energy is a co-product in most situations. A document defining a year 2020 technology vision for America`s forest, wood and paper industry affirms that {open_quotes}biomass will be used not only for building materials and paper and paperboard products, but also increasingly for steam, power, and liquid fuel production.{close_quotes} To accomplish the goals of {open_quotes}Agenda 2020{close_quotes} a new collaborative research effort on sustainable forestry has been initiated by the Department of Energy (DOE) and the American Forest and Paper Association (AF&PA). Both the new and old collaborative efforts are focusing on achieving substantial and sustainable gains in U.S. wood production for both energy and traditional wood products. AF&PA and DOE hope that industry and government partnerships addressing the competitiveness and energy efficiency of U.S. industries, can serve as a model for future research efforts.

  15. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  16. Analysis of data systems requirements for global crop production forecasting in the 1985 time frame

    NASA Technical Reports Server (NTRS)

    Downs, S. W.; Larsen, P. A.; Gerstner, D. A.

    1978-01-01

    Data systems concepts that would be needed to implement the objective of the global crop production forecasting in an orderly transition from experimental to operational status in the 1985 time frame were examined. Information needs of users were converted into data system requirements, and the influence of these requirements on the formulation of a conceptual data system was analyzed. Any potential problem areas in meeting these data system requirements were identified in an iterative process.

  17. Genetically engineered microorganisms for improved crop production. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning the use of genetically altered bacteria and viruses to improve and increase crop production. The uses of microorganisms to transport desirable genes into the subject plant, and the external applications of microorganisms for frost protection, insect repellent properties, or conversion of nitrogen to fertilizer are among the topics discussed. (Contains 250 citations and includes a subject term index and title list.)

  18. Phytoremediation of sewage sludge and use of its leachate for crop production.

    PubMed

    Xu, Tianfen; Xie, Fangwen; Wei, Zebin; Zeng, Shucai; Wu, Qi-Tang

    2015-01-01

    The land application of sewage sludge has the potential risk of transferring heavy metals to soil or groundwater. The agricultural reuse of sludge leachate could be a cost-effective way to decrease metal contamination. Sludge leachate collected during the phytoremediation of sludge by co-cropping with Sedum alfredii and Zea mays was used for irrigating vegetables in a field experiment. Results indicate that the concentrations of Cu, Zn, Pb, and Cd in sludge leachates complied with the National Standards for agricultural irrigation water in China. For the vegetable crop Ipomoea aquatica, nutrients obtained only from the sludge leachate were not sufficient to support growth. For the second crop, Brassica parachinensis, no differences in biomass were observed between the treatment with leachate plus a half dose of inorganic fertilizer and the treatment with a full dose of inorganic fertilizers. The concentrations of heavy metals in I. aquatica and B. parachinensis were not significantly affected by the application of sludge leachates. Compared with initial values, there were no significant differences in Zn, Cd, Cu, and Pb concentrations in soil following treatment with sludge leachate. This study indicates that on range lands, sludge phytoremediation can be conducted at the upper level, and the generated sludge leachate can be safely and easily used in crop production at the lower level. PMID:25205245

  19. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  20. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.

  1. Proximate composition of CELSS crops grown in NASA's Biomass Production Chamber.

    PubMed

    Wheeler, R M; Mackowiak, C L; Sager, J C; Knott, W M; Berry, W L

    1996-01-01

    Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture. PMID:11538813

  2. Recycling of Na in advanced life support: strategies based on crop production systems.

    PubMed

    Guntur, S V; Mackowiak, C; Wheeler, R M

    1999-01-01

    Sodium is an essential dietary requirement in human nutrition, but seldom holds much importance as a nutritional element for crop plants. In Advanced Life Support (ALS) systems, recycling of gases, nutrients, and water loops is required to improve system closure. If plants are to play a significant role in recycling of human wastes, Na will need to accumulate in edible tissues for return to the crew diet. If crops fail to accumulate the incoming Na into edible tissues, Na could become a threat to the hydroponic food production system by increasing the nutrient solution salinity. Vegetable crops of Chenopodiaceae such as spinach, table beet, and chard may have a high potential to supply Na to the human diet, as Na can substitute for K to a large extent in metabolic processes of these crops. Various strategies are outlined that include both genetic and environmental management aspects to optimize the Na recovery from waste streams and their resupply through the human diet in ALS. PMID:11542242

  3. A novel integrated cropping system for efficient grain production, improved soil quality, and enhanced beneficial arthropod communities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The solar corridor crop system (SCCS) is designed for improved crop productivity by using broad strips (corridors or skip rows) that promote highly efficient use of solar radiation and ambient carbon dioxide by C-4 plants including corn. Field trials in 2013 and 2014 showed that yields of selected c...

  4. Field pennycress: A new oilseed crop for the production of biofuels, lubricants, and high-quality proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field pennycress (Thlaspi arvense L.) has numerous positive attributes that make it a very promising industrial oilseed crop. Its short growing season makes it suitable as an off-season crop between corn and soybean production in most of the upper Midwestern U.S. Fall planting of pennycress may also...

  5. 7 CFR 1412.34 - Submitting production evidence for establishing direct payment yields for oilseeds and pulse crops.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... direct payment yields for oilseeds and pulse crops. 1412.34 Section 1412.34 Agriculture Regulations of... ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Yields for Direct and Counter-Cyclical Payments § 1412.34 Submitting production evidence for establishing direct payment yields...

  6. The emerging imperative to improve crop water productivity: U.S. Southern High Plains as a case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the U.S. there is growing demand for water as the supply diminishes; it is uncertain how irrigated agriculture will fare under these circumstances. The USDA-ERS noted in 2007 that irrigated crops accounted for 55% of U.S. production from 7.5% of the crop acreage. The Southern High Plains is one e...

  7. Evolution of crop production under a pseudo-space environment using model plants, Lotus japonicus

    NASA Astrophysics Data System (ADS)

    Tomita-Yokotani, Kaori; Motohashi, Kyohei; Omi, Naomi; Sato, Seigo; Aoki, Toshio; Hashimoto, Hirofumi; Yamashita, Masamichi

    Habitation in outer space is one of our challenges. We have been studying space agriculture and/or spacecraft agriculture to provide food and oxygen for the habitation area in the space environment. However, careful investigation should be made concerning the results of exotic environmental effects on the endogenous production of biologically active substances in indi-vidual cultivated plants in a space environment. We have already reported that the production of functional substances in cultivated plants as crops are affected by gravity. The amounts of the main physiological substances in these plants grown under terrestrial control were different from that grown in a pseudo-microgravity. These results suggested that the nutrition would be changed in the plants/crops grown in the space environment when human beings eat in space. This estimation required us to investigate each of the useful components produced by each plant grown in the space environment. These estimations involved several study fields, includ-ing nutrition, plant physiology, etc. On the other hand, the analysis of model plant genomes has recently been remarkably advanced. Lotus japonicus, a leguminous plant, is also one of the model plant. The leguminosae is a large family in the plant vegetable kingdom and almost the entire genome sequence of Lotus japonicus has been determined. Nitrogen fixation would be possible even in a space environment. We are trying to determine the best conditions and evolution for crop production using the model plants.

  8. Carbohydrate crops as a renewable resource for fuels production. Volume III. Juice preservation

    SciTech Connect

    Fink, D.J.; Allen, B.R.; Litchfield, J.H.; Lipinsky, E.S.

    1980-01-29

    The objective of this study was to evaluate a process to preserve sugar crop juices. The process is energy conserving in that concentrated sugar solutions are produced with little evaporation of water. A preliminary investigation was conducted of polysaccharide hydrolysis as a means for preserving mixed sugar solutions obtained from crops such as sweet sorghum. Four subtasks have been addressed during this report period: I. Concentration of Pure Sugar Solutions by Hydrolysis of Purified Starch; II. Concentration of Genuine Sugar Crop Juice by Hydrolysis of Purified Starch; III. Concentration of Pure Sugar Solutions by Hydrolysis of Genuine Biomass Starch; and IV. Concentration of Pure Sugar Solutions by Hydrolysis of Cellulosic Materials. The results obtained from the experiments conducted in Subtasks I and II included the following: (1) Concentrated sucrose-glucose-fructose solutions (greater than 50 percent) can be prepared from simulated or actual sweet sorghum juice using enzymatic thinning and saccharification of pure starch-sugar solution mixtures. (2) Enzymatic saccharification of corn meal and cracked wheat in simulated sorghum juice was also demonstrated. (3) Concentration of sugar solutions also can be accomplished by saccharification of cellulosic materials. In our experiments, inhibition of the cellobiase component of the cellulase preparation was observed. The hydrolysis studies were directed to the demonstration of the feasibility of one approach to the preparation of concentrated, microbiologically stable sugar syrups starting with sweet sorghum juice. Future work on Subtask V of this program will continue the investigations already underway and will consider other approaches to the stabilization of juices. Subtask VI of this program will consider the process economics of the Subtask I to IV approaches, or combinations of two or more methods, that are considered to be most feasible for juice preservation.

  9. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 3. Dryland Production of Grain and Forage Crops

    SciTech Connect

    Thomson, Allison M.; Brown, Robert A.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Benson, Verel W.

    2005-05-31

    Here we simulate dryland agriculture in the United States with a suite of climate change projections. The total production of three major grain crops (corn, soybean, winter wheat) and two forage crops (alfalfa and clover hay) is calculated based on the Core Production Area (CPA) of each crop. Changes in production occur with each of the crops. In general, higher global mean temperature (GMT) reduces production and higher atmospheric CO2 increases production. The results varied depending on the General Circulation Model (GCM) used to simulate climate. Regional production followed trends similar to national production, but the magnitude of change was variable and substantially larger in some regions. An analysis of Currently Possible Production Areas (CPPA) for each crop indicates that the regions most likely to experience change with climate change are those on the edge of the area where the crop is currently grown. While national production of dryland agriculture does not change drastically, it is apparent that the regional impacts may be significant.

  10. Innovations in LED lighting for reduced-ESM crop production in space

    NASA Astrophysics Data System (ADS)

    Massa, Gioia; Mitchell, Cary; Bourget, C. Michael; Morrow, Robert

    In controlled-environment crop production such as will be practiced at the lunar outpost and Mars base, the single most energy-demanding aspect is electric lighting for plant growth, including energy costs for energizing lamps as well as for removing excess heat. For a variety of reasons, sunlight may not be a viable option as the main source of crop lighting off-Earth and traditional electric lamps for crop lighting have numerous drawbacks for use in a space environment. A collaborative research venture between the Advanced Life Support Crops Group at Purdue University and the Orbital Technologies Corporation (ORBITEC) has led to the development of efficient, reconfigurable LED lighting technologies for crop growth in an ALSS. The light sources use printed-circuit red and blue LEDs, which are individually tunable for a range of photosynthetic photon fluxes and photomorphogenic plant responses. Initial lighting arrays have LEDs that can be energized from the bottom upward when deployed in a vertical, intracanopy configuration, allowing the illumination to be tailored for stand height throughout the cropping cycle. Preliminary testing with the planophile crop cowpea (Vigna unguiculata L. Walp, breeding line IT87D-941-1), resulted in optimizing internal reflectance of growth compartments by lining walls, floor, and a movable ceiling with white Poly film, as well as by determining optimal planting density and plant positioning. Additionally, these light strips, called "lightsicles", can be configured into an overhead plane of light engines. When intracanopy and overhead-LED-lit cowpea crop production was compared, cowpea plants grown with intracanopy lighting had much greater understory leaf retention and produced more dry biomass per kilowatt-hour of lighting energy than did overhead-lit plants. The efficiency of light capture is reduced in overhead-lit scenarios due to mutual shading of lower leaves by upper leaves in closed canopies leading to premature abscission

  11. Modeling the Climate Change Adaptation of Crop Production using Irrigation over Water-Limited Region

    NASA Astrophysics Data System (ADS)

    Okada, M.; Iizumi, T.; Sakurai, G.; Sakai, T.; Yokozawa, M.

    2014-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider the space-time varying available agricultural water under changing climate and land use. For these reason, this study aimed to (1) develop a crop-river coupled model that can simultaneously simulate crop growth and yield over a river watershed, river discharge and their dynamic interactions by embedded a large-area crop model, PRYSBI-2 [Sakurai et al., 2014] into a hydrologic model, H08 [Hanasaki et al., 2008]; (2) apply the developed coupled model to the Songhua River watershed in Northeast China and evaluate the model's performance by comparing the historical model simulations outputs; (3) assess the effects of adaption measure expanding irrigated area under climate change. The modeled year-to-year variations in soil moisture were comparable to the reference with the Pearson's correlation coefficient (r) of 0.75 (p<0.001) and root-mean-square error (RMSE) of 13 %. The modeled river discharge accurately matched with the observation data with the r of 0.83 (p<0.01) and RMSE of 22 %. And the modeled soybean yields were quantitatively comparable to the reference with the r of 0.66 (p<0.001) and RMSE of 21 %. We made simulations to project the changes of potential soybean production under climate change scenarios and irrigation area expanding scenarios. It was projected that the soybean production effectively increase until the irrigated area has been increased 5 times compared to around the year 2000. However, the more increase in the irrigated area would bring significant reduction of the increase rate in soybean production due to depletion of available agricultural water resources.

  12. Interactive effects among ecosystem services and management practices on crop production: Pollination in coffee agroforestry systems

    PubMed Central

    Boreux, Virginie; Kushalappa, Cheppudira G.; Vaast, Philippe; Ghazoul, Jaboury

    2013-01-01

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables. PMID:23671073

  13. Interactive effects among ecosystem services and management practices on crop production: pollination in coffee agroforestry systems.

    PubMed

    Boreux, Virginie; Kushalappa, Cheppudira G; Vaast, Philippe; Ghazoul, Jaboury

    2013-05-21

    Crop productivity is improved by ecosystem services, including pollination, but this should be set in the context of trade-offs among multiple management practices. We investigated the impact of pollination services on coffee production, considering variation in fertilization, irrigation, shade cover, and environmental variables such as rainfall (which stimulates coffee flowering across all plantations), soil pH, and nitrogen availability. After accounting for management interventions, bee abundance improved coffee production (number of berries harvested). Some management interventions, such as irrigation, used once to trigger asynchronous flowering, dramatically increased bee abundance at coffee trees. Others, such as the extent and type of tree cover, revealed interacting effects on pollination and, ultimately, crop production. The effects of management interventions, notably irrigation and addition of lime, had, however, far more substantial positive effects on coffee production than tree cover. These results suggest that pollination services matter, but managing the asynchrony of flowering was a more effective tool for securing good pollination than maintaining high shade tree densities as pollinator habitat. Complex interactions across farm and landscape scales, including both management practices and environmental conditions, shape pollination outcomes. Effective production systems therefore require the integrated consideration of management practices in the context of the surrounding habitat structure. This paper points toward a more strategic use of ecosystem services in agricultural systems, where ecosystem services are shaped by the coupling of management interventions and environmental variables. PMID:23671073

  14. Economics of biomass fuels for electricity production: A case study with crop residues

    NASA Astrophysics Data System (ADS)

    Maung, Thein Aye

    In the United Sates and around the world, electric power plants are among the biggest sources of greenhouse gas emissions which the Intergovernmental Panel on Climate Change argued was the main cause of climate change and global warming. This dissertation explores the factors which may induce electricity producers to use biomass fuels for power generation and thereby mitigate the impact of greenhouse gas emissions. Analyses in this dissertation suggest that there are two important factors which will play a major role in determining the future degree of bioelectricity production: the price of coal and the future price of carbon emissions. Using The Forest and Agricultural Sector Optimization Model--Green House Gas version (FASOMGHG) in a case study examining the competitiveness of crop residues, this dissertation finds that crop residues currently cost much more than coal as an electricity generation feedstock because they have lower heat content and higher production/hauling costs. For them to become cost competitive with coal, the combined costs of production and hauling must be cut by more than half or the coal price needs to rise. In particular, for crop residues to have any role in electricity generation either the price of coal has to increase to about 43 per ton or the carbon equivalent price must rise to about 15 per ton. The simulation results also show that crop residues with higher heat content such as wheat residues will have greater opportunities in bioelectricity production than the residues with lower heat content. In addition, the analysis shows that improvements in crop yield do not have much impact on bioelectricity production. However, the energy recovery efficiency does have significant positive impact on the bioelectricity desirability but again only if the carbon equivalent price rises substantially. The analysis also shows the desirability of cofiring biomass as opposed to 100% replacement because this reduces haling costs and increases the

  15. Recycle of Inorganic Nutrients for Hydroponic Crop Production Following Incineration of Inedible Biomass

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Wignarajah, Kanapathipillai; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Recovery of resources from waste streams is essential for future implementation and reliance on a regenerative life support system. The major waste streams of concern are from human activities and plant wastes. Carbon, water and inorganics are the primary desired raw materials of interest. The goal of resource recovery is maintenance of product quality to insure support of reliable and predictable levels of life support function performance by the crop plant component. Further, these systems must be maintained over extended periods of time, requiring maintenance of nutrient solutions to avoid toxicity and deficiencies. Today, reagent grade nutrients are used to make nutrient solutions for hydroponic culture and these solutions are frequently changed during the life cycle or sometimes managed for only one crop life cycle. The focus of this study was to determine the suitability of the ash product following incineration of inedible biomass as a source of inorganic nutrients for hydroponic crop production. Inedible wheat biomass was incinerated and ash quality characterized. The incinerator ash was dissolved in adequate nitric acid to establish a consistent nitrogen concentration in all nutrient solution treatments. Four experimental nutrient treatments were included: control, ash only, ash supplemented to match control, and ash only quality formulated with reagent grade chemicals. When nutrient solutions are formulated using only ash following-incineration of inedible biomass, a balance in solution is established representing elemental retention following incineration and nutrient proportions present in the original biomass. The resulting solution is not identical to the control. This imbalance resulted in suppression of crop growth. When the ash is supplemented with nutrients to establish the same balance as in the control, growth is identical to the control. The ash appears to carry no phytotoxic materials. Growth in solution formulated with reagent grade chemicals

  16. On the Global Water Productivity Distribution for Major Cereal Crops: some First Results from Satellite Measurements

    NASA Astrophysics Data System (ADS)

    Bastiaanssen, W. G.; Verstegen, J. A.; Steduto, P.; Goudriaan, R.; Wada, Y.

    2014-12-01

    Feeding the world requires 70 percent more food for an additional 2.3 billion people by 2050. The increasing competition for water resources prompts the modern consumer society to become more efficient with scarce water resources. The water footprint of agriculture is hundred times more than the footprint for domestic water use, yet we do not fully know how much water is used in relation to the amount of food being produced. Water Productivity describes the crop yield per unit of water consumed and is the ultimate indicator for the efficiency of water use in agriculture. Our basic understanding of actual and benchmark values for Water Productivity is limited, partially because operational measurements and guidelines for Water Productivity do not currently exist. Remote sensing algorithms have been developed over the last 20 years to compute crop yield Y and evapotranspiration ET, often in an independent manner. The new WatPro and GlobWat algorithms are based on directly solving the Y/ET ratio. Several biophysical parameter and processes such as solar radiation, Leaf Area Index, stomatal aperture and soil moisture affect biomass production and crop transpiration simultaneously, and this enabled us to simplify the schematization of a Y/ET model. Global maps of wheat, rice and maize were prepared from various open-access data sources, and Y/ET was computed across a period of 10 years. The global distribution demonstrates that 66 percent of the world's agricultural land cultivated with wheat, rice and corn performs below average. Furthermore, Water Productivity in most countries exhibits a significant spatial variability. Therefore, there is significant scope to produce the same food - or more food - from less water resources if packages with good practices are locally implemented. The global maps of water productivity will be demonstrated, along with some country examples.

  17. Climatic and management drivers of CO2 exchanges by a production crop: analysis over three successive 4-year cycles.

    NASA Astrophysics Data System (ADS)

    Buysse, Pauline; Moureaux, Christine; Bodson, Bernard; Aubinet, Marc

    2016-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (candidate ICOS site) in the Hesbaye region in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Eddy covariance, automatic and manual soil chambers, leaf diffusion and biomass measurements were performed continuously in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP), total Ecosystem Respiration (TER), Net Primary Productivity (NPP), autotrophic respiration, heterotrophic respiration and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. Climatic and seasonal evolutions of the carbon balance components were studied and crop carbon budgets were computed both at the yearly and crop rotation cycle scales. On average over the 12 years, NEE was negative but NBP was positive, i.e. as far as carbon exportation by harvest are included in the budget, the site behaved as a carbon source. Impacts of both meteorological drivers and crop management operations on CO2 exchanges were analyzed and compared between crop types, years, and rotation cycles. The uncertainties associated to the carbon fluxes were also evaluated and discussed.

  18. Pesticide occurrence in groundwater in areas of high-density row crop production in Alabama, 2009

    USGS Publications Warehouse

    Moreland, Richard S.

    2011-01-01

    High-density row crop production occurs in three areas of Alabama that are underlain by productive aquifers, northern Alabama, southeastern Alabama, and Baldwin County in southwestern Alabama. The U.S. Geological Survey collected five groundwater samples from each of these three areas during 2009 for analysis of selected pesticides. Results of these analyses showed detections for 37 of 152 analytes. The three most frequently detected compounds were atrazine, 2-Chloro-4-isopropylamino-6-amino-triazine (CIAT), and metolachlor. The highest concentration for any analyte was 4.08 micrograms per liter for metolachlor.

  19. Intercropping of aromatic crop Pelargonium graveolens with Solanum tuberosum for better productivity and soil health.

    PubMed

    Vermal, Rajesh Kumar; Yadav, Ajai; Verma, Ram Swaroop; Khan, Khushboo

    2014-11-01

    Farmers in hilly regions experience low production potential and resource use efficiency due to low valued crops and poorsoil health. Geranium (Pelargonium graveolens L.) is a vegetatively propagated initially slow growing, high value aromatic crop. Potato (Solanum tuberosum L.) is also vegetatively propagated high demand cash crop. A field experiment was carried out in temperate climate to investigate the influence of geranium intercropping at different row strips (1:1 and 1:2) and plant density (60 x 45, 75 x 45 and 90 x 45 cm) with potato intercrop on biomass, oil yield, monetary advantage and soil quality parameters. The row spacing 60x45cm and row strip 1:1 was found to be superior and produced 92 t ha(-1) and 14 kg ha(-1) biomass and oil yield, respectively. The row strip 1:2 intercrop earned a maximum $2107, followed by $1862 with row strip 1:1 at 60 x 45 cm plant density. Significant variations were noticed in soil organic carbon (Corg), total N (Nt), available nutrients, soil microbial biomass (Cmic) and nitrogen (Nmic) content. Maximum improvement of Corg (41.0%) and Nt (27.5%)with row strip 1:1 at 75 x 45 cm plant density. While higher soil respiration rate, Cmic, Nmic, and qCO2 was found with 1:2 row strip at 60 x 45 plant density. The buildup of Corg and Cmic potato intercrop can promote long term sustainability on productivity and soil health. PMID:25522521

  20. The limits of crop productivity: validating theoretical estimates and determining the factors that limit crop yields in optimal environments

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.

    1992-01-01

    Plant scientists have sought to maximize the yield of food crops since the beginning of agriculture. There are numerous reports of record food and biomass yields (per unit area) in all major crop plants, but many of the record yield reports are in error because they exceed the maximal theoretical rates of the component processes. In this article, we review the component processes that govern yield limits and describe how each process can be individually measured. This procedure has helped us validate theoretical estimates and determine what factors limit yields in optimal environments.

  1. Satellite remote sensing - An integral tool in acquiring global crop production information

    NASA Technical Reports Server (NTRS)

    Hall, F. G.

    1982-01-01

    Since NASA's program of research concerning remote sensing was initiated in the 1960s, one of its major objectives has been to advance the state-of-the-art in machine processing of satellite acquired multispectral data. Possibilities have been studied regarding a use of these data to identify type, to monitor condition, and to estimate the ontogenetic stage of cultural vegetation. The present investigation provides a review of the state-of-the-art of the technology used to make remote sensing crop production estimates in foreign regions. Attention is given to Landsat data acquisition, aspects of registration and preprocessing, questions of data transformation, data modeling, proportion estimation, labeling, development stage models, crop condition models, and an outlook regarding future developments.

  2. Remote estimation of gross primary productivity in crops: from close range to satellite observations

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Gitelson, A. A.; Sakamoto, T.; Masek, J. G.; Rundquist, D.; Nguy-Robertson, A. L.; Verma, S.; Suyker, A.

    2013-12-01

    An accurate estimation of crop gross primary productivity (GPP) is essential for monitoring regional and global carbon exchanges. In this study, with ten-year observations throughout 2001 to 2010 at three irrigated and rainfed AmerFlux sites in Mead, Nebraska, a simple model was tested to estimate crop GPP using a product of chlorophyll-related vegetation index and photosynthetically active radiation (PAR). Vegetation indices (VI), a proxy of canopy chlorophyll, were calculated from canopy reflectance at various spatial and temporal resolution, including daily observations of four-band radiance 6 m above the ground, weekly in-situ measurements of hyperspectral reflectance, and satellite data (Landsat and MODIS). This model was able to estimate GPP accurately in croplands with different crop species, field managements and climatic conditions. It showed that the used VI was quite sensitive to detect daily GPP variation in crops even under stressed conditions when total Chl content is closely tied to seasonal dynamic of GPP. To minimize the uncertainty of GPP variations, which do not follow fluctuations of incoming PAR, potential PAR was introduced into the model as a better representative of radiation absorbed by canopy for photosynthesis. The model using satellite data and potential PAR is entirely based on remotely sensed data not requiring any ground-based observation. The indices using green and NIR Landsat bands were found to be the most accurate in GPP estimation with coefficients of variation below 13% for maize and 15% for soybean. Using MODIS 250 m data, EVI2 and WDRVI were accurate estimating GPP with coefficient of variation below 20% in maize and 25% in soybean.

  3. Monitoring pasture variability: optical OptRx(®) crop sensor versus Grassmaster II capacitance probe.

    PubMed

    Serrano, João M; Shahidian, Shakib; Marques da Silva, José Rafael

    2016-02-01

    Estimation of pasture productivity is an important step for the farmer in terms of planning animal stocking, organizing animal lots, and determining supplementary feeding needs throughout the year. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Two types of sensors were evaluated: an active optical sensor ("OptRx(®)," which measures the NDVI, "Normalized Difference Vegetation Index") and a capacitance probe ("GrassMaster II" which estimates plant mass). The results showed the potential of NDVI for monitoring the evolution of spatial and temporal patterns of vegetative growth of biodiverse pasture. Higher NDVI values were registered as pasture approached its greatest vegetative vigor, with a significant fall in the measured NDVI at the end of Spring, when the pasture began to dry due to the combination of higher temperatures and lower soil moisture content. This index was also effective for identifying different plant species (grasses/legumes) and variability in pasture yield. Furthermore, it was possible to develop calibration equations between the capacitance and the NDVI (R(2) = 0.757; p < 0.01), between capacitance and GM (R(2) = 0.799; p < 0.01), between capacitance and DM (R(2) =0.630; p < 0.01), between NDVI and GM (R(2) = 0.745; p < 0.01), and between capacitance and DM (R(2) = 0.524; p < 0.01). Finally, a direct relationship was obtained between NDVI and pasture moisture content (PMC, in %) and between capacitance and PMC (respectively, R(2) = 0.615; p < 0.01 and R(2) = 0.561; p < 0.01) in Alentejo dryland farming systems. PMID:26812951

  4. Improving ecophysiological simulation models to predict the impact of elevated atmospheric CO2 concentration on crop productivity

    PubMed Central

    Yin, Xinyou

    2013-01-01

    Background Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2]. Analysis A review of the literature indicates that the quantitative relationships for a number of traits, once expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorporating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models to have small parameterization requirements and yet generate phenotypic plasticity under changing environmental conditions need to capture the carbon–nitrogen interactions during crop growth. Conclusions The performance of the improved models depends little on the type of the experimental facilities used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and other climatic variables on crop productivity. PMID:23388883

  5. Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain

    NASA Astrophysics Data System (ADS)

    Yang, Xiaolin; Chen, Yuanquan; Pacenka, Steven; Gao, Wangsheng; Ma, Li; Wang, Guangya; Yan, Peng; Sui, Peng; Steenhuis, Tammo S.

    2015-03-01

    Water shortage is the major bottleneck that limits sustainable yield of agriculture in the North China Plain. Due to the over-exploitation of groundwater for irrigating the winter wheat-summer maize double cropping systems, a groundwater crisis is becoming increasingly serious. To help identify more efficient and sustainable utilization of the limited water resources, the water consumption and water use efficiency of five irrigated cropping systems were calculated and the effect of cropping systems on groundwater table changes was estimated based on a long term field experiment from 2003 to 2013 in the North China Plain interpreted using a soil-water-balance model. The five cropping systems included sweet potato → cotton → sweet potato → winter wheat-summer maize (SpCSpWS, 4-year cycle), ryegrass-cotton → peanuts → winter wheat-summer maize (RCPWS, 3-year cycle), peanuts → winter wheat-summer maize (PWS, 2-year cycle), winter wheat-summer maize (WS, 1-year cycle), and continuous cotton (Cont C). The five cropping systems had a wide range of annual average actual evapotranspiration (ETa): Cont C (533 mm/year) < SpCSpWS (556 mm/year) < PWS (615 mm/year) < RCPWS (650 mm/year) < WS rotation (734 mm/year). The sequence of the simulated annual average groundwater decline due to the five cropping systems was WS (1.1 m/year) > RCPWS (0.7 m/year) > PWS (0.6 m/year) > SPCSPWS and Cont C (0.4 m/year). The annual average economic output water use efficiency (WUEe) increased in the order SpCSpWS (11.6 yuan ¥ m-3) > RCPWS (9.0 ¥ m-3) > PWS (7.3 ¥ m-3) > WS (6.8 ¥ m-3) > Cont C (5.6 ¥ m-3) from 2003 to 2013. Results strongly suggest that diversifying crop rotations could play a critically important role in mitigating the over-exploitation of the groundwater, while ensuring the food security or boosting the income of farmers in the North China Plain.

  6. Crop production data for bioregenerative life support: Observations from testing at NASA's Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    Wheeler, R. M.; Mackowiak, C. L.; Stutte, G. W.; Yorio, N. C.; Ruffe, L. M.; Sager, J. C.; Knott, W. M.

    NASA s Biomass Production Chamber BPC at Kennedy Space Center was decommissioned ca 1998 but in the preceding decade several crop tests were conducted that have not been reported in the open literature These included monoculture studies with wheat soybean potato and tomato For each of these studies 20 m 2 of crops were grown in an atmospherically closed chamber 113 m 3 vol using a nutrient film hydroponic technique along with elevated CO 2 1000 or 1200 mu mol mol -1 Canopy light PAR levels ranged from 30 to 85 mol m -2 d -1 depending on the crop and selected photoperiod Total biomass DM productivities reached 40 g m -2 d -1 for wheat 16 g m -2 d -1 for soybean 33 g m -2 d -1 for potato and 20 g m -2 d -1 for tomato Edible biomass DM productivities reached 13 g m -2 d -1 for wheat 6 g m -2 d -1 for soybean 20 g m -2 d -1 for potato and 10 g m -2 d -1 for tomato The highest radiation use efficiencies for biomass were 0 60 g DM mol -1 PAR for wheat 0 50 g mol -1 for soybean 0 95 g mol -1 for potato and 0 51 g mol -1 for tomato The highest radiation use efficiencies for edible biomass were 0 22 g DM mol -1 for wheat 0 18 g mol -1 for soybean 0 58 g mol -1 for potato and 0 25 g mol -1 for tomato Use of transplanting cycles or spacing techniques to reduce open gaps between plants early in growth would have improved productivities and radiation use efficiencies for soybeans potatoes and

  7. Assimilation of a satellite-based soil moisture product into a two-layer water balance model for a global crop production decision support system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The monitoring of global food supplies performed by the U. S. Department of Agriculture (USDA) Production Estimates and Crop Assessment Division (PECAD) is essential for early warning of food shortages, and providing greater economic security within the agriculture sector. Monthly crop yield and for...

  8. Arundo donax L.: a non-food crop for bioenergy and bio-compound production.

    PubMed

    Corno, Luca; Pilu, Roberto; Adani, Fabrizio

    2014-12-01

    Arundo donax L., common name giant cane or giant reed, is a plant that grows spontaneously in different kinds of environments and that it is widespread in temperate and hot areas all over the world. Plant adaptability to different kinds of environment, soils and growing conditions, in combination with the high biomass production and the low input required for its cultivation, give to A. donax many advantages when compared to other energy crops. A. donax can be used in the production of biofuels/bioenergy not only by biological fermentation, i.e. biogas and bio-ethanol, but also, by direct biomass combustion. Both its industrial uses and the extraction of chemical compounds are largely proved, so that A. donax can be proposed as the feedstock to develop a bio-refinery. Nowadays, the use of this non-food plant in both biofuel/bioenergy and bio-based compound production is just beginning, with great possibilities for expanding its cultivation in the future. To this end, this review highlights the potential of using A. donax for energy and bio-compound production, by collecting and critically discussing the data available on these first applications for the crop. PMID:25457226

  9. Pretreatment of Whole-Crop Harvested, Ensiled Maize for Ethanol Production

    NASA Astrophysics Data System (ADS)

    Thomsen, M. H.; Holm-Nielsen, J. B.; Oleskowicz-Popiel, P.; Thomsen, A. B.

    To have all-year-round available feedstock, whole-crop maize is harvested premature, when it still contains enough moisture for the anaerobic ensiling process. Silage preparation is a well-known procedure for preserving plant material. At first, this method was applied to obtain high-quality animal feed. However, it was found that such ensiled crops are very suitable for bioenergy production. Maize silage, which consists of hardly degradable lignocellulosic material, hemicellulosic material, and starch, was evaluated for its potential as a feedstock in the production of bioethanol. It was pretreated at low severity (185 °C, 15 min) giving very high glucan (˜100%) and hemicellulose recoveries (<80%)—as well as very high ethanol yield in simultaneous saccharification and fermentation experiments (98% of the theoretical production based on available glucan in the medium). The theoretical ethanol production of maize silage pretreated at 185 °C for 15 min without oxygen or catalyst was 392 kg ethanol per ton of dry maize silage.

  10. Soil Carbon Changes in Transitional Grain Crop Production Systems in South Dakota

    NASA Astrophysics Data System (ADS)

    Woodard, H. J.

    2004-12-01

    Corn-C (Zea Mays L.), soybean-S (Glycine max L.) and spring wheat-W (Triticum aestivum L.) crops were seeded as a component of either a C-S, S-W, or C-S-W crop rotation on silt-loam textured soils ranging from 3.0-5.0% organic matter. Conservation tillage(chisel plow-field cultivator) was applied to half of the plots. The other plots were direct seeded as a no-till (zero-tillage) treatment. Grain yield and surface crop residues were weighed from each treatment plot. Crop residue (stover and straw) was removed from half of the plots. After four years, soil samples were removed at various increments of depth and soil organic carbon (C) and nitrogen (N) was measured. The ranking of crop residue weights occurred by the order corn>>soybean>wheat. Surface residue accumulation was also greatest with residue treatments that were returned to the plots, those rotations in which maize was a component, and those without tillage. Mean soil organic carbon levels in the 0-7.5cm depth decreased from 3.41% to 3.19% (- 0.22%) with conventional tillage (chisel plow/field cultivator) as compared to a decrease from 3.19% to 3.05% (-0.14%) in plots without tillage over a four year period. Organic carbon in the 0-7.5cm depth decreased from 3.21% to 3.01% (- 0.20%) after residue removed as compared to a decrease from 3.39% to 3.23% (-0.17%) in plots without tillage applied after four years. The soil C:N ratio (0-7.5cm) decreased from 10.63 to 10.37 (-0.26 (unitless)) in the tilled plots over a four-year period. Soil C:N ratio at the 0-7.5cm depth decreased from 10.72 to 10.04 (-0.68) in the no-till plots over a four year period. Differences in the soil C:N ratio comparing residue removed and residue returned were similar (-0.51 vs. -0.43 respectively). These soils are highly buffered for organic carbon changes. Many cropping cycles are required to determine how soil carbon storage is significantly impacted by production systems.

  11. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production

    PubMed Central

    Wratten, Stephen D.; Porter, John R.

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies. PMID:27478691

  12. Food and nutritional security requires adequate protein as well as energy, delivered from whole-year crop production.

    PubMed

    Coles, Graeme D; Wratten, Stephen D; Porter, John R

    2016-01-01

    Human food security requires the production of sufficient quantities of both high-quality protein and dietary energy. In a series of case-studies from New Zealand, we show that while production of food ingredients from crops on arable land can meet human dietary energy requirements effectively, requirements for high-quality protein are met more efficiently by animal production from such land. We present a model that can be used to assess dietary energy and quality-corrected protein production from various crop and crop/animal production systems, and demonstrate its utility. We extend our analysis with an accompanying economic analysis of commercially-available, pre-prepared or simply-cooked foods that can be produced from our case-study crop and animal products. We calculate the per-person, per-day cost of both quality-corrected protein and dietary energy as provided in the processed foods. We conclude that mixed dairy/cropping systems provide the greatest quantity of high-quality protein per unit price to the consumer, have the highest food energy production and can support the dietary requirements of the highest number of people, when assessed as all-year-round production systems. Global food and nutritional security will largely be an outcome of national or regional agroeconomies addressing their own food needs. We hope that our model will be used for similar analyses of food production systems in other countries, agroecological zones and economies. PMID:27478691

  13. Advances in plant proteomics toward improvement of crop productivity and stress resistancex

    PubMed Central

    Hu, Junjie; Rampitsch, Christof; Bykova, Natalia V.

    2015-01-01

    Abiotic and biotic stresses constrain plant growth and development negatively impacting crop production. Plants have developed stress-specific adaptations as well as simultaneous responses to a combination of various abiotic stresses with pathogen infection. The efficiency of stress-induced adaptive responses is dependent on activation of molecular signaling pathways and intracellular networks by modulating expression, or abundance, and/or post-translational modification (PTM) of proteins primarily associated with defense mechanisms. In this review, we summarize and evaluate the contribution of proteomic studies to our understanding of stress response mechanisms in different plant organs and tissues. Advanced quantitative proteomic techniques have improved the coverage of total proteomes and sub-proteomes from small amounts of starting material, and characterized PTMs as well as protein–protein interactions at the cellular level, providing detailed information on organ- and tissue-specific regulatory mechanisms responding to a variety of individual stresses or stress combinations during plant life cycle. In particular, we address the tissue-specific signaling networks localized to various organelles that participate in stress-related physiological plasticity and adaptive mechanisms, such as photosynthetic efficiency, symbiotic nitrogen fixation, plant growth, tolerance and common responses to environmental stresses. We also provide an update on the progress of proteomics with major crop species and discuss the current challenges and limitations inherent to proteomics techniques and data interpretation for non-model organisms. Future directions in proteomics research toward crop improvement are further discussed. PMID:25926838

  14. Integrated modelling of crop production and nitrate leaching with the Daisy model

    PubMed Central

    Manevski, Kiril; Børgesen, Christen D.; Li, Xiaoxin; Andersen, Mathias N.; Abrahamsen, Per; Hu, Chunsheng; Hansen, Søren

    2016-01-01

    An integrated modelling strategy was designed and applied to the Soil-Vegetation-Atmosphere Transfer model Daisy for simulation of crop production and nitrate leaching under pedo-climatic and agronomic environment different than that of model original parameterisation. The points of significance and caution in the strategy are: • Model preparation should include field data in detail due to the high complexity of the soil and the crop processes simulated with process-based model, and should reflect the study objectives. Inclusion of interactions between parameters in a sensitivity analysis results in better account for impacts on outputs of measured variables. • Model evaluation on several independent data sets increases robustness, at least on coarser time scales such as month or year. It produces a valuable platform for adaptation of the model to new crops or for the improvement of the existing parameters set. On daily time scale, validation for highly dynamic variables such as soil water transport remains challenging. • Model application is demonstrated with relevance for scientists and regional managers. The integrated modelling strategy is applicable for other process-based models similar to Daisy. It is envisaged that the strategy establishes model capability as a useful research/decision-making, and it increases knowledge transferability, reproducibility and traceability. PMID:27222825

  15. Integrated nutrient management (INM) for sustaining crop productivity and reducing environmental impact: a review.

    PubMed

    Wu, Wei; Ma, Baoluo

    2015-04-15

    The increasing food demands of a growing human population and the need for an environmentally friendly strategy for sustainable agricultural development require significant attention when addressing the issue of enhancing crop productivity. Here we discuss the role of integrated nutrient management (INM) in resolving these concerns, which has been proposed as a promising strategy for addressing such challenges. INM has multifaceted potential for the improvement of plant performance and resource efficiency while also enabling the protection of the environment and resource quality. This review examines the concepts, objectives, procedures and principles of INM. A comprehensive literature search revealed that INM enhances crop yields by 8-150% compared with conventional practices, increases water-use efficiency, and the economic returns to farmers, while improving grain quality and soil health and sustainability. Model simulation and fate assessment further reveal that reactive nitrogen (N) losses and GHG (greenhouse gas) emissions are reduced substantially under advanced INM practices. Lower inputs of chemical fertilizer and therefore lower human and environmental costs (such as intensity of land use, N use, reactive N losses and GHG emissions) were achieved under advanced INM practices without compromising crop yields. Various approaches and perspectives for further development of INM in the near future are also proposed and discussed. Strong and convincing evidence indicates that INM practice could be an innovative and environmentally friendly strategy for sustainable agriculture worldwide. PMID:25644838

  16. Integrated modelling of crop production and nitrate leaching with the Daisy model.

    PubMed

    Manevski, Kiril; Børgesen, Christen D; Li, Xiaoxin; Andersen, Mathias N; Abrahamsen, Per; Hu, Chunsheng; Hansen, Søren

    2016-01-01

    An integrated modelling strategy was designed and applied to the Soil-Vegetation-Atmosphere Transfer model Daisy for simulation of crop production and nitrate leaching under pedo-climatic and agronomic environment different than that of model original parameterisation. The points of significance and caution in the strategy are: •Model preparation should include field data in detail due to the high complexity of the soil and the crop processes simulated with process-based model, and should reflect the study objectives. Inclusion of interactions between parameters in a sensitivity analysis results in better account for impacts on outputs of measured variables.•Model evaluation on several independent data sets increases robustness, at least on coarser time scales such as month or year. It produces a valuable platform for adaptation of the model to new crops or for the improvement of the existing parameters set. On daily time scale, validation for highly dynamic variables such as soil water transport remains challenging. •Model application is demonstrated with relevance for scientists and regional managers. The integrated modelling strategy is applicable for other process-based models similar to Daisy. It is envisaged that the strategy establishes model capability as a useful research/decision-making, and it increases knowledge transferability, reproducibility and traceability. PMID:27222825

  17. Economic Benefits of Improved Information on Worldwide Crop Production: An Optimal Decision Model of Production and Distribution with Application to Wheat, Corn, and Soybeans

    NASA Technical Reports Server (NTRS)

    Andrews, J.

    1977-01-01

    An optimal decision model of crop production, trade, and storage was developed for use in estimating the economic consequences of improved forecasts and estimates of worldwide crop production. The model extends earlier distribution benefits models to include production effects as well. Application to improved information systems meeting the goals set in the large area crop inventory experiment (LACIE) indicates annual benefits to the United States of $200 to $250 million for wheat, $50 to $100 million for corn, and $6 to $11 million for soybeans, using conservative assumptions on expected LANDSAT system performance.

  18. Estimating emissions from crop residue open burning in China based on statistics and MODIS fire products.

    PubMed

    Li, Jing; Bo, Yu; Xie, Shaodong

    2016-06-01

    With the objective of reducing the large uncertainties in the estimations of emissions from crop residue open burning, an improved method for establishing emission inventories of crop residue open burning at a high spatial resolution of 0.25°×0.25° and a temporal resolution of 1month was established based on the moderate resolution imaging spectroradiometer (MODIS) Thermal Anomalies/Fire Daily Level3 Global Product (MOD/MYD14A1). Agriculture mechanization ratios and regional crop-specific grain-to-straw ratios were introduced to improve the accuracy of related activity data. Locally observed emission factors were used to calculate the primary pollutant emissions. MODIS satellite data were modified by combining them with county-level agricultural statistical data, which reduced the influence of missing fire counts caused by their small size and cloud cover. The annual emissions of CO2, CO, CH4, nonmethane volatile organic compounds (NMVOCs), N2O, NOx, NH3, SO2, fine particles (PM2.5), organic carbon (OC), and black carbon (BC) were 150.40, 6.70, 0.51, 0.88, 0.01, 0.13, 0.07, 0.43, 1.09, 0.34, and 0.06Tg, respectively, in 2012. Crop residue open burning emissions displayed typical seasonal and spatial variation. The highest emission regions were the Yellow-Huai River and Yangtse-Huai River areas, and the monthly emissions were highest in June (37%). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of within ±126% for N2O to a high of within ±169% for NH3. PMID:27266312

  19. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    PubMed

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. PMID:24144612

  20. Managing soil microbial communities in grain production systems through cropping practices

    NASA Astrophysics Data System (ADS)

    Gupta, Vadakattu

    2013-04-01

    Cropping practices can significantly influence the composition and activity of soil microbial communities with consequences to plant growth and production. Plant type can affect functional capacity of different groups of biota in the soil surrounding their roots, rhizosphere, influencing plant nutrition, beneficial symbioses, pests and diseases and overall plant health and crop production. The interaction between different players in the rhizosphere is due to the plethora of carbon and nutritional compounds, root-specific chemical signals and growth regulators that originate from the plant and are modulated by the physico-chemical properties of soils. A number of plant and environmental factors and management practices can influence the quantity and quality of rhizodeposition and in turn affect the composition of rhizosphere biota communities, microbe-fauna interactions and biological processes. Some of the examples of rhizosphere interactions that are currently considered important are: proliferation of plant and variety specific genera or groups of microbiota, induction of genes involved in symbiosis and virulence, promoter activity in biocontrol agents and genes correlated with root adhesion and border cell quality and quantity. The observation of variety-based differences in rhizodeposition and associated changes in rhizosphere microbial diversity and function suggests the possibility for the development of varieties with specific root-microbe interactions targeted for soil type and environment i.e. designer rhizospheres. Spatial location of microorganisms in the heterogeneous field soil matrix can have significant impacts on biological processes. Therefore, for rhizosphere research to be effective in variable seasonal climate and soil conditions, it must be evaluated in the field and within a farming systems context. With the current focus on security of food to feed the growing global populations through sustainable agricultural production systems there is a

  1. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  2. Implementation of Sustainable Soil Management Practices to Improve Crop Production in the Different Ethiopian Agro Systems

    NASA Astrophysics Data System (ADS)

    García Moreno, R.; Gameda, S.; Diaz Alvarez, M. C.; Selasie, Y. G.

    2012-04-01

    Agriculture in Ethiopia is one of first priority since close to 10 In this context, the Ethiopian crop production faces to the following soil management challenges: lack of updated soil data, macro and micro nutrient depletion, acidity, salinity and soil surface erosion and crusting. One of the biggest issues is the loss of arable land, above 137 T/yr, reaching during some particularly dried periods until 300 T/yr. In this context, the authors constituted a working group of experts from Spanish and Ethiopian universities, local producers and international and governmental organisms to analyse the problems related to the different agro ecological zones found in Ethiopia and the management practices of different local producers. The study produced the trends to implement in the different areas to improve soil management practices in order to contribute to increase the crop production mainly to achieve food security problems. The analyse produced different working fields for the next years for addressing soil degradation, improving land resources management practices, increasing agricultural productivity, updating the available soil data, developing an international program of education, transferring of knowledge from similar study cases and implementing economical tools to help producers to assure income after severe edapho-climatic events. The practical work and the projects developed for the next period is addressed to smallholder farms belonging to the different 34 agro ecological zones identified in Ethiopia, each of them with very specific environmental, cultural and soil management practices.

  3. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  4. SIDE-EFFECTS OF COMMONLY USED CROP PROTECTION PRODUCTS IN PEAR ON TWO BENEFICIAL MIRIDAE BUGS.

    PubMed

    Vrancken, K; Belien, T; Bylemans, D

    2015-01-01

    Anthocoris nemoralis, Anthocoris nemorum and Orius spp. are not the only beneficial predatory bugs inhabiting pear orchards in Belgium. Quite often, the Miridae bugs Heterotoma spp. and Pilophorus spp. can be found during spring and summer in these orchards, thereby feeding on several pests such as psyllids, aphids, spider mites, ... . Side-effects are usually assessed on Anthocoris and Orius spp., but due to the potential importance of Miridae bugs in pest reduction, we tested some commonly used crop protection products used in pear cultivation on Heterotoma planicornis and Pilophorus perplexus (residue-based tests in petri-dishes). One day after treatment, mortalities already could be observed for some products. Seven days after treatment, abamectin, deltamethrin and thiacloprid were considered the most toxic products as stated by the IOBC classification. This outcome was then analysed with regard to different treatment schedules, providing insights in potential side-effects on crop protection treatments on the composition of beneficial fauna in pear orchards. PMID:27145577

  5. Cellulosic Biofuel Production with Winter Cover Crops: Yield and Nitrogen Implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in renewable energy sources derived from plant biomass is increasing. Growing cover crops after harvest of the primary crop has been proposed as a solution to producing cellulosic biomass on existing crop-producing land without reducing food-harvest potential. Growing cover crops is a recom...

  6. Long-term tillage and poultry litter application impacts on crop production in northeastern Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conservation tillage, manure application, and crop rotations are thought to increase yields compared to conventional monoculture (continuous cropping system without rotation) tillage systems. The objective of this study was to evaluate cropping sequences of corn with a wheat cover crop and corn with...

  7. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.

    PubMed

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik; Astrup, Thomas

    2012-12-18

    In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. For each, four conversion pathways were assessed against a fossil fuel reference: (I) anaerobic co-digestion with manure, (II) gasification, (III) combustion in small-to-medium scale biomass combined heat and power (CHP) plants and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow and Miscanthus co-firing, allowed for an improvement as compared with the reference (-82 and -45 t CO₂-eq. ha⁻¹, respectively). The indirect land use changes impact was quantified as 310 ± 170 t CO₂-eq. ha⁻¹, representing a paramount average of 41% of the induced greenhouse gas emissions. The uncertainty analysis confirmed the results robustness and highlighted the indirect land use changes uncertainty as the only uncertainty that can significantly change the outcome of the LCA results. PMID:23126612

  8. Anticipating on amplifying water stress: Optimal crop production supported by anticipatory water management

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud; van den Eertwegh, Gé; Simons, Gijs

    2015-04-01

    Agricultural crop yields depend largely on the soil moisture conditions in the root zone. Drought but especially an excess of water in the root zone and herewith limited availability of soil oxygen reduces crop yield. With ongoing climate change, more prolonged dry periods alternate with more intensive rainfall events, which changes soil moisture dynamics. With unaltered water management practices, reduced crop yield due to both drought stress and waterlogging will increase. Therefore, both farmers and water management authorities need to be provided with opportunities to reduce risks of decreasing crop yields. In The Netherlands, agricultural production of crops represents a market exceeding 2 billion euros annually. Given the increased variability in meteorological conditions and the resulting larger variations in soil moisture contents, it is of large economic importance to provide farmers and water management authorities with tools to mitigate risks of reduced crop yield by anticipatory water management, both at field and at regional scale. We provide the development and the field application of a decision support system (DSS), which allows to optimize crop yield by timely anticipation on drought and waterlogging situations. By using this DSS, we will minimize plant water stress through automated drainage and irrigation management. In order to optimize soil moisture conditions for crop growth, the interacting processes in the soil-plant-atmosphere system need to be considered explicitly. Our study comprises both the set-up and application of the DSS on a pilot plot in The Netherlands, in order to evaluate its implementation into daily agricultural practice. The DSS focusses on anticipatory water management at the field scale, i.e. the unit scale of interest to a farmer. We combine parallel field measurements ('observe'), process-based model simulations ('predict'), and the novel Climate Adaptive Drainage (CAD) system ('adjust') to optimize soil moisture

  9. 75 FR 76284 - Pesticide Tolerance Crop Grouping Program II; Revisions to General Tolerance Regulations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-08

    ... published a notice of proposed rulemaking in the Federal Register of January 6, 2010 (75 FR 807). Written... group. As discussed in Unit II.C. of the Proposed Rule (75 FR 807), tolerances established for revised.... Executive Order 12866 Under Executive Order 12866, entitled Regulatory Planning and Review (58 FR...

  10. Sensitivity of Crop Gross Primary Production Simulations to In-situ and Reanalysis Meteorological Data

    NASA Astrophysics Data System (ADS)

    Jin, C.; Xiao, X.; Wagle, P.

    2014-12-01

    Accurate estimation of crop Gross Primary Production (GPP) is important for food securityand terrestrial carbon cycle. Numerous publications have reported the potential of the satellite-based Production Efficiency Models (PEMs) to estimate GPP driven by in-situ climate data. Simulations of the PEMs often require surface reanalysis climate data as inputs, for example, the North America Regional Reanalysis datasets (NARR). These reanalysis datasets showed certain biases from the in-situ climate datasets. Thus, sensitivity analysis of the PEMs to the climate inputs is needed before their application at the regional scale. This study used the satellite-based Vegetation Photosynthesis Model (VPM), which is driven by solar radiation (R), air temperature (T), and the satellite-based vegetation indices, to quantify the causes and degree of uncertainties in crop GPP estimates due to different meteorological inputs at the 8-day interval (in-situ AmeriFlux data and NARR surface reanalysis data). The NARR radiation (RNARR) explained over 95% of the variability in in-situ RAF and TAF measured from AmeriFlux. The bais of TNARR was relatively small. However, RNARR had a systematical positive bias of ~3.5 MJ m-2day-1 from RAF. A simple adjustment based on the spatial statistic between RNARR and RAF produced relatively accurate radiation data for all crop site-years by reducing RMSE from 4 to 1.7 MJ m-2day-1. The VPM-based GPP estimates with three climate datasets (i.e., in-situ, and NARR before and after adjustment, GPPVPM,AF, GPPVPM,NARR, and GPPVPM,adjNARR) showed good agreements with the seasonal dynamics of crop GPP derived from the flux towers (GPPAF). The GPPVPM,AF differed from GPPAF by 2% for maize, and -8% to -12% for soybean on the 8-day interval. The positive bias of RNARR resulted in an overestimation of GPPVPM,NARR at both maize and soybean systems. However, GPPVPM,adjNARR significantly reduced the uncertainties of the maize GPP from 25% to 2%. The results from this

  11. Biochemical production of bioenergy from agricultural crops and residue in Iran.

    PubMed

    Karimi Alavijeh, Masih; Yaghmaei, Soheila

    2016-06-01

    The present study assessed the potential for biochemical conversion of energy stored in agricultural waste and residue in Iran. The current status of agricultural residue as a source of bioenergy globally and in Iran was investigated. The total number of publications in this field from 2000 to 2014 was about 4294. Iran ranked 21st with approximately 54 published studies. A total of 87 projects have been devised globally to produce second-generation biofuel through biochemical pathways. There are currently no second-generation biorefineries in Iran and agricultural residue has no significant application. The present study determined the amount and types of sustainable agricultural residue and oil-rich crops and their provincial distribution. Wheat, barley, rice, corn, potatoes, alfalfa, sugarcane, sugar beets, apples, grapes, dates, cotton, soybeans, rapeseed, sesame seeds, olives, sunflowers, safflowers, almonds, walnuts and hazelnuts have the greatest potential as agronomic and horticultural crops to produce bioenergy in Iran. A total of 11.33million tonnes (Mt) of agricultural biomass could be collected for production of bioethanol (3.84gigaliters (Gl)), biobutanol (1.07Gl), biogas (3.15billion cubic meters (BCM)), and biohydrogen (0.90BCM). Additionally, about 0.35Gl of biodiesel could be obtained using only 35% of total Iranian oilseed. The potential production capacity of conventional biofuel blends in Iran, environmental and socio-economic impacts including well-to-wheel greenhouse gas (GHG) emissions, and the social cost of carbon dioxide reduction are discussed. The cost of emissions could decrease up to 55.83% by utilizing E85 instead of gasoline. The possible application of gaseous biofuel in Iran to produce valuable chemicals and provide required energy for crop cultivation is also studied. The energy recovered from biogas produced by wheat residue could provide energy input for 115.62 and 393.12 thousand hectares of irrigated and rain-fed wheat

  12. Sustainable energy crop: An analysis of ethanol production from cassava in Thailand

    NASA Astrophysics Data System (ADS)

    Ubolsook, Aerwadee

    The first essay formulates a dynamic general equilibrium optimal control model of an energy crop as part of a country's planned resource use over a period of time. The model attempts to allocate consumption, production, and factors of production to achieve the country's sustainable development goal. A Cobb-Douglas specification is used for both utility and production functions in the model. We calibrate the model with Thailand data. The selected model is used to generate the stationary state solution and to simulate the optimal policy function and optimal time paths. Two methods are used: a linear approximation method and the Runke-Kutta reverse shooting method. The model provides numerical results that can be used as information for decision makers and stakeholders to devise an economic plan to achieve sustainable development goals. The second essay studies the effect of international trade and changes in labor supply, land supply, and the price of imported energy on energy crop production for bio fuel and food, as well as impacts on social welfare. We develop a dynamic general equilibrium model to describe two baseline scenarios, a closed economy and an open economy. We find that international trade increases welfare and decreases the energy price. Furthermore, resources are allocated to produce more food under the open economy scenario than the quantities produced under a closed economy assumption. An increase in labor supply and land supply result in an increase in social welfare. An increase in imported energy price leads to a welfare loss, higher energy production, and lower food production. The third essay develops a partial equilibrium econometric model to project the impacts of an increase in ethanol production on the Thai agriculture sector over the next ten years. The model is applied to three scenarios for analyzing the effect of government ethanol production targets. The results from the baseline model and scenario analysis indicate that an expansion

  13. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production.

    PubMed

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J; Huai, Dongxin; Taylor, David C; Zhou, Xue-Rong; Green, Allan G; Shockey, Jay; Klasson, K Thomas; Mullen, Robert T; Huang, Bangquan; Dyer, John M; Cahoon, Edgar B

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  14. Dedicated Industrial Oilseed Crops as Metabolic Engineering Platforms for Sustainable Industrial Feedstock Production

    PubMed Central

    Zhu, Li-Hua; Krens, Frans; Smith, Mark A.; Li, Xueyuan; Qi, Weicong; van Loo, Eibertus N.; Iven, Tim; Feussner, Ivo; Nazarenus, Tara J.; Huai, Dongxin; Taylor, David C.; Zhou, Xue-Rong; Green, Allan G.; Shockey, Jay; Klasson, K. Thomas; Mullen, Robert T.; Huang, Bangquan; Dyer, John M.; Cahoon, Edgar B.

    2016-01-01

    Feedstocks for industrial applications ranging from polymers to lubricants are largely derived from petroleum, a non-renewable resource. Vegetable oils with fatty acid structures and storage forms tailored for specific industrial uses offer renewable and potentially sustainable sources of petrochemical-type functionalities. A wide array of industrial vegetable oils can be generated through biotechnology, but will likely require non-commodity oilseed platforms dedicated to specialty oil production for commercial acceptance. Here we show the feasibility of three Brassicaceae oilseeds crambe, camelina, and carinata, none of which are widely cultivated for food use, as hosts for complex metabolic engineering of wax esters for lubricant applications. Lines producing wax esters >20% of total seed oil were generated for each crop and further improved for high temperature oxidative stability by down-regulation of fatty acid polyunsaturation. Field cultivation of optimized wax ester-producing crambe demonstrated commercial utility of these engineered crops and a path for sustainable production of other industrial oils in dedicated specialty oilseeds. PMID:26916792

  15. China's crop productivity and soil carbon storage as influenced by multifactor global change.

    PubMed

    Ren, Wei; Tian, Hanqin; Tao, Bo; Huang, Yao; Pan, Shufen

    2012-09-01

    Much concern has been raised about how multifactor global change has affected food security and carbon sequestration capacity in China. By using a process-based ecosystem model, the Dynamic Land Ecosystem Model (DLEM), in conjunction with the newly developed driving information on multiple environmental factors (climate, atmospheric CO2 , tropospheric ozone, nitrogen deposition, and land cover/land use change), we quantified spatial and temporal patterns of net primary production (NPP) and soil organic carbon storage (SOC) across China's croplands during 1980-2005 and investigated the underlying mechanisms. Simulated results showed that both crop NPP and SOC increased from 1980 to 2005, and the highest annual NPP occurred in the Southeast (SE) region (0.32 Pg C yr(-1) , 35.4% of the total NPP) whereas the largest annual SOC (2.29 Pg C yr(-1) , 35.4% of the total SOC) was found in the Northeast (NE) region. Land management practices, particularly nitrogen fertilizer application, appear to be the most important factor in stimulating increase in NPP and SOC. However, tropospheric ozone pollution and climate change led to NPP reduction and SOC loss. Our results suggest that China's crop productivity and soil carbon storage could be enhanced through minimizing tropospheric ozone pollution and improving nitrogen fertilizer use efficiency. PMID:24501069

  16. Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils.

    PubMed

    Barua, Shilajit; Tripathi, Sudipta; Chakraborty, Ashis; Ghosh, Sagarmoy; Chakrabarti, Kalyan

    2012-01-20

    Use of eco-friendly area specific salt tolerant bioinoculants is better alternatives to chemical fertilizer for sustainable agriculture in coastal saline soils. We isolated diverse groups of diazotrophic bacteria from coastal saline soils of different forest and agricultural lands in the Sundarbans, West Bengal, India, to study their effect on crop productivity in saline soils. Phenotypic, biochemical and molecular identifications of the isolates were performed. The isolates produced indole acetic acid, phosphatase, and solubilized insoluble phosphates. Sequence analysis of 16S rDNA identified the SUND_BDU1 strain as Agrobacterium and the strains SUND_LM2, Can4 and Can6 belonging to the genus Bacillus. The ARA activity, dinitrogen fixation and presence of nifH genes indicated they were diazotrophs. Field trials with these strains as bioinoculants were carried out during 2007-2009, with rice during August-December followed by Lady's finger during April-June. Microplots, amended with FYM inoculated with four bioinoculants individually were compared against sole FYM (5 t ha(-1)) and a sole chemical fertilizer (60:30:30 kg ha(-1) NPK) treated plot. The strain Can6 was by far the best performer in respect of yield attributes and productivity of studied crops. PMID:21596539

  17. Climate Change Impacts for the Conterminous USA: An Integrated Assessment Part 5. Irrigated Agriculture and National Grain Crop Production

    SciTech Connect

    Thomson, Allison M.; Rosenberg, Norman J.; Izaurralde, Roberto C.; Brown, Robert A.

    2005-04-01

    Over the next century global warming will lead to changes in weather patterns, affecting many aspects of our environment. In the United States, the one sector of the economy most likely to be directly impacted by the changes in climate is agriculture. We have examined potential changes in dryland agriculture (Part 2) and in water resources necessary for crop production (Part 3). Here we assess to what extent, under a set of climate change scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the U.S. In addition, we assess the overall impacts of changes in water supply on national grain production. We applied 12 climate change scenarios based on the predictions of General Circulation Models to a water resources model and a crop growth simulator for the conterminous United States. We calculate national production in current crop growing regions by applying irrigation where it is necessary and water is available. Irrigation declines under all climate change scenarios employed in this study. In certain regions and scenarios, precipitation declines so much that water supplies are too limited; in other regions it plentiful enough that little value is derived from irrigation. Total crop production is greater when irrigation is applied, but corn and soybean production declines under most scenarios. Winter wheat production responds significantly to elevated atmospheric CO2 and appears likely to increase under climate change.

  18. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    NASA Astrophysics Data System (ADS)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  19. Evaluating crop land productivity using MODIS derived time serious field greenness and water index in North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Shu, Yunqiao; Zhang, Shengwei; Li, Hongjun; Lei, Yuping

    2009-09-01

    Mapping grain crop land productivity that associated soil quality and crop field management are needed over intensively cropped regions such as the North China Plain to support science and policy application focused on understanding the current and potential capacity of regional food support. In this study, the crop growth dynamic presenting by time series field Greenness derived from MODIS 250 m data and soil moisture condition assessing by Normalized Difference Water Index (NDWI) derived by MODIS 250 m and 500 m data were combined to detect the temporal and spatial variability of productivity of winter wheat-summer maize field in the period 2000 to 2008 in Hebei and Shandong Province in North China Plain. Annual average NDVI levels, average levels of nine years and coefficients of variation of levels in the main growing season indicated corresponding crop growth condition and clearly presented spatial distribution of crop growth. Both the levels of NDWI and the coefficients of variation of the levels have almost same pattern of spatial distribution and correlations between two indexes levels were very high. The results of analysis of levels and coefficients of variation of levels of NDVI and NDWI shows the combination analysis of two indexes can be used to assess the levels of land productivity with a high spatial or temporal resolution .

  20. Vegetable Oil from Leaves and Stems: Vegetative Production of Oil in a C4 Crop

    SciTech Connect

    2012-01-01

    PETRO Project: Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production

  1. Exploring the limits of crop productivity: A model to evaluate progress

    NASA Technical Reports Server (NTRS)

    Bugbee, Bruce

    1990-01-01

    The goal was to determine the limits of crop productivity when all environmental constraints were removed. Researchers define productivity as food output per unit of input. Researchers evaluated cultivars of wheat with reduced leaf size and number to decrease the leaf area index at high plant densities. These cultivars may also have an improved harvest index. Hydroponic studies indicate that 1 mM nitrate in solution is adequate to support maximum growth in these systems, provided iron nutrition is adequate. Wheat does not accumulate nitrate in leaves even when the solution nitrate concentration is 15 mM. Long-term photosynthetic efficiency (g mol (exp -1) of photons) and harvest index were not altered by photoperiod (16, 20, or 24 hours). Wheat does not need, nor benefit from, a diurnal dark period.

  2. The grain production potential assessment with Multiple Cropping Index (MCI) in China

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Ning, Jicai; Gao, Wei

    2014-10-01

    This paper retrieved the information of cropland and MCI (Multiple Cropping Index) of China in 2000 and 2009 with SPOT NDVI time series data and utilized meteorological data and statistical data released by the state to calculate potential MCI and statistical MCI. Then, the MCI potential of China and grain production potential based on MCI were calculated in order to analyze the potential spatial distribution characteristics of MCI and the potential spatial pattern characteristics. The national mean MCI potentials in 2000 and 2009 are 0.485 and 0.506 respectively calculated with the remote sensing method and statistical method. And the grain productivity potentials of China based on MCI are 51% and 53% respectively. The improvement of MCI potential not only increases hydrothermal utilization rate and the utilization rate of cropland but also enormously enhances the food security degree of China and provides more available cropland area for the economic development.

  3. Intercropping enhances productivity and maintains the most soil fertility properties relative to sole cropping.

    PubMed

    Wang, Zhi-Gang; Jin, Xin; Bao, Xing-Guo; Li, Xiao-Fei; Zhao, Jian-Hua; Sun, Jian-Hao; Christie, Peter; Li, Long

    2014-01-01

    Yield and nutrient acquisition advantages are frequently found in intercropping systems. However, there are few published reports on soil fertility in intercropping relative to monocultures. A field experiment was therefore established in 2009 in Gansu province, northwest China. The treatments comprised maize/faba bean, maize/soybean, maize/chickpea and maize/turnip intercropping, and their correspoding monocropping. In 2011 (the 3rd year) and 2012 (the 4th year) the yields and some soil chemical properties and enzyme activities were examined after all crop species were harvested or at later growth stages. Both grain yields and nutrient acquisition were significantly greater in all four intercropping systems than corresponding monocropping over two years. Generally, soil organic matter (OM) did not differ significantly from monocropping but did increase in maize/chickpea in 2012 and maize/turnip in both years. Soil total N (TN) did not differ between intercropping and monocropping in either year with the sole exception of maize/faba bean intercropping receiving 80 kg P ha-1 in 2011. Intercropping significantly reduced soil Olsen-P only in 2012, soil exchangeable K in both years, soil cation exchangeable capacity (CEC) in 2012, and soil pH in 2012. In the majority of cases soil enzyme activities did not differ across all the cropping systems at different P application rates compared to monocrops, with the exception of soil acid phosphatase activity which was higher in maize/legume intercropping than in the corresponding monocrops at 40 kg ha-1 P in 2011. P fertilization can alleviate the decline in soil Olsen-P and in soil CEC to some extent. In summary, intercropping enhanced productivity and maintained the majority of soil fertility properties for at least three to four years, especially at suitable P application rates. The results indicate that maize-based intercropping may be an efficient cropping system for sustainable agriculture with carefully managed

  4. Intercropping Enhances Productivity and Maintains the Most Soil Fertility Properties Relative to Sole Cropping

    PubMed Central

    Wang, Zhi-Gang; Jin, Xin; Bao, Xing-Guo; Li, Xiao-Fei; Zhao, Jian-Hua; Sun, Jian-Hao; Christie, Peter; Li, Long

    2014-01-01

    Yield and nutrient acquisition advantages are frequently found in intercropping systems. However, there are few published reports on soil fertility in intercropping relative to monocultures. A field experiment was therefore established in 2009 in Gansu province, northwest China. The treatments comprised maize/faba bean, maize/soybean, maize/chickpea and maize/turnip intercropping, and their correspoding monocropping. In 2011 (the 3rd year) and 2012 (the 4th year) the yields and some soil chemical properties and enzyme activities were examined after all crop species were harvested or at later growth stages. Both grain yields and nutrient acquisition were significantly greater in all four intercropping systems than corresponding monocropping over two years. Generally, soil organic matter (OM) did not differ significantly from monocropping but did increase in maize/chickpea in 2012 and maize/turnip in both years. Soil total N (TN) did not differ between intercropping and monocropping in either year with the sole exception of maize/faba bean intercropping receiving 80 kg P ha−1 in 2011. Intercropping significantly reduced soil Olsen-P only in 2012, soil exchangeable K in both years, soil cation exchangeable capacity (CEC) in 2012, and soil pH in 2012. In the majority of cases soil enzyme activities did not differ across all the cropping systems at different P application rates compared to monocrops, with the exception of soil acid phosphatase activity which was higher in maize/legume intercropping than in the corresponding monocrops at 40 kg ha−1 P in 2011. P fertilization can alleviate the decline in soil Olsen-P and in soil CEC to some extent. In summary, intercropping enhanced productivity and maintained the majority of soil fertility properties for at least three to four years, especially at suitable P application rates. The results indicate that maize-based intercropping may be an efficient cropping system for sustainable agriculture with carefully managed

  5. Nitrate leaching to subsurface drains as affected by drain spacing and changes in crop production system.

    PubMed

    Kladivko, E J; Frankenberger, J R; Jaynes, D B; Meek, D W; Jenkinson, B J; Fausey, N R

    2004-01-01

    Subsurface drainage is a beneficial water management practice in poorly drained soils but may also contribute substantial nitrate N loads to surface waters. This paper summarizes results from a 15-yr drainage study in Indiana that includes three drain spacings (5, 10, and 20 m) managed for 10 yr with chisel tillage in monoculture corn (Zea mays L.) and currently managed under a no-till corn-soybean [Glycine max (L.) Merr.] rotation. In general, drainflow and nitrate N losses per unit area were greater for narrower drain spacings. Drainflow removed between 8 and 26% of annual rainfall, depending on year and drain spacing. Nitrate N concentrations in drainflow did not vary with spacing, but concentrations have significantly decreased from the beginning to the end of the experiment. Flow-weighted mean concentrations decreased from 28 mg L(-1) in the 1986-1988 period to 8 mg L(-1) in the 1997-1999 period. The reduction in concentration was due to both a reduction in fertilizer N rates over the study period and to the addition of a winter cover crop as a "trap crop" after corn in the corn-soybean rotation. Annual nitrate N loads decreased from 38 kg ha(-1) in the 1986-1988 period to 15 kg ha(-1) in the 1997-1999 period. Most of the nitrate N losses occurred during the fallow season, when most of the drainage occurred. Results of this study underscore the necessity of long-term research on different soil types and in different climatic zones, to develop appropriate management strategies for both economic crop production and protection of environmental quality. PMID:15356241

  6. Effects of soil and water conservation on crop productivity: Evidences from Anjenie watershed, Ethiopia

    NASA Astrophysics Data System (ADS)

    Adgo, Enyew; Teshome, Akalu

    2014-05-01

    Widespread soil and water conservation activities have been implemented in many parts of eastern Africa to control soil erosion by water and improve land productivity for the last few decades. Following the 1974 severe drought, soil and water conservation became more important to Ethiopia and the approach shifted to watershed based land management initiatives since the 1980s. To capture long-term impacts of these initiatives, a study was conducted in Anjenie Watershed of Ethiopia, assessing fanya juu terraces and grass strips constructed in a pilot project in 1984, and which are still functional nearly 30 years later. Data were collected from government records, field observations and questionnaire surveys administered to 60 farmers. Half of the respondents had terraced farms in the watershed former project area (with terrace technology) and the rest were outside the terraced area. The crops assessed were teff, barley and maize. Cost-benefit analyses were used to determine the economic benefits with and without terraces, including gross and net profit values, returns on labour, water productivity and impacts on poverty. The results indicated that soil and water conservation had improved crop productivity. The average yield on terraced fields was 0.95 t ha-1 for teff (control 0.49), 1.86 t ha-1 for barley (control 0.61), and 1.73 t ha-1 for maize (control 0.77). The net benefit was significantly higher on terraced fields, recording US 20.9 (US -112 control) for teff, US 185 (US -41 control) for barley and US -34.5 (US - 101 control) ha-1 yr-1 for maize. The returns on family labour were 2.33 for barley, 1.01 for teff, and 0.739 US per person-day for maize grown on terraced plots, compared to US 0.44, 0.27 and 0.16 per person-day for plots without terraces, respectively. Using a discount rate of 10%, the average net present value (NPV) of barley production with terrace was found to be about US 1542 over a period of 50 years. In addition, the average financial

  7. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O 3 pollution

    NASA Astrophysics Data System (ADS)

    Avnery, Shiri; Mauzerall, Denise L.; Liu, Junfeng; Horowitz, Larry W.

    2011-04-01

    We examine the potential global risk of increasing surface ozone (O 3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O 3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O 3 precursor emissions in 2030. We use simulated hourly O 3 concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O 3 exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O 3 on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O 3 exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth 17-35 billion USD 2000 annually (an increase of +6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth 12-21 billion annually (an increase of +1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our

  8. CORA-II model of PWR corrosion-product transport

    SciTech Connect

    Kang, S.; Sejvar, J.

    1985-09-01

    The revised CORA-II computer code, which predicts corrosion-product transport and radiation field buildup in PWRs, incorporates recent advances in scientific understanding of these processes. Designers and engineers can use the code to assess the relative effects of plant design, operation, and coolant chemistry changes on radiation-field buildup.

  9. Crop productivity and soil resilience observed on short-term corn stover or cob harvest on several northern soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Highly productive soils are found throughout the US Corn Belt, in part due to their inherently high soil organic matter. Their productivity contributes to the high corn grain and stover yields; hence, this crop residue is predicted to be a significant bioenergy feedstock within this region. The obje...

  10. Overcoming weed management challenges in cover crop-based organic rotational no-till soybean production in the Eastern US

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crop-based, organic rotational no-till soybean production has been gaining traction in the Eastern region of the United States because of the ability of this new system to enhance soil conservation, reduce labor requirements, and decrease diesel fuel use compared to traditional organic product...

  11. Yield, energy production, and nitrogen loss potential of grain and switchgrass cropping systems compared over claypan soil landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A better understanding of production and production efficiency as soil-landscapes vary is needed for bioenergy crops like corn (Zea mays), soybean (Glycine max) and switchgrass (Panicum virgatum). The objective of this research was to examine the impact of topsoil depth overtop a dominant argillic ...

  12. Impact of heat and drought stress on arable crop production in Belgium

    NASA Astrophysics Data System (ADS)

    Gobin, A.

    2012-06-01

    Modelling approaches are needed to accelerate understanding of adverse weather impacts on crop performances and yields. The aim was to elicit biometeorological conditions that affect Belgian arable crop yield, commensurate with the scale of climatic impacts. The regional crop model REGCROP (Gobin, 2010) enabled to examine changing weather patterns in relation to the crop season and crop sensitive stages of six arable crops: winter wheat, winter barley, winter rapeseed, potato, sugar beet and maize. The sum of vapour pressure deficit during the growing season is the single best predictor of arable yields, with R2 ranging from 0.55 for sugar beet to 0.76 for wheat. Drought and heat stress, in particular during the sensitive crop stages, occur at different times in the crop season and significantly differ between two climatic periods, 1947-1987 and 1988-2008. Though average yields have risen steadily between 1947 and 2008, there is no evidence that relative tolerance to stress has improved.

  13. Theoretical and practical considerations for staggered production of crops in a BLSS

    NASA Astrophysics Data System (ADS)

    Stutte, G. W.; Mackowiak, C. L.; Yorio, N. C.; Wheeler, A.

    1997-01-01

    A functional Bioregenerative Life Support System (BLSS) will generate oxygen, remove excess carbon dioxide, purify water, and produce food on a continuous basis for long periods of operation. In order to minimize fluctuations in gas exchange, water purification, and yield that are inherent in batch systems, staggered planting and harvesting of the crop is desirable. A 418-d test of staggered production of potato cv. Norland (26-d harvest cycles) using nutrients recovered from inedible biomass was recently completed at Kennedy Space Center. The results indicate that staggered production can be sustained without detrimental effects on life support functions in a CELSS. System yields of H_2O, O_2 and food were higher in staggered than batch plantings. Plants growing in staggered production or batch production on ``aged'' solution initiated tubers earlier, and were shorter than plants grown on ``fresh'' solution. This morphological response required an increase in planting density to maintain full canopy coverage. Plants grown in staggered production used available light more efficiently than the batch planting due to increased sidelighting.

  14. Progress toward evaluating the sustainability of switchgrass production as a bioenergy crop using the SWAT model

    SciTech Connect

    Baskaran, Latha Malar; Jager, Yetta; Schweizer, Peter E; Srinivasan, Raghavan

    2010-01-01

    Adding bioenergy to the US energy portfolio requires long-term profitability for bioenergy producers and the long-term protection of affected ecosystems. In this study, we present steps along the path towards evaluating both sides of the sustainability equation (production and environmental) for switchgrass (Panicum virgatum) using the Soil and Water Assessment Tool (SWAT). We modeled production of switchgrass and river flow using SWAT for current landscapes at a regional scale. To quantify feedstock production, we compared lowland switchgrass yields simulated by SWAT with estimates from a model based on empirical data for the eastern US. Geographic patterns were very similar. Average yields reported in field trials tended to be higher than average SWAT-predicted yields, which may nevertheless be more representative of production-scale yields. As a preliminary step toward quantifying bioenergy-related changes in water quality, we evaluated flow predictions by the SWAT model for the Arkansas-Red-White river basin. Monthly SWAT flow predictions were compared to USGS measurements from 86 subbasins across the region. Although agreement was good, analysis of residuals (functional validation) identified patterns to guide future improvements. Our next step will be to continue model improvement, after which we will forecast changes in water quality associated with incorporating bioenergy crops into future landscapes. This analysis will help us, in future, to identify areas with the highest economic and environmental potential for feedstock production.

  15. Health and nutrition effects of cash crop production in developing countries: a comparative analysis.

    PubMed

    Kennedy, E; Bouis, H; von Braun, J

    1992-09-01

    The paper presents results of a comparative analysis of the health and nutritional effects of cash crop production in 6 countries--The Gambia, Guatemala, Kenya, Malawi, the Philippines, and Rwanda. The 6 country case studies were conducted during the same time period and used a similar, although not identical, research protocol. Participation in cash crop schemes resulted in increases in household income. Short-term increases in household income did not result in a decrease in the incidence of illness in preschool-aged children nor in the total time that preschoolers were ill. Increases in household income did result in increases in the preschooler's energy consumption; however, the income/calorie consumption links, although significant, were weak. The household income gains did not have an immediate or large impact on preschooler nutritional status. While, in the longer term, increases in income may bring about improvements in preschooler health, in the short term, it appears that increases in income must be accompanied by improvements in the health environment in order to have a significant effect in reducing preschooler morbidity and improving child nutritional status. PMID:1439919

  16. Modeling the impact of conservation agriculture on crop production and soil properties in Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Moussadek, Rachid; Mrabet, Rachid; Dahan, Rachid; Laghrour, Malika; Lembiad, Ibtissam; ElMourid, Mohamed

    2015-04-01

    In Morocco, rainfed agriculture is practiced in the majority of agricultural land. However, the intensive land use coupled to the irregular rainfall constitutes a serious threat that affect country's food security. Conservation agriculture (CA) represents a promising alternative to produce more and sustainably. In fact, the direct seeding showed high yield in arid regions of Morocco but its extending to other more humid agro-ecological zones (rainfall > 350mm) remains scarce. In order to promote CA in Morocco, differents trials have been installed in central plateau of Morocco, to compare CA to conventional tillage (CT). The yields of the main practiced crops (wheat, lentil and checkpea) under CA and CT were analyzed and compared in the 3 soils types (Vertisol, Cambisol and Calcisol). Also, we studied the effect of CA on soil organic matter (SOM) and soil losses (SL) in the 3 different sites. The APSIM model was used to model the long term impact of CA compared to CT. The results obtained in this research have shown favorable effects of CA on crop production, SOM and soil erosion. Key words: Conservation agriculture, yield, soil properties, modeling, APSIM, Morocco.

  17. Transfer of wastewater associated pharmaceuticals and personal care products to crop plants from biosolids treated soil.

    PubMed

    Wu, Chenxi; Spongberg, Alison L; Witter, Jason D; Sridhar, B B Maruthi

    2012-11-01

    The plant uptake of emerging organic contaminants such as pharmaceuticals and personal care products (PPCPs) is receiving increased attention. Biosolids from municipal wastewater treatment have been previously identified as a major source for PPCPs. Thus, plant uptake of PPCPs from biosolids applied soils needs to be understood. In the present study, the uptake of carbamazepine, diphenhydramine, and triclocarban by five vegetable crop plants was examined in a field experiment. At the time of harvest, three compounds were detected in all plants grown in biosolids-treated soils. Calculated root concentration factor (RCF) and shoot concentration factor (SCF) are the highest for carbamazepine followed by triclocarban and diphenhydramine. Positive correlation between RCF and root lipid content was observed for carbamazepine but not for diphenhydramine and triclocarban. The results demonstrate the ability of crop plants to accumulate PPCPs from contaminated soils. The plant uptake processes of PPCPs are likely affected by their physico-chemical properties, and their interaction with soil. The difference uptake behavior between plant species could not solely be attributed to the root lipid content. PMID:22921256

  18. Legacy Phosphorus Effect and Need to Re-calibrate Soil Test P Methods for Organic Crop Production.

    NASA Astrophysics Data System (ADS)

    Dao, Thanh H.; Schomberg, Harry H.; Cavigelli, Michel A.

    2015-04-01

    Phosphorus (P) is a required nutrient for the normal development and growth of plants and supplemental P is needed in most cultivated soils. Large inputs of cover crop residues and nutrient-rich animal manure are added to supply needed nutrients to promote the optimal production of organic grain crops and forages. The effects of crop rotations and tillage management of the near-surface zone on labile phosphorus (P) forms were studied in soil under conventional and organic crop management systems in the mid-Atlantic region of the U.S. after 18 years due to the increased interest in these alternative systems. Soil nutrient surpluses likely caused by low grain yields resulted in large pools of exchangeable phosphate-P and equally large pools of enzyme-labile organic P (Po) in soils under organic management. In addition, the difference in the P loading rates between the conventional and organic treatments as guided by routine soil test recommendations suggested that overestimating plant P requirements contributed to soil P surpluses because routine soil testing procedures did not account for the presence and size of the soil enzyme-labile Po pool. The effect of large P additions is long-lasting as they continued to contribute to elevated soil total bioactive P concentrations 12 or more years later. Consequently, accurate estimates of crop P requirements, P turnover in soil, and real-time plant and soil sensing systems are critical considerations to optimally manage manure-derived nutrients in organic crop production.

  19. Attenuation of urban agricultural production potential and crop water footprint due to shading from buildings and trees

    NASA Astrophysics Data System (ADS)

    Johnson, Mark S.; Lathuillière, Michael J.; Tooke, Thoreau R.; Coops, Nicholas C.

    2015-06-01

    Urban agriculture requires local water to replace ‘hydrologic externalities’ associated with food produced outside of the local area, with an accompanying shift of the water footprint (WF) for agricultural production from rural to urban areas. Water requirements of urban agriculture have been difficult to estimate due to the heterogeneity of shading from trees and buildings within urban areas. We developed CityCrop, a plant growth and evapotranspiration (ET) model that couples a 3D model of tree canopies and buildings derived from LiDAR with a ray-casting approach to estimate spatially-explicit solar inputs in combination with local climate data. Evaluating CityCrop over a 1 km2 mixed use, residential neighborhood of Vancouver Canada, we estimated median light attenuation to result in 12% reductions in both reference ET (ETo) and crop ET (ETc). However, median crop yields were reduced by only 3.5% relative to potential yield modeled without any light attenuation, while the median crop WF was 9% less than the WF for areas unimpeded by shading. Over the 75 day cropping cycle, median crop water requirements as ETc were 17% less than that required for a well-watered grass (as ETo). If all lawns in our modeled area were replaced with crops, we estimate that about 37% of the resident population could obtain the vegetable portion of their diet from within the local area over a 150 day growing season. However doing so would result in augmented water demand if watering restrictions apply to lawns only. The CityCrop model can therefore be useful to evaluate trade-offs related to urban agriculture and to inform municipal water policy development.

  20. Linking environment-productivity trade-offs and correlated uncertainties: Greenhouse gas emissions and crop productivity in paddy rice production systems.

    PubMed

    Hayashi, Kiyotada; Nagumo, Yoshifumi; Domoto, Akiko

    2016-11-15

    In comparative life cycle assessments of agricultural production systems, analyses of both the trade-offs between environmental impacts and crop productivity and of the uncertainties specific to agriculture such as fluctuations in greenhouse gas (GHG) emissions and crop yields are crucial. However, these two issues are usually analyzed separately. In this paper, we present a framework to link trade-off and uncertainty analyses; correlated uncertainties are integrated into environment-productivity trade-off analyses. We compared three rice production systems in Japan: a system using a pelletized, nitrogen-concentrated organic fertilizer made from poultry manure using closed-air composting techniques (high-N system), a system using a conventional organic fertilizer made from poultry manure using open-air composting techniques (low-N system), and a system using a chemical compound fertilizer (conventional system). We focused on two important sources of uncertainties in paddy rice cultivation-methane emissions from paddy fields and crop yields. We found trade-offs between the conventional and high-N systems and the low-N system and the existence of positively correlated uncertainties in the conventional and high-N systems. We concluded that our framework is effective in recommending the high-N system compared with the low-N system, although the performance of the former is almost the same as the conventional system. PMID:27470672

  1. Simulation of crop evapotranspiration and crop coefficient in weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate quantification of crop evapotranspiration (ET) is critical in optimizing irrigation water productivity, especially, in the semiarid regions of the world where limited rainfall is supplemented by irrigation for profitable crop production. In this context, cropping system models are potential...

  2. Cover crop biomass production and water use in the central great plains under varying water availability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  3. Opportunities for energy crop production based on subfield scale distribution of profitability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of dedicated herbaceous energy crops into row crop landscapes is a promising means to supply an expanding biofuel industry while increasing biomass yields, benefiting soil and water quality, and increasing biodiversity. Despite these positive traits energy crops remain largely unaccept...

  4. Sweet corn production and efficiency of nitrogen use in high cover crop residue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cover crops can provide many benefits to cropping systems including provision of significant quantities of fixed N (legumes) that is readily mineralized. In the humid, temperate mid-Atlantic area of the U.S.A., winter annual cover crops such as hairy vetch produce abundant biomass and N before summ...

  5. Early response of soil organic fractions to tillage and integrated crop-livestock production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tillage, cropping system, and cover cropping are important management variables that control the quantity, quality, and placement of organic matter inputs to soil. How soil organic matter and its different fractions respond to management has not been comprehensively studied in integrated crop-lives...

  6. Analyzing Water Management and Production Trade-Offs Using Crop Systems Models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water management decisions for agricultural cropping systems may be affected by multiple factors, including crop water needs, water availability, water delivery mechanisms, and water rights. A robust tool for improvement of on-farm water management must therefore provide information on crop water r...

  7. Incineration of biomass and utilization of product gas as a CO_2 source for crop production in closed systems: gas quality and phytotoxicity

    NASA Astrophysics Data System (ADS)

    Bubenheim, D. L.; Patterson, M.; Wignarajah, K.; Flynn, M.

    1997-01-01

    This study addressed the recycle of carbon from inedible biomass to CO_2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO_2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO_2 source for crop production. Injection rate was based on maintenance of CO_2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO_2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (<4 mumol mol^-1) sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO_2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas after two days of crop exposure and replacement with pure CO_2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.

  8. Incineration of biomass and utilization of product gas as a CO2 source for crop production in closed systems: gas quality and phytotoxicity

    NASA Astrophysics Data System (ADS)

    1997-01-01

    This study addressed the recycle of carbon from inedible biomass to CO2 for utilization in crop production. Earlier work identified incineration as an attractive approach to resource recovery from solid wastes because the products are well segregated. Given the effective separation of carbon into the gaseous product stream from the incinerator in the form of CO2 we captured the gaseous stream produced during incineration of wheat inedible biomass and utilized it as the CO2 source for crop production. Injection rate was based on maintenance of CO2 concentration in the growing environment. The crop grown in the closed system was lettuce. Carbon was primarily in the form of CO2 in the incinerator product gas with less than 8% of carbon compounds appearing as CO. Nitrogen oxides and organic compounds such as toluene, xylene, and benzene were present in the product gas at lower concentrations (<4 μmol mol-1) sulfur containing compounds were below the detection limits. Direct utilization of the gaseous product of the incinerator as the CO2 source was toxic to lettuce grown in a closed chamber. Net photosynthetic rates of the crop was suppressed more than 50% and visual injury symptoms were visible within 3 days of the introduction of the incinerator gas. Even the removal of the incinerator gas after two days of crop exposure and replacement with pure CO2 did not eliminate the toxic effects. Both organic and inorganic components of the incinerator gas are candidates for the toxin.

  9. Understanding the Long Run Determinants of Land Use in Global Crop Production

    NASA Astrophysics Data System (ADS)

    Baldos, U. C.; Hertel, T. W.

    2011-12-01

    growth (+1.6%), biofuels (+0.2%) and urbanization (-0.3%). Technological change in crop, livestock and processed food production also have a modest impact on global cropland use over this historical period (+0.8%, -0.3% and +0.1%, respectively). We then turn our attention to projections of global land use over the coming decade. Here we project continued expansion in global cropland (13.7%). We then decompose the drivers of this projected change in land use. For example, if population grows at projected rates and yields grow at recent historical rates, then projected cropland use rises by just 1.7%. If we add urbanization, then global cropland use is slightly reduced (+1.5%). Because of the magnitude of the projected production targets, adding biofuels boosts global cropland use strongly (+4.2%) when added to the preceding factors. Adding technological change in the livestock and food processing sectors, as well as growth in per capita incomes boosts projected cropland use to 13.7%. In short, income growth is likely to be the critical driver of global cropland change in the future.

  10. Wheat Irrigation Management Using Multispectral Crop Coefficients: II. Irrigation Scheduling Performance, Grain Yield, and Water Use Efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current irrigation scheduling is based on well-established crop coefficient-reference evapotranspiration methods. However, appropriate irrigation scheduling can be negated when crop evapotranspiration (ETc) is poor due to imprecise crop coefficients. The premise of this research is that real-time mo...

  11. Efficiency of chlorophyll in gross primary productivity: A proof of concept and application in crops.

    PubMed

    Gitelson, Anatoly A; Peng, Yi; Viña, Andrés; Arkebauer, Timothy; Schepers, James S

    2016-08-20

    One of the main factors affecting vegetation productivity is absorbed light, which is largely governed by chlorophyll. In this paper, we introduce the concept of chlorophyll efficiency, representing the amount of gross primary production per unit of canopy chlorophyll content (Chl) and incident PAR. We analyzed chlorophyll efficiency in two contrasting crops (soybean and maize). Given that they have different photosynthetic pathways (C3 vs. C4), leaf structures (dicot vs. monocot) and canopy architectures (a heliotrophic leaf angle distribution vs. a spherical leaf angle distribution), they cover a large spectrum of biophysical conditions. Our results show that chlorophyll efficiency in primary productivity is highly variable and responds to various physiological and phenological conditions, and water availability. Since Chl is accessible through non-destructive, remotely sensed techniques, the use of chlorophyll efficiency for modeling and monitoring plant optimization patterns is practical at different scales (e.g., leaf, canopy) and under widely-varying environmental conditions. Through this analysis, we directly related a functional characteristic, gross primary production with a structural characteristic, canopy chlorophyll content. Understanding the efficiency of the structural characteristic is of great interest as it allows explaining functional components of the plant system. PMID:27374843

  12. Peroxisomal polyhydroxyalkanoate biosynthesis is a promising strategy for bioplastic production in high biomass crops.

    PubMed

    Tilbrook, Kimberley; Gebbie, Leigh; Schenk, Peer M; Poirier, Yves; Brumbley, Stevens M

    2011-12-01

    Polyhydroxyalkanoates (PHAs) are bacterial carbon storage polymers with diverse plastic-like properties. PHA biosynthesis in transgenic plants is being developed as a way to reduce the cost and increase the sustainability of industrial PHA production. The homopolymer polyhydroxybutyrate (PHB) is the simplest form of these biodegradable polyesters. Plant peroxisomes contain the substrate molecules and necessary reducing power for PHB biosynthesis, but peroxisomal PHB production has not been explored in whole soil-grown transgenic plants to date. We generated transgenic sugarcane (Saccharum sp.) with the three-enzyme Ralstonia eutropha PHA biosynthetic pathway targeted to peroxisomes. We also introduced the pathway into Arabidopsis thaliana, as a model system for studying and manipulating peroxisomal PHB production. PHB, at levels up to 1.6%-1.8% dry weight, accumulated in sugarcane leaves and A. thaliana seedlings, respectively. In sugarcane, PHB accumulated throughout most leaf cell types in both peroxisomes and vacuoles. A small percentage of total polymer was also identified as the copolymer poly (3-hydroxybutyrate-co-3-hydroxyvalerate) in both plant species. No obvious deleterious effect was observed on plant growth because of peroxisomal PHA biosynthesis at these levels. This study highlights how using peroxisomal metabolism for PHA biosynthesis could significantly contribute to reaching commercial production levels of PHAs in crop plants. PMID:21447054

  13. Wheat forecast economics effect study. [value of improved information on crop inventories, production, imports and exports

    NASA Technical Reports Server (NTRS)

    Mehra, R. K.; Rouhani, R.; Jones, S.; Schick, I.

    1980-01-01

    A model to assess the value of improved information regarding the inventories, productions, exports, and imports of crop on a worldwide basis is discussed. A previously proposed model is interpreted in a stochastic control setting and the underlying assumptions of the model are revealed. In solving the stochastic optimization problem, the Markov programming approach is much more powerful and exact as compared to the dynamic programming-simulation approach of the original model. The convergence of a dual variable Markov programming algorithm is shown to be fast and efficient. A computer program for the general model of multicountry-multiperiod is developed. As an example, the case of one country-two periods is treated and the results are presented in detail. A comparison with the original model results reveals certain interesting aspects of the algorithms and the dependence of the value of information on the incremental cost function.

  14. Manipulating photorespiration to increase plant productivity: recent advances and perspectives for crop improvement.

    PubMed

    Betti, Marco; Bauwe, Hermann; Busch, Florian A; Fernie, Alisdair R; Keech, Olivier; Levey, Myles; Ort, Donald R; Parry, Martin A J; Sage, Rowan; Timm, Stefan; Walker, Berkley; Weber, Andreas P M

    2016-05-01

    Recycling of the 2-phosphoglycolate generated by the oxygenase reaction of Rubisco requires a complex and energy-consuming set of reactions collectively known as the photorespiratory cycle. Several approaches aimed at reducing the rates of photorespiratory energy or carbon loss have been proposed, based either on screening for natural variation or by means of genetic engineering. Recent work indicates that plant yield can be substantially improved by the alteration of photorespiratory fluxes or by engineering artificial bypasses to photorespiration. However, there is also evidence indicating that, under certain environmental and/or nutritional conditions, reduced photorespiratory capacity may be detrimental to plant performance. Here we summarize recent advances obtained in photorespiratory engineering and discuss prospects for these advances to be transferred to major crops to help address the globally increasing demand for food and biomass production. PMID:26951371

  15. Crop Production Risk in the Pampas: A Bayesian Weather Generator for Climate Change and Land Use Impact Studies

    NASA Astrophysics Data System (ADS)

    Verdin, A.; Rajagopalan, B.; Kleiber, W.; Podesta, G. P.; Bert, F.

    2015-12-01

    We present a space-time stochastic weather generator for daily precipitation and temperature, developed within a Bayesian hierarchical framework (hereafter BayGEN). This framework offers a unique advantage: it provides robust estimation of uncertainty that is typically under-represented in traditional weather generators. Realistic estimates of uncertainty are of utmost importance for studying climate variability and change, impacts on land use, and crop production. BayGEN is applied to a network of weather stations in the Salado basin of the Argentine Pampas, a region that saw immense agricultural expansion towards climatically marginal (i.e., semi-arid) regions, in part due to significant trends in annual precipitation from 1970-2000. Since the turn of the century, observed conditions suggest a decrease in precipitation, which begs the question: "Are the existing agricultural production systems viable in a drier future?" The use of process based (i.e., hydrologic, crop simulation) models in conjunction with BayGEN will allow for complete analysis of the system's response to an ensemble of plausible future scenarios. Precipitation occurrence at each site is modeled at the first level of hierarchy using probit regression with covariates for seasonality, where the latent process is Gaussian -- positivity in the latent process implies occurrence. The precipitation amounts are modeled using a transformed gamma regression (i.e., gamma generalized linear model), similarly with seasonality covariates. Minimum and maximum temperatures are conditional on precipitation occurrence and are decomposed into two processes: (i) climate -- linear regressions on seasonality covariates, and (ii) weather -- realizations from mean-zero Gaussian random fields. The use of seasonality covariates allows the generation of daily weather sequences conditioned on seasonal forecasts or projected multi-annual trends, an increasingly important practice for risk assessment in climatically marginal

  16. Mycological composition in the rhizosphere of winter wheat in different crop production systems

    NASA Astrophysics Data System (ADS)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw

    2010-05-01

    Fungi play an important role in the soil ecosystem as decomposers of plant residues, releasing nutrients that sustain and stimulate processes of plant growth. Some fungi possess antagonistic properties towards plant pathogens. The structure of plant and soil communities is influenced by the interactions among its component species and also by anthropogenic pressure. In the study of soil fungi, particular attention is given to the rhizosphere. Knowledge of the structure and diversity of the fungal community in the rhizosphere lead to the better understanding of pathogen-antagonist interactions. The aim of this study was to evaluate the mycological composition of the winter wheat rhizosphere in two different crop production systems. The study was based on a field experiment established in 1994 year at the Experimental Station in South-East Poland. The experiment was conducted on grey-brown podzolic soil. In this experiment winter wheat were grown in two crop production systems: ecological and conventional - monoculture. The research of fungi composition was conducted in 15th year of experiment. Rhizosphere was collected two times during growing season, in different development stage: shooting phase and full ripeness phase. Martin medium and the dilutions 10-3 and 10-4 were used to calculate the total number cfu (colony forming units) of fungi occurring in the rhizosphere of winter wheat. The fungi were identified using Czapeka-Doxa medium for Penicillium, potato dextrose agar for all fungi and agar Nirenberga (SNA) for Fusarium. High number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of wheat in ecological system. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the crop wheat in monoculture can be responsible for appearance higher number of the

  17. Estimation of Crop Gross Primary Production (GPP). 2; Do Scaled (MODIS) Vegetation Indices Improve Performance?

    NASA Technical Reports Server (NTRS)

    Zhang, Qingyuan; Cheng, Yen-Ben; Lyapustin, Alexei I.; Wang, Yujie; Zhang, Xiaoyang; Suyker, Andrew; Verma, Shashi; Shuai, Yanmin; Middleton, Elizabeth M.

    2015-01-01

    Satellite remote sensing estimates of Gross Primary Production (GPP) have routinely been made using spectral Vegetation Indices (VIs) over the past two decades. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), the green band Wide Dynamic Range Vegetation Index (WDRVIgreen), and the green band Chlorophyll Index (CIgreen) have been employed to estimate GPP under the assumption that GPP is proportional to the product of VI and photosynthetically active radiation (PAR) (where VI is one of four VIs: NDVI, EVI, WDRVIgreen, or CIgreen). However, the empirical regressions between VI*PAR and GPP measured locally at flux towers do not pass through the origin (i.e., the zero X-Y value for regressions). Therefore they are somewhat difficult to interpret and apply. This study investigates (1) what are the scaling factors and offsets (i.e., regression slopes and intercepts) between the fraction of PAR absorbed by chlorophyll of a canopy (fAPARchl) and the VIs, and (2) whether the scaled VIs developed in (1) can eliminate the deficiency and improve the accuracy of GPP estimates. Three AmeriFlux maize and soybean fields were selected for this study, two of which are irrigated and one is rainfed. The four VIs and fAPARchl of the fields were computed with the MODerate resolution Imaging Spectroradiometer (MODIS) satellite images. The GPP estimation performance for the scaled VIs was compared to results obtained with the original VIs and evaluated with standard statistics: the coefficient of determination (R2), the root mean square error (RMSE), and the coefficient of variation (CV). Overall, the scaled EVI obtained the best performance. The performance of the scaled NDVI, EVI and WDRVIgreen was improved across sites, crop types and soil/background wetness conditions. The scaled CIgreen did not improve results, compared to the original CIgreen. The scaled green band indices (WDRVIgreen, CIgreen) did not exhibit superior performance to either the

  18. Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production

    PubMed Central

    Rosa, Silvina M.; Simonetti, Leandro; Duval, Matías E.; Galantini, Juan A.; Bedano, José C.; Wall, Luis G.; Erijman, Leonardo

    2012-01-01

    The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP) and Poor no-till Agricultural Practices (PAP) were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between sustainable vs. non

  19. Seasonal Phenology and Species Composition of the Aphid Fauna in a Northern Crop Production Area

    PubMed Central

    Kirchner, Sascha M.; Hiltunen, Lea; Döring, Thomas F.; Virtanen, Elina; Palohuhta, Jukka P.; Valkonen, Jari P. T.

    2013-01-01

    Background The species diversity of aphids and seasonal timing of their flight activity can have significant impacts on crop production, as aphid species differ in their ability to transmit plant viruses and flight timing affects virus epidemiology. The aim of the study was to characterise the species composition and phenology of aphid fauna in Finland in one of the northernmost intensive crop production areas of the world (latitude 64°). Methodology/Principal Findings Flight activity was monitored in four growing seasons (2007–010) using yellow pan traps (YPTs) placed in 4–8 seed potato fields and a Rothamsted suction trap. A total of 58,528 winged aphids were obtained, identified to 83 taxa based on morphology, and 34 species were additionally characterised by DNA barcoding. Seasonal flight activity patterns analysed based on YPT catch fell into three main phenology clusters. Monoecious taxa showed early or middle-season flight activity and belonged to species living on shrubs/trees or herbaceous plants, respectively. Heteroecious taxa occurred over the entire potato growing season (ca. 90 days). Abundance of aphids followed a clear 3-year cycle based on suction trap data covering a decade. Rhopalosiphum padi occurring at the end of the potato growing season was the most abundant species. The flight activity of Aphis fabae, the main vector of Potato virus Y in the region, and Aphis gossypii peaked in the beginning of potato growing season. Conclusions/Significance Detailed information was obtained on phenology of a large number aphid species, of which many are agriculturally important pests acting as vectors of plant viruses. Aphis gossypii is known as a pest in greenhouses, but our study shows that it occurs also in the field, even far in the north. The novel information on aphid phenology and ecology has wide implications for prospective pest management, particularly in light of climate change. PMID:23967149

  20. Technology targeting for sustainable intensification of crop production in the Delta region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Schulthess, U.; Krupnik, T. J.; Ahmed, Z. U.; McDonald, A. J.

    2015-04-01

    Remote sensing data are nowadays being acquired within short intervals and made available at a low cost or for free. This opens up opportunities for new remote sensing applications, such as the characterization of entire regions to identify most suitable areas for technology targeting. Increasing population growth and changing dietary habits in South Asia call for higher cereal production to ensure future food security. In the Delta area of Bangladesh, surface water is considered to be available in quantities large enough to support intensification by adding an irrigated dry season crop. Fuel-efficient, low lift axial flow pumps have shown to be suitable to carry water to fields that are within a buffer of four hundred meters of the rivers. However, information on how and where to target surface water irrigation efforts is currently lacking. We describe the opportunities and constraints encountered in developing a procedure to identify cropland for which axial flow pumps could be successfully deployed upon in a 43'000 km2 area. First, we isolated cropland and waterways using Landsat 5 and 7 scenes using image segmentation followed by classification with the random forest algorithm. Based on Landsat 7 and 8 scenes, we extracted maximum dry season enhanced vegetation index (EVI) values, which we classified into fallow, low-, and high-intensity cropland for the last three years. Last, we investigated the potential for surface water irrigation on fallow and low-intensity land by applying a cropping risk matrix to address the twin threats of soil and water salinity. Our analysis indicates that there are at least 20,000 ha of fallow land under the low-risk category, while more than 100,000 ha of low-intensity cropland can be brought into intensified production. This information will aid in technology targeting for the efficient deployment of surface water irrigation as a tool for intensification.

  1. Integrating pasture-based livestock production with annual crop production on the Great Plains to reduce loss of grassland wildlife

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tallgrass prairie has been replaced by corn and soybeans and mixed-grass prairie is being replaced by various annual crops. Annual crop fields support vegetarian diets but not much wildlife. Alternatively, integrating pastured livestock farming with annual crops can provide wildlife habitat. For ...

  2. The significance of nitrous oxide emission due to cropping of grain for biofuel production: a Swedish perspective

    NASA Astrophysics Data System (ADS)

    Kasimir Klemedtsson, Å.; Smith, K. A.

    2011-12-01

    The current regulations governing production of biofuels in the European Union require that they have to mitigate climate change, by producing >35% less greenhouse gases (GHG) than fossil fuels. There is a risk that this may not be achievable, since land use for crop production inevitably emits the potent GHG nitrous oxide (N2O), due to nitrogen fertilisation and cycling in the environment. We analyse first-generation biofuel production on agricultural land and conclude that efficient agricultural crop production resulting in a good harvest and low N2O emission can fulfil the EU standard, and is possible under certain conditions for the Swedish agricultural and bioethanol production systems. However, in years having low crop yields, and where cropping is on organic soils, total GHG emissions per unit of fuel produced can be even higher than those released by burning of fossil fuels. In general, the N2O emission size in Sweden and elsewhere in northern Europe is such that there is a >50% chance that the 35% saving requirement will not be met. Thus ecosystem N2O emissions have to be convincingly assessed. Here we compare Swedish emission data with values estimated by means of statistical models and by a global, top-down, approach; the measurements and the predictions often show higher values that would fail to meet the EU standard and thus prevent biofuel production development.

  3. Assessing the Economic Viability of Bio-based Products for Missouri Value-added Crop Production

    SciTech Connect

    Nicholas Kalaitzandonakes

    2005-11-30

    While research and development on biobased products has continued strong over the years, parallel attention on the economics and management of such product innovation has been lacking. With the financial support of the Department of Energy, the Economics and Management of Agrobiotechnology Center at the University of Missouri-Columbia has launched a pilot graduate education program that seeks to fill the gap. Within this context, a multi-disciplinary research and teaching program has been structured with an emphasis on new product and innovation economics and management. More specifically, this pilot graduate education program has the following major objectives: (1) To provide students with a strong background in innovation economics, management, and strategy. (2) To diversify the students academic background with coursework in science and technology. (3) To familiarize the student with biobased policy initiatives through interaction with state and national level organizations and policymakers. (4) To facilitate active collaboration with industry involved in the development and production of biobased products. The pilot education program seeks to develop human capital and research output. Although the research is, initially, focused on issues related to the State of Missouri, the results are expected to have national implications for the economy, producers, consumers and environment.

  4. Evaluating a satellite-based seasonal evapotranspiration product and identifying its relationship with other satellite-derived products and crop yield: A case study for Ethiopia

    NASA Astrophysics Data System (ADS)

    Tadesse, Tsegaye; Senay, Gabriel B.; Berhan, Getachew; Regassa, Teshome; Beyene, Shimelis

    2015-08-01

    Satellite-derived evapotranspiration anomalies and normalized difference vegetation index (NDVI) products from Moderate Resolution Imaging Spectroradiometer (MODIS) data are currently used for African agricultural drought monitoring and food security status assessment. In this study, a process to evaluate satellite-derived evapotranspiration (ETa) products with a geospatial statistical exploratory technique that uses NDVI, satellite-derived rainfall estimate (RFE), and crop yield data has been developed. The main goal of this study was to evaluate the ETa using the NDVI and RFE, and identify a relationship between the ETa and Ethiopia's cereal crop (i.e., teff, sorghum, corn/maize, barley, and wheat) yields during the main rainy season. Since crop production is one of the main factors affecting food security, the evaluation of remote sensing-based seasonal ETa was done to identify the appropriateness of this tool as a proxy for monitoring vegetation condition in drought vulnerable and food insecure areas to support decision makers. The results of this study showed that the comparison between seasonal ETa and RFE produced strong correlation (R2 > 0.99) for all 41 crop growing zones in Ethiopia. The results of the spatial regression analyses of seasonal ETa and NDVI using Ordinary Least Squares and Geographically Weighted Regression showed relatively weak yearly spatial relationships (R2 < 0.7) for all cropping zones. However, for each individual crop zones, the correlation between NDVI and ETa ranged between 0.3 and 0.84 for about 44% of the cropping zones. Similarly, for each individual crop zones, the correlation (R2) between the seasonal ETa anomaly and de-trended cereal crop yield was between 0.4 and 0.82 for 76% (31 out of 41) of the crop growing zones. The preliminary results indicated that the ETa products have a good predictive potential for these 31 identified zones in Ethiopia. Decision makers may potentially use ETa products for monitoring cereal crop

  5. Prediction models of silage fermentation products on crop composition under strict anaerobic conditions: a meta-analysis.

    PubMed

    Mogodiniyai Kasmaei, K; Rustas, B-O; Spörndly, R; Udén, P

    2013-10-01

    A meta-analysis was conducted to establish linkages between crop and fermentation variables. Data from well-controlled mini silage studies were used in which no additives had been used and no ingress of air had occurred. The silage set consisted of data on crop chemical composition and epiphytic lactic acid bacteria count, and fermentation products (organic acids, alcohols, and ammonia-N) from 118 silages made from 30 grass, 7 legume, 15 grass and legume mixtures, and 66 whole-crop maize samples. The prediction models for fermentation products on crop variables were obtained by stepwise multiple regression analysis. Perennial forage and maize silages were analyzed separately. The best models were obtained for acetic acid in perennial forage silages, with a coefficient of determination of 0.63, and for lactic acid and ethanol in whole-crop maize silages, with coefficients of determination of 0.84 and 0.61, respectively. Fermentation products of perennial forage and maize silages were best related to dry matter and crude protein contents, respectively. Overall, the prediction equations were weak. PMID:23958006

  6. Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption

    SciTech Connect

    Chen, J. M.; Fung, J. W.; Mo, G.; Deng, F.; West, T. O.

    2015-01-19

    In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous US, we conduct a nested global atmospheric inversion with detailed spatial information on crop production and consumption. County-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous US are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO₂ observations at 210 stations to infer CO₂ fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbon fluxes are first generated using a biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 2002–2007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 ± 0.03 to 0.42 ± 0.13 Pg C yr⁻¹, whereas the large sink in the US southeast forest region is weakened from 0.41 ± 0.12 to 0.29 ± 0.12 Pg C yr⁻¹. These adjustments also reduce the inverted sink in the west region from 0.066 ± 0.04 to 0.040 ± 0.02 Pg C yr⁻¹ because of high crop consumption and respiration by humans and livestock. The general pattern of sink increases in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop products in atmospheric inverse modeling, which provides a reliable atmospheric perspective of the overall carbon balance at the continental scale but is unreliable for separating fluxes from different ecosystems.

  7. Atmospheric inversion of the surface carbon flux with consideration of the spatial distributions of US crop production and consumption

    SciTech Connect

    Chen, J. M.; Fung, J. W.; Mo, G.; Deng, F.; West, Tristram O.

    2015-01-01

    In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous USA, we conduct a nested global atmospheric inversion with consideration of the spatial information of crop production and consumption. Spatially distributed 5 county-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous USA are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO₂ observations at 210 stations to infer CO₂ fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbon 10 fluxes are first generated using a biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 2002–2007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 ± 0.03 Pg C yr⁻¹ to 0.42 ± 0.13 Pg C yr⁻¹, whereas the large sink in the US Southeast forest region is weakened from 0.41±0.12 Pg C yr⁻¹ 15 to 0.29 ±0.12 Pg C yr⁻¹. These adjustments also reduce the inverted sink in the West region from 0.066 ± 0.04 Pg C yr⁻¹ to 0.040 ± 0.02 Pg C yr⁻1 because of high crop consumption and respiration by humans and livestock. The general pattern of sink increase in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop 20 products in atmospheric inverse modeling, which provides an atmospheric perspective of the overall carbon balance of a region.

  8. Atmospheric inversion of surface carbon flux with consideration of the spatial distribution of US crop production and consumption

    DOE PAGESBeta

    Chen, J. M.; Fung, J. W.; Mo, G.; Deng, F.; West, T. O.

    2015-01-19

    In order to improve quantification of the spatial distribution of carbon sinks and sources in the conterminous US, we conduct a nested global atmospheric inversion with detailed spatial information on crop production and consumption. County-level cropland net primary productivity, harvested biomass, soil carbon change, and human and livestock consumption data over the conterminous US are used for this purpose. Time-dependent Bayesian synthesis inversions are conducted based on CO₂ observations at 210 stations to infer CO₂ fluxes globally at monthly time steps with a nested focus on 30 regions in North America. Prior land surface carbon fluxes are first generated usingmore » a biospheric model, and the inversions are constrained using prior fluxes with and without adjustments for crop production and consumption over the 2002–2007 period. After these adjustments, the inverted regional carbon sink in the US Midwest increases from 0.25 ± 0.03 to 0.42 ± 0.13 Pg C yr⁻¹, whereas the large sink in the US southeast forest region is weakened from 0.41 ± 0.12 to 0.29 ± 0.12 Pg C yr⁻¹. These adjustments also reduce the inverted sink in the west region from 0.066 ± 0.04 to 0.040 ± 0.02 Pg C yr⁻¹ because of high crop consumption and respiration by humans and livestock. The general pattern of sink increases in crop production areas and sink decreases (or source increases) in crop consumption areas highlights the importance of considering the lateral carbon transfer in crop products in atmospheric inverse modeling, which provides a reliable atmospheric perspective of the overall carbon balance at the continental scale but is unreliable for separating fluxes from different ecosystems.« less

  9. Comparison of GHG fluxes from conventional and energy crop production from adjacent fields in the UK, using novel technologies

    NASA Astrophysics Data System (ADS)

    Keane, James Benjamin; Ineson, Phil; Toet, Sylvia; Stockdale, James; Vallack, Harry; Blei, Emanuel; Bentley, Mark; Howarth, Steve

    2016-04-01

    With combustion of fossil fuels driving anthropogenic climate change, allied to a diminishing global reserve of these resources it is vital for alternative sources of energy production to be investigated. One alternative is biomass; ethanol fermented from corn (Zea mays) or sugar cane (Saccharum spp.) has long been used as a petroleum substitute, and oilseed rape (OSR, Brassica napus) is the principal feedstock for biodiesel production in Germany, the third biggest producer of this fuel globally. Diverting food crops into energy production would seem counter-productive, given there exists genuine concern regarding our ability to meet future global food demand, thus attention has turned to utilising lignocellulosic material: woody tissue and non-food crop by-products such as corn stover. For this reason species such as the perennial grass Miscanthus (Miscanthus x giganteus) are being cultivated for energy production, and these are referred to as second generation energy crops. They are attractive since they do not deplete food supplies, have high yields, require less fertiliser input than annual arable crops, and can be grown on marginal agricultural land. To assess the effectiveness of a crop for bioenergy production, it is vital that accurate quantification of greenhouse gas (GHG) fluxes is obtained for their cultivation in the field. We will present data from a series of studies investigating the GHG fluxes from the energy crops OSR and Miscanthus under various nutrient additions in a comparison with conventional arable cropping at the same site in the United Kingdom (UK). A combination of methods were employed to measure fluxes of CO2, CH4 and N2O from both soil and vegetation, at various temporal and spatial scales. Conventional manual chambers were deployed on a monthly regime to quantify soil GHG fluxes, and were supplemented with automated soil flux chambers measuring soil respiration at an hourly frequency. Additionally, two novel automated chamber systems

  10. Spatial Optimization of Cropping Pattern in an Agricultural Watershed for Food and Biofuel Production with Minimum Downstream Pollution

    NASA Astrophysics Data System (ADS)

    Pv, F.; Sudheer, K.; Chaubey, I.; RAJ, C.; Her, Y.

    2013-05-01

    Biofuel is considered to be a viable alternative to meet the increasing fuel demand, and therefore many countries are promoting agricultural activities that help increase production of raw material for biofuel production. Mostly, the biofuel is produced from grain based crops such as Corn, and it apparently create a shortage in food grains. Consequently, there have been regulations to limit the ethanol production from grains, and to use cellulosic crops as raw material for biofuel production. However, cultivation of such cellulosic crops may have different effects on water quality in the watershed. Corn stover, one of the potential cellulosic materials, when removed from the agricultural field for biofuel production, causes a decrease in the organic nutrients in the field. This results in increased use of pesticides and fertilizers which in turn affect the downstream water quality due to leaching of the chemicals. On the contrary, planting less fertilizer-intensive cellulosic crops, like Switch Grass and Miscanthus, is expected to reduce the pollutant loadings from the watershed. Therefore, an ecologically viable land use scenario would be a mixed cropping of grain crops and cellulosic crops, that meet the demand for food and biofuel without compromising on the downstream water quality. Such cropping pattern can be arrived through a simulation-optimization framework. Mathematical models can be employed to evaluate various management scenarios related to crop production and to assess its impact on water quality. Soil and Water Assessment Tool (SWAT) model is one of the most widely used models in this context. SWAT can simulate the water and nutrient cycles, and also quantify the long-term impacts of land management practices, in a watershed. This model can therefore help take decisions regarding the type of cropping and management practices to be adopted in the watershed such that the water quality in the rivers is maintained at acceptable level. In this study, it

  11. Prospects for dedicated energy crop production and attitudes towards agricultural straw use: The case of livestock farmers

    PubMed Central

    Wilson, P.; Glithero, N.J.; Ramsden, S.J.

    2014-01-01

    Second generation biofuels utilising agricultural by-products (e.g. straw), or dedicated energy crops (DECs) produced on ‘marginal’ land, have been called for. A structured telephone survey of 263 livestock farmers, predominantly located in the west or ‘marginal’ upland areas of England captured data on attitudes towards straw use and DECs. Combined with farm physical and business data, the survey results show that 7.2% and 6.3% of farmers would respectively consider growing SRC and miscanthus, producing respective maximum potential English crop areas of 54,603 ha and 43,859 ha. If higher market prices for straw occurred, most livestock farmers would continue to buy straw. Reasons for not being willing to consider growing DECs include concerns over land quality, committing land for a long time period, lack of appropriate machinery, profitability, and time to financial return; a range of moral, land quality, production conflict and lack of crop knowledge factors were also cited. Results demonstrate limited potential for the production of DECs on livestock farms in England. Changes in policy support to address farmer concerns with respect to DECs will be required to incentivise farmers to increase energy crop production. Policy support for DEC production must be cognisant of farm-level economic, tenancy and personal objectives. PMID:25844008

  12. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India.

    PubMed

    Cakmak, Ismail

    2009-01-01

    may greatly affect the capacity of Zn-efficient (biofortified) cultivars to take up Zn and accumulate it in grains. Therefore, application of Zn-containing fertilizers represents a quick and effective approach to biofortifying cereal grains with Zn, thus being an excellent complementary tool to the breeding strategy for successful biofortification of cereals with Zn. Increasing evidence is available from field trials showing that soil and/or foliar application of Zn fertilizers improves grain Zn concentration up to 2- or 3-fold. In the countries where Zn deficiency is both a public health issue and an important soil constraint to crop production, like in India, enrichment of widely applied fertilizers with Zn would be an excellent investment for improving grain Zn while contributing to increased crop production. Recent work by the scientists of the Indian Agricultural Research Institute indicates that the use of Zn-enriched urea in rice and wheat significantly improves both grain Zn concentration and grain yield. It is obvious that enrichment of widely applied fertilizers with Zn and/or foliar application of Zn fertilizers appear to be a high priority with the strongest potential to alleviate Zn deficiency-related problems in India. A Government action and policy plan for enrichment of selected major fertilizers with Zn is required urgently. PMID:19747624

  13. Exploring the limits of crop productivity. I. Photosynthetic efficiency of wheat in high irradiance environments

    NASA Technical Reports Server (NTRS)

    Bugbee, B. G.; Salisbury, F. B.

    1988-01-01

    The long-term vegetative and reproductive growth rates of a wheat crop (Triticum aestivum L.) were determined in three separate studies (24, 45, and 79 days) in response to a wide range of photosynthetic photon fluxes (PPF, 400-2080 micromoles per square meter per second; 22-150 moles per square meter per day; 16-20 hour photoperiod) in a near-optimum, controlled-environment. The CO2 concentration was elevated to 1200 micromoles per mole, and water and nutrients were supplied by liquid hydroponic culture. An unusually high plant density (2000 plants per square meter) was used to obtain high yields. Crop growth rate and grain yield reached 138 and 60 grams per square meter per day, respectively; both continued to increase up to the highest integrated daily PPF level, which was three times greater than a typical daily flux in the field. The conversion efficiency of photosynthesis (energy in biomass/energy in photosynthetic photons) was over 10% at low PPF but decreased to 7% as PPF increased. Harvest index increased from 41 to 44% as PPF increased. Yield components for primary, secondary, and tertiary culms were analyzed separately. Tillering produced up to 7000 heads per square meter at the highest PPF level. Primary and secondary culms were 10% more efficient (higher harvest index) than tertiary culms; hence cultural, environmental, or genetic changes that increase the percentage of primary and secondary culms might increase harvest index and thus grain yield. Wheat is physiologically and genetically capable of much higher productivity and photosynthetic efficiency than has been recorded in a field environment.

  14. Using Biome-BGC to estimate production in annual crops - A study in Nebraska

    NASA Astrophysics Data System (ADS)

    Heinsch, F. A.; Jolly, W. M.; Kimball, J. S.; Oechel, W. C.; Verma, S. B.

    2004-12-01

    The Biome-BGC ecosystem process model (Version 4.1.2) has been used successfully in many ecosystems, but was not developed for use with agricultural crops. Therefore, program modifications are needed for use with crops, including the addition of carbon allocation to fruiting and the inclusion of springtime planting. The program has been modified and tested using both C3 (soybean) and C4 (maize) vegetation. Results from the Biome-BGC model runs were validated using AmeriFlux tower eddy CO2 flux-based estimates as well as two years of biomass and yield estimates at the University of Nebraska Agricultural Research and Development Center (ARDL) near Mead, NE. The model was also used to obtain tower site and regional estimates of NEE, GPP and NPP. Preliminary results indicate that the model works well in estimating both productivity and yield of both maize and soybean. These results are combined and scaled to a 7 x 7-km area equivalent to that of the MODIS subset (resolution = 1 km2) centered on the research farm and available from Fluxnet and the Oak Ridge National Laboratory (http://www.fluxnet.ornl.gov/fluxnet/modis.cfm). The comparisons provide a means to test the ability of the MODIS algorithms to capture seasonal variations and agricultural carbon dynamics. The results of this study will be used in the future for spatial extrapolation to scales from 1 - 20,000 km2 to evaluate relative accuracies of MODIS GPP/NPP regional data and provide estimates of the regional carbon balance for the larger 20,000 km2 area within the National Institute for Global Environmental Change (NIGEC) Great Plains and Midwestern study regions.

  15. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  16. Ethanol production from starch-rich crops other than corn and the composition and value of the resulting DDGS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because corn (maize, Zea mays) is the predominant feedstock for fuel ethanol in the US and in many other countries, most of the chapters in this book focus on ethanol production and DDGS composition from corn. However, corn is not the only starch-rich crop that has been used as a feedstock for fuel...

  17. Cover crop residue and organic mulches provide weed control during limited-input no-till collard production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limited input producers may adopt no-till if sufficient weed suppression can be achieved. High-biomass producing cover crops used in conjunction with organic mulches may provide sufficient weed control in no-till vegetable production. Our objective was to quantify weed suppression from a summer co...

  18. Effect of Loblolly Pine (Pinus taeda L.) Root Pruning on Alley Cropped Herbage Production and Tree Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The competitive irradiance constraint of trees on the understory can be reduced by imposing standard silvicultural practices like pruning and thinning. Use of tillage to disrupt tree roots is an intensive practice which may improve herbage productivity at the crop-tree interface by reducing competi...

  19. Effect of Loblolly Pine (Pinus taeda L.) Root Pruning on Alley Cropped Herbage Production and Tree Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The competitive irradiance constraint of trees on the understory can be reduced by foliar pruning. Use of tillage to disrupt (prune) tree roots is an intensive practice which could improve herbage productivity at the crop-tree interface by reducing competition for water. Our objective was to compa...

  20. EFFECTS OF COVER CROPPING AND PLASTICULTURE ON SOIL AND RHIZOSPHERE MICROBIAL COMMUNITY STRUCTURE IN TOMATO PRODUCTION SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a previous study (Carrera et al., submitted for publication) we found that soil microbial community structure was distinctly different under black polyethylene film than under hairy vetch cover crops in tomato production systems. In order to determine the major factors affecting microbial communi...