Science.gov

Sample records for ii dehydroquinase inhibitors

  1. Design and structural analysis of aromatic inhibitors of type II dehydroquinase from Mycobacterium tuberculosis.

    PubMed

    Howard, Nigel I; Dias, Marcio V B; Peyrot, Fabienne; Chen, Liuhong; Schmidt, Marco F; Blundell, Tom L; Abell, Chris

    2015-01-01

    3-Dehydroquinase, the third enzyme in the shikimate pathway, is a potential target for drugs against tuberculosis. Whilst a number of potent inhibitors of the Mycobacterium tuberculosis enzyme based on a 3-dehydroquinate core have been identified, they generally show little or no in vivo activity, and were synthetically complex to prepare. This report describes studies to develop tractable and drug-like aromatic analogues of the most potent inhibitors. A range of carbon-carbon linked biaryl analogues were prepared to investigate the effect of hydrogen bond acceptor and donor patterns on inhibition. These exhibited inhibitory activity in the high-micromolar range. The addition of flexible linkers in the compounds led to the identification of more potent 3-nitrobenzylgallate- and 5-aminoisophthalate-based analogues. PMID:25234229

  2. New molecular scaffolds for the design of Mycobacterium tuberculosis type II dehydroquinase inhibitors identified using ligand and receptor based virtual screening.

    PubMed

    Kumar, Ashutosh; Siddiqi, Mohammad Imran; Miertus, Stanislav

    2010-04-01

    Using ligand and receptor based virtual screening approaches we have identified potential virtual screening hits targeting type II dehydroquinase from Mycobacterium tuberculosis, an effective and validated anti-mycobacterial target. Initially, we applied a virtual screening workflow based on a combination of 2D structural fingerprints, 3D pharmacophore and molecular docking to identify compounds that rigidly match specific aspects of ligand bioactive conformation. Subsequently, the resulting compounds were ranked and prioritized using receptor interaction fingerprint based scoring and quantitative structure activity relationship model developed using already known actives. The virtual screening hits prioritized belong to several classes of molecular scaffolds with several available substitution positions that could allow chemical modification to enhance binding affinity. Finally, identified hits may be useful to a medicinal chemist or combinatorial chemist to pick up the new molecular starting points for medicinal chemistry optimization for the design of novel type II dehydroquinase inhibitors. PMID:19816720

  3. Vinyl fluoride as an isoelectronic replacement for an enolate anion: inhibition of type II dehydroquinases.

    PubMed

    Frederickson, Martyn; Coggins, John R; Abell, Chris

    2002-09-01

    A vinyl fluoride analogue of the intermediate in the reaction catalysed by type II dehydroquinase enzymes has been synthesized over seven steps from (-)-quinic acid and shown to be a potent enzyme inhibitor. PMID:12271658

  4. Type II dehydroquinase: molecular replacement with many copies

    SciTech Connect

    Stewart, Kirsty Anne; Robinson, David Alexander; Lapthorn, Adrian Jonathan

    2008-01-01

    The type II dehydroquinase enzyme is a symmetrical dodecameric protein which crystallizes in either high-symmetry cubic space groups or low-symmetry crystal systems with multiple copies in the asymmetric unit. Both systems have provided challenging examples for molecular replacement; for example, a triclinic crystal form has 16 dodecamers (192 monomers) in the unit cell. Three difficult examples are discussed and two are used as test cases to compare the performance of four commonly used molecular-replacement packages. Type II dehydroquinase is a small (150-amino-acid) protein which in solution packs together to form a dodecamer with 23 cubic symmetry. In crystals of this protein the symmetry of the biological unit can be coincident with the crystallographic symmetry, giving rise to cubic crystal forms with a single monomer in the asymmetric unit. In crystals where this is not the case, multiple copies of the monomer are present, giving rise to significant and often confusing noncrystallographic symmetry in low-symmetry crystal systems. These different crystal forms pose a variety of challenges for solution by molecular replacement. Three examples of structure solutions, including a highly unusual triclinic crystal form with 16 dodecamers (192 monomers) in the unit cell, are described. Four commonly used molecular-replacement packages are assessed against two of these examples, one of high symmetry and the other of low symmetry; this study highlights how program performance can vary significantly depending on the given problem. In addition, the final refined structure of the 16-dodecamer triclinic crystal form is analysed and shown not to be a superlattice structure, but rather an F-centred cubic crystal with frustrated crystallographic symmetry.

  5. Irreversible covalent modification of type I dehydroquinase with a stable Schiff base.

    PubMed

    Tizón, Lorena; Maneiro, María; Peón, Antonio; Otero, José M; Lence, Emilio; Poza, Sergio; van Raaij, Mark J; Thompson, Paul; Hawkins, Alastair R; González-Bello, Concepción

    2015-01-21

    The irreversible inhibition of type I dehydroquinase (DHQ1), the third enzyme of the shikimic acid pathway, is investigated by structural, biochemical and computational studies. Two epoxides, which are mimetics of the natural substrate, were designed as irreversible inhibitors of the DHQ1 enzyme and to study the binding requirements of the linkage to the enzyme. The epoxide with the S configuration caused the covalent modification of the protein whereas no reaction was obtained with its epimer. The first crystal structure of DHQ1 from Salmonella typhi covalently modified by the S epoxide, which is reported at 1.4 Å, revealed that the modified ligand is surprisingly covalently attached to the essential Lys170 by the formation of a stable Schiff base. The experimental and molecular dynamics simulation studies reported here highlight the huge importance of the conformation of the C3 carbon of the ligand for covalent linkage to this type of aldolase I enzyme, revealed the key role played by the essential His143 as a Lewis acid in this process and show the need for a neatly closed active site for catalysis. PMID:25370445

  6. Identification of the active-site lysine residues of two biosynthetic 3-dehydroquinases.

    PubMed Central

    Chaudhuri, S; Duncan, K; Graham, L D; Coggins, J R

    1991-01-01

    The lysine residues involved in Schiff-base formation at the active sites of both the 3-dehydroquinase component of the pentafunctional arom enzyme of Neurospora crassa and of the monofunctional 3-dehydroquinase of Escherichia coli were labelled by treatment with 3-dehydroquinate in the presence of NaB3H4. Radioactive peptides were isolated by h.p.l.c. following digestion with CNBr (and in one case after further digestion with trypsin). The sequence established for the N. crassa peptide was ALQHGDVVKLVVGAR, and that for the E. coli peptide was QSFDADIPKIA. An amended nucleotide sequence for the E. coli gene (aroD) that encode 3-dehydroquinase is also presented, along with a revised alignment of the deduced amino acid sequences for the biosynthetic enzymes. PMID:1826831

  7. A comparison of the enzymological and biophysical properties of two distinct classes of dehydroquinase enzymes.

    PubMed Central

    Kleanthous, C; Deka, R; Davis, K; Kelly, S M; Cooper, A; Harding, S E; Price, N C; Hawkins, A R; Coggins, J R

    1992-01-01

    This paper compares the biophysical and mechanistic properties of a typical type I dehydroquinase (DHQase), from the biosynthetic shikimate pathway of Escherichia coli, and a typical type II DHQase, from the quinate pathway of Aspergillus nidulans. C.d. shows that the two proteins have different secondary-structure compositions; the type I enzyme contains approx. 50% alpha-helix while the type II enzyme contains approx. 75% alpha-helix. The stability of the two types of DHQase was compared by denaturant-induced unfolding, as monitored by c.d., and by differential scanning calorimetry. The type II enzyme unfolds at concentrations of denaturant 4-fold greater than the type I and through a series of discrete transitions, while the type I enzyme unfolds in a single transition. These differences in conformational stability were also evident from the calorimetric experiments which show that type I DHQase unfolds as a single co-operative dimer at 57 degrees C whereas the type II enzyme unfolds above 82 degrees C and through a series of transitions suggesting higher orders of structure than that seen for the type I enzyme. Sedimentation and Mr analysis of both proteins by analytical ultracentrifugation is consistent with the unfolding data. The type I DHQase exists predominantly as a dimer with Mr = 46,000 +/- 2000 (a weighted average affected by the presence of monomer) and has a sedimentation coefficient s0(20,w) = 4.12 (+/- 0.08) S whereas the type II enzyme is a dodecamer, weight-average Mr = 190,000 +/- 10,000 and has a sedimentation coefficient, s0(20,w) = 9.96 (+/- 0.21) S. Although both enzymes have reactive histidine residues in the active site and can be inactivated by diethyl pyrocarbonate, the possibility that these structurally dissimilar enzymes catalyse the same dehydration reaction by the same catalytic mechanism is deemed unlikely by three criteria: (1) they have very different pH/log kcat. profiles and pH optima; (2) imine intermediates, which are known

  8. DNA methyltransferase inhibitor CDA-II inhibits myogenic differentiation

    SciTech Connect

    Chen, Zirong; Jin, Guorong; Lin, Shuibin; Lin, Xiumei; Gu, Yumei; Zhu, Yujuan; Hu, Chengbin; Zhang, Qingjiong; Wu, Lizi; Shen, Huangxuan

    2012-06-08

    Highlights: Black-Right-Pointing-Pointer CDA-II inhibits myogenic differentiation in a dose-dependent manner. Black-Right-Pointing-Pointer CDA-II repressed expression of muscle transcription factors and structural proteins. Black-Right-Pointing-Pointer CDA-II inhibited proliferation and migration of C2C12 myoblasts. -- Abstract: CDA-II (cell differentiation agent II), isolated from healthy human urine, is a DNA methyltransferase inhibitor. Previous studies indicated that CDA-II played important roles in the regulation of cell growth and certain differentiation processes. However, it has not been determined whether CDA-II affects skeletal myogenesis. In this study, we investigated effects of CDA-II treatment on skeletal muscle progenitor cell differentiation, migration and proliferation. We found that CDA-II blocked differentiation of murine myoblasts C2C12 in a dose-dependent manner. CDA-II repressed expression of muscle transcription factors, such as Myogenin and Mef2c, and structural proteins, such as myosin heavy chain (Myh3), light chain (Mylpf) and MCK. Moreover, CDA-II inhibited C1C12 cell migration and proliferation. Thus, our data provide the first evidence that CDA-II inhibits growth and differentiation of muscle progenitor cells, suggesting that the use of CDA-II might affect skeletal muscle functions.

  9. Inhibition of dihydroceramide desaturase activity by the sphingosine kinase inhibitor SKI II[S

    PubMed Central

    Cingolani, Francesca; Casasampere, Mireia; Sanllehí, Pol; Casas, Josefina; Bujons, Jordi; Fabrias, Gemma

    2014-01-01

    Sphingosine kinase inhibitor (SKI) II has been reported as a dual inhibitor of sphingosine kinases (SKs) 1 and 2 and has been extensively used to prove the involvement of SKs and sphingosine-1-phosphate (S1P) in cellular processes. Dihydroceramide desaturase (Des1), the last enzyme in the de novo synthesis of ceramide (Cer), regulates the balance between dihydroceramides (dhCers) and Cers. Both SKs and Des1 have interest as therapeutic targets. Here we show that SKI II is a noncompetitive inhibitor (Ki = 0.3 μM) of Des1 activity with effect also in intact cells without modifying Des1 protein levels. Molecular modeling studies support that the SKI II-induced decrease in Des1 activity could result from inhibition of NADH-cytochrome b5 reductase. SKI II, but not the SK1-specific inhibitor PF-543, provoked a remarkable accumulation of dhCers and their metabolites, while both SKI II and PF-543 reduced S1P to almost undetectable levels. SKI II, but not PF543, reduced cell proliferation with accumulation of cells in the G0/G1 phase. SKI II, but not PF543, induced autophagy. These overall findings should be taken into account when using SKI II as a pharmacological tool, as some of the effects attributed to decreased S1P may actually be caused by augmented dhCers and/or their metabolites. PMID:24875537

  10. Angiotensin II inhibitor facilitates epidermal wound regeneration in diabetic mice

    PubMed Central

    Kamber, Maria; Papalazarou, Vasileios; Rouni, Georgia; Papageorgopoulou, Evagelia; Papalois, Apostolos; Kostourou, Vassiliki

    2015-01-01

    Tissue regeneration and wound healing are severely impaired in diabetes and are associated with poor circulation and dysfunctional blood vessels. Angiotensin II inhibitors are anti-hypertensive drugs used in clinical practice to regulate blood pressure and could affect tissue remodeling. We hypothesize that blocking angiotensin II, using Losartan, could facilitate tissue regeneration in diabetic mice. To this end, we established an experimental model of wound healing in streptozotocin-induced diabetic mice. Our data demonstrated that Losartan accelerates wound repair and normalizes wound stromal responses, having a beneficial role in wounds of diabetic individuals. Our findings highlight a potential therapeutic use of Losartan in improving wound repair in diabetic conditions. PMID:26106332

  11. New Found Hope for Antibiotic Discovery: Lipid II Inhibitors.

    PubMed

    Ng, Vivian; Chan, Weng C

    2016-08-26

    Research into antibacterial agents has recently gathered pace in light of the disturbing crisis of antimicrobial resistance. The development of modern tools offers the opportunity of reviving the fallen era of antibacterial discovery through uncovering novel lead compounds that target vital bacterial cell components, such as lipid II. This paper provides a summary of the role of lipid II as well as an overview and insight into the structural features of macrocyclic peptides that inhibit this bacterial cell wall component. The recent discovery of teixobactin, a new class of lipid II inhibitor has generated substantial research interests. As such, the significant progress that has been achieved towards its development as a promising antibacterial agent is discussed. PMID:27388768

  12. Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90

    PubMed Central

    Jun, Kyu-Yeon; Kwon, Youngjoo

    2016-01-01

    There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed. PMID:27582553

  13. Structure-activity relationships of glutamate carboxypeptidase II (GCPII) inhibitors.

    PubMed

    Ferraris, D V; Shukla, K; Tsukamoto, T

    2012-01-01

    Glutamate carboxypeptidase II (GCPII, EC 3.4.17.21) is a zinc metallopeptidase that hydrolyzes N-acetylaspartylglutamate (NAAG) into N-acetylaspartate (NAA) and glutamate in the nervous system. Inhibition of GCPII has the potential to reduce extracellular glutamate and represents an opportune target for treating neurological disorders in which excess glutamate is considered pathogenic. Furthermore, GCPII was found to be identical to a tumor marker, prostate-specific membrane antigen (PSMA), and has drawn significant interest as a diagnostic and/or therapeutic target in oncology. Over the past 15 years, tremendous efforts have been made in the discovery of potent GCPII inhibitors, particularly those with phosphorus-, urea- and thiol-based zinc binding groups. In addition, significant progress has been made in understanding the three-dimensional structural characteristics of GCPII in complex with various ligands. The purpose of this review article is to analyze the structure-activity relationships (SAR) of GCPII inhibitors reported to date, which are classified on the basis of their zinc-binding group. SAR and crystallographic data are evaluated in detail for each of these series to highlight the future challenges and opportunities to identify clinically viable GCPII inhibitors. PMID:22304717

  14. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Chiu, Sophia; Koppikar, Priya; Guryanova, Olga A.; Rapaport, Franck; Xu, Ke; Manova, Katia; Pankov, Dmitry; O’Reilly, Richard J.; Kleppe, Maria; McKenney, Anna Sophia; Shih, Alan H.; Shank, Kaitlyn; Ahn, Jihae; Papalexi, Eftymia; Spitzer, Barbara; Socci, Nick; Viale, Agnes; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Rubert, Joëlle; Dammassa, Ernesta; Romanet, Vincent; Dölemeyer, Arno; Zender, Michael; Heinlein, Melanie; Rampal, Rajit; Weinberg, Rona Singer; Hoffman, Ron; Sellers, William R.; Hofmann, Francesco; Murakami, Masato; Baffert, Fabienne; Gaul, Christoph; Radimerski, Thomas; Levine, Ross L.

    2015-01-01

    Summary Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasms (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated if CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2- and MPL-mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients. PMID:26175413

  15. Interaction of Streptomyces subtilisin inhibitor (SSI) with Streptomyces griseus metallo-endopeptidase II (SGMP II).

    PubMed

    Kumazaki, T; Kajiwara, K; Kojima, S; Miura, K; Ishii, S

    1993-10-01

    We have unexpectedly found that Streptomyces subtilisin inhibitor (SSI) and some other similar serine protease inhibitors produced by Streptomycetes strongly inhibit Streptomyces griseus metallo-endopeptidase II (SGMP II) [Kajiwara, K. et al. (1991) J. Biochem. 110, 350-354]. In order to elucidate the mode of their unusual interaction with SGMP II in more detail, we prepared twelve kinds of SSI analogues, in which one or two amino acid residues in the peptide segment from Thr64 to Val74 of wild-type SSI had been replaced or deleted by site-directed mutagenesis, and determined the dissociation constants of their complexes with SGMP II. Six analogues among them showed dissociation constants one order of magnitude lower than that of the wild type. Three had higher values. The results suggest that at least some residues in this segment are interacting with SGMP II in the complex. We also prepared an SSI mutant in which the disulfide bridge between Cys71 and Cys101 had been eliminated by replacing the two Cys residues with Ser residues. This mutated SSI inhibited SGMP II as strongly as the wild-type SSI did. While peptide bonds in the wild-type molecule did not suffer from the hydrolytic action of SGMP II except those at the amino-terminal fragile portion, the Pro72-Met73 bond of the mutant was specifically cleaved by the enzyme. This peptide bond, therefore, seems to play the role of the reactive site in the interaction of SSI with SGMP II. PMID:8276770

  16. Substrate-Guided Design of Selective FXIIa Inhibitors Based on the Plant-Derived Momordica cochinchinensis Trypsin Inhibitor-II (MCoTI-II) Scaffold.

    PubMed

    Swedberg, Joakim E; Mahatmanto, Tunjung; Abdul Ghani, Hafiza; de Veer, Simon J; Schroeder, Christina I; Harris, Jonathan M; Craik, David J

    2016-08-11

    Thrombosis is a leading cause of morbidity and mortality associated with cardiovascular diseases. Inhibition of factor XIIa (FXIIa) provides thrombus protection without bleeding complications. Here, we defined the extended substrate specificity of FXIIa and its close homologue factor Xa and used these data, together with inhibitor-based and structure-guided methods, to engineer selective FXIIa inhibitors based on Momordica cochinchinensis trypsin inhibitor-II. PMID:27434175

  17. Discovery of Novel Multiacting Topoisomerase I/II and Histone Deacetylase Inhibitors

    PubMed Central

    2015-01-01

    Designing multitarget drugs remains a significant challenge in current antitumor drug discovery. Because of the synergistic effect between topoisomerase and HDAC inhibitors, the present study reported the first-in-class triple inhibitors of topoisomerase I/II and HDAC. On the basis of 3-amino-10-hydroxylevodiamine and SAHA, a series of hybrid molecules was successfully designed and synthesized. In particular, compound 8c was proven to be a potent inhibitor of topoisomerase I/II and HDAC with good antiproliferative and apoptotic activities. This proof-of-concept study also validated the effectiveness of discovering triple topoisomerase I/II and HDAC inhibitors as novel antitumor agents. PMID:25815139

  18. Ulex europaeus agglutinin II (UEA-II) is a novel, potent inhibitor of complement activation.

    PubMed

    Lekowski, R; Collard, C D; Reenstra, W R; Stahl, G L

    2001-02-01

    Complement is an important mediator of vascular injury following oxidative stress. We recently demonstrated that complement activation following endothelial oxidative stress is mediated by mannose-binding lectin (MBL) and activation of the lectin complement pathway. Here, we investigated whether nine plant lectins which have a binding profile similar to that of MBL competitively inhibit MBL deposition and subsequent complement activation following human umbilical vein endothelial cell (HUVEC) oxidative stress. HUVEC oxidative stress (1% O(2), 24 hr) significantly increased Ulex europaeus agglutinin II (UEA-II) binding by 72 +/- 9% compared to normoxic cells. UEA-II inhibited MBL binding to HUVEC in a concentration-dependent manner following oxidative stress. Further, MBL inhibited UEA-II binding to HUVEC in a concentration-dependent manner following oxidative stress, suggesting a common ligand. UEA-II (< or = 100 micromol/L) did not attenuate the hemolytic activity, nor did it inhibit C3a des Arg formation from alternative or classical complement pathway-specific hemolytic assays. C3 deposition (measured by ELISA) following HUVEC oxidative stress was inhibited by UEA-II in a concentration-dependent manner (IC(50) = 10 pmol/L). UEA-II inhibited C3 and MBL co-localization (confocal microscopy) in a concentration-dependent manner on HUVEC following oxidative stress (IC(50) approximately 1 pmol/L). Finally, UEA-II significantly inhibited complement-dependent neutrophil chemotaxis, but failed to inhibit fMLP-mediated chemotaxis, following endothelial oxidative stress. These data demonstrate that UEA-II is a novel, potent inhibitor of human MBL deposition and complement activation following human endothelial oxidative stress. PMID:11266613

  19. Triticum aestivum L. endoxylanase inhibitor (TAXI) consists of two inhibitors, TAXI I and TAXI II, with different specificities.

    PubMed Central

    Gebruers, K; Debyser, W; Goesaert, H; Proost, P; Van Damme J; Delcour, J A

    2001-01-01

    The Triticum aestivum L. endoxylanase inhibitor (TAXI) discovered by Debyser and Delcour [(1997) Eur. Pat. filed April 1997, published as WO 98/49278] and Debyser, Derdelinckx and Delcour [(1997) J. Am. Soc. Brew. Chem. 55, 153-156] seems to be a mixture of two different endoxylanase inhibitors, called TAXI I and TAXI II. By using Aspergillus niger as well as Bacillus subtilis endoxylanases for assaying inhibition activity, both inhibitors could be purified to homogeneity from wheat (Triticum aestivum L., var. Soissons). TAXI I and TAXI II have similar molecular structures. They both have a molecular mass of approx. 40.0 kDa, are not glycosylated and occur in two molecular forms, i.e. a non-proteolytically processed one and a proteolytically processed one. However, the pI of TAXI II (at least 9.3) is higher than that of TAXI I (8.8). TAXI I and TAXI II clearly show different inhibition activities towards different endoxylanases. The N-terminal amino acid sequences of both inhibitors show a high degree of identity, which might indicate that there is an evolutionary relationship between them. PMID:11139386

  20. Design of highly potent urea-based, exosite-binding inhibitors selective for glutamate carboxypeptidase II.

    PubMed

    Tykvart, Jan; Schimer, Jiří; Jančařík, Andrej; Bařinková, Jitka; Navrátil, Václav; Starková, Jana; Šrámková, Karolína; Konvalinka, Jan; Majer, Pavel; Šácha, Pavel

    2015-05-28

    We present here a structure-aided design of inhibitors targeting the active site as well as exosites of glutamate carboxypeptidase II (GCPII), a prostate cancer marker, preparing potent and selective inhibitors that are more than 1000-fold more active toward GCPII than its closest human homologue, glutamate carboxypeptidase III (GCPIII). Additionally, we demonstrate that the prepared inhibitor conjugate can be used for sensitive and selective imaging of GCPII in mammalian cells. PMID:25923815

  1. Pharmacophore modeling studies of type I and type II kinase inhibitors of Tie2.

    PubMed

    Xie, Qing-Qing; Xie, Huan-Zhang; Ren, Ji-Xia; Li, Lin-Li; Yang, Sheng-Yong

    2009-02-01

    In this study, chemical feature based pharmacophore models of type I and type II kinase inhibitors of Tie2 have been developed with the aid of HipHop and HypoRefine modules within Catalyst program package. The best HipHop pharmacophore model Hypo1_I for type I kinase inhibitors contains one hydrogen-bond acceptor, one hydrogen-bond donor, one general hydrophobic, one hydrophobic aromatic, and one ring aromatic feature. And the best HypoRefine model Hypo1_II for type II kinase inhibitors, which was characterized by the best correlation coefficient (0.976032) and the lowest RMSD (0.74204), consists of two hydrogen-bond donors, one hydrophobic aromatic, and two general hydrophobic features, as well as two excluded volumes. These pharmacophore models have been validated by using either or both test set and cross validation methods, which shows that both the Hypo1_I and Hypo1_II have a good predictive ability. The space arrangements of the pharmacophore features in Hypo1_II are consistent with the locations of the three portions making up a typical type II kinase inhibitor, namely, the portion occupying the ATP binding region (ATP-binding-region portion, AP), that occupying the hydrophobic region (hydrophobic-region portion, HP), and that linking AP and HP (bridge portion, BP). Our study also reveals that the ATP-binding-region portion of the type II kinase inhibitors plays an important role to the bioactivity of the type II kinase inhibitors. Structural modifications on this portion should be helpful to further improve the inhibitory potency of type II kinase inhibitors. PMID:19138543

  2. In vivo pharmacological evaluation of two novel type II (inducible) nitric oxide synthase inhibitors.

    PubMed

    Tracey, W R; Nakane, M; Basha, F; Carter, G

    1995-05-01

    Selective type II (inducible) nitric oxide synthase (NOS) inhibitors have several potential therapeutic applications, including treatment of sepsis, diabetes, and autoimmune diseases. The ability of two novel, selective inhibitors of type II NOS, S-ethylisothiourea (EIT) and 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT), to inhibit type II NOS function in vivo was studied in lipopolysaccharide (LPS) treated rats. Type II NOS activity was assessed by measuring changes in plasma nitrite and nitrate concentrations ([NOx]). Both EIT and AMT elicited a dose-dependent and > 95% inhibition of the LPS-induced increase in plasma [NOx]. The ED50 values for EIT and AMT were 0.4 and 0.2 mg/kg, respectively. In addition, the administration of LPS and either NOS inhibitor resulted in a dose-dependent increase in animal mortality; neither compound was lethal when administered alone. Pretreatment with L-arginine (but not D-arginine) prevented the mortality, while not affecting the type II NOS-dependent NO production, suggesting the toxicity may be due to inhibition of one of the other NOS isoforms (endothelial or neuronal). Thus, although EIT and AMT are potent inhibitors of type II NOS function in vivo, type II NOS inhibitors of even greater selectivity may need to be developed for therapeutic applications. PMID:7585335

  3. Response to ICRF-159 in cell lines resistant to cleavable complex-forming topoisomerase II inhibitors.

    PubMed Central

    Davies, S. L.; Bergh, J.; Harris, A. L.; Hickson, I. D.

    1997-01-01

    We have studied the relationship between expression of genes implicated in mediating resistance to cleavable complex-forming topoisomerase II (topo II) inhibitors and cellular sensitivity to ICRF-159, a 'catalytic' inhibitor of topo II. Overexpression of the membrane transporters, P-glycoprotein and multidrug resistance-related protein (MRP), or down-regulation of topo IIalpha and/or -beta, did not confer ICRF-159 resistance. Indeed, marked topo IIalpha down-regulation appeared to be associated with collateral sensitivity to ICRF-159. Our results indicate that the resistance mechanisms that pertain to cleavable complex-forming topo II inhibitors and ICRF-159 are distinct. The evidence presented here suggests that topo IIalpha, not topo IIbeta, is more likely to be the major in vivo target for ICRF-159. Images Figure 1 Figure 2 PMID:9062401

  4. Novel Type II Fatty Acid Biosynthesis (FAS II) Inhibitors as Multistage Antimalarial Agents

    PubMed Central

    Schrader, Florian C.; Glinca, Serghei; Sattler, Julia M.; Dahse, Hans-Martin; Afanador, Gustavo A.; Prigge, Sean T.; Lanzer, Michael; Mueller, Ann-Kristin; Klebe, Gerhard; Schlitzer, Martin

    2013-01-01

    Malaria is a potentially fatal disease caused by Plasmodium parasites and poses a major medical risk in large parts of the world. The development of new, affordable antimalarial drugs is of vital importance as there are increasing reports of resistance to the currently available therapeutics. In addition, most of the current drugs used for chemoprophylaxis merely act on parasites already replicating in the blood. At this point, a patient might already be suffering from the symptoms associated with the disease and could additionally be infectious to an Anopheles mosquito. These insects act as a vector, subsequently spreading the disease to other humans. In order to cure not only malaria but prevent transmission as well, a drug must target both the blood- and pre-erythrocytic liver stages of the parasite. P. falciparum (Pf) enoyl acyl carrier protein (ACP) reductase (ENR) is a key enzyme of plasmodial type II fatty acid biosynthesis (FAS II). It has been shown to be essential for liver-stage development of Plasmodium berghei and is therefore qualified as a target for true causal chemoprophylaxis. Using virtual screening based on two crystal structures of PfENR, we identified a structurally novel class of FAS inhibitors. Subsequent chemical optimization yielded two compounds that are effective against multiple stages of the malaria parasite. These two most promising derivatives were found to inhibit blood-stage parasite growth with IC50 values of 1.7 and 3.0 µm and lead to a more prominent developmental attenuation of liver-stage parasites than the gold-standard drug, primaquine. PMID:23341167

  5. Interactions of Streptomyces serine-protease inhibitors with Streptomyces griseus metalloendopeptidase II.

    PubMed

    Kajiwara, K; Fujita, A; Tsuyuki, H; Kumazaki, T; Ishii, S

    1991-09-01

    Streptomyces griseus metalloendopeptidase II (SGMPII) was shown to form tight complexes with several Streptomyces protein inhibitors which had been believed to be specific to serine proteases, such as Streptomyces subtilisin inhibitor (SSI), plasminostreptin (PS), and alkaline protease inhibitor-2c' (API-2c'), as well as with Streptomyces metalloprotease inhibitor (SMPI). The dissociation constants of complexes between SGMPII and these inhibitors were successfully determined by using a novel fluorogenic bimane-peptide substrate. The values ranged from nM to pM. The results of studies by gel chromatographic and enzymatic analyses indicated that SGMPII is liberated from the complex with SSI by the addition of subtilisin BPN'. SGMPII and subtilisin BPN' proved, therefore, to interact with SSI in a competitive manner, despite the difference in the chemical nature of their active sites. PMID:1769961

  6. Different effects of eubacterial and eukaryotic DNA topoisomerase II inhibitors on chloroplasts ofEuglena gracilis

    NASA Astrophysics Data System (ADS)

    Krajčovič, Juraj; Ebringer, Libor

    1990-03-01

    Inhibitors of eubacterial and eukaryotic DNA topoisomerases type II exhibited different effects on chloroplasts of the flagellateEuglena gracilis. Antibacterial agents (cinoxacin, nalidixic and oxolinic acids, ciprofloxacin, enoxacin, norfloxacin and ofloxacin) from the group of quinolones and coumarins (coumermycin A1, clorobiocin and novobiocin) — all inhibitors of prokaryotic DNA topoisomerase II — were very potent eliminators of chloroplasts fromE. gracilis. In contrast, antitumor drugs (adriamycin, etoposide, teniposide and mitoxantrone) — antagonists of the eukaryotic counterpart — did not affect these semiautonomous photosynthetic organelles. These findings point out again the close evolutionary relationships between eubacteria and chloroplasts and are in agreement with the hypothesis of an endosymbiotic origin of chloroplasts.

  7. Structure-Based Design of Type II Inhibitors Applied to Maternal Embryonic Leucine Zipper Kinase.

    PubMed

    Johnson, Christopher N; Adelinet, Christophe; Berdini, Valerio; Beke, Lijs; Bonnet, Pascal; Brehmer, Dirk; Calo, Frederick; Coyle, Joseph E; Day, Phillip J; Frederickson, Martyn; Freyne, Eddy J E; Gilissen, Ron A H J; Hamlett, Christopher C F; Howard, Steven; Meerpoel, Lieven; Mevellec, Laurence; McMenamin, Rachel; Pasquier, Elisabeth; Patel, Sahil; Rees, David C; Linders, Joannes T M

    2015-01-01

    A novel Type II kinase inhibitor chemotype has been identified for maternal embryonic leucine zipper kinase (MELK) using structure-based ligand design. The strategy involved structural characterization of an induced DFG-out pocket by protein-ligand X-ray crystallography and incorporation of a slender linkage capable of bypassing a large gate-keeper residue, thus enabling design of molecules accessing both hinge and induced pocket regions. Optimization of an initial hit led to the identification of a low-nanomolar, cell-penetrant Type II inhibitor suitable for use as a chemical probe for MELK. PMID:25589926

  8. Structure-Based Design of Type II Inhibitors Applied to Maternal Embryonic Leucine Zipper Kinase

    PubMed Central

    2014-01-01

    A novel Type II kinase inhibitor chemotype has been identified for maternal embryonic leucine zipper kinase (MELK) using structure-based ligand design. The strategy involved structural characterization of an induced DFG-out pocket by protein–ligand X-ray crystallography and incorporation of a slender linkage capable of bypassing a large gate-keeper residue, thus enabling design of molecules accessing both hinge and induced pocket regions. Optimization of an initial hit led to the identification of a low-nanomolar, cell-penetrant Type II inhibitor suitable for use as a chemical probe for MELK. PMID:25589926

  9. Identification of HDAC Inhibitors Using a Cell-Based HDAC I/II Assay.

    PubMed

    Hsu, Chia-Wen; Shou, David; Huang, Ruili; Khuc, Thai; Dai, Sheng; Zheng, Wei; Klumpp-Thomas, Carleen; Xia, Menghang

    2016-07-01

    Histone deacetylases (HDACs) are a class of epigenetic enzymes that regulate gene expression by histone deacetylation. Altered HDAC function has been linked to cancer and neurodegenerative diseases, making HDACs popular therapeutic targets. In this study, we describe a screening approach for identification of compounds that inhibit endogenous class I and II HDACs. A homogeneous, luminogenic HDAC I/II assay was optimized in a 1536-well plate format in several human cancer cell lines, including HCT116 and human neural stem cells. The assay confirmed 37 known HDAC inhibitors from two libraries of known epigenetics-active compounds. Using the assay, we identified a group of potential HDAC inhibitors by screening the National Center for Advancing Translational Sciences (NCATS) Pharmaceutical Collection of 2527 small-molecule drugs. The selected compounds showed similar HDAC I/II inhibitory potency and efficacy values in both HCT116 and neural stem cells. Several previously unidentified HDAC inhibitors were further evaluated and profiled for their selectivity against a panel of 10 HDAC I/II isoforms using fluorogenic HDAC biochemical assays. In summary, our results show that several novel HDAC inhibitors, including nafamostat and piceatannol, have been identified using the HDAC I/II cell-based assay, and multiple cell types have been validated for high-throughput screening of large chemical libraries. PMID:26858181

  10. Rituximab for treatment of inhibitors in haemophilia A. A Phase II study.

    PubMed

    Leissinger, C; Josephson, C D; Granger, S; Konkle, B A; Kruse-Jarres, R; Ragni, M V; Journeycake, J M; Valentino, L; Key, N S; Gill, J C; McCrae, K R; Neufeld, E J; Manno, C; Raffini, L; Saxena, K; Torres, M; Marder, V; Bennett, C M; Assmann, S F

    2014-09-01

    The development of antibodies against infused factor VIII (FVIII) in patients with haemophilia A is a serious complication leading to poorly controlled bleeding and increased morbidity. No treatment has been proven to reduce high titre antibodies in patients who fail immune tolerance induction or are not candidates for it. The Rituximab for the Treatment of Inhibitors in Congenital Hemophilia A (RICH) study was a phase II trial to assess whether rituximab can reduce anamnestic FVIII antibody (inhibitor) titres. Male subjects with severe congenital haemophilia A and an inhibitor titre ≥5 Bethesda Units/ml (BU) following a FVIII challenge infusion received rituximab 375 mg/m² weekly for weeks 1 through 4. Post-rituximab inhibitor titres were measured monthly from week 6 through week 22 to assess treatment response. Of 16 subjects who received at least one dose of rituximab, three (18.8%) met the criteria for a major response, defined as a fall in inhibitor titre to <5 BU, persisting after FVIII re-challenge. One subject had a minor response, defined as a fall in inhibitor titre to <5 BU, increasing to 5-10 BU after FVIII re-challenge, but <50% of the original peak inhibitor titre. Rituximab is useful in lowering inhibitor levels in patients, but its effect as a solo treatment strategy is modest. Future studies are indicated to determine the role of rituximab as an adjunctive therapy in immune tolerisation strategies. PMID:24919980

  11. The purine analog fludarabine acts as a cytosolic 5'-nucleotidase II inhibitor.

    PubMed

    Cividini, F; Pesi, R; Chaloin, L; Allegrini, S; Camici, M; Cros-Perrial, E; Dumontet, C; Jordheim, L P; Tozzi, M G

    2015-03-15

    For several years the IMP/GMP-preferring cytosolic 5'-nucleotidase II (cN-II) has been considered as a therapeutic target in oncology. Indeed, various reports have indicated associations between cN-II expression level and resistance to anticancer agents in several cancer cell lines and in patients affected with neoplasia, mainly by hematologic malignancies. In this paper we present evidence showing that, among the commonly used cytotoxic nucleoside analogs, fludarabine can act as a cN-II inhibitor. In vitro studies using the wild type recombinant cN-II demonstrated that fludarabine inhibited enzymatic activity in a mixed manner (Ki 0.5 mM and Ki' 9 mM), whereas no inhibition was observed with clofarabine and cladribine. Additional experiments with mutant recombinant proteins and an in silico molecular docking indicated that this inhibition is due to an interaction with a regulatory site of cN-II known to interact with adenylic compounds. Moreover, synergy experiments between fludarabine and 6-mercaptopurine in human follicular lymphoma (RL) and human acute promyelocytic leukemia (HL-60) cells transfected with control or cN-II-targeting shRNA-encoding plasmids, showed synergy in control cells and antagonism in cells with decreased cN-II expression. This is in line with the hypothesis that fludarabine acts as a cN-II inhibitor and supports the idea of using cN-II inhibitors in association with other drugs to increase their therapeutic effect and decrease their resistance. PMID:25656700

  12. Photosystem II inhibitor resistance in the Columbia Basin of Washington state

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato and mint (peppermint and spearmint) are commonly produced in the irrigated regions of the Pacific Northwest and both crops rely heavily on photosystem II (PSII) inhibitor herbicides metribuzin (potato) and terbacil (mint) for weed management. Seed was collected in 2010 from Powell amaranth, r...

  13. Structural characterization of P1′-diversified urea-based inhibitors of glutamate carboxypeptidase II

    PubMed Central

    Pavlicek, Jiri; Ptacek, Jakub; Cerny, Jiri; Byun, Youngjoo; Skultetyova, Lubica; Pomper, Martin G.; Lubkowski, Jacek; Barinka, Cyril

    2014-01-01

    Urea-based inhibitors of human glutamate carboxypeptidase II (GCPII) have advanced into clinical trials for imaging metastatic prostate cancer. In parallel efforts, agents with increased lipophilicity have been designed and evaluated for targeting GCPII residing within the neuraxis. Here we report the structural and computational characterization of six complexes between GCPII and P1′-diversified urea-based inhibitors that have the C-terminal glutamate replaced by more hydrophobic moieties. The X-ray structures are complemented by quantum mechanics calculations that provide a quantitative insight into the GCPII/inhibitor interactions. These data can be used for the rational design of novel glutamate-free GCPII inhibitors with tailored physicochemical properties. PMID:24731280

  14. Carborane-containing urea-based inhibitors of glutamate carboxypeptidase II: Synthesis and structural characterization.

    PubMed

    Youn, Sihyun; Kim, Kyung Im; Ptacek, Jakub; Ok, Kiwon; Novakova, Zora; Kim, YunHye; Koo, JaeHyung; Barinka, Cyril; Byun, Youngjoo

    2015-11-15

    Glutamate carboxypeptidase II (GCPII) is a zinc metalloprotease on the surface of astrocytes which cleaves N-acetylaspartylglutamate to release N-acetylaspartate and glutamate. GCPII inhibitors can decrease glutamate concentration and play a protective role against apoptosis or degradation of brain neurons. Herein, we report the synthesis and structural analysis of novel carborane-based GCPII inhibitors. We determined the X-ray crystal structure of GCPII in complex with a carborane-containing inhibitor at 1.79Å resolution. The X-ray analysis revealed that the bulky closo-carborane cluster is located in the spacious entrance funnel region of GCPII, indicating that the carborane cluster can be further structurally modified to identify promising lead structures of novel GCPII inhibitors. PMID:26459214

  15. Carbonic Anhydrase Interaction With Lipothioars Enites: A Novel Class of Isozymes I and II Inhibitors

    PubMed Central

    Timotheatou, Despina; Ioannou, Panayiotis V.; Scozzafava, Andrea; Briganti, Fabrizio

    1996-01-01

    The interaction of carbonic anhydrase (CA) isozymes I and II with a series of As(III) derivatives, dialkyl and diaryl rac-2,3-dimyristoyloxypropyldithioarsonites, was investigated kinetically and spectrophotometrically, utilizing the native and Co(II)-substituted enzymes. Depending on the substitution pattern at the -As(SR)2 moiety of the investigated derivatives, inactive compounds were found for R = phenyl or naphthyl, and active ones for derivatives containing carboxyl groups (R = CH2COOH, cysteinyl and glutathionyl). Together with the arsonolipids previously investigated, the active compounds of this series - the "lipothioarsenites"- constitute a novel class of CA inhibitors that bind to the metal ion within the enzyme active site, as proved by changes in the electronic spectra of adducts of such inhibitors with Co(II)CA. PMID:18475756

  16. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  17. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  18. Classical and slow-binding inhibitors of human type II arginase.

    PubMed

    Colleluori, D M; Ash, D E

    2001-08-01

    Arginases catalyze the hydrolysis of L-arginine to yield L-ornithine and urea. Recent studies indicate that arginases, both the type I and type II isozymes, participate in the regulation of nitric oxide production by modulating the availability of arginine for nitric oxide synthase. Due to the reciprocal regulation between arginase and nitric oxide synthase, arginase inhibitors have therapeutic potential in treating nitric oxide-dependent smooth muscle disorders, such as erectile dysfunction. We demonstrate the competitive inhibition of the mitochondrial human type II arginase by N(omega)-hydroxy-L-arginine, the intermediate in the reaction catalyzed by nitric oxide synthase, and its analogue N(omega)-hydroxy-nor-L-arginine, with K(i) values of 1.6 microM and 51 nM at pH 7.5, respectively. We also demonstrate the inhibition of human type II arginase by the boronic acid-based transition-state analogues 2(S)-amino-6-boronohexanoic acid (ABH) and S-(2-boronoethyl)-L-cysteine (BEC), which are known inhibitors of type I arginase. At pH 7.5, both ABH and BEC are classical, competitive inhibitors of human type II arginase with K(i) values of 0.25 and 0.31 microM, respectively. However, at pH 9.5, ABH and BEC are slow-binding inhibitors of the enzyme with K(i) values of 8.5 and 30 nM, respectively. The findings presented here indicate that the design of arginine analogues with uncharged, tetrahedral functional groups will lead to the development of more potent inhibitors of arginases at physiological pH. PMID:11478904

  19. Topoisomerase I and II inhibitors: chemical structure, mechanisms of action and role in cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Dezhenkova, L. G.; Tsvetkov, V. B.; Shtil, A. A.

    2014-01-01

    The review summarizes and analyzes recent published data on topoisomerase I and II inhibitors as potential antitumour agents. Functions and the mechanism of action of topoisomerases are considered. The molecular mechanism of interactions between low-molecular-weight compounds and these proteins is discussed. Topoisomerase inhibitors belonging to different classes of chemical compounds are systematically covered. Assays for the inhibition of topoisomerases and the possibilities of using the computer-aided modelling for the rational design of novel drugs for cancer chemotherapy are presented. The bibliography includes 127 references.

  20. Icariside II, a novel phosphodiesterase-5 inhibitor, attenuates streptozotocin-induced cognitive deficits in rats.

    PubMed

    Yin, Caixia; Deng, Yuanyuan; Gao, Jianmei; Li, Xiaohui; Liu, Yuangui; Gong, Qihai

    2016-07-22

    Beta-amyloid (Aβ) deposition and neuroinflammation are involved in Alzheimer's disease (AD)-type neurodegeneration with cognitive deficits. Phosphodiesterase-5 (PDE5) inhibitors have recently been studied as a potential target for cognitive enhancement by reducing inflammatory responses and Aβ levels. The present study was designed to investigate the effects of icariside II (ICS II), a novel PDE5 inhibitor derived from the traditional Chinese herb Epimedium brevicornum, on cognitive deficits, Aβ levels and neuroinflammation induced by intracerebroventricular-streptozotocin (ICV-STZ) in rats. The results demonstrated that ICV-STZ exhibited cognitive deficits and neuronal morphological damage, along with Aβ increase and neuroinflammation in the rat hippocampus. ICS II improved cognitive deficits, attenuated neuronal death, and decreased the levels of Aβ1-40, Aβ1-42 and PDE5 in the hippocampus of STZ rats. Furthermore, administration of ICS II at the dose of 10mg/kg for 21days significantly suppressed the expression of beta-amyloid precursor protein (APP), beta-secretase1 (BACE1) and increased the expressions of neprilysin (NEP) together with inhibited interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, cyclooxygenase-2 (COX-2) and transforming growth factor-β1 (TGF-β1) levels. In addition, ICS II exerted a beneficial effect on inhibition of IκB-α degradation and NF-κB activation induced by STZ. Taken together, the present study demonstrated that ICS II was a potential therapeutic agent for AD treatment. PMID:27109920

  1. Identification of Noncompetitive Inhibitors of Cytosolic 5'-Nucleotidase II Using a Fragment-Based Approach.

    PubMed

    Marton, Zsuzsanna; Guillon, Rémi; Krimm, Isabelle; Preeti; Rahimova, Rahila; Egron, David; Jordheim, Lars P; Aghajari, Nushin; Dumontet, Charles; Périgaud, Christian; Lionne, Corinne; Peyrottes, Suzanne; Chaloin, Laurent

    2015-12-24

    We used a combined approach based on fragment-based drug design (FBDD) and in silico methods to design potential inhibitors of the cytosolic 5'-nucleotidase II (cN-II), which has been recognized as an important therapeutic target in hematological cancers. Two subgroups of small compounds (including adenine and biaryl moieties) were identified as cN-II binders and a fragment growing strategy guided by molecular docking was considered. Five compounds induced a strong inhibition of the 5'-nucleotidase activity in vitro, and the most potent ones were characterized as noncompetitive inhibitors. Biological evaluation in cancer cell lines showed synergic effect with selected anticancer drugs. Structural studies using X-ray crystallography lead to the identification of new binding sites for two derivatives and of a new crystal form showing important domain swapping. Altogether, the strategy developed herein allowed identifying new original noncompetitive inhibitors against cN-II that act in a synergistic manner with well-known antitumoral agents. PMID:26599519

  2. Angiotensin II induces secretion of plasminogen activator inhibitor 1 and a tissue metalloprotease inhibitor-related protein from rat brain astrocytes

    SciTech Connect

    Olson, J.A. Jr.; Shiverick, K.T.; Ogilvie, S.; Buhi, W.C.; Raizada, M.K. )

    1991-03-01

    The present study investigates angiotensin (Ang) II effects on secretory protein synthesis in brain astrocytes cultured from neonatal and 21-day-old rats. Ang II-induced changes in the de novo synthesis of (35S)methionine-labeled secretory proteins were visualized using two-dimensional NaDodSO4/PAGE. Astrocytes from 21-day-old rat brain possess specific high-affinity receptors for Ang II. These cells express two Ang II-induced secretory proteins with Mr 55,000 (AISP-55K) and Mr 30,000 (AISP-30K), which were time- and dose-dependent (EC50, 1 nM). (Sar1, Ile8)Ang II (where Sar is sarcosine) inhibited Ang II-induced secretion of AISP-55K but not AISP-30K. N-terminal amino acid sequencing indicates that AISP-55K is identical to rat plasminogen activator inhibitor 1, whereas AISP-30K exhibits 72-81% identity to three closely related proteins: human tissue inhibitor of metalloproteases, a rat phorbol ester-induced protein, and the murine growth-responsive protein 16C8. Immunofluorescent staining with rat plasminogen activator inhibitor 1 antibody was induced in the majority of cells in culture after Ang II treatment of astrocytes from 21-day-old rat brains. Absence of this response to Ang II in astrocytes from neonatal rat brain provides evidence that this action of Ang II on astrocytes is developmentally regulated.

  3. Strategies for the modulation of phase II metabolism in a series of PKCε inhibitors.

    PubMed

    Clemens, Jeremy J; Coon, Timothy; Busch, Brett B; Asgian, Juliana L; Hudson, Sarah; Termin, Andreas; Flores, Tina B; Tran, Dao; Chiang, Peggy; Sperry, Sam; Gross, Ray; Abt, Jeffrey; Heim, Roger; Lechner, Sandra; Twin, Heather; Studley, John; Brenchley, Guy; Collier, Philip N; Pierard, Francoise; Miller, Andrew; Mak, Chau; Dvornikovs, Vadims; Jimenez, Juan-Miguel; Stamos, Dean

    2014-08-01

    Extensive phase II metabolism of an advanced PKCε inhibitor resulted in sub-optimal pharmacokinetics in rat marked by elevated clearance. Synthesis of the O-glucuronide metabolite as a standard was followed by three distinct strategies to specifically temper phase II metabolic degradation of the parent molecule. In this study, it was determined that the introduction of proximal polarity to the primary alcohol generally curbed O-glucuronidation and improved PK and physical chemical properties while maintaining potency against the target. Utilization of a Jacobsen hydrolytic kinetic resolution to obtain optically enriched final compounds is also discussed. PMID:24939756

  4. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field

    PubMed Central

    Dunse, K. M.; Stevens, J. A.; Lay, F. T.; Gaspar, Y. M.; Heath, R. L.; Anderson, M. A.

    2010-01-01

    Potato type I and II serine protease inhibitors are produced by solanaceous plants as a defense mechanism against insects and microbes. Nicotiana alata proteinase inhibitor (NaPI) is a multidomain potato type II inhibitor (pin II) that is produced at high levels in the female reproductive tissues of the ornamental tobacco, Nicotiana alata. The individual inhibitory domains of NaPI target the major classes of digestive enzymes, trypsin and chymotrypsin, in the gut of lepidopteran larval pests. Although consumption of NaPI dramatically reduced the growth and development of a major insect pest, Helicoverpa punctigera, we discovered that surviving larvae had high levels of chymotrypsin activity resistant to inhibition by NaPI. We found a potato type I inhibitor, Solanum tuberosum potato type I inhibitor (StPin1A), was a strong inhibitor of the NaPI-resistant chymotrypsin activity. The combined inhibitory effect of NaPI and StPin1A on H. armigera larval growth in the laboratory was reflected in the increased yield of cotton bolls in field trials of transgenic plants expressing both inhibitors. Better crop protection thus is achieved using combinations of inhibitors in which one class of proteinase inhibitor is used to match the genetic capacity of an insect to adapt to a second class of proteinase inhibitor. PMID:20696895

  5. Cutaneous adverse effects of targeted therapies: Part II: Inhibitors of intracellular molecular signaling pathways.

    PubMed

    Macdonald, James B; Macdonald, Brooke; Golitz, Loren E; LoRusso, Patricia; Sekulic, Aleksandar

    2015-02-01

    The last decade has spawned an exciting new era of oncotherapy in dermatology, including the development of targeted therapies for metastatic melanoma and basal cell carcinoma. Along with skin cancer, deregulation of the PI3K-AKT-mTOR and RAS-RAF-MEK-ERK intracellular signaling pathways contributes to tumorigenesis of a multitude of other cancers, and inhibitors of these pathways are being actively studied. Similar to other classes of targeted therapies, cutaneous adverse effects are among the most frequent toxicities observed with mitogen-activated protein kinase pathway inhibitors, PI3K-AKT-mTOR inhibitors, hedgehog signaling pathway inhibitors, and immunotherapies. Given the rapid expansion of these families of targeted treatments, dermatologists will be essential in offering dermatologic supportive care measures to cancer patients being treated with these agents. Part II of this continuing medical education article reviews skin-related adverse sequelae, including the frequency of occurrence and the implications associated with on- and off-target cutaneous toxicities of inhibitors of the RAS-RAF-MEK-ERK pathway, PI3K-AKT-mTOR pathway, hedgehog signaling pathway, and immunotherapies. PMID:25592339

  6. Catalytic inhibitors of topoisomerase II differently modulate the toxicity of anthracyclines in cardiac and cancer cells.

    PubMed

    Vavrova, Anna; Jansova, Hana; Mackova, Eliska; Machacek, Miloslav; Haskova, Pavlina; Tichotova, Lucie; Sterba, Martin; Simunek, Tomas

    2013-01-01

    Anthracyclines (such as doxorubicin or daunorubicin) are among the most effective anticancer drugs, but their usefulness is hampered by the risk of irreversible cardiotoxicity. Dexrazoxane (ICRF-187) is the only clinically approved cardioprotective agent against anthracycline cardiotoxicity. Its activity has traditionally been attributed to the iron-chelating effects of its metabolite with subsequent protection from oxidative stress. However, dexrazoxane is also a catalytic inhibitor of topoisomerase II (TOP2). Therefore, we examined whether dexrazoxane and two other TOP2 catalytic inhibitors, namely sobuzoxane (MST-16) and merbarone, protect cardiomyocytes from anthracycline toxicity and assessed their effects on anthracycline antineoplastic efficacy. Dexrazoxane and two other TOP2 inhibitors protected isolated neonatal rat cardiomyocytes against toxicity induced by both doxorubicin and daunorubicin. However, none of the TOP2 inhibitors significantly protected cardiomyocytes in a model of hydrogen peroxide-induced oxidative injury. In contrast, the catalytic inhibitors did not compromise the antiproliferative effects of the anthracyclines in the HL-60 leukemic cell line; instead, synergistic interactions were mostly observed. Additionally, anthracycline-induced caspase activation was differentially modulated by the TOP2 inhibitors in cardiac and cancer cells. Whereas dexrazoxane was upon hydrolysis able to significantly chelate intracellular labile iron ions, no such effect was noted for either sobuzoxane or merbarone. In conclusion, our data indicate that dexrazoxane may protect cardiomyocytes via its catalytic TOP2 inhibitory activity rather than iron-chelation activity. The differential expression and/or regulation of TOP2 isoforms in cardiac and cancer cells by catalytic inhibitors may be responsible for the selective modulation of anthracycline action observed. PMID:24116135

  7. Selective CNS Uptake of the GCP-II Inhibitor 2-PMPA following Intranasal Administration.

    PubMed

    Rais, Rana; Wozniak, Krystyna; Wu, Ying; Niwa, Minae; Stathis, Marigo; Alt, Jesse; Giroux, Marc; Sawa, Akira; Rojas, Camilo; Slusher, Barbara S

    2015-01-01

    Glutamate carboxypeptidase II (GCP-II) is a brain metallopeptidase that hydrolyzes the abundant neuropeptide N-acetyl-aspartyl-glutamate (NAAG) to NAA and glutamate. Small molecule GCP-II inhibitors increase brain NAAG, which activates mGluR3, decreases glutamate, and provide therapeutic utility in a variety of preclinical models of neurodegenerative diseases wherein excess glutamate is presumed pathogenic. Unfortunately no GCP-II inhibitor has advanced clinically, largely due to their highly polar nature resulting in insufficient oral bioavailability and limited brain penetration. Herein we report a non-invasive route for delivery of GCP-II inhibitors to the brain via intranasal (i.n.) administration. Three structurally distinct classes of GCP-II inhibitors were evaluated including DCMC (urea-based), 2-MPPA (thiol-based) and 2-PMPA (phosphonate-based). While all showed some brain penetration following i.n. administration, 2-PMPA exhibited the highest levels and was chosen for further evaluation. Compared to intraperitoneal (i.p.) administration, equivalent doses of i.n. administered 2-PMPA resulted in similar plasma exposures (AUC0-t, i.n./AUC0-t, i.p. = 1.0) but dramatically enhanced brain exposures in the olfactory bulb (AUC0-t, i.n./AUC0-t, i.p. = 67), cortex (AUC0-t, i.n./AUC0-t, i.p. = 46) and cerebellum (AUC0-t, i.n./AUC0-t, i.p. = 6.3). Following i.n. administration, the brain tissue to plasma ratio based on AUC0-t in the olfactory bulb, cortex, and cerebellum were 1.49, 0.71 and 0.10, respectively, compared to an i.p. brain tissue to plasma ratio of less than 0.02 in all areas. Furthermore, i.n. administration of 2-PMPA resulted in complete inhibition of brain GCP-II enzymatic activity ex-vivo confirming target engagement. Lastly, because the rodent nasal system is not similar to humans, we evaluated i.n. 2-PMPA also in a non-human primate. We report that i.n. 2-PMPA provides selective brain delivery with micromolar concentrations. These studies support

  8. Selective CNS Uptake of the GCP-II Inhibitor 2-PMPA following Intranasal Administration

    PubMed Central

    Rais, Rana; Wozniak, Krystyna; Wu, Ying; Niwa, Minae; Stathis, Marigo; Alt, Jesse; Giroux, Marc; Sawa, Akira; Rojas, Camilo; Slusher, Barbara S.

    2015-01-01

    Glutamate carboxypeptidase II (GCP-II) is a brain metallopeptidase that hydrolyzes the abundant neuropeptide N-acetyl-aspartyl-glutamate (NAAG) to NAA and glutamate. Small molecule GCP-II inhibitors increase brain NAAG, which activates mGluR3, decreases glutamate, and provide therapeutic utility in a variety of preclinical models of neurodegenerative diseases wherein excess glutamate is presumed pathogenic. Unfortunately no GCP-II inhibitor has advanced clinically, largely due to their highly polar nature resulting in insufficient oral bioavailability and limited brain penetration. Herein we report a non-invasive route for delivery of GCP-II inhibitors to the brain via intranasal (i.n.) administration. Three structurally distinct classes of GCP-II inhibitors were evaluated including DCMC (urea-based), 2-MPPA (thiol-based) and 2-PMPA (phosphonate-based). While all showed some brain penetration following i.n. administration, 2-PMPA exhibited the highest levels and was chosen for further evaluation. Compared to intraperitoneal (i.p.) administration, equivalent doses of i.n. administered 2-PMPA resulted in similar plasma exposures (AUC0-t, i.n./AUC0-t, i.p. = 1.0) but dramatically enhanced brain exposures in the olfactory bulb (AUC0-t, i.n./AUC0-t, i.p. = 67), cortex (AUC0-t, i.n./AUC0-t, i.p. = 46) and cerebellum (AUC0-t, i.n./AUC0-t, i.p. = 6.3). Following i.n. administration, the brain tissue to plasma ratio based on AUC0-t in the olfactory bulb, cortex, and cerebellum were 1.49, 0.71 and 0.10, respectively, compared to an i.p. brain tissue to plasma ratio of less than 0.02 in all areas. Furthermore, i.n. administration of 2-PMPA resulted in complete inhibition of brain GCP-II enzymatic activity ex-vivo confirming target engagement. Lastly, because the rodent nasal system is not similar to humans, we evaluated i.n. 2-PMPA also in a non-human primate. We report that i.n. 2-PMPA provides selective brain delivery with micromolar concentrations. These studies support

  9. Differential effects of viroporin inhibitors against feline infectious peritonitis virus serotypes I and II.

    PubMed

    Takano, Tomomi; Nakano, Kenta; Doki, Tomoyoshi; Hohdatsu, Tsutomu

    2015-05-01

    Feline infectious peritonitis virus (FIP virus: FIPV), a feline coronavirus of the family Coronaviridae, causes a fatal disease called FIP in wild and domestic cat species. The genome of coronaviruses encodes a hydrophobic transmembrane protein, the envelope (E) protein. The E protein possesses ion channel activity. Viral proteins with ion channel activity are collectively termed "viroporins". Hexamethylene amiloride (HMA), a viroporin inhibitor, can inhibit the ion channel activity of the E protein and replication of several coronaviruses. However, it is not clear whether HMA and other viroporin inhibitors affect replication of FIPV. We examined the effect of HMA and other viroporin inhibitors (DIDS [4,4'-disothiocyano-2,2'-stilbenedisulphonic acid] and amantadine) on infection by FIPV serotypes I and II. HMA treatment drastically decreased the titers of FIPV serotype I strains Black and KU-2 in a dose-dependent manner, but it only slightly decreased the titer of FIPV serotype II strain 79-1146. In contrast, DIDS treatment decreased the titer of FIPV serotype II strain 79-1146 in dose-dependent manner, but it only slightly decreased the titers of FIPV serotype I strains Black and KU-2. We investigated whether there is a difference in ion channel activity of the E protein between viral serotypes using E. coli cells expressing the E protein of FIPV serotypes I and II. No difference was observed, suggesting that a viroporin other than the E protein influences the differences in the actions of HMA and DIDS on FIPV serotypes I and II. PMID:25701212

  10. Discovery of arjunolic acid as a novel non-zinc binding carbonic anhydrase II inhibitor.

    PubMed

    Kalyanavenkataraman, Subhalakshmi; Nanjan, Pandurangan; Banerji, Asoke; Nair, Bipin G; Kumar, Geetha B

    2016-06-01

    Elevated levels of carbonic anhydrase II (CA II) have been shown to be associated with cardiac hypertrophy and heart failure. Although arjunolic acid (AA) has a diverse range of therapeutic applications including cardio-protection, there have been no reports on the effect of AA on CA II. The present study describes for the first time, the novel zinc independent inhibition of CA II by AA. The molecular docking studies of AA indicated that the hydroxyl group at C2 of the A-ring, which hydrogen bonds with the catalytic site residues (His64, Asn62 and Asn67), along with the gem-dimethyl group at C20 of the E-ring, greatly influences the inhibitory activity, independent of the catalytic zinc, unlike the inhibition observed with most CA II inhibitors. Among the triterpenoids tested viz. arjunolic acid, arjunic acid, asiatic acid, oleanolic acid and ursolic acid, AA was the most potent in inhibiting CA II in vitro with an IC50 of 9μM. It was interesting to note, that in spite of exhibiting very little differences in their structures, these triterpenoids exhibited vast differences in their inhibitory activities, with IC50 values ranging from 9μM to as high as 333μM. Furthermore, AA also inhibited the cytosolic activity of CA in H9c2 cardiomyocytes, as reflected by the decrease in acidification of the intracellular pH (pHi). The decreased acidification reduced the intracellular calcium levels, which further prevented the mitochondrial membrane depolarization. Thus, these studies provide a better understanding for establishing the novel molecular mechanism involved in CA II inhibition by the non-zinc binding inhibitor AA. PMID:27038848

  11. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    SciTech Connect

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun Zhuang, Wen-Fang

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  12. Switch control pocket inhibitors of p38-MAP kinase. Durable type II inhibitors that do not require binding into the canonical ATP hinge region

    SciTech Connect

    Ahn, Yu Mi; Clare, Michael; Ensinger, Carol L.; Hood, Molly M.; Lord, John W.; Lu, Wei-Ping; Miller, David F.; Patt, William C.; Smith, Bryan D.; Vogeti, Lakshminarayana; Kaufman, Michael D.; Petillo, Peter A.; Wise, Scott C.; Abendroth, Jan; Chun, Lawrence; Clark, Robin; Feese, Michael; Kim, Hidong; Stewart, Lance; Flynn, Daniel L.

    2012-01-20

    Switch control pocket inhibitors of p38-alpha kinase are described. Durable type II inhibitors were designed which bind to arginines (Arg67 or Arg70) that function as key residues for mediating phospho-threonine 180 dependant conformational fluxing of p38-alpha from an inactive type II state to an active type I state. Binding to Arg70 in particular led to potent inhibitors, exemplified by DP-802, which also exhibited high kinase selectivity. Binding to Arg70 obviated the requirement for binding into the ATP Hinge region. X-ray crystallography revealed that DP-802 and analogs induce an enhanced type II conformation upon binding to either the unphosphorylated or the doubly phosphorylated form of p38-alpha kinase.

  13. Substrate and Inhibitor Specificity of the Type II p21-Activated Kinase, PAK6

    PubMed Central

    Gao, Jia; Ha, Byung Hak; Lou, Hua Jane; Morse, Elizabeth M.; Zhang, Rong; Calderwood, David A.; Turk, Benjamin E.; Boggon, Titus J.

    2013-01-01

    The p21-activated kinases (PAKs) are important effectors of Rho-family small GTPases. The PAK family consists of two groups, type I and type II, which have different modes of regulation and signaling. PAK6, a type II PAK, influences behavior and locomotor function in mice and has an ascribed role in androgen receptor signaling. Here we show that PAK6 has a peptide substrate specificity very similar to the other type II PAKs, PAK4 and PAK5 (PAK7). We find that PAK6 catalytic activity is inhibited by a peptide corresponding to its N-terminal pseudosubstrate. Introduction of a melanoma-associated mutation, P52L, into this peptide reduces pseudosubstrate autoinhibition of PAK6, and increases phosphorylation of its substrate PACSIN1 (Syndapin I) in cells. Finally we determine two co-crystal structures of PAK6 catalytic domain in complex with ATP-competitive inhibitors. We determined the 1.4 Å co-crystal structure of PAK6 with the type II PAK inhibitor PF-3758309, and the 1.95 Å co-crystal structure of PAK6 with sunitinib. These findings provide new insights into the structure-function relationships of PAK6 and may facilitate development of PAK6 targeted therapies. PMID:24204982

  14. Photosystem II-inhibitors play a limited role in sweet corn response to 4-hydroxyphenyl pyruvate dioxygenase-inhibiting herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Postemergence (POST) application of 4-hydroxyphenyl pyruvate dioxygenase (HPPD) inhibitors in combination with a photosystem II (PSII) inhibitor, such as atrazine, is common practice in sweet corn production. Given the sensitivity of sweet corn to HPPD-inhibiting herbicides, the objective of this wo...

  15. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene.

    PubMed

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-06-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  16. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene

    PubMed Central

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-01-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  17. Structures of plasmepsin II from Plasmodium falciparum in complex with two hydroxyethylamine-based inhibitors.

    PubMed

    Recacha, Rosario; Leitans, Janis; Akopjana, Inara; Aprupe, Lilija; Trapencieris, Peteris; Jaudzems, Kristaps; Jirgensons, Aigars; Tars, Kaspars

    2015-12-01

    Plasmepsin II (PMII) is one of the ten plasmepsins (PMs) identified in the genome of Plasmodium falciparum, the causative agent of the most severe and deadliest form of malaria. Owing to the emergence of P. falciparum strains that are resistant to current antimalarial agents such as chloroquine and sulfadoxine/pyrimethamine, there is a constant pressure to find new and lasting chemotherapeutic drug therapies. Previously, the crystal structure of PMII in complex with NU655, a potent antimalarial hydroxyethylamine-based inhibitor, and the design of new compounds based on it have been reported. In the current study, two of these newly designed hydroxyethylamine-based inhibitors, PG418 and PG394, were cocrystallized with PMII and their structures were solved, analyzed and compared with that of the PMII-NU655 complex. Structural analysis of the PMII-PG418 complex revealed that the flap loop can adopt a fully closed conformation, stabilized by interactions with the inhibitor, and a fully open conformation, causing an overall expansion in the active-site cavity, which in turn causes unstable binding of the inhibitor. PG418 also stabilizes the flexible loop Gln275-Met286 of another monomer in the asymmetric unit of PMII, which is disordered in the PMII-NU655 complex structure. The crystal structure of PMII in complex with the inhibitor PG418 demonstrates the conformational flexibility of the active-site cavity of the plasmepsins. The interactions of the different moieties in the P1' position of PG418 and PG394 with Thr217 have to be taken into account in the design of new potent plasmepsin inhibitors. PMID:26625296

  18. Interactions between Human Glutamate Carboxypeptidase II and Urea-Based Inhibitors: Structural Characterization

    SciTech Connect

    Barinka, Cyril; Byun, Youngjoo; Dusich, Crystal L.; Banerjee, Sangeeta R.; Chen, Ying; Castanares, Mark; Kozikowski, Alan P.; Mease, Ronnie C.; Pomper, Martin G.; Lubkowski, Jacek

    2009-01-21

    Urea-based, low molecular weight ligands of glutamate carboxypeptidase II (GCPII) have demonstrated efficacy in various models of neurological disorders and can serve as imaging agents for prostate cancer. To enhance further development of such compounds, we determined X-ray structures of four complexes between human GCPII and urea-based inhibitors at high resolution. All ligands demonstrate an invariant glutarate moiety within the S1{prime} pocket of the enzyme. The ureido linkage between P1 and P1{prime} inhibitor sites interacts with the active-site Zn{sub 1}{sup 2+} ion and the side chains of Tyr552 and His553. Interactions within the S1 pocket are defined primarily by a network of hydrogen bonds between the P1 carboxylate group of the inhibitors and the side chains of Arg534, Arg536, and Asn519. Importantly, we have identified a hydrophobic pocket accessory to the S1 site that can be exploited for structure-based design of novel GCPII inhibitors with increased lipophilicity.

  19. Novel Substrate-Based Inhibitors of Human Glutamate Carboxypeptidase II with Enhanced Lipophilicity

    SciTech Connect

    Plechanovová, Anna; Byun, Youngjoo; Alquicer, Glenda; Škultétyová, L; ubica; Ml; #269; ochová, Petra; N; #283; mcová, Adriana; Kim, Hyung-Joon; Navrátil, Michal; Mease, Ronnie; Lubkowski, Jacek; Pomper, Martin; Konvalinka, Jan; Rulíšek, Lubomír; Ba; #345; inka, Cyril

    2012-10-09

    Virtually all low molecular weight inhibitors of human glutamate carboxypeptidase II (GCPII) are highly polar compounds that have limited use in settings where more lipophilic molecules are desired. Here we report the identification and characterization of GCPII inhibitors with enhanced liphophilicity that are derived from a series of newly identified dipeptidic GCPII substrates featuring nonpolar aliphatic side chains at the C-terminus. To analyze the interactions governing the substrate recognition by GCPII, we determined crystal structures of the inactive GCPII(E424A) mutant in complex with selected dipeptides and complemented the structural data with quantum mechanics/molecular mechanics calculations. Results reveal the importance of nonpolar interactions governing GCPII affinity toward novel substrates as well as formerly unnoticed plasticity of the S1' specificity pocket. On the basis of those data, we designed, synthesized, and evaluated a series of novel GCPII inhibitors with enhanced lipophilicity, with the best candidates having low nanomolar inhibition constants and clogD > -0.3. Our findings offer new insights into the design of more lipophilic inhibitors targeting GCPII.

  20. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  1. Secretion of mucus proteinase inhibitor and elafin by Clara cell and type II pneumocyte cell lines.

    PubMed

    Sallenave, J M; Silva, A; Marsden, M E; Ryle, A P

    1993-02-01

    The regulation of proteinases secreted by neutrophils is very important for the prevention of tissue injury. We recently described the isolation of elafin from bronchial secretions, a new elastase-specific inhibitor that is also found in the skin of patients with psoriasis. In this study, we investigated the secretion of elafin and mucus proteinase inhibitor (MPI), another inhibitor showing sequence similarity with elafin, in two lung carcinoma cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. The results presented show that the two inhibitors are produced when the cells are cultured either in serum-free or in serum-containing media. MPI was detected immunologically as a unique molecule of M(r) 14 kD, in accordance with previous studies. Conversely, one or two elafin-immunoreactive species were detected depending on the cell line: a 12- to 14-kD species was observed in the A549 cell line, regardless of the culture conditions, whereas in the NCI-H322 cell line we detected a 6-kD species in serum-containing (10% fetal calf serum) conditions and a 12- to 14-kD species in serum-free conditions. The 12- to 14-kD molecule probably represents an active precursor of elafin. Whether the cleavage of the 12- to 14-kD precursor giving rise to the elafin molecule is of any physiologic significance is not known. In showing for the first time that MPI and elafin (and its precursor) are secreted by the A549 cell line, this report implicates the type II alveolar cell in the defense of the peripheral lung against the neutrophil elastase secreted during inflammation. PMID:8427705

  2. Rational Design Synthesis and Evaluation of New Selective Inhibitors of Microbial Class II (Zinc Dependent) Fructose Bis-phosphate Aldolases

    SciTech Connect

    R Daher; M Coincon; M Fonvielle; P Gest; M Guerin; M Jackson; J Sygusch; M Therisod

    2011-12-31

    We report the synthesis and biochemical evaluation of several selective inhibitors of class II (zinc dependent) fructose bis-phosphate aldolases (Fba). The products were designed as transition-state analogues of the catalyzed reaction, structurally related to the substrate fructose bis-phosphate (or sedoheptulose bis-phosphate) and based on an N-substituted hydroxamic acid, as a chelator of the zinc ion present in active site. The compounds synthesized were tested on class II Fbas from various pathogenic microorganisms and, by comparison, on a mammalian class I Fba. The best inhibitor shows Ki against class II Fbas from various pathogens in the nM range, with very high selectivity (up to 105). Structural analyses of inhibitors in complex with aldolases rationalize and corroborate the enzymatic kinetics results. These inhibitors represent lead compounds for the preparation of new synthetic antibiotics, notably for tuberculosis prophylaxis.

  3. Structure–activity exploration of a small-molecule Lipid II inhibitor

    PubMed Central

    Fletcher, Steven; Yu, Wenbo; Huang, Jing; Kwasny, Steven M; Chauhan, Jay; Opperman, Timothy J; MacKerell, Alexander D; de Leeuw, Erik PH

    2015-01-01

    We have recently identified low-molecular weight compounds that act as inhibitors of Lipid II, an essential precursor of bacterial cell wall biosynthesis. Lipid II comprises specialized lipid (bactoprenol) linked to a hydrophilic head group consisting of a peptidoglycan subunit (N-acetyl glucosamine [GlcNAc]–N-acetyl muramic acid [MurNAc] disaccharide coupled to a short pentapeptide moiety) via a pyrophosphate. One of our lead compounds, a diphenyl-trimethyl indolene pyrylium, termed BAS00127538, interacts with the MurNAc moiety and the isoprenyl tail of Lipid II. Here, we report on the structure–activity relationship of BAS00127538 derivatives obtained by in silico analyses and de novo chemical synthesis. Our results indicate that Lipid II binding and bacterial killing are related to three features: the diphenyl moiety, the indolene moiety, and the positive charge of the pyrylium. Replacement of the pyrylium moiety with an N-methyl pyridinium, which may have importance in stability of the molecule, did not alter Lipid II binding or antibacterial potency. PMID:25987836

  4. Heterologous expression of Cenchritis muricatus protease inhibitor II (CmPI-II) in Pichia pastoris system: Purification, isotopic labeling and preliminary characterization.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Gil, Dayrom F; González-González, Yamile; Mansur, Manuel; Camejo, Ayamey; Pires, José R; Alonso-Del-Rivero Antigua, Maday

    2016-10-01

    Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions. PMID:27353494

  5. A review on ROCK-II inhibitors: From molecular modelling to synthesis.

    PubMed

    Shah, Surmil; Savjani, Jignasa

    2016-05-15

    Rho kinase enzyme expressed in different disease conditions and involved in mediating vasoconstriction and vascular remodeling in the pathogenesis. There are two isoforms of Rho kinases, namely ROCK I and ROCK II, responsible for different physiological function due to difference in distribution, but almost similar in structure. The Rho kinase 2 belongs to AGC family and is widely distributed in brain, heart and muscles. It is responsible for contraction of vascular smooth muscles by calcium sensitization. Its defective and unwanted expression can lead to many medical conditions like multiple sclerosis, myocardial ischemia, inflammatory responses, etc. Many Rho kinase 1 and 2 inhibitors have been designed for Rho/Rho kinase pathway by use of molecular modeling studies. Most of the designed compounds have been modeled based on ROCK 1 enzyme. This article is focused on Rho kinase 2 inhibitors as there are many ways to improvise by use of Computer aided drug designing as very less quantum of research work carried out. Herein, the article highlights different stages of designing like docking, SAR and synthesis of ROCK inhibitors and recent advances. It also highlights future prospective to improve the activity. PMID:27080184

  6. Finding Potent Sirt Inhibitor in Coffee: Isolation, Confirmation and Synthesis of Javamide-II (N-Caffeoyltryptophan) as Sirt1/2 Inhibitor

    PubMed Central

    Park, Jae B.

    2016-01-01

    Recent studies suggest that Sirt inhibition may have beneficial effects on several human diseases such as neurodegenerative diseases and cancer. Coffee is one of most popular beverages with several positive health effects. Therefore, in this paper, potential Sirt inhibitors were screened using coffee extract. First, HPLC was utilized to fractionate coffee extract, then screened using a Sirt1/2 inhibition assay. The screening led to the isolation of a potent Sirt1/2 inhibitor, whose structure was determined as javamide-II (N-caffeoyltryptophan) by NMR. For confirmation, the amide was chemically synthesized and its capacity of inhibiting Sirt1/2 was also compared with the isolated amide. Javamide-II inhibited Sirt2 (IC50; 8.7μM) better than Sirt1(IC50; 34μM). Since javamide-II is a stronger inhibitor for Sirt2 than Sirt1. The kinetic study was performed against Sirt2. The amide exhibited noncompetitive Sirt2 inhibition against the NAD+ (Ki = 9.8 μM) and showed competitive inhibition against the peptide substrate (Ki = 5.3 μM). Also, a docking simulation showed stronger binding pose of javamide-II to Sirt2 than AGK2. In cellular levels, javamide-II was able to increase the acetylation of total lysine, cortactin and histone H3 in neuronal NG108-15 cells. In the same cells, the amide also increased the acetylation of lysine (K382) in p53, but not (K305). This study suggests that Javamide-II found in coffee may be a potent Sirt1/2 inhibitor, probably with potential use in some conditions of human diseases. PMID:26986569

  7. Protein kinase C betaII peptide inhibitor exerts cardioprotective effects in rat cardiac ischemia/reperfusion injury.

    PubMed

    Omiyi, Didi; Brue, Richard J; Taormina, Philip; Harvey, Margaret; Atkinson, Norrell; Young, Lindon H

    2005-08-01

    Ischemia followed by reperfusion (I/R) in the presence of polymorphonuclear leukocytes (PMNs) results in a marked cardiac contractile dysfunction. A cell-permeable protein kinase C (PKC) betaII peptide inhibitor was used to test the hypothesis that PKC betaII inhibition could attenuate PMN-induced cardiac dysfunction by suppression of superoxide production from PMNs and increase NO release from vascular endothelium. The effects of the PKC betaII peptide inhibitor were examined in isolated ischemic (20 min) and reperfused (45 min) rat hearts with PMNs. The PKC betaII inhibitor (10 microM; n = 7) significantly attenuated PMN-induced cardiac dysfunction compared with I/R hearts (n = 9) receiving PMNs alone in left ventricular developed pressure (LVDP) and the maximal rate of LVDP (+dP/dt(max)) cardiac function indices (p < 0.01). The PKC betaII inhibitor at 10 microM significantly increased endothelial NO release from a basal value of 1.85 +/- 0.18 pmol NO/mg tissue to 3.49 +/- 0.62 pmol NO/mg tissue from rat aorta. It also significantly inhibited superoxide release (i.e., absorbance) from N-formyl-L-methionyl-L-leucyl-L-phenylalanine-stimulated rat PMNs from 0.13 +/- 0.01 to 0.02 +/- 0.004 (p < 0.01) at 10 microM. Histological analysis of the left ventricle of representative rat hearts from each group showed that the PKC betaII peptide inhibitor-treated hearts experienced a marked reduction in PMN vascular adherence and infiltration into the postreperfused cardiac tissue compared with I/R + PMN hearts (p < 0.01). These results suggest that the PKC betaII peptide inhibitor attenuates PMN-induced post-I/R cardiac contractile dysfunction by increasing endothelial NO release and by inhibiting superoxide release from PMNs. PMID:15878997

  8. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as photosystem II inhibitors.

    PubMed

    Jampilek, Josef; Kralova, Katarina; Pesko, Matus; Kos, Jiri

    2016-08-15

    Ring-substituted 8-hydroxyquinoline-2-carboxanilides inhibited photosynthetic electron transport (PET) through photosystem (PS) II. Their inhibitory efficiency depended on the compound lipophilicity, the electronic properties of the substituent R and the position of the substituent R on the benzene ring. The most effective inhibitors showing IC50 values in the range 2.3-3.6μM were substituted in C'(3) by F, CH3, Cl and Br. The dependence of the PET-inhibiting activity on the lipophilicity of the compounds was quasi-parabolic for 3-substituted derivatives, while for C'(2) ones a slight increase and for C'(4) derivatives a sharp decrease of the activity were observed with increasing lipophilicity. In addition, the dependence of PET-inhibiting activity on electronic Hammett's σ parameter of the substituent R was observed with optimum σ value 0.06 for C'(4) and 0.34 for C'(3) substituted derivatives, while the value of σ parameter did not significantly influence the PET-inhibiting activity of C'(2) substituted compounds. Interactions of the studied compounds with chlorophyll a and aromatic amino acids present in the pigment-protein complexes mainly in PS II were documented by fluorescence spectroscopy. The section between P680 and plastoquinone QB occurring on the acceptor side of PS II can be suggested as the site of action of the compounds. PMID:27432762

  9. Trypsin inhibition by macrocyclic and open-chain variants of the squash inhibitor MCoTI-II.

    PubMed

    Avrutina, Olga; Schmoldt, Hans-Ulrich; Gabrijelcic-Geiger, Dusica; Le Nguyen, Dung; Sommerhoff, Christian P; Diederichsen, Ulf; Kolmar, Harald

    2005-12-01

    MCoTI-I and MCoTI-II from the seeds of Momordica cochinchinensis are inhibitors of trypsin-like proteases and the only known members of the large family of squash inhibitors that are cyclic and contain an additional loop connecting the amino- and the carboxy-terminus. To investigate the contribution of macrocycle formation to biological activity, we synthesized a set of open-chain variants of MCoTI-II that lack the cyclization loop and contain various natural and non-natural amino acid substitutions in the reactive-site loop. Upon replacement of P1 lysine residue #10 within the open-chain variant of MCoTI-II by the non-natural isosteric nucleo amino acid AlaG [beta-(guanin-9-yl)-L-alanine], a conformationally restricted arginine mimetic, residual inhibitory activity was detected, albeit reduced by four orders of magnitude. While the cyclic inhibitors MCoTI-I and MCoTI-II were found to be very potent trypsin inhibitors, with picomolar inhibition constants, the open-chain variants displayed an approximately 10-fold lower affinity. These data suggest that the formation of a circular backbone in the MCoTI squash inhibitors results in enhanced affinity and therefore is a determinant of biological activity. PMID:16336125

  10. In silico modification of suberoylanilide hydroxamic acid (SAHA) as potential inhibitor for class II histone deacetylase (HDAC)

    PubMed Central

    2011-01-01

    Background The cervical cancer is the second most prevalent cancer for the woman in the world. It is caused by the oncogenic human papilloma virus (HPV). The inhibition activity of histone deacetylase (HDAC) is a potential strategy for cancer therapy. Suberoylanilide hydroxamic acid (SAHA) is widely known as a low toxicity HDAC inhibitor. This research presents in silico SAHA modification by utilizing triazole, in order to obtain a better inhibitor. We conducted docking of the SAHA inhibitor and 12 modified versions to six class II HDAC enzymes, and then proceeded with drug scanning of each one of them. Results The docking results show that the 12 modified inhibitors have much better binding affinity and inhibition potential than SAHA. Based on drug scan analysis, six of the modified inhibitors have robust pharmacological attributes, as revealed by drug likeness, drug score, oral bioavailability, and toxicity levels. Conclusions The binding affinity, free energy and drug scan screening of the best inhibitors have shown that 1c and 2c modified inhibitors are the best ones to inhibit class II HDAC. PMID:22373132

  11. Establishment of type II 5alpha-reductase over-expressing cell line as an inhibitor screening model.

    PubMed

    Jang, Sunhyae; Lee, Young; Hwang, Seong-Lok; Lee, Min-Ho; Park, Su Jin; Lee, In Ho; Kang, Sangjin; Roh, Seok-Seon; Seo, Young-Joon; Park, Jang-Kyu; Lee, Jeung-Hoon; Kim, Chang Deok

    2007-01-01

    Dihydrotestosterone (DHT) is the most potent male hormone that causes androgenetic alopecia. The type II 5alpha-reductase is an enzyme that catalyzes the conversion of testosterone (T) to DHT, therefore it can be expected that specific inhibitors for type II 5alpha-reductase may improve the pathophysiologic status of androgenetic alopecia. In this study, we attempted to establish the reliable and convenient screening model for type II 5alpha-reductase inhibitors. After transfection of human cDNA for type II 5alpha-reductase into HEK293 cells, the type II 5alpha-reductase over-expressing stable cells were selected by G418 treatment. RT-PCR and Western blot analyses confirmed that type II 5alpha-reductase gene was expressed in the stable cells. In in vitro enzymatic assay, 10 microg of stable cell extract completely converted 1 microCi (approximately 0.015 nmol) of T into DHT. The type II 5alpha-reductase activity was inhibited by finasteride in a dose-dependent manner, confirming the reliability of screening system. In cell culture condition, 2 x 10(5) of stable cells completely converted all the input T (approximately 0.03 nmol) into DHT by 4h incubation, demonstrating that the stable cell line can be used as a cell-based assay system. Using this system, we selected the extracts of Curcumae longae rhizoma and Mori ramulus as the potential inhibitors for type II 5alpha-reductase. These results demonstrate that the type II 5alpha-reductase over-expressing stable cell line is a convenient and reliable model for screening and evaluation of inhibitors. PMID:17646096

  12. Saccharin sulfonamides as inhibitors of carbonic anhydrases I, II, VII, XII, and XIII.

    PubMed

    Morkūnaitė, Vaida; Baranauskienė, Lina; Zubrienė, Asta; Kairys, Visvaldas; Ivanova, Jekaterina; Trapencieris, Pēteris; Matulis, Daumantas

    2014-01-01

    A series of modified saccharin sulfonamides have been designed as carbonic anhydrase (CA) inhibitors and synthesized. Their binding to CA isoforms I, II, VII, XII, and XIII was measured by the fluorescent thermal shift assay (FTSA) and isothermal titration calorimetry (ITC). Saccharin bound the CAs weakly, exhibiting the affinities of 1-10 mM for four CAs except CA I where binding could not be detected. Several sulfonamide-bearing saccharines exhibited strong affinities of 1-10 nM towards particular CA isoforms. The functional group binding Gibbs free energy additivity maps are presented which may provide insights into the design of compounds with increased affinity towards selected CAs. PMID:25276805

  13. Saccharin Sulfonamides as Inhibitors of Carbonic Anhydrases I, II, VII, XII, and XIII

    PubMed Central

    Morkūnaitė, Vaida; Baranauskienė, Lina; Zubrienė, Asta; Trapencieris, Pēteris

    2014-01-01

    A series of modified saccharin sulfonamides have been designed as carbonic anhydrase (CA) inhibitors and synthesized. Their binding to CA isoforms I, II, VII, XII, and XIII was measured by the fluorescent thermal shift assay (FTSA) and isothermal titration calorimetry (ITC). Saccharin bound the CAs weakly, exhibiting the affinities of 1–10 mM for four CAs except CA I where binding could not be detected. Several sulfonamide-bearing saccharines exhibited strong affinities of 1–10 nM towards particular CA isoforms. The functional group binding Gibbs free energy additivity maps are presented which may provide insights into the design of compounds with increased affinity towards selected CAs. PMID:25276805

  14. Ellagic acid and polyhydroxylated urolithins are potent catalytic inhibitors of human topoisomerase II: an in vitro study.

    PubMed

    Furlanetto, Valentina; Zagotto, Giuseppe; Pasquale, Riccardo; Moro, Stefano; Gatto, Barbara

    2012-09-12

    Ellagic acid (EA), a natural polyphenol abundant in fruits and common in our diet, is under intense investigation for its chemopreventive activity resulting from multiple effects. EA inhibits topoisomerase II, but the effects on the human enzyme of urolithins, its monolactone metabolites, are not known. Therefore, the action of several synthetic urolithins toward topoisomerases II was evaluated, showing that polyhydroxylated urolithins, EA, and EA-related compounds are potent inhibitors of the α and β isoforms of human topoisomerase II at submicromolar concentrations. Competition tests demonstrate a dose-dependent relationship between ATP and the inhibition of the enzyme. Docking experiments show that the active compounds bind the ATP pocket of the human enzyme, thus supporting the hypothesis that EA and polyhydroxylated urolithins act as ATP-competitive inhibitors of human topoisomerase II. PMID:22924519

  15. In silico approaches to identify the potential inhibitors of glutamate carboxypeptidase II (GCPII) for neuroprotection.

    PubMed

    Naushad, Shaik Mohammad; Janaki Ramaiah, M; Stanley, Balraj Alex; Prasanna Lakshmi, S; Vishnu Priya, J; Hussain, Tajamul; Alrokayan, Salman A; Kutala, Vijay Kumar

    2016-10-01

    To develop a potential inhibitor for glutamate carboxypeptidase II (GCPII) effective against all the eight common genetic variants reported, PyMOL molecular visualization system was used to generate models of variants using the crystal structure of GCPII i.e. 2OOT as a template. High-throughput virtual screening of 29 compounds revealed differential efficacy across the eight genetic variants (pIC50: 4.70 to 10.22). Pharmacophore analysis and quantitative structure-activity relationship (QSAR) studies revealed a urea-based N-acetyl aspartyl glutamate (NAAG) analogue as more potent inhibitor, which was effective across all the genetic variants of GCPII as evidenced by glide scores (-4.32 to -7.08) and protein-ligand interaction plots (13 interactions in wild GCPII). This molecule satisfied Lipinski rule of five and rule of three for drug-likeliness. Being a NAAG-analogue, this molecule might confer neuroprotection by inhibiting glutamatergic neurotransmission mediated by N-acetylated alpha-linked acidic dipeptidase (NAALADase), a splice variant of GCPII. PMID:27430729

  16. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.

    PubMed

    Turra, David; Lorito, Matteo

    2011-08-01

    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology. PMID:21418020

  17. Inhibition of Streptomyces griseus metallo-endopeptidase II (SGMPII) by active-site-directed inhibitors.

    PubMed

    Kumazaki, T; Ishii, S; Yokosawa, H

    1994-03-01

    Inactivation of Streptomyces griseus metallo-endopeptidase II (SGMPII) by ClCH2CO-DL-(N-OH)Leu-OCH3 and by ClCH2CO-DL-(N-OH)Leu-Ala-Gly-NH2 was studied kinetically. These reagents cause irreversible inhibition of the enzyme in a pseudo-first order reaction, and the inhibition reaction exhibits saturation kinetics. The second-order rate constants for inactivation of SGMPII by ClCH2CO-DL-(N-OH)Leu-OCH3 and by ClCH2CO-DL-(N-OH)Leu-Ala-Gly-NH2 were measured to be 0.12 and 8.9 M-1.s-1, respectively. The order of affinities of metallo-endopeptidases towards these irreversible inhibitors is thermolysin > SGMPII > Pseudomonas aeruginosa elastase. A competitive inhibitor of SGMPII, L-Val-L-Trp, protects the enzyme against inactivation by ClCH2CO-DL-(N-OH)Leu-Ala-Gly-NH2 in a competitive manner. Furthermore, the pH profile of the inactivation closely resembles that for the hydrolysis of synthetic peptide substrates by the enzyme. These findings suggest that these reagents bind reversibly and react irreversibly at the active site of the enzyme. PMID:8056768

  18. Functional analysis of the 3' control region of the potato wound-inducible proteinase inhibitor II gene.

    PubMed Central

    An, G; Mitra, A; Choi, H K; Costa, M A; An, K; Thornburg, R W; Ryan, C A

    1989-01-01

    Proteinase inhibitor genes are expressed strongly in specific plant tissues under both developmental and environmental regulation. We have studied the role of the 3' control region of the potato proteinase inhibitor II gene (PI-II) that is inducible in leaves in response to herbivore attacks or other severe wounding. Comparison of the terminator from the PI-II gene with two different terminators from the 6b and 7 genes, driven by a common PI-II promoter-cat fusion molecule, indicated that the PI-II terminator provided the most efficient expression of cat. The PI-II terminator also caused a significantly elevated cat gene expression driven by the cauliflower mosaic virus 35S promoter. The increase in the level of expression is probably not due to the presence of an enhancer element in the PI-II terminator region, but to cis-acting elements involved in mRNA processing or stability. Both transient and stable transformation analyses of the deletion mutants in the 3'-flanking sequence indicated that about a 100-base pair DNA fragment surrounding the polyadenylation site is essential for the efficient gene expression. This region seems to consist of several regulatory elements, including the conserved sequence, CGTGTCTT, which is located 9 bases downstream from the polyadenylation site. The elements appear to contribute to the increased stability of mRNAs containing the PI-II terminator. PMID:2535459

  19. Salicylate, a catalytic inhibitor of topoisomerase II, inhibits DNA cleavage and is selective for the α isoform.

    PubMed

    Bau, Jason T; Kang, Zhili; Austin, Caroline A; Kurz, Ebba U

    2014-02-01

    Topoisomerase II (topo II) is a ubiquitous enzyme that is essential for cell survival through its role in regulating DNA topology and chromatid separation. Topo II can be poisoned by common chemotherapeutics (such as doxorubicin and etoposide), leading to the accumulation of cytotoxic enzyme-linked DNA double-stranded breaks. In contrast, nonbreak-inducing topo II catalytic inhibitors have also been described and have more limited use in clinical chemotherapy. These agents, however, may alter the efficacy of regimens incorporating topo II poisons. We previously identified salicylate, the primary metabolite of aspirin, as a novel catalytic inhibitor of topo II. We have now determined the mechanism by which salicylate inhibits topo II. As catalytic inhibitors can act at a number of steps in the topo II catalytic cycle, we used multiple independent, biochemical approaches to interrogate the catalytic cycle. Furthermore, as mammalian cells express two isoforms of topo II (α and β), we examined whether salicylate was isoform selective. Our results demonstrate that salicylate is unable to intercalate DNA, and does not prevent enzyme-DNA interaction, nor does it promote stabilization of topo IIα in closed clamps on DNA. Although salicylate decreased topo IIα ATPase activity in a dose-dependent noncompetitive manner, this was secondary to salicylate-mediated inhibition of DNA cleavage. Surprisingly, comparison of salicylate's effects using purified human topo IIα and topo IIβ revealed that salicylate selectively inhibits the α isoform. These findings provide a definitive mechanism for salicylate-mediated inhibition of topo IIα and provide support for further studies determining the basis for its isoform selectivity. PMID:24220011

  20. Effects of treatment with an Hsp90 inhibitor in tumors based on 15 phase II clinical trials

    PubMed Central

    Wang, He; Lu, Mingjie; Yao, Mengqian; Zhu, Wei

    2016-01-01

    Heat shock protein (Hsp)90 serves as a chaperone protein that promotes the proper folding of proteins involved in a variety of signal transduction processes involved in cell growth. Hsp90 inhibitors, which inhibit the activity of critical client proteins, have emerged as the accessory therapeutic agents for multiple human cancer types. To better understand the effects of Hsp90 inhibitors in cancer treatment, the present study reviewed 15 published phase II clinical trials to investigate whether Hsp90 inhibitors will benefit patients with cancer. Information of complete response, partial response, stable disease, objective response and objective response rate was collected to evaluate clinical outcomes. Overall, Hsp90 inhibitors are effective against a variety of oncogene-addicted cancers, including those that have developed resistance to specific receptors.

  1. Rational design of urea-based glutamate carboxypeptidase II (GCPII) inhibitors as versatile tools for specific drug targeting and delivery.

    PubMed

    Tykvart, Jan; Schimer, Jiří; Bařinková, Jitka; Pachl, Petr; Poštová-Slavětínská, Lenka; Majer, Pavel; Konvalinka, Jan; Šácha, Pavel

    2014-08-01

    Glutamate carboxypeptidase II (GCPII), also known as prostate specific membrane antigen (PSMA), is an established prostate cancer marker and is considered a promising target for specific anticancer drug delivery. Low-molecular-weight inhibitors of GCPII are advantageous specific ligands for this purpose. However, they must be modified with a linker to enable connection of the ligand with an imaging molecule, anticancer drug, and/or nanocarrier. Here, we describe a structure-activity relationship (SAR) study of GCPII inhibitors with linkers suitable for imaging and drug delivery. Structure-assisted inhibitor design and targeting of a specific GCPII exosite resulted in a 7-fold improvement in Ki value compared to the parent structure. X-ray structural analysis of the inhibitor series led to the identification of several inhibitor binding modes. We also optimized the length of the inhibitor linker for effective attachment to a biotin-binding molecule and showed that the optimized inhibitor could be used to target nanoparticles to cells expressing GCPII. PMID:24954515

  2. Phase II Study of the MEK1/MEK2 Inhibitor Trametinib in Patients With Metastatic BRAF-Mutant Cutaneous Melanoma Previously Treated With or Without a BRAF Inhibitor

    PubMed Central

    Kim, Kevin B.; Kefford, Richard; Pavlick, Anna C.; Infante, Jeffrey R.; Ribas, Antoni; Sosman, Jeffrey A.; Fecher, Leslie A.; Millward, Michael; McArthur, Grant A.; Hwu, Patrick; Gonzalez, Rene; Ott, Patrick A.; Long, Georgina V.; Gardner, Olivia S.; Ouellet, Daniele; Xu, Yanmei; DeMarini, Douglas J.; Le, Ngocdiep T.; Patel, Kiran; Lewis, Karl D.

    2013-01-01

    Purpose BRAF mutations promote melanoma cell proliferation and survival primarily through activation of MEK. The purpose of this study was to determine the response rate (RR) for the selective, allosteric MEK1/MEK2 inhibitor trametinib (GSK1120212), in patients with metastatic BRAF-mutant melanoma. Patients and Methods This was an open-label, two-stage, phase II study with two cohorts. Patients with metastatic BRAF-mutant melanoma previously treated with a BRAF inhibitor (cohort A) or treated with chemotherapy and/or immunotherapy (BRAF-inhibitor naive; cohort B) were enrolled. Patients received 2 mg of trametinib orally once daily. Results In cohort A (n = 40), there were no confirmed objective responses and 11 patients (28%) with stable disease (SD); the median progression-free survival (PFS) was 1.8 months. In cohort B (n = 57), there was one (2%) complete response, 13 (23%) partial responses (PRs), and 29 patients (51%) with SD (confirmed RR, 25%); the median PFS was 4.0 months. One patient each with BRAF K601E and BRAF V600R had prolonged PR. The most frequent treatment-related adverse events for all patients were skin-related toxicity, nausea, peripheral edema, diarrhea, pruritis, and fatigue. No cutaneous squamous cell carcinoma was observed. Conclusion Trametinib was well tolerated. Significant clinical activity was observed in BRAF-inhibitor–naive patients previously treated with chemotherapy and/or immunotherapy. Minimal clinical activity was observed as sequential therapy in patients previously treated with a BRAF inhibitor. Together, these data suggest that BRAF-inhibitor resistance mechanisms likely confer resistance to MEK-inhibitor monotherapy. These data support further evaluation of trametinib in BRAF-inhibitor–naive BRAF-mutant melanoma, including rarer forms of BRAF-mutant melanoma. PMID:23248257

  3. Theoretical investigations on maleimide and its indolyl derivatives: Rational drug design approach for PKCβII inhibitors

    NASA Astrophysics Data System (ADS)

    Grewal, Baljinder K.; Sobhia, M. Elizabeth

    2012-12-01

    Protein kinase C βII (PKCβII) is preferentially activated during the hyperglycemic state and is associated with various diabetic complications. Hence its inhibition would be one of the ways to treat the diabetic complications. Maleimide constitutes the important moiety of PKCβII inhibitors, however till date no study on the significance of maleimide toward PKCβII inhibition is performed. Present report endeavors to study the electronic properties of maleimide with relevance to PKCβII inhibition. In the crystal structure of PKCβII, maleimide moiety of co-crystallized ligand 2-methyl-1H-indol-3-yl-BIM-1 is reported to form 3H-bonds, to reckon the importance of these H-bonds "H-bond interaction energy" was calculated using the ONIOM method, taking into consideration only the single point energy of the protein-ligand structure. New class of PKCβII inhibitors are designed based on above studies result and comparative analysis of rings similar to maleimide on the basis of various quantum chemical descriptors. The designed molecule showed good potency, binding interactions and scores in docking and ONIOM single point energy study.

  4. Lead Discovery of Type II BRAF V600E Inhibitors Targeting the Structurally Validated DFG-Out Conformation Based upon Selected Fragments.

    PubMed

    Zhang, Qingwen; Zhang, Xuejin; You, Qidong

    2016-01-01

    The success of the first approved kinase inhibitor imatinib has spurred great interest in the development of type II inhibitors targeting the inactive DFG-out conformation, wherein the Phe of the DFG motif at the start of the activation loop points into the ATP binding site. Nevertheless, kinase inhibitors launched so far are heavily biased toward type I inhibitors targeting the active DFG-in conformation, wherein the Phe of the DFG motif flips by approximately 180° relative to the inactive conformation, resulting in Phe and Asp swapping their positions. Data recently obtained with structurally validated type II inhibitors supported the conclusion that type II inhibitors are more selective than type I inhibitors. In our type II BRAF V600E inhibitor lead discovery effort, we identified phenylaminopyrimidine (PAP) and unsymmetrically disubstituted urea as two fragments that are frequently presented in FDA-approved protein kinase inhibitors. We therefore defined PAP and unsymmetrically disubstituted urea as privileged fragments for kinase drug discovery. A pharmacophore for type II inhibitors, 4-phenylaminopyrimidine urea (4-PAPU), was assembled based upon these privileged fragments. Lead compound SI-046 with BRAF V600E inhibitory activity comparable to the template compound sorafenib was in turn obtained through preliminary structure-activity relationship (SAR) study. Molecular docking suggested that SI-046 is a bona fide type II kinase inhibitor binding to the structurally validated "classical DFG-out" conformation of BRAF V600E. Our privileged fragments-based approach was shown to efficiently deliver a bona fide type II kinase inhibitor lead. In essence, the theme of this article is to showcase the strategy and rationale of our approach. PMID:27438814

  5. Synthesis and evaluation of 18F-labeled ATP competitive inhibitors of topoisomerase II as probes for imaging topoisomerase II expression

    PubMed Central

    Daumar, Pierre; Zeglis, Brian M.; Ramos, Nicholas; Divilov, Vadim; Sevak, Kuntal Kumar; Pillarsetty, NagaVaraKishore; Lewis, Jason S.

    2015-01-01

    Type II topoisomerase (Topo-II) is an ATP-dependent enzyme that is essential in the transcription, replication, and chromosome segregation processes and, as such, represents an attractive target for cancer therapy. Numerous studies indicate that the response to treatment with Topo-II inhibitors is highly dependent on both the levels and the activity of the enzyme. Consequently, a non-invasive assay to measure tumoral Topo-II levels has the potential to differentiate responders from non-responders. With the ultimate goal of developing a radiofluorinated tracer for positron emission tomography (PET) imaging, we have designed, synthesized, and evaluated a set of fluorinated compounds based on the structure of the ATP-competitive Topo-II inhibitor QAP1. Compounds 18 and 19b showed inhibition of Topo-II in in vitro assays and exhibited moderate, Topo-II level dependent cytotoxicity in SK-BR-3 and MCF-7 cell lines. Based on these results, 18F-labeled analogs of these two compounds were synthesized and evaluated as PET probes for imaging Topo-II overexpression in mice bearing SK-BR-3 xenografts. [18F]-18 and [18F]-19b were synthesized from their corresponding protected tosylated derivatives by fluorination and subsequent deprotection. Small animal PET imaging studies indicated that both compounds do not accumulate in tumors and exhibit poor pharmacokinetics, clearing from the blood pool very rapidly and getting metabolized over. The insights gained from the current study will surely aid in the design and construction of future generations of PET agents for the non-invasive delineation of Topo-II expression. PMID:25240701

  6. The Association Between HLA Class II Alleles and the Occurrence of Factor VIII Inhibitor in Thai Patients with Hemophilia A

    PubMed Central

    Nathalang, Oytip; Sriwanitchrak, Pramote; Sasanakul, Werasak; Chuansumrit, Ampaiwan

    2012-01-01

    Objective: This study aimed to investigate the association between HLA class II alleles and the occurrence of FVIIIinhibitor in Thai hemophilia A patients. Material and Methods: The distribution of HLA-DRB1 alleles and DQB1 alleles in 57 Thai hemophilia A patientsand 36 blood donors as controls was determined using the PCR sequence-specific primer (PCR-SSP) method, and theassociation between the occurrence of factor VIII (FVIII) inhibitor and the presence of certain HLA class II alleles wasinvestigated. Results: The frequency of HLA-DRB1*15 was higher in the hemophilia A patients with and without FVIII inhibitor,whereas that of DRB1*14, DRB1*07, and DQB1*02 was lower in the hemophilia A patients with FVIII inhibitor, ascompared to controls. Interestingly, only the frequency of DRB1*15 was significantly higher in the patients with inhibitorthan in the controls (P = 0.021). Moreover, the frequency of DRB1*15 in the patients with inhibitor was higher than inthose without inhibitor (P = 0.198). Conclusion: The study’s findings show that the DRB1*15 allele might have contributed to the occurrence of inhibitorin the Thai hemophilia A patients; however, additional research using larger samples and high-resolution DRB1 typingis warranted. PMID:24744621

  7. Novel acridine-based agents with topoisomerase II inhibitor activity suppress mesothelioma cell proliferation and induce apoptosis.

    PubMed

    Raza, Ahmad; Jacobson, Blake A; Benoit, Adam; Patel, Manish R; Jay-Dixon, Joe; Hiasa, Hiroshi; Ferguson, David M; Kratzke, Robert Arthur

    2012-08-01

    Human topoisomerase II (hTopoII) inhibitors are important chemotherapeutic agents in many different settings including treatment of malignant mesothelioma. Topoisomerase poisons, such as etoposide and doxorubicin, function by trapping the DNA-enzyme covalent complex producing DNA strand breaks which can ultimately lead to cancer cell death, as well as development of secondary malignancies. While these compounds have been used successfully in treating a wide variety of cancers, their use against mesothelioma has been limited. This study evaluates the anti-proliferative activity of series of acridine-based catalytic inhibitors of hTopoII using four mesothelioma cell lines (H513, H2372, H2461, and H2596). The results indicate these compounds inhibit malignant cell proliferation with EC(50) values ranging from 6.9 to 32 μM. Experiments are also performed that show that combination therapies may be used to increase potency. Based on the results of PARP cleavage and Guava Nexin assay, it is concluded that the primary mode of cell death is by apoptosis. The results are consistent with prior work involving pancreatic cancer and hTopoII catalytic inhibitors and suggest substituted acridines may hold promise in treating malignant mesothelioma. PMID:21789510

  8. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumors to TopoII inhibitors

    PubMed Central

    Fillmore, Christine M.; Xu, Chunxiao; Desai, Pooja T.; Berry, Joanne M.; Rowbotham, Samuel P.; Lin, Yi-Jang; Zhang, Haikuo; Marquez, Victor E.; Hammerman, Peter S.; Wong, Kwok-Kin; Kim, Carla F.

    2014-01-01

    SUMMARY Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide1. Chemotherapies such as the topoisomerase II inhibitor (TopoIIi) etoposide effectively reduce disease in a minority of NSCLC patients2,3; therefore, alternative drug targets, including epigenetic enzymes, are under consideration for therapeutic intervention4. A promising potential epigenetic target is the methyltransferase EZH2, which in the context of the Polycomb Repressive Complex 2 (PRC2) is well known to tri-methylate Histone H3 at lysine 27 (H3K27me3) and elicit gene silencing5. Here, we demonstrate that EZH2 inhibition (EZH2i) had differential effects on TopoIIi response of NSCLCs in vitro and in vivo. EGFR and BRG1 mutations were genetic biomarkers that predicted enhanced sensitivity to TopoIIi in response to EZH2i. BRG1 loss-of-function mutant tumors responded to EZH2i with increased S phase, anaphase bridging, apoptosis, and TopoIIi sensitivity. Conversely, EGFR and BRG1 wild-type tumors up-regulated BRG1 in response to EZH2i and ultimately became more resistant to TopoIIi. EGFR gain-of-function mutant tumors were also sensitive to dual EZH2i and TopoIIi, due to genetic antagonism between EGFR and BRG1. These findings suggest an exciting opportunity for precision medicine in the genetically complex disease of NSCLC. PMID:25629630

  9. Discovery of inhibitors of Escherichia coli methionine aminopeptidase with the Fe(II)-form selectivity and antibacterial activity†

    PubMed Central

    Wang, Wen-Long; Chai, Sergio C.; Huang, Min; He, Hong-Zhen; Hurley, Thomas D.; Ye, Qi-Zhuang

    2009-01-01

    Methionine aminopeptidase (MetAP) is a promising target to develop novel antibiotics, because all bacteria express MetAP from a single gene that carries out the essential function of removing N-terminal methionine from nascent proteins. Divalent metal ions play a critical role in the catalysis, and there is an urgent need to define the actual metal used by MetAP in bacterial cells. By high throughput screening, we identified a novel class of catechol-containing MetAP inhibitors that display selectivity for the Fe(II)-form of MetAP. X-ray structure revealed that the inhibitor binds to MetAP at the active site with the catechol coordinating to the metal ions. Importantly, some of the inhibitors showed antibacterial activity at low micromolar concentration on Gram-positive and Gram-negative bacteria. Our data indicate that Fe(II) is the likely metal used by MetAP in the cellular environment, and MetAP inhibitors need to inhibit this metalloform of MetAP effectively to be therapeutically useful. PMID:18785729

  10. Palladium(II) and zinc(II) complexes of neutral [N2O2] donor Schiff bases derived from furfuraldehyde: synthesis, characterization, fluorescence and corrosion inhibitors of ligands.

    PubMed

    Ali, Omyma A M

    2014-11-11

    Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans. PMID:24858346

  11. Palladium(II) and zinc(II) complexes of neutral [N2O2] donor Schiff bases derived from furfuraldehyde: Synthesis, characterization, fluorescence and corrosion inhibitors of ligands

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.

    2014-11-01

    Metal complexes of Schiff bases derived from furfuraldehyde and 4,5-dimethyl-1,2-phenylendiamine (L1) or 4,5-dichloro-1,2-phenylendiamine (L2) have been reported and characterized based on elemental analyses, IR, 1H NMR, UV-Vis, magnetic moment, molar conductance and thermal analysis. The complexes are found to have the formulae [PdL1-2]Cl2 and [ZnL1-2](AcO)2·H2O. The molar conductance data reveal that Pd(II) and Zn(II) chelates are ionic in nature and are of the type 2:1 electrolytes. The spectral data are consistent with a square planar and tetrahedral geometry around Pd(II) and Zn(II), respectively, in which the ligands act as tetradentate ligands. The thermal behavior of some chelates is studied and the activation thermodynamic parameters are calculated using Coats-Redfern method. The corrosion inhibition of stainless steel types 410 and 304 in 1 M HCl using the synthesized Schiff bases as inhibitors have been studied by weight loss method. The obtained data considered these ligands as efficient corrosion inhibitors. The ligands and their metal complexes exhibited considerable antibacterial activity against Staphylococcusaureus, and Escherichiacoli and antifungal activity against Candida albicans.

  12. Topoisomerase II Inhibitors Can Enhance Baculovirus-Mediated Gene Expression in Mammalian Cells through the DNA Damage Response.

    PubMed

    Liu, Ming-Kun; Lin, Jhe-Jhih; Chen, Chung-Yung; Kuo, Szu-Cheng; Wang, Yu-Ming; Chan, Hong-Lin; Wu, Tzong Yuan

    2016-01-01

    BacMam is an insect-derived recombinant baculovirus that can deliver genes into mammalian cells. BacMam vectors carrying target genes are able to enter a variety of cell lines by endocytosis, but the level of expression of the transgene depends on the cell line and the state of the transduced cells. In this study, we demonstrated that the DNA damage response (DDR) could act as an alternative pathway to boost the transgene(s) expression by BacMam and be comparable to the inhibitors of histone deacetylase. Topoisomerase II (Top II) inhibitor-induced DDR can enhance the CMV-IE/enhancer mediated gene expression up to 12-fold in BacMam-transduced U-2OS cells. The combination of a Top II inhibitor, VM-26, can also augment the killing efficiency of a p53-expressing BacMam vector in U-2OS osteosarcoma cells. These results open a new avenue to facilitate the application of BacMam for gene delivery and therapy. PMID:27314325

  13. Topoisomerase II Inhibitors Can Enhance Baculovirus-Mediated Gene Expression in Mammalian Cells through the DNA Damage Response

    PubMed Central

    Liu, Ming-Kun; Lin, Jhe-Jhih; Chen, Chung-Yung; Kuo, Szu-Cheng; Wang, Yu-Ming; Chan, Hong-Lin; Wu, Tzong Yuan

    2016-01-01

    BacMam is an insect-derived recombinant baculovirus that can deliver genes into mammalian cells. BacMam vectors carrying target genes are able to enter a variety of cell lines by endocytosis, but the level of expression of the transgene depends on the cell line and the state of the transduced cells. In this study, we demonstrated that the DNA damage response (DDR) could act as an alternative pathway to boost the transgene(s) expression by BacMam and be comparable to the inhibitors of histone deacetylase. Topoisomerase II (Top II) inhibitor-induced DDR can enhance the CMV-IE/enhancer mediated gene expression up to 12-fold in BacMam-transduced U-2OS cells. The combination of a Top II inhibitor, VM-26, can also augment the killing efficiency of a p53-expressing BacMam vector in U-2OS osteosarcoma cells. These results open a new avenue to facilitate the application of BacMam for gene delivery and therapy. PMID:27314325

  14. Phase I and pharmacokinetic study of the topoisomerase II catalytic inhibitor fostriecin

    PubMed Central

    Jong, R S de; Mulder, N H; Uges, D R A; Sleijfer, D Th; Höppener, F J P; Groen, H J M; Willemse, P H B; Graaf, W T A van der; Vries, E G E de

    1999-01-01

    We conducted a phase I and pharmacokinetic study of the topoisomerase II catalytic inhibitor fostriecin. Fostriecin was administered intravenously over 60 min on days 1–5 at 4-week intervals. Dose was escalated from 2 mg m−2day−1to 20 mg m−2day−1in 20 patients. Drug pharmacokinetics was analysed with high performance liquid chromatography with UV-detection. Plasma collected during drug administration was tested in vitro for growth inhibition of a teniposide-resistant small-cell lung cancer (SCLC) cell line. The predominant toxicities were elevated liver transaminases (maximum common toxicity criteria (CTC) grade 4) and serum creatinine (maximum CTC grade 2). These showed only a limited increase with increasing doses, often recovered during drug administration and were fully reversible. Duration of elevated alanine–amino transferase (ALT) was dose-limiting in one patient at 20 mg m−2. Other frequent toxicities were grade 1–2 nausea/vomiting, fever and mild fatigue. Mean fostriecin plasma half-life was 0.36 h (initial; 95% CI, 0–0.76 h) and 1.51 h (terminal; 95% CI, 0.41–2.61 h). A metabolite, most probably dephosphorylated fostriecin, was detected in plasma and urine. No tumour responses were observed, but the plasma concentrations reached in the patients were insufficient to induce significant growth inhibition in vitro. The maximum tolerated dose (MTD) has not been reached, because drug supply was stopped at the 20 mg m−2dose level. However, further escalation seems possible and is warranted to achieve potentially effective drug levels. Fostriecin has a short plasma half-life and longer duration of infusion should be considered. © 1999 Cancer Research Campaign PMID:10070885

  15. Orally active glutamate carboxypeptidase II inhibitor 2-MPPA attenuates dizocilpine-induced prepulse inhibition deficits in mice.

    PubMed

    Takatsu, Yuto; Fujita, Yuko; Tsukamoto, Takashi; Slusher, Barbara S; Hashimoto, Kenji

    2011-01-31

    Glutamate carboxypeptidase II (GCP II) is a glial enzyme responsible for the hydrolysis of N-acetylaspartylglutamate (NAAG) into glutamate and N-acetylaspartate (NAA). Abnormalities in glutamate neurotransmission are implicated in the pathophysiology of schizophrenia. In this study, we examined the effects of a novel, orally active GCP II inhibitor, 2-(3-mercaptopropyl)pentanedioic acid (2-MPPA), on the prepulse inhibition (PPI) deficits after administration of the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine. Oral administration of 2-MPPA (10, 30 or 100mg/kg) significantly attenuated dizocilpine (0.1mg/kg)-induced PPI deficits in mice, in a dose dependent manner. Furthermore, the efficacy of 2-MPPA on dizocilpine-induced PPI deficits was significantly antagonized by pretreatment with the selective group II metabotropic glutamate receptor (mGluR) antagonist LY341495 (1.0mg/kg). In the same model, however, the selective group II mGluR agonist LY354740 (3, 10 or 30 mg/kg) significantly attenuated dizocilpine-induced PPI deficits at only one dose and prepulse intensity. Our findings suggest that GCP II inhibition may be useful therapeutic strategy for schizophrenia. From a mechanistic perspective, while increased NAAG and activation of group II mGluRs may contribute to the therapeutic efficacy of 2-MPPA, it is likely that additional pharmacological activities are also involved. PMID:21093418

  16. Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins.

    PubMed

    Heitz, A; Hernandez, J F; Gagnon, J; Hong, T T; Pham, T T; Nguyen, T M; Le-Nguyen, D; Chiche, L

    2001-07-10

    The "knottin" fold is a stable cysteine-rich scaffold, in which one disulfide crosses the macrocycle made by two other disulfides and the connecting backbone segments. This scaffold is found in several protein families with no evolutionary relationships. In the past few years, several homologous peptides from the Rubiaceae and Violaceae families were shown to define a new structural family based on macrocyclic knottin fold. We recently isolated from Momordica cochinchinensis seeds the first known macrocyclic squash trypsin inhibitors. These compounds are the first members of a new family of cyclic knottins. In this paper, we present NMR structural studies of one of them, MCoTI-II, and of a beta-Asp rearranged form, MCoTI-IIb. Both compounds display similar and well-defined conformations. These cyclic squash inhibitors share a similar conformation with noncyclic squash inhibitors such as CPTI-II, and it is postulated that the main effect of the cyclization is a reduced sensitivity to exo-proteases. On the contrary, clear differences were detected with the three-dimensional structures of other known cyclic knottins, i.e., kalata B1 or circulin A. The two-disulfide cystine-stabilized beta-sheet motif [Heitz et al. (1999) Biochemistry 38, 10615-10625] is conserved in the two families, whereas in the C-to-N linker, one disulfide bridge and one loop are differently located. The molecular surface of MCoTI-II is almost entirely charged in contrast to circulin A that displays a well-marked amphiphilic character. These differences might explain why the isolated macrocyclic squash inhibitors from M. cochinchinensis display no significant antibacterial activity, whereas circulins and kalata B1 do. PMID:11434766

  17. Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of Mycobacterium tuberculosis

    SciTech Connect

    Dias, Marcio V.B.; Snee, William C.; Bromfield, Karen M.; Payne, Richard J.; Palaninathan, Satheesh K.; Ciulli, Alessio; Howard, Nigel I.; Abell, Chris; Sacchettini, James C.; Blundell, Tom L.

    2011-09-06

    The shikimate pathway is essential in Mycobacterium tuberculosis and its absence from humans makes the enzymes of this pathway potential drug targets. In the present paper, we provide structural insights into ligand and inhibitor binding to 3-dehydroquinate dehydratase (dehydroquinase) from M. tuberculosis (MtDHQase), the third enzyme of the shikimate pathway. The enzyme has been crystallized in complex with its reaction product, 3-dehydroshikimate, and with six different competitive inhibitors. The inhibitor 2,3-anhydroquinate mimics the flattened enol/enolate reaction intermediate and serves as an anchor molecule for four of the inhibitors investigated. MtDHQase also forms a complex with citrazinic acid, a planar analogue of the reaction product. The structure of MtDHQase in complex with a 2,3-anhydroquinate moiety attached to a biaryl group shows that this group extends to an active-site subpocket inducing significant structural rearrangement. The flexible extensions of inhibitors designed to form {pi}-stacking interactions with the catalytic Tyr{sup 24} have been investigated. The high-resolution crystal structures of the MtDHQase complexes provide structural evidence for the role of the loop residues 19-24 in MtDHQase ligand binding and catalytic mechanism and provide a rationale for the design and efficacy of inhibitors.

  18. Synthesis of urea-based inhibitors as active site probes of glutamate carboxypeptidase II: efficacy as analgesic agents.

    PubMed

    Kozikowski, Alan P; Zhang, Jiazhong; Nan, Fajun; Petukhov, Pavel A; Grajkowska, Ewa; Wroblewski, Jarda T; Yamamoto, Tatsuo; Bzdega, Tomasz; Wroblewska, Barbara; Neale, Joseph H

    2004-03-25

    The neuropeptidase glutamate carboxypeptidase II (GCPII) hydrolyzes N-acetyl-L-aspartyl-L-glutamate (NAAG) to liberate N-acetylaspartate and glutamate. GCPII was originally cloned as PSMA, an M(r) 100,000 type II transmembrane glycoprotein highly expressed in prostate tissues. PSMA/GCPII is located on the short arm of chromosome 11 and functions as both a folate hydrolase and a neuropeptidase. Inhibition of brain GCPII may have therapeutic potential in the treatment of certain disease states arising from pathologically overactivated glutamate receptors. Recently, we reported that certain urea-based structures act as potent inhibitors of GCPII (J. Med. Chem. 2001, 44, 298). However, many of the potent GCPII inhibitors prepared to date are highly polar compounds and therefore do not readily penetrate the blood-brain barrier. Herein, we elaborate on the synthesis of a series of potent, urea-based GCPII inhibitors from the lead compound 3 and provide assay data for these ligands against human GCPII. Moreover, we provide data revealing the ability of one of these compounds, namely, 8d, to reduce the perception of inflammatory pain. Within the present series, the gamma-tetrazole bearing glutamate isostere 7d is the most potent inhibitor with a K(i) of 0.9 nM. The biological evaluation of these compounds revealed that the active site of GCPII likely comprises two regions, namely, the pharmacophore subpocket and the nonpharmacophore subpocket. The pharmacophore subpocket is very sensitive to structural changes, and thus, it appears important to keep one of the glutamic acid moieties intact to maintain the potency of the GCPII inhibitors. The site encompassing the nonpharmacophore subpocket that binds to glutamate's alpha-carboxyl group is sensitive to structural change, as shown by compounds 6b and 7b. However, the other region of the nonpharmacophore subpocket can accommodate both hydrophobic and hydrophilic groups. Thus, an aromatic ring can be introduced to the

  19. Screening derivatized peptide libraries for tight binding inhibitors to carbonic anhydrase II by electrospray ionization-mass spectrometry.

    PubMed

    Gao, J; Cheng, X; Chen, R; Sigal, G B; Bruce, J E; Schwartz, B L; Hofstadler, S A; Anderson, G A; Smith, R D; Whitesides, G M

    1996-05-10

    This paper describes the use of electrospray ionization-mass spectrometry (ESI-MS) to screen two libraries of soluble compounds to search for tight binding inhibitors for carbonic anhydrase II (EC 4.2.1.1). The two libraries, H2NO2SC6H4C(O)NH-AA1-AA2-C(O)NHCH2CH2CO2H where AA1 and AA2 are L-amino acids (library size: 289 compounds) or D-amino acids (256 compounds), were constructed by attaching tripeptides to the carboxyl group of 4-carboxybenzenesulfonamide. Screening of both libraries yielded, as the tightest binding inhibitor, compound 1 (AA1 = AA2 = L-Leu; binding constant Kb = 1.4 x 10(8) M-1). The ability of ESI-MS to estimate simultaneously the relative binding affinities of a protein to soluble ligands in a library, if general, should be useful in drug development. PMID:8642553

  20. A Phase II Trial of a Histone Deacetylase Inhibitor Panobinostat in Patients With Low-Grade Neuroendocrine Tumors

    PubMed Central

    Lubner, Sam J.; Mulkerin, Daniel L.; Rajguru, Saurabh; Carmichael, Lakeesha; Chen, Herb; Holen, Kyle D.; LoConte, Noelle K.

    2016-01-01

    Lessons Learned Pancreatic neuroendocrine tumors versus carcinoid tumors should be examined separately in clinical trials. Progression-free survival is more clinically relevant as the primary endpoint (rather than response rate) in phase II trials for low-grade neuroendocrine tumors. Background. The most common subtypes of neuroendocrine tumors (NETs) are pancreatic islet cell tumors and carcinoids, which represent only 2% of all gastrointestinal malignancies. Histone deacetylase (HDAC) inhibitors have already been shown to suppress tumor growth and induce apoptosis in various malignancies. In NET cells, HDAC inhibitors have resulted in increased Notch1 expression and subsequent inhibition of growth. We present here a phase II study of the novel HDAC inhibitor panobinostat in patients with low-grade NET. Methods. Adult patients with histologically confirmed, metastatic, low-grade NETs and an Eastern Cooperative Oncology Group (ECOG) performance status of ≤2 were treated with oral panobinostat 20 mg once daily three times per week. Treatment was continued until patients experienced unacceptable toxicities or disease progression. The study was stopped at planned interim analysis based on a Simon two-stage design. Results. Fifteen patients were accrued, and 13 were evaluable for response. No responses were seen, but the stable disease rate was 100%. The median progression-free survival (PFS) was 9.9 months, and the median overall survival was 47.3 months. Fatigue (27%), thrombocytopenia (20%), diarrhea (13%), and nausea (13%) were the most common related grade 3 toxicities. There was one grade 4 thrombocytopenia (7%). These results did not meet the prespecified criteria to open the study to full accrual. Conclusion. The HDAC inhibitor panobinostat has a high stable disease rate and reasonable PFS in low-grade NET, but has a low response rate. PMID:27261467

  1. 1H, 13C and 15N resonance assignments and secondary structure analysis of CmPI-II, a serine protease inhibitor isolated from marine snail Cenchritis muricatus.

    PubMed

    Cabrera-Muñoz, Aymara; Rojas, Laritza; Alonso-del-Rivero Antigua, Maday; Pires, José Ricardo

    2016-04-01

    A protease inhibitor (CmPI-II) (UNIPROT: IPK2_CENMR) from the marine mollusc Cenchritis muricatus, has been isolated and characterized. It is the first member of a new group (group 3) of non-classical Kazal-type inhibitors. CmPI-II is a tight-binding inhibitor of serine proteases: trypsin, human neutrophil elastase (HNE), subtilisin A and pancreatic elastase. This specificity is exceptional in the members of Kazal-type inhibitor family. Several models of three-dimensional structure of CmPI-II have been constructed by homology with other inhibitors of the family but its structure has not yet been solved experimentally. Here we report the (1)H, (15)N and (13)C chemical shift assignments of CmPI-II as basis for NMR structure determination and interaction studies. Secondary structure analyses deduced from the NMR chemical shift data have identified three β-strands β1: residues 14-19, β2: 23-35 and β3: 43-45 and one helix α1: 28-37 arranged in the sequential order β1-β2-α1-β3. These secondary structure elements suggest that CmPI-II adopts the typical scaffold of a Kazal-type inhibitor. PMID:26547437

  2. Quinoline-2-carboxaldehyde thiosemicarbazones and their Cu(II) and Ni(II) complexes as topoisomerase IIa inhibitors.

    PubMed

    Bisceglie, Franco; Musiari, Anastasia; Pinelli, Silvana; Alinovi, Rossella; Menozzi, Ilaria; Polverini, Eugenia; Tarasconi, Pieralberto; Tavone, Matteo; Pelosi, Giorgio

    2015-11-01

    A series of quinoline-2-carboxaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes were synthesized and characterized. In all complexes the ligands are in the E configuration with respect to the imino bond and behave as terdentate. The copper(II) complexes form square planar derivatives with one molecule of terdentate ligand and chloride ion. A further non-coordinated chloride ion compensates the overall charge. Nickel(II) ions form instead octahedral complexes with two ligands for each metal ion, independently from the stoichiometric metal:ligand ratio used in the synthesis. Ligands and complexes were tested for their antiproliferative properties on histiocytic lymphoma cell line U937. Copper(II) derivatives are systematically more active than the ligands and the nickel complexes. All copper derivatives result in inhibiting topoisomerase IIa in vitro. Computational methods were used to propose a model to explain the different extent of inhibition presented by these compounds. The positive charge of the dissociated form of the copper complexes may play a key role in their action. PMID:26335598

  3. Using DFT methodology for more reliable predictive models: Design of inhibitors of Golgi α-Mannosidase II.

    PubMed

    Bobovská, Adela; Tvaroška, Igor; Kóňa, Juraj

    2016-05-01

    Human Golgi α-mannosidase II (GMII), a zinc ion co-factor dependent glycoside hydrolase (E.C.3.2.1.114), is a pharmaceutical target for the design of inhibitors with anti-cancer activity. The discovery of an effective inhibitor is complicated by the fact that all known potent inhibitors of GMII are involved in unwanted co-inhibition with lysosomal α-mannosidase (LMan, E.C.3.2.1.24), a relative to GMII. Routine empirical QSAR models for both GMII and LMan did not work with a required accuracy. Therefore, we have developed a fast computational protocol to build predictive models combining interaction energy descriptors from an empirical docking scoring function (Glide-Schrödinger), Linear Interaction Energy (LIE) method, and quantum mechanical density functional theory (QM-DFT) calculations. The QSAR models were built and validated with a library of structurally diverse GMII and LMan inhibitors and non-active compounds. A critical role of QM-DFT descriptors for the more accurate prediction abilities of the models is demonstrated. The predictive ability of the models was significantly improved when going from the empirical docking scoring function to mixed empirical-QM-DFT QSAR models (Q(2)=0.78-0.86 when cross-validation procedures were carried out; and R(2)=0.81-0.83 for a testing set). The average error for the predicted ΔGbind decreased to 0.8-1.1kcalmol(-1). Also, 76-80% of non-active compounds were successfully filtered out from GMII and LMan inhibitors. The QSAR models with the fragmented QM-DFT descriptors may find a useful application in structure-based drug design where pure empirical and force field methods reached their limits and where quantum mechanics effects are critical for ligand-receptor interactions. The optimized models will apply in lead optimization processes for GMII drug developments. PMID:27035259

  4. Discovery and structure-activity relationships of a novel isothiazolone class of bacterial type II topoisomerase inhibitors.

    PubMed

    Cooper, Ian R; McCarroll, Andrew J; McGarry, David; Kirkham, James; Pichowicz, Mark; Walker, Rolf; Warrilow, Catherine; Salisbury, Anne-Marie; Savage, Victoria J; Moyo, Emmanuel; Forward, Henry; Cheung, Jonathan; Metzger, Richard; Gault, Zoe; Nelson, Gary; Hughes, Diarmaid; Cao, Sha; Maclean, John; Charrier, Cédric; Craighead, Mark; Best, Stuart; Stokes, Neil R; Ratcliffe, Andrew J

    2016-09-01

    There is an urgent and unmet medical need for new antibacterial drugs that tackle infections caused by multidrug-resistant (MDR) pathogens. During the course of our wider efforts to discover and exploit novel mechanism of action antibacterials, we have identified a novel series of isothiazolone based inhibitors of bacterial type II topoisomerase. Compounds from the class displayed excellent activity against both Gram-positive and Gram-negative bacteria with encouraging activity against a panel of MDR clinical Escherichia coli isolates when compared to ciprofloxacin. Representative compounds also displayed a promising in vitro safety profile. PMID:27499455

  5. Copper(II) Ions Increase Plasminogen Activator Inhibitor Type 1 Dynamics in Key Structural Regions That Govern Stability.

    PubMed

    Bucci, Joel C; Trelle, Morten Beck; McClintock, Carlee S; Qureshi, Tihami; Jørgensen, Thomas J D; Peterson, Cynthia B

    2016-08-01

    Plasminogen activator inhibitor type 1 (PAI-1) regulates the fibrinolysis pathway by inhibiting the protease activity of plasminogen activators. PAI-1 works in concert with vitronectin (VN), an extracellular protein that aids in localization of active PAI-1 to tissues. The Peterson laboratory demonstrated that Cu(II) and other transition metals modulate the stability of PAI-1, exhibiting effects that are dependent on the presence or absence of the somatomedin B (SMB) domain of VN. The study presented here dissects the changes in molecular dynamics underlying the destabilizing effects of Cu(II) on PAI-1. We utilize backbone amide hydrogen/deuterium exchange monitored by mass spectrometry to assess PAI-1 dynamics in the presence and absence of Cu(II) ions with and without the SMB domain of VN. We show that Cu(II) produces an increase in dynamics in regions important for the function and overall stability of PAI-1, while the SMB domain elicits virtually the opposite effect. A mutant form of PAI-1 lacking two N-terminal histidine residues at positions 2 and 3 exhibits similar increases in dynamics upon Cu(II) binding compared to that of active wild-type PAI-1, indicating that the observed structural effects are not a result of coordination of Cu(II) to these histidine residues. Finally, addition of Cu(II) results in an acceleration of the local unfolding kinetics of PAI-1 presumed to be on pathway to the latency conversion. The effect of ligands on the dynamics of PAI-1 adds another intriguing dimension to the mechanisms for regulation of PAI-1 stability and function. PMID:27416303

  6. Kinetic and in silico studies of hydroxy-based inhibitors of carbonic anhydrase isoforms I and II.

    PubMed

    Ekhteiari Salmas, Ramin; Mestanoglu, Mert; Durdagi, Serdar; Sentürk, Murat; Kaya, A Afşin; Kaya, Elif Çelenk

    2016-01-01

    A series of hydroxy and phenolic compounds have been assayed for the inhibition of two physiologically relevant carbonic anhydrase (CA, EC 4.2.1.1) isozymes, the cytosolic human isozymes I and II. The investigated molecules showed inhibition constants in the range of 1.07-4003 and 0.09-31.5 μM at the hCA I and hCA II enzymes, respectively. In order to investigate the binding mechanisms of these inhibitors, in silico studies were also applied. Molecular docking scores of the studied compounds are compared using three different scoring algorithms, namely Glide/SP, Glide/XP and Glide/IFD. In addition, different ADME (absorption, distribution, metabolism and excretion) analysis was performed. All the examined compounds were found within the acceptable range of pharmacokinetic profiles. PMID:25676327

  7. Optimization of physicochemical properties and safety profile of novel bacterial topoisomerase type II inhibitors (NBTIs) with activity against Pseudomonas aeruginosa.

    PubMed

    Reck, Folkert; Ehmann, David E; Dougherty, Thomas J; Newman, Joseph V; Hopkins, Sussie; Stone, Gregory; Agrawal, Nikunj; Ciaccio, Paul; McNulty, John; Barthlow, Herbert; O'Donnell, Jennifer; Goteti, Kosalaram; Breen, John; Comita-Prevoir, Janelle; Cornebise, Mark; Cronin, Mark; Eyermann, Charles J; Geng, Bolin; Carr, Greg R; Pandarinathan, Lakshmipathi; Tang, Xuejun; Cottone, Andrew; Zhao, Liang; Bezdenejnih-Snyder, Natascha

    2014-10-01

    Type II bacterial topoisomerases are well validated targets for antimicrobial chemotherapy. Novel bacterial type II topoisomerase inhibitors (NBTIs) of these targets are of interest for the development of new antibacterial agents that are not impacted by target-mediated cross-resistance with fluoroquinolones. We now disclose the optimization of a class of NBTIs towards Gram-negative pathogens, especially against drug-resistant Pseudomonas aeruginosa. Physicochemical properties (pKa and logD) were optimized for activity against P. aeruginosa and for reduced inhibition of the hERG channel. The optimized analogs 9g and 9i displayed potent antibacterial activity against P. aeruginosa, and a significantly improved hERG profile over previously reported analogs. Compound 9g showed an improved QT profile in in vivo models and lower clearance in rat over earlier compounds. The compounds show promise for the development of new antimicrobial agents against drug-resistant Pseudomonas aeruginosa. PMID:25155913

  8. PHOTOREGULATION OF BIOLOGICAL ACTIVITY BY PHOTOCROMIC REAGENTS, II. INHIBITORS OF ACETYLCHOLINESTERASE*†

    PubMed Central

    Bieth, Joseph; Vratsanos, Spyros M.; Wassermann, Norbert; Erlanger, Bernard F.

    1969-01-01

    The enzymic activity of acetylcholinesterase can be photoregulated through the mediation of photochromic inhibitors of the enzyme. N-p-phenylazophenyl-N-phenylcarbamyl fluoride, an irreversible inhibitor of acetylcholinesterase, exists as two geometric isomers which are interconvertible through the action of light. The cis isomer, which predominates after exposure to light of 320 nm, is more active than the trans isomer, which results from exposure to light of 420 nm. It was possible, therefore, to use light energy to regulate the inactivation of the enzyme. Similarly, levels of acetylcholinesterase activity could be photo-regulated in a completely reversible manner by means of the photochromic reversible inhibitor p-phenylazophenyltrimethylammonium chloride. These experiments can serve as models for similar phenomena observed in nature, particularly in photoperiodic rhythms of higher animals. Images PMID:5264140

  9. Treatment of type I and II hereditary angioedema with Rhucin, a recombinant human C1 inhibitor.

    PubMed

    Varga, Lilian; Farkas, Henriette

    2008-11-01

    Hereditary and acquired angioedema are of outstanding clinical importance, as edematous attacks associated with these conditions can thrust afflicted patients into mortal danger. Currently, C1 inhibitor concentrate - a human blood product - is available as a replacement therapy. In view of the limited number of donors, as well as the risk of transmission of blood-borne infections, it is a reasonable expectation to develop a therapeutic alternative based on recombinant technology, which would eliminate all these shortcomings. Pharming (Leiden, The Netherlands) has developed Rhucin, a recombinant human C1 inhibitor, as a proprietary product, which is currently being evaluated in Phase III clinical trials. Ongoing studies conducted within the framework of the development program are almost complete and their interim findings are reassuring. This should facilitate successful regulatory approval in the near future, which is indispensable in order to make Rhucin available for patients with hereditary angioedema or other disorders amenable to C1 inhibitor replacement. PMID:20477114

  10. Salvicine, a novel topoisomerase II inhibitor, exerts its potent anticancer activity by ROS generation.

    PubMed

    Meng, Ling-hua; Ding, Jian

    2007-09-01

    Salvicine is a novel diterpenoid quinone compound obtained by structural modification of a natural product lead isolated from a Chinese herb with potent growth inhibitory activity against a wide spectrum of human tumor cells in vitro and in mice bearing human tumor xenografts. Salvicine has also been found to have a profound cytotoxic effect on multidrug-resisitant (MDR) cells. Moreover, Salvicine significantly reduced the lung metastatic foci of MDA-MB-435 orthotopic xenograft. Recent studies demonstrated that salvicine is a novel non-intercalative topoisomerase II (Topo II) poison by binding to the ATPase domain, promoting DNA-Topo II binding and inhibiting Topo II-mediated DNA relegation and ATP hydrolysis. Further studies have indicated that salcivine-elicited ROS plays a central role in salvicine-induced cellular response including Topo II inhibition, DNA damage, circumventing MDR and tumor cell adhesion inhibition. PMID:17723179

  11. Carbonic Anhydrase Inhibitors. Part 461 Inhibition of Carbonic Anhydrase Isozymes I, II and IV With Trifluoromethylsulfonamide Derivatives and Their Zinc(II) and Copper(II) Complexes

    PubMed Central

    Mincione, Giovanna; Scozzafava, Andrea

    1997-01-01

    Reaction of aromatic/heterocyclic sulfonamides containing a free amino group with triflic anhydride afforded compounds possessing trifluoromethanesulfonamido moieties in their molecule. The Zn(II) and Cu(II) complexes of these new sulfonamides were prepared and characterized by standard procedures (elemental analysis, spectroscopic, magnetic, thermogravimetric and conductimetric measurements). The new derivatives showed good inhibitory activity against three isozymes of carbonic anhydrase (CA), i.e., CA I, II and IV. PMID:18475762

  12. Preclinical Characterization of GS-9669, a Thumb Site II Inhibitor of the Hepatitis C Virus NS5B Polymerase

    PubMed Central

    Fenaux, Martijn; Eng, Stacey; Leavitt, Stephanie A.; Lee, Yu-Jen; Mabery, Eric M.; Tian, Yang; Byun, Daniel; Canales, Eda; Clarke, Michael O.; Doerffler, Edward; Lazerwith, Scott E.; Lew, Willard; Liu, Qi; Mertzman, Michael; Morganelli, Philip; Xu, Lianhong; Ye, Hong; Zhang, Jennifer; Matles, Mike; Murray, Bernard P.; Mwangi, Judy; Zhang, Jingyu; Hashash, Ahmad; Krawczyk, Steve H.; Bidgood, Alison M.; Appleby, Todd C.

    2013-01-01

    GS-9669 is a highly optimized thumb site II nonnucleoside inhibitor of the hepatitis C virus (HCV) RNA polymerase, with a binding affinity of 1.35 nM for the genotype (GT) 1b protein. It is a selective inhibitor of HCV RNA replication, with a mean 50% effective concentration (EC50) of ≤11 nM in genotype 1 and 5 replicon assays, but lacks useful activity against genotypes 2 to 4. The M423T mutation is readily generated clinically upon monotherapy with the thumb site II inhibitors filibuvir and lomibuvir, and it is notable that GS-9669 exhibited only a 3-fold loss in potency against this variant in the genotype 1b replicon. Rather than M423T, resistance predominantly tracks to residues R422K and L419M and residue I482L in GT 1b and 1a replicons, respectively. GS-9669 exhibited at least additive activity in combination with agents encompassing four other direct modes of action (NS3 protease, NS5A, NS5B via an alternative allosteric binding site, and NS5B nucleotide) as well as with alpha interferon or ribavirin in replicon assays. It exhibited high metabolic stability in in vitro human liver microsomal assays, which, in combination with its pharmacokinetic profiles in rat, dog, and two monkey species, is predictive of good human pharmacokinetics. GS-9669 is well suited for combination with other orally active, direct-acting antiviral agents in the treatment of genotype 1 chronic HCV infection. (This study has been registered at ClinicalTrials.gov under registration number NCT01431898.) PMID:23183437

  13. Metalloprotein-inhibitor binding: Human carbonic anhydrase II as a model for probing metal-ligand interactions in a metalloprotein active site

    PubMed Central

    Martin, David P.; Hann, Zachary S.; Cohen, Seth M.

    2013-01-01

    An ever increasing number of metalloproteins are being discovered that play essential roles in physiological processes. Inhibitors of these proteins have significant potential for the treatment of human disease, but clinical success of these compounds has been limited. Herein, Zn(II)-dependent metalloprotein inhibitors in clinical use are reviewed, and the potential for using novel metal-binding groups (MBGs) in the design of these inhibitors is discussed. By using human carbonic anhydrase II (hCAII) as a model system, the nuances of MBG-metal interactions in the context of a protein environment can be probed. Understanding how metal coordination influences inhibitor binding may help in the design new therapeutics targeting metalloproteins. PMID:23706138

  14. Screening of novel chemical compounds as possible inhibitors of carbonic anhydrase and photosynthetic activity of photosystem II.

    PubMed

    Karacan, Mehmet Sayım; Zharmukhamedov, Sergei K; Mamaş, Serhat; Kupriyanova, Elena V; Shitov, Alexandr V; Klimov, Vyacheslav V; Özbek, Neslihan; Özmen, Ümmühan; Gündüzalp, Ayla; Schmitt, Franz-Josef; Karacan, Nurcan; Friedrich, Thomas; Los, Dmitry A; Carpentier, Robert; Allakhverdiev, Suleyman I

    2014-08-01

    Thirty novel chemical compounds were designed and synthesized expecting that they would be possible inhibitors. From this number eleven were organic bases, twenty-four were their organic derivatives and fourteen were metal complexes. Screening of these chemicals by their action on photosynthetic electron transfer (PET) and carbonic anhydrase (CA) activity (CAA) of photosystem II (PSII), α-CA, as well as β-CA was done. Several groups were revealed among them. Some of them are capable to suppress either one, two, three, or even all of the measured activities. As example, one of the Cu(II)-phenyl sulfonylhydrazone complexes (compound 25) suppresses CAA of α-CA by 88%, CAA of β-CA by 100% inhibition; CAA of PSII by 100% and the PSII photosynthetic activity by 66.2%. The Schiff base compounds (12, 15) and Cu(II)-phenyl sulfonylhydrazone complexes (25, 26) inhibited the CAA and PET of PSII significantly. The obtained data indicate that the PSII donor side is a target of the inhibitory action of these agents. Some physico- or electrochemical properties such as diffusion coefficient, number of transferred electrons, peak potential and heterogeneous standard rate constants of the compounds were determined in nonaqueous media. pKa values were also determined in nonaqueous and aqueous media. Availability in the studied group of novel chemical agents possessing different inhibitory activity allow in future to isolate the "active part" in the structure of the inhibitors responsible for different inhibitory mechanisms, as well as to determine the influence of side substituters on its inhibitory efficiency. PMID:24418071

  15. Fertility Inhibitor Heterobimetallic Complexes of Platinum(II) and Palladium(II): Synthetic, Spectroscopic and Antimicrobial Aspects

    PubMed Central

    Sharma, Kripa; Joshi, S. C.

    2000-01-01

    Synthetic, spectroscopic and antimicrobial aspects of some fertility inhibitor heterobimetallic complexes have been carried out. These heterobimetallic chelates [M(C5H5N3)2M2'(R)4]Cl2 (M = Pd or Pt and M' = Si, Sn, Ti and Zr) have been successfully synthesinzed via the reaction of M(C5H7N3)2Cl2 with group four or fourteen dichlorides in 1:2 stoichiometric proportions. The products were characterized by elemental analyses, molecular weight determinations, magnetic susceptibility measurements, conductance, and IR multinuclear NMR and electronic spectral studies. A square planar geometry has been suggested for all the complexes with the help of spectral data. Conductivity data strongly suggest that chlorine atoms are ionic in nature due to which complexes behave as electrolytes. All the complexes have been evaluated for their antmicrobial effects on different species of pathogenic fungi and bacteria. The testicular sperm density, testicular sperm morphology, sperm motility, density of cauda epididymal spermatozoa and fertility in mating trails and biochemical parameters of reproductive organs have been examined and discussed. PMID:18475932

  16. Selective killing of G2 decatenation checkpoint defective colon cancer cells by catalytic topoisomerase II inhibitor.

    PubMed

    Jain, Chetan Kumar; Roychoudhury, Susanta; Majumder, Hemanta Kumar

    2015-05-01

    Cancer cells with defective DNA decatenation checkpoint can be selectively targeted by the catalytic inhibitors of DNA topoisomerase IIα (topo IIα) enzyme. Upon treatment with catalytic topo IIα inhibitors, cells with defective decatenation checkpoint fail to arrest their cell cycle in G2 phase and enter into M phase with catenated and under-condensed chromosomes resulting into impaired mitosis and eventually cell death. In the present work we analyzed decatenation checkpoint in five different colon cancer cell lines (HCT116, HT-29, Caco2, COLO 205 and SW480) and in one non-cancerous cell line (HEK293T). Four out of the five colon cancer cell lines i.e. HCT116, HT-29, Caco2, and COLO 205 were found to be compromised for the decatenation checkpoint function at different extents, whereas SW480 and HEK293T cell lines were found to be proficient for the checkpoint function. Upon treatment with ICRF193, decatenation checkpoint defective cell lines failed to arrest the cell cycle in G2 phase and entered into M phase without proper chromosomal decatenation, resulting into the formation of tangled mass of catenated and under-condensed chromosomes. Such cells underwent mitotic catastrophe and rapid apoptosis like cell death and showed higher sensitivity for ICRF193. Our study suggests that catalytic inhibitors of topoisomerase IIα are promising therapeutic agents for the treatment of colon cancers with defective DNA decatenation checkpoint. PMID:25746763

  17. Inhibitory effects of KN-93, an inhibitor of Ca2+ calmodulin-dependent protein kinase II, on light-regulated root gravitropism in maize

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Hidaka, H.

    1993-01-01

    Light is essential for root gravitropism in Zea mays L., cultivar Merit. It is hypothesized that calcium mediates this light-regulated response. KN-93, an inhibitor of calcium/calmodulin kinase II (CaMK II), inhibits light-regulated root gravitropism but does not affect light perception. We hypothesize that CaMK II, or a homologue, operates late in the light/gravity signal transduction chain. Here we provide evidence suggesting a possible physiological involvement of CaMK II in root gravitropism in plants.

  18. Pharmacotherapy of intraocular pressure - part II. Carbonic anhydrase inhibitors, prostaglandin analogues and prostamides.

    PubMed

    Costagliola, Ciro; dell'Omo, Roberto; Romano, Mario R; Rinaldi, Michele; Zeppa, Lucia; Parmeggiani, Francesco

    2009-12-01

    The second part of this two part review (please see Expert Opinion on Pharmacotherapy 10(16)) reports the characteristics of other antiglaucoma medications: systemic (acetazomide) and topical (dorzolamide and brinzolamide) carbonic anhydrase inhibitors, which suppress aqueous humour formation; and prostaglandin analogues (latanoprost and travoprost) and prostamides (bimatoprost), which raise aqueous humour outflow. The pharmacologic properties of each compound and its efficacy in the medical treatment of glaucoma, mainly the primary open-angle form, are discussed briefly, focusing on the clinical evidence supporting their use. PMID:19929706

  19. II. Novel HCV NS5B polymerase inhibitors: discovery of indole C2 acyl sulfonamides.

    PubMed

    Anilkumar, Gopinadhan N; Selyutin, Oleg; Rosenblum, Stuart B; Zeng, Qingbei; Jiang, Yueheng; Chan, Tin-Yau; Pu, Haiyan; Wang, Li; Bennett, Frank; Chen, Kevin X; Lesburg, Charles A; Duca, Jose; Gavalas, Stephen; Huang, Yuhua; Pinto, Patrick; Sannigrahi, Mousumi; Velazquez, Francisco; Venkatraman, Srikanth; Vibulbhan, Bancha; Agrawal, Sony; Ferrari, Eric; Jiang, Chuan-Kui; Huang, H-C; Shih, Neng-Yang; George Njoroge, F; Kozlowski, Joseph A

    2012-01-01

    Development of SAR at the C2 position of indole lead 1, a palm site inhibitor of HCV NS5B polymerase (NS5B IC(50)=0.053μM, replicon EC(50)=4.8μM), is described. Initial screening identified an acyl sulfonamide moiety as an isostere for the C2 carboxylic acid group. Further SAR investigation resulted in identification of acyl sufonamide analog 7q (NS5B IC(50)=0.039μM, replicon EC(50)=0.011μM) with >100-fold improved replicon activity. PMID:22104146

  20. PHYTODECTA FORNICATA BRUGGERMANN RESISTANCE MEDIATED BY ORYZACYSTATIN II PROTEINASE INHIBITOR TRANSGENE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytodecta fornicata Bruggemann is a serious pest of alfalfa (Medicago sativa L.) that causes significant crop loss in the Balkan peninsula of Europe. We introduced a wound-inducible oryzacystatin II (OCII) gene to alfalfa to evaluate its effect on survival of P. fornicata larvae and beetles. Feed...

  1. Synthesis of C1 inhibitor in fibroblasts from patients with type I and type II hereditary angioneurotic edema.

    PubMed Central

    Kramer, J; Katz, Y; Rosen, F S; Davis, A E; Strunk, R C

    1991-01-01

    Patients with hereditary angioneurotic edema (HANE) have serum levels of functionally active inhibitor of the first component of complement (C1 INH) between 5 and 30% of normal, instead of the 50% expected from the single normal allele. Increases in rates of catabolism have been documented in patients with HANE and certainly account for some of decrease in C1 INH level. A possible role for a decrease in synthesis of C1 INH in producing serum levels of C1 INH below the expected 50% of normal has not been well studied. We studied the synthesis of C1 INH in skin fibroblast lines, which produce easily detectable amounts of C1 INH. In type I HANE cells, C1 INH synthesis was 19.6 +/- 4.0% (mean +/- SD) of normal, much less than the 50% predicted. In type II HANE cells, the total amount of C1 INH synthesis (functional and dysfunctional) was 98.9 +/- 17% of normal; the functional protein comprised 43% of the total. Thus, type II HANE cells synthesized functional C1 INH at a much greater rate than for the type I cells. In both type I and II HANE cells, amounts of steady-state C1 INH mRNA levels paralleled rates of C1 INH synthesis, indicating that control of C1 INH synthesis occurred at pretranslational levels. Both type I and type II fibroblasts synthesized normal amounts of C1r and C1s. These data suggest that the lower than expected amounts of functionally active C1 INH in type I HANE may be due, in part, to a decrease in rate of synthesis of the protein, and that the expressions of the normal C1 INH allele in HANE is influenced by the type of abnormal allele present. Images PMID:1902490

  2. Perioperative management of patients treated with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: a quality improvement audit.

    PubMed

    Vijay, A; Grover, A; Coulson, T G; Myles, P S

    2016-05-01

    Previous studies have shown that patients continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery are more likely to have significant intraoperative hypotension, higher rates of postoperative acute kidney injury, and lower incidences of postoperative atrial fibrillation. However, many of these studies were prone to bias and confounding, and questions remain over the validity of these outcomes. This observational, before-and-after quality improvement audit aimed to assess the effect of withholding these medications on the morning of surgery. We recruited 323 participants, with 83 (26%) having their preoperative angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) withheld on the day of surgery. There were only very small Spearman rank-order correlations between time since last dose of these medications (rho -0.12, P=0.057) and intraoperative and recovery room intravenous fluid administration (rho -0.11, P=0.042). There was no statistically significant difference between the continued or withheld groups in vasopressor (metaraminol use 3.5 [1.5-8.3] mg versus 3.5 [1.5-8.5] mg, P=0.67) or intravenous fluid administration (1000 ml [800-1500] ml versus 1000 [800-1500] ml, P=0.096), nor rates of postoperative acute kidney injury (13% vs 18%, P=0.25) or atrial fibrillation (15% versus 18%, P=0.71). This audit found no significant differences in measured outcomes between the continued or withheld ACEi/ARB groups. This finding should be interpreted with caution due to the possibility of confounding and an insufficient sample size. However, as the finding is in contrast to many previous studies, future prospective randomised clinical trials are required to answer this important question. PMID:27246933

  3. Search for novel histone deacetylase inhibitors. Part II: design and synthesis of novel isoferulic acid derivatives.

    PubMed

    Lu, Wen; Wang, Fang; Zhang, Tao; Dong, Jinyun; Gao, Hongping; Su, Ping; Shi, Yaling; Zhang, Jie

    2014-05-01

    Previously, we described the discovery of potent ferulic acid-based histone deacetylase inhibitors (HDACIs) with halogeno-acetanilide as novel surface recognition moiety (SRM). In order to improve the affinity and activity of these HDACIs, twenty seven isoferulic acid derivatives were described herein. The majority of title compounds displayed potent HDAC inhibitory activity. In particular, IF5 and IF6 exhibited significant enzymatic inhibitory activities, with IC50 values of 0.73 ± 0.08 and 0.57 ± 0.16 μM, respectively. Furthermore, these compounds showed moderate antiproliferative activity against human cancer cells. Especially, IF6 displayed promising profile as an antitumor candidate with IC50 value of 3.91 ± 0.97 μM against HeLa cells. The results indicated that these isoferulic acid derivatives could serve as promising lead compounds for further optimization. PMID:24702857

  4. A RANDOMIZED PHASE II TRIAL OF THE MATRIX METALLOPROTEINASE INHIBITOR BMS-275291 IN HORMONE-REFRACTORY PROSTATE CANCER PATIENTS WITH BONE METASTASES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: BMS-275291 is a selective matrix metalloproteinase inhibitor (MMPI) that does not inhibit sheddases implicated in the dose-limiting arthritis of older MMPIs. We conducted a randomized phase II trail of two doses of BMS-275291 (1,200 versus 2,400 mg) in hormone-refractory prostate cancer ...

  5. Ciprofloxacin is a potential topoisomerase II inhibitor for the treatment of NSCLC

    PubMed Central

    KLOSKOWSKI, TOMASZ; GURTOWSKA, NATALIA; OLKOWSKA, JOANNA; NOWAK, JAKUB MARCIN; ADAMOWICZ, JAN; TWORKIEWICZ, JAKUB; DĘBSKI, ROBERT; GRZANKA, ALINA; DREWA, TOMASZ

    2012-01-01

    Lung cancer is one of the most common tumors and its treatment is still inefficient. In our previous work we proved that ciprofloxacin has a different influence on five cancer cell lines. Here, we aimed to compare the biological effect of ciprofloxacin on cell lines representing different responses after treatment, thus A549 was chosen as a sensitive model, C6 and B16 as highly resistant. Three different cell lines were analyzed (A549, B16 and C6). The characterization of continuous cell growth was analyzed with the Real-Time Cell Analyzer (RTCA)-DP system. Cytoskeletal changes were demonstrated using immunofluorescence. The cell cycle was analyzed using flow cytometry. Ciprofloxacin was cytostatic only against the A549 cell line. In the case of other tested cell lines a cytostatic effect was not observed. Cytoskeletal analysis confirms the results obtained with RTCA-DP. A549 cells were inhibited in the G2/M phase suggesting a mechanism related to topoisomerase II inhibition. The biological effects of ciprofloxacin support the hypothesis that this drug can serve as an adjuvant treatment for lung cancer, due to its properties enabling topoisomerase II inhibition. PMID:23042104

  6. Isoquinoline-1,3-diones as Selective Inhibitors of Tyrosyl DNA Phosphodiesterase II (TDP2).

    PubMed

    Kankanala, Jayakanth; Marchand, Christophe; Abdelmalak, Monica; Aihara, Hideki; Pommier, Yves; Wang, Zhengqiang

    2016-03-24

    Tyrosyl DNA phosphodiesterase II (TDP2) is a recently discovered enzyme that specifically repairs DNA damages induced by topoisomerase II (Top2) poisons and causes resistance to these drugs. Inhibiting TDP2 is expected to enhance the efficacy of clinically important Top2-targeting anticancer drugs. However, TDP2 as a therapeutic target remains poorly understood. We report herein the discovery of isoquinoline-1,3-dione as a viable chemotype for selectively inhibiting TDP2. The initial hit compound 43 was identified by screening our in-house collection of synthetic compounds. Further structure-activity relationship (SAR) studies identified numerous analogues inhibiting TDP2 in low micromolar range without appreciable inhibition against the homologous TDP1 at the highest testing concentration (111 μM). The best compound 64 inhibited recombinant TDP2 with an IC50 of 1.9 μM. The discovery of this chemotype may provide a platform toward understanding TDP2 as a drug target. PMID:26910725

  7. Characterization and comparative 3D modeling of CmPI-II, a novel 'non-classical' Kazal-type inhibitor from the marine snail Cenchritis muricatus (Mollusca).

    PubMed

    González, Yamile; Pons, Tirso; Gil, Jeovanis; Besada, Vladimir; Alonso-del-Rivero, Maday; Tanaka, Aparecida S; Araujo, Mariana S; Chávez, María A

    2007-11-01

    The complete amino acid sequence obtained by electrospray ionization tandem mass spectrometry of the proteinase inhibitor CmPI-II isolated from Cenchritis muricatus is described. CmPI-II is a 5480-Da protein with three disulfide bridges that inhibits human neutrophil elastase (HNE) (K(i) 2.6+/-0.2 nM), trypsin (K(i) 1.1+/-0.9 nM), and other serine proteinases such as subtilisin A (K(i) 30.8+/-1.2 nM) and pancreatic elastase (K(i) 145.0+/-4.4 nM); chymotrypsin, pancreatic and plasma kallikreins, thrombin and papain are not inhibited. CmPI-II shares homology with the Kazal-type domain and may define a new group of 'non-classical' Kazal inhibitors according to its Cys(I)-Cys(V) disulfide bridge position. The 3D model of CmPI-II exhibits similar secondary structure characteristics to Kazal-type inhibitors and concurs with circular dichroism experiments. A 3D model of the CmPI-II/HNE complex provides a structural framework for the interpretation of its experimentally determined K(i) value. The model shows both similar and different contacts at the primary binding sites in comparison with the structure of turkey ovomucoid third domain (OMTKY3)/HNE used as template. Additional contacts calculated at the protease-inhibitor interface could also contribute to the association energy of the complex. This inhibitor represents an exception in terms of specificity owing to its ability to strongly inhibit elastases and trypsin. PMID:17976011

  8. Plasminogen activator inhibitor-1 gene-deficient mice. II. Effects on hemostasis, thrombosis, and thrombolysis.

    PubMed Central

    Carmeliet, P; Stassen, J M; Schoonjans, L; Ream, B; van den Oord, J J; De Mol, M; Mulligan, R C; Collen, D

    1993-01-01

    The effects of plasminogen activator inhibitor-1 (PAI-1) gene inactivation on hemostasis, thrombosis and thrombolysis were studied in homozygous PAI-1-deficient (PAI-1-/-) mice, generated by homologous recombination in D3 embryonic stem cells. Diluted (10-fold) whole blood clots from PAI-1-/- and from PAI-1 wild type (PAI-1+/+) mice underwent limited but significantly different (P < 0.001) spontaneous lysis within 3 h (6 +/- 1 vs 3 +/- 1%, respectively). A 25-microliters 125I-fibrin-labeled normal murine plasma clot, injected into a jugular vein, was lysed for 47 +/- 5, 66 +/- 3, and 87 +/- 7% within 8 h in PAI-1+/+, heterozygous PAI-1-deficient (PAI-1+/-), and PAI-1-/- mice, respectively (P = 0.002 for PAI-1+/+ vs PAI-1-/- mice). Corresponding values after pretreatment with 0.5 mg/kg endotoxin in PAI-1+/+ and PAI-1-/- mice, were 35 +/- 5 and 91 +/- 3% within 4 h, respectively (P < 0.001). 11 out of 26 PAI-1+/+ but only 1 out of 25 PAI-1-/- mice developed venous thrombosis (P = 0.004) within 6 d after injection of 10 or 50 micrograms endotoxin in the footpad. Spontaneous bleeding or delayed rebleeding could not be documented in PAI-1-/- mice after partial amputation of the tail or of the caecum. Thus, disruption of the PAI-1 gene in mice appears to induce a mild hyperfibrinolytic state and a greater resistance to venous thrombosis but not to impair hemostasis. Images PMID:8254029

  9. Polyamine metabolism and osmotic stress. II. Improvement of oat protoplasts by an inhibitor of arginine decarboxylase

    NASA Technical Reports Server (NTRS)

    Tiburcio, A. F.; Kaur-Sawhney, R.; Galston, A. W.

    1986-01-01

    We have attempted to improve the viability of cereal mesophyll protoplasts by pretreatment of leaves with DL-alpha-difluoromethylarginine (DFMA), a specific 'suicide' inhibitor of the enzyme (arginine decarboxylase) responsible for their osmotically induced putrescine accumulation. Leaf pretreatment with DFMA before a 6 hour osmotic shock caused a 45% decrease of putrescine and a 2-fold increase of spermine titer. After 136 hours of osmotic stress, putrescine titer in DFMA-pretreated leaves increased by only 50%, but spermidine and spermine titers increased dramatically by 3.2- and 6-fold, respectively. These increases in higher polyamines could account for the reduced chlorophyll loss and enhanced ability of pretreated leaves to incorporate tritiated thymidine, uridine, and leucine into macromolecules. Pretreatment with DFMA significantly improved the overall viability of the protoplasts isolated from these leaves. The results support the view that the osmotically induced rise in putrescine and blockage of its conversion to higher polyamines may contribute to the lack of sustained cell division in cereal mesophyll protoplasts, although other undefined factors must also play a major role.

  10. [Cyclooxygenases inhibitors and other compounds with antiinflammatory potential in osteoarthrosis--part II].

    PubMed

    Dzielska-Olczak, Małgorzata

    2011-01-01

    NO-NSAIDs (or CINODs that is COX-inhibiting nitric oxide donors) are new class of antiinflammatory drugs and have a multi-pathway mechanism of action that involves cyclooxygenases (COXs) inhibition and nitric oxide (NO) donation. The first drug of this group is naproxcinod, which exerts rarely adverse effects of stomach, gut and less cardiovascular toxicity with naproxen. NO is an important mediator of endothelial function acting as a vasodilator and plays role in inflammation and pain perception that may be of relevance in osteoarthritis and in healing injures in stomach and gut. Lipoxins (LX, LXs): LXA4, LXB4 are group of lipid mediators leading to resolution of inflammation and protective influence on gastrointestinal mucosa. ATL (AT mean aspirin triggered therefore "depend on aspirin") synthesis, via COX-2, reduces the severity of damage gastrointestinal tract induced by NSAIDs. ATL also plays role in gastric adaptation during chronic aspirin administration. Antiinflammatory drugs hydrogen sulfide-releasing (H2S) (ATB-337 that consist of diclofenac linked to a hydrogen sulfide-releasing moiety) may show better efficacy and less toxicity. COX/5-LOX inhibitors and NO-NSAIDs heals symptoms of osteoarthrosis. PMID:21542252

  11. A biochemical logic gate using an enzyme and its inhibitor. Part II: The logic gate.

    PubMed

    Sivan, Sarit; Tuchman, Samuel; Lotan, Noah

    2003-06-01

    Enzyme-Based Logic Gates (ENLOGs) are key components in bio-molecular systems for information processing. This report and the previous one in this series address the characterization of two bio-molecular switching elements, namely the alpha-chymotrypsin (alphaCT) derivative p-phenylazobenzoyl-alpha-chymotrypsin (PABalphaCT) and its inhibitor (proflavine), as well as their assembly into a logic gate. The experimental output of the proposed system is expressed in terms of enzymic activity and this was translated into logic output (i.e. "1" or "0") relative to a predetermined threshold value. We have found that an univalent link exists between the dominant isomers of PABalphaCT (cis or trans), the dominant form of either acridine (proflavine) or acridan and the logic output of the system. Thus, of all possible combinations, only the trans-PABalphaCT and the acridan lead to an enzymic activity that can be defined as logic output "1". The system operates under the rules of Boolean algebra and performs as an "AND" logic gate. PMID:12753934

  12. Three-dimensional structural model analysis of the binding site of lithocholic acid, an inhibitor of DNA polymerase beta and DNA topoisomerase II.

    PubMed

    Mizushina, Y; Kasai, N; Sugawara, F; Iida, A; Yoshida, H; Sakaguchi, K

    2001-11-01

    The molecular action of lithocholic acid (LCA), a selective inhibitor of mammalian DNA polymerase beta (pol beta), was investigated. We found that LCA could also strongly inhibit the activity of human DNA topoisomerase II (topo II). No other DNA metabolic enzymes tested were affected by LCA. Therefore, LCA should be classified as an inhibitor of both pol beta and topo II. Here, we report the molecular interaction of LCA with pol beta and topo II. By three-dimensional structural model analysis and by comparison with the spatial positioning of specific amino acids binding to LCA on pol beta (Lys60, Leu77, and Thr79), we obtained supplementary information that allowed us to build a structural model of topo II. Modeling analysis revealed that the LCA-interaction interface in both enzymes has a pocket comprised of three amino acids in common, which binds to the LCA molecule. In topo II, the three amino acid residues were Lys720, Leu760, and Thr791. These results suggested that the LCA binding domains of pol beta and topo II are three-dimensionally very similar. PMID:11686928

  13. Structural Mechanisms Determining Inhibition of the Collagen Receptor DDR1 by Selective and Multi-Targeted Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Tan, Li; Chu, Kiki; Lee, Sam W.; Gray, Nathanael S.; Bullock, Alex N.

    2014-01-01

    The discoidin domain receptors (DDRs), DDR1 and DDR2, form a unique subfamily of receptor tyrosine kinases that are activated by the binding of triple-helical collagen. Excessive signaling by DDR1 and DDR2 has been linked to the progression of various human diseases, including fibrosis, atherosclerosis and cancer. We report the inhibition of these unusual receptor tyrosine kinases by the multi-targeted cancer drugs imatinib and ponatinib, as well as the selective type II inhibitor DDR1-IN-1. Ponatinib is identified as the more potent molecule, which inhibits DDR1 and DDR2 with an IC50 of 9 nM. Co-crystal structures of human DDR1 reveal a DFG-out conformation (DFG, Asp-Phe-Gly) of the kinase domain that is stabilized by an unusual salt bridge between the activation loop and αD helix. Differences to Abelson kinase (ABL) are observed in the DDR1 P-loop, where a β-hairpin replaces the cage-like structure of ABL. P-loop residues in DDR1 that confer drug resistance in ABL are therefore accommodated outside the ATP pocket. Whereas imatinib and ponatinib bind potently to both the DDR and ABL kinases, the hydrophobic interactions of the ABL P-loop appear poorly satisfied by DDR1-IN-1 suggesting a structural basis for its DDR1 selectivity. Such inhibitors may have applications in clinical indications of DDR1 and DDR2 overexpression or mutation, including lung cancer. PMID:24768818

  14. Angiotensin II Receptor Blocker Neprilysin Inhibitor (ARNI): New Avenues in Cardiovascular Therapy.

    PubMed

    Volpe, M; Tocci, G; Battistoni, A; Rubattu, S

    2015-09-01

    The burden of cardiovascular disease (CVD) is continuously and progressively raising worldwide. Essential hypertension is a major driver of cardiovascular events, including coronary artery disease, myocardial infarction, ischemic stroke and congestive heart failure. This latter may represent the final common pathway of different cardiovascular diseases, and it is often mediated by progressive uncontrolled hypertension. Despite solid advantages derived from effective and sustained blood pressure control, and the widespread availability of effective antihypertensive medications, the vast majority of the more than 1 billion hypertensive patients worldwide continue to have uncontrolled hypertension. Among various factors that may be involved, the abnormal activation of neurohormonal systems is one consistent feature throughout the continuum of cardiovascular diseases. These systems may initiate biologically meaningful "injury responses". However, their sustained chronic overactivity often may induce and maintain the progression from hypertension towards congestive heart failure. The renin-angiotensin-aldosteron system, the sympathetic nervous system and the endothelin system are major neurohormonal stressor systems that are not only able to elevate blood pressure levels by retaining water and sodium, but also to play a role in the pathophysiology of cardiovascular diseases. More recently, the angiotensin receptor neprilysin inhibitor (ARNI) represents a favourable approach to inhibit neutral endopeptidase (NEP) and suppress the RAAS via blockade of the AT1 receptors, without the increased risk of angioedema. LCZ696, the first-in-class ARNI, has already demonstrated BP lowering efficacy in patients with hypertension, in particular with respect to systolic blood pressure levels, improved cardiac biomarkers, cardiac remodelling and prognosis in patients with heart failure. This manuscript will briefly overview the main pathophysiological and therapeutic aspects of ARNI in

  15. Fragment-Based Discovery of 2-Aminoquinazolin-4(3H)-ones As Novel Class Nonpeptidomimetic Inhibitors of the Plasmepsins I, II, and IV.

    PubMed

    Rasina, Dace; Otikovs, Martins; Leitans, Janis; Recacha, Rosario; Borysov, Oleksandr V; Kanepe-Lapsa, Iveta; Domraceva, Ilona; Pantelejevs, Teodors; Tars, Kaspars; Blackman, Michael J; Jaudzems, Kristaps; Jirgensons, Aigars

    2016-01-14

    2-Aminoquinazolin-4(3H)-ones were identified as a novel class of malaria digestive vacuole plasmepsin inhibitors by using NMR-based fragment screening against Plm II. Initial fragment hit optimization led to a submicromolar inhibitor, which was cocrystallized with Plm II to produce an X-ray structure of the complex. The structure showed that 2-aminoquinazolin-4(3H)-ones bind to the open flap conformation of the enzyme and provided clues to target the flap pocket. Further improvement in potency was achieved via introduction of hydrophobic substituents occupying the flap pocket. Most of the 2-aminoquinazolin-4(3H)-one based inhibitors show a similar activity against digestive Plms I, II, and IV and >10-fold selectivity versus CatD, although varying the flap pocket substituent led to one Plm IV selective inhibitor. In cell-based assays, the compounds show growth inhibition of Plasmodium falciparum 3D7 with IC50 ∼ 1 μM. Together, these results suggest 2-aminoquinazolin-4(3H)-ones as perspective leads for future development of an antimalarial agent. PMID:26670264

  16. The topoisomerase II catalytic inhibitor ICRF-193 preferentially targets telomeres that are capped by TRF2.

    PubMed

    Chen, Lianxiang; Zhu, Xiaowei; Zou, Yaru; Xing, Jun; Gilson, Eric; Lu, Yiming; Ye, Jing

    2015-03-01

    The increased level of chromosome instability in cancer cells is not only a driving force for oncogenesis but also can be the Achille's heel of the disease since many chemotherapies kill cells by inducing a nontolerable rate of DNA damage. A wealth of published evidence showed that telomere stability can be more affected than the bulk of the genome by several conventional antineoplastic drugs. In the present study, HT1080 cell lines compromised for either telomere repeats binding factor 2 (TRF2) or POT1 were treated with ICRF-193 (3 μM, 24 h) or bleomycin (1 μM, 24 h). DNA damage was assayed by combining telomeric DNA staining of a (CCCTAA)n PNA probe with immunofluorescence of 53BP1 to score the rate of telomere colocalization with 53BP1 foci. We found that ICRF-193, but not bleomycin, leads to DNA damage preferentially at telomeres, which can be rescued by TRF2 inhibition. POT1 inhibition exacerbates telomere dysfunction induced by ICRF-193. Thus, ICRF-193 induces damage at telomeres properly capped by TRF2 but not by POT1. These findings are expected to broaden our view on the mechanism by which conventional therapeutic molecules act to eliminate cancer cells and how to use TRF2 and POT1 levels as surrogate markers for anti-topoisomerase II sensitivity. PMID:25518961

  17. Enhancement of hexokinase II inhibitor-induced apoptosis in hepatocellular carcinoma cells via augmenting ER stress and anti-angiogenesis by protein disulfide isomerase inhibition.

    PubMed

    Yu, Su Jong; Yoon, Jung-Hwan; Yang, Jong-In; Cho, Eun Ju; Kwak, Min Sun; Jang, Eun Sun; Lee, Jeong-Hoon; Kim, Yoon Jun; Lee, Hyo-Suk; Kim, Chung Yong

    2012-02-01

    3-bromopyruvate (3-BP), a hexokinase (HK) II inhibitor, promotes tumor cell death by inducing endoplasmic reticulum (ER) stress in human hepatocellular carcinoma (HCC) cell lines. Protein disulfide isomerase (PDI) is an essential folding catalyst and attenuates ER stress by folding the misfolded proteins. We examined if PDI is expressed in hypoxic HCC cells, and evaluated its inhibition potentiated HK II inhibitor-induced ER stress in hypoxic HCC cells. HCC apoptotic cell death was assessed by DAPI staining and apoptotic signaling pathways were explored by immunoblot analysis. An in vivo model of HCC was established in C3H mice intradermally with implanted MH134 cells. 3-BP with/without a PDI inhibitor (bacitracin) was subsequently administered. The anti-tumor efficacies were evaluated by measuring tumor volumes and quantifying apoptotic cells and microvessel densities (MVDs). HCC cells were found to express PDI in a hypoxia-inducible manner. The simultaneous treatment of bacitracin and 3-BP enhanced 3-BP-induced apoptosis. This enhancement was attributed to increased ER stress and JNK activation compared to the cells treated with just 3-BP. In an in vivo model of HCC, tumor growth was significantly suppressed in mice co-treated with bacitracin and 3-BP, and the percentages of apoptotic cells significantly increased and MVDs significantly decreased. These results demonstrated that PDI was induced in hypoxic HCC tissue and that PDI inhibition enhanced HK II inhibitor-induced anti-tumor efficacy synergistically via augmenting ER stress and anti-angiogenesis in vivo. Thus, blockage of PDI activity in combination with HK II inhibitor may be therapeutically useful in HCCs. PMID:22350012

  18. Conformation and recognition of DNA damaged by antitumor cis-dichlorido platinum(II) complex of CDK inhibitor bohemine.

    PubMed

    Novakova, Olga; Liskova, Barbora; Vystrcilova, Jana; Suchankova, Tereza; Vrana, Oldrich; Starha, Pavel; Travnicek, Zdenek; Brabec, Viktor

    2014-05-01

    A substitution of the ammine ligands of cisplatin, cis-[Pt(NH3)2Cl2], for cyclin dependent kinase (CDK) inhibitor bohemine (boh), [2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine], results in a compound, cis-[Pt(boh)2Cl2] (C1), with the unique anticancer profile which may be associated with some features of the damaged DNA and/or its cellular processing (Travnicek Z et al. (2003) J Inorg Biochem94, 307-316; Liskova B (2012) Chem Res Toxicol25, 500-509). A combination of biochemical and molecular biology techniques was used to establish mechanistic differences between cisplatin and C1 with respect to the DNA damage they produce and their interactions with critical DNA-binding proteins, DNA-processing enzymes and glutathione. The results show that replacement of the NH3 groups in cisplatin by bohemine modulates some aspects of the mechanism of action of C1. More specifically, the results of the present work are consistent with the thesis that, in comparison with cisplatin, effects of other factors, such as: (i) slower rate of initial binding of C1 to DNA; (ii) the lower efficiency of C1 to form bifunctional adducts; (iii) the reduced bend of longitudinal DNA axis induced by the major 1,2-GG intrastrand cross-link of C1; (iv) the reduced affinity of HMG domain proteins to the major adduct of C1; (v) the enhanced efficiency of the DNA adducts of C1 to block DNA polymerization and to inhibit transcription activity of human RNA pol II and RNA transcription; (vi) slower rate of the reaction of C1 with glutathione, may partially contribute to the unique activity of C1. PMID:24675180

  19. Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells.

    PubMed

    Zhang, Qianwen; Zhang, Yuanyuan; Zhang, Pei; Chao, Zhenhua; Xia, Fei; Jiang, Chenchen; Zhang, Xudong; Jiang, Zhiwen; Liu, Hao

    2014-03-01

    Hexokinase II (HKII), a key enzyme of glycolysis, is widely over-expressed in cancer cells. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, has been proposed as a specific antitumor agent. Autophagy is a process that regulates the balance between protein synthesis and protein degradation. Autophagy in mammalian systems occurs under basal conditions and can be stimulated by stresses, including starvation, oxidative stress. Therefore, we hypothesized that 3-BrPA could induce autophagy. In the present study, we explored the mechanism of 3-BrPA and its combined action with chloroquine. Our results demonstrate that in MDA-MB-435 and in MDA-MB-231 cells, 3-BrPA induces autophagy, which can be inhibited by chloroquine. Furthermore, the combined treatment synergistically decreased the number of viable cells. Interestingly, the combined treatment triggered apoptosis in MDA-MB-435 cells, while it induced necroptosis in MDA-MB-231 cells. ROS mediated cell death when 3-BrPA and CQ were co-administered. Finally, CQ enhanced the anticancer efficacy of 3-BrPA in vivo. Collectively, our results show that 3-BrPA triggers autophagy, increasing breast cancer cell resistance to 3-BrPA treatment and that CQ enhanced 3-BrPA-induced cell death in breast cancer cells by stimulating ROS formation. Thus, inhibition of autophagy may be an innovative strategy for adjuvant chemotherapy of breast cancer.human skeletal muscle. Efficient Mirk depletion in SU86.86 pancreatic cancer cells by an inducible shRNA decreased expression of eight antioxidant genes. Thus both cancer cells and differentiated myotubes utilize Mirk kinase to relieve oxidative stress. PMID:25053988

  20. An optimized micro-assay of myosin II ATPase activity based on the molybdenum blue method and its application in screening natural product inhibitors.

    PubMed

    Chen, Hong-Lin; Zhao, Jing; Zhang, Guan-Jun; Kou, Jun-Ping; Yu, Bo-Yang

    2016-06-01

    Myosin II plays multiple roles in physiological and pathological functions through its ATPase activity. The present study was designed to optimize a micro-assay of myosin II ATPase activity based on molybdenum blue method, using a known myosin II ATPase inhibitor, blebbistatin. Several parameters were observed in the enzymatic reaction procedure, including the concentrations of the substrate (ATP) and calcium chloride, pH, and the reaction and incubation times. The proportion of coloration agent was also investigated. The sensitivity of this assay was compared with the malachite green method and bioluminescence method. Additionally, 20 natural compounds were studied for myosin II ATPase inhibitory activity using the optimized method. Our results showed that ATP at the concentration of 5 mmol·L(-1) and ammonium molybdate : stannous chloride at the ratio of 15 : 1 could greatly improve the sensitivity of this method. The IC50 of blebbistatin obtained by this method was consistent with literature. Compound 8 was screened with inhibitory activity on myosin II ATPase. The optimized method showed similar accuracy, lower detecting limit, and wider linear range, which could be a promising approach to screening myosin II ATPase inhibitors in vitro. PMID:27473959

  1. A phase I–II study of the histone deacetylase inhibitor valproic acid plus chemoimmunotherapy in patients with advanced melanoma

    PubMed Central

    Rocca, A; Minucci, S; Tosti, G; Croci, D; Contegno, F; Ballarini, M; Nolè, F; Munzone, E; Salmaggi, A; Goldhirsch, A; Pelicci, P G; Testori, A

    2009-01-01

    We explored in a phase I/II clinical trial the combination of valproic acid (VPA), a clinically available histone deacetylase inhibitor, with standard chemoimmunotherapy in patients with advanced melanoma, to evaluate its clinical activity, to correlate the clinical response with the biological activity of VPA and to assess toxicity. Patients were treated initially with VPA alone for 6 weeks. The inhibition of the target in non-tumour peripheral blood cells (taken as a potential surrogate marker) was measured periodically, and valproate dosing adjusted with the attempt to reach a measurable inhibition. After the treatment with valproate alone, dacarbazine plus interferon-α was started in combination with valproate. Twenty-nine eligible patients started taking valproate and 18 received chemoimmunotherapy and are assessable for response. We observed one complete response, two partial remissions and three disease stabilisations lasting longer than 24 weeks. With the higher valproate dosages needed to reach a measurable inhibition of the target, we observed an increase of side effects in those patients who received chemoimmunotherapy. The combination of VPA and chemoimmunotherapy did not produce results overtly superior to standard therapy in patients with advanced melanoma and toxicity was not negligible, casting some doubts on the clinical use of VPA in this setting (at least in the administration schedule adopted). PMID:19127265

  2. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor.

    PubMed

    Cingel, Aleksandar; Savić, Jelena; Vinterhalter, Branka; Vinterhalter, Dragan; Kostić, Miroslav; Jovanović, Darka Šešlija; Smigocki, Ann; Ninković, Slavica

    2015-08-01

    Plant proteinase inhibitors (PIs) are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. PI oryzacystatin II (OCII), isolated from rice, showed potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate the applicability of the OCII gene in enhancing plant defence, OCII-transformed potatoes were bioassayed for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Feeding on transformed leaves of potato cultivars Desiree and Jelica significantly affected larval growth and development, but did not change mortality rates. During the L2 and L3 developmental stages larvae consumed the OCII-transformed foliage faster as compared to the nontransformed control. Also these larvae reached the prepupal stage (end of L4 stage) 2 days earlier than those fed on control leaves. However, the total amounts of consumed OCII-transformed leaves were up to 23% lower than of control, and the maximal weights of prepupal larvae were reduced by up to 18% as compared to larvae fed on nontransformed leaves. The reduction in insect fitness reported in this study in combination with other control measures, could lead to improved CPB resistance management in potato. PMID:25820664

  3. Pharmacological properties and pathophysiological significance of a Kunitz-type protease inhibitor (Rusvikunin-II) and its protein complex (Rusvikunin complex) purified from Daboia russelii russelii venom.

    PubMed

    Mukherjee, Ashis K; Mackessy, Stephen P

    2014-10-01

    A 7.1 kDa basic peptide (Rusvikunin-II) was purified from a previously described protein complex (Rusvikunin complex, consists of Rusvikunin and Rusvikunin-II) of Daboia russelii russelii venom. The N-terminal sequence of Rusvikunin-II was found to be blocked, but peptide mass fingerprinting analysis indicated its identity as Kunitz-type basic protease inhibitor 2, previously reported from Russell's Viper venom. A tryptic peptide sequence of Rusvikunin-II containing the N-terminal sequence HDRPTFCNLFPESGR demonstrated significant sequence homology to venom basic protease inhibitors, Kunitz-type protease inhibitors and trypsin inhibitors. The secondary structure of Rusvikunin-II was dominated by β-sheets (60.4%), followed by random coil (38.2%), whereas α-helix (1.4%) contributes the least to its secondary structure. Both Rusvikunin-II and the Rusvikunin complex demonstrated dose-dependent anticoagulant activity; however, the anticoagulant potency of latter was found to be higher. Both inhibited the amidolytic activity of trypsin > plasmin > FXa, fibrinogen clotting activity of thrombin, and, to a lesser extent, the prothrombin activation property of FXa; however, the inhibitory effect of the Rusvikunin complex was more pronounced. Neither Rusvikunin-II nor Rusvikunin complex inhibited the amidolytic activity of chymotrypsin and thrombin. Rusvikunin-II at 10 μg/ml was not cytotoxic to Colo-205, MCF-7 or 3T3 cancer cells; conversely, Rusvikunin complex showed ∼30% reduction of MCF-7 cells under identical experimental conditions. Rusvikunin-II (5.0 mg/kg body weight, i.p. injection) was not lethal to mice or House Geckos; nevertheless, it showed in vivo anticoagulant action in mice. However, the Rusvikunin complex (at 5.0 mg/kg) was toxic to NSA mice, but not to House Geckos, suggesting it has prey-specific toxicity. Rusvikunin complex-treated mice exhibited dyspnea and hind-limb paresis prior to death. The present study indicates that the Kunitz

  4. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3beta activation and RNA polymerase II inhibition.

    PubMed

    Santo, L; Vallet, S; Hideshima, T; Cirstea, D; Ikeda, H; Pozzi, S; Patel, K; Okawa, Y; Gorgun, G; Perrone, G; Calabrese, E; Yule, M; Squires, M; Ladetto, M; Boccadoro, M; Richardson, P G; Munshi, N C; Anderson, K C; Raje, N

    2010-04-22

    Dysregulated cell cycling is a universal hallmark of cancer and is often mediated by abnormal activation of cyclin-dependent kinases (CDKs) and their cyclin partners. Overexpression of individual complexes are reported in multiple myeloma (MM), making them attractive therapeutic targets. In this study, we investigate the preclinical activity of a novel small-molecule multi-CDK inhibitor, AT7519, in MM. We show the anti-MM activity of AT7519 displaying potent cytotoxicity and apoptosis; associated with in vivo tumor growth inhibition and prolonged survival. At the molecular level, AT7519 inhibited RNA polymerase II (RNA pol II) phosphorylation, a CDK9, 7 substrate, associated with decreased RNA synthesis confirmed by [(3)H] Uridine incorporation. In addition, AT7519 inhibited glycogen synthase kinase 3beta (GSK-3beta) phosphorylation; conversely pretreatment with a selective GSK-3 inhibitor and shRNA GSK-3beta knockdown restored MM survival, suggesting the involvement of GSK-3beta in AT7519-induced apoptosis. GSK-3beta activation was independent of RNA pol II dephosphorylation confirmed by alpha-amanitin, a specific RNA pol II inihibitor, showing potent inhibition of RNA pol II phosphorylation without corresponding effects on GSK-3beta phosphorylation. These results offer new insights into the crucial, yet controversial role of GSK-3beta in MM and show significant anti-MM activity of AT7519, providing the rationale for its clinical evaluation in MM. PMID:20101221

  5. Solution structures of the Bacillus cereus metallo-β-lactamase BcII and its complex with the broad spectrum inhibitor R-thiomandelic acid

    PubMed Central

    Karsisiotis, Andreas Ioannis; Damblon, Christian F.; Roberts, Gordon C. K.

    2013-01-01

    Metallo-β-lactamases, enzymes which inactivate β-lactam antibiotics, are of increasing biological and clinical significance as a source of antibiotic resistance in pathogenic bacteria. In the present study we describe the high-resolution solution NMR structures of the Bacillus cereus metallo-β-lactamase BcII and of its complex with R-thiomandelic acid, a broad-spectrum inhibitor of metallo-β-lactamases. This is the first reported solution structure of any metallo-β-lactamase. There are differences between the solution structure of the free enzyme and previously reported crystal structures in the loops flanking the active site, which are important for substrate and inhibitor binding and catalysis. The binding of R-thiomandelic acid and the roles of active-site residues are defined in detail. Changes in the enzyme structure upon inhibitor binding clarify the role of the mobile β3–β4 loop. Comparisons with other metallo-β-lactamases highlight the roles of individual amino-acid residues in the active site and the β3–β4 loop in inhibitor binding and provide information on the basis of structure–activity relationships among metallo-β-lactamase inhibitors. PMID:24059435

  6. Cellular response to antitumor cis-Dichlorido platinum(II) complexes of CDK inhibitor Bohemine and its analogues.

    PubMed

    Liskova, Barbora; Zerzankova, Lenka; Novakova, Olga; Kostrhunova, Hana; Travnicek, Zdenek; Brabec, Viktor

    2012-02-20

    The cellular and molecular pharmacology of the new class of anticancer drugs, in which the CDK inhibitor bohemine and its analogues are coordinated to Pt(II) to form cisplatin derivatives, was investigated. The results revealed the unique anticancer profile of a cisplatin-derived platinum(II) dichlorido complex involving N(7)-coordinated bohemine (C1). Although the IC(50) values were ∼6-fold higher for C1 than for cisplatin in cisplatin-sensitive tumor cells, the tumor cells in which C1 was also active are those which acquired resistance to cisplatin. In addition, among the novel conjugates of bohemine and its analogues with cisplatin, marked selectivity of C1 for tumor cells relative to the nontumorigenic, normal cells was observed. However, coordination of bohemine to platinum in C1 considerably reduced one of the dual functionalities anticipated to be effective after C1 reaches the nucleus. Further studies performed in the cells with wt p53 status show differences between cisplatin and C1 at the level of cell cycle regulation. Impedance-based real-time monitoring of the effects of C1 and cisplatin on cell growth supported the thesis that critical differences exist in the rate and mechanisms of cell kill caused by the two agents and that C1 was a more potent inducer of apoptosis and/or necrosis than cisplatin. The results also showed that the distinct differences in cell killing observed for C1 and cisplatin might be associated with processes at the DNA level. The DNA binding experiments carried out in a cell-free medium demonstrated that modification reactions resulting in the irreversible coordination of C1 to DNA were slower than that of cisplatin. Transcription mapping experiments and determination of interstrand cross-linking efficiency of C1 suggested that several aspects of DNA binding mode of C1 and cisplatin were similar. It was concluded that C1 remains a promising prototype of compounds for the generation of novel drug candidates with cytotoxicity

  7. Target-Based Resistance in Pseudomonas aeruginosa and Escherichia coli to NBTI 5463, a Novel Bacterial Type II Topoisomerase Inhibitor

    PubMed Central

    Nayar, Asha S.; Dougherty, Thomas J.; Reck, Folkert; Thresher, Jason; Gao, Ning; Shapiro, Adam B.

    2014-01-01

    In a previous report (T. J. Dougherty, A. Nayar, J. V. Newman, S. Hopkins, G. G. Stone, M. Johnstone, A. B. Shapiro, M. Cronin, F. Reck, and D. E. Ehmann, Antimicrob Agents Chemother 58:2657–2664, 2014), a novel bacterial type II topoisomerase inhibitor, NBTI 5463, with activity against Gram-negative pathogens was described. First-step resistance mutations in Pseudomonas aeruginosa arose exclusively in the nfxB gene, a regulator of the MexCD-OprJ efflux pump system. The present report describes further resistance studies with NBTI 5463 in both Pseudomonas aeruginosa and Escherichia coli. Second-step mutations in P. aeruginosa arose at aspartate 82 of the gyrase A subunit and led to 4- to 8-fold increases in the MIC over those seen in the parental strain with a first-step nfxB efflux mutation. A third-step mutant showed additional GyrA changes, with no changes in topoisomerase IV. Despite repeated efforts, resistance mutations could not be selected in E. coli. Genetic introduction of the Asp82 mutations observed in P. aeruginosa did not significantly increase the NBTI MIC in E. coli. However, with the aspartate 82 mutation present, it was possible to select second-step mutations in topoisomerase IV that did lead to MIC increases of 16- and 128-fold. As with the gyrase aspartate 82 mutation, the mutations in topoisomerase IV did not by themselves raise the NBTI MIC in E. coli. Only the presence of mutations in both targets of E. coli led to an increase in NBTI MIC values. This represents a demonstration of the value of balanced dual-target activity in mitigating resistance development. PMID:25348539

  8. Citalopram, a selective serotonin reuptake inhibitor: clinical antidepressive and long-term effect--a phase II study.

    PubMed

    Pedersen, O L; Kragh-Sørensen, P; Bjerre, M; Overø, K F; Gram, L F

    1982-01-01

    In a phase II study the antidepressive effect of citalopram, a selective and potent serotonin reuptake inhibitor, was examined in 20 endogenously and three non-endogenously depressed hospitalized patients. Four endogenously depressed patients dropped out due to deterioration early in the treatment period. The remaining 19 patients completed a 4-6 week treatment schedule. Of 16 endogenously depressed patients 11 responded, one was a partial responder and four did not respond. Of three patients with non-endogenous depressions, two responded and one did not respond. No correlation between plasma citalopram concentration and therapeutic outcome was found. Fourteen patients were given maintenance treatment for 8-113 weeks. One patient developed depression when the dose was reduced from 60 to 40 mg and one patient became manic. After discontinuation of treatment seven patients had a depressive relapse and six of these who again were treated with citalopram responded completely. Side effect rating scores of symptoms usually associated with depression or treatment with tricyclic antidepressants declined during treatment. Three patients complained of increased need of sleep for a period after several weeks of treatment. Apart from an unspecific, transient rise in liver enzymes in two patients, detailed biochemical laboratory tests were all normal. There were no effects on blood pressure, pulse rate, orthostatic reaction, or electrocardiogram. One patient took an overdose of citalopram resulting in plasma levels about six times higher than the average therapeutic level, but there were no signs of severe toxicity. In particular no change in consciousness, electrocardiogram or blood pressure occurred. Pharmacokinetic variables such as dose schedule, steady state kinetics, and metabolism are discussed. PMID:6812140

  9. Bioanalytical method for evaluating the pharmacokinetics of the GCP-II inhibitor 2-phosphonomethyl pentanedioic acid (2-PMPA).

    PubMed

    Rais, Rana; Rojas, Camilo; Wozniak, Krystyna; Wu, Ying; Zhao, Ming; Tsukamoto, Takashi; Rudek, Michelle A; Slusher, Barbara S

    2014-01-01

    2-Phosphonomethyl pentanedioic acid (2-PMPA) is a potent and selective inhibitor of glutamate carboxypeptidase-II, an enzyme which catabolizes the abundant neuropeptide N-acetyl-aspartyl-glutamate (NAAG) to N-acetylaspartate (NAA) and glutamate. 2-PMPA demonstrates robust efficacy in numerous animal models of neurological disease, however its pharmacokinetics has not yet been fully described. 2-PMPA is a highly polar compound with multiple negative charges causing significant challenges for analysis in biological matrices. Here we report a derivatization method for the acidic groups that involved protein precipitation with acetonitrile followed by reaction with N-tert-butyldimethysilyl-N-methyltrifluoroacetamide (MTBSTFA). The silylated analyte with transitions (683→551.4) and the internal standard (669→537.2) were monitored by tandem mass spectrometry with electrospray positive ionization mode. The method was subsequently used to evaluate 2-PMPA pharmacokinetics in rats. Intraperitoneal administration of 100mg/kg 2-PMPA resulted in maximum concentration in plasma of 275μg/mL at 0.25h. The half-life, area under the curve, apparent clearance, and volume of distribution were 0.64h, 210μg×h/mL, 7.93mL/min/kg, and 0.44L/kg, respectively. The tissue/plasma ratios in brain, sciatic nerve and dorsal root ganglion were 0.018, 0.120 and 0.142, respectively. In summary, a sensitive analytical method for 2-PMPA is reported that can be employed for similarly charged molecules. PMID:24055700

  10. Structural and Regulatory Elements of HCV NS5B Polymerase – β-Loop and C-Terminal Tail – Are Required for Activity of Allosteric Thumb Site II Inhibitors

    PubMed Central

    Boyce, Sarah E.; Tirunagari, Neeraj; Niedziela-Majka, Anita; Perry, Jason; Wong, Melanie; Kan, Elaine; Lagpacan, Leanna; Barauskas, Ona; Hung, Magdeleine; Fenaux, Martijn; Appleby, Todd; Watkins, William J.; Schmitz, Uli; Sakowicz, Roman

    2014-01-01

    Elucidation of the mechanism of action of the HCV NS5B polymerase thumb site II inhibitors has presented a challenge. Current opinion holds that these allosteric inhibitors stabilize the closed, inactive enzyme conformation, but how this inhibition is accomplished mechanistically is not well understood. Here, using a panel of NS5B proteins with mutations in key regulatory motifs of NS5B – the C-terminal tail and β-loop – in conjunction with a diverse set of NS5B allosteric inhibitors, we show that thumb site II inhibitors possess a distinct mechanism of action. A combination of enzyme activity studies and direct binding assays reveals that these inhibitors require both regulatory elements to maintain the polymerase inhibitory activity. Removal of either element has little impact on the binding affinity of thumb site II inhibitors, but significantly reduces their potency. NS5B in complex with a thumb site II inhibitor displays a characteristic melting profile that suggests stabilization not only of the thumb domain but also the whole polymerase. Successive truncations of the C-terminal tail and/or removal of the β-loop lead to progressive destabilization of the protein. Furthermore, the thermal unfolding transitions characteristic for thumb site II inhibitor – NS5B complex are absent in the inhibitor – bound constructs in which interactions between C-terminal tail and β-loop are abolished, pointing to the pivotal role of both regulatory elements in communication between domains. Taken together, a comprehensive picture of inhibition by compounds binding to thumb site II emerges: inhibitor binding provides stabilization of the entire polymerase in an inactive, closed conformation, propagated via coupled interactions between the C-terminal tail and β-loop. PMID:24416288

  11. Structural and regulatory elements of HCV NS5B polymerase--β-loop and C-terminal tail--are required for activity of allosteric thumb site II inhibitors.

    PubMed

    Boyce, Sarah E; Tirunagari, Neeraj; Niedziela-Majka, Anita; Perry, Jason; Wong, Melanie; Kan, Elaine; Lagpacan, Leanna; Barauskas, Ona; Hung, Magdeleine; Fenaux, Martijn; Appleby, Todd; Watkins, William J; Schmitz, Uli; Sakowicz, Roman

    2014-01-01

    Elucidation of the mechanism of action of the HCV NS5B polymerase thumb site II inhibitors has presented a challenge. Current opinion holds that these allosteric inhibitors stabilize the closed, inactive enzyme conformation, but how this inhibition is accomplished mechanistically is not well understood. Here, using a panel of NS5B proteins with mutations in key regulatory motifs of NS5B--the C-terminal tail and β-loop--in conjunction with a diverse set of NS5B allosteric inhibitors, we show that thumb site II inhibitors possess a distinct mechanism of action. A combination of enzyme activity studies and direct binding assays reveals that these inhibitors require both regulatory elements to maintain the polymerase inhibitory activity. Removal of either element has little impact on the binding affinity of thumb site II inhibitors, but significantly reduces their potency. NS5B in complex with a thumb site II inhibitor displays a characteristic melting profile that suggests stabilization not only of the thumb domain but also the whole polymerase. Successive truncations of the C-terminal tail and/or removal of the β-loop lead to progressive destabilization of the protein. Furthermore, the thermal unfolding transitions characteristic for thumb site II inhibitor-NS5B complex are absent in the inhibitor-bound constructs in which interactions between C-terminal tail and β-loop are abolished, pointing to the pivotal role of both regulatory elements in communication between domains. Taken together, a comprehensive picture of inhibition by compounds binding to thumb site II emerges: inhibitor binding provides stabilization of the entire polymerase in an inactive, closed conformation, propagated via coupled interactions between the C-terminal tail and β-loop. PMID:24416288

  12. Randomized controlled clinical trial of a combination therapy of vildagliptin plus an α-glucosidase inhibitor for patients with type II diabetes mellitus

    PubMed Central

    SU, YONG; SU, YA-LI; LV, LI-FANG; WANG, LI-MIN; LI, QUAN-ZHONG; ZHAO, ZHI-GANG

    2014-01-01

    The aim of this study was to assess the efficacy of a combination therapy of vildagliptin plus an α-glucosidase inhibitor for patients with type II diabetes mellitus. Type II diabetic patients exhibiting poor glycemic control following α-glucosidase inhibitor treatment for at least two months were selected and randomly distributed into vildagliptin and placebo groups. The body weight, fasting blood glucose (FBG), postprandial glucose (PPG), glycated hemoglobin (HBA1c) and blood lipid levels and hepatorenal functions of the patients were determined before and 12 weeks after the trial. Following the trial, the FBG, PPG, HbA1c, cholesterol (CHOL) and triglyceride (TG) levels in the vildagliptin group were significantly decreased compared with the pretreatment levels (P<0.05), whereas only the PPG level in the placebo group decreased (P<0.05). The FBG, PPG and HbA1c levels in the vildagliptin group were markedly lower than those in the placebo group 12 weeks after the trial. A comparison of the body weights and hepatorenal functions before and after the trial or between groups did not show statistically significant differences. The combination therapy of vildagliptin plus an α-glucosidase inhibitor effectively reduced the FBG, PPG and HbA1c levels in patients without inducing weight gain or hepatorenal dysfunction. However, the therapy may have caused a reduction in the blood lipid levels. PMID:24926379

  13. The effects of intraganglionic injection of calcium/calmodulin-dependent protein kinase II inhibitors on pain-related behavior in diabetic neuropathy.

    PubMed

    Jelicic Kadic, A; Boric, M; Kostic, S; Sapunar, D; Puljak, L

    2014-01-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) has been implicated in the transmission of nociceptive input in diabetic neuropathy. The aim of this study was to test whether intraganglionic (i.g.) injection of CaMKII inhibitors may alleviate pain-related behavior in diabetic rats. Diabetes was induced in Sprague-Dawley rats using 55 mg/kg streptozotocin intraperitoneally. Two weeks after diabetes induction, CaMKII inhibitors myristoil-AIP and KN93 were injected directly into the right L5 dorsal root ganglion (DRG). Behavioral testing with mechanical and thermal stimuli was performed before induction of diabetes, the day preceding the injection, as well as 2 and 24h after the i.g. injection. The expression of total CaMKII and its alpha isoform in DRG neurons was analyzed using immunohistochemistry. CaMKII inhibitors attenuated pain-related behavior in a modality-specific fashion. Attenuation of nociceptive behavior was accompanied with a corresponding decrease of CaMKII alpha expression in DRG neurons on the side of injection. A significant decrease of CaMKII alpha expression was seen in small- and medium-sized neurons. In conclusion, our study provides evidence that CaMKII inhibitors are potential pharmacological agents that should be further explored for treatment of diabetic neuropathy symptoms. PMID:24161721

  14. Morphologic Damage of Rat Alveolar Epithelial Type II Cells Induced by Bile Acids Could Be Ameliorated by Farnesoid X Receptor Inhibitor Z-Guggulsterone In Vitro

    PubMed Central

    Huang, Yaowei; Hou, Xusheng; Wu, Wenyu; Nie, Lei; Tian, Yinghong; Lu, Yanmeng

    2016-01-01

    Objective. To determine whether bile acids (BAs) affect respiratory functions through the farnesoid X receptor (FXR) expressed in the lungs and to explore the possible mechanisms of BAs-induced respiratory disorder. Methods. Primary cultured alveolar epithelial type II cells (AECIIs) of rat were treated with different concentrations of chenodeoxycholic acid (CDCA) in the presence or absence of FXR inhibitor Z-guggulsterone (GS). Then, expression of FXR in nuclei of AECIIs was assessed by immunofluorescence microscopy. And ultrastructural changes of the cells were observed under transmission electron microscope and analyzed by Image-Pro Plus software. Results. Morphologic damage of AECIIs was exhibited in high BAs group in vitro, with high-level expression of FXR, while FXR inhibitor GS could attenuate the cytotoxicity of BAs to AECIIs. Conclusions. FXR expression was related to the morphologic damage of AECIIs induced by BAs, thus influencing respiratory functions. PMID:27340672

  15. Development of a RapidFire mass spectrometry assay and a fluorescence assay for the discovery of kynurenine aminotransferase II inhibitors to treat central nervous system disorders.

    PubMed

    Lu, Hao; Kopcho, Lisa; Ghosh, Kaushik; Witmer, Mark; Parker, Michael; Gupta, Sumit; Paul, Marilyn; Krishnamurthy, Prasad; Laksmaiah, Basanth; Xie, Dianlin; Tredup, Jeffrey; Zhang, Litao; Abell, Lynn M

    2016-05-15

    Kynurenine aminotransferases convert kynurenine to kynurenic acid and play an important role in the tryptophan degradation pathway. Kynurenic acid levels in brain have been hypothesized to be linked to a number of central nervous system (CNS) disorders. Kynurenine aminotransferase II (KATII) has proven to be a key modulator of kynurenic acid levels in brain and, thus, is an attractive target to treat CNS diseases. A sensitive, high-throughput, label-free RapidFire mass spectrometry assay has been developed for human KATII. Unlike other assays, this method is directly applicable to KATII enzymes from different animal species, which allows us to select proper animal model(s) to evaluate human KATII inhibitors. We also established a coupled fluorescence assay for human KATII. The short assay time and kinetic capability of the fluorescence assay provide a useful tool for orthogonal inhibitor validation and mechanistic studies. PMID:26874021

  16. Identification of Novel Human Dipeptidyl Peptidase-IV Inhibitors of Natural Origin (Part II): In Silico Prediction in Antidiabetic Extracts

    PubMed Central

    Guasch, Laura; Sala, Esther; Ojeda, María José; Valls, Cristina; Bladé, Cinta; Mulero, Miquel; Blay, Mayte; Ardévol, Anna; Garcia-Vallvé, Santiago; Pujadas, Gerard

    2012-01-01

    Background Natural extracts play an important role in traditional medicines for the treatment of diabetes mellitus and are also an essential resource for new drug discovery. Dipeptidyl peptidase IV (DPP-IV) inhibitors are potential candidates for the treatment of type 2 diabetes mellitus, and the effectiveness of certain antidiabetic extracts of natural origin could be, at least partially, explained by the inhibition of DPP-IV. Methodology/Principal Findings Using an initial set of 29,779 natural products that are annotated with their natural source and an experimentally validated virtual screening procedure previously developed in our lab (Guasch et al.; 2012) [1], we have predicted 12 potential DPP-IV inhibitors from 12 different plant extracts that are known to have antidiabetic activity. Seven of these molecules are identical or similar to molecules with described antidiabetic activity (although their role as DPP-IV inhibitors has not been suggested as an explanation for their bioactivity). Therefore, it is plausible that these 12 molecules could be responsible, at least in part, for the antidiabetic activity of these extracts through their inhibitory effect on DPP-IV. In addition, we also identified as potential DPP-IV inhibitors 6 molecules from 6 different plants with no described antidiabetic activity but that share the same genus as plants with known antidiabetic properties. Moreover, none of the 18 molecules that we predicted as DPP-IV inhibitors exhibits chemical similarity with a group of 2,342 known DPP-IV inhibitors. Conclusions/Significance Our study identified 18 potential DPP-IV inhibitors in 18 different plant extracts (12 of these plants have known antidiabetic properties, whereas, for the remaining 6, antidiabetic activity has been reported for other plant species from the same genus). Moreover, none of the 18 molecules exhibits chemical similarity with a large group of known DPP-IV inhibitors. PMID:23028712

  17. L-DNase II, a Molecule That Links Proteases and Endonucleases in Apoptosis, Derives from the Ubiquitous Serpin Leukocyte Elastase Inhibitor

    PubMed Central

    Torriglia, Alicia; Perani, Paolo; Brossas, Jean Yves; Chaudun, Elisabeth; Treton, Jacques; Courtois, Yves; Counis, Marie-France

    1998-01-01

    The most widely recognized biochemical change associated with the majority of apoptotic systems is the degradation of genomic DNA. Among the enzymes that may participate in this cleavage, the acidic cation-independent DNase II is a likely candidate since it is activated in many apoptotic cells. To better understand its role, we purified and sequenced a DNase II extracted from porcine spleen. Protein sequencing of random peptides demonstrated that this enzyme is derived from a ubiquitous serpin, the leukocyte elastase inhibitor (LEI), by an acidic-dependent posttranslational modification or by digestion with elastase. We call this novel enzyme L-DNase II. In vitro experiments with purified recombinant LEI show that the native form has no effect on purified nuclei whereas its posttranslationally activated form induces pycnosis and DNA degradation. Antibodies directed against L-DNase II showed, in different cell lines, an increased expression and a nuclear translocation of this enzyme during apoptosis. Since the appearance of the endonuclease activity results in a loss of the anti-protease properties of LEI, the transformation from LEI to L-DNase II may act as a switch of protease and nuclease pathways, each of which is activated during apoptosis. PMID:9584202

  18. Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes

    NASA Astrophysics Data System (ADS)

    Alyar, Saliha; Adem, Şevki

    2014-10-01

    We report the synthesis of the ligand, salicilaldehyde-N-methyl p-toluenesulfonylhydrazone (salptsmh) derived from p-toluenesulfonicacid-1-methylhydrazide (ptsmh) and its Pd(II) and Co(II) metal complexes were synthesized for the first time. The structure of the ligand and their complexes were investigated using elemental analysis, magnetic susceptibility, molar conductance and spectral (IR, NMR and LC-MS) measurements. Salptsmh has also been characterized by single crystal X-ray diffraction. 1H and 13C shielding tensors for crystal structure were calculated with GIAO/DFT/B3LYP/6-311++G(d,p) methods in CDCl3. The complexes were found to have general composition [ML2]. The results of elemental analysis showed 1:2 (metal/ligand) stoichiometry for all the complex. Magnetic and spectral data indicate a square planar geometry for Pd(II) complex and a distorted tetrahedral geometry for Co(II) complexes. The ligand and its metal chelates have been screened for their antimicrobial activities using the disk diffusion method against the selected Gram positive bacteria: Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis, Gram negative bacteria: Eschericha coli, Pseudomonas aeruginosa, Klebsiella pneumonia. The inhibition activities of these compounds on carbonic anhydrase II (CA II) and carbonic anhydrase I (CA I) have been investigated by comparing IC50 and Ki values and it has been found that Pd(II) complex have more enzyme inhibition efficiency than salptsmh and Co(II) complex.

  19. Rhodium(II) Proximity-Labeling Identifies a Novel Target Site on STAT3 for Inhibitors with Potent Anti-Leukemia Activity.

    PubMed

    Minus, Matthew B; Liu, Wei; Vohidov, Farrukh; Kasembeli, Moses M; Long, Xin; Krueger, Michael J; Stevens, Alexandra; Kolosov, Mikhail I; Tweardy, David J; Sison, Edward Allan R; Redell, Michele S; Ball, Zachary T

    2015-10-26

    Nearly 40 % of children with acute myeloid leukemia (AML) suffer relapse arising from chemoresistance, often involving upregulation of the oncoprotein STAT3 (signal transducer and activator of transcription 3). Herein, rhodium(II)-catalyzed, proximity-driven modification identifies the STAT3 coiled-coil domain (CCD) as a novel ligand-binding site, and we describe a new naphthalene sulfonamide inhibitor that targets the CCD, blocks STAT3 function, and halts its disease-promoting effects in vitro, in tumor growth models, and in a leukemia mouse model, validating this new therapeutic target for resistant AML. PMID:26480340

  20. Docking studies, synthesis, characterization of some novel oxazine substituted 9-anilinoacridine derivatives and evaluation for their antioxidant and anticancer activities as topoisomerase II inhibitors.

    PubMed

    Kalirajan, R; Kulshrestha, Vivek; Sankar, S; Jubie, S

    2012-10-01

    A series of 9-anilinoacridines substituted with oxazine derivatives were synthesized to evaluate their antioxidant and anticancer activity against Daltons Lymphoma Ascites (DLA) cell growth by in vitro method. It was revealed that these conjugates exhibited significant antioxidant and anticancer activity (inhibition of DLA cell proliferation). Among these agents, compounds 5a, 5h, 5i, 5j were the most cytotoxic with CTC(50) value of 140-250 μg/mL. The docking studies of the synthesized compounds were performed towards the key Topoisomerase II (1QZR) by using Schrodinger Maestro 9.2 version. The oxazine substituted 9-anilinoacridine derivatives 5a, 5h, 5i, 5j have significant anticancer activity as topoisomerase II inhibitors. PMID:22982526

  1. Discovery of dihydroxylated 2,4-diphenyl-6-thiophen-2-yl-pyridine as a non-intercalative DNA-binding topoisomerase II-specific catalytic inhibitor.

    PubMed

    Jun, Kyu-Yeon; Kwon, Hanbyeol; Park, So-Eun; Lee, Eunyoung; Karki, Radha; Thapa, Pritam; Lee, Jun-Ho; Lee, Eung-Seok; Kwon, Youngjoo

    2014-06-10

    We describe our rationale for designing specific catalytic inhibitors of topoisomerase II (topo II) over topoisomerase I (topo I). Based on 3D-QSAR studies of previously published dihydroxylated 2,4-diphenyl-6-aryl pyridine derivatives, 9 novel dihydroxylated 2,4-diphenyl-6-thiophen-2-yl pyridine compounds were designed, synthesized, and their biological activities were evaluated. These compounds have 2-thienyl ring substituted on the R(3) group on the pyridine ring and they all showed excellent specificity toward topo II compared to topo I. In vitro experiments were performed for compound 13 to determine the mechanism of action for this series of compounds. Compound 13 inhibited topoisomerase II specifically by non-intercalative binding to DNA and did not stabilize enzyme-cleavable DNA complex. Compound 13 efficiently inhibited cell viability, cell migration, and induced G1 arrest. Also from 3D-QSAR studies, the results were compared with other previously published dihydroxylated 2,4-diphenyl-6-aryl pyridine derivatives to explain the structure-activity relationships. PMID:24796883

  2. Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels and improves learning and memory in a mouse model of Alzheimer's disease

    PubMed Central

    Sung, You Me; Lee, Taehee; Yoon, Hyejin; DiBattista, Amanda Marie; Song, JungMin; Sohn, Yoojin; Moffat, Emily Isabella; Turner, R. Scott; Jung, Mira; Kim, Jungsu; Hoe, Hyang-Sook

    2013-01-01

    Histone deacetylase inhibitors (HDACIs) alter gene expression epigenetically by interfering with the normal functions of HDAC. Given their ability to decrease Aβ levels, HDACIs area potential treatment for Alzheimer's disease (AD). However, it is unclear how HDACIs alter Aβ levels. We developed two novel HDAC inhibitors with improved pharmacological properties, such as a longer half-life and greater penetration of the blood-brain barrier: mercaptoacetamide-based class II HDACI (coded as W2) and hydroxamide-based class I and IIHDACI (coded as I2) and investigated how they affect Aβ levels and cognition. HDACI W2 decreased Aβ40 and Aβ42 in vitro. HDACI I2 also decreased Aβ40, but not Aβ42. We systematically examined the molecular mechanisms by which HDACIs W2 and I2 can decrease Aβ levels. HDACI W2 decreased gene expression of γ-secretase components and increased the Aβ degradation enzyme Mmp2. Similarly, HDACI I2 decreased expression of β- and γ-secretase components and increased mRNA levels of Aβ degradation enzymes. HDACI W2 also significantly decreased Aβ levels and rescued learning and memory deficits in aged hAPP 3x Tg AD mice. Furthermore, we found that the novel HDACI W2 decreased tau phosphorylation at Thr181, an effect previously unknown for HDACIs. Collectively, these data suggest that class II HDACls may serve as a novel therapeutic strategy for AD. PMID:23063601

  3. Cyclooxygenase-2 inhibitors for non-small-cell lung cancer: A phase II trial and literature review

    PubMed Central

    YOKOUCHI, HIROSHI; KANAZAWA, KENYA; ISHIDA, TAKASHI; OIZUMI, SATOSHI; SHINAGAWA, NAOFUMI; SUKOH, NORIAKI; HARADA, MASAO; OGURA, SHIGEAKI; MUNAKATA, MITSURU; DOSAKA-AKITA, HIROTOSHI; ISOBE, HIROSHI; NISHIMURA, MASAHARU

    2014-01-01

    Several preclinical and clinical studies have demonstrated that cyclooxygenase-2 (COX-2) inhibitors are efficient for the treatment of non-small-cell lung cancer (NSCLC). However, two recent phase III clinical trials using COX-2 inhibitors in combination with platinum-based chemotherapy failed to demonstrate a survival benefit. Thus, validation and discussion regarding the usefulness of COX-2 inhibitors for patients with NSCLC are required. We conducted a prospective trial using COX-2 inhibitors for the treatment of 50 NSCLC patients accrued between April, 2005 and July, 2006. Patients with untreated advanced NSCLC received oral meloxicam (150 mg daily), carboplatin (area under the curve = 5 mg/ml × min on day 1) and docetaxel (60 mg/m2 on day 1) every 3 weeks. The primary endpoint was response rate. The response and disease control rates were 36.0 and 76.0%, respectively. The time-to-progression (TTP) and overall survival (OS) were 5.7 months [95% confidence interval (CI): 4.6–6.7] and 13.7 months (95% CI: 11.4–15.9), respectively. The 1-year survival ratio was 56.0%. Grade 3 neuropathy was observed in only 1 patient. We performed tumor immunohistochemistry for COX-2 and p27 and investigated the correlation between their expression and clinical outcome. COX-2 expression in the tumor tended to correlate with a higher response rate (50.0% in the high- and 18.2% in the low-COX-2 group; P=0.092). Based on our results and previous reports, various trial designs, such as the prospective use of COX-2 inhibitors only for patients with COX-2-positive NSCLC, including the exploratory analysis of biomarkers associated with the COX-2 pathway, may be worth further consideration. PMID:25054040

  4. Computer based screening for novel inhibitors against Vibrio cholerae using NCI diversity set-II: an alternative approach by targeting transcriptional activator ToxT.

    PubMed

    Mondal, Shakhinur Islam; Khadka, Bijendra; Akter, Arzuba; Roy, Pradip Kumar; Sultana, Razia

    2014-06-01

    Cholera is a severe diarrheal disease caused by Vibrio cholerae and remains as a major health risk in developing countries. The emergence and spread of multi-drug resistant V. cholerae strains during the past two decades is now a major problem in the treatment of cholera and have created the urgent need for the development of novel therapeutic agents. Targeting transcriptional factor is now a novel approach to tackle the development of multi-drug resistant strain. In the recent year virtual high throughput screening has emerged as a widely accepted powerful technology in the identification of novel and diverse lead. This study provides new insight to the search for new potent and selective inhibitors that still remains necessary to avoid the risk of possible resistance and reduce toxicity and side effects of currently available cholera drugs. The publications of high resolution X-ray structure of V. cholerae ToxT has open the way to the structure based virtual screening to identify new small molecular inhibitors which still remain necessary to avoid the risk of possible resistance and reduce toxicity and side effects of currently available cholera drugs. In this study we have performed structure based virtual screening approach using NCI diversity set-II to look for novel inhibitor of ToxT and proposed eight candidate compounds with high scoring function. Thus from complex scoring and binding ability it is elucidated that these compounds could be the promising inhibitors or could be developed as novel lead compounds for drug design against cholera. PMID:25172449

  5. Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries.

    PubMed

    Paul Friedman, Katie; Watt, Eric D; Hornung, Michael W; Hedge, Joan M; Judson, Richard S; Crofton, Kevin M; Houck, Keith A; Simmons, Steven O

    2016-05-01

    High-throughput screening for potential thyroid-disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the U.S. Environmental Protection Agency ToxCast screening assay portfolio. To fill 1 critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast phase I and II chemical libraries, comprised of 1074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single-concentration screen were retested in concentration-response. Due to high false-positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed 2 additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using guaiacol as a substrate to confirm the activity profiles of putative TPO inhibitors. This effort represents the most extensive TPO inhibition screening campaign to date and illustrates a tiered screening approach that focuses resources, maximizes assay throughput, and reduces animal use. PMID:26884060

  6. Comparative effectiveness of angiotensin-converting-enzyme inhibitors and angiotensin II receptor blockers in patients with type 2 diabetes and retinopathy

    PubMed Central

    Shih, Chia-Jen; Chen, Hung-Ta; Kuo, Shu-Chen; Li, Szu-Yuan; Lai, Pi-Hsiang; Chen, Shu-Chen; Ou, Shuo-Ming; Chen, Yung-Tai

    2016-01-01

    Background: Angiotensin-converting-enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are effective treatments for diabetic retinopathy, but randomized trials and meta-analyses comparing their effects on macrovascular complications have yielded conflicting results. We compared the effectiveness of these drugs in patients with pre-existing diabetic retinopathy in a large population-based cohort. Methods: We conducted a propensity score–matched cohort study using Taiwan’s National Health Insurance Research Database. We included adult patients prescribed an ACE inhibitor or ARB within 90 days after diagnosis of diabetic retinopathy between 2000 and 2010. Primary outcomes were all-cause death and major adverse cardiovascular events (myocardial infarction, ischemic stroke or cardiovascular death). Secondary outcomes were hospital admissions with acute kidney injury or hyperkalemia. Results: We identified 11 246 patients receiving ACE inhibitors and 15 173 receiving ARBs, of whom 9769 patients in each group were matched successfully by propensity scores. In the intention-to-treat analyses, ARBs were similar to ACE inhibitors in risk of all-cause death (hazard ratio [HR] 0.94, 95% confidence interval [CI] 0.87–1.01) and major adverse cardiovascular events (HR 0.95, 95% CI 0.87–1.04), including myocardial infarction (HR 1.03, 95% CI 0.88–1.20), ischemic stroke (HR 0.94, 95% CI 0.85–1.04) and cardiovascular death (HR 1.01, 95% CI 0.88–1.16). They also did not differ from ACE inhibitors in risk of hospital admission with acute kidney injury (HR 1.01, 95% CI 0.91–1.13) and hospital admission with hyperkalemia (HR 1.01, 95% CI 0.86–1.18). Results were similar in as-treated analyses. Interpretation: Our study showed that ACE inhibitors were similar to ARBs in risk of all-cause death, major adverse cardiovascular events and adverse effects among patients with pre-existing diabetic retinopathy. PMID:27001739

  7. Phase I/II Study of HSP90 Inhibitor AUY922 and Erlotinib for EGFR-Mutant Lung Cancer With Acquired Resistance to Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors

    PubMed Central

    Johnson, Melissa L.; Yu, Helena A.; Hart, Eric M.; Weitner, Bing Bing; Rademaker, Alfred W.; Patel, Jyoti D.; Kris, Mark G.; Riely, Gregory J.

    2015-01-01

    Purpose AUY922 is an HSP90 inhibitor that causes degradation of HSP chaperones and their client proteins, including epidermal growth factor receptor. We conducted a phase I/II trial to evaluate AUY922 and erlotinib for patients with EGFR-mutant lung cancer and disease progression during erlotinib treatment. Patients and Methods All patients had developed acquired resistance after treatment with erlotinib and underwent repeat tumor biopsies before study entry to assess for EGFR T790M. In phase I, 18 patients were treated with AUY922 intravenously once per week and erlotinib once per day in 28-day cycles using a 3 + 3 dose-escalation design. In phase II, 19 additional patients were treated at the maximum-tolerated dose. The primary end point of the phase II trial was complete plus partial response rate. Results In phase I (n = 18), three patients were treated in each cohort, except the highest-dose cohort (AUY922 70 mg and erlotinib 150 mg), which expanded to six patients because of a dose-limiting toxicity (ie, junctional cardiac rhythm). Common drug-related adverse events were diarrhea, skin rash, hyperglycemia, and night blindness. All patients treated at maximum-tolerated dose (n = 25) were evaluable for response. The partial response rate was 16% (four of 25 patients; 95% CI, 5% to 36%) and was independent of tumor T790M status. Conclusion Partial responses were observed, but the duration of treatment with AUY922 and erlotinib was limited by toxicities, especially night blindness. This phase II study of AUY922 and erlotinib did not meet its primary end point. PMID:25870087

  8. [Inhibitors of alpha-amylase from plants--a possibility to treat diabetes mellitus type II by phytotherapy?].

    PubMed

    Melzig, Matthias F; Funke, Ines

    2007-01-01

    Antidiabetics of plant origin are in common use. A proof of their effectiveness or their mode of action is often missing. The aim of this work was to review the knowledge about inhibitors of alpha-amylase from plants and to comment on the use in anti-diabetic treatment. Herbal alpha-amylase inhibitors are rarely described in the literature, nevertheless they have the ability to lower postprandial blood glucose level and should be used in the supplementary treatment of diabetes. Important constituents for the inhibitory activity against alpha-amylase are mainly polyphenolic compounds. There is a need for further clinical studies to establish a rational therapy with traditional herbal preparations, especially for the leaves from the blueberry, tamarind, lemon balm and rosemary, the hulls from white kidney beans or green tea extract. PMID:17704980

  9. Synthesis, characterization, antibacterial activities and carbonic anhydrase enzyme inhibitor effects of new arylsulfonylhydrazone and their Ni(II), Co(II) complexes

    NASA Astrophysics Data System (ADS)

    Özdemir, Ümmühan Özmen; Arslan, Fatma; Hamurcu, Fatma

    2010-01-01

    Ethane sulfonic acide hydrazide ( esh: CH 3CH 2SO 2NHNH 2) derivatives as 5-methylsalicyl-aldehydeethanesulfonylhydrazone ( 5msalesh), 5-methyl-2-hydroxyacetophenoneethane sulfonylhydrazone ( 5mafesh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these compounds has been investigated by elemental analysis, FT-IR, 1H NMR, 13C NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility, thermal studies and conductivity measurements. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and Gram negative bacteria; Salmonella enteritidis, Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria. The inhibition activities of these compounds on carbonic anhydrase II (CA II) have been investigated by comparing IC 50 and Ki values and it has been found that 5msalesh and its complexes have more enzyme inhibition efficiency than other compounds.

  10. ICRF-193, an anticancer topoisomerase II inhibitor, induces arched telophase spindles that snap, leading to a ploidy increase in fission yeast.

    PubMed

    Nakazawa, Norihiko; Mehrotra, Rajesh; Arakawa, Orie; Yanagida, Mitsuhiro

    2016-09-01

    ICRF-193 [meso-4,4-(2,3-butanediyl)-bis(2,6-piperazinedione)] is a complex-stabilizing inhibitor of DNA topoisomerase II (topo II) that is used as an effective anticancer drug. ICRF-193 inhibits topo II catalytic activity in vitro and blocks nuclear division in vivo. Here, we examined the effects of ICRF-193 treatment on chromatin behavior and spindle dynamics using detailed live mitotic cell analysis in the fission yeast, Schizosaccharomyces pombe. Time-lapse movie analysis showed that ICRF-193 treatment leads to an elongation of presumed chromatin fibers connected to kinetochores during mid-mitosis. Anaphase spindles begin to arch, and eventually spindle poles come together abruptly, as if the spindle snapped at the point of spindle microtubule overlap in telophase. Segregating chromosomes appeared as elastic clumps and subsequently pulled back and merged. The snapped spindle phenotype was abolished by microtubule destabilization after thiabendazole treatment, accompanied by unequal chromosome segregation or severe defects in spindle extension. Thus, we conclude that ICRF-193-treated, unseparated sister chromatids pulling toward opposite spindle poles produce the arched and snapped telophase spindle. ICRF-193 treatment increased DNA content, suggesting that the failure of sister chromatids to separate properly in anaphase, causes the spindle to break in telophase, resulting in polyploidization. PMID:27458047

  11. Carbonic anhydrase inhibitors. Inhibition of human cytosolic isoforms I and II with (reduced) Schiff's bases incorporating sulfonamide, carboxylate and carboxymethyl moieties.

    PubMed

    Nasr, Gihane; Cristian, Alina; Barboiu, Mihail; Vullo, Daniella; Winum, Jean-Yves; Supuran, Claudiu T

    2014-05-15

    A library of Schiff bases was synthesized by condensation of aromatic amines incorporating sulfonamide, carboxylic acid or carboxymethyl functionalities as Zn(2+)-binding groups, with aromatic aldehydes incorporating tert-butyl, hydroxy and/or methoxy groups. The corresponding amines were thereafter obtained by reduction of the imines. These compounds were assayed for the inhibition of two cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isoenzymes, hCA I and II. The Ki values of the Schiff bases were in the range of 7.0-21,400nM against hCA II and of 52-8600nM against hCA I, respectively. The corresponding amines showed Ki values in the range of 8.6nM-5.3μM against hCA II, and of 18.7-251nM against hCA I, respectively. Unlike the imines, the reduced Schiff bases are stable to hydrolysis and several low-nanomolar inhibitors were detected, most of them incorporating sulfonamide groups. Some carboxylates also showed interesting CA inhibitory properties. Such hydrosoluble derivatives may show pharmacologic applications. PMID:24746465

  12. 4-(1,2-diarylbut-1-en-1-yl)isobutyranilide derivatives as inhibitors of topoisomerase II.

    PubMed

    Christodoulou, Michael S; Zarate, Mikel; Ricci, Francesca; Damia, Giovanna; Pieraccini, Stefano; Dapiaggi, Federico; Sironi, Maurizio; Lo Presti, Leonardo; García-Argáez, Aída Nelly; Dalla Via, Lisa; Passarella, Daniele

    2016-08-01

    The synthesis and biological evaluation of a new library of 4-(1,2-diarylbut-1-en-1-yl)isobutyranilides is described. The new compounds were found to be cytotoxic in the micromolar range in two human tumor cell lines, MCF-7 (mammary gland adenocarcinoma) and HeLa (cervix adenocarcinoma) and two human ovarian cancer cell lines (A2780 and OVCAR5). Detailed studies on the most active compound 6g show that it was able to induce apoptosis and suggest topoisomerase II as a possible intracellular target. The relevance of the interaction of the most active compound with topoisomerase II is demonstrated and supported by docking studies. PMID:27128175

  13. Synthesis and biological evaluation of 2-phenol-4-chlorophenyl-6-aryl pyridines as topoisomerase II inhibitors and cytotoxic agents.

    PubMed

    Thapa, Pritam; Kadayat, Tara Man; Park, Seojeong; Shin, Somin; Thapa Magar, Til Bahadur; Bist, Ganesh; Shrestha, Aarajana; Na, Younghwa; Kwon, Youngjoo; Lee, Eung-Seok

    2016-06-01

    A new series of 2-phenol-4-chlorophenyl-6-aryl pyridines were designed, synthesized, and evaluated for topoisomerase (topo) I and II inhibitory activities as well as cytotoxic activity against four different human cancer cell lines such as HCT15, T47D, DU145, and Hela. Most of the tested compounds exhibited stronger topo II inhibitory activity at 100μM as compared to etoposide. All the compounds, except 39, did not show topo I inhibitory activity. Interestingly, compounds that showed better topo II inhibition than etoposide have ortho- or para-chlorophenyl at 4-position of central pyridine, and none of the compounds possess meta-chlorophenyl. SAR study revealed the importance of ortho- or para-chlorophenyl at 4-position of the central pyridine for selective topo II inhibitory activity. Similarly, all compounds possessing meta- or para-hydroxyphenyl moieties showed moderate to significant cytotoxic effects. Particularly, compounds 27-37, and 39 which showed excellent cytotoxicity (IC50=0.68-1.25μM) against T47D breast cancer cells suggest the importance of meta- or para-hydroxyphenyl moiety at 2-position of the central pyridine for the design of anticancer agents with related scaffolds. PMID:27174797

  14. Synthesis and evaluation of small libraries of triazolylmethoxy chalcones, flavanones and 2-aminopyrimidines as inhibitors of mycobacterial FAS-II and PknG.

    PubMed

    Anand, Namrata; Singh, Priyanka; Sharma, Anindra; Tiwari, Sameer; Singh, Vandana; Singh, Diwakar K; Srivastava, Kishore K; Singh, B N; Tripathi, Rama Pati

    2012-09-01

    A synthetic strategy to access small libraries of triazolylmethoxy chalcones 4{1-20}, triazolylmethoxy flavanones 5{1-10} and triazolylmethoxy aminopyrimidines 6{1-17} from a common substrate 4-propargyloxy-2-hydroxy acetophenone using a set of different reactions has been developed. The chalcones and flavanones were screened against mycobacterial FAS-II pathway using a recombinant mycobacterial strain, against which the most potent compound showed ∼88% inhibition in bacterial growth and substantially induction of reporter gene activity at 100 μM concentration. The triazolylmethoxy aminopyrimdines were screened against PknG of Mycobaceterium tuberculosis displaying moderate to good activity (23-53% inhibition at 100 μM), comparable to the action of a standard inhibitor. PMID:22854194

  15. In vitro effects of cytosolic inhibitor and opiates on the binding of [3H]oestradiol to nuclear type II binding sites of rat uterus and hypothalamus.

    PubMed

    Garai, J; Vértes, M; Kovács, S

    1989-03-01

    The effect of cytosolic ultrafiltrates prepared from intact rat uteri, brain hemispheres and hypothalami and of some opiate analogues on oestradiol binding to nuclear type II sites in rat uterus and hypothalamus was studied. Opiate binding in nuclear fraction of rat uteri was also evaluated. Both uterine and hypothalamic low affinity nuclear oestradiol binding was inhibited by filtrate from uteri, while only hypothalamic nuclear binding was decreased in presence of hypothalamic filtrate. Filtrate from brain was ineffective on nuclear oestradiol binding of the studied tissues. Concentration dependent inhibition of uterine nuclear oestradiol binding could be demonstrated by some opiate analogues in vitro. Specific low affinity nuclear binding of opiate antagonist naloxone and agonist dihydromorphine was observed in rat uteri which could be inhibited by uterine filtrate and oestradiol but not by hypothalamic filtrate or other steroids. Present findings support the probable intracellular interplay of opiates and oestradiol action and suggest that cytosolic inhibitor factor might be involved. PMID:2704239

  16. Carbonic Anhydrase Inhibitors. Part 551 Metal Complexes of 1,3,4-Thiadiazole-2-Sulfonamide Derivatives: In Vitro Inhibition Studies With Carbonic Anhydrase Isozymes I, II and IV

    PubMed Central

    Scozzafava, Andrea; Briganti, Fabrizio; Ilies, Marc A.; Jitianu, Andrei

    1998-01-01

    Coordination compounds of 5-chloroacetamido-1,3,4-thiadiazole-2-sulfonamide (Hcaz) with V(IV), Cr(lll), Fe(ll), Co(ll), Ni(ll) and Cu(ll) have been prepared and characterized by standard procedures (spectroscopic, magnetic, EPR, thermogravimetric and conductimetric measurements). Some of these compounds showed very good in vitro inhibitory properties against three physiologically relevant carbonic anhydrase (CA)isozymes, i.e., CA I, II, and IV. The differences between these isozymes in susceptibility to inhibition by these metal complexes is discussed in relationship to the characteristic features of their active sites, and is rationalized in terms useful for developing isozyme-specific CA inhibitors. PMID:18475829

  17. Genotoxic profile of inhibitors of topoisomerases I (camptothecin) and II (etoposide) in a mitotic recombination and sex-chromosome loss somatic eye assay of Drosophila melanogaster.

    PubMed

    Sortibrán, América Nitxin Castañeda; Téllez, María Guadalupe Ordaz; Rodríguez-Arnaiz, Rosario

    2006-04-30

    Genotoxic carcinogens which interact with DNA may produce double-strand breaks as normal intermediates of homologous mitotic recombination, and may give rise to structural chromosome aberrations and inter-chromosomal deletion-recombination. The genotoxic profile of two inhibitors of DNA topoisomerases were evaluated using an in vivo somatic w/w+ eye assay of Drosophila melanogaster for the detection of loss of heterozygosity (LOH) by homologous mitotic recombination, intra-chromosomal recombination and structural chromosomal aberrations. We studied camptothecin (CPT) as a topoisomerase-I-interactive agent and etoposide (ETOP) as a topoisomerase II inhibitor. These drugs act by stabilizing a ternary complex consisting of topoisomerases covalently linked to DNA at single-strand or at double-strand breaks, thereby preventing the relegation step of the breakage/rejoining reaction mediated by the enzyme. The genotoxic profiles were determined from the appearance of eye tissue in adult flies, in which LOH and expression of the reporter gene white produced light clones. The results demonstrated that both compounds were significantly genotoxic, with CPT being more effective than ETOP. Inter-chromosomal mitotic recombination was the major mechanism responsible for the induction of light spots by both compounds in XX females. Loss of the ring X chromosome (rX), was significantly enhanced by CPT, and this topoisomerase blocker also produced intra-chromosomal recombination (XY males). PMID:16529987

  18. Utilization of Boron Compounds for the Modification of Suberoyl Anilide Hydroxamic Acid as Inhibitor of Histone Deacetylase Class II Homo sapiens

    PubMed Central

    Bakri, Ridla; Parikesit, Arli Aditya; Satriyanto, Cipta Prio; Kerami, Djati; Tambunan, Usman Sumo Friend

    2014-01-01

    Histone deacetylase (HDAC) has a critical function in regulating gene expression. The inhibition of HDAC has developed as an interesting anticancer research area that targets biological processes such as cell cycle, apoptosis, and cell differentiation. In this study, an HDAC inhibitor that is available commercially, suberoyl anilide hydroxamic acid (SAHA), has been modified to improve its efficacy and reduce the side effects of the compound. Hydrophobic cap and zinc-binding group of these compounds were substituted with boron-based compounds, whereas the linker region was substituted with p-aminobenzoic acid. The molecular docking analysis resulted in 8 ligands with ΔGbinding value more negative than the standards, SAHA and trichostatin A (TSA). That ligands were analyzed based on the nature of QSAR, pharmacological properties, and ADME-Tox. It is conducted to obtain a potent inhibitor of HDAC class II Homo sapiens. The screening process result gave one best ligand, Nova2 (513246-99-6), which was then further studied by molecular dynamics simulations. PMID:25214833

  19. Kinetics and molecular docking studies of cholinesterase inhibitors derived from water layer of Lycopodiella cernua (L.) Pic. Serm. (II).

    PubMed

    Hung, Tran Manh; Lee, Joo Sang; Chuong, Nguyen Ngoc; Kim, Jeong Ah; Oh, Sang Ho; Woo, Mi Hee; Choi, Jae Sue; Min, Byung Sun

    2015-10-01

    Acetylcholinesterase (AChE) inhibitors increase the availability of acetylcholine in central cholinergic synapses and are the most promising drugs currently available for the treatment of Alzheimer's disease (AD). Our screening study indicated that the water fraction of the methanolic extract of Lycopodiella cernua (L.) Pic. Serm. significantly inhibited AChE in vitro. Bioassay-guided fractionation led to the isolation of a new lignan glycoside, lycocernuaside A (12), and fourteen known compounds (1-11 and 13-15). Compound 7 exhibited the most potent AChE inhibitory activity with an IC50 value of 0.23 μM. Compound 15 had the most potent inhibitory activity against BChE and BACE1 with IC50 values of 0.62 and 2.16 μM, respectively. Compounds 4 and 7 showed mixed- and competitive-type AChE inhibition. Compound 7 noncompetitively inhibited BChE whereas 15 showed competitive and 8, 13, and 14 showed mixed-type inhibition. The docking results for complexes with AChE or BChE revealed that inhibitors 4, 7, and 15 stably positioned themselves in several pocket/catalytic domains of the AChE and BChE residues. PMID:26297990

  20. Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor II gene from potato.

    PubMed Central

    Palm, C J; Costa, M A; An, G; Ryan, C A

    1990-01-01

    Deletion analysis from the 3' to the 5' end of the promoter region of the wound-inducible potato proteinase inhibitor IIK gene has identified a 421-base sequence at -136 to -557 that is necessary for expression. Utilizing DNA band-shift assays, a 10-base sequence within the 421-base region was found to bind a nuclear protein from wounded tomato leaves. This 10-base sequence is adjacent to an 8-base consensus sequence at -147 to -155 that is present in the promoter region of several elicitor-inducible genes from various other plants. The evidence suggests that a complex set of cis- and trans-acting elements within the -136 to -165 region of the potato IIK gene may be involved with the signaling mechanisms that regulate the inducibility of this gene in response to pest and pathogen attacks. Images PMID:2405385

  1. Label-free electrochemical detection of methyltransferase activity and inhibitor screening based on endonuclease HpaII and the deposition of polyaniline.

    PubMed

    Zhang, Linqun; Wei, Min; Gao, Chunyan; Wei, Wei; Zhang, Yuanjian; Liu, Songqin

    2015-11-15

    Detection of DNA methylation and methyltransferase (MTase) activity are important in determining human cancer because aberrant methylation was linked to cancer initiation and progression. In this work, we proposed an electrochemical method for sensitive detection of DNA methylation and MTase activity based on methylation sensitive restriction endonuclease HpaII and the deposition of polyaniline (PANI) catalyzed by HRP-mimicking DNAzyme. In the presence of methylated DNA, HRP-mimicking DNAzyme catalyzed the polymerization of aniline on the dsDNA template, producing huge DPV current. In the presence of non-methylated DNA, dsDNA are cleaved and digested by HpaII and exonuclease III, as a result, no PANI are deposited. This method can be used to determine DNA methylation at the site of CpG. It exhibits a wide linear response toward M.SssI MTase activity in the range of 0.5-0.6 U mL(-1) with the detection limit of 0.12 U mL(-1). G-rich DNA forms HRP mimicking DNAzyme, which avoids complex labeling procedures and is robust. The method is simple, reliable, sensitive and specific, which has been successfully applied in human serum samples and been used to screen the inhibitors. Thus, the proposed method may be a potential and powerful tool for clinical diagnosis and drug development in the future. PMID:26070170

  2. Analogues and derivatives of Oncrasin-1, a Novel Inhibitor of the C-Terminal Domain of RNA Polymerase II, and Their Antitumor Activities

    PubMed Central

    Wu, Shuhong; Wang, Li; Guo, Wei; Liu, Xiaoying; Liu, Jinsong; Wei, Xiaoli; Fang, Bingliang

    2011-01-01

    To optimize the antitumor activity of oncrasin-1, a small molecule RNA polymerase II inhibitor, we evaluated 69 oncrasin-1 analogues for their cytotoxic activity against normal human epithelial cells and K-Ras mutant tumor cells. About 40 of those compounds were as potent as or more potent than oncrasin-1 in tumor cells and had minimal cytotoxic effect on normal cells. Structure-activity relationship analysis revealed that most of the active compounds contained either a hydroxymethyl group or an aldehyde group as a substitute at the 3-position of the indole. Both electron-donating and electron-withdrawing groups in the benzene ring were well tolerated. The hydroxymethyl compounds ranged from equipotent with to 100 times as potent as the corresponding aldehyde compounds. We tested 3 active analogues’ effect on RNA polymerase phosphorylation and found that they all inhibited phosphorylation of the C-terminal domain of RNA polymerase II, suggesting that the active compounds might act through the same mechanisms as oncrasin-1. PMID:21443218

  3. A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03

    PubMed Central

    Iwamoto, Fabio M.; Lamborn, Kathleen R.; Kuhn, John G.; Wen, Patrick Y.; Alfred Yung, W.K.; Gilbert, Mark R.; Chang, Susan M.; Lieberman, Frank S.; Prados, Michael D.; Fine, Howard A.

    2011-01-01

    Romidepsin, a potent histone deacetylase inhibitor, has shown activity in preclinical glioma models. The primary objectives of this trial were to determine the pharmacokinetics of romidepsin in patients with recurrent glioma on enzyme-inducing antiepileptic drugs (EIAEDs) and to evaluate the antitumor efficacy of romidepsin in patients with recurrent glioblastoma who were not receiving EIAEDs. Two dose cohorts were studied in the phase I component of the trial (13.3 and 17.7 mg/m2/d). Patients in the phase II component were treated with intravenous romidepsin at a dosage of 13.3 mg/m2/day on days 1, 8, and 15 of each 28-day cycle. Eight patients were treated on the phase I component. A similar romidepsin pharmacokinetic profile was demonstrated between patients receiving EIAEDs to those not receving EIAEDs. Thirty-five patients with glioblastoma were accrued to the phase II component. There was no objective radiographic response. The median progression-free survival (PFS) was 8 weeks and only 1 patient had a PFS time ≥6 months (PFS6 = 3%). To date, 34 patients (97%) have died, with a median survival duration of 34 weeks. Despite in vitro studies showing that romidepsin is primarily metabolized by CYP3A4, no decrease in exposure to romidepsin was seen in patients receiving potent CYP3A4 inducers. Romidepsin, at its standard dose and schedule, was ineffective for patients with recurrent glioblastomas. ClinicalTrials.gov identifier: NCT00085540. PMID:21377994

  4. A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03.

    PubMed

    Iwamoto, Fabio M; Lamborn, Kathleen R; Kuhn, John G; Wen, Patrick Y; Yung, W K Alfred; Gilbert, Mark R; Chang, Susan M; Lieberman, Frank S; Prados, Michael D; Fine, Howard A

    2011-05-01

    Romidepsin, a potent histone deacetylase inhibitor, has shown activity in preclinical glioma models. The primary objectives of this trial were to determine the pharmacokinetics of romidepsin in patients with recurrent glioma on enzyme-inducing antiepileptic drugs (EIAEDs) and to evaluate the antitumor efficacy of romidepsin in patients with recurrent glioblastoma who were not receiving EIAEDs. Two dose cohorts were studied in the phase I component of the trial (13.3 and 17.7 mg/m(2)/d). Patients in the phase II component were treated with intravenous romidepsin at a dosage of 13.3 mg/m(2)/day on days 1, 8, and 15 of each 28-day cycle. Eight patients were treated on the phase I component. A similar romidepsin pharmacokinetic profile was demonstrated between patients receiving EIAEDs to those not receving EIAEDs. Thirty-five patients with glioblastoma were accrued to the phase II component. There was no objective radiographic response. The median progression-free survival (PFS) was 8 weeks and only 1 patient had a PFS time ≥6 months (PFS6 = 3%). To date, 34 patients (97%) have died, with a median survival duration of 34 weeks. Despite in vitro studies showing that romidepsin is primarily metabolized by CYP3A4, no decrease in exposure to romidepsin was seen in patients receiving potent CYP3A4 inducers. Romidepsin, at its standard dose and schedule, was ineffective for patients with recurrent glioblastomas. ClinicalTrials.gov identifier: NCT00085540. PMID:21377994

  5. The R6A-1 peptide binds to switch II of G{alpha}{sub i1} but is not a GDP-dissociation inhibitor

    SciTech Connect

    Willard, Francis S. . E-mail: fwillard@med.unc.edu; Siderovski, David P.

    2006-01-27

    Heterotrimeric G-proteins are molecular switches that convert signals from membrane receptors into changes in intracellular physiology. Recently, several peptides that bind heterotrimeric G-protein {alpha} subunits have been isolated including the novel G{alpha}{sub i1} . GDP binding peptides R6A and KB-752. The R6A peptide and its minimized derivative R6A-1 interact with G{alpha}{sub i1} . GDP. Based on spectroscopic analysis of BODIPYFL-GTP{gamma}S binding to G{alpha}{sub i1}, it has been reported that R6A-1 has guanine nucleotide dissociation inhibitor (GDI) activity against G{alpha}{sub i1} [W.W. Ja, R.W. Roberts, Biochemistry 43 (28) (2004) 9265-9275]. Using radioligand binding, we show that R6A-1 is not a GDI for G{alpha}{sub i1} subunits. Furthermore, we demonstrate that R6A-1 reduces the fluorescence quantum yield of the G{alpha}{sub i1}-BODIPYFL-GTP{gamma}S complex, thus explaining the previously reported GDI activity as a fluorescence artifact. We further show that R6A-1 has significant sequence similarity to the guanine nucleotide exchange factor peptide KB-752 that binds to switch II of G{alpha}{sub i1}. We use competitive binding analysis to show that R6A-1 also binds to switch II of G{alpha} subunits.

  6. The Selective Myosin II Inhibitor Blebbistatin Reversibly Eliminates Gastrovascular Flow and Stolon Tip Pulsations in the Colonial Hydroid Podocoryna carnea

    PubMed Central

    Connally, Noah; Anderson, Christopher P.; Bolton, Jules E.; Bolton, Edward W.; Buss, Leo W.

    2015-01-01

    Blebbistatin reversibly disrupted both stolon tip pulsations and gastrovascular flow in the colonial hydroid Podocoryna carnea. Epithelial longitudinal muscles of polyps were unaffected by blebbistatin, as polyps contracted when challenged with a pulse of KCl. Latrunculin B, which sequesters G actin preventing F actin assembly, caused stolons to retract, exposing focal adhesions where the tip epithelial cells adhere to the substratum. These results are consistent with earlier suggestions that non-muscle myosin II provides the motive force for stolon tip pulsations and further suggest that tip oscillations are functionally coupled to hydrorhizal axial muscle contraction. PMID:26605798

  7. Novel pyrazole derivatives as potent inhibitors of type II topoisomerases. Part 1: synthesis and preliminary SAR analysis.

    PubMed

    Gomez, Laurent; Hack, Michael D; Wu, Jiejun; Wiener, John J M; Venkatesan, Hari; Santillán, Alejandro; Pippel, Daniel J; Mani, Neelakandha; Morrow, Brian J; Motley, S Timothy; Shaw, Karen Joy; Wolin, Ronald; Grice, Cheryl A; Jones, Todd K

    2007-05-15

    In an attempt to search for a new class of antibacterial agents, we have discovered a series of pyrazole analogs that possess good antibacterial activity for Gram-positive and Gram-negative organisms via inhibition of type II bacterial topoisomerases. We have investigated the structure-activity relationships of this series, with an emphasis on the length and conformation of the linker. This work led to the identification of tetrahydroindazole analogs, such as compound 1, as the most potent class of compounds. PMID:17368897

  8. Kinetics of successive seeding of monodisperse polystyrene latexes. I - Initiation via potassium persulfate. II - Azo initiators with and without inhibitors

    NASA Technical Reports Server (NTRS)

    Sudol, E. D.; El-Aasser, M. S.; Vanderhoff, J. W.

    1986-01-01

    The polymerization kinetics of monodisperse polystyrene latexes with diameters of 1 micron are studied. The monodisperse latexes were prepared by the successive seeding method using 1 mM K2S2O8 with an 8 percent emulsifier surface coverage and 0.5 mM K2S2O8 with a 4 percent emulsifier surface coverage, and the kinetics were measured in a piston/cylinder dialometer. The data reveal that the polymerization rate decreases with increasing particle size; and the surface charge decreases with increasing particle size. The effects of initiators (AIBN and AMBN) and inhibitors (NH24SCN, NaNO2, and hydroquinone) on the product monodispersity and polymerization kinetics of latexes with diameters greater than 1 micron are investigated in a second experiment. It is observed that hydroquinone combined with AMBN are most effective in reducing nucleation without causing flocculation. It is noted that the kinetic transition from emulsion to bulk is complete for a particle size exceeding 1 micron in which the polymerization rate is independent of the particle size.

  9. Potential inhibitors of angiogenesis. Part II: 3-(azolylmethylene)-2,3-dihydrobenzo[b]furan-2-ones.

    PubMed

    Braud, Emmanuelle; Duflos, Muriel; Le Baut, Guillaume; Renard, Pierre; Pfeiffer, Bruno; Tucker, Gordon

    2003-06-01

    The synthesis and pharmacological evaluation of new 3-(imidazol-4(5)-ylmethylene)-2,3-dihydrobenzo[b]furan-2-ones 8-10 and 3-(3,5-dimethylpyrrol-2-ylmethylene)-2,3-dihydrobenzo[b]furan-2-one 11, analogues of SU-5416, as potential inhibitors of angiogenesis, are reported. Compounds 8 and 11 were prepared by a Knoevenagel reaction starting from 2-hydroxyphenylacetic acid 2 and 4-formylimidazole 5 or 2-formyl-3,5-dimethylpyrrole 7, followed by acid-catalysed cyclodehydration. For compounds 9 and 10, an alternative method was used; it consisted in carrying out the Knoevenagel reaction with the 2,3-dihydrobenzo[b]furan-2-ones 3 and 4. The antiangiogenic activity of these compounds was evaluated in the three-dimensional in vitro rat aortic rings test at 1microM. At this concentration, compound 11 induced a decrease of angiogenesis comparable to that observed with SU-5416; the vascular density index at 1 microM of 11 and SU-5416 were 30 +/- 10 and 22 +/- 4% of control, respectively. PMID:14506916

  10. The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4.

    PubMed

    Somanna, Naveen K; Valente, Anthony J; Krenz, Maike; Fay, William P; Delafontaine, Patrice; Chandrasekar, Bysani

    2016-05-01

    Both oxidative stress and inflammation contribute to chronic hypertension-induced myocardial fibrosis and adverse cardiac remodeling. Here we investigated whether angiotensin (Ang)-II-induced fibroblast proliferation and migration are NADPH oxidase (Nox) 4/ROS and IL-18 dependent. Our results show that the potent induction of mouse cardiac fibroblast (CF) proliferation and migration by Ang-II is markedly attenuated by Nox4 knockdown and the Nox inhibitor DPI. Further, Nox4 knockdown and DPI pre-treatment attenuated Ang-II-induced IL-18, IL-18Rα and collagen expression, and MMP9 and LOX activation. While neutralization of IL-18 blunted Ang-II-induced CF proliferation and migration, knockdown of MMP9 attenuated CF migration. The antioxidant NAC and the cell-permeable SOD mimetics Tempol, MnTBAP, and MnTMPyP attenuated oxidative stress and inhibited CF proliferation and migration. The Nox1/Nox4 dual inhibitor GKT137831 also blunted Ang-II-induced H2 O2 production and CF proliferation and migration. Further, AT1 bound Nox4, and Ang-II enhanced their physical association. Notably, GKT137831 attenuated the AT1/Nox4 interaction. These results indicate that Ang-II induces CF proliferation and migration in part via Nox4/ROS-dependent IL-18 induction and MMP9 activation, and may involve AT1/Nox4 physical association. Thus, either (i) neutralizing IL-18, (ii) blocking AT1/Nox4 interaction or (iii) use of the Nox1/Nox4 inhibitor GKT137831 may have therapeutic potential in chronic hypertension-induced adverse cardiac remodeling. PMID:26445208

  11. The dipeptidyl peptidase inhibitor linagliptin and the angiotensin II receptor blocker telmisartan show renal benefit by different pathways in rats with 5/6 nephrectomy.

    PubMed

    Tsuprykov, Oleg; Ando, Ryotaro; Reichetzeder, Christoph; von Websky, Karoline; Antonenko, Viktoriia; Sharkovska, Yuliya; Chaykovska, Lyubov; Rahnenführer, Jan; Hasan, Ahmed A; Tammen, Harald; Alter, Markus; Klein, Thomas; Ueda, Seiji; Yamagishi, Sho-Ichi; Okuda, Seiya; Hocher, Berthold

    2016-05-01

    Dipeptidyl peptidase (DPP)-4 inhibitors delay chronic kidney disease (CKD) progression in experimental diabetic nephropathy in a glucose-independent manner. Here we compared the effects of the DPP-4 inhibitor linagliptin versus telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. Animals were allocated to 1 of 4 groups: sham operated plus placebo; 5/6 nephrectomy plus placebo; 5/6 nephrectomy plus linagliptin; and 5/6 nephrectomy plus telmisartan. Interstitial fibrosis was significantly decreased by 48% with linagliptin but a non-significant 24% with telmisartan versus placebo. The urine albumin-to-creatinine ratio was significantly decreased by 66% with linagliptin and 92% with telmisartan versus placebo. Blood pressure was significantly lowered by telmisartan, but it was not affected by linagliptin. As shown by mass spectrometry, the number of altered peptide signals for linagliptin in plasma was 552 and 320 in the kidney. For telmisartan, there were 108 peptide changes in plasma and 363 in the kidney versus placebo. Linagliptin up-regulated peptides derived from collagen type I, apolipoprotein C1, and heterogeneous nuclear ribonucleoproteins A2/B1, a potential downstream target of atrial natriuretic peptide, whereas telmisartan up-regulated angiotensin II. A second study was conducted to confirm these findings in 5/6 nephrectomy wild-type and genetically deficient DPP-4 rats treated with linagliptin or placebo. Linagliptin therapy in wild-type rats was as effective as DPP-4 genetic deficiency in terms of albuminuria reduction. Thus, linagliptin showed comparable efficacy to telmisartan in preventing CKD progression in non-diabetic rats with 5/6 nephrectomy. However, the underlying pathways seem to be different. PMID:27083282

  12. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part II: Zebrafish.

    PubMed

    Stinckens, Evelyn; Vergauwen, Lucia; Schroeder, Anthony L; Maho, Walid; Blackwell, Brett R; Witters, Hilda; Blust, Ronny; Ankley, Gerald T; Covaci, Adrian; Villeneuve, Daniel L; Knapen, Dries

    2016-04-01

    Disruption of the thyroid hormone (TH) system, an important mode of action, can lead to ecologically relevant adverse outcomes, especially during embryonic development. The present study characterizes the effects of disruption of TH synthesis on swim bladder inflation during zebrafish early-life stages using 2-mercaptobenzothiazole (MBT), a thyroid peroxidase (TPO) inhibitor. Zebrafish were exposed to different MBT concentrations until 120/168h post fertilization (hpf) and 32days post fertilization (dpf), in two sets of experiments, to investigate the effects of TPO inhibition on posterior and anterior swim bladder inflation respectively, as well as whole body thyroid hormone concentrations (triiodothyronine (T3) and its prohormone, thyroxine (T4)). At 120hpf, MBT did not directly impair posterior chamber inflation or size, while anterior chamber inflation and size was impaired at 32dpf. As previously shown in amphibians and mammals, we confirmed that MBT inhibits TPO in fish. Whole-body T4 decreased after MBT exposure at both time points, while T3 levels were unaltered. There was a significant relationship between T4 levels and the anterior chamber surface at 32dpf. The absence of effects on posterior chamber inflation can possibly be explained by maternal transfer of T4 into the eggs. These maternally derived THs are depleted at 32dpf and cannot offset TPO inhibition, resulting in impaired anterior chamber inflation. Therefore, we hypothesize that TPO inhibition only inhibits swim bladder inflation during late development, after depletion of maternally derived T4. In a previous study, we showed that iodothyronine deiodinase (ID) knockdown impaired posterior chamber inflation during early development. Our findings, in parallel with similar effects observed in fathead minnow (see part I, this issue) suggest that thyroid disruption impacts swim bladder inflation, and imply an important distinction among specific subtypes of TH disrupting chemicals. However, the

  13. ACE Inhibitor and Angiotensin Receptor-II Antagonist Prescribing and Hospital Admissions with Acute Kidney Injury: A Longitudinal Ecological Study

    PubMed Central

    Tomlinson, Laurie A.; Abel, Gary A.; Chaudhry, Afzal N.; Tomson, Charles R.; Wilkinson, Ian B.; Roland, Martin O.; Payne, Rupert A.

    2013-01-01

    Background ACE Inhibitors (ACE-I) and Angiotensin-Receptor Antagonists (ARAs) are commonly prescribed but can cause acute kidney injury (AKI) during intercurrent illness. Rates of hospitalization with AKI are increasing. We aimed to determine whether hospital AKI admission rates are associated with increased ACE-I/ARA prescribing. Methods and Findings English NHS prescribing data for ACE-I/ARA prescriptions were matched at the level of the general practice to numbers of hospital admissions with a primary diagnosis of AKI. Numbers of prescriptions were weighted for the demographic characteristics of general practices by expressing prescribing as rates where the denominator is Age, Sex, and Temporary Resident Originated Prescribing Units (ASTRO-PUs). We performed a mixed-effect Poisson regression to model the number of admissions for AKI occurring in each practice for each of 4 years from 1/4/2007. From 2007/8-2010/11, crude AKI admission rates increased from 0.38 to 0.57 per 1000 patients (51.6% increase), and national annual ACE-I/ARA prescribing rates increased by 0.032 from 0.202 to 0.234 (15.8% increase). There was strong evidence (p<0.001) that increases in practice-level prescribing of ACE-I/ARA over the study period were associated with an increase in AKI admission rates. The increase in prescribing seen in a typical practice corresponded to an increase in admissions of approximately 5.1% (rate ratio = 1.051 for a 0.03 per ASTRO-PU increase in annual prescribing rate, 95%CI 1.047-1.055). Using the regression model we predict that 1,636 (95%CI 1,540-1,780) AKI admissions would have been avoided if prescribing rates were at the 2007/8 level, equivalent to 14.8% of the total increase in AKI admissions. Conclusion In this ecological analysis, up to 15% of the increase in AKI admissions in England over a 4-year time period is potentially attributable to increased prescribing of ACE-I and ARAs. However, these findings are limited by the lack of patient level

  14. Ni(II)-Schiff base complex as an enzyme inhibitor of hen egg white lysozyme: a crystallographic and spectroscopic study.

    PubMed

    Koley Seth, Banabithi; Ray, Aurkie; Biswas, Sampa; Basu, Samita

    2014-09-01

    The engineering of protein-small molecule interactions becomes imperative today to recognize the essential biochemical processes in living systems. Here we have investigated the interaction between hen egg white lysozyme (HEWL) and a newly synthesized small, simple nickel Schiff base complex (NSC) {(N(1)E,N(2)E)-N(1),N(2)-bis(pyridine-2-ylmethylene)propane-1,2-diaminenickel(II)} using different spectroscopic techniques. We attempted to determine the exact site of the interaction by crystallography. Absorption spectroscopy reveals that the interaction occurs through the ground state. The complex can quench the intrinsic fluorescence of HEWL through a static quenching method. The fluorescence quenching study along with the determination of thermodynamic parameters reveal that NSC binds HEWL spontaneously with moderate binding affinity. The results have also identified that the spontaneity of this enthalpy guided interaction is mainly governed by some H-bonding and hydrophobic interactions which are also indicated by the crystallographic analyses. Moreover, the crystallographic study shows that NSC makes its way into the active site enzyme cavity of HEWL forming a single covalent adduct between Ni(2+) and the oxygen of the active site Asp 52. The possibility of inhibiting the catalytic activity of HEWL by inclusion of NSC in the enzyme active site observed from crystallographic analyses has also been confirmed by enzyme kinetics experiments. PMID:25042037

  15. Intra-nucleus accumbens administration of the calcium/calmodulin-dependent protein kinase II inhibitor AIP induced antinociception in rats with mononeuropathy.

    PubMed

    Bian, Hui; Yu, Long-Chuan

    2015-07-10

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine- dependent protein kinase, which has been implicated in pain modulation at different levels of the central nervous system. The present study was performed in rats with mononeuropathy induced by left common sciatic nerve ligation. Unilateral sciatic nerve loose ligation produced decreases in the hindpaw withdrawal latency (HWL) to noxious thermal and mechanical stimulation. Intra-nucleus accumbens (NAc) injection of 3 μg, 6 μg and 12 μg of myristoylated autocamtide-2-inhibitory peptide (AIP), the CaMKII inhibitor, dose-dependently increased the HWL to noxious thermal and mechanical stimulation in rats with mononeuropathy. Furthermore, intra-NAc administration of morphine, the HWL to noxious thermal and mechanical stimulation increased markedly, and there were no significant differences between morphine group and AIP group. Taken together, the results showed that intra-NAc injection of AIP induced significant antinociceptive effects in rats with mononeuropathy, indicating that CaMKII may play an important role in the transmission and/or modulation of nociceptive information in the NAc in rats with mononeuropathy. PMID:26022629

  16. Icariside II, a natural mTOR inhibitor, disrupts aberrant energy homeostasis via suppressing mTORC1-4E-BP1 axis in sarcoma cells.

    PubMed

    Zhang, Chao; Yang, Lei; Geng, Ya-di; An, Fa-Liang; Xia, Yuan-Zheng; Guo, Chao; Luo, Jian-Guang; Zhang, Lu-Yong; Guo, Qing-Long; Kong, Ling-Yi

    2016-05-10

    The aberrant energy homeostasis that characterized by high rate of energy production (glycolysis) and energy consumption (mRNA translation) is associated with the development of cancer. As mammalian target of rapamycin (mTOR) is a critical regulator of aberrant energy homeostasis, it is an attractive target for anti-tumor intervention. The flavonoid compound Icariside II (IS) is a natural mTOR inhibitor derived from Epimedium. Koreanum. Herein, we evaluate the effect of IS on aberrant energy homeostasis. The reduction of glycolysis and mRNA translation in U2OS (osteosarcoma), S180 (fibrosarcoma) and SW1535 (chondrosarcoma) cells observed in our study, indicate that, IS inhibits aberrant energy homeostasis. This inhibition is found to be due to suppression of mammalian target of rapamycin complex 1 (mTORC1)-eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) axis through blocking the assembly of mTORC1. Furthermore, IS inhibits the cap-dependent translation of c-myc through mTORC1-4E-BP1 axis which links the relationship between mRNA translation and glycolysis. Inhibition of aberrant energy homeostasis by IS, contributes to its in vitro and in vivo anti-proliferation activity. These data indicate that IS disrupts aberrant energy homeostasis of sarcoma cells through suppression of mTORC1-4E-BP1 axis, providing a novel mechanism of IS to inhibit cell proliferation in sarcoma cells. PMID:27056897

  17. Beneficial Effects of the mTOR Inhibitor Everolimus in Patients with Advanced Medullary Thyroid Carcinoma: Subgroup Results of a Phase II Trial

    PubMed Central

    Schneider, T. C.; de Wit, D.; Links, T. P.; van Erp, N. P.; van der Hoeven, J. J. M.; Gelderblom, H.; van Wezel, T.; van Eijk, R.; Morreau, H.; Guchelaar, H. J.; Kapiteijn, E.

    2015-01-01

    Objective. Until recently, advanced medullary thyroid cancer (MTC) had few treatment options except surgery. The mTOR inhibitor everolimus has shown encouraging results in neuroendocrine tumors. As part of a prospective phase II study, we analyzed the safety and efficacy of everolimus in advanced MTC. Methods. Seven patients with per RECIST 1.1 documented advanced MTC were included and received everolimus 10 mg daily. The primary objective was determining treatment efficacy. Secondary endpoints included progression-free survival (PFS), overall survival (OS), toxicity, and pharmacokinetics (PK). Results. Median follow-up duration was 28 weeks (17–147). Five patients (71%) showed SD, of which 4 (57%) showed SD >24 weeks. Median PFS and OS were 33 (95%CI: 8–56) and 30 (95%CI: 15–45) weeks, respectively. Toxicity was predominantly grade 1/2 and included mucositis (43%), fatigue (43%), and hypertriglyceridemia (43%). Four MTCs harbored the somatic RET mutation c.2753T>C, p.Met918Thr. The best clinical response was seen in a MEN2A patient. PK characteristics were consistent with phase I data. One patient exhibited extensive toxicity accompanying elevated everolimus plasma concentrations. Conclusions. This study suggests that everolimus exerts clinically relevant antitumor activity in patients with advanced MTC. Given the high level of clinical benefit and the relatively low toxicity profile, further investigation of everolimus in these patients is warranted. PMID:26294908

  18. Rational design and synthesis of topoisomerase I and II inhibitors based on oleanolic acid moiety for new anti-cancer drugs.

    PubMed

    Ashour, Ahmed; El-Sharkawy, Saleh; Amer, Mohamed; Abdel Bar, Fatma; Katakura, Yoshinori; Miyamoto, Tomofumi; Toyota, Nozomi; Bang, Tran Hai; Kondo, Ryuichiro; Shimizu, Kuniyoshi

    2014-01-01

    Semisynthetic reactions were conducted on oleanolic acid, a common plant-derived oleanane-type triterpene. Ten rationally designed derivatives of oleanolic acid were synthesized based on docking studies and tested for their topoisomerase I and IIα inhibitory activity. Semisynthetic reactions targeted C-3, C-12, C-13, and C-17. Nine of the synthesized compounds were identified as new compounds. The structures of these compounds were confirmed by spectroscopic methods (1D, 2D NMR and MS). Five oleanolic acid analogues (S2, S3, S5, S7 and S9) showed higher activity than camptothecin (CPT) in the topoisomerase I DNA relaxation assay. Four oleanolic acid analogues (S2, S3, S5 and S6) showed higher activity than etoposide in a topoisomerase II assay. The results indicated that the C12-C13 double bond of the oleanolic acid skeleton is important for the inhibitory activity against both types of topoisomerases, while insertion of a longer chain at either position 3 or 17 increases the activity against topoisomerases by various degrees. Some of the synthesized compounds act as dual inhibitors for both topoisomerase I and IIα. PMID:24326278

  19. Genetic Resistance Determinants, In Vitro Time-Kill Curve Analysis and Pharmacodynamic Functions for the Novel Topoisomerase II Inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae.

    PubMed

    Foerster, Sunniva; Golparian, Daniel; Jacobsson, Susanne; Hathaway, Lucy J; Low, Nicola; Shafer, William M; Althaus, Christian L; Unemo, Magnus

    2015-01-01

    Resistance in Neisseria gonorrhoeae to all available therapeutic antimicrobials has emerged and new efficacious drugs for treatment of gonorrhea are essential. The topoisomerase II inhibitor ETX0914 (also known as AZD0914) is a new spiropyrimidinetrione antimicrobial that has different mechanisms of action from all previous and current gonorrhea treatment options. In this study, the N. gonorrhoeae resistance determinants for ETX0914 were further described and the effects of ETX0914 on the growth of N. gonorrhoeae (ETX0914 wild type, single step selected resistant mutants, and efflux pump mutants) were examined in a novel in vitro time-kill curve analysis to estimate pharmacodynamic parameters of the new antimicrobial. For comparison, ciprofloxacin, azithromycin, ceftriaxone, and tetracycline were also examined (separately and in combination with ETX0914). ETX0914 was rapidly bactericidal for all wild type strains and had similar pharmacodynamic properties to ciprofloxacin. All selected resistant mutants contained mutations in amino acid codons D429 or K450 of GyrB and inactivation of the MtrCDE efflux pump fully restored the susceptibility to ETX0914. ETX0914 alone and in combination with azithromycin and ceftriaxone was highly effective against N. gonorrhoeae and synergistic interaction with ciprofloxacin, particularly for ETX0914-resistant mutants, was found. ETX0914, monotherapy or in combination with azithromycin (to cover additional sexually transmitted infections), should be considered for phase III clinical trials and future gonorrhea treatment. PMID:26696986

  20. Interrogating and predicting tolerated sequence diversity in protein folds: application to E. elaterium trypsin inhibitor-II cystine-knot miniprotein.

    PubMed

    Lahti, Jennifer L; Silverman, Adam P; Cochran, Jennifer R

    2009-09-01

    Cystine-knot miniproteins (knottins) are promising molecular scaffolds for protein engineering applications. Members of the knottin family have multiple loops capable of displaying conformationally constrained polypeptides for molecular recognition. While previous studies have illustrated the potential of engineering knottins with modified loop sequences, a thorough exploration into the tolerated loop lengths and sequence space of a knottin scaffold has not been performed. In this work, we used the Ecballium elaterium trypsin inhibitor II (EETI) as a model member of the knottin family and constructed libraries of EETI loop-substituted variants with diversity in both amino acid sequence and loop length. Using yeast surface display, we isolated properly folded EETI loop-substituted clones and applied sequence analysis tools to assess the tolerated diversity of both amino acid sequence and loop length. In addition, we used covariance analysis to study the relationships between individual positions in the substituted loops, based on the expectation that correlated amino acid substitutions will occur between interacting residue pairs. We then used the results of our sequence and covariance analyses to successfully predict loop sequences that facilitated proper folding of the knottin when substituted into EETI loop 3. The sequence trends we observed in properly folded EETI loop-substituted clones will be useful for guiding future protein engineering efforts with this knottin scaffold. Furthermore, our findings demonstrate that the combination of directed evolution with sequence and covariance analyses can be a powerful tool for rational protein engineering. PMID:19730675

  1. p21-activated kinase group II small compound inhibitor GNE-2861 perturbs estrogen receptor alpha signaling and restores tamoxifen-sensitivity in breast cancer cells

    PubMed Central

    Li, Zhilun; Lorent, Julie; Zhao, Chunyan; Dahlman-Wright, Karin; Strömblad, Staffan

    2015-01-01

    Estrogen receptor alpha (ERα) is highly expressed in most breast cancers. Consequently, ERα modulators, such as tamoxifen, are successful in breast cancer treatment, although tamoxifen resistance is commonly observed. While tamoxifen resistance may be caused by altered ERα signaling, the molecular mechanisms regulating ERα signaling and tamoxifen resistance are not entirely clear. Here, we found that PAK4 expression was consistently correlated to poor patient outcome in endocrine treated and tamoxifen-only treated breast cancer patients. Importantly, while PAK4 overexpression promoted tamoxifen resistance in MCF-7 human breast cancer cells, pharmacological treatment with a group II PAK (PAK4, 5, 6) inhibitor, GNE-2861, sensitized tamoxifen resistant MCF-7/LCC2 breast cancer cells to tamoxifen. Mechanistically, we identified a regulatory positive feedback loop, where ERα bound to the PAK4 gene, thereby promoting PAK4 expression, while PAK4 in turn stabilized the ERα protein, activated ERα transcriptional activity and ERα target gene expression. Further, PAK4 phosphorylated ERα-Ser305, a phosphorylation event needed for the PAK4 activation of ERα-dependent transcription. In conclusion, PAK4 may be a suitable target for perturbing ERα signaling and tamoxifen resistance in breast cancer patients. PMID:26554417

  2. Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with reduced pK(a): antibacterial agents with an improved safety profile.

    PubMed

    Reck, Folkert; Alm, Richard A; Brassil, Patrick; Newman, Joseph V; Ciaccio, Paul; McNulty, John; Barthlow, Herbert; Goteti, Kosalaram; Breen, John; Comita-Prevoir, Janelle; Cronin, Mark; Ehmann, David E; Geng, Bolin; Godfrey, Andrew Aydon; Fisher, Stewart L

    2012-08-01

    Novel non-fluoroquinolone inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) are of interest for the development of new antibacterial agents that are not impacted by target-mediated cross-resistance with fluoroquinolones. N-Linked amino piperidines, such as 7a, generally show potent antibacterial activity, including against quinolone-resistant isolates, but suffer from hERG inhibition (IC(50) = 44 μM for 7a) and QT prolongation in vivo. We now disclose the finding that new analogues of 7a with reduced pK(a) due to substitution with an electron-withdrawing substituent in the piperidine moiety, such as R,S-7c, retained the Gram-positive activity of 7a but showed significantly less hERG inhibition (IC(50) = 233 μM for R,S-7c). This compound exhibited moderate clearance in dog, promising efficacy against a MRSA strain in a mouse infection model, and an improved in vivo QT profile as measured in a guinea pig in vivo model. As a result of its promising activity, R,S-7c was advanced into phase I clinical studies. PMID:22779424

  3. Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II: broad-spectrum antibacterial agents with reduced hERG activity.

    PubMed

    Reck, Folkert; Alm, Richard; Brassil, Patrick; Newman, Joseph; Dejonge, Boudewijn; Eyermann, Charles J; Breault, Gloria; Breen, John; Comita-Prevoir, Janelle; Cronin, Mark; Davis, Hajnalka; Ehmann, David; Galullo, Vincent; Geng, Bolin; Grebe, Tyler; Morningstar, Marshall; Walker, Phil; Hayter, Barry; Fisher, Stewart

    2011-11-24

    Novel non-fluoroquinolone inhibitors of bacterial type II topoisomerases (DNA gyrase and topoisomerase IV) are of interest for the development of new antibacterial agents that are not impacted by target-mediated cross-resistance with fluoroquinolones. Aminopiperidines that have a bicyclic aromatic moiety linked through a carbon to an ethyl bridge, such as 1, generally show potent broad-spectrum antibacterial activity, including quinolone-resistant isolates, but suffer from potent hERG inhibition (IC(50)= 3 μM for 1). We now disclose the finding that new analogues of 1 with an N-linked cyclic amide moiety attached to the ethyl bridge, such as 24m, retain the broad-spectrum antibacterial activity of 1 but show significantly less hERG inhibition (IC(50)= 31 μM for 24m) and higher free fraction than 1. One optimized analogue, compound 24l, showed moderate clearance in the dog and promising efficacy against Staphylococcus aureus in a mouse thigh infection model. PMID:21999508

  4. The versatile binding mode of transition-state analogue inhibitors of tyrosinase towards dicopper(II) model complexes: experimental and theoretical investigations.

    PubMed

    Orio, Maylis; Bochot, Constance; Dubois, Carole; Gellon, Gisèle; Hardré, Renaud; Jamet, Hélène; Luneau, Dominique; Philouze, Christian; Réglier, Marius; Serratrice, Guy; Belle, Catherine

    2011-11-25

    We describe 2-mercaptopyridine-N-oxide (HSPNO) as a new and efficient competitive inhibitor of mushroom tyrosinase (K(IC) =3.7 μM). Binding studies of HSPNO and 2-hydroxypyridine-N-oxide (HOPNO) on dinuclear copper(II) complexes [Cu(2)(BPMP)(μ-OH)](ClO(4))(2) (1; HBPMP=2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) and [Cu(2)(BPEP)(μ-OH)](ClO(4))(2)) (2; HBPEP=2,6-bis{bis[2-(2-pyridyl)ethyl]aminomethyl}-4-methylphenol), known to be functional models for the tyrosinase diphenolase activity, have been performed. A combination of structural data, spectroscopic studies, and DFT calculations evidenced the adaptable binding mode (bridging versus chelating) of HOPNO in relation to the geometry and chelate size of the dicopper center. For comparison, binding studies of HSPNO and kojic acid (5-hydroxy-2-(hydroxymethyl)-4-pyrone) on dinuclear complexes were performed. A theoretical approach has been developed and validated on HOPNO adducts to compare the binding mode on the model complexes. It has been applied for HSPNO and kojic acid. Although results for HSPNO were in line with those obtained with HOPNO, thus reflecting their chemical similarity, we showed that the bridging mode was the most preferential binding mode for kojic acid on both complexes. PMID:22025275

  5. Genetic Resistance Determinants, In Vitro Time-Kill Curve Analysis and Pharmacodynamic Functions for the Novel Topoisomerase II Inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae

    PubMed Central

    Foerster, Sunniva; Golparian, Daniel; Jacobsson, Susanne; Hathaway, Lucy J.; Low, Nicola; Shafer, William M.; Althaus, Christian L.; Unemo, Magnus

    2015-01-01

    Resistance in Neisseria gonorrhoeae to all available therapeutic antimicrobials has emerged and new efficacious drugs for treatment of gonorrhea are essential. The topoisomerase II inhibitor ETX0914 (also known as AZD0914) is a new spiropyrimidinetrione antimicrobial that has different mechanisms of action from all previous and current gonorrhea treatment options. In this study, the N. gonorrhoeae resistance determinants for ETX0914 were further described and the effects of ETX0914 on the growth of N. gonorrhoeae (ETX0914 wild type, single step selected resistant mutants, and efflux pump mutants) were examined in a novel in vitro time-kill curve analysis to estimate pharmacodynamic parameters of the new antimicrobial. For comparison, ciprofloxacin, azithromycin, ceftriaxone, and tetracycline were also examined (separately and in combination with ETX0914). ETX0914 was rapidly bactericidal for all wild type strains and had similar pharmacodynamic properties to ciprofloxacin. All selected resistant mutants contained mutations in amino acid codons D429 or K450 of GyrB and inactivation of the MtrCDE efflux pump fully restored the susceptibility to ETX0914. ETX0914 alone and in combination with azithromycin and ceftriaxone was highly effective against N. gonorrhoeae and synergistic interaction with ciprofloxacin, particularly for ETX0914-resistant mutants, was found. ETX0914, monotherapy or in combination with azithromycin (to cover additional sexually transmitted infections), should be considered for phase III clinical trials and future gonorrhea treatment. PMID:26696986

  6. Crystal structure and bonding analysis of the first dinuclear calcium(II)-proton-pump inhibitor (PPI) `butterfly molecule': a combined microcrystal synchrotron and DFT study.

    PubMed

    Cong, Hengjiang

    2016-04-01

    Proton-pump inhibitors (PPI) are prodrugs used widely to treat acid-related diseases since the late 1980s. After an extensive research effort it has become clear that the fundamental interactions between metal atoms and PPIs are of paramount importance for both drug release and long-term therapeutic safety. Unfortunately, until now, very little information has been available on this topic. In this paper, we report the crystal structure analysis of a novel calcium-PPI compound incorporating bridging and terminal deprotonated (R)-rabeprazole tricyclic ligands (L), namely bis[μ-(R)-2-({[4-(3-methoxypropoxy)-3-methylpyridin-2-yl]methyl}sulfinyl)-6,7-dihydro-3H-benzofuro[5,6-d]imidazol-1-ido]bis{dimethanol[(R)-2-({[4-(3-methoxypropoxy)-3-methylpyridin-2-yl]methyl}sulfinyl)-6,7-dihydro-3H-benzofuro[5,6-d]imidazol-1-ido]calcium(II)} methanol hexasolvate, [Ca2(C20H22N3O4S)4(CH3OH)4]·6CH3OH or [Ca2(L)4(CH3OH)4]·6CH3OH, which crystallizes from methanol in the polar C2 space group. Using low-temperature microcrystal synchrotron radiation, we demonstrate that this compound is in the form of a beautiful `butterfly molecule', consisting of a C2-symmetric dinuclear (CH3OH)2LCa(II)(μ2-L)2Ca(II)L(HOCH3)2 framework. A large amount of disorder is found within the bridging L ligand and the conformation of the fused tetrahydrofuran ring exhibits great variety. All the sulfinyl groups remain intact and the nonbonded Ca...Ca distance is significantly longer than in other calcium dimers, indicating steric hindrance in the bridging ligands. Considerable hydrogen bonding and aromatic C-H...π interactions co-operate to stabilize the whole complex, as well as to facilitate supramolecular assembly. Additional investigations into the bond nature were made using density functional theory (DFT) methods at the B3LYP/6-31G(d) level; geometry optimization, Mulliken atomic charges, MEP (molecular electrostatic potential), HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular

  7. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    NASA Astrophysics Data System (ADS)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent

  8. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1

    PubMed Central

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-01-01

    Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1 monolayers with a permeability of 5.7 × 10−5 cm sec−1 compared to an apical to basolateral permeability of 1.3 × 10−5 cm sec-1. The efflux could be inhibited with the P-gp inhibitor zosuquidar. Zosuquidar (0.4 μmol/L) reduced the efflux ratio (PB-A/PA-B) for verapamil 4.6–1.6. The presence of telmisartan, however, only caused a slight reduction in P-gp-mediated verapamil transport to an efflux ratio of 3.4. Overall, the results of the present in vitro approach indicate, that clinical use of telmisartan as a P-gp inhibitor may not be an effective strategy for increasing brain uptake of verapamil by co-administration with telmisartan. PMID:26171231

  9. Carbonic anhydrase inhibitors: synthesis and inhibition of the human carbonic anhydrase isoforms I, II, VII, IX and XII with benzene sulfonamides incorporating 4,5,6,7-tetrabromophthalimide moiety.

    PubMed

    Sethi, Kalyan K; Vullo, Daniella; Verma, Saurabh M; Tanç, Muhammet; Carta, Fabrizio; Supuran, Claudiu T

    2013-10-01

    A series of 4,5,6,7-tetrabromo-1,3-dioxoisoindolin-2-yl benzenesulfonamide derivatives (compounds 1-8) was synthesized by reaction of benzene sulfonamide derivatives with 4,5,6,7-tetrabromophthalic anhydride moiety. These new sulfonamides were investigated as inhibitors of the zinc metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) and more specifically against the human (h) cytosolic isoforms hCA I, II and VII and the transmembrane tumor-associated isoform hCA IX and XII. The new compounds were good hCA I inhibitors (Kis in the range of 143 to >10,000nM), but were moderately effective, as hCA II inhibitors (Kis of 47-190nM) and poor hCA VII inhibitors (Kis in the range of 54-175nM) compared to acetazolamide. The tumor-associated hCA IX was effectively inhibited with Kis ranging between 8.5 and 234nM and hCA XII with inhibition constants in the range of 6.1-197nM with high selectivity ratio. The structure-activity relationship (SAR) with this series of sulfonamides is straightforward, with the main features leading to good activity for each isoforms being established. The high sequence hCA alignment homology and molecular docking study of compounds was performed to rationalize the SAR reported over here. PMID:23965175

  10. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies

    PubMed Central

    Fischer, Thomas; Riedl, Rainer

    2016-01-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91). PMID:26938528

  11. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies.

    PubMed

    Fischer, Thomas; Riedl, Rainer

    2016-01-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91). PMID:26938528

  12. Comparative Effectiveness of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers in Terms of Major Cardiovascular Disease Outcomes in Elderly Patients

    PubMed Central

    Chien, Shu-Chen; Ou, Shuo-Ming; Shih, Chia-Jen; Chao, Pei-Wen; Li, Szu-Yuan; Lee, Yi-Jung; Kuo, Shu-Chen; Wang, Shuu-Jiun; Chen, Tzeng-Ji; Tarng, Der-Cherng; Chu, Hsi; Chen, Yung-Tai

    2015-01-01

    Abstract Renin and aldosterone activity levels are low in elderly patients, raising concerns about the benefits and risks of angiotensin-converting-enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARB) use. However, data from direct comparisons of the effects of ACEIs on ARBs in the elderly population remain inconclusive. In this nationwide study, all patients aged ≥ 70 years were retrieved from the Taiwan National Health Insurance database for the period 2000 to 2009 and were followed up until the end of 2010. The ARB cohort (12,347 patients who continuously used ARBs for ≥ 90 days) was matched to ACEI cohort using high-dimensional propensity score (hdPS). Intention-to-treat (ITT) and as-treated (AT) analyses were conducted. In the ITT analysis, after considering death as a competing risk, the ACEI cohort had similar risks of myocardial infarction (hazard ratio [HR] 0.92, 95% confidence interval [CI] 0.79–1.06), ischemic stroke (HR 0.98, 95% CI 0.90–1.07), and heart failure (HR 0.93, 95% CI 0.83–1.04) compared with the ARB cohort. No difference in adverse effects, such as acute kidney injury (HR 0.99, 95% CI 0.89–1.09) and hyperkalemia (HR 1.02, 95% CI 0.87–1.20), was observed between cohorts. AT analysis produced similar results to those of ITT analysis. We were unable to demonstrate a survival difference between cohorts (HR 1.03, 95% CI 0.88–1.21) after considering drug discontinuation as a competing risk in AT analysis. Our study supports the notion that ACEI and ARB users have similar risks of major adverse cardiovascular events (MACE), even in elderly populations. PMID:26512568

  13. Phase II, Open-Label, Randomized Trial of the MEK1/2 Inhibitor Selumetinib as Monotherapy versus Temozolomide in Patients with Advanced Melanoma

    PubMed Central

    Kirkwood, John M.; Bastholt, Lars; Robert, Caroline; Sosman, Jeff; Larkin, James; Hersey, Peter; Middleton, Mark; Cantarini, Mireille; Zazulina, Victoria; Kemsley, Karin; Dummer, Reinhard

    2013-01-01

    Purpose To compare the efficacy and tolerability of the mitogen-activated protein (MAP)/extracellular signal-regulated (ERK) kinase (MEK) 1/2 inhibitor selumetinib versus temozolomide in chemotherapy-naive patients with unresectable stage III/IV melanoma. Experimental Design This phase II, open-label, multicenter, randomized, parallel-group study examined the effect of 100 mg oral selumetinib twice daily in 28-day cycles versus oral temozolomide (200 mg/m2/d for 5 days, then 23 days off-treatment). The primary endpoint was progression-free survival. Results Two hundred patients were randomized. Progression-free survival did not differ significantly between selumetinib and temozolomide (median time to event 78 and 80 days, respectively; hazard ratio, 1.07; 80% confidence interval, 0.86–1.32). Objective response was observed in six (5.8%) patients receiving selumetinib and nine (9.4%) patients in the temozolomide group. Among patients with BRAF mutations, objective responses were similar between selumetinib and temozolomide groups (11.1% and 10.7%, respectively). However, five of the six selumetinib partial responders were BRAF mutated. Frequently reported adverse events with selumetinib were dermatitis acneiform (papular pustular rash; 59.6%), diarrhea (56.6%), nausea (50.5%), and peripheral edema (40.4%), whereas nausea (64.2%), constipation (47.4%), and vomiting (44.2%) were reported with temozolomide. Conclusions No significant difference in progression-free survival was observed between patients with unresectable stage III/IV melanoma unselected for BRAF/NRAS mutations, who received therapy with selumetinib or temozolomide. Five of six patients with partial response to selumetinib had BRAF mutant tumors. PMID:22048237

  14. Knots in rings. The circular knotted protein Momordica cochinchinensis trypsin inhibitor-II folds via a stable two-disulfide intermediate.

    PubMed

    Cemazar, Masa; Daly, Norelle L; Häggblad, Sara; Lo, Kai Pong; Yulyaningsih, Ernie; Craik, David J

    2006-03-24

    The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys1-Cys18 disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability. PMID:16547012

  15. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02).

    PubMed

    Iwamoto, Fabio M; Lamborn, Kathleen R; Robins, H Ian; Mehta, Minesh P; Chang, Susan M; Butowski, Nicholas A; Deangelis, Lisa M; Abrey, Lauren E; Zhang, Wei-Ting; Prados, Michael D; Fine, Howard A

    2010-08-01

    The objective of this phase II single-arm study was to evaluate the efficacy and safety of pazopanib, a multi-targeted tyrosine kinase inhibitor, against vascular endothelial growth factor receptor (VEGFR)-1, -2, and -3, platelet-derived growth factor receptor-alpha and -beta, and c-Kit, in recurrent glioblastoma. Patients with < or =2 relapses and no prior anti-VEGF/VEGFR therapy were treated with pazopanib 800 mg daily on 4-week cycles without planned interruptions. Brain magnetic resonance imaging and clinical reassessment were made every 8 weeks. The primary endpoint was efficacy as measured by 6-month progression-free survival (PFS6). Thirty-five GBM patients with a median age of 53 years and median Karnofsky performance scale of 90 were accrued. Grade 3/4 toxicities included leukopenia (n = 1), lymphopenia (n = 2), thrombocytopenia (n = 1), ALT elevation (n = 3), AST elevation (n = 1), CNS hemorrhage (n = 1), fatigue (n = 1), and thrombotic/embolic events (n = 3); 8 patients required dose reduction. Two patients had a partial radiographic response by standard bidimensional measurements, whereas 9 patients (6 at the 8-week point and 3 only within the first month of treatment) had decreased contrast enhancement, vasogenic edema, and mass effect but <50% reduction in tumor. The median PFS was 12 weeks (95% confidence interval [CI]: 8-14 weeks) and only 1 patient had a PFS time > or =6 months (PFS6 = 3%). Thirty patients (86%) had died and median survival was 35 weeks (95% CI: 24-47 weeks). Pazopanib was reasonably well tolerated with a spectrum of toxicities similar to other anti-VEGF/VEGFR agents. Single-agent pazopanib did not prolong PFS in this patient population but showed in situ biological activity as demonstrated by radiographic responses. ClinicalTrials.gov identifier: NCT00459381. PMID:20200024

  16. Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02)

    PubMed Central

    Iwamoto, Fabio M.; Lamborn, Kathleen R.; Robins, H. Ian; Mehta, Minesh P.; Chang, Susan M.; Butowski, Nicholas A.; DeAngelis, Lisa M.; Abrey, Lauren E.; Zhang, Wei-Ting; Prados, Michael D.; Fine, Howard A.

    2010-01-01

    The objective of this phase II single-arm study was to evaluate the efficacy and safety of pazopanib, a multi-targeted tyrosine kinase inhibitor, against vascular endothelial growth factor receptor (VEGFR)-1, -2, and -3, platelet-derived growth factor receptor-α and -β, and c-Kit, in recurrent glioblastoma. Patients with ≤2 relapses and no prior anti-VEGF/VEGFR therapy were treated with pazopanib 800 mg daily on 4-week cycles without planned interruptions. Brain magnetic resonance imaging and clinical reassessment were made every 8 weeks. The primary endpoint was efficacy as measured by 6-month progression-free survival (PFS6). Thirty-five GBM patients with a median age of 53 years and median Karnofsky performance scale of 90 were accrued. Grade 3/4 toxicities included leukopenia (n = 1), lymphopenia (n = 2), thrombocytopenia (n = 1), ALT elevation (n = 3), AST elevation (n = 1), CNS hemorrhage (n = 1), fatigue (n = 1), and thrombotic/embolic events (n = 3); 8 patients required dose reduction. Two patients had a partial radiographic response by standard bidimensional measurements, whereas 9 patients (6 at the 8-week point and 3 only within the first month of treatment) had decreased contrast enhancement, vasogenic edema, and mass effect but <50% reduction in tumor. The median PFS was 12 weeks (95% confidence interval [CI]: 8–14 weeks) and only 1 patient had a PFS time ≥6 months (PFS6 = 3%). Thirty patients (86%) had died and median survival was 35 weeks (95% CI: 24–47 weeks). Pazopanib was reasonably well tolerated with a spectrum of toxicities similar to other anti-VEGF/VEGFR agents. Single-agent pazopanib did not prolong PFS in this patient population but showed in situ biological activity as demonstrated by radiographic responses. ClinicalTrials.gov identifier: NCT00459381. PMID:20200024

  17. In Vitro Biliary Clearance of Angiotensin II Receptor Blockers and HMG-CoA Reductase Inhibitors in Sandwich-Cultured Rat Hepatocytes: Comparison to In Vivo Biliary Clearance

    PubMed Central

    Abe, Koji; Bridges, Arlene S.; Yue, Wei; Brouwer, Kim L. R.

    2008-01-01

    Previous reports have indicated that in vitro biliary clearance (Clbiliary) determined in sandwich-cultured hepatocytes correlates well with in vivo Clbiliary for limited sets of compounds. This study was designed to estimate the in vitro Clbiliary in sandwich-cultured rat hepatocytes (SCRH) of angiotensin II receptor blockers and HMG-CoA reductase inhibitors that undergo limited metabolism, to compare the estimated Clbiliary values with published in vivo Clbiliary data in rats, and to characterize the mechanism(s) of basolateral uptake and canalicular excretion of these drugs in rats. Average biliary excretion index (BEI) and in vitro Clbiliary of olmesartan, valsartan, pravastatin, rosuvastatin, and pitavastatin were 15%, 19%, 43%, 45%, and 20%, respectively, and 1.7, 3.2, 4.4, 46.1, and 34.6 ml/min/kg, respectively. Clbiliary predicted from SCRH, accounting for plasma unbound fraction, correlated with reported in vivo Clbiliary for these drugs. The rank order of Clbiliary values predicted from SCRH was consistent with in vivo Clbiliary values. Bromosulfophthalein inhibited the uptake of all drugs. BEI and Clbiliary values of olmesartan, valsartan, pravastatin, and rosuvastatin, known multidrug resistance-associated protein (Mrp)2 substrates, were reduced in SCRH from Mrp2-deficient (TR−) compared to wild-type (WT) rats. Although Mrp2 plays a minor role in pitavastatin biliary excretion, pitavastatin BEI and Clbiliary were reduced in TR− compared to WT SCRH; Bcrp expression in SCRH from TR− rats was decreased. In conclusion, in vitro Clbiliary determined in SCRH can be used to estimate and compare in vivo Clbiliary of compounds in rats, and to characterize transport proteins responsible for their hepatic uptake and excretion. PMID:18574002

  18. Enhancement of radiosensitivity by topoisomerase II inhibitor, amrubicin and amrubicinol, in human lung adenocarcinoma A549 cells and kinetics of apoptosis and necrosis induction.

    PubMed

    Hayashi, Sachiko; Hatashita, Masanori; Matsumoto, Hideki; Shioura, Hiroki; Kitai, Ryuhei; Kano, Eiichi

    2006-11-01

    The effects of amrubicin (AMR) and its active metabolite, amrubicinol (AMROH), on the sensitivity of human lung adenocarcinoma A549 cells to ionizing radiation were investigated in vitro. Further, the kinetics of apoptosis and necrosis induction were also analyzed. The cytocidal effects of X-ray irradiation on A549 cells resulted in a low level of radiosensitivity with a D0 value of 12 Gy. The slopes of the survival curves in the exponential phase were plotted on semilogarithmic paper for radiation combined with AMR (2.5 microg/ml) and AMROH (0.02 microg/ml) treatment, and were shown to be approximately parallel to treatment with irradiation alone. The initial shoulder-shape portion of the survival curve for radiation alone, indicating the repair of sublethal damage, was reduced as compared to that for sequential combined treatment with AMR or AMROH. Sequential treatments with AMR or AMROH prior to ionizing radiation resulted in an additive radio-enhancement effect that reduced not only survival, but also the shoulder width. Fractionated irradiation with 2 Gy per fraction of A549 cells was carried out in vitro similar to that commonly performed in clinical radiotherapy and the radio-resistance of the cells was shown to be inhibited by AMR and AMROH. Similar to AMR and AMROH, adriamycin and etoposide (VP-16) are DNA topoisomerase II inhibitors. The effects of these 4 agents on cells that received X-ray irradiation were compared and all of the agents exhibited comparable radio-enhancement effects. The induction of apoptosis was investigated at 48 and 72 h after administration of AMROH, radiation or combined treatment, and apoptosis was not significantly induced after any of the treatments. We also examined the induction of necrosis, and found that the incidence of necrosis following combined treatment was approximately 2 times higher than that with either of the single treatments. PMID:17016621

  19. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    SciTech Connect

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny; Kwan, Yiu Wa; Chan, Shun Wan; Leung, George Pak Heng; Lee, Simon Ming Yuen; Hoi, Maggie Pui Man

    2014-11-01

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repair with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways.

  20. Vitamin D and aromatase inhibitor-induced musculoskeletal symptoms (AIMSS): a phase II, double-blind, placebo-controlled, randomized trial.

    PubMed

    Rastelli, Antonella L; Taylor, Marie E; Gao, Feng; Armamento-Villareal, Reina; Jamalabadi-Majidi, Shohreh; Napoli, Nicola; Ellis, Matthew J

    2011-08-01

    A double-blind placebo-controlled randomized phase II trial was performed to determine whether High Dose Vitamin D2 supplementation (HDD) in women receiving adjuvant anastrozole improves aromatase inhibitor-induced musculoskeletal symptoms (AIMSS) and bone loss. Patients with early breast cancer and AIMSS were stratified according to their baseline 25-hydroxy vitamin D (25OHD) level. Stratum A (20-29 ng/ml) received either HDD 50,000 IU capsules weekly for 8 weeks then monthly for 4 months or placebo. Stratum B (10-19 ng/ml) received either HDD for 16 weeks and then monthly for 2 months, or placebo. AIMSS was assessed by the Brief Pain Inventory-Short Form (BPI-SF), the Fibromyalgia Impact Questionnaire (FIQ), and the Health Assessment Questionnaire-Disability Index (HAQ-DI) at baseline, 2, 4, and 6 months. Bone Mineral Density (BMD) was measured at baseline and at 6 months. The primary endpoint of the study was the change-from-baseline musculoskeletal pain. The secondary endpoint was the percent change in BMD at 6 months. Sixty women were enrolled. Baseline characteristics were comparable between the groups. At 2 months, FIQ pain (P = 0.0045), BPI worst-pain (P = 0.04), BPI average-pain (P = 0.0067), BPI pain-severity (P = 0.04), and BPI interference (P = 0.034) scores were better in the HDD than placebo group. The positive effect of HDD on AIMSS was stronger across all time points in Stratum B than Stratum A (FIQ pain, P = 0.04; BPI average, P = 0.03; BPI severity, P = 0.03; BPI interference, P = 0.04). BMD at the femoral neck decreased in the placebo and did not change in the HDD group (P = 0.06). Weekly HDD improves AIMSS and may have a positive effect on bone health. Vitamin D supplementation strategies for breast cancer patients on AI should be further investigated. PMID:21691817

  1. A randomized phase II study of the telomerase inhibitor imetelstat as maintenance therapy for advanced non-small-cell lung cancer

    PubMed Central

    Chiappori, A. A.; Kolevska, T.; Spigel, D. R.; Hager, S.; Rarick, M.; Gadgeel, S.; Blais, N.; Von Pawel, J.; Hart, L.; Reck, M.; Bassett, E.; Burington, B.; Schiller, J. H.

    2015-01-01

    Background Continuation or ‘switch’ maintenance therapy is commonly used in patients with advancd non-small-cell lung cancer (NSCLC). Here, we evaluated the efficacy of the telomerase inhibitor, imetelstat, as switch maintenance therapy in patients with advanced NSCLC. Patients and methods The primary end point of this open-label, randomized phase II study was progression-free survival (PFS). Patients with non-progressive, advanced NSCLC after platinum-based doublet (first-line) chemotherapy (with or without bevacizumab), any histology, with Eastern Cooperative Oncology Group performance status 0–1 were eligible. Randomization was 2 : 1 in favor of imetelstat, administered at 9.4 mg/kg on days 1 and 8 of a 21-day cycle, or observation. Telomere length (TL) biomarker exploratory analysis was carried out in tumor tissue by quantitative PCR (qPCR) and telomerase fluorescence in situ hybridization. Results Of 116 patients enrolled, 114 were evaluable. Grade 3/4 neutropenia and thrombocytopenia were more frequent with imetelstat. Median PFS was 2.8 and 2.6 months for imetelstat-treated versus control [hazard ratio (HR) = 0.844; 95% CI 0.54–1.31; P = 0.446]. Median survival time favored imetelstat (14.3 versus 11.5 months), although not significantly (HR = 0.68; 95% CI 0.41–1.12; P = 0.129). Exploratory analysis demonstrated a trend toward longer median PFS (HR = 0.43; 95% CI 0.14–1.3; P = 0.124) and overall survival (OS; HR = 0.41; 95% CI 0.11–1.46; P = 0.155) in imetelstat-treated patients with short TL, but no improvement in median PFS and OS in patients with long TL (HR = 0.86; 95% CI 0.39–1.88; and HR = 0.51; 95% CI 0.2–1.28; P = 0.145). Conclusions Maintenance imetelstat failed to improve PFS in advanced NSCLC patients responding to first-line therapy. There was a trend toward a improvement in median PFS and OS in patients with short TL. Short TL as a predictive biomarker will require further investigation for the clinical development of

  2. The effects of anti-DNA topoisomerase II drugs, etoposide and ellipticine, are modified in root meristem cells of Allium cepa by MG132, an inhibitor of 26S proteasomes.

    PubMed

    Żabka, Aneta; Winnicki, Konrad; Polit, Justyna Teresa; Maszewski, Janusz

    2015-11-01

    DNA topoisomerase II (Topo II), a highly specialized nuclear enzyme, resolves various entanglement problems concerning DNA that arise during chromatin remodeling, transcription, S-phase replication, meiotic recombination, chromosome condensation and segregation during mitosis. The genotoxic effects of two Topo II inhibitors known as potent anti-cancer drugs, etoposide (ETO) and ellipticine (EPC), were assayed in root apical meristem cells of Allium cepa. Despite various types of molecular interactions between these drugs and DNA-Topo II complexes at the chromatin level, which have a profound negative impact on the genome integrity (production of double-strand breaks, chromosomal bridges and constrictions, lagging fragments of chromosomes and their uneven segregation to daughter cell nuclei), most of the elicited changes were apparently similar, regarding both their intensity and time characteristics. No essential changes between ETO- and EPC-treated onion roots were noticed in the frequency of G1-, S-, G2-and M-phase cells, nuclear morphology, chromosome structures, tubulin-microtubule systems, extended distribution of mitosis-specific phosphorylation sites of histone H3, and the induction of apoptosis-like programmed cell death (AL-PCD). However, the important difference between the effects induced by the ETO and EPC concerns their catalytic activities in the presence of MG132 (proteasome inhibitor engaged in Topo II-mediated formation of cleavage complexes) and relates to the time-variable changes in chromosomal aberrations and AL-PCD rates. This result implies that proteasome-dependent mechanisms may contribute to the course of physiological effects generated by DNA lesions under conditions that affect the ability of plant cells to resolve topological problems that associated with the nuclear metabolic activities. PMID:26233708

  3. Precocene II, a Trichothecene Production Inhibitor, Binds to Voltage-Dependent Anion Channel and Increases the Superoxide Level in Mitochondria of Fusarium graminearum.

    PubMed

    Furukawa, Tomohiro; Sakamoto, Naoko; Suzuki, Michio; Kimura, Makoto; Nagasawa, Hiromichi; Sakuda, Shohei

    2015-01-01

    Precocene II, a constituent of essential oils, shows antijuvenile hormone activity in insects and inhibits trichothecene production in fungi. We investigated the molecular mechanism by which precocene II inhibits trichothecene production in Fusarium graminearum, the main causal agent of Fusarium head blight and trichothecene contamination in grains. Voltage-dependent anion channel (VDAC), a mitochondrial outer membrane protein, was identified as the precocene II-binding protein by an affinity magnetic bead method. Precocene II increased the superoxide level in mitochondria as well as the amount of oxidized mitochondrial proteins. Ascorbic acid, glutathione, and α-tocopherol promoted trichothecene production by the fungus. These antioxidants compensated for the inhibitory activity of precocene II on trichothecene production. These results suggest that the binding of precocene II to VDAC may cause high superoxide levels in mitochondria, which leads to stopping of trichothecene production. PMID:26248339

  4. Precocene II, a Trichothecene Production Inhibitor, Binds to Voltage-Dependent Anion Channel and Increases the Superoxide Level in Mitochondria of Fusarium graminearum

    PubMed Central

    Furukawa, Tomohiro; Sakamoto, Naoko; Suzuki, Michio; Kimura, Makoto; Nagasawa, Hiromichi; Sakuda, Shohei

    2015-01-01

    Precocene II, a constituent of essential oils, shows antijuvenile hormone activity in insects and inhibits trichothecene production in fungi. We investigated the molecular mechanism by which precocene II inhibits trichothecene production in Fusarium graminearum, the main causal agent of Fusarium head blight and trichothecene contamination in grains. Voltage-dependent anion channel (VDAC), a mitochondrial outer membrane protein, was identified as the precocene II-binding protein by an affinity magnetic bead method. Precocene II increased the superoxide level in mitochondria as well as the amount of oxidized mitochondrial proteins. Ascorbic acid, glutathione, and α-tocopherol promoted trichothecene production by the fungus. These antioxidants compensated for the inhibitory activity of precocene II on trichothecene production. These results suggest that the binding of precocene II to VDAC may cause high superoxide levels in mitochondria, which leads to stopping of trichothecene production. PMID:26248339

  5. Phase I/II dose-escalation study of PI3K inhibitors pilaralisib or voxtalisib in combination with letrozole in patients with hormone-receptor-positive and HER2-negative metastatic breast cancer refractory to a non-steroidal aromatase inhibitor.

    PubMed

    Blackwell, Kimberly; Burris, Howard; Gomez, Patricia; Lynn Henry, N; Isakoff, Steven; Campana, Frank; Gao, Lei; Jiang, Jason; Macé, Sandrine; Tolaney, Sara M

    2015-11-01

    This phase I/II dose-escalation study evaluated the efficacy, safety, and pharmacokinetics of pilaralisib (SAR245408), a pan-class I phosphoinositide 3-kinase (PI3K) inhibitor, or voxtalisib (SAR245409), a PI3K and mammalian target of rapamycin inhibitor, in combination with letrozole in hormone-receptor-positive (HR+), human epidermal growth factor receptor 2 (HER2)-negative, non-steroidal aromatase inhibitor-refractory, recurrent or metastatic breast cancer. Maximum tolerated doses (MTDs) were determined using a 3 + 3 design in phase I. Efficacy was evaluated at the MTDs in phase II. Twenty-one patients were enrolled in phase I; MTDs were determined to be pilaralisib tablets 400 mg once daily (QD) or voxtalisib capsules 50 mg twice daily in combination with letrozole tablets 2.5 mg QD. Fifty-one patients were enrolled in phase II; one patient had a partial response in the pilaralisib arm. Rates of progression-free survival at 6 months were 17 and 8 % in the pilaralisib and voxtalisib arms, respectively. The most frequently reported treatment-related grade ≥ 3 adverse events were aspartate aminotransferase increased (5 %) and rash (5 %) in the pilaralisib arm, and alanine aminotransferase increased (11 %) and rash (9 %) in the voxtalisib arm. Pilaralisib and voxtalisib did not interact pharmacokinetically with letrozole. Pilaralisib had a greater pharmacodynamic impact than voxtalisib, as demonstrated by its impact on glucose homeostasis. There was no association between molecular alterations in the PI3K pathway and efficacy. In summary, pilaralisib or voxtalisib, in combination with letrozole, was associated with an acceptable safety profile and limited efficacy in endocrine therapy-resistant HR+ , HER2-negative metastatic breast cancer. PMID:26497877

  6. Biospecific haemosorbents based on proteinase inhibitor. II. Efficiency of biospecific antiproteinase haemosorbent 'Ovosorb' in complex treatment of experimental generalized purulent peritonitis and acute destructive pancreatitis in dogs.

    PubMed

    Platé, N A; Kirkovsky, V V; Antiperovich, O F; Nicolaichik, V V; Valueva, T A; Sinilo, S B; Moin, V M; Lobacheva, G A

    1994-03-01

    The biospecific antiproteinase haemosorbent (BAH) 'Ovosorb' containing, in the bulk of polyacryamide gel, the ovomucoid from whites of duck eggs, was used for a complex treatment of the experimental generalized purulent peritonitis and acute destructive pancreatitis in dogs. The efficiency of BAH was manifested in the significant reduction of lethality of the experimental animals, a more rapid liquidation of proteinasaemia, normalization in plasma of alpha 1-proteinase inhibitor and protein metabolism. Thus, by eliminating proteinases from circulation, Ovosorb contributes to the cessation of imbalance in the proteinase-inhibitor system and is efficient in the therapy of pathological states related to this imbalance. PMID:8031989

  7. Functional characterization and anti-cancer action of the clinical phase II cardiac Na+/K+ ATPase inhibitor istaroxime: in vitro and in vivo properties and cross talk with the membrane androgen receptor.

    PubMed

    Alevizopoulos, Konstantinos; Dimas, Konstantinos; Papadopoulou, Natalia; Schmidt, Eva-Maria; Tsapara, Anna; Alkahtani, Saad; Honisch, Sabina; Prousis, Kyriakos C; Alarifi, Saud; Calogeropoulou, Theodora; Lang, Florian; Stournaras, Christos

    2016-04-26

    Sodium potassium pump (Na+/K+ ATPase) is a validated pharmacological target for the treatment of various cardiac conditions. Recent published data with Na+/K+ ATPase inhibitors suggest a potent anti-cancer action of these agents in multiple indications. In the present study, we focus on istaroxime, a Na+/K+ ATPase inhibitor that has shown favorable safety and efficacy properties in cardiac phase II clinical trials. Our experiments in 22 cancer cell lines and in prostate tumors in vivo proved the strong anti-cancer action of this compound. Istaroxime induced apoptosis, affected the key proliferative and apoptotic mediators c-Myc and caspase-3 and modified actin cystoskeleton dynamics and RhoA activity in prostate cancer cells. Interestingly, istaroxime was capable of binding to mAR, a membrane receptor mediating rapid, non-genomic actions of steroids in prostate and other cells. These results support a multi-level action of Na+/K+ ATPase inhibitors in cancer cells and collectively validate istaroxime as a strong re-purposing candidate for further cancer drug development. PMID:27027435

  8. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  9. Randomized Phase II, Double-Blind, Placebo-Controlled Study of Exemestane With or Without Entinostat in Postmenopausal Women With Locally Recurrent or Metastatic Estrogen Receptor-Positive Breast Cancer Progressing on Treatment With a Nonsteroidal Aromatase Inhibitor

    PubMed Central

    Yardley, Denise A.; Ismail-Khan, Roohi R.; Melichar, Bohuslav; Lichinitser, Mikhail; Munster, Pamela N.; Klein, Pamela M.; Cruickshank, Scott; Miller, Kathy D.; Lee, Min J.; Trepel, Jane B

    2013-01-01

    Purpose Entinostat is an oral isoform selective histone deacetylase inhibitor that targets resistance to hormonal therapies in estrogen receptor–positive (ER+) breast cancer. This randomized, placebo-controlled, phase II study evaluated entinostat combined with the aromatase inhibitor exemestane versus exemestane alone. Patients and Methods Postmenopausal women with ER+ advanced breast cancer progressing on a nonsteroidal aromatase inhibitor were randomly assigned to exemestane 25 mg daily plus entinostat 5 mg once per week (EE) or exemestane plus placebo (EP). The primary end point was progression-free survival (PFS). Blood was collected in a subset of patients for evaluation of protein lysine acetylation as a biomarker of entinostat activity. Results One hundred thirty patients were randomly assigned (EE group, n = 64; EP group, n = 66). Based on intent-to-treat analysis, treatment with EE improved median PFS to 4.3 months versus 2.3 months with EP (hazard ratio [HR], 0.73; 95% CI, 0.50 to 1.07; one-sided P = .055; two-sided P = .11 [predefined significance level of .10, one-sided]). Median overall survival was an exploratory end point and improved to 28.1 months with EE versus 19.8 months with EP (HR, 0.59; 95% CI, 0.36 to 0.97; P = .036). Fatigue and neutropenia were the most frequent grade 3/4 toxicities. Treatment discontinuation because of adverse events was higher in the EE group versus the EP group (11% v 2%). Protein lysine hyperacetylation in the EE biomarker subset was associated with prolonged PFS. Conclusion Entinostat added to exemestane is generally well tolerated and demonstrated activity in patients with ER+ advanced breast cancer in this signal-finding phase II study. Acetylation changes may provide an opportunity to maximize clinical benefit with entinostat. Plans for a confirmatory study are underway. PMID:23650416

  10. trans-3,4-Disubstituted pyrrolidines as inhibitors of the human aspartyl protease renin. Part II: prime site exploration using an oxygen linker.

    PubMed

    Sellner, Holger; Cottens, Sylvain; Cumin, Frédéric; Ehrhardt, Claus; Kosaka, Takatoshi; Lorthiois, Edwige; Ostermann, Nils; Webb, Randy L; Rigel, Dean F; Wagner, Trixie; Maibaum, Jürgen

    2015-04-15

    Inhibition of the aspartyl protease renin is considered as an efficient approach for treating hypertension. Lately, we described the discovery of a novel class of direct renin inhibitors which comprised a pyrrolidine scaffold (e.g., 2). Based on the X-ray structure of the lead compound 2 bound to renin we predicted that optimization of binding interactions to the prime site could offer an opportunity to further expand the scope of this chemotype. Pyrrolidine-based inhibitors were synthesized in which the prime site moieties are linked to the pyrrolidine core through an oxygen atom, resulting in an ether or a carbamate linker subseries. Especially the carbamate derivatives showed a pronounced increase in in vitro potency compared to 2. Here we report the structure-activity relationship of both subclasses and demonstrate blood pressure lowering effects for an advanced prototype in a hypertensive double-transgenic rat model after oral dosing. PMID:25754490

  11. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. II. Structure elucidation of pyripyropenes A, B, C and D.

    PubMed

    Kim, Y K; Tomoda, H; Nishida, H; Sunazuka, T; Obata, R; Omura, S

    1994-02-01

    The structures of pyripyropenes A, B, C and D, novel acyl-CoA:cholesterol acyltransferase (ACAT) inhibitors, were determined mainly by spectroscopic studies including various NMR measurements. Pyripyropenes have a common structure which consists of pyridine, alpha-pyrone and sesquiterpene moieties. One of the three O-acetyl residues in the sesquiterpene moiety of pyripyropene A is replaced with an O-propionyl residue in pyripyropenes B, C and D. PMID:8150710

  12. Use of β-Blockers, Angiotensin-Converting Enzyme Inhibitors, Angiotensin II Receptor Blockers, and Risk of Breast Cancer Recurrence: A Danish Nationwide Prospective Cohort Study

    PubMed Central

    Sørensen, Gitte Vrelits; Ganz, Patricia A.; Cole, Steven W.; Pedersen, Lars A.; Toft Sørensen, Henrik; Cronin-Fenton, Deirdre P.; Peter Garne, Jens; Christiansen, Peer M.; Lash, Timothy L.; Ahern, Thomas P.

    2013-01-01

    Purpose To estimate associations between use of β-blockers, angiotensin-converting enzyme (ACE) inhibitors, or angiotensin receptor blockers (ARBs) and breast cancer recurrence in a large Danish cohort. Patients and Methods We enrolled 18,733 women diagnosed with nonmetastatic breast cancer between 1996 and 2003. Patient, treatment, and 10-year recurrence data were ascertained from the Danish Breast Cancer Cooperative Group registry. Prescription and medical histories were ascertained by linkage to the National Prescription Registry and Registry of Patients, respectively. β-Blocker exposure was defined in aggregate and according to solubility, receptor selectivity, and individual drugs. ACE inhibitor and ARB exposures were defined in aggregate. Recurrence associations were estimated with multivariable Cox regression models in which time-varying drug exposures were lagged by 1 year. Results Compared with never users, users of any β-blocker had a lower recurrence hazard in unadjusted models (unadjusted hazard ratio [HR] = 0.91; 95% CI, 0.81 to 1.0) and a slightly higher recurrence hazard in adjusted models (adjusted HR = 1.3; 95% CI, 1.1 to 1.5). Associations were similar for exposures defined by receptor selectivity and solubility. Although most individual β-blockers showed no association with recurrence, metoprolol and sotalol were associated with increased recurrence rates (adjusted metoprolol HR = 1.5, 95% CI, 1.2 to 1.8; adjusted sotalol HR = 2.0, 95% CI, 0.99 to 4.0). ACE inhibitors were associated with a slightly increased recurrence hazard, whereas ARBs were not associated with recurrence (adjusted ACE inhibitor HR = 1.2, 95% CI, 0.97 to 1.4; adjusted ARBs HR = 1.1, 95% CI, 0.85 to 1.3). Conclusion Our data do not support the hypothesis that β-blockers attenuate breast cancer recurrence risk. PMID:23650417

  13. Glucuronidation converts clopidogrel to a strong time-dependent inhibitor of CYP2C8: a phase II metabolite as a perpetrator of drug-drug interactions.

    PubMed

    Tornio, A; Filppula, A M; Kailari, O; Neuvonen, M; Nyrönen, T H; Tapaninen, T; Neuvonen, P J; Niemi, M; Backman, J T

    2014-10-01

    Cerivastatin and repaglinide are substrates of cytochrome P450 (CYP)2C8, CYP3A4, and organic anion-transporting polypeptide (OATP)1B1. A recent study revealed an increased risk of rhabdomyolysis in patients using cerivastatin with clopidogrel, warranting further studies on clopidogrel interactions. In healthy volunteers, repaglinide area under the concentration-time curve (AUC(0-∞)) was increased 5.1-fold by a 300-mg loading dose of clopidogrel and 3.9-fold by continued administration of 75 mg clopidogrel daily. In vitro, we identified clopidogrel acyl-β-D-glucuronide as a potent time-dependent inhibitor of CYP2C8. A physiologically based pharmacokinetic model indicated that inactivation of CYP2C8 by clopidogrel acyl-β-D-glucuronide leads to uninterrupted 60-85% inhibition of CYP2C8 during daily clopidogrel treatment. Computational modeling resulted in docking of clopidogrel acyl-β-D-glucuronide at the CYP2C8 active site with its thiophene moiety close to heme. The results indicate that clopidogrel is a strong CYP2C8 inhibitor via its acyl-β-D-glucuronide and imply that glucuronide metabolites should be considered potential inhibitors of CYP enzymes. PMID:24971633

  14. Quantitative Characterization of the Interaction Space of the Mammalian Carbonic Anhydrase Isoforms I, II, VII, IX, XII, and XIV and their Inhibitors, Using the Proteochemometric Approach.

    PubMed

    Rasti, Behnam; Karimi-Jafari, Mohammad H; Ghasemi, Jahan B

    2016-09-01

    The critical role of carbonic anhydrases in different physiological processes has put this protein family at the center of attention, challenging major diseases like glaucoma, neurological disorders such as epilepsy and Alzheimer's disease, obesity, and cancers. Many QSAR/QSPR (quantitative structure-activity/property relationship) researches have been carried out to design potent carbonic anhydrase inhibitors (CAIs); however, using inhibitors with no selectivity for different isoforms can lead to major side-effects. Given that QSAR/QSPR methods are not capable of covering multiple targets in a unified model, we have applied the proteochemometric approach to model the interaction space that governs selective inhibition of different CA isoforms by some mono-/dihydroxybenzoic acid esters. Internal and external validation methods showed that all models were reliable in terms of both validity and predictivity, whereas Y-scrambling assessed the robustness of the models. To prove the applicability of our models, we showed how structural changes of a ligand can affect the selectivity. Our models provided interesting information that can be useful for designing inhibitors with selective behavior toward isoforms of carbonic anhydrases, aiding in their selective inhibition. PMID:26990115

  15. The impact of ingested potato type II inhibitors on the production of the major serine proteases in the gut of Helicoverpa armigera.

    PubMed

    Stevens, J A; Dunse, K M; Guarino, R F; Barbeta, B L; Evans, S C; West, J A; Anderson, M A

    2013-02-01

    The flowers of the ornamental tobacco produce high levels of a series of 6 kDa serine protease inhibitors (NaPIs) that are effective inhibitors of trypsins and chymotrypsins from lepidopteran species. These inhibitors have a negative impact on the growth and development of lepidopteran larvae and have a potential role in plant protection. Here we investigate the effect of NaPIs on the activity and levels of serine proteases in the gut of Helicoverpa armigera larvae and explore the adaptive mechanisms larvae employ to overcome the negative effects of NaPIs in the diet. Polyclonal antibodies were raised against a Helicoverpa punctigera trypsin that is a target for NaPIs and two H. punctigera chymotrypsins; one that is resistant and one that is susceptible to inhibition by NaPIs. The antibodies were used to optimize procedures for extraction of proteases for immunoblot analysis and to assess the effect of NaPIs on the relative levels of the proteases in the gut and frass. We discovered that consumption of NaPIs did not lead to over-production of trypsins or chymotrypsins but did result in excessive loss of proteases to the frass. PMID:23247047

  16. 3-Bromopyruvic acid, a hexokinase II inhibitor, is an effective antitumor agent on the hepatoma cells : in vitro and in vivo findings.

    PubMed

    Gong, Lei; Wei, Yuhua; Yu, Xin; Peng, Jirun; Leng, Xisheng

    2014-06-01

    Over-expressed in cancer cells, hexokinase II (HK II) forms a mitochondrial complex, which promotes cancer survival. 3- Bromopyruvic acid (3-BrPA) dissociates HK II from this complex, causing cell death, and thus, having an anti-tumor effect. The design of this study was to first analyze the expression of HK II in the hepatoma cell line, BEL-7402, then investigate the effects of 3-Br-PA on these cells, and finally, discuss its potential for clinical usage. HK II expression was detected in BEL-7402 cells by immunocytochemistry and reverse transcriptase polymerase chain reaction (RT-PCR). In vitro treatment of cells with 3-BrPA significantly inhibited their growth, as evaluated by MTT assay and adenosine triphosphate-tumor chemosensitivity assay (ATP-TCA). To analyze the in vivo function and safety of this drug, a tumor model was established by subcutaneously implanting hepatic cancer cells into nude mice. 3-BrPA treatment (50 mg/kg ip. daily, 6 days/week for three weeks) was effective in the animal model by attenuating tumor growth and causing tumor necrosis. Toxic signs were not observed. The acute toxicity study provided an LD50 of 191.7 mg/kg for 3-BrPA. Taken together, our in vitro and in vivo analyses suggest that 3-BrPA exerts anti-hepatoma effects, and may be an effective pharmacological agent for the treatment of hepatocellular carcinoma. PMID:24738957

  17. Synthesis and Biological Evaluation of Pyrazolo[3,4-b]pyridin-4-ones as a New Class of Topoisomerase II Inhibitors.

    PubMed

    Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni; Baraldi, Stefania; Prencipe, Filippo; Preti, Delia; Saponaro, Giulia; Romagnoli, Romeo; Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Fazzi, Debora; Borea, Pier Andrea; Maia, Rodolfo Couto; Romeiro, Nelilma C; Fraga, Carlos A M; Barreiro, Eliezer J

    2015-01-01

    A series of 1,3,6-triphenylpyrazolo[3,4-b]pyridin-4-one derivatives was designed, synthesized and evaluated for cytotoxic activity in A375 human melanoma and human erythroleukemia (HEL) cells. The new pyrazolopyridones displayed comparable activities to the antitumor compound etoposide. The inhibitory effect of compounds 17, 18, 27 and 32 against topoisomerase II-mediated cleavage activities was measured finding good correlation with the results obtained from MTS assay. Docking studies into bacterial topoisomerase II (DNA Gyrase), topoisomerase IIα and topoisomerase IIβ binding sites in the DNA binding interface were performed. PMID:25494808

  18. Aromatase and its inhibitors.

    PubMed

    Brodie, A; Lu, Q; Long, B

    1999-01-01

    Inhibitors of aromatase (estrogen synthetase) have been developed as treatment for postmenopausal breast cancer. Both steroidal substrate analogs, type I inhibitors, which inactivate the enzyme and non-steroidal competitive reversible, type II inhibitors, are now available. 4-hydroxyandrostenedione (4-OHA), the first selective aromatase inhibitor, has been shown to reduce serum estrogen concentrations and cause complete and partial responses in approximately 25% of patients with hormone responsive disease who have relapsed from previous endocrine treatment. Letrozole (CGS 20, 269) and anastrozole (ZN 1033) have been recently approved for treatment. Both suppress serum estrogen levels to the limit of assay detection. Letrozole has been shown to be significantly superior to megace in overall response rates and time to treatment failure, whereas anastrozole was found to improve survival in comparison to megace. Both were better tolerated than the latter. The potential of aromatase within the breast as a significant source of estrogen mediating tumor proliferation and which might determine the outcome of inhibitor treatment was explored. Using immunocytochemistry and in situ hybridization, aromatase and mRNAarom was detected mainly in the epithelial cells of the terminal ductal lobular units (TDLU) of the normal breast and also in breast tumor epithelial cells as well as some stromal cells. Increase in proliferation, measured by increased thymidine incorporation into DNA and by PCNA immunostaining in response to testosterone was observed in histocultures of breast cancer samples. This effect could be inhibited by 4-OHA and implies that intratumoral aromatase has functional significance. An intratumoral aromatase model in the ovariectomized nude mouse was developed which simulated the hormone responsive postmenopausal breast cancer patient. This model also allows evaluation of the efficacy of aromatase inhibitors and antiestrogens in tumors of estrogen receptor positive

  19. Adxanthromycins A and B, new inhibitors of ICAM-1/LFA-1 mediated cell adhesion molecule from Streptomyces sp. NA-148. II. Physico-chemical properties and structure elucidation.

    PubMed

    Takahashi, S; Nakano, T; Koiwa, T; Noshita, T; Funayama, S; Koshino, H; Nakagawa, A

    2000-02-01

    Adxanthromycins A and B are new inhibitors of ICAM-1/LFA-1 mediated cell adhesion molecule isolated from the fermentation broth of Streptomyces sp. NA-148. The molecular formula of adxanthromycins A and B were determined as C42H40O17 and C48H50O22, respectively by FAB-MS and NMR spectral analyses, and the structures of both compounds were elucidated to be a dimeric anthrone peroxide skeleton containing alpha-D-galactose by various NMR spectral analyses and chemical degradation. PMID:10805577

  20. Carbasugar probes to explore the enzyme binding pocket at the anomeric position: application to the design of Golgi mannosidase II inhibitors.

    PubMed

    Vinader, M V; Afarinkia, K

    2013-01-01

    A methodology is described for the highly efficient and divergent synthesis of pseudosugars which allows the stereoselective introduction of polar groups at either the α or the β pseudoanomeric positions. Using this method, a series of 3-deoxycarbasugar analogues of mannose bearing a pyridyl group are rationally designed, prepared and tested for inhibition of Golgi α-mannosidase II. PMID:23848537

  1. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    SciTech Connect

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  2. Nitrite Uptake into Intact Pea Chloroplasts : II. Influence of Electron Transport Regulators, Uncouplers, ATPase and Anion Uptake Inhibitors and Protein Binding Reagents.

    PubMed

    Brunswick, P; Cresswell, C F

    1988-02-01

    The relationship between net nitrite uptake and its reduction in intact pea chloroplasts was investigated employing electron transport regulators, uncouplers, and photophosphorylation inhibitors. Observations confirmed the dependence of nitrite uptake on stromal pH and nitrite reduction but also suggested a partial dependance upon PSI phosphorylation. It was also suggested that ammonia stimulates nitrogen assimilation in the dark by association with stromal protons. Inhibition of nitrite uptake by N-ethylmaleimide and dinitrofluorobenzene could not be completely attributed to their inhibition of carbon dioxide fixation. Other protein binding reagents which inhibited photosynthesis showed no effect on nitrite uptake, except for p-chlormercuribenzoate which stimulated nitrite uptake. The results with N-ethylmaleimide and dinitrofluorobenzene tended to support the proposed presence of a protein permeation channel for nitrite uptake in addition to HNO(2) penetration. On the basis of a lack of effect by known anion uptake inhibitors, it was concluded that the nitrite uptake mechanism was distinct from that of phosphate and chloride/sulfate transport. PMID:16665917

  3. Next generation sequencing analysis of platinum refractory advanced germ cell tumor sensitive to Sunitinib (Sutent®) a VEGFR2/PDGFRβ/c-kit/ FLT3/RET/CSF1R inhibitor in a phase II trial

    PubMed Central

    2014-01-01

    Background Germ cell tumors (GCT) are the most common solid tumors in adolescent and young adult males (age 15 and 35 years) and remain one of the most curable of all solid malignancies. However a subset of patients will have tumors that are refractory to standard chemotherapy agents. The management of this refractory population remains challenging and approximately 400 patients continue to die every year of this refractory disease in the United States. Methods Given the preclinical evidence implicating vascular endothelial growth factor (VEGF) signaling in the biology of germ cell tumors, we hypothesized that the vascular endothelial growth factor receptor (VEGFR) inhibitor sunitinib (Sutent) may possess important clinical activity in the treatment of this refractory disease. We proposed a Phase II efficacy study of sunitinib in seminomatous and non-seminomatous metastatic GCT’s refractory to first line chemotherapy treatment (ClinicalTrials.gov Identifier: NCT00912912). Next generation targeted exome sequencing using HiSeq 2000 (Illumina Inc., San Diego, CA, USA) was performed on the tumor sample of the unusual responder. Results Five patients are enrolled into this Phase II study. Among them we report here the clinical course of a patient (Patient # 5) who had an exceptional response to sunitinib. Next generation sequencing to understand this patient’s response to sunitinib revealed RET amplification, EGFR and KRAS amplification as relevant aberrations. Oncoscan MIP array were employed to validate the copy number analysis that confirmed RET gene amplification. Conclusion Sunitinib conferred clinical benefit to this heavily pre-treated patient. Next generation sequencing of this ‘exceptional responder’ identified the first reported case of a RET amplification as a potential basis of sensitivity to sunitinib (VEGFR2/PDGFRβ/c-kit/ FLT3/RET/CSF1R inhibitor) in a patient with refractory germ cell tumor. Further characterization of GCT patients using

  4. CFTR Inhibitors

    PubMed Central

    Verkman, Alan S.; Synder, David; Tradtrantip, Lukmanee; Thiagarajah, Jay R.; Anderson, Marc O.

    2014-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl− channel whose major function is to facilitate epithelial fluid secretion. Loss-of-function mutations in CFTR cause the genetic disease cystic fibrosis. CFTR is required for transepithelial fluid transport in certain secretory diarrheas, such as cholera, and for cyst expansion in autosomal dominant polycystic kidney disease. High-throughput screening has yielded CFTR inhibitors of the thiazolidinone, glycine hydrazide and quinoxalinedione chemical classes. The glycine hydrazides target the extracellular CFTR pore, whereas the thiazolidinones and quinoxalinediones act at the cytoplasmic surface. These inhibitors have been widely used in cystic fibrosis research to study CFTR function at the cell and organ levels. The most potent CFTR inhibitor has IC50 of approximately 4 nM. Studies in animal models support the development of CFTR inhibitors for antisecretory therapy of enterotoxin-mediated diarrheas and polycystic kidney disease. PMID:23331030

  5. Synthesis and antiproliferative activity of 9-benzylamino-6-chloro-2-methoxy-acridine derivatives as potent DNA-binding ligands and topoisomerase II inhibitors.

    PubMed

    Zhang, Wei; Zhang, Bin; Zhang, Wei; Yang, Ti; Wang, Ning; Gao, Chunmei; Tan, Chunyan; Liu, Hongxia; Jiang, Yuyang

    2016-06-30

    A series of 9-benzylamino acridine derivatives were synthesized as an extension of our discovery of acridine antitumor agents. Most of these acridine compounds displayed good antiproliferative activity with IC50 values in low micromole range and structure-activity relationships were studied. Topo I- and II- mediated relaxation studies suggested that all of our compounds displayed strong Topo II inhibitory activity at 100 μM, while only four exhibited moderate Topo I inhibitory activity. The typical compound 8p could penetrate A549 cancer cells efficiently. Compound 8p could intercalate within the double-stranded DNA structure and induce DNA damage. Moreover, compound 8p could induce A549 cells apoptosis through caspase-dependent intrinsic pathway and arrest A549 cells at the G2/M phase. PMID:27060757

  6. Copper(II) complexes with highly water-soluble L- and D-proline-thiosemicarbazone conjugates as potential inhibitors of Topoisomerase IIα.

    PubMed

    Bacher, Felix; Enyedy, Éva A; Nagy, Nóra V; Rockenbauer, Antal; Bognár, Gabriella M; Trondl, Robert; Novak, Maria S; Klapproth, Erik; Kiss, Tamás; Arion, Vladimir B

    2013-08-01

    Two proline-thiosemicarbazone bioconjugates with excellent aqueous solubility, namely, 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [L-Pro-FTSC or (S)-H2L] and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [D-Pro-FTSC or (R)-H2L], have been synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, and electrospray ionization mass spectrometry. The complexation behavior of L-Pro-FTSC with copper(II) in an aqueous solution and in a 30% (w/w) dimethyl sulfoxide/water mixture has been studied via pH potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance, (1)H NMR spectroscopy, and spectrofluorimetry. By the reaction of copper(II) acetate with (S)-H2L and (R)-H2L in water, the complexes [Cu(S,R)-L] and [Cu(R,S)-L] have been synthesized and comprehensively characterized. An X-ray diffraction study of [Cu(S,R)-L] showed the formation of a square-pyramidal complex, with the bioconjugate acting as a pentadentate ligand. Both copper(II) complexes displayed antiproliferative activity in CH1 ovarian carcinoma cells and inhibited Topoisomerase IIα activity in a DNA plasmid relaxation assay. PMID:23829568

  7. In silico modification of Zn2+ binding group of suberoylanilide hydroxamic acid (SAHA) by organoselenium compounds as Homo sapiens class II HDAC inhibitor of cervical cancer

    NASA Astrophysics Data System (ADS)

    Sumo Friend Tambunan, Usman; Bakri, Ridla; Aditya Parikesit, Arli; Ariyani, Titin; Dyah Puspitasari, Ratih; Kerami, Djati

    2016-02-01

    Cervical cancer is the most common cancer in women, and ranks seventh of all cancers worldwide, with 529000 cases in 2008 and more than 85% cases occur in developing countries. One way to treat this cancer is through the inhibition of HDAC enzymes which play a strategic role in the regulation of gene expression. Suberoyl Anilide Hydroxamic Acid (SAHA) or Vorinostat is a drug which commercially available to treat the cancer, but still has some side effects. This research present in silico SAHA modification in Zinc Binding Group (ZBG) by organoselenium compound to get ligands which less side effect. From molecular docking simulation, and interaction analysis, there are five best ligands, namely CC27, HA27, HB28, IB25, and KA7. These five ligands have better binding affinity than the standards, and also have interaction with Zn2+ cofactor of inhibited HDAC enzymes. This research is expected to produce more potent HDAC inhibitor as novel drug for cervical cancer treatment.

  8. Novel mammalian cell cycle inhibitors, tryprostatins A, B and other diketopiperazines produced by Aspergillus fumigatus. II. Physico-chemical properties and structures.

    PubMed

    Cui, C B; Kakeya, H; Osada, H

    1996-06-01

    Two novel diketopiperazines named tryprostatins A and B and a new natural product belonging to the diketopiperazine series, designated as demethoxyfumitremorgin C, together with four known diketopiperazines, fumitremorgin C, 12,13-dihydroxyfumitremorgin C, fumitremorgin B and verruculogen, are new M phase inhibitors of the mammalian cell cycle, which were isolated from the secondary metabolites of Aspergillus fumigatus. The structures of tryprostatins A, B and demethoxyfumitremorgin C were determined mainly by the use of spectroscopic methods especially by detailed analyses of their 1H and 13C NMR spectra with the aid of 2D NMR techniques including pulse field gradient heteronuclear multiple-bond correlation (PFG-HMBC) spectroscopy. Their absolute configurations were determined on the basis of the optical rotational values and CD spectra. PMID:8698635

  9. Finger loop inhibitors of the HCV NS5b polymerase. Part II. Optimization of tetracyclic indole-based macrocycle leading to the discovery of TMC647055.

    PubMed

    Vendeville, Sandrine; Lin, Tse-I; Hu, Lili; Tahri, Abdellah; McGowan, David; Cummings, Maxwell D; Amssoms, Katie; Canard, Maxime; Last, Stefaan; Van den Steen, Iris; Devogelaere, Benoit; Rouan, Marie-Claude; Vijgen, Leen; Berke, Jan Martin; Dehertogh, Pascale; Fransen, Els; Cleiren, Erna; van der Helm, Liesbet; Fanning, Gregory; Van Emelen, Kristof; Nyanguile, Origène; Simmen, Kenny; Raboisson, Pierre

    2012-07-01

    Optimization of a novel series of macrocyclic indole-based inhibitors of the HCV NS5b polymerase targeting the finger loop domain led to the discovery of lead compounds exhibiting improved potency in cellular assays and superior pharmacokinetic profile. Further lead optimization performed on the most promising unsaturated-bridged subseries provided the clinical candidate 27-cyclohexyl-12,13,16,17-tetrahydro-22-methoxy-11,17-dimethyl-10,10-dioxide-2,19-methano-3,7:4,1-dimetheno-1H,11H-14,10,2,9,11,17-benzoxathiatetraazacyclo docosine-8,18(9H,15H)-dione, TMC647055 (compound 18a). This non-zwitterionic 17-membered ring macrocycle combines nanomolar cellular potency (EC(50) of 82 nM) with minimal associated cell toxicity (CC(50)>20 μM) and promising pharmacokinetic profiles in rats and dogs. TMC647055 is currently being evaluated in the clinic. PMID:22633687

  10. A new series of 2-phenol-4-aryl-6-chlorophenyl pyridine derivatives as dual topoisomerase I/II inhibitors: Synthesis, biological evaluation and 3D-QSAR study.

    PubMed

    Karki, Radha; Jun, Kyu-Yeon; Kadayat, Tara Man; Shin, Somin; Thapa Magar, Til Bahadur; Bist, Ganesh; Shrestha, Aarajana; Na, Younghwa; Kwon, Youngjoo; Lee, Eung-Seok

    2016-05-01

    As a continuous effort to develop novel antitumor agents, a new series of forty-five 2-phenol-4-aryl-6-chlorophenyl pyridine compounds were synthesized and evaluated for cytotoxicity against four different human cancer cell lines (DU145, HCT15, T47D, and HeLa), and topoisomerase I and II inhibitory activity. Several compounds (10-15, 20, 22, 24, 28, 42, and 49) displayed strong to moderate dual topoisomerase I and II inhibitory activity at 100 μM. It was observed that hydroxyl and chlorine moiety at meta or para position of phenyl ring is favorable for dual topoisomerase inhibitory activity and cytotoxicity. Most of the compounds displayed stronger cytotoxicities than those of all positive controls against the HCT15 and T47D cell lines. For investigation of the structure-activity relationships, a 3D-QSAR analysis using the method of comparative molecular field analysis (CoMFA) was performed. The generated 3D contour maps can be used for further rational design of novel terpyridine derivatives as highly selective and potent cytotoxic agents. PMID:26945111

  11. Diabetes and CVD risk during angiotensin-converting enzyme inhibitor or angiotensin II receptor blocker treatment in hypertension: a study of 15 990 patients

    PubMed Central

    Hasvold, L P; Bodegård, J; Thuresson, M; Stålhammar, J; Hammar, N; Sundström, J; Russell, D; Kjeldsen, S E

    2014-01-01

    Differences in clinical effectiveness between angiotensin-converting enzyme inhibitors (ACEis) and angiotensin receptor blockers (ARBs) in the primary treatment of hypertension are unknown. The aim of this retrospective cohort study was to assess the prevention of type 2 diabetes and cardiovascular disease (CVD) in patients treated with ARBs or ACEis. Patients initiated on enalapril or candesartan treatment in 71 Swedish primary care centers between 1999 and 2007 were included. Medical records data were extracted and linked with nationwide hospital discharge and cause of death registers. The 11 725 patients initiated on enalapril and 4265 on candesartan had similar baseline characteristics. During a mean follow-up of 1.84 years, 36 482 patient-years, the risk of new diabetes onset was lower in the candesartan group (hazard ratio (HR) 0.81, 95% confidence interval (CI) 0.69–0.96, P=0.01) compared with the enalapril group. No difference between the groups was observed in CVD risk (HR 0.99, 95% CI 0.87–1.13, P=0.86). More patients discontinued treatment in the enalapril group (38.1%) vs the candesartan group (27.2%). In a clinical setting, patients initiated on candesartan treatment had a lower risk of new-onset type 2 diabetes and lower rates of drug discontinuation compared with patients initiated on enalapril. No differences in CVD risk were observed. PMID:25211055

  12. Curcumin-inspired cytotoxic 3,5-bis(arylmethylene)-1-(N-(ortho-substituted aryl)maleamoyl)-4-piperidones: A novel group of topoisomerase II alpha inhibitors.

    PubMed

    Jha, Amitabh; Duffield, Katherine M; Ness, Matthew R; Ravoori, Sujatha; Andrews, Gabrielle; Bhullar, Khushwant S; Rupasinghe, H P Vasantha; Balzarini, Jan

    2015-10-01

    Three series of novel 3,5-bis(arylmethylene)-1-(N-(ortho-substituted aryl)maleamoyl)-4-piperidones, designed as simplified analogs of curcumin with maleic diamide tether, were synthesized and bioevaluated. These compounds displayed potent cytotoxicity towards human Molt 4/C8 and CEM T-lymphocytes as well as murine L1210 leukemic cells. In contrast, the related N-arylmaleamic acids possessed little or no cytotoxicity in these three screens. Design of these compounds was based on molecular modeling studies performed on a related series of molecule in a previous study. Representative title compounds were found to be significantly potent in inhibiting the activity of topoisomerase II alpha indicating the possible mode of action of these compounds. These compounds were also potent antioxidants in vitro and attenuated the AAPH triggered peroxyl radical production in human fibroblasts. Various members of these series were also well tolerated in both in vitro and in vivo toxicity analysis. PMID:26456623

  13. Effects of angiotensin converting enzyme inhibitor and angiotensin II receptor antagonist combination on nitric oxide bioavailability and atherosclerotic change in Watanabe heritable hyperlipidemic rabbits.

    PubMed

    Imanishi, Toshio; Kuroi, Akio; Ikejima, Hideyuki; Kobayashi, Katsunobu; Muragaki, Yasuteru; Mochizuki, Seiichi; Goto, Masami; Yoshida, Kiyoshi; Akasaka, Takashi

    2008-03-01

    We investigated the effects of co-administration of an angiotensin-converting enzyme inhibitor (ACEI) and angiotensin type 1 receptor blocker (ARB) on nitric oxide (NO) bioavailability in genetically hyperlipidemic rabbits with our newly developed NO sensor. Plasma NO was measured using the new NO sensor in the abdominal aorta of anesthetized Watanabe heritable hyperlipidemic (WHHL) rabbits. Acetylcholine (ACh)-stimulated (20 microg in 5 min into the aortic arch) NO production was recorded after an 8 week per os pretreatment with 1) vehicle (control), 2) the ACEI enalapril (E: 3 mg/kg/day), 3) the ARB losartan (L: 30 mg/kg/day) and 4) enalapril (1.5 mg/kg/day)+losartan (15 mg/kg/day) (E+L). Intra-aortic infusion of ACh produced an increase in plasma NO concentration, which was significantly greater with all the drug treatments than with the control. E increased ACh-induced NO significantly more than L (by 6.9 nmol/L, and 4.7 nmol/L, respectively). E+L increased ACh-induced NO by 9.5 nmol/L, significantly more than either E or L. Plasma peroxynitrite concentration was 1.2 pmol/mg protein in the control group and significantly less than in the E- and L-group. The lowest peroxynitrite concentration was observed in the E+L group (0.5 pmol/mg protein), which was significantly lower than in the E-group and the L-group. Optical coherence tomography and histology of the thoracic aorta revealed that the plaque area decreased significantly more with the combination than with the monotherapy (p<0.01). In conclusion, the combined treatment with an ACEI and an ARB may have additive protective effects on endothelial function as well as atherosclerotic change. PMID:18497479

  14. In vitro and in vivo metabolism of 14C-AZ11, a novel inhibitor of bacterial DNA gyrase/type II topoisomerase.

    PubMed

    Guo, Jian; Joubran, Camil; Luzietti, Ricardo A; Zhou, Fei; Basarab, Gregory S; Vishwanathan, Karthick

    2015-02-01

    1. (2R,4S,4aS)-11-Fluoro-2,4-dimethyl-8-((S)-4-methyl-2-oxooxazolidin-3-yl)-2,4,4a,6-tetrahydro-1H,1'H-spiro [isoxazolo[4,5-g][1,4]oxazino[4,3-a]quinoline-5,5'-pyrimidine]-2',4',6'(3'H)-trione (AZ11) is a novel mode-of-inhibition bacterial topoisomerase inhibitor that entered preclinical development for the treatment of Gram-positive bacteria infection. 2. The in vitro biotransformation studies of AZ11 using mouse, rat, dog and human hepatocytes showed low-intrinsic clearance in all species attributed to microsomal metabolism. 3. After a single intravenous administration of [14C]AZ11 in bile duct cannulated rats, the mean percentage of dose recovered in rat urine, bile and feces was approximately 18, 36 and 42%, respectively. Unchanged AZ11 recovered in rat urine and bile was less than 9% of the dose, indicating that AZ11 underwent extensive metabolism in rats. 4. The most abundant in vivo metabolite detected in urine and bile was M1 formed via ring opening on the piperidine and morpholine rings accounting for 20% of the administered dose. The major fecal metabolite was M5, which accounted for approximately 32% of administered dose. M5 was not formed when AZ11 incubated with rat intestinal microsomes and cytosol but was formed when incubated with fresh rat feces, suggesting that unchanged AZ11 was directly excreted into gut lumen where M5 formed as an intestinal microflora-mediated product. This process could have significant impact on bioavailability or exposure of AZ11 in rat. PMID:25142218

  15. Randomized Phase Ib/II Study of Gemcitabine Plus Placebo or Vismodegib, a Hedgehog Pathway Inhibitor, in Patients With Metastatic Pancreatic Cancer

    PubMed Central

    Catenacci, Daniel V.T.; Junttila, Melissa R.; Karrison, Theodore; Bahary, Nathan; Horiba, Margit N.; Nattam, Sreenivasa R.; Marsh, Robert; Wallace, James; Kozloff, Mark; Rajdev, Lakshmi; Cohen, Deirdre; Wade, James; Sleckman, Bethany; Lenz, Heinz-Josef; Stiff, Patrick; Kumar, Pankaj; Xu, Peng; Henderson, Les; Takebe, Naoko; Salgia, Ravi; Wang, Xi; Stadler, Walter M.; de Sauvage, Frederic J.; Kindler, Hedy L.

    2015-01-01

    Purpose Sonic hedgehog (SHH), an activating ligand of smoothened (SMO), is overexpressed in > 70% of pancreatic cancers (PCs). We investigated the impact of vismodegib, an SHH antagonist, plus gemcitabine (GV) or gemcitabine plus placebo (GP) in a multicenter phase Ib/randomized phase II trial and preclinical PC models. Patients and Methods Patients with PC not amenable to curative therapy who had received no prior therapy for metastatic disease and had Karnofsky performance score ≥ 80 were enrolled. Patients were randomly assigned in a one-to-one ratio to GV or GP. The primary end point was progression-free-survival (PFS). Exploratory correlative studies included serial SHH serum levels and contrast perfusion computed tomography imaging. To further investigate putative biologic mechanisms of SMO inhibition, two autochthonous pancreatic cancer models (KrasG12D; p16/p19fl/fl; Pdx1-Cre and KrasG12D; p53R270H/wt; Pdx1-Cre) were studied. Results No safety issues were identified in the phase Ib portion (n = 7), and the phase II study enrolled 106 evaluable patients (n = 53 in each arm). Median PFS was 4.0 and 2.5 months for GV and GP arms, respectively (95% CI, 2.5 to 5.3 and 1.9 to 3.8, respectively; adjusted hazard ratio, 0.81; 95% CI, 0.54 to 1.21; P = .30). Median overall survival (OS) was 6.9 and 6.1 months for GV and GP arms, respectively (95% CI, 5.8 to 8.0 and 5.0 to 8.0, respectively; adjusted hazard ratio, 1.04; 95% CI, 0.69 to 1.58; P = .84). Response rates were not significantly different. There were no significant associations between correlative markers and overall response rate, PFS, or OS. Preclinical trials revealed no significant differences with vismodegib in drug delivery, tumor growth rate, or OS in either model. Conclusion The addition of vismodegib to gemcitabine in an unselected cohort did not improve overall response rate, PFS, or OS in patients with metastatic PC. Our preclinical and clinical results revealed no statistically significant

  16. [Proteasome inhibitor].

    PubMed

    Yagi, Hideo

    2014-06-01

    The ubiquitin-proteasome system plays an essential role in degradation of eukaryotic intracellular protein, including cell cycle regulation, cell growth and proliferation, and survival. Cancer cells generally have higher level of proteasome activity compared with normal cells, suggesting proteasome inhibition could be therapeutic target in oncology. Bortezomib, the first proteasome inhibitor introduced into the clinic, is approved for the treatment of patients with multiple myeloma (MM). Although it was approved as single agent in the relapsed setting, bortezomib is now predominantly used in combination with conventional and novel targeted agents because bortezomib has demonstrated additive and synergistic activity in preclinical studies. Recently, several second-generation proteasome inhibitors, such as carfilzomib and MLN9708, have been developed and entered into clinical trials. These agents were investigated in frontline MM in combination with lenalidomide and low-dose dexamethasone. These studies demonstrated positive efficacy and safety, and it is expected that they will be approved in near future. PMID:25016815

  17. High-affinity Cyclic Peptide Matriptase Inhibitors*

    PubMed Central

    Quimbar, Pedro; Malik, Uru; Sommerhoff, Christian P.; Kaas, Quentin; Chan, Lai Y.; Huang, Yen-Hua; Grundhuber, Maresa; Dunse, Kerry; Craik, David J.; Anderson, Marilyn A.; Daly, Norelle L.

    2013-01-01

    The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase. PMID:23548907

  18. A prospective phase I-II trial of the cyclooxygenase-2 inhibitor celecoxib in patients with carcinoma of the cervix with biomarker assessment of the tumor microenvironment

    SciTech Connect

    Herrera, Fernanda G.; Chan, Philip; Doll, Corinne; Milosevic, Michael; Oza, Amit; Syed, Amy; Pintilie, Melania; Levin, Wilfred; Manchul, Lee; Fyles, Anthony . E-mail: Anthony.Fyles@rmp.uhn.on.ca

    2007-01-01

    Purpose: To evaluate the toxicity and effectiveness of celecoxib in combination with definitive chemoradiotherapy (CRT) in women with locally advanced cervical cancer. Methods and Materials: Thirty-one patients were accrued to a phase I-II trial of celecoxib 400 mg by mouth twice per day for 2 weeks before and during CRT. Tumor oxygenation (HP{sub 5}) and interstitial fluid pressure (IFP) were measured before and 2 weeks after celecoxib administration alone. The median follow-up time was 2.7 years (range, 1.1-4.4 years). Results: The most common acute G3/4 toxicities were hematologic (4/31, 12.9%) and gastrointestinal (5/31, 16.1%) largely attributed to chemotherapy. Late G3/4 toxicity was seen in 4 of 31 patients (13.7% actuarial risk at 2 yr), including fistulas in 3 patients (9.7%). Within the first year of follow-up, 25 of 31 patients (81%) achieved complete response (CR), of whom 20 remained in CR at last follow-up. After 2 weeks of celecoxib administration before CRT, the median IFP decreased slightly (median absolute, -4.6 mm Hg; p = 0.09; relative, -21%; p = 0.07), whereas HP{sub 5} did not change significantly (absolute increase, 3.6%; p = 0.51; median relative increase, 11%; p = 0.27). No significant associations were seen between changes in HP{sub 5} or IFP and response to treatment (p = 0.2, relative HP{sub 5} change and p = 0.14, relative IFP change). Conclusions: Celecoxib in combination with definitive CRT is associated with acceptable acute toxicity, but higher than expected late complications. Celecoxib is associated with a modest reduction in the angiogenic biomarker IFP, but this does not correspond with tumor response.

  19. Phase II open label study of the oral vascular endothelial growth factor-receptor inhibitor PTK787/ZK222584 (vatalanib) in adult patients with refractory or relapsed diffuse large B-cell lymphoma.

    PubMed

    Brander, Danielle; Rizzieri, David; Gockerman, Jon; Diehl, Louis; Shea, Thomas Charles; Decastro, Carlos; Moore, Joseph O; Beaven, Anne

    2013-12-01

    PTK787/ZK222584 (vatalanib), an orally active inhibitor of vascular endothelial growth factor receptors (VEGFRs), was evaluated in this phase II study of 20 patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Patients received once-daily PTK787/ZK222584 at a target dose of 1250 mg. Eighteen patients were evaluable for response: one patient had a complete response (CR), six patients had stable disease but subsequently progressed, 10 patients had progressive disease by three cycles and one subject withdrew before response evaluation. The patient who attained a CR underwent autologous stem cell transplant and remains disease-free 76 months after study completion. There were no grade 4 toxicities. Grade 3 thrombocytopenia occurred in 20% and grade 3 hypertension occurred in 10%. There were no episodes of grade 3 proteinuria. In conclusion, PTK787/ZK222584 was well tolerated in a heavily pretreated population of patients with DLBCL, although its therapeutic potential as a single agent in DLBCL appears limited. PMID:23488610

  20. Changes in DNA methylation and transgenerational mobilization of a transposable element (mPing) by the Topoisomerase II inhibitor, Etoposide, in rice

    PubMed Central

    2012-01-01

    Background Etoposide (epipodophyllotoxin) is a chemical commonly used as an anti-cancer drug which inhibits DNA synthesis by blocking topoisomerase II activity. Previous studies in animal cells have demonstrated that etoposide constitutes a genotoxic stress which may induce genomic instability including mobilization of normally quiescent transposable elements (TEs). However, it remained unknown whether similar genetically mutagenic effects could be imposed by etoposide in plant cells. Also, no information is available with regard to whether the drug may cause a perturbation of epigenetic stability in any organism. Results To investigate whether etoposide could generate genetic and/or epigenetic instability in plant cells, we applied etoposide to germinating seeds of six cultivated rice (Oryza sativa L.) genotypes including both subspecies, japonica and indica. Based on the methylation-sensitive gel-blotting results, epigenetic changes in DNA methylation of three TEs (Tos17, Osr23 and Osr36) and two protein-encoding genes (Homeobox and CDPK-related genes) were detected in the etoposide-treated plants (S0 generation) in four of the six studied japonica cultivars, Nipponbare, RZ1, RZ2, and RZ35, but not in the rest japonica cultivar (Matsumae) and the indica cultivar (93-11). DNA methylation changes in the etoposide-treated S0 rice plants were validated by bisulfite sequencing at both of two analyzed loci (Tos17 and Osr36). Transpositional activity was tested for eight TEs endogenous to the rice genome in both the S0 plants and their selfed progenies (S1 and S2) of one of the cultivars, RZ1, which manifested heritable phenotypic variations. Results indicated that no transposition occurred in the etoposide-treated S0 plants for any of the TEs. Nonetheless, a MITE transposon, mPing, showed rampant mobilization in the S1 and S2 progenies descended from the drug-treated S0 plants. Conclusions Our results demonstrate that etoposide imposes a similar genotoxic stress on

  1. A controlled Phase II trial assessing three doses of enfuvirtide (T-20) in combination with abacavir, amprenavir, ritonavir and efavirenz in non-nucleoside reverse transcriptase inhibitor-naive HIV-infected adults.

    PubMed

    Lalezari, Jacob P; DeJesus, Edwin; Northfelt, Donald W; Richmond, Gary; Wolfe, Peter; Haubrich, Richard; Henry, David; Powderly, William; Becker, Stephen; Thompson, Melanie; Valentine, Fred; Wright, David; Carlson, Margrit; Riddler, Sharon; Haas, Frances F; DeMasi, Ralph; Sista, Prokash R; Salgo, Miklos; Delehanty, John

    2003-08-01

    Enfuvirtide is a novel antiretroviral that blocks HIV-1 cell fusion and viral entry. This Phase II, controlled, open-label, randomized, multicentre dose-ranging trial explored the safety, antiviral activity and pharmacokinetics of enfuvirtide, administered by subcutaneous (s.c.) injection, in 71 HIV-1-infected, protease inhibitor-experienced, non-nucleoside reverse transcriptase inhibitor (NNRTI)-naive adults for 48 weeks. Study participants were randomized to receive enfuvirtide at a deliverable dose of 45, 67.5 or 90 mg twice daily; the 45 mg twice daily dose required 2 injections/day, while the higher doses required 4 injections/day. A background oral antiretroviral (ARV) regimen of abacavir (300 mg twice daily), amprenavir (1200 mg twice daily), ritonavir (200 mg twice daily) and efavirenz (600 mg once daily) was provided with enfuvirtide. A control group received the background ARV regimen alone. All potential participants underwent an HIV genotype at screen to ensure a homogenous population and to exclude patients with evidence of genotypic resistance to NNRTIs. Overall, the tolerability of the combination of abacavir, amprenavir, ritonavir, efavirenz and enfuvirtide was generally comparable to control through 48 weeks. No enfuvirtide dose-dependent adverse events (AEs) were observed across treatment groups. Injection site reactions (ISRs) occurred at least once in 68.5% of the enfuvirtide-treated population, and most ISRs were mild to moderate in severity, with no apparent dose relationship. Excluding ISRs, the most common treatment-emergent AEs were nausea, diarrhoea, dizziness and fatigue; with no clinically significant differences in the incidence of AEs observed between the control and enfuvirtide groups. Each treatment group benefited from ARV therapy, with a trend of increasing antiviral and immunological activity associated with increasing enfuvirtide dose. At 48 weeks, the median HIV-1 RNA change from baseline for the ITT population was -2.24 log10

  2. 1-[N, O-bis-(5-isoquinolinesulphonyl)-N-methyl-L-tyrosyl]-4- phenylpiperazine (KN-62), an inhibitor of calcium-dependent camodulin protein kinase II, inhibits both insulin- and hypoxia-stimulated glucose transport in skeletal muscle.

    PubMed Central

    Brozinick, J T; Reynolds, T H; Dean, D; Cartee, G; Cushman, S W

    1999-01-01

    Previous studies have indicated a role for calmodulin in hypoxia-and insulin-stimulated glucose transport. However, since calmodulin interacts with multiple protein targets, it is unknown which of these targets is involved in the regulation of glucose transport. In the present study, we have used the calcium-dependent calmodulin protein kinase II (CAMKII) inhibitor 1-[N, O-bis-(5-isoquinolinesulphonyl) -N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62) to investigate the possible role of this enzyme in the regulation of glucose transport in isolated rat soleus and epitrochlearis muscles. KN-62 did not affect basal 2-deoxyglucose transport, but it did inhibit both insulin- and hypoxia-stimulated glucose transport activity by 46 and 40% respectively. 1-[N,O-Bis-(1, 5-isoquinolinesulphonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-04), a structural analogue of KN-62 that does not inhibit CAMKII, had no effect on hypoxia-or insulin-stimulated glucose transport. Accordingly, KN-62 decreased the stimulated cell-surface GLUT4 labelling by a similar extent as the inhibition of glucose transport (insulin, 49% and hypoxia, 54%). Additional experiments showed that KN-62 also inhibited insulin- and hypoxia-stimulated transport by 37 and 40% respectively in isolated rat epitrochlearis (a fast-twitch muscle), indicating that the effect of KN-62 was not limited to the slow-twitch fibres of the soleus. The inhibitory effect of KN-62 on hypoxia-stimulated glucose transport appears to be specific to CAMKII, since KN-62 did not inhibit hypoxia-stimulated 45Ca efflux from muscles pre-loaded with 45Ca, or hypoxia-stimulated glycogen breakdown. Additionally, KN-62 affected neither insulin-stimulated phosphoinositide 3-kinase nor Akt activity, suggesting that the effects of KN-62 are not due to non-specific effects of this inhibitor on these regions of the insulin-signalling cascade. The results of the present study suggest that CAMKII might have a distinct role in insulin- and hypoxia

  3. In vitro biliary clearance of angiotensin II receptor blockers and 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in sandwich-cultured rat hepatocytes: comparison with in vivo biliary clearance.

    PubMed

    Abe, Koji; Bridges, Arlene S; Yue, Wei; Brouwer, Kim L R

    2008-09-01

    Previous reports have indicated that in vitro biliary clearance (Cl(biliary)) determined in sandwich-cultured hepatocytes correlates well with in vivo Cl(biliary) for limited sets of compounds. This study was designed to estimate the in vitro Cl(biliary) in sandwich-cultured rat hepatocytes (SCRHs) of angiotensin II receptor blockers and HMG-CoA reductase inhibitors that undergo limited metabolism, to compare the estimated Cl(biliary) values with published in vivo Cl(biliary) data in rats, and to characterize the mechanism(s) of basolateral uptake and canalicular excretion of these drugs in rats. The average biliary excretion index (BEI) and in vitro Cl(biliary) values of olmesartan, valsartan, pravastatin, rosuvastatin, and pitavastatin were 15, 19, 43, 45, and 20%, respectively, and 1.7, 3.2, 4.4, 46.1, and 34.6 ml/min/kg, respectively. Cl(biliary) predicted from SCRHs, accounting for plasma unbound fraction, correlated with reported in vivo Cl(biliary) for these drugs. The rank order of Cl(biliary) values predicted from SCRHs was consistent with in vivo Cl(biliary) values. Bromosulfophthalein inhibited the uptake of all drugs. BEI and Cl(biliary) values of olmesartan, valsartan, pravastatin, and rosuvastatin, known multidrug resistance-associated protein (Mrp) 2 substrates, were reduced in SCRHs from Mrp2-deficient (TR(-)) compared with wild-type (WT) rats. Although Mrp2 plays a minor role in pitavastatin biliary excretion, pitavastatin BEI and Cl(biliary) were reduced in TR(-) compared with WT SCRHs; Bcrp expression in SCRHs from TR(-) rats was decreased. In conclusion, in vitro Cl(biliary) determined in SCRHs can be used to estimate and compare in vivo Cl(biliary) of compounds in rats and to characterize transport proteins responsible for their hepatic uptake and excretion. PMID:18574002

  4. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors

    PubMed Central

    Kris, M. G.; Camidge, D. R.; Giaccone, G.; Hida, T.; Li, B. T.; O'Connell, J.; Taylor, I.; Zhang, H.; Arcila, M. E.; Goldberg, Z.; Jänne, P. A.

    2015-01-01

    Background HER2 mutations and amplifications have been identified as oncogenic drivers in lung cancers. Dacomitinib, an irreversible inhibitor of HER2, EGFR (HER1), and HER4 tyrosine kinases, has demonstrated activity in cell-line models with HER2 exon 20 insertions or amplifications. Here, we studied dacomitinib in patients with HER2-mutant or amplified lung cancers. Patients and methods As a prespecified cohort of a phase II study, we included patients with stage IIIB/IV lung cancers with HER2 mutations or amplification. We gave oral dacomitinib at 30–45 mg daily in 28-day cycles. End points included partial response rate, overall survival, and toxicity. Results We enrolled 30 patients with HER2-mutant (n = 26, all in exon 20 including 25 insertions and 1 missense mutation) or HER2-amplified lung cancers (n = 4). Three of 26 patients with tumors harboring HER2 exon 20 mutations [12%; 95% confidence interval (CI) 2% to 30%] had partial responses lasting 3+, 11, and 14 months. No partial responses occurred in four patients with tumors with HER2 amplifications. The median overall survival was 9 months from the start of dacomitinib (95% CI 7–21 months) for patients with HER2 mutations and ranged from 5 to 22 months with amplifications. Treatment-related toxicities included diarrhea (90%; grade 3/4: 20%/3%), dermatitis (73%; grade 3/4: 3%/0%), and fatigue (57%; grade 3/4: 3%/0%). One patient died on study likely due to an interaction of dacomitinib with mirtazapine. Conclusions Dacomitinib produced objective responses in patients with lung cancers with specific HER2 exon 20 insertions. This observation validates HER2 exon 20 insertions as actionable targets and justifies further study of HER2-targeted agents in specific HER2-driven lung cancers. ClinicalTrials.gov NCT00818441. PMID:25899785

  5. Autophagy inhibitors.

    PubMed

    Pasquier, Benoit

    2016-03-01

    Autophagy is a lysosome-dependent mechanism of intracellular degradation. The cellular and molecular mechanisms underlying this process are highly complex and involve multiple proteins, including the kinases ULK1 and Vps34. The main function of autophagy is the maintenance of cell survival when modifications occur in the cellular environment. During the past decade, extensive studies have greatly improved our knowledge and autophagy has exploded as a research field. This process is now widely implicated in pathophysiological processes such as cancer, metabolic, and neurodegenerative disorders, making it an attractive target for drug discovery. In this review, we will summarize the different types of inhibitors that affect the autophagy machinery and provide some potential therapeutic perspectives. PMID:26658914

  6. Amicarbazone, A New Photosystem II Inhibitor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amicarbazone is a new triazolinone herbicide with a broad spectrum of weed control. The phenotypic responses of sensitive plants exposed to amicarbazone include chlorosis, stunted growth, tissue necrosis and death. Its efficacy as both a foliar and root applied herbicide suggests that absorption an...

  7. Non-target-site resistance to ALS inhibitors in waterhemp (Amaranthus tuberculatus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A waterhemp population (MCR) previously characterized as resistant to 4-hyroxyphenylpyruvate dioxygenase (HPPD) and photosystem II (PSII) inhibitors was found to have two different resistance responses to acetolactate synthase (ALS) inhibitors. Plants from the MCR population exhibiting high resistan...

  8. Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors.

    PubMed

    Fischer, Matthias; Kuckenberg, Markus; Kastilan, Robin; Muth, Jost; Gebhardt, Christiane

    2015-02-01

    Plant protease inhibitors are a structurally highly diverse and ubiquitous class of small proteins, which play various roles in plant development and defense against pests and pathogens. Particular isoforms inhibit in vitro proteases and other enzymes that are not their natural substrates, for example proteases that have roles in human diseases. Mature potato tubers are a rich source of several protease inhibitor families. Different cultivars have different inhibitor profiles. With the objective to explore the functional diversity of the natural diversity of potato protease inhibitors, we randomly selected and sequenced 9,600 cDNA clones originated from mature tubers of ten potato cultivars. Among these, 120 unique inhibitor cDNA clones were identified by homology searches. Eighty-eight inhibitors represented novel sequence variants of known plant protease inhibitor families. Most frequent were Kunitz-type inhibitors (KTI), potato protease inhibitors I and II (PIN), pectin methylesterase inhibitors, metallocarboxypeptidase inhibitors and defensins. Twenty-three inhibitors were functionally characterized after heterologous expression in the yeast Pichia pastoris. The purified recombinant proteins were tested for inhibitory activity on trypsin, eleven pharmacological relevant proteases and the non-proteolytic enzyme 5-lipoxygenase. Members of the KTI and PIN families inhibited pig pancreas elastase, β-Secretase, Cathepsin K, HIV-1 protease and potato 5-lipoxygenase. Our results demonstrate in vitro inhibitory diversity of small potato tuber proteins commonly known as protease inhibitors, which might have biotechnological or medical applications. PMID:25260821

  9. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by glands in ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This is a ...

  10. Treatment of hereditary angioedema with nanofiltered C1-esterase inhibitor concentrate (Cetor®): multi-center phase II and III studies to assess pharmacokinetics, clinical efficacy and safety.

    PubMed

    Hofstra, J J; Kleine Budde, I; van Twuyver, E; Choi, G; Levi, M; Leebeek, F W G; de Monchy, J G R; Ypma, P F; Keizer, R J; Huitema, A D R; Strengers, P F W

    2012-03-01

    From 1997, plasma-derived C1-inhibitor concentrate (Cetor®) has been available to HAE and AAE patients. Recently, a virus reducing 15 nm nanofiltration step has been introduced in the production process. A randomized, double-blind controlled cross-over study was performed to compare the pharmacokinetics (PK) of nanofiltered (C1-INH-NF) with conventional C1-inhibitor (C1-INH). Efficacy and safety were investigated in an open-label, on-demand and a prophylactic study. No differences in pharmacokinetic parameters between C1-INH and C1-INH-NF were found (13 non-symptomatic HAE patients). Both C1-inhibitor products equally increased plasma C4 levels. In the on-demand study, 14 acute angioedema attacks in 8 patients were analyzed. In the prophylactic study, 1 AAE and 5 HAE patients experienced in total 31 attacks during 748 observation days. In total 180,000 units of C1-INH-NF were administered. No product-related adverse events occurred, and no anti-C1-antibodies were induced. Nanofiltration in the production process of C1-inhibitor did not affect the pharmacokinetics, efficacy, and safety. PMID:22197071

  11. Flavivirus Entry Inhibitors.

    PubMed

    Wang, Qing-Yin; Shi, Pei-Yong

    2015-09-11

    Many flaviviruses are significant human pathogens that are transmitted by mosquitoes and ticks. Although effective vaccines are available for yellow fever virus, Japanese encephalitic virus, and tick-borne encephalitis virus, these and other flaviviruses still cause thousands of human deaths and millions of illnesses each year. No clinically approved antiviral therapy is available for flavivirus treatment. To meet this unmet medical need, industry and academia have taken multiple approaches to develop antiflavivirus therapy, among which targeting viral entry has been actively pursued in the past decade. Here we review the current knowledge of flavivirus entry and its use for small molecule drug discovery. Inhibitors of two major steps of flaviviral entry have been reported: (i) molecules that block virus-receptor interaction; (ii) compounds that prevent conformational change of viral envelope protein during virus-host membrane fusion. We also discuss the advantages and disadvantages of targeting viral entry for treatment of flavivirus infection as compared to targeting viral replication proteins. PMID:27617926

  12. Inhibitors in LPE growth of garnets

    NASA Astrophysics Data System (ADS)

    De Roode, W. H.; Robertson, J. M.

    1983-09-01

    The growth rate of LPE growth garnets can be reduced considerably by the addition of small amounts of group II oxides. This effect can be helpful for the controlled growth of very thin garnet films for sub-micron bubbles and optical devices. The largest effect was found with the addition of Mg 2+ and Ca 2+, resulting in a maximum decrease of the growth rate of approximately 70%. A semi-empirical formula was used to describe the growth rate as a function of the dipping temperature. The change in the growth rate on the addition of the inhibitor ion at constant temperature was found to be proportional to ( aMO)/( aMO+2 Ln 2O 3), where M is a group II element, Ln 2O 2 is the sum of the yttrium and RE oxides in the melt, and a is the inhibitor factor. The value of the inhibitor factor depends on both the inhibitor ion as well as the composition of the garnet. The lowering of the growth rate on the addition of an inhibitor ion is explained by the introduction of an extra growth resistance due to the charge compensation mechanism of the divalent ions. The influence of the different charge compensation possibilities in the garnet system is examined and the relative importance of these possibilities for charge compensation is discussed.

  13. Squash inhibitors: from structural motifs to macrocyclic knottins.

    PubMed

    Chiche, Laurent; Heitz, Annie; Gelly, Jean-Christophe; Gracy, Jérôme; Chau, Pham T T; Ha, Phan T; Hernandez, Jean-François; Le-Nguyen, Dung

    2004-10-01

    In this article, we will first introduce the squash inhibitor, a well established family of highly potent canonical serine proteinase inhibitors isolated from Cucurbitaceae. The squash inhibitors were among the first discovered proteins with the typical knottin fold shared by numerous peptides extracted from plants, animals and fungi. Knottins contain three knotted disulfide bridges, two of them arranged as a Cystine-Stabilized Beta-sheet motif. In contrast to cyclotides for which no natural linear homolog is known, most squash inhibitors are linear. However, Momordica cochinchinensis Trypsin Inhibitor-I and (MCoTI-I and -II), 34-residue squash inhibitors isolated from seeds of a common Cucurbitaceae from Vietnam, were recently shown to be macrocyclic. In these circular squash inhibitors, a short peptide linker connects residues that correspond to the N- and C-termini in homologous linear squash inhibitors. In this review we present the isolation, characterization, chemical synthesis, and activity of these macrocyclic knottins. The solution structure of MCoTI-II will be compared with topologically similar cyclotides, homologous linear squash inhibitors and other knottins, and potential applications of such scaffolds will be discussed. PMID:15551519

  14. Sulfated chitooligosaccharides as prolyl endopeptidase inhibitor.

    PubMed

    Je, Jae-Young; Kim, Eun-Kyung; Ahn, Chang-Bum; Moon, Sang-Ho; Jeon, Byong-Tae; Kim, Bokyung; Park, Tae-Kyu; Park, Pyo-Jam

    2007-12-01

    Prolyl endopeptidase (PEP, EC 3.4.21.26) is a proline-specific endopeptidase with a serine-type mechanism, which digests small peptide-like hormones, neuroactive peptides, and various cellular factors. PEP has been involved in neurodegenerative disorders, therefore, the discovery of PEP inhibitors can revert memory loss caused by amnesic compounds. In this study, we prepared hetero-chitooligosaccharides (COSs) with different molecular sizes using ultrafiltration (UF) membrane reactor system from hetero-chitosan with different degrees of deacetylation (DD; 90%, 75% and 50% deacetylation), and synthesized sulfated COSs (SCOSs). PEP inhibitory activities of SCOSs were evaluated and the results showed that 50% deacetylated SCOSs (50-SCOSs) exhibited higher inhibitory activities than those of 90% and 75% deacetylated SCOSs (90-SCOSs and 75-SCOSs). Among the 50-SCOSs (50-SCOS I, 5000-10,000Da; 50-SCOS II, 1000-5000Da; 50-SCOS III, below 1000Da), 50-SCOS II possessed the highest inhibitory activity and IC(50) value was 0.38mg/ml. Kinetics studies with 50-SCOS II indicated a competitive enzyme inhibition with a K(i) value of 0.78mg/ml. It was concluded that the 50-SCOS II may be useful for PEP inhibitor and for developing a new type PEP inhibitor from carbohydrate based materials. PMID:17714777

  15. The Src family kinase inhibitors PP2 and PP1 block TGF-beta1-mediated cellular responses by direct and differential inhibition of type I and type II TGF-beta receptors.

    PubMed

    Ungefroren, Hendrik; Sebens, Susanne; Groth, Stephanie; Gieseler, Frank; Fändrich, Fred

    2011-05-01

    Both the nonreceptor tyrosine kinase Src and the receptors for transforming growth factor (TGF)-β (TβRI, TβRII) play major roles during tumorigenesis by regulating cell growth, migration/invasion and metastasis. The common Src family kinase inhibitors PP2 and PP1 effectively block Src activity in vitro and in vivo, however, they may exert non-specific effects on other kinases. In this study, we have evaluated PP2 and PP1 for their ability to inhibit TGFβ1-mediated responses in the TGF-β-responsive pancreatic adenocarcinoma cell line Panc1. We show that PP2 and PP1 but not the more specific Src inhibitor SU6656 effectively relieved TGF-b1-induced growth arrest and p21(WAF1) induction, while basal growth was enhanced by PP2 and PP1, and suppressed by SU6656. PP2 and PP1 but not SU6656 also suppressed TGF-β1-induced epithelial-to-mesenchymal transition (EMT) as evidenced by their ability to inhibit downregulation of the epithelial marker E-cadherin, and upregulation of the EMT-associated transcription factor Slug. Likewise, PP2 and PP1 but not SU6656 effectively blocked TGF-β1-induced activation of Smad2 and p38 MAPK and partially suppressed Smad activation and transcriptional activity on TGF-β/Smad-responsive reporters of a kinase-active TβRI mutant ectopically expressed in Panc1 cells. Interestingly, PP2 and PP1 strongly inhibited recombinant TβRI in an in vitro kinase assay, with PP1 being more potent and PP2 being nearly as potent as the established TβRI inhibitor SB431542. PP2 but not PP1 also weakly inhibited the TβRII kinase. Together, these data provide evidence that PP2 and PP1 are powerful inhibitors of TβR function that can block TGF-β/Smad signaling in a Src-unrelated fashion. Both agents may be useful as dual TGF-β/Src inhibitors in experimental therapeutics of late stage metastatic disease. PMID:21395548

  16. PARP1 Inhibitors: antitumor drug design

    PubMed Central

    Malyuchenko, N. V.; Kotova, E. Yu.; Kulaeva, O. I.; Kirpichnikov, M. P.; Studitskiy, V. M.

    2015-01-01

    The poly (ADP-ribose) polymerase 1 (PARP1) enzyme is one of the promising molecular targets for the discovery of antitumor drugs. PARP1 is a common nuclear protein (1–2 million molecules per cell) serving as a “sensor” for DNA strand breaks. Increased PARP1 expression is sometimes observed in melanomas, breast cancer, lung cancer, and other neoplastic diseases. The PARP1 expression level is a prognostic indicator and is associated with a poor survival prognosis. There is evidence that high PARP1 expression and treatment-resistance of tumors are correlated. PARP1 inhibitors are promising antitumor agents, since they act as chemo- and radiosensitizers in the conventional therapy of malignant tumors. Furthermore, PARP1 inhibitors can be used as independent, effective drugs against tumors with broken DNA repair mechanisms. Currently, third-generation PARP1 inhibitors are being developed, many of which are undergoing Phase II clinical trials. In this review, we focus on the properties and features of the PARP1 inhibitors identified in preclinical and clinical trials. We also describe some problems associated with the application of PARP1 inhibitors. The possibility of developing new PARP1 inhibitors aimed at DNA binding and transcriptional activity rather than the catalytic domain of the protein is discussed. PMID:26483957

  17. [Inhibitors of xanthine oxidoreductase].

    PubMed

    Okamoto, Ken

    2008-04-01

    Inhibitors of xanthine oxidoreductase decrease production of uric acid, thus they act as hypouricemic drugs. Allopurinol, a prototypical xanthine oxidoreductase inhibitor, has been widely prescribed for treatment of gout and hyperuricemia. However, severe side effects of allopurinol may occur in patients with renal insufficiency. Recently, novel nonpurine selective inhibitors of xanthine oxidoreductase have been developed as potential alternatives to allopurinol. They have different inhibition mechanisms, utilizing the enzyme structure and the reaction mechanism. Such variation of the inhibition mechanism affects/in vivo/hypouricemic effects of the inhibitors. PMID:18409526

  18. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  19. Discovery of N-(3-((1-Isonicotinoylpiperidin-4-yl)oxy)-4-methylphenyl)-3-(trifluoromethyl)benzamide (CHMFL-KIT-110) as a Selective, Potent, and Orally Available Type II c-KIT Kinase Inhibitor for Gastrointestinal Stromal Tumors (GISTs).

    PubMed

    Wang, Qiang; Liu, Feiyang; Wang, Beilei; Zou, Fengming; Chen, Cheng; Liu, Xiaochuan; Wang, Aoli; Qi, Shuang; Wang, Wenchao; Qi, Ziping; Zhao, Zheng; Hu, Zhenquan; Wang, Wei; Wang, Li; Zhang, Shanchun; Wang, Yuexiang; Liu, Jing; Liu, Qingsong

    2016-04-28

    c-KIT kinase is a validated drug discovery target for gastrointestinal stromal tumors (GISTs). Clinically used c-KIT kinase inhibitors, i.e., Imatinib and Sunitinib, bear other important targets such as ABL or FLT3 kinases. Here we report our discovery of a more selective c-KIT inhibitor, compound 13 (CHMFL-KIT-110), which completely abolished ABL and FLT3 kinase activity. KinomeScan selectivity profiling (468 kinases) of 13 exhibited a high selectivity (S score (1) = 0.01). 13 displayed great antiproliferative efficacy against GISTs cell lines GIST-T1 and GIST-882 (GI50: 0.021 and 0.043 μM, respectively). In the cellular context, it effectively affected c-KIT-mediated signaling pathways and induced apoptosis as well as cell cycle arrest. In addition, 13 possessed acceptable bioavailability (36%) and effectively suppressed the tumor growth in GIST-T1 cell inoculated xenograft model without apparent toxicity. 13 currently is undergoing extensive preclinical evaluation and might be a potential drug candidate for GISTs. PMID:27077705

  20. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms.

    PubMed

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  1. KIDFamMap: a database of kinase-inhibitor-disease family maps for kinase inhibitor selectivity and binding mechanisms

    PubMed Central

    Chiu, Yi-Yuan; Lin, Chih-Ta; Huang, Jhang-Wei; Hsu, Kai-Cheng; Tseng, Jen-Hu; You, Syuan-Ren; Yang, Jinn-Moon

    2013-01-01

    Kinases play central roles in signaling pathways and are promising therapeutic targets for many diseases. Designing selective kinase inhibitors is an emergent and challenging task, because kinases share an evolutionary conserved ATP-binding site. KIDFamMap (http://gemdock.life.nctu.edu.tw/KIDFamMap/) is the first database to explore kinase-inhibitor families (KIFs) and kinase-inhibitor-disease (KID) relationships for kinase inhibitor selectivity and mechanisms. This database includes 1208 KIFs, 962 KIDs, 55 603 kinase-inhibitor interactions (KIIs), 35 788 kinase inhibitors, 399 human protein kinases, 339 diseases and 638 disease allelic variants. Here, a KIF can be defined as follows: (i) the kinases in the KIF with significant sequence similarity, (ii) the inhibitors in the KIF with significant topology similarity and (iii) the KIIs in the KIF with significant interaction similarity. The KIIs within a KIF are often conserved on some consensus KIDFamMap anchors, which represent conserved interactions between the kinase subsites and consensus moieties of their inhibitors. Our experimental results reveal that the members of a KIF often possess similar inhibition profiles. The KIDFamMap anchors can reflect kinase conformations types, kinase functions and kinase inhibitor selectivity. We believe that KIDFamMap provides biological insights into kinase inhibitor selectivity and binding mechanisms. PMID:23193279

  2. Novel corrosion inhibitor technology

    SciTech Connect

    Van de Ven, P.; Fritz, P.; Pellet, R.

    1999-11-01

    A novel, patented corrosion inhibitor technology has been identified for use in heat transfer applications such as automotive and heavy-duty coolant. The new technology is based on a low-toxic, virtually depletion-free carboxylic acid corrosion inhibitor package that performs equally well in mono ethylene glycol and in less toxic propylene glycol coolants. An aqueous inhibitor concentrate is available to provide corrosion protection where freezing protection is not an issue. In the present paper, this inhibitor package is evaluated in the different base fluids: mono ethylene glycol, mono propylene glycol and water. Results are obtained in both standardized and specific corrosion tests as well as in selected field trials. These results indicate that the inhibitor package remains effective and retains the benefits previously identified in automotive engine coolant applications: excellent corrosion protection under localized conditions, general corrosion conditions as well as at high temperature.

  3. Screening New Drugs for Immunotoxic Potential: II. Assessment of the Effects of Selective and Nonselective COX-2 Inhibitors on Complement Activation, Superoxide Anion Production and Leukocyte Chemotaxis and Migration Through Endothelial Cells.

    PubMed

    Furst, Sylvia M; Khan, K Nasir; Komocsar, Wendy J; Fan, Lian; Mennear, John

    2005-04-01

    Results from earlier experiments in our laboratories revealed that both selective and nonselective inhibitors of cyclooxygenase-2 possess little potential for decreasing in vitro phagocytosis by rat macrophages or canine neutrophils and no potential for decreasing in vivo phagocytosis by the intact murine immune system. We now report the results of studies to assess in vitro and ex vivo effects of the drugs on 1) canine complement activation, 2) generation of superoxide anion and hydrogen peroxide (oxidative burst) by canine neutrophils, and 3) leukocytic chemotaxis and transmigration through endothelial cell monolayers. In vitro concentrations of naproxen sodium, SC-236, SC-245, and SC-791 ranging from 0.1 to 10 muM were tested for their abilities to inhibit canine complement-mediated hemolysis of opsonized sheep erythrocytes and to block phorbol myristate acetate-induced oxidative burst in canine neutrophils. Both models responded to known inhibitory agents, leupeptin in the complement activation test and staurosporine in the superoxide anion assay. In contrast, tested nonsteroidal anti-inflammatory drugs produced only trivial changes in complement activation and superoxide anion production. Experiments on plasma and neutrophils isolated from dogs administered an experimental selective COX-2 inhibitor during a 28-day toxicology study revealed no evidence of drug-associated changes in complement activation or formation of superoxide anion. SC-791 reduced chemotaxis of canine leukocytes toward zymosan-activated dog plasma, but not toward leukotriene B(4). None of the other drugs tested significantly affected leukocytic chemotaxis. Ibuprofen, SC-245 and SC-791 but not SC-236, reduced transmigration of canine leukocytes through endothelial cell monolayers. Based on the results of these experiments and our earlier studies we have concluded that, although high (suprapharmacologic) concentrations of the drugs may induce in vitro evidence of apparent immunomodulation of

  4. Screening of telomerase inhibitors.

    PubMed

    Kleideiter, Elke; Piotrowska, Kamilla; Klotz, Ulrich

    2007-01-01

    Shortening of telomeres prevents cells from uncontrolled proliferation. Progressive telomere shortening occurs at each cell division until a critical telomeric length is reached. Telomerase expression is switched off after embryonic differentiation in most normal cells, but it is expressed in a very high percentage of tumors of different origin. Thus, telomerase is regarded as the best tumor marker and a promising novel molecular target for cancer treatment. Therefore, different strategies to inhibit telomerase have been developed. However, systematic screening of telomerase inhibitors has not been performed to compare their therapeutic potential. We propose a suitable strategy for estimation of the therapeutic potential of telomerase inhibitors, which is based on a systematic screening of different inhibitors in the same cell system. From the long list of compounds discussed in the literature, we have selected four telomerase inhibitors of different structure and mode of action: BRACO19 (G-quadruplex-interactive compound), BIBR1532 (non-nucleosidic reverse transcriptase inhibitor), 2'-O-methyl RNA, and peptide nucleic acids (PNAs; hTR antisense oligonucleotides). To determine minimal effective concentrations for telomerase inhibition, telomerase activity was measured using the cell-free telomerase repeat amplification protocol (TRAP) assay. We also tested inhibitors in long-term cell-culture experiments by exposing A-549 cells to non-cytotoxic concentrations of inhibitors for a period of 99 days. Subsequently, telomerase activity of A-549 cells was investigated using the TRAP assay, and telomere length of samples was assessed by telomere restriction fragment (TRF) Southern blot analysis. PMID:18369824

  5. Inhibitory effects of respiration inhibitors on aflatoxin production.

    PubMed

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-04-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  6. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    PubMed Central

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  7. Disulfide bridge structure of ascidian trypsin inhibitor I: similarity to Kazal-type inhibitors.

    PubMed

    Kumazaki, T; Ishii, S

    1990-03-01

    The primary structures of ascidian trypsin inhibitors (iso-inhibitors I and II) were reported in the preceding paper (Kumazaki, T. et al. (1990) J. Biochem. 107, 409-413). Both of them have eight half-cystines in a molecule composed of 55 amino acid residues with a sequence showing no extensive homology to other known protease inhibitors. To locate the four disulfide bridges in the molecule, native inhibitor I was digested with thermolysin to yield cystine-containing peptides. The peptides were separated from each other by reversed-phase HPLC. A core peptide still containing six closely located half-cystines (e.g. -Cys-Arg-Cys and -Cys-Cys-) was further digested with Streptomyces griseus trypsin for cleavage of the Arg-Cys bond. On the other hand, the Cys-Cys bond was split by applying manual Edman degradation to the core peptide. Amino acid composition analyses of the resulting cystine peptides allowed us to define the whole disulfide bridge structure in the parent molecule. The topological relation between the disulfide loops and the reactive site suggested that the ascidian trypsin inhibitor may be classified as a member of the Kazal-type inhibitor family. PMID:2111316

  8. Design and Synthesis of Potent, Selective Inhibitors of Matriptase

    PubMed Central

    2012-01-01

    Matriptase is a member of the type II transmembrane serine protease family. Several studies have reported deregulated matriptase expression in several types of epithelial cancers, suggesting that matriptase constitutes a potential target for cancer therapy. We report herein a new series of slow, tight-binding inhibitors of matriptase, which mimic the P1–P4 substrate recognition sequence of the enzyme. Preliminary structure–activity relationships indicate that this benzothiazole-containing RQAR-peptidomimetic is a very potent inhibitor and possesses a good selectivity for matriptase versus other serine proteases. A molecular model was generated to elucidate the key contacts between inhibitor 1 and matriptase. PMID:24900505

  9. Synthetic inhibitors of elastase.

    PubMed

    Edwards, P D; Bernstein, P R

    1994-03-01

    For more than two decades investigators around the world, in both academic and industrial institutions, have been developing inhibitors of human neutrophil elastase. A number of very elegant and insightful strategies have been reported. In the case of reversible peptidic inhibitors, this has resulted in the identification of some extremely potent compounds with dissociation constants in the 10(-11) M range. This is quite an accomplishment considering that these low molecular-weight inhibitors are only tri- and tetrapeptides. In the case of the heterocyclic-based inhibitors, the challenge of balancing the heterocycle's inherent reactivity and aqueous stability with the stability of the enzyme-inhibitor adduct has been meet by either using a latent, reactive functionality which is only activated within the enzyme, or by incorporating features which selectively obstruct deacylation but have little effect on the enzyme acylation step. The underlying goal of this research has been the identification of agents to treat diseases associated with HNE. Several animal models have been developed for evaluating the in vivo activity of elastase inhibitors, and compounds have been shown to be effective in all of these models by the intravenous, intratrachael or oral routes of administration. However, only a very small percentage of compounds have possessed all the necessary properties, including lack of toxicity, for progression into the clinic. The peptidyl TFMK ICI 200,880 (25-12) has many of the desired characteristics of a drug to treat the diseases associated with HNE: chemical stability, in vitro and in vivo activity, a long duration of action, and adequate metabolic stability. Currently ICI 200,880 is the only low molecular-weight HNE inhibitor known to be undergoing clinical trials, and may be the compound which finally demonstrates the clinical utility of a synthetic HNE inhibitor. PMID:8189835

  10. Design and synthesis of novel 4-(4-oxo-2-arylthiazolidin-3-yl)benzenesulfonamides as selective inhibitors of carbonic anhydrase IX over I and II with potential anticancer activity.

    PubMed

    Suthar, Sharad Kumar; Bansal, Sumit; Lohan, Sandeep; Modak, Vikarm; Chaudhary, Anil; Tiwari, Amit

    2013-08-01

    The novel 4-(4-oxo-2-arylthiazolidin-3-yl)benzenesulfonamide derivatives were designed and synthesized for selective carbonic anhydrase IX (CA IX) inhibitory activity with anticancer potential. In the CA inhibition assay, 3f was found to be the most potent and selective inhibitor of CA IX with inhibitory constant (K(I)) value of 2.2 nM. Among the synthesized compounds, 3f showed IC₅₀ values of 5.03 μg/ml (cisplatin: 6.56 μg/ml), 5.81 μg/ml (cisplatin: 5.85 μg/ml), and 23.93 μg/ml (cisplatin: 2.75 μg/ml) against COLO-205, MDA-MB-231, and DU-145 cell lines, respectively. At IC₅₀, 3f caused cell shrinkage, nuclear condensation, and nuclear fragmentation events characteristic to apoptosis in the Hoechst 33258 and acridine orange-ethidium bromide staining studies of COLO-205 cells. In the Dalton's lymphoma ascites (DLA) solid tumor model 3f decreased tumor volume by 64.83% (cisplatin: 71.62%), while increase in mean body weight was found to be only 4.09% (cisplatin: 3.47%). PMID:23827177

  11. [STAT3 inhibitor].

    PubMed

    Kitamura, Toshio

    2011-01-01

    Clinical efficacies of various molecular-targeted drugs have been recently demonstrated. Most of these drugs are kinase inhibitors. A most successful drug Glivec is an inhibitor of Bcr-Abl fusion kinase, derived from a well-known causative chromosome translocation of chronic myeloid leukemia(CML). Although other kinase inhibitors have also proved to be useful in the therapy of malignant diseases including an ALK inhibitor for lung carcinomas, a general problem of kinase inhibitors is their lowspecificities. Therefore, the complication of these drugs must be overcome. Recently, trials to develop moleculartargeted therapy whose targets are molecules other than kinases have also been promising. Among molecular targets, STAT3 has attracted a great deal of researchers' attention because it is constitutively activated in most malignant tumors and plays important roles in carcinogenesis. This article summarizes the current situation and problems to be solved with STAT3 inhibitors as well as our recent findings on the molecular mechanisms of STAT3 activation. PMID:21368456

  12. Small-molecule caspase inhibitors

    NASA Astrophysics Data System (ADS)

    Zhenodarova, S. M.

    2010-02-01

    The review considers low-molecular weight inhibitors of caspases, cysteine proteases being key contributors to apoptosis (programmed cell death). The inhibitors with aspartic acid residues or various heterocyclic systems (both synthetic and natural) are covered. Their possible mechanisms of action are discussed. Data on inhibitor structure-activity relationship studies are systematically surveyed. The interactions of the non-peptide fragments of an inhibitor with the enzymes are examined. Examples of the use of some inhibitors for apoptosis suppression are provided.

  13. Aldosterone response to angiotensin II during hypoxemia

    SciTech Connect

    Colice, G.L.; Ramirez, G.

    1986-07-01

    Exercise stimulates the renin-angiotensin-aldosterone system (RAAS). However, increases in plasma aldosterone concentrations (PAC) are suppressed when exercise is performed at high altitude or under hypoxemic conditions. As the angiotensin-II response to high-altitude exercise is normal, it is speculated that an inhibitor, discharged during hypoxemia, acted to suppress angiotensin-II-mediated aldosterone release. A study was conducted to test this hypothesis, taking into account the measurement of the aldosterone response to exogenous angiotensin II during normoxemia and hypoxemia. It was found that the dose-response curve of PAC to angiotensin II was not significantly inhibited by the considered model of hypoxemia. The hypoxemia-mediated release of an angiotensin II inhibitor does, therefore, not explain the previous observations of PAC suppression during hypoxemic exercise. 28 references.

  14. SGLT2 inhibitors.

    PubMed

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. PMID:26362302

  15. FINAL RESULTS OF A PROSPECTIVE MULTI-INSTITUTIONAL PHASE II STUDY OF EVEROLIMUS (RAD001), AN MTOR INHIBITOR, IN PEDIATRIC PATIENTS WITH RECURRENT OR PROGRESSIVE LOW-GRADE GLIOMA. A POETIC CONSORTIUM TRIAL

    PubMed Central

    Kieran, Mark W.; Yao, X.; Macy, M.; Leary, S.; Cohen, K.; MacDonald, T.; Allen, J.; Boklan, J.; Smith, A.; Nazemi, K.; Gore, L.; Trippett, T.; DiRenzo, J.; Narendran, A.; Perentesis, J.; Prabhu, S.; Pinches, N.; Robison, N.; Manley, P.; Chi, S.

    2014-01-01

    BACKGROUND: Purpose: The ras/raf signaling pathway is crucial in the development of pediatric low-grade gliomas (LGGs). Aberrant ras/raf signaling is involved in tumorigenesis through promotion of cell proliferation, survival, and differentiation in sporadic LGG. Everolimus (RAD001) is a potent and selective inhibitor of mTOR, a downstream element of the ras/raf pathway. The activity, safety and pharmacokinetics of everolimus in pediatric patients with radiographic recurrent/progressive LGG are presented. METHODS: Pediatric patients with radiographic progressive or recurrent LGGs without neurofibromatosis type I were treated with oral everolimus 5mg/m2/dose once daily. Therapy was provided for 28 days (one cycle) and could be repeated for a total of 12 cycles. Response, as determined by standard 2-D MRI criteria, was assessed for all patients. Pharmacokinetics, pharmacogenetics, pharmacodynamic parameters including inhibition of p70s6 kinase activity, 4E-BP1 phosphorylation inhibition and suppression of cMyc expression, as well as the toxicity profile of everolimus were evaluated. RESULTS: Twenty-three patients with a median age of 9 years (range, 3–17 years) were enrolled, all of whom had received prior chemotherapy (average # regimens = 2.7) including progression after a carboplatin-containing regimen. Median number of cycles of therapy was 10 (range, 1-12). Responses were determined by blinded central review and included 4 patients with PR (>50% decrease) and 13 with stable disease. Six patients had progressive disease by one year. Overall therapy was well tolerated; two patients discontinued therapy due to mouth sores (n = 1) and withdrawal of consent (n = 1). Everolimus PK parameters were similar to those previously reported in both adult and pediatric patients and drug trough levels were maintained above 5ng/ml. Pharmacodynamic analysis demonstrated inhibition of downstream targets of mTOR including phospho-S6 kinase, 4E-BP1 phosphorylation and c

  16. Cholinesterase inhibitors from botanicals.

    PubMed

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P; Ahmed, K K Mueen

    2013-07-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  17. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  18. A NOVEL APPROACH TO REGULATE NITROGEN MINERALIZATION USING PROTEASE INHIBITORS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mineralization of organic N sources by extracellular proteases affects both the availability of inorganic N to plants and losses of N to the environment. We hypothesized that (i) application of purified protease inhibitors would slow down soil N mineralization, and (ii) elevated concentrations of pr...

  19. Apixaban, an oral, direct inhibitor of activated Factor Xa.

    PubMed

    Shantsila, Eduard; Lip, Gregory Y H

    2008-09-01

    Apixaban is an oral, direct Factor Xa inhibitor that is being developed by Bristol-Myers Squibb Co and Pfizer Inc. Apixaban is currently undergoing phase III clinical trials for cerebrovascular ischemia, deep vein thrombosis and lung embolism, and phase II clinical trials for coronary artery disease. PMID:18729009

  20. Sortase A Inhibitors: Recent Advances and Future Perspectives.

    PubMed

    Cascioferro, Stella; Raffa, Demetrio; Maggio, Benedetta; Raimondi, Maria Valeria; Schillaci, Domenico; Daidone, Giuseppe

    2015-12-10

    Here, we describe the most promising small synthetic organic compounds that act as potent Sortase A inhibitors and cater the potential to be developed as antivirulence drugs. Sortase A is a polypeptide of 206 amino acids, which catalyzes two sequential reactions: (i) thioesterification and (ii) transpeptidation. Sortase A is involved in the process of bacterial adhesion by anchoring LPXTG-containing proteins to lipid II. Sortase A inhibitors do not affect bacterial growth, but they restrain the virulence of pathogenic bacterial strains, thereby preventing infections caused by Staphylococcus aureus or other Gram-positive bacteria. The efficacy of the most promising inhibitors needs to be comprehensively evaluated in in vivo models of infection, in order to select compounds eligible for the treatment of bacterial infections in humans. PMID:26280844

  1. Protein protease inhibitors in insects and comparison with mammalian inhibitors.

    PubMed

    Eguchi, M

    1993-01-01

    1. Studies on insect protein protease inhibitors are summarized. Biochemical, genetic and physiological investigations of the silkworm are performed. 2. In addition, the properties and characteristics of fungal protease inhibitors from the silkworm (Bombyx mori) are described and their importance as defensive functions is emphasized. 3. This review also concerns comparative and evolutionary studies of protease inhibitors from various sources. 4. The biological significance of inhibitors is discussed in view of the extensive experimental results. PMID:8365101

  2. Sunflower trypsin inhibitor-1.

    PubMed

    Korsinczky, Michael L J; Schirra, Horst Joachim; Craik, David J

    2004-10-01

    SFTI-1 is a bicyclic 14 amino acid peptide that was originally isolated from the seeds of the sunflower Helianthus annuus. It is a potent inhibitor of trypsin, with a sub-nanomolar K(i) value and is homologous to the active site region of the well-known family of serine protease inhibitors known as the Bowman-Birk trypsin inhibitors. It has a cyclic backbone that is cross-braced by a single disulfide bridge and a network of hydrogen bonds that result in a well-defined structure. SFTI-1 is amenable to chemical synthesis, allowing for the creation of synthetic variants. Alterations to the structure such as linearising the backbone or removing the disulfide bridge do not reduce the potency of SFTI-1 significantly, and minimising the peptide to as few as nine residues results in only a small decrease in reactivity. The creation of linear variants of SFTI-1 also provides a tool for investigating putative linear precursor peptides. The mechanism of biosynthesis of SFTI-1 is not yet known but it seems likely that it is a gene-coded product that has arisen from a precursor protein that may be evolutionarily related to classic Bowman-Birk inhibitors. PMID:15544530

  3. Inhibitors of rhomboid proteases.

    PubMed

    Wolf, Eliane V; Verhelst, Steven H L

    2016-03-01

    Rhomboid proteases form one of the most widespread families of intramembrane proteases. They utilize a catalytic serine-histidine dyad located several Å below the surface of the membrane for substrate hydrolysis. Multiple studies have implicated rhomboid proteases in biologically and medically relevant processes. Several assays have been developed that are able to monitor rhomboid activity. With the aid of these assays, different types of inhibitors have been found, all based on electrophiles that covalently react with the active site machinery. Although the currently available inhibitors have limited selectivity and moderate potency, they can function as research tools and as starting point for the development of activity-based probes, which are reagents that can specifically detect active rhomboid species. Structural studies on complexes of inhibitors with the Escherichia coli rhomboid GlpG have provided insight into how substrate recognition may occur. Future synthetic efforts, aided by high-throughput screening or structure-based design, may lead to more potent and selective inhibitors for this interesting family of proteases. PMID:26166068

  4. Recent advances for FLAP inhibitors.

    PubMed

    Pettersen, Daniel; Davidsson, Öjvind; Whatling, Carl

    2015-07-01

    A number of FLAP inhibitors have been progressed to clinical trials for respiratory and other inflammatory indications but so far no drug has reached the market. With this Digest we assess the opportunity to develop FLAP inhibitors for indications beyond respiratory disease, and in particular for atherosclerotic cardiovascular disease. We also show how recently disclosed FLAP inhibitors have structurally evolved from the first generation FLAP inhibitors paving the way for new compound classes. PMID:26004579

  5. Juno II

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The Juno II launch vehicle, shown here, was a modified Jupiter Intermediate-Range Ballistic missionile, developed by Dr. Wernher von Braun and the rocket team at Redstone Arsenal in Huntsville, Alabama. Between December 1958 and April 1961, the Juno II launched space probes Pioneer III and IV, as well as Explorer satellites VII, VIII and XI.

  6. Alpha glucosidase inhibitors.

    PubMed

    Kalra, Sanjay

    2014-04-01

    Alpha glucosidase inhibitors (AGIs) are a unique class of anti-diabetic drugs. Derived from bacteria, these oral drugs are enzyme inhibitors which do not have a pancreato -centred mechanism of action. Working to delay carbohydrate absorption in the gastrointestinal tract, they control postprandial hyperglycaemia and provide unquestioned cardiovascular benefit. Specially suited for a traditional Pakistani carbohydrate-rich diet, AGIs have been termed the 'untapped diamonds' of diabetology. The use of these oral antidiabetic drugs (OADs) that target pathophysiology in the early stages of type 2 diabetes, notably to reduce postprandial hyperglycaemia and hyperinsulinaemia will inevitably increase with time. This review describes the history of their development, mechanism of action, basic and clinical pharmacology, and suggests practical, evidence-based guidance for their optimal use. PMID:24864650

  7. [JAK2 inhibitors].

    PubMed

    Hernández Boluda, Juan Carlos; Gómez, Montse; Pérez, Ariadna

    2016-07-15

    Pharmacological inhibition of the kinase activity of JAK proteins can interfere with the signaling of immunomodulatory cytokines and block the constitutive activation of the JAK-STAT pathway that characterizes certain malignancies, including chronic myeloproliferative neoplasms. JAK inhibitors may, therefore, be useful to treat malignancies as well as inflammatory or immune disorders. Currently, the most significant advances have been made in the treatment of myelofibrosis, where these drugs may lead to a remarkable improvement in the control of hyperproliferative manifestations. However, available data suggest that this treatment is not curative of myelofibrosis. In general, JAK2 inhibition induces cytopaenias, with this being considered a class side-effect. By contrast, the extrahaematologic toxicity profile varies significantly among the different JAK inhibitors. At present, there are several clinical trials evaluating the combination of ruxolitinib with other drugs, in order to improve its therapeutic activity as well as reducing haematologic toxicity. PMID:27033437

  8. PARP inhibitors and more.

    PubMed

    Bose, Chinmoy K; Basu, Nirban

    2015-01-01

    Polyadenosine diphosphate (ADP) ribose polymerase (PARP) lends a panoramic view to the inner mystery of protection of integrity of deoxyribonucleic acid (DNA) in a cell genome. They are a balancing part of an even more dynamic equilibrium of normalcy against daily assaults. PARP finds its companion candidates in other tumor suppressors, with the most prominent and glaring one being breast cancer (BRCA) 1 and 2. The strength of both is split by PARP inhibitors, inculcating the synthetic lethality of tumor cell, which is now in the market for ovarian cancer treatment. There are many reasons for the resistance of such inhibitors, which are now becoming clinically important. These are seen along with other damage repair approaches. PMID:26097394

  9. PARP inhibitors and more

    PubMed Central

    Bose, Chinmoy K.; Basu, Nirban

    2015-01-01

    Polyadenosine diphosphate (ADP) ribose polymerase (PARP) lends a panoramic view to the inner mystery of protection of integrity of deoxyribonucleic acid (DNA) in a cell genome. They are a balancing part of an even more dynamic equilibrium of normalcy against daily assaults. PARP finds its companion candidates in other tumor suppressors, with the most prominent and glaring one being breast cancer (BRCA) 1 and 2. The strength of both is split by PARP inhibitors, inculcating the synthetic lethality of tumor cell, which is now in the market for ovarian cancer treatment. There are many reasons for the resistance of such inhibitors, which are now becoming clinically important. These are seen along with other damage repair approaches. PMID:26097394

  10. Benzoylurea Chitin Synthesis Inhibitors.

    PubMed

    Sun, Ranfeng; Liu, Chunjuan; Zhang, Hao; Wang, Qingmin

    2015-08-12

    Benzoylurea chitin synthesis inhibitors are widely used in integrated pest management (IPM) and insecticide resistance management (IRM) programs due to their low toxicity to mammals and predatory insects. In the past decades, a large number of benzoylurea derivatives have been synthesized, and 15 benzoylurea chitin synthesis inhibitors have been commercialized. This review focuses on the history of commercial benzolyphenylureas (BPUs), synthetic methods, structure-activity relationships (SAR), action mechanism research, environmental behaviors, and ecotoxicology. Furthermore, their disadvantages of high risk to aquatic invertebrates and crustaceans are pointed out. Finally, we propose that the para-substituents at anilide of benzoylphenylureas should be the functional groups, and bipartite model BPU analogues are discussed in an attempt to provide new insight for future development of BPUs. PMID:26168369

  11. Mineralization by Inhibitor Exclusion

    PubMed Central

    Price, Paul A.; Toroian, Damon; Lim, Joo Eun

    2009-01-01

    One of our goals is to understand the mechanisms that deposit mineral within collagen fibrils, and as a first step we recently determined the size exclusion characteristics of the fibril. This study revealed that apatite crystals up to 12 unit cells in size can access the water within the fibril, whereas molecules larger than a 40-kDa protein are excluded. Based on these observations, we proposed a novel mechanism for fibril mineralization: that macromolecular inhibitors of apatite growth favor fibril mineralization by selectively inhibiting crystal growth in the solution outside of the fibril. To test this mechanism, we developed a system in which crystal formation is driven by homogeneous nucleation at high calcium phosphate concentration and the only macromolecule in solution is fetuin, a 48-kDa inhibitor of apatite growth. Our experiments with this system demonstrated that fetuin determines the location of mineral growth; in the presence of fetuin mineral grows exclusively within the fibril, whereas in its absence mineral grows in solution outside the fibril. Additional experiments showed that fetuin is also able to localize calcification to the interior of synthetic matrices that have size exclusion characteristics similar to those of collagen and that it does so by selectively inhibiting mineral growth outside of these matrices. We termed this new calcification mechanism “mineralization by inhibitor exclusion,” the selective mineralization of a matrix using a macromolecular inhibitor of mineral growth that is excluded from that matrix. Future studies will be needed to evaluate the possible role of this mechanism in bone mineralization. PMID:19414589

  12. Neutrophil Elastase Inhibitors

    PubMed Central

    Groutas, William C.; Dou, Dengfeng; Alliston, Kevin R.

    2011-01-01

    Introduction Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis, and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. Areas covered An overview of major developments in COPD research with emphasis on low molecular weight neutrophil elastase inhibitors is described in this review. Expert opinion Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is till limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as, for instance, an HNE or MMP-12 inhibitor with an anti-inflammatory agent such as a phosphodiesterase-4 inhibitor, or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress PMID:21235378

  13. Development of scale inhibitors

    SciTech Connect

    Gill, J.S.

    1996-12-01

    During the last fifty years, scale inhibition has gone from an art to a science. Scale inhibition has changed from simple pH adjustment to the use of optimized dose of designer polymers from multiple monomers. The water-treatment industry faces many challenges due to the need to conserve water, availability of only low quality water, increasing environmental regulations of the water discharge, and concern for human safety when using acid. Natural materials such as starch, lignin, tannin, etc., have been replaced with hydrolytically stable organic phosphates and synthetic polymers. Most progress in scale inhibition has come from the use of synergistic mixtures and copolymerizing different functionalities to achieve specific goals. Development of scale inhibitors requires an understanding of the mechanism of crystal growth and its inhibition. This paper discusses the historic perspective of scale inhibition and the development of new inhibitors based on the understanding of the mechanism of crystal growth and the use of powerful tools like molecular modeling to visualize crystal-inhibitor interactions.

  14. Unraveling the Pivotal Role of Bradykinin in ACE Inhibitor Activity.

    PubMed

    Taddei, Stefano; Bortolotto, L

    2016-10-01

    Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling. PMID:27260014

  15. Selective Water-Soluble Gelatinase Inhibitor Prodrugs

    PubMed Central

    Gooyit, Major; Lee, Mijoon; Schroeder, Valerie A.; Ikejiri, Masahiro; Suckow, Mark A.; Mobashery, Shahriar; Chang, Mayland

    2011-01-01

    SB-3CT (1), a selective and potent thiirane-based gelatinase inhibitor, is effective in animal models of cancer metastasis and stroke; however, it is limited by poor aqueous solubility and extensive metabolism. We addressed these issues by blocking the primary site of metabolism and capitalizing on a prodrug strategy to achieve >5000-fold increased solubility. The amide prodrugs were quantitatively hydrolyzed in human blood to a potent gelatinase inhibitor, ND-322 (3). The arginyl amide prodrug (ND-478, 5d) was metabolically stable in mouse, rat, and human liver microsomes. Both 5d and 3 were non-mutagenic in the Ames II mutagenicity assay. The prodrug 5d showed moderate clearance of 0.0582 L/min/kg, remained mostly in the extracellular fluid compartment (Vd = 0.0978 L/kg), and had a terminal half-life of >4 h. The prodrug 5d had superior pharmacokinetic properties than 3, making the thiirane class of selective gelatinase inhibitors suitable for intravenous administration in treatment of acute gelatinase-dependent diseases. PMID:21866961

  16. Ceruloplasmin Is an Endogenous Inhibitor of Myeloperoxidase*

    PubMed Central

    Chapman, Anna L. P.; Mocatta, Tessa J.; Shiva, Sruti; Seidel, Antonia; Chen, Brian; Khalilova, Irada; Paumann-Page, Martina E.; Jameson, Guy N. L.; Winterbourn, Christine C.; Kettle, Anthony J.

    2013-01-01

    Myeloperoxidase is a neutrophil enzyme that promotes oxidative stress in numerous inflammatory pathologies. It uses hydrogen peroxide to catalyze the production of strong oxidants including chlorine bleach and free radicals. A physiological defense against the inappropriate action of this enzyme has yet to be identified. We found that myeloperoxidase oxidized 75% of the ascorbate in plasma from ceruloplasmin knock-out mice, but there was no significant loss in plasma from wild type animals. When myeloperoxidase was added to human plasma it became bound to other proteins and was reversibly inhibited. Ceruloplasmin was the predominant protein associated with myeloperoxidase. When the purified proteins were mixed, they became strongly but reversibly associated. Ceruloplasmin was a potent inhibitor of purified myeloperoxidase, inhibiting production of hypochlorous acid by 50% at 25 nm. Ceruloplasmin rapidly reduced Compound I, the FeV redox intermediate of myeloperoxidase, to Compound II, which has FeIV in its heme prosthetic groups. It also prevented the fast reduction of Compound II by tyrosine. In the presence of chloride and hydrogen peroxide, ceruloplasmin converted myeloperoxidase to Compound II and slowed its conversion back to the ferric enzyme. Collectively, our results indicate that ceruloplasmin inhibits myeloperoxidase by reducing Compound I and then trapping the enzyme as inactive Compound II. We propose that ceruloplasmin should provide a protective shield against inadvertent oxidant production by myeloperoxidase during inflammation. PMID:23306200

  17. In Vivo Nitric Oxide Synthase Inhibitors Can Be Deprived of This Activity: Unexpected Influence of the Tetrachloroplatinate(II) Counteranion. Crystal Structures of Bis(S-Methyl-Isothiouronium)-N,N'-Bis(3-Guanidinopropyl)Piperazinium and Hexamidinium Tetrachloroplatinates(II) Salts.

    PubMed

    Morgant, G; Viossat, B; Roch-Arveiller, M; Prognon, P; Giroud, J P; Lancelot, J C; Robba, M; Huy, D N

    1998-01-01

    The synthesis and crystal structures of bis(S-methylisothiouronium) (MSTUH)(+), N,N'-bis((3- guanidinopropyl)piperazinium (PipeC3GuaH4)(4+) and hexamidinium (HexaH2)(2+) tetrachloro platinate(ll) salts ( called hereafter PtMSTU, PtPipeC3Gua and PtHexa respectively ) were investigated. These compounds contain the "amidine" function ( - C(=NH)NH(2) ) in which the H atoms supplied by the acid have become attached to the imino group of each terminal amidino function. Moreover, in PtPipeC3Gua, the nitrogen atoms of the chair-piperazine moiety are also protonated. The influence of tetrachloroplatinate(ll) counteranion ( versus sulfate, nitrate and diisethionate ) in the in vivo nitrite inhibition by the (MSTUH)(+), (PipeC3GuaH4)(4+) and (HexaH2)(2+) cations was investigated. The three tetrachloroplatinate(ll) salts, unexpectedly, do not inhibit significantly the in vivo nitrite production in comparison with the other salts (sulfate, nitrate and diisethionate and their corresponding previous countercations) which exhibit NO synthase inhibition, especially bis(S-methylisothiouronium) sulfate, a selective and potent inducible NO synthase (iNOS) inhibitor commonly used as standard. PMID:18475834

  18. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer

    PubMed Central

    Shao, Yang-Guang; Ning, Ke; Li, Feng

    2016-01-01

    P21-activated kinases (PAKs) are central players in various oncogenic signaling pathways. The six PAK family members are classified into group I (PAK1-3) and group II (PAK4-6). Focus is currently shifting from group I PAKs to group II PAKs. Group II PAKs play important roles in many fundamental cellular processes, some of which have particular significance in the development and progression of cancer. Because of their important functions, group II PAKs have become popular potential drug target candidates. However, few group II PAKs inhibitors have been reported, and most do not exhibit satisfactory kinase selectivity and “drug-like” properties. Isoform- and kinase-selective PAK inhibitors remain to be developed. This review describes the biological activities of group II PAKs, the importance of group II PAKs in the development and progression of gastrointestinal cancer, and small-molecule inhibitors of group II PAKs for the treatment of cancer. PMID:26811660

  19. mTOR Inhibitors Alone and in Combination with JAK2 Inhibitors Effectively Inhibit Cells of Myeloproliferative Neoplasms

    PubMed Central

    Martinelli, Serena; Tozzi, Lorenzo; Guglielmelli, Paola; Bosi, Alberto; Vannucchi, Alessandro M.

    2013-01-01

    Background Dysregulated signaling of the JAK/STAT pathway is a common feature of chronic myeloproliferative neoplasms (MPN), usually associated with JAK2V617F mutation. Recent clinical trials with JAK2 inhibitors showed significant improvements in splenomegaly and constitutional symptoms in patients with myelofibrosis but meaningful molecular responses were not documented. Accordingly, there remains a need for exploring new treatment strategies of MPN. A potential additional target for treatment is represented by the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway that has been found constitutively activated in MPN cells; proof-of-evidence of efficacy of the mTOR inhibitor RAD001 has been obtained recently in a Phase I/II trial in patients with myelofibrosis. The aim of the study was to characterize the effects in vitro of mTOR inhibitors, used alone and in combination with JAK2 inhibitors, against MPN cells. Findings Mouse and human JAK2V617F mutated cell lines and primary hematopoietic progenitors from MPN patients were challenged with an allosteric (RAD001) and an ATP-competitive (PP242) mTOR inhibitor and two JAK2 inhibitors (AZD1480 and ruxolitinib). mTOR inhibitors effectively reduced proliferation and colony formation of cell lines through a slowed cell division mediated by changes in cell cycle transition to the S-phase. mTOR inhibitors also impaired the proliferation and prevented colony formation from MPN hematopoietic progenitors at doses significantly lower than healthy controls. JAK2 inhibitors produced similar antiproliferative effects in MPN cell lines and primary cells but were more potent inducers of apoptosis, as also supported by differential effects on cyclinD1, PIM1 and BcLxL expression levels. Co-treatment of mTOR inhibitor with JAK2 inhibitor resulted in synergistic activity against the proliferation of JAK2V617F mutated cell lines and significantly reduced erythropoietin-independent colony growth in patients with polycythemia vera

  20. [Study on hemolytic mechanism of polyphyllin II].

    PubMed

    Ning, Li-hua; Zhou, Bo; Zhang, Yao-xiang; Li, Xin-ping

    2015-09-01

    To study the hemolytic effect of polyphyllin II (PP II) mediated by anion channel protein and glucose transporter 1 (GLUT1), in order to initially reveal its hemolytic mechanism in vitro. In the experiment, the spectrophotometric method was adopted to detect the hemolysis of PP II in vitro and the effect of anion channel-related solution and blocker, glucose channel-related inhibitor and multi-target drugs dehydroepiandrosterone (DHEA) and diazepam on the hemolysis of PP II. The scanning electron microscope and transmission electron microscope were used to observe the effect of PP II on erythrocyte (RBC) morphology. The results showed that PP II -processed blood cells were severely deformed into spherocytes, acanthocyturia and vesicae. According to the results of the PP II hemolysis experiment in vitro, the anion hypertonic solution LiCl, NaHCO3, Na2SO4 and PBS significantly inhibited the hemolysis induced by PP II (P < 0.05), while blockers NPPB and DIDS remarkably promoted it (P < 0.01). Hyperosmotic sodium chloride, fructose and glucose at specific concentrations notably antagonized the hemolysis induced by PP II (P < 0.05). The glucose channel inhibitor Cytochalasin B and verapamil remarkably antagonized the hemolysis induced by PP II (P < 0.01). The hemolysis induced by PP II could also be antagonized by 1 gmol x L(1) diazepam and 100 μmol x L(-1) DHEA pretreated for 1 min (P < 0.01). In conclusion, the hemolytic mechanism of PP II in vitro may be related to the increase in intracellular osmotic pressure and rupture of erythrocytes by changing the anion channel transport activity, with GLUT1 as the major competitive interaction site. PMID:26983211

  1. Carbonic Anhydrase Inhibitors. Part 541: Metal Complexes of Heterocyclic Sulfonamides: A New Class of Antiglaucoma Agents

    PubMed Central

    Scozzafava, Andrea; Jitianu, Andrei

    1997-01-01

    Metal complexes of heterocyclic sulfonamides possessing carbonic anhydrase (CA) inhibitory properties were recently shown to be useful as intraocular pressure (IOP) lowering agents in experimental animals, and might be developed as a novel class of antiglaucoma drugs. Here we report the synthesis of a heterocyclic sulfonamide CA inhibitor and of the metal complexes containing main group metal ions, such as Be(II), Mg(II), Al(III), Zn(II), Cd(II) and Hg(II) and the new sulfonamide as well as 5-amino-1,3,4-thiadiazole-2-sulfonamide as ligands. The new complexes were characterized by standard physico-chemical procedures, and assayed as inhibitors of three CA isozymes, CA I, II and IV. Some of them (but not the parent sulfonamides) strongly lowered IOP in rabbits when administered as a 2% solution into the eye. PMID:18475811

  2. Corrosion protection with eco-friendly inhibitors

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3‑2 and NO‑3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10‑4 M 93% efficiency was exhibited at this concentration.

  3. Photosystem II

    ScienceCinema

    James Barber

    2010-09-01

    James Barber, Ernst Chain Professor of Biochemistry at Imperial College, London, gives a BSA Distinguished Lecture titled, "The Structure and Function of Photosystem II: The Water-Splitting Enzyme of Photosynthesis."

  4. The human carbonic anhydrase isoenzymes I and II (hCA I and II) inhibition effects of trimethoxyindane derivatives.

    PubMed

    Taslimi, Parham; Gulcin, Ilhami; Ozgeris, Bunyamin; Goksu, Suleyman; Tumer, Ferhan; Alwasel, Saleh H; Supuran, Claudiu T

    2016-01-01

    Carbonic anhydrases (CAs, EC 4.2.1.1) had six genetically distinct families described to date in various organisms. There are 16 known CA isoforms in humans. Human CA isoenzymes I and II (hCA I and hCA II) are ubiquitous cytosolic isoforms. Acetylcholine esterase (AChE. EC 3.1.1.7) is a hydrolase that hydrolyzes the neurotransmitter acetylcholine relaying the signal from the nerve. In this study, some trimethoxyindane derivatives were investigated as inhibitors against the cytosolic hCA I and II isoenzymes, and AChE enzyme. Both hCA isozymes were inhibited by trimethoxyindane derivatives in the low nanomolar range. These compounds were good hCA I inhibitors (Kis in the range of 1.66-4.14 nM) and hCA II inhibitors (Kis of 1.37-3.12 nM) and perfect AChE inhibitors (Kis in the range of 1.87-7.53 nM) compared to acetazolamide as CA inhibitor (Ki: 6.76 nM for hCA I and Ki: 5.85 nM for hCA II) and Tacrine as AChE inhibitor (Ki: 7.64 nM). PMID:25697270

  5. Antagonism between curcumin and the topoisomerase II inhibitor etoposide

    PubMed Central

    Saleh, Ekram M.; El-awady, Raafat A; Eissa, Nadia A.; Abdel-Rahman, Wael M.

    2012-01-01

    The use of combinations of chemotherapy and natural products has recently emerged as a new method of cancer therapy, relying on the capacity of certain natural compounds to trigger cell death with low doses of chemotherapeutic agents and few side effects. The current study aims to evaluate the modulatory effects of curcumin (CUR), Nigella sativa (NS) and taurine on etoposide (ETP) cytotoxicity in a panel of cancer cell lines and to identify their underlying mechanisms. CUR alone showed potent antitumor activity, but surprisingly, its interaction with ETP was antagonistic in four out of five cancer cell lines. Neither taurine nor Nigella sativa affect the sensitivity of cancer cells to ETP. Examination of the DNA damage response machinery (DDR) showed that both ETP and CUR elicited DNA double-strand breaks (DSB) and evoked γ-H2AX foci formation at doses as low as 1 µg/ml. Cell cycle analysis revealed S phase arrest after ETP or CUR application, whereas co-treatment with ETP and CUR led to increased arrest of the cell cycle in S phase (MCF-7 cells) or the accumulation of cells in G2/M phases (HCT116, and HeLa cells). Furthermore, cotreatment with ETP and CUR resulted in modulation of the level of DNA damage induction and repair compared with either agent alone. Electron microscopic examination demonstrated that different modalities of cell death occurred with each treatment. CUR alone induced autophagy, apoptosis and necrosis, whereas ETP alone or in combination with CUR led to apoptosis and necrosis. Conclusions: Cotreatment with ETP and CUR resulted in an antagonistic interaction. This antagonism is related, in part, to the enhanced arrest of tumor cells in both S and G2/M phases, which prevents the cells from entering M-phase with damaged DNA and, consequently, prevents cell death from occurring. This arrest allows time for the cells to repair DNA damage so that cell cycle -arrested cells can eventually resume cell cycle progression and continue their physiological program. PMID:22895066

  6. Thymidylate synthase inhibitors.

    PubMed

    Danenberg, P V; Malli, H; Swenson, S

    1999-12-01

    Thymidylate synthase (TS) is a critical enzyme for DNA replication and cell growth because it is the only de novo source of thymine nucleotide precursors for DNA synthesis. TS is the primary target of 5-fluorouracil (5-FU), which has been used for cancer treatment for more than 40 years. However, dissatisfaction with the overall activity of 5-FU against the major cancers, and the recognition that TS still remains an attractive target for anticancer drugs because of its central position in the pathway of DNA synthesis, led to a search for new inhibitors of TS structurally analogous to 5,10-methylenetetrahydrofolate, the second substrate of TS. TS inhibitory antifolates developed to date that are in various stages of clinical evaluation are ZD 1694 and ZD9331 (Astra-Zeneca, London, UK), (Eli Lilly, Indianapolis, IN), LY231514 (BW1843U89 (Glaxo-Wellcome, Research Triangle Park, NC), and AG337 and AG331 (Agouron, La Jolla, CA). Although each of these compounds has TS as its major intracellular site of action, they differ in propensity for polyglutamylation and for transport by the reduced folate carrier. LY231514 also has secondary target enzymes. As a result, each compound is likely to have a different spectrum of antitumor activity and toxicity. This review will summarize the development and properties of this new class of TS inhibitors. PMID:10606255

  7. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  8. [Kinase inhibitors and their resistance].

    PubMed

    Togashi, Yosuke; Nishio, Kazuto

    2015-08-01

    Kinase cascades are involved in all stages of tumorigenesis through modulation of transformation and differentiation, cell-cycle progression, and motility. Advances in molecular targeted drug development allow the design and synthesis of inhibitors targeting cancer-associated signal transduction pathways. Potent selective inhibitors with low toxicity can benefit patients especially with several malignancies harboring an oncogenic driver addictive signal. This article evaluates information on solid tumor-related kinase signals and inhibitors, including receptor tyrosine kinase or serine/threonine kinase signals that lead to successful application in clinical settings. In addition, the resistant mechanisms to the inhibitors is summarized. PMID:26281685

  9. Sulfonation Pathway Inhibitors Block Reactivation of Latent HIV-1

    PubMed Central

    Murry, Jeffrey P.; Godoy, Joseph; Mukim, Amey; Swann, Justine; Bruce, James W.; Ahlquist, Paul; Bosque, Alberto; Planelles, Vicente; Spina, Celsa A.; Young, John A. T.

    2015-01-01

    Long-lived pools of latently infected cells are a significant barrier to the development of a cure for HIV-1 infection. A better understanding of the mechanisms of reactivation from latency is needed to facilitate the development of novel therapies that address this problem. Here we show that chemical inhibitors of the sulfonation pathway prevent virus reactivation, both in latently infected J-Lat and U1 cell lines and in a primary human CD4+ T cell model of latency. In each of these models, sulfonation inhibitors decreased transcription initiation from the HIV-1 promoter. These inhibitors block transcription initiation at a step that lies downstream of nucleosome remodeling and affects RNA polymerase II recruitment to the viral promoter. These results suggest that the sulfonation pathway acts by a novel mechanism to regulate efficient virus transcription initiation during reactivation from latency, and further that augmentation of this pathway could be therapeutically useful. PMID:25310595

  10. New therapeutic strategies in HCV: second-generation protease inhibitors.

    PubMed

    Clark, Virginia C; Peter, Joy A; Nelson, David R

    2013-02-01

    Telaprevir and boceprevir are the first direct-acting antiviral agents approved for use in HCV treatment and represent a significant advance in HCV therapy. However, these first-generation drugs also have significant limitations related to thrice-daily dosing, clinically challenging side-effect profiles, low barriers to resistance and a lack of pan-genotype activity. A second wave of protease inhibitors are in phase II and III trials and promise to provide a drug regimen with a better dosing schedule and improved tolerance. These second-wave protease inhibitors will probably be approved in combination with PEG-IFN and Ribavirin (RBV), as well as future all-oral regimens. The true second-generation protease inhibitors are in earlier stages of development and efficacy data are anxiously awaited as they may provide pan-genotypic antiviral activity and a high genetic barrier to resistance. PMID:23286850

  11. Development and strategies of VEGFR-2/KDR inhibitors.

    PubMed

    Huang, Lingyi; Huang, Zhengui; Bai, Zhiqiang; Xie, Rui; Sun, Liping; Lin, Kejiang

    2012-09-01

    VEGF is an important signaling protein involved in both vasculogenesis and angiogenesis. As an essential receptor protein tyrosine kinase propagating cellular signal transduction processes, VEGFR-2 is a central target for drug discovery against tumor-associated angiogenesis. Since the autophosphorylation of VEGFR-2 represents a key step in this signal pathway that contributes to angiogenesis, the discovery of small molecule inhibitors that block this reaction has attracted great interest for novel drugs research and development. Advances in the understanding of catalytic cleft and the conformational changes of DFG motif have resulted in the development of small molecule inhibitors known as type I and type II. High-resolution crystal structures of various inhibitors in complex with the receptor offer an insight into the relationship among binding modes, inhibition mechanisms, activity, selectivity and resistance. To control selectivity, improve activity and introduce intellectual property novelty, the strategies for the further development are discussed through structural and conformational analysis in this review. PMID:23043480

  12. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    PubMed Central

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  13. Repositioning of DHFR Inhibitors.

    PubMed

    Lele, Arundhati Chandrashekhar; Mishra, Deepak Amarnath; Kamil, Tengku Karmila; Bhakta, Sanjib; Degani, Mariam Sohel

    2016-01-01

    Development of new drugs is a time-consuming, hugely expensive and an uncertain endeavor. The pharmaceutical industry is looking for cost-effective alternatives with reduced risks of drug failure. Validated target machinery along with established inhibitors indicates usefulness in drug design, discovery and further development. Folate metabolism, found in both prokaryotes and eukaryotes, represents an essential druggable target for chemotherapy. Numerous enzymes in the cell replication cycle use folate either as a cofactor or as a substrate. DHFR, an enzyme of the folate biosynthesis pathway is an established chemotherapeutic target, initially explored for anti-cancer drug discovery. Diaminopteridines e.g. methotrexate and aminopterin, primarily used as anti-cancer agents, are folic acid analogues, first reported in late 1940's, used to produce temporary remission of acute leukaemia in children. However, due to the toxicity of these drugs, they could not be used for other therapeutic implications such as in the treatment of infectious diseases. Development of newer diaminopteridine derivatives has helped in repositioning their therapeutic usefulness. These analogues have now been proven as anti-parasitic, immuno-suppressants, anti-bacterial agents, to enlist a few therapeutic applications. Likewise, diaminopyrimidine, diaminoquinazoline and diaminodihydrotriazines are being explored for structural modifications by which they can be repurposed from their originally developed medicinal applicability and exploited for various other infectious disease conditions. In this review, we encompass the study of DHFR inhibitors potentially to be repurposed for different infectious disease case scenario and also highlight the novel anti-infective drug discovery benefits therein. PMID:26881719

  14. Osteocompatibility of Biofilm Inhibitors

    PubMed Central

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), farnesol, cis-2-decenoic acid (C2DA), and desformyl flustrabromine (dFBr). In this preliminary study, compatibility of these anti-biofilm agents with differentiating osteoblasts was examined over a 21 days period at levels above and below concentrations active against bacterial biofilm. Anti-biofilm compounds listed above were serially diluted in osteogenic media and added to cultures of MC3T3 cells. Cell viability and cytotoxicity, after exposure to each anti-biofilm agent, were measured using a DNA assay. Differentiation characteristics of osteoblasts were determined qualitatively by observing staining of mineral deposits and quantitatively with an alkaline phosphatase assay. D-AA, LS, and C2DA were all biocompatible within the reported biofilm inhibitory concentration ranges and supported osteoblast differentiation. Farnesol and dFBr induced cytotoxic responses within the reported biofilm inhibitory concentration range and low doses of dFBr were found to inhibit osteoblast differentiation. At high concentrations, such as those that may be present after local delivery, many of these biofilm inhibitors can have effects on cellular viability and osteoblast function. Concentrations at which negative effects on osteoblasts occur should serve as upper limits for delivery to orthopaedic trauma sites and guide development of these potential therapeutics for orthopaedics. PMID:25505496

  15. Antimalarial activity of HIV-1 protease inhibitor in chromone series.

    PubMed

    Lerdsirisuk, Pradith; Maicheen, Chirattikan; Ungwitayatorn, Jiraporn

    2014-12-01

    Increasing parasite resistance to nearly all available antimalarial drugs becomes a serious problem to human health and necessitates the need to continue the search for new effective drugs. Recent studies have shown that clinically utilized HIV-1 protease (HIV-1 PR) inhibitors can inhibit the in vitro and in vivo growth of Plasmodium falciparum. In this study, a series of chromone derivatives possessing HIV-1 PR inhibitory activity has been tested for antimalarial activity against P. falciparum (K1 multi-drug resistant strain). Chromone 15, the potent HIV-1 PR inhibitor (IC50=0.65μM), was found to be the most potent antimalarial compound with IC50=0.95μM while primaquine and tafenoquine showed IC50=2.41 and 1.95μM, respectively. Molecular docking study of chromone compounds against plasmepsin II, an aspartic protease enzyme important in hemoglobin degradation, revealed that chromone 15 exhibited the higher binding affinity (binding energy=-13.24kcal/mol) than the known PM II inhibitors. Thus, HIV-1 PR inhibitor in chromone series has the potential to be a new class of antimalarial agent. PMID:25462990

  16. Biological abatement of cellulase inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  17. Proteinaceous alpha-amylase inhibitors.

    PubMed

    Svensson, Birte; Fukuda, Kenji; Nielsen, Peter K; Bønsager, Birgit C

    2004-02-12

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous alpha-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological approaches have been outlined for exploitation of the inhibitory function. PMID:14871655

  18. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    SciTech Connect

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua; Turchi, John J.; Zhang, Zhong-Yin

    2013-10-04

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFR (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.

  19. SAGE II

    Atmospheric Science Data Center

    2016-02-16

    ... of stratospheric aerosols, ozone, nitrogen dioxide, water vapor and cloud occurrence by mapping vertical profiles and calculating ... (i.e. MLS and SAGE III versus HALOE) Fixed various bugs Details are in the  SAGE II V7.00 Release Notes .   ...

  20. Juno II

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Wernher von Braun and his team were responsible for the Jupiter-C hardware. The family of launch vehicles developed by the team also came to include the Juno II, which was used to launch the Pioneer IV satellite on March 3, 1959. Pioneer IV passed within 37,000 miles of the Moon before going into solar orbit.

  1. Welding II.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding II, a performance-based course offered at the Community College of Allegheny County to introduce students to out-of-position shielded arc welding with emphasis on proper heats, electrode selection, and alternating/direct currents. After introductory…

  2. Cocrystal Structures of Primed Side-Extending α-Ketoamide Inhibitors Reveal Novel Calpain-Inhibitor Aromatic Interactions

    SciTech Connect

    Qian,J.; Cuerrier, D.; Davies, P.; Li, Z.; Powers, J.; Campbell, R.

    2008-01-01

    Calpains are intracellular cysteine proteases that catalyze the cleavage of target proteins in response to Ca2+ signaling. When Ca2+ homeostasis is disrupted, calpain overactivation causes unregulated proteolysis, which can contribute to diseases such as postischemic injury and cataract formation. Potent calpain inhibitors exist, but of these many cross-react with other cysteine proteases and will need modification to specifically target calpain. Here, we present crystal structures of rat calpain 1 protease core ({mu}I-II) bound to two a-ketoamide-based calpain inhibitors containing adenyl and piperazyl primed-side extensions. An unexpected aromatic-stacking interaction is observed between the primed-side adenine moiety and the Trp298 side chain. This interaction increased the potency of the inhibitor toward {mu}I-II and heterodimeric m-calpain. Moreover, stacking orients the adenine such that it can be used as a scaffold for designing novel primed-side address regions, which could be incorporated into future inhibitors to enhance their calpain specificity.

  3. Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor.

    PubMed Central

    Boudier, C; Bieth, J G

    1994-01-01

    N-chlorosuccinimide oxidizes one of the methionine residues of mucus proteinase inhibitor with a second-order rate constant of 1.5 M-1.s-1. Cyanogen bromide cleavage and NH2-terminal sequencing show that the modified residue is methionine-73, the P'1 component of the inhibitor's active centre. Oxidation of the inhibitor decreases its neutrophil elastase inhibitory capacity but does not fully abolish it. The kinetic parameters describing the elastase-oxidized inhibitor interaction are: association rate constant kass. = 2.6 x 10(5) M-1.s-1, dissociation rate constant kdiss. = 2.9 x 10(-3) s-1 and equilibrium dissociation constant Ki = 1.1 x 10(-8) M. Comparison with the native inhibitor indicates that oxidation decreases kass. by a factor of 18.8 and increases kdiss. by a factor of 6.4, and therefore leads to a 120-fold increase in Ki. Yet, the oxidized inhibitor may still act as a potent elastase inhibitor in the upper respiratory tract where its concentration is 500-fold higher than Ki, i.e. where the elastase inhibition is pseudo-irreversible. Experiments in vitro with fibrous human lung elastin, the most important natural substrate of elastase, support this view: 1.35 microM elastase is fully inhibited by 5-6 microM oxidized inhibitor whether the enzyme-inhibitor complex is formed in the presence or absence of elastin and whether elastase is pre-adsorbed on elastin or not. PMID:7945266

  4. Specific inhibitors of ammonia oxidation in Nitrosomonas.

    PubMed

    Hooper, A B; Terry, K R

    1973-08-01

    The following compounds or treatments have been shown to inhibit the oxidation of ammonia, but not the oxidation of hydroxylamine in cells of Nitrosomonas: (i) metal-binding agents such as allylthiourea or potassium cyanide; (ii) compounds such as SKF 525 which interact with cytochrome P-450 of mammalian microsomes; (iii) carbon monoxide; (iv) inhibitors of catalase, peroxidase, and amine oxidases such as thiosemicarbazide, ethylxanthate, and iproniazid, respectively; (v) uncouplers of oxidative phosphorylation such as m-chlorocarbonylcyanidephenylhydrazone; (vi) electron acceptors such as phenazine methosulfate; (vii) compounds such as methanol or N(2)O which react with free radicals; and (viii) illumination with 420 lux (5,000 foot candles) of light. PMID:4725614

  5. Specific Inhibitors of Ammonia Oxidation in Nitrosomonas

    PubMed Central

    Hooper, Alan B.; Terry, Kathleen R.

    1973-01-01

    The following compounds or treatments have been shown to inhibit the oxidation of ammonia, but not the oxidation of hydroxylamine in cells of Nitrosomonas: (i) metal-binding agents such as allylthiourea or potassium cyanide; (ii) compounds such as SKF 525 which interact with cytochrome P-450 of mammalian microsomes; (iii) carbon monoxide; (iv) inhibitors of catalase, peroxidase, and amine oxidases such as thiosemicarbazide, ethylxanthate, and iproniazid, respectively; (v) uncouplers of oxidative phosphorylation such as m-chlorocarbonylcyanidephenylhydrazone; (vi) electron acceptors such as phenazine methosulfate; (vii) compounds such as methanol or N2O which react with free radicals; and (viii) illumination with 420 lux (5,000 foot candles) of light. PMID:4725614

  6. An overview on 5alpha-reductase inhibitors.

    PubMed

    Aggarwal, Saurabh; Thareja, Suresh; Verma, Abhilasha; Bhardwaj, Tilak Raj; Kumar, Manoj

    2010-02-01

    Benign prostatic hyperplasia (BPH) is the noncancerous proliferation of the prostate gland associated with benign prostatic obstruction and lower urinary tract symptoms (LUTS) such as frequency, hesitancy, urgency, etc. Its prevalence increases with age affecting around 70% by the age of 70 years. High activity of 5alpha-reductase enzyme in humans results in excessive dihydrotestosterone levels in peripheral tissues and hence suppression of androgen action by 5alpha-reductase inhibitors is a logical treatment for BPH as they inhibit the conversion of testosterone to dihydrotestosterone. Finasteride (13) was the first steroidal 5alpha-reductase inhibitor approved by U.S. Food and Drug Administration (USFDA). In human it decreases the prostatic DHT level by 70-90% and reduces the prostatic size. Dutasteride (27) another related analogue has been approved in 2002. Unlike Finasteride, Dutasteride is a competitive inhibitor of both 5alpha-reductase type I and type II isozymes, reduced DHT levels >90% following 1 year of oral administration. A number of classes of non-steroidal inhibitors of 5alpha-reductase have also been synthesized generally by removing one or more rings from the azasteroidal structure or by an early non-steroidal lead (ONO-3805) (261). In this review all categories of inhibitors of 5alpha-reductase have been covered. PMID:19879888

  7. Prognostic Factors in Cholinesterase Inhibitor Poisoning

    PubMed Central

    Sun, In O; Yoon, Hyun Ju; Lee, Kwang Young

    2015-01-01

    Background Organophosphates and carbamates are insecticides that are associated with high human mortality. The purpose of this study is to investigate the prognostic factors affecting survival in patients with cholinesterase inhibitor (CI) poisoning. Material/Methods This study included 92 patients with CI poisoning in the period from January 2005 to August 2013. We divided these patients into 2 groups (survivors vs. non-survivors), compared their clinical characteristics, and analyzed the predictors of survival. Results The mean age of the included patients was 56 years (range, 16–88). The patients included 57 (62%) men and 35 (38%) women. When we compared clinical characteristics between the survivor group (n=81, 88%) and non-survivor group (n=11, 12%), there were no differences in renal function, pancreatic enzymes, or serum cholinesterase level, except for serum bicarbonate level and APACHE II score. The serum bicarbonate level was lower in non-survivors than in survivors (12.45±2.84 vs. 18.36±4.73, P<0.01). The serum APACHE II score was higher in non-survivors than in survivors (24.36±5.22 vs. 12.07±6.67, P<0.01). The development of pneumonia during hospitalization was higher in non-survivors than in survivors (n=9, 82% vs. n=31, 38%, P<0.01). In multiple logistic regression analysis, serum bicarbonate concentration, APACHE II score, and pneumonia during hospitalization were the important prognostic factors in patients with CI poisoning. Conclusions Serum bicarbonate and APACHE II score are useful prognostic factors in patients with CI poisoning. Furthermore, pneumonia during hospitalization was also important in predicting prognosis in patients with CI poisoning. Therefore, prevention and active treatment of pneumonia is important in the management of patients with CI poisoning. PMID:26411989

  8. Converting potent indeno[1,2-b]indole inhibitors of protein kinase CK2 into selective inhibitors of the breast cancer resistance protein ABCG2.

    PubMed

    Jabor Gozzi, Gustavo; Bouaziz, Zouhair; Winter, Evelyn; Daflon-Yunes, Nathalia; Aichele, Dagmar; Nacereddine, Abdelhamid; Marminon, Christelle; Valdameri, Glaucio; Zeinyeh, Waël; Bollacke, Andre; Guillon, Jean; Lacoudre, Aline; Pinaud, Noël; Cadena, Silvia M; Jose, Joachim; Le Borgne, Marc; Di Pietro, Attilio

    2015-01-01

    A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition. The best ABCG2 inhibitors, such as 4c, 4h, 4i, 4j, and 4k, behaved as very weak inhibitors of CK2, whereas the most potent CK2 inhibitors, such as 4a, 4p, and 4e, displayed limited interaction with ABCG2. It was therefore possible to convert, through suitable substitutions of the indeno[1,2-b]indole-9,10-dione scaffold, potent CK2 inhibitors into selective ABCG2 inhibitors and vice versa. In addition, some of the best ABCG2 inhibitors, which displayed a very low cytotoxicity, thus giving a high therapeutic ratio, and appeared not to be transported, constitute promising candidates for further investigations. PMID:25272055

  9. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

  10. Identification and Validation of Novel PERK Inhibitors

    PubMed Central

    2015-01-01

    PERK, as one of the principle unfolded protein response signal transducers, is believed to be associated with many human diseases, such as cancer and type-II diabetes. There has been increasing effort to discover potent PERK inhibitors due to its potential therapeutic interest. In this study, a computer-based virtual screening approach is employed to discover novel PERK inhibitors, followed by experimental validation. Using a focused library, we show that a consensus approach, combining pharmacophore modeling and docking, can be more cost-effective than using either approach alone. It is also demonstrated that the conformational flexibility near the active site is an important consideration in structure-based docking and can be addressed by using molecular dynamics. The consensus approach has further been applied to screen the ZINC lead-like database, resulting in the identification of 10 active compounds, two of which show IC50 values that are less than 10 μM in a dose–response assay. PMID:24745945

  11. Identification of two novel RET kinase inhibitors through MCR-based drug discovery: Design, synthesis and evaluation

    PubMed Central

    Frett, Brendan; Moccia, Marialuisa; Carlomagno, Francesca; Santoro, Massimo; Li, Hong-yu

    2015-01-01

    From an MCR fragment library, two novel chemical series have been developed as inhibitors of RET, which is a kinase involved in the pathology of medullary thyroid cancer (MTC). Structure activity relationship studies (SAR) identified two sub-micromolar tractable leads, 6g and 13g. 6g was confirmed to be a Type-II RET inhibitor. 13g and 6g inhibited RET in cells transformed by RET/C634. A RET DFG-out homology model was established and utilized to predict Type-II inhibitor binding modes. PMID:25232968

  12. PORT II

    NASA Technical Reports Server (NTRS)

    Muniz, Beau

    2009-01-01

    One unique project that the Prototype lab worked on was PORT I (Post-landing Orion Recovery Test). PORT is designed to test and develop the system and components needed to recover the Orion capsule once it splashes down in the ocean. PORT II is designated as a follow up to PORT I that will utilize a mock up pressure vessel that is spatially compar able to the final Orion capsule.

  13. Synthetic conversion of ACAT inhibitor to acetylcholinesterase inhibitor.

    PubMed

    Obata, R; Sunazuka, T; Otoguro, K; Tomoda, H; Harigaya, Y; Omura, S

    2000-06-19

    Natural product acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor pyripyropene A was synthetically converted to acetylcholinesterase (AChE) inhibitor via heterolitic cleavage of the 2-pyrone ring, followed by gamma-acylation/cyclization with several aroyl chlorides. The 4-pyridyl analogue selectively showed AChE inhibitory activity (IC50 7.9 microM) and no ACAT inhibitory activity IC50 = >1000 microM. PMID:10890154

  14. BORE II

    SciTech Connect

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.

  15. BORE II

    Energy Science and Technology Software Center (ESTSC)

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migratemore » upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.« less

  16. Characterization of translational inhibitors from Phytolacca americana. Amino-terminal sequence determination and antibody-inhibitor conjugates.

    PubMed

    Bjorn, M J; Larrick, J; Piatak, M; Wilson, K J

    1984-10-23

    Two translational inhibitors (pokeweed antiviral protein and pokeweed antiviral protein II) isolated from the leaves of the pokeweed plant, Phytolacca americana, were characterized as to their behavior during reverse-phase HPLC and their amino-terminal sequences. Alignment of the sequences demonstrated that a substantial degree of homology was present (10 of 29 identical residues). Pokeweed antiviral protein was shown by reverse-phase chromatography to be composed of at least two components, pokeweed antiviral proteina and pokeweed antiviral proteinb, which comigrated on sodium dodecyl sulfate polyacrylamide gel electrophoresis, shared identical N-terminal amino-acid sequences through residue 31, and had similar specific activities in a cell-free translation inhibition assay. Pokeweed antiviral protein II was covalently coupled to a monoclonal antibody that recognizes the transferrin receptor (anti-transferrin receptor). The disulfide-linked conjugate inhibited protein synthesis in the human breast tumor cell line MCF-7, whereas anti-transferrin receptor, pokeweed antiviral protein II, or an immunotoxin composed of an irrelevant antiserum and pokeweed antiviral protein II, were nontoxic. The inhibitory dose 50% of anti-transferrin receptor-pokeweed antiviral protein II for MCF-7 cells was 0.7 nM, whereas the corresponding ricin A chain conjugate (anti-transferrin receptor-ricin A chain) was more potent with a inhibitory dose 50% of 0.1 nM. Pokeweed antiviral protein II can be added to the growing list of translation inhibitors that are effective as components of immunotoxins in vitro. Additional studies will be needed to determine whether pokeweed antiviral protein II immunotoxins provide advantageous properties for in vivo applications. PMID:6091760

  17. Comparison of Solution and Crystal Properties of Co(II)-Substituted Human Carbonic Anhydrase II

    PubMed Central

    Avvaru, Balendu Sankara; Arenas, Daniel J.; Tu, Chingkuang; Tanner, D. B.; McKenna, Robert; Silverman, David N.

    2010-01-01

    The visible absorption of crystals of Co(II)-substituted human carbonic anhydrase II (Co(II)-HCA II) were measured over a pH range of 6.0 to 11.0 giving an estimate of pKa 8.4 for the ionization of the metal-bound water in the crystal. This is higher by about 1.2 pKa units than the pKa near 7.2 for Co(II)-CA II in solution. This effect is attributed to a nonspecific ionic strength effect of 1.4 M citrate in the precipitant solution used in the crystal growth. A pKa of 8.3 for the aqueous ligand of the cobalt was measured for Co(II)-HCA II in solution containing 0.8 M citrate. Citrate is not an inhibitor of the catalytic activity of Co(II)-HCA II and was not observed in crystal structures. The X-ray structures at 1.5–1.6Å resolution of Co(II)-HCA II were determined for crystals prepared at pH 6.0, 8.5 and 11.0 and revealed no conformational changes of amino-acid side chains as a result of the use of citrate. However, the studies of Co(II)-HCA II did reveal a change in metal coordination from tetrahedral at pH 11 to a coordination consistent with a mixed population of both tetrahedral and penta-coordinate at pH 8.5 to an octahedral geometry characteristic of the oxidized enzyme Co(III)-HCA II at pH 6.0. PMID:20637176

  18. Identification and characterization of alpha-I-proteinase inhibitor from common carp sarcoplasmic proteins.

    PubMed

    Siriangkanakun, Siriphon; Li-Chan, Eunice C Y; Yongsawadigul, Jirawat

    2016-02-01

    Purification of proteinase inhibitor from common carp (Cyprinus carpio) sarcoplasmic proteins resulted in 2.8% yield with purification fold of 111. Two inhibitors, namely inhibitor I and II, exhibited molecular mass of 47 and 52 kDa, respectively, based on non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both inhibitors I and II were identified to be alpha-1-proteinase inhibitor (α1-PI) based on LC-MS/MS. They were glycoproteins and molecular mass after peptide-N-glycosidase F treatment was 38 and 45 kDa, respectively. The N-glycosylation sites of both inhibitors were determined to be at N214 and N226. The inhibitors specifically inhibited trypsin. The common carp α1-PI showed high thermal stability with denaturation temperatures of 65.43 and 73.31 °C, which were slightly less than those of ovomucoid. High stability toward NaCl was also evident up to 3M. The common carp α1-PI effectively reduced autolytic degradation of bigeye snapper surimi at the concentration as low as 0.025%. PMID:26304452

  19. High Proteolytic Resistance of Spider-Derived Inhibitor Cystine Knots

    PubMed Central

    Kikuchi, Kyoko; Sugiura, Mika; Kimura, Tadashi

    2015-01-01

    Proteolytic stability in gastrointestinal tract and blood plasma is the major obstacle for oral peptide drug development. Inhibitor cystine knots (ICKs) are linear cystine knot peptides which have multifunctional properties and could become promising drug scaffolds. ProTx-I, ProTx-II, GTx1-15, and GsMTx-4 were spider-derived ICKs and incubated with pepsin, trypsin, chymotrypsin, and elastase in physiological conditions to find that all tested peptides were resistant to pepsin, and ProTx-II, GsMTx-4, and GTx1-15 showed resistance to all tested proteases. Also, no ProTx-II degradation was observed in rat blood plasma for 24 hours in vitro and ProTx-II concentration in circulation decreased to half in 40 min, indicating absolute stability in plasma and fast clearance from the system. So far, linear peptides are generally thought to be unsuitable in vivo, but all tested ICKs were not degraded by pepsin and stomach could be selected for the alternative site of drug absorption for fast onset of the drug action. Since spider ICKs are selective inhibitors of various ion channels which are related to the pathology of many diseases, engineered ICKs will make a novel class of peptide medicines which can treat variety of bothering symptoms. PMID:26843868

  20. Synthesis of lysine methyltransferase inhibitors

    PubMed Central

    Hui, Chunngai; Ye, Tao

    2015-01-01

    Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery. PMID:26258118

  1. Targeting cancer with kinase inhibitors

    PubMed Central

    Gross, Stefan; Rahal, Rami; Stransky, Nicolas; Lengauer, Christoph; Hoeflich, Klaus P.

    2015-01-01

    Kinase inhibitors have played an increasingly prominent role in the treatment of cancer and other diseases. Currently, more than 25 oncology drugs that target kinases have been approved, and numerous additional therapeutics are in various stages of clinical evaluation. In this Review, we provide an in-depth analysis of activation mechanisms for kinases in cancer, highlight recent successes in drug discovery, and demonstrate the clinical impact of selective kinase inhibitors. We also describe the substantial progress that has been made in designing next-generation inhibitors to circumvent on-target resistance mechanisms, as well as ongoing strategies for combining kinase inhibitors in the clinic. Last, there are numerous prospects for the discovery of novel kinase targets, and we explore cancer immunotherapy as a new and promising research area for studying kinase biology. PMID:25932675

  2. Aromatase inhibitors for male infertility.

    PubMed

    Schlegel, Peter N

    2012-12-01

    Some men with severely defective sperm production commonly have excess aromatase activity, reflected by low serum testosterone and relatively elevated estradiol levels. Aromatase inhibitors can increase endogenous testosterone production and serum testosterone levels. Treatment of infertile males with the aromatase inhibitors testolactone, anastrazole, and letrozole has been associated with increased sperm production and return of sperm to the ejaculate in men with non-obstructive azoospermia. Use of the aromatase inhibitors anastrazole (1 mg/day) and letrozole (2.5 mg/day) represent off-label use of these agents for impaired spermatogenesis in men with excess aromatase activity (abnormal testosterone/estradiol [T/E] ratios). Side effects have rarely been reported. Randomized controlled trials are needed to define the magnitude of benefit of aromatase inhibitor treatment for infertile men. PMID:23103016

  3. Selective Inhibitors of Protein Methyltransferases

    PubMed Central

    2015-01-01

    Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs’ physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery. PMID:25406853

  4. [Cancer therapy by PARP inhibitors].

    PubMed

    Seimiya, Hiroyuki

    2015-08-01

    Poly(ADP-ribose) polymerases(PARP) synthesize the ADP-ribose polymers onto proteins and play a role in DNA repair. PARP inhibitors block the repair of single-strand breaks, which in turn gives rise to double-strand breaks during DNA replication. Thus, PARP inhibitors elicit synthetic lethality in cancer with BRCA1/2 loss-of-function mutations that hamper homologous recombination repair of double-strand breaks. Olaparib, the first-in-class PARP inhibitor, was approved for treatment of BRCA-mutated ovarian cancer in Europe and the United States in 2014. Other PARP inhibitors under clinical trials include rucaparib, niraparib, veliparib, and the "PARP-trapping" BMN-673. BRCA1/2 sequencing is an FDA-approved companion diagnostics, which predicts the cancer vulnerability to PARP inhibition. Together, synthetic lethal PARP inhibition is a novel promising strategy for cancer intervention even in cases without prominent driver oncogenes. PMID:26281686

  5. [Trials with ACE-inhibitors in acute myocardial infarction].

    PubMed

    Dalla Volta, S

    1994-12-01

    In acute myocardial infarction, the results of the trials with ACE-inhibitors have not been always good, in contrast with what has been observed in chronic heart failure. The comparison of these compounds with the placebo has demonstrated lack of reduction of mortality in the study CONSENSUS II, favorable results on the survival as first endpoint and on the secondary endpoints, as reinfarction, heart failure and stroke in the studies SOLVD, AIRE, GISSI 3, ISIS 4, and uncertain (interim report) results in the Chinese study. Nevertheless, the analysis of the recruitment of the patients with acute infarction and the way these patients have been treated seem to be the most important cause of the conflicting results. ACE-inhibitors have proved no efficacy in acute myocardial infarction without signs of left ventricular failure (CONSENSUS II), have worsened the clinical picture and the mortality in patients in shock or with severe heart failure in the acute phase. On the reverse, in presence of mild to moderate left ventricular dysfunction and failure, the use of ACE-inhibitors has been followed by reduction of mortality in the early (AIRE, GISSI 3, ISIS 4), medium term (GISSI 3) and long-term follow-up (up to 4 years in the AIRE study). In parallel with the reduction of the primary endpoint, also secondary endpoints have been favorably influenced by the different ACE-inhibitors. No differences have been observed among the different class of compounds. ACE-inhibitors seem, therefore, to have a clear indication in acute myocardial infarction with mild or moderate signs and symptoms of heart failure. PMID:7634258

  6. A Noncompetitive Inhibitor for Mycobacterium tuberculosis's Class IIa Fructose 1,6-Bisphosphate Aldolase

    PubMed Central

    Capodagli, Glenn C.; Sedhom, Wafik G.; Jackson, Mary; Ahrendt, Kateri A.; Pegan, Scott D.

    2014-01-01

    Class II fructose 1,6-bisphosphate aldolase (FBA) is an enzyme critical for bacterial, fungal, and protozoan glycolysis/gluconeogenesis. Importantly, humans lack this type of aldolase, having instead a class I FBA that is structurally and mechanistically distinct from class II FBAs. As such, class II FBA is considered a putative pharmacological target for the development of novel antibiotics against pathogenic bacteria such as Mycobacterium tuberculosis, the causative agent for tuberculosis (TB). To date, several competitive class II FBA substrate mimic-styled inhibitors have been developed; however, they lack either specificity, potency, or properties that limit their potential as possible therapeutics. Recently, through the use of enzymatic and structure-based assisted screening, we identified 8-hydroxyquinoline carboxylic acid (HCA) that has an IC50 of 10 ± 1 μM for the class II FBA present in M. tuberculosis (MtFBA). As opposed to previous inhibitors, HCA behaves in a noncompetitive manner, shows no inhibitory properties toward human and rabbit class I FBAs, and possesses anti-TB properties. Furthermore, we were able to determine the crystal structure of HCA bound to MtFBA to 2.1 Å. HCA also demonstrates inhibitory effects for other class II FBAs, including pathogenic bacteria such as methicillin-resistant Staphylococcus aureus. With its broad-spectrum potential, unique inhibitory characteristics, and flexibility of functionalization, the HCA scaffold likely represents an important advancement in the development of class II FBA inhibitors that can serve as viable preclinical candidates. PMID:24325645

  7. [Pharmacology of bone resorption inhibitor].

    PubMed

    Menuki, Kunitaka; Sakai, Akinori

    2015-10-01

    Currently, bone resorption inhibitor is mainly used for osteoporosis. A number of these agents have been developed. These pharmacological action are various. Bisphosphonate inhibit functions of the osteoclasts by inducing apoptosis. On the one hand, RANK-ligand inhibitor and selective estrogen receptor modulator inhibit formation of osteoclasts. It is important to understand these pharmacological action for the selection of the appropriate medicine. PMID:26529923

  8. The cytochrome P450 inhibitor SKF-525A disrupts autophagy in primary rat hepatocytes.

    PubMed

    Luo, Yong; Yang, Xi; Shi, Qiang

    2016-08-01

    The cytochrome P450 (CYP) inhibitor SKF-525A is commonly used to study drug metabolism and toxicity, particularly hepatotoxicity. By using Western blot and immunofluorescence staining, we unexpectedly found that SKF-525A at 2-20 μM caused remarkable accumulation of microtubule-associated protein light chain 3 II (LC3-II) in primary rat hepatocytes at 1, 4 and 24 h, indicating that autophagy was disrupted. SKF-525A showed no effects on chloroquine induced LC3-II accumulation, suggesting that autophagic flux was blocked, which is further supported by the increased level of the p62 protein after SKF-525A treatment. SKF-525A did not affect proteasome activities or gene expression of LC3-II or p62. Immunofluorescence of green fluorescent protein fused lysosomal-associated membrane protein 1 (LAMP1, a specific protein marker for lysosomes) and LC3-II showed that co-localization of these two proteins was partially abolished by SKF-525A, indicating that autophagosome-lysosome fusion was blocked. The other five CYP inhibitors, metyrapone, 1-aminobenzotriazole, alpha-naphthoflavone, ticlopidine, and ketoconazole, showed no effects in parallel experiments. These findings provide novel insights into the mechanisms by which various CYP inhibitors differentially affect a same drug's toxicity in hepatocytes. The data also indicate that SKF-525A is not an ideal chemical inhibitor for probing the relation between CYP mediated metabolism and toxicity in primary hepatocytes. PMID:26964495

  9. Angiotensin-converting enzyme inhibitor (enalapril maleate) accelerates recovery of mouse skin from UVB-induced wrinkles

    SciTech Connect

    Matsuura-Hachiya, Yuko; Arai, Koji Y.; Ozeki, Rieko; Kikuta, Ayako; Nishiyama, Toshio

    2013-12-06

    Highlights: •Angiotensin converting enzyme (ACE) increases in UVB-irradiated skin. •Administration of an ACE inhibitor improved UVB-induced skin wrinkle. •ACE inhibitor improved UVB-induced epidermal hypertrophy. •ACE inhibitor improved transepidermal water loss in the UVB-irradiated skin. -- Abstract: Angiotensin-converting enzyme (ACE) activity and angiotensin II signaling regulate cell proliferation, differentiation, and tissue remodeling, as well as blood pressure, while in skin, angiotensin II signaling is involved in wound healing, inflammation, and pathological scar formation. Therefore, we hypothesized that angiotensin II is also involved in photoaging of skin. In this study, we examined the effect of enalapril maleate, an ACE inhibitor, on recovery of wrinkled skin of hairless mice exposed to long-term UVB irradiation. Immunohistochemical observation revealed that expression of ACE, angiotensin II, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors in the skin was increased after UVB irradiation (3 times/week at increasing intensities for 8 weeks). Administration of enalapril maleate (5 times/week for 6 weeks, starting 1 week after 10-week irradiation) accelerated recovery from UVB-induced wrinkles, epidermal hyperplasia and epidermal barrier dysfunction, as compared with the vehicle control. Our results indicate that ACE and angiotensin II activity are involved in skin photoaging, and suggest that ACE inhibitor such as enalapril maleate may have potential for improvement of photoaged skin.

  10. Corrosion inhibitor selection for wet pipelines

    SciTech Connect

    Buck, E.

    1995-12-31

    Selection of corrosion inhibitors for wet pipelines is based on laboratory testing and field confirmation. Both the use and selection of corrosion inhibitors are driven by economics. Economics of alternative corrosion protection methods is not treated in this paper, but the economics of proper inhibitor selection are. The key to successful inhibitor selection is careful analysis of pipeline flow conditions and experimental emulation of its corrosive environment. Transportation of inhibitor to the corroding interface must be explicitly considered in the emulation. Standard corrosion rate measurement methods are used to evaluate inhibitors. Inhibitor properties tabulated during evaluation form a core database for continuing quality control.

  11. [The synthesis of specific enzyme inhibitors].

    PubMed

    Iakovleva, G M

    1987-04-01

    The review deals with directed synthesis of specific enzyme inhibitors. They are classified within the framework of the mechanistic approach, namely, stable analogues of substrates, which form enzyme complexes mimicking the Michaelis complex or those which influence the chemical stages of enzyme catalysis; conformational inhibitors; substrate analogues participating in enzyme reactions and producing modified products; suicide inhibitors; stage inhibitors (inhibitors influencing certain stages of enzyme reaction); transition state analogues; multisubstrate analogues and collected substrates. Types of chemical modification used in synthesis of the specific inhibitors are discussed. Some possibilities of the quantity structure-activity relationship methods, computer modelling and molecular graphics in designing the optimal structure of inhibitors are mentioned. PMID:3300658

  12. Phosphodiesterase type 5 inhibitors in pulmonary arterial hypertension.

    PubMed

    Montani, David; Chaumais, Marie-Camille; Savale, Laurent; Natali, Delphine; Price, Laura C; Jaïs, Xavier; Humbert, Marc; Simonneau, Gérald; Sitbon, Olivier

    2009-09-01

    Pulmonary arterial hypertension (PAH) is a rare disease characterized by vascular proliferation and remodeling, resulting in a progressive increase in pulmonary arterial resistance, right heart failure, and death. The pathogenesis of PAH is multifactorial, with endothelial cell dysfunction playing an integral role. This endothelial dysfunction is characterized by an overproduction of vasoconstrictors and proliferative factors, such as endothelin-1, and a reduction of vasodilators and antiproliferative factors, such prostacyclin and nitric oxide. Phosphodiesterase type 5 (PDE-5) is implicated in this process by inactivating cyclic guanosine monophosphate, the nitric oxide pathway second messenger. PDE-5 is abundantly expressed in lung tissue, and appears to be upregulated in PAH. Three oral PDE-5 inhibitors are available (sildenafil, tadalafil, and vardenafil) and are the recommended first-line treatment for erectile dysfunction. Experimental studies have shown the beneficial effects of PDE-5 inhibitors on pulmonary vascular remodeling and vasodilatation, justifying their investigation in PAH. Randomized clinical trials in monotherapy or combination therapy have been conducted in PAH with sildenafil and tadalafil, which are therefore currently the approved PDE-5 inhibitors in PAH treatment. Sildenafil and tadalafil significantly improve clinical status, exercise capacity, and hemodynamics of PAH patients. Combination therapy of PDE-5 inhibitors with prostacyclin analogs and endothelin receptor antagonists may be helpful in the management of PAH although further studies are needed in this area. The third PDE-5 inhibitor, vardenafil, is currently being investigated in PAH. Side effects are usually mild and transient and include headache, flushing, nasal congestion, digestive disorders, and myalgia. Mild and moderate renal or hepatic failure does not significantly affect the metabolism of PDE-5 inhibitors, whereas coadministration of bosentan decreases sildenafil and

  13. ROCK inhibitor prevents the dedifferentiation of human articular chondrocytes

    SciTech Connect

    Matsumoto, Emi; Furumatsu, Takayuki; Kanazawa, Tomoko; Tamura, Masanori; Ozaki, Toshifumi

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer ROCK inhibitor stimulates chondrogenic gene expression of articular chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor prevents the dedifferentiation of monolayer-cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor enhances the redifferentiation of cultured chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor is useful for preparation of un-dedifferentiated chondrocytes. Black-Right-Pointing-Pointer ROCK inhibitor may be a useful reagent for chondrocyte-based regeneration therapy. -- Abstract: Chondrocytes lose their chondrocytic phenotypes in vitro. The Rho family GTPase ROCK, involved in organizing the actin cytoskeleton, modulates the differentiation status of chondrocytic cells. However, the optimum method to prepare a large number of un-dedifferentiated chondrocytes is still unclear. In this study, we investigated the effect of ROCK inhibitor (ROCKi) on the chondrogenic property of monolayer-cultured articular chondrocytes. Human articular chondrocytes were subcultured in the presence or absence of ROCKi (Y-27632). The expression of chondrocytic marker genes such as SOX9 and COL2A1 was assessed by quantitative real-time PCR analysis. Cellular morphology and viability were evaluated. Chondrogenic redifferentiation potential was examined by a pellet culture procedure. The expression level of SOX9 and COL2A1 was higher in ROCKi-treated chondrocytes than in untreated cells. Chondrocyte morphology varied from a spreading form to a round shape in a ROCKi-dependent manner. In addition, ROCKi treatment stimulated the proliferation of chondrocytes. The deposition of safranin O-stained proteoglycans and type II collagen was highly detected in chondrogenic pellets derived from ROCKi-pretreated chondrocytes. Our results suggest that ROCKi prevents the dedifferentiation of monolayer-cultured chondrocytes, and may be a useful reagent to maintain chondrocytic phenotypes in vitro for chondrocyte

  14. Effect of glycoprotein-processing inhibitors on fucosylation of glycoproteins

    SciTech Connect

    Schwarz, P.M.; Elbein, A.D.

    1985-11-25

    Influenza viral hemagglutinin contains L-fucose linked alpha 1,6 to some of the innermost GlcNAc residues of the complex oligosaccharides. To determine what structural features of the oligosaccharide were required for fucosylation influenza virus-infected MDCK cells were incubated in the presence of various inhibitors of glycoprotein processing to stop trimming at different points. After several hours of incubation with the inhibitors, (5,6-TH)fucose and (1- UC)mannose were added to label the glycoproteins, and cells were incubated in inhibitor and isotope for about 40 h to produce mature virus. Glycopeptides were prepared from the viral and the cellular glycoproteins, and these glycopeptides were isolated by gel filtration on Bio-Gel P-4. The glycopeptides were then digested with endo-beta-N-acetylglucosaminidase H and rechromatographed on the Bio-Gel column. In the presence of castanospermine or 2,5-dihydroxymethyl-3,4-dihydroxypyrrolidine, both inhibitors of glucosidase I, most of the radioactive mannose was found in Glc3Man7-9GlcNAc structures, and these did not contain radioactive fucose. In the presence of deoxymannojirimycin, an inhibitor of mannosidase I, most of the ( UC)mannose was in a Man9GlcNAc structure which was also not fucosylated. However, in the presence of swainsonine, an inhibitor of mannosidase II, the ( UC)mannose was mostly in hybrid types of oligosaccharides, and these structures also contained radioactive fucose. Treatment of the hybrid structures with endoglucosaminidase H released the (TH)fucose as a small peptide (Fuc-GlcNAc-peptide), whereas the ( UC)mannose remained with the oligosaccharide. The data support the conclusion that the addition of fucose linked alpha 1,6 to the asparagine-linked GlcNAc is dependent upon the presence of a beta 1,2-GlcNAc residue on the alpha 1,3-mannose branch of the core structure.

  15. Juggling jobs: roles and mechanisms of multifunctional protease inhibitors in plants.

    PubMed

    Grosse-Holz, Friederike M; van der Hoorn, Renier A L

    2016-05-01

    Multifunctional protease inhibitors juggle jobs by targeting different enzymes and thereby often controlling more than one biological process. Here, we discuss the biological functions, mechanisms and evolution of three types of multifunctional protease inhibitors in plants. The first type is double-headed inhibitors, which feature two inhibitory sites targeting proteases with different specificities (e.g. Bowman-Birk inhibitors) or even different hydrolases (e.g. α-amylase/protease inhibitors preventing both early germination and seed predation). The second type consists of multidomain inhibitors which evolved by intragenic duplication and are released by processing (e.g. multicystatins and potato inhibitor II, implicated in tuber dormancy and defence, respectively). The third type consists of promiscuous inhibitory folds which resemble mouse traps that can inhibit different proteases cleaving the bait they offer (e.g. serpins, regulating cell death, and α-macroglobulins). Understanding how multifunctional inhibitors juggle biological jobs increases our knowledge of the connections between the networks they regulate. These examples show that multifunctionality evolved independently from a remarkable diversity of molecular mechanisms that can be exploited for crop improvement and provide concepts for protein design. PMID:26800491

  16. Resynthesis of reactive site peptide bond and temporary inhibition of Streptomyces metalloproteinase inhibitor.

    PubMed

    Seeram, S S; Hiraga, K; Oda, K

    1997-10-01

    Streptomyces metalloproteinase inhibitor (SMPI) is a small proteinaceous inhibitor which inhibits metalloproteinases such as thermolysin (Ki =1.14 x 10(-10) M). When incubated with the enzyme, it is gradually hydrolyzed at the Cys64-Val65 peptide bond, which was identified as the reactive site by mutational analysis. To achieve a further understanding of the inhibition mechanism, we attempted to resynthesize the cleaved reactive site by using the enzyme catalytic action. The native inhibitor was resynthesized from the modified inhibitor (Ki =2.18 x 10(-8) M) by incubation with a catalytic amount of thermolysin under the same conditions as used for hydrolysis (pH 7.5, 25 degrees C), suggesting that SMPI follows the standard mechanism of inhibition of serine proteinase inhibitors. Temporary inhibition was observed when the native inhibitor and thermolysin were incubated at a 1:100 (mol/mol) enzyme-inhibitor ratio at 37 degrees C. SMPI showed temporary inhibition towards all the enzymes it inhibited. The inhibitory spectrum of SMPI was analyzed with various metalloproteinases based on the Ki values and limited proteolysis patterns. Pseudomonas elastase and Streptomyces griseus metalloproteinase II formed more stable complexes and showed much lower Ki values (approximately 2 pM) than thermolysin. In the limited proteolysis experiments weak inhibitors were degraded by the enzymes. SMPI did not inhibit almelysin, Streptomyces caespitosus neutral proteinase or matrix metalloproteinases. SMPI specifically inhibits metalloproteinases which are sensitive to phosphoramidon. PMID:9399583

  17. Pitavastatin Regulates Ang II Induced Proliferation and Migration via IGFBP-5 in VSMC

    PubMed Central

    Ha, Yu Mi; Nam, Ju-Ock

    2015-01-01

    Angiotensin II (Ang II), a key mediator of hypertensive, causes structural changes in the arteries (vascular remodeling), which involve alterations in cell growth, vascular smooth muscle cell (VSMC) hypertrophy. Ang II promotes fibrotic factor like IGFBP5, which mediates the profibrotic effects of Ang II in the heart and kidneys, lung and so on. The purpose of this study was to identify the signaling pathway of IGFBP5 on cell proliferation and migration of Ang II-stimulated VSMC. We have been interested in Ang II-induced IGFBP5 and were curious to determine whether a Pitavastatin would ameliorate the effects. Herein, we investigated the question of whether Ang II induced the levels of IGFBP5 protein followed by proliferation and migration in VSMC. Pretreatment with the specific Angiotensin receptor type 1 (AT1) inhibitor (Losartan), Angiotensin receptor type 2 (AT2) inhibitor (PD123319), MAPK inhibitor (U0126), ERK1/2 inhibitor (PD98059), P38 inhibitor (SB600125) and PI3K inhibitor (LY294002) resulted in significantly inhibited IGFBP5 production, proliferation, and migration in Ang II-stimulated VSMC. In addition, IGFBP5 knockdown resulted in modulation of Ang II induced proliferation and migration via IGFBP5 induction. In addition, Pitavastatin modulated Ang II induced proliferation and migration in VSMC. Taken together, our results indicated that Ang II induces IGFBP5 through AT1, ERK1/2, P38, and PI3K signaling pathways, which were inhibited by Pitavastatin. These findings may suggest that Pitavastatin has an effect on vascular disease including hypertension. PMID:26557016

  18. Synthesis and biological evaluation of 4-quinazolinones as Rho kinase inhibitors.

    PubMed

    Fang, Xingang; Chen, Yen Ting; Sessions, E Hampton; Chowdhury, Sarwat; Vojkovsky, Tomas; Yin, Yan; Pocas, Jennifer R; Grant, Wayne; Schröter, Thomas; Lin, Li; Ruiz, Claudia; Cameron, Michael D; LoGrasso, Philip; Bannister, Thomas D; Feng, Yangbo

    2011-03-15

    Rho kinase (ROCK) is an attractive therapeutic target for various diseases including glaucoma, hypertension, and spinal cord injury. Herein, we report the development of a series of ROCK-II inhibitors based on 4-quinazolinone and quinazoline scaffolds. SAR studies at three positions of the quinazoline core led to the identification of analogs with high potency against ROCK-II and good selectivity over protein kinase A (PKA). PMID:21349713

  19. Factor Xa inhibitors--new anticoagulants for secondary haemostasis.

    PubMed

    Perzborn, E

    2009-08-01

    Oral factor Xa (FXa) inhibitors are a promising alternative to current anticoagulants. This paper reviews the latest developments of oral direct FXa inhibitors and focuses on those which have been approved for the prevention of venous thromboembolism (VTE) after total hip or knee replacement or are in advanced development and have passed phase II (proof of principle) testing. The most advanced drugs are apixaban, betrixaban, edoxaban, eribaxaban, rivaroxaban, LY517717, TAK-442, and YM150. Rivaroxaban (Xareltoâ) is the first direct FXa inhibitor which has recently been approved for the prevention of VTE in adult patients after elective hip or knee replacement in several countries, including the European Union and Canada. Rivaroxaban has a flat dose-dependent anticoagulant response with a wide therapeutic window and low potential for drug-drug and drug-food interactions. Rivaroxaban can be given in fixed doses without coagulation monitoring. This review describes the pharmacodynamic and pharmacokinetic profiles and the results of clinical trials with FXa inhibitors in the prevention and treatment of thromboembolic disorders. PMID:19644596

  20. Glaucoma and the applications of carbonic anhydrase inhibitors.

    PubMed

    Scozzafava, Andrea; Supuran, Claudiu T

    2014-01-01

    Inhibition of carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the treatment of glaucoma, a disease affecting a large number of people and characterized by an elevated intraocular pressure (IOP). At least three isoforms, CA II, IV and XII are targeted by the sulfonamide inhibitors, some of which are clinically used drugs. Acetazolamide, methazolamide and dichlorophenamide are first generation CA inhibitors (CAIs) still used as systemic drugs for the management of this disease. Dorzolamide and brinzolamide represent the second generation inhibitors, being used topically, as eye drops, with less side effects compared to the first generation drugs. Third generation inhibitors have been developed by using the tail approach, but they did not reach the clinics yet. The most promising such derivatives are the sulfonamides incorporating either tails with nitric oxide releasing moieties or hybrid drugs possessing prostaglandin (PG) F agonist moieties in their molecules. Recently, the dithiocarbamates have also been described as CAIs possessing IOP lowering effects in animal models of glaucoma. CAIs are used alone or in combination with other drugs such as adrenergic agonist/antagonists, or PG analogs, being an important component of the antiglaucoma drugs armamentarium. PMID:24146387

  1. Pharmacology of phosphodiesterase-5 inhibitors.

    PubMed

    Corbin, J D; Francis, S H

    2002-01-01

    The clinical properties (efficacy and safety profile) of a medicine are related not only to its mode of action, but also to its selectivity for its target (usually a receptor or enzyme) and are also influenced by its pharmacokinetic properties (absorption, distribution, metabolism and elimination). The growing number of phosphodiesterase inhibitors that are selective for phosphodiesterase-5 (PDE5) represent a promising new class of compounds that are useful for the treatment of erectile dysfunction and perhaps other disorders. Some of the basic pharmacodynamic and pharmacokinetic parameters that describe drug action are discussed with regard to the new PDE5 inhibitors. Central topics reviewed are the concentration that produces a given in vitro response, or potency (IC50), maximum plasma concentration (Cmax), time to Cmax (Tmax), half-life (t 1/2), area under the curve (AUC), bioavailability, onset and duration of action, and the balance to achieve optimum safety and efficacy. To illustrate these concepts, a group of inhibitors with varying selectivities and potencies for PDE5 (theophylline, IBMX, zaprinast, sildenafil, tadalafil and vardenafil) are discussed. Each drug has its own set of unique pharmacological characteristics based on its specific molecular structure, enzyme inhibition profile and pharmacokinetic properties. Each PDE5 inhibitor has a distinct selectivity that contributes to its safety profile. As with all new drugs, and especially those in a new class, careful evaluation will be necessary to ensure the optimal use of the PDE5 inhibitors. PMID:12166544

  2. Evolutionary families of peptidase inhibitors.

    PubMed Central

    Rawlings, Neil D; Tolle, Dominic P; Barrett, Alan J

    2004-01-01

    The proteins that inhibit peptidases are of great importance in medicine and biotechnology, but there has never been a comprehensive system of classification for them. Some of the terminology currently in use is potentially confusing. In the hope of facilitating the exchange, storage and retrieval of information about this important group of proteins, we now describe a system wherein the inhibitor units of the peptidase inhibitors are assigned to 48 families on the basis of similarities detectable at the level of amino acid sequence. Then, on the basis of three-dimensional structures, 31 of the families are assigned to 26 clans. A simple system of nomenclature is introduced for reference to each clan, family and inhibitor. We briefly discuss the specificities and mechanisms of the interactions of the inhibitors in the various families with their target enzymes. The system of families and clans of inhibitors described has been implemented in the MEROPS peptidase database (http://merops.sanger.ac.uk/), and this will provide a mechanism for updating it as new information becomes available. PMID:14705960

  3. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  4. Angiotensin II stimulates melanogenesis via the protein kinase C pathway

    PubMed Central

    LIU, LI-HONG; FAN, XIN; XIA, ZHI-KUAN; AN, XU-XI; YANG, RONG-YA

    2015-01-01

    Melanogenesis is a physiological process that results in the synthesis of melanin pigments, which serve a crucial function in hyperpigmentation. The aim of the present study was to determine the effects of angiotensin II (Ang II) on melanogenesis and to elucidate the molecular events of Ang II-induced melanogenesis. Experiments were performed on human melanocytes to elucidate the pigmenting effect of Ang II and the underlying mechanisms. The elements involved in melanogenesis, including melanin content, tyrosinase (TYR) activity, and microphthalmia-associated transcription factor (MITF) and TYR expression at the mRNA and protein levels were evaluated. Melanin content and TYR activity increased in response to Ang II treatment in a concentration-dependent manner. MITF and TYR mRNA and protein expression levels were increased significantly in response to Ang II in a concentration-dependent manner. The Ang II-induced increase in melanin synthesis was reduced significantly in response to co-treatment with Ro-32-0432, a protein kinase C (PKC) inhibitor, whereas co-treatment with H-89, a PKA inhibitor, did not attenuate the Ang II-induced increase in melanin levels. These results suggest that PKC is required for Ang II-induced pigmentation in human melanocytes and that the mechanism involves the PKC pathway and MITF upregulation. PMID:26622519

  5. Specific MAPK inhibitors prevent hyperglycemia-induced renal diseases in type 1 diabetic mouse model.

    PubMed

    Hong, Zhe; Hong, Zongyuan; Wu, Denglong; Nie, Hezhongrong

    2016-08-01

    Mitogen-activated protein kinase (MAPK) and renin-angiotensin system (RAS) play critical roles in the process of renal diseases, but their interaction has not been comprehensively discussed. In the present studies, we investigated the renoprotective effects of MPAK inhibitors on renal diseases in type 1 diabetic mouse model, and clarify the crosstalk among MAPK signaling. Type 1 diabetic mouse model was established in male C57BL/6 J mice, and treated with or without 10 mg/kg MAPK blockers, including ERK inhibitor PD98059, p38 inhibitor SB203850, and JNK inhibitor SP600125 for four weeks. Hyperglycemia induced renal injuries, but treating them with MAPK inhibitors significantly decreased glomerular volume and glycogen in renal tissues. Although slightly changed body weight and fasting blood glucose levels, MAPK inhibitors attenuated blood urea nitrogen, urea protein, and microalbuminuria. Administration also reduced the diabetes-induced RAS activation, including angiotensin II converting enzyme (c) and Ang II, which contributed to its renal protective effects in the diabetic mice. In addition, the anti-RAS of MAPK inhibitor treatment markedly reduced gene expression of tumor necrosis factor-α, interleukin-6, and inducible nitric oxide synthase, fibrotic accumulation, and transforming growth factor-β1 levels in renal tissues. Furthermore, chemical inhibitors and genetic siRNA results identified the crosstalk among the three MAPK signaling, and proved JNK signaling played a critical role in MAPK-mediated ACE pathway in hyperglycemia state. Collectively, these results support the therapeutic effects of MAPK-specific inhibitors, especially JNK inactivation, on hyperglycemia-induced renal damages. PMID:27389030

  6. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  7. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  8. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  9. Corrosion inhibitors from expired drugs.

    PubMed

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%. PMID:22561212

  10. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  11. Monoglyceride lipase: Structure and inhibitors.

    PubMed

    Scalvini, Laura; Piomelli, Daniele; Mor, Marco

    2016-05-01

    Monoglyceride lipase (MGL), the main enzyme responsible for the hydrolytic deactivation of the endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG), is an intracellular serine hydrolase that plays critical roles in many physiological and pathological processes, such as pain, inflammation, neuroprotection and cancer. The crystal structures of MGL that are currently available provide valuable information about how this enzyme might function and interact with site-directed small-molecule inhibitors. On the other hand, its conformational equilibria and the contribution of regulatory cysteine residues present within the substrate-binding pocket or on protein surface remain open issues. Several classes of MGL inhibitors have been developed, from early reversible ones, such as URB602 and pristimerin, to carbamoylating agents that react with the catalytic serine, such as JZL184 and more recent O-hexafluoroisopropyl carbamates. Other inhibitors that modulate MGL activity by interacting with conserved regulatory cysteines act through mechanisms that deserve to be more thoroughly investigated. PMID:26216043

  12. Diversity of parasite complex II.

    PubMed

    Harada, Shigeharu; Inaoka, Daniel Ken; Ohmori, Junko; Kita, Kiyoshi

    2013-05-01

    Parasites have developed a variety of physiological functions necessary for completing at least part of their life cycles in the specialized environments of surrounding the parasites in the host. Regarding energy metabolism, which is essential for survival, parasites adapt to the low oxygen environment in mammalian hosts by using metabolic systems that are very different from those of the hosts. In many cases, the parasite employs aerobic metabolism during the free-living stage outside the host but undergoes major changes in developmental control and environmental adaptation to switch to anaerobic energy metabolism. Parasite mitochondria play diverse roles in their energy metabolism, and in recent studies of the parasitic nematode, Ascaris suum, the mitochondrial complex II plays an important role in anaerobic energy metabolism of parasites inhabiting hosts by acting as a quinol-fumarate reductase. In Trypanosomes, parasite complex II has been found to have a novel function and structure. Complex II of Trypanosoma cruzi is an unusual supramolecular complex with a heterodimeric iron-sulfur subunit and seven additional non-catalytic subunits. The enzyme shows reduced binding affinities for both substrates and inhibitors. Interestingly, this structural organization is conserved in all trypanosomatids. Since the properties of complex II differ across a wide range of parasites, this complex is a potential target for the development of new chemotherapeutic agents. In this regard, structural information on the target enzyme is essential for the molecular design of drugs. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease. PMID:23333273

  13. Identification and characterization of small-molecule inhibitors of hepsin

    PubMed Central

    Chevillet, John R.; Park, Gemma J.; Bedalov, Antonio; Simon, Julian A.; Vasioukhin, Valeri I.

    2009-01-01

    Hepsin is a type-II transmembrane serine protease overexpressed in the majority of human prostate cancers. We recently demonstrated that hepsin promotes prostate cancer progression and metastasis and thus represents a potential therapeutic target. Here we report the identification of novel small-molecule inhibitors of hepsin catalytic activity. We utilized purified human hepsin for high-throughput screening of established drug and chemical diversity libraries and identified sixteen inhibitory compounds with IC50 values against hepsin ranging from 0.23–2.31μM and relative selectivity of up to 86-fold or greater. Two compounds are orally administered drugs established for human use. Four compounds attenuated hepsin-dependent pericellular serine protease activity in a dose dependent manner with limited or no cytotoxicity to a range of cell types. These compounds may be used as leads to develop even more potent and specific inhibitors of hepsin to prevent prostate cancer progression and metastasis. PMID:18852137

  14. Identification of Novel Proteasome Inhibitors from an Enaminone Library.

    PubMed

    Elliott, Megan L; Thomas, Kevin; Kennedy, Steven; Koduri, Naga D; Hussaini, R Syed; Sheaff, Robert J

    2015-09-01

    A library of structurally distinct enaminones was synthesized using sonication or Ru(II) catalysis to couple primary, secondary, and tertiary thioamides with α-halocarbonyls or α-diazocarbonyls. Screening the library for proteasome inhibition using a luciferase-based assay identified seven structurally diverse compounds. Two of these molecules targeted luciferase, while the remaining five exhibited varying potency and specificity for the trypsin-like, chymotrypsin-like, or caspase-like protease activities of the proteasome. Physiological relevance was confirmed by showing these molecules inhibited proteasomal degradation of the full-length protein substrate p21cip1 expressed in tissue culture cells. A cell viability analysis revealed that the proteasome inhibitors differentially affected cell survival. Results indicate a subset of enaminones and precursor molecules identified in this study are good candidates for further development into novel proteasome inhibitors with potential therapeutic value. PMID:25494709

  15. ADMINISTRATION OF A SUBSTITUTED ADAMANTLY-UREA INHIBITOR OF THE SOLUBLE EPOXIDE HYDROLASE PROTECTS THE KIDNEY FROM DAMAGE IN HYPERTENSIVE GOTO-KAKIZAKI RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hypertension and type II diabetes are co-morbid diseases that lead to the development of nephropathy. Soluble epoxide hydrolase (sEH) inhibitors are reported to provide protection from renal injury. We hypothesized that the sEH inhibitor 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA) protects ...

  16. Peptidyl α-Ketoamides with Nucleobases, Methylpiperazine, and Dimethylaminoalkyl Substituents as Calpain Inhibitors

    PubMed Central

    Ovat, Asli; Li, Zhao Zhao; Hampton, Christina Y.; Asress, Seneshaw A.; Fernández, Facundo M.; Glass, Jonathan D.; Powers, James C.

    2010-01-01

    A series of peptidyl α-ketoamides with the general structure Cbz-L-Leu-D,L-AA-CONH-R were synthesized and evaluated as inhibitors for the cysteine proteases calpain I, calpain II and cathepsin B. Nucleobases, methylpiperazine and dimethylaminoalkyl groups were incorporated into the primed region of the inhibitors to generate compounds that potentially cross the blood-brain barrier. Two of these compounds (Cbz-Leu-D,L-Abu-CONH-(CH2)3-adenin-9-yl and Cbz-Leu-D,L-Abu-CONH-(CH2)3-(4-methylpiperazin-1-yl) have been shown to have useful concentrations in the brain in animals. The best inhibitor for calpain I was Cbz-Leu-D,L-Abu-CONH-(CH2)3-2-methoxyadenin-9-yl (Ki = 23 nM) and the best inhibitor for calpain II was Cbz-Leu-D,L-Phe-CONH-(CH2)3-adenin-9-yl (Ki = 68 nM). Based on the crystal structure obtained with heterocyclic peptidyl α-ketoamides, we have improved inhibitor potency by introducing a small hydrophobic group on the adenine ring. These inhibitors have good potential to be used in the treatment of neurodegenerative diseases. PMID:20690647

  17. STAT inhibitors for cancer therapy

    PubMed Central

    2013-01-01

    Signal Transducer and Activator of Transcription (STAT) proteins are a family of cytoplasmic transcription factors consisting of 7 members, STAT1 to STAT6, including STAT5a and STAT5b. STAT proteins are thought to be ideal targets for anti-cancer therapy since cancer cells are more dependent on the STAT activity than their normal counterparts. Inhibitors targeting STAT3 and STAT5 have been developed. These included peptidomimetics, small molecule inhibitors and oligonucleotides. This review summarized advances in preclinical and clinical development of these compounds. PMID:24308725

  18. SGLT2 inhibitors: new reports.

    PubMed

    2015-10-12

    A significant decrease in cardiovascular mortality has been reported with use of the SGLT2 inhibitor empagliflozin (Jardiance) to treat patients with type 2 diabetes who have established cardiovascular disease. The mechanism of this reduction is unclear, and these results may not apply to patients with type 2 diabetes and less advanced cardiovascular disease. Whether the increase in fractures reported with canagliflozin (Invokana) could also occur with empagliflozin remains to be established. All SGLT2 inhibitors are only modestly effective for treatment of diabetes. PMID:26445203

  19. Identification of Novel Small Molecule Inhibitors of Oncogenic RET Kinase

    PubMed Central

    Moccia, Marialuisa; Liu, Qingsong; Guida, Teresa; Federico, Giorgia; Brescia, Annalisa; Zhao, Zheng; Choi, Hwan Geun; Deng, Xianming; Tan, Li; Wang, Jinhua; Billaud, Marc; Gray, Nathanael S.

    2015-01-01

    Oncogenic mutation of the RET receptor tyrosine kinase is observed in several human malignancies. Here, we describe three novel type II RET tyrosine kinase inhibitors (TKI), ALW-II-41-27, XMD15-44 and HG-6-63-01, that inhibit the cellular activity of oncogenic RET mutants at two digit nanomolar concentration. These three compounds shared a 3-trifluoromethyl-4-methylpiperazinephenyl pharmacophore that stabilizes the ‘DFG-out’ inactive conformation of RET activation loop. They blocked RET-mediated signaling and proliferation with an IC50 in the nM range in fibroblasts transformed by the RET/C634R and RET/M918T oncogenes. They also inhibited autophosphorylation of several additional oncogenic RET-derived point mutants and chimeric oncogenes. At a concentration of 10 nM, ALW-II-41-27, XMD15-44 and HG-6-63-01 inhibited RET kinase and signaling in human thyroid cancer cell lines carrying oncogenic RET alleles; they also inhibited proliferation of cancer, but not non-tumoral Nthy-ori-3-1, thyroid cells, with an IC50 in the nM range. The three compounds were capable of inhibiting the ‘gatekeeper’ V804M mutant which confers substantial resistance to established RET inhibitors. In conclusion, we have identified a type II TKI scaffold, shared by ALW-II-41-27, XMD15-44 and HG-6-63-01, that may be used as novel lead for the development of novel agents for the treatment of cancers harboring oncogenic activation of RET. PMID:26046350

  20. Targeting Tat Inhibitors in the Assembly of Human Immunodeficiency Virus Type 1 Transcription Complexes▿ †

    PubMed Central

    D'Orso, Iván; Grunwell, Jocelyn R.; Nakamura, Robert L.; Das, Chandreyee; Frankel, Alan D.

    2008-01-01

    Human immunodeficiency virus type 1 (HIV-1) transcription is regulated by the viral Tat protein, which relieves a block to elongation by recruiting an elongation factor, P-TEFb, to the viral promoter. Here, we report the discovery of potent Tat inhibitors that utilize a localization signal to target a dominant negative protein to its site of action. Fusing the Tat activation domain to some splicing factors, particularly to the Arg-Ser (RS) domain of U2AF65, creates Tat inhibitors that localize to subnuclear speckles, sites where pre-mRNA processing factors are stored for assembly into transcription complexes. A U2AF65 fusion named T-RS interacts with the nonphosphorylated C-terminal domain of RNA polymerase II (RNAP II) via its RS domain and is loaded into RNAP II holoenzyme complexes. T-RS is recruited efficiently to the HIV-1 promoter in a TAR-independent manner before RNAP II hyperphosphorylation but not to cellular promoters. The “preloading” of T-RS into HIV-1 preinitiation complexes prevents the entry of active Tat molecules, leaving the complexes in an elongation-incompetent state and effectively suppressing HIV-1 replication. The ability to deliver inhibitors to transcription complexes through the use of targeting/localization signals may provide new avenues for designing viral and transcription inhibitors. PMID:18667497

  1. [Effect of several inhibitors of atmospheric metal corrosion (amines of the polymethylene series) on embryogenesis].

    PubMed

    Bariliak, I R; Paustovskaia, V V; Torbin, V F

    1978-01-01

    The influence of some polymethylene amines (inhibitors protecting metals from atmospheric corrosion) on the generative function in general and on the embryogenesis in particular was studied. Such inhibitors as MCDA-II (dicyclohexylamine salt dissolving in oil), HDA (dicyclohexylamine nitrate) and M-I (cyclohexylamine salt dissolving in oil) were investigated by intraorganic injection during the whole course of gestation (21 days), 2 and 4 months. The compounds in question were stated to possess a pronounced gonado- and embryotoxic effect depending on the dose and chemical composition of the substance. The least active was M-I inhibitor. Doses not affecting rat gonades were: for HDA--0.825 mg/kg, MCDA-II--4.7 mg/kg, M-I--34.9 mg/kg; their embryonic effects were 0.54, 2.35 and 349 mg/kg respectively. PMID:646657

  2. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors.

    PubMed

    Galán, María; Varona, Saray; Orriols, Mar; Rodríguez, José Antonio; Aguiló, Silvia; Dilmé, Jaume; Camacho, Mercedes; Martínez-González, José; Rodriguez, Cristina

    2016-05-01

    Clinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE(-/-)) mice. Real-time PCR, western blot and immunohistochemistry evidenced an increased expression of HDACs 1, 2 (both class I), 4 and 7 (both class IIa) in abdominal aorta samples from patients undergoing AAA open repair (n=22) compared with those from donors (n=14). Aortic aneurysms from Ang-II-infused ApoE(-/-) mice exhibited a similar HDAC expression profile. In these animals, treatment with a class I HDAC inhibitor (MS-275) or a class IIa inhibitor (MC-1568) improved survival, reduced the incidence and severity of AAA and limited aneurysmal expansion evaluated by Doppler ultrasonography. These beneficial effects were more potent in MC-1568-treated mice. The disorganisation of elastin and collagen fibres and lymphocyte and macrophage infiltration were effectively reduced by both inhibitors. Additionally, HDAC inhibition attenuated the exacerbated expression of pro-inflammatory markers and the increase in metalloproteinase-2 and -9 activity induced by Ang II in this model. Therefore, our data evidence that HDAC expression is deregulated in human AAA and that class-selective HDAC inhibitors limit aneurysm expansion in an AAA mouse model. New-generation HDAC inhibitors represent a promising therapeutic approach to overcome human aneurysm progression. PMID:26989193

  3. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors

    PubMed Central

    Galán, María; Varona, Saray; Orriols, Mar; Rodríguez, José Antonio; Aguiló, Silvia; Dilmé, Jaume; Camacho, Mercedes; Martínez-González, José; Rodriguez, Cristina

    2016-01-01

    ABSTRACT Clinical management of abdominal aortic aneurysm (AAA) is currently limited to elective surgical repair because an effective pharmacotherapy is still awaited. Inhibition of histone deacetylase (HDAC) activity could be a promising therapeutic option in cardiovascular diseases. We aimed to characterise HDAC expression in human AAA and to evaluate the therapeutic potential of class I and IIa HDAC inhibitors in the AAA model of angiotensin II (Ang II)-infused apolipoprotein-E-deficient (ApoE−/−) mice. Real-time PCR, western blot and immunohistochemistry evidenced an increased expression of HDACs 1, 2 (both class I), 4 and 7 (both class IIa) in abdominal aorta samples from patients undergoing AAA open repair (n=22) compared with those from donors (n=14). Aortic aneurysms from Ang-II-infused ApoE−/− mice exhibited a similar HDAC expression profile. In these animals, treatment with a class I HDAC inhibitor (MS-275) or a class IIa inhibitor (MC-1568) improved survival, reduced the incidence and severity of AAA and limited aneurysmal expansion evaluated by Doppler ultrasonography. These beneficial effects were more potent in MC-1568-treated mice. The disorganisation of elastin and collagen fibres and lymphocyte and macrophage infiltration were effectively reduced by both inhibitors. Additionally, HDAC inhibition attenuated the exacerbated expression of pro-inflammatory markers and the increase in metalloproteinase-2 and -9 activity induced by Ang II in this model. Therefore, our data evidence that HDAC expression is deregulated in human AAA and that class-selective HDAC inhibitors limit aneurysm expansion in an AAA mouse model. New-generation HDAC inhibitors represent a promising therapeutic approach to overcome human aneurysm progression. PMID:26989193

  4. Biocatalysts with enhanced inhibitor tolerance

    DOEpatents

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  5. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    PubMed Central

    Čolović, Mirjana B; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases. PMID:24179466

  6. Less-toxic corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1981-01-01

    Combinations of borates, nitrates, phosphates, silicates, and sodium MBT protect aluminum from corrosion in fresh water. Most effective combinations contained sodium phosphate and were alkaline. These inhibitors replace toxic chromates which are subject to governmental restrictions, but must be used in larger quantities. Experimental exposure times varied from 1 to 14 months depending upon nature of submersion solution.

  7. Effects of known phenoloxidase inhibitors on hemocyanin-derived phenoloxidase from Limulus polyphemus.

    PubMed

    Wright, Jamie; Clark, William McCaskill; Cain, Jennifer A; Patterson, Alan; Coates, Christopher J; Nairn, Jacqueline

    2012-01-01

    Inhibitors of phenoloxidase are used routinely to characterise the structural and functional properties of phenoloxidases. Hemocyanin-derived phenoloxidase activity is also sensitive to standard phenoloxidase inhibitors. In this study, we characterise the effects of a number of phenoloxidase inhibitors on hemocyanin-derived phenoloxidase activity from the chelicerate, Limulus polyphemus. Both inhibition type and K(i) values were similar to those observed for hemocyanin-derived phenoloxidase from another chelicerate, Eurypelma californicum. In addition, substrate inhibition was observed at concentrations above 2mM dopamine. The conformation in which two of the inhibitors, namely tropolone and kojic acid, would bind near the Cu(II) centre of hemocyanin is proposed. PMID:22885403

  8. Cloning, purification and biochemical characterization of dipetarudin, a new chimeric thrombin inhibitor.

    PubMed

    López, M; Mende, K; Steinmetzer, T; Nowak, G

    2003-03-25

    The development of thrombin inhibitors could provide invaluable progress for antithrombotic therapy. In this paper, we report the cloning, purification and biochemical characterization of dipetarudin, a chimeric thrombin inhibitor composed of the N-terminal head structure of dipetalogastin II, the strongest inhibitor from the assassin bug Dipetalogaster maximus, and the exosite 1 blocking segment of hirudin, connected through a five glycine linker. The cloning of dipetarudin was performed by a simple method which had not been used previously to clone chimeras. Biochemical characterization of dipetarudin revealed that it is a slow, tight-binding inhibitor with a molecular mass (M(r)=7560) and a thrombin inhibitory activity (K(i)=446 fM) comparable to r-hirudin. PMID:12651003

  9. Engineered cystine knot miniproteins as potent inhibitors of human mast cell tryptase beta.

    PubMed

    Sommerhoff, Christian P; Avrutina, Olga; Schmoldt, Hans-Ulrich; Gabrijelcic-Geiger, Dusica; Diederichsen, Ulf; Kolmar, Harald

    2010-01-01

    Here we report the design, chemical and recombinant synthesis, and functional properties of a series of novel inhibitors of human mast cell tryptase beta, a protease of considerable interest as a therapeutic target for the treatment of allergic asthma and inflammatory disorders. These inhibitors are derived from a linear variant of the cyclic cystine knot miniprotein MCoTI-II, originally isolated from the seeds of Momordica cochinchinensis. A synthetic cyclic miniprotein that bears additional positive charge in the loop connecting the N- and C-termini inhibits all monomers of the tryptase beta tetramer with an overall equilibrium dissociation constant K(i) of 1 nM and thus is one of the most potent proteinaceous inhibitors of tryptase beta described to date. These cystine knot miniproteins may therefore become valuable scaffolds for the design of a new generation of tryptase inhibitors. PMID:19852971

  10. Tyrosine Kinase Inhibitors and Vascular Toxicity: Impetus for a Classification System?

    PubMed

    Herrmann, Joerg

    2016-06-01

    The introduction of molecularly targeted therapies with tyrosine kinase inhibitors has revolutionized cancer therapy and has contributed to a steady decline in cancer-related mortality since the late 1990s. However, not only cardiac but also vascular toxicity has been reported for these agents, some as expected on-target effects (e.g., VEGF receptor inhibitors) and others as unanticipated events (e.g., BCR-Abl inhibitors). A sound understanding of these cardiovascular toxic effects is critical to advance mechanistic insight into vascular disease and clinical care. From a conceptual standpoint, there might be value in defining type I (permanent) and type II (transient) vascular toxicity. This review will focus on the tyrosine kinase inhibitors in current clinical use and their associated vascular side effects. PMID:27099141

  11. Cilostazol suppresses angiotensin II-induced apoptosis in endothelial cells

    PubMed Central

    SHI, MIAO-QIAN; SU, FEI-FEI; XU, XUAN; LIU, XIONG-TAO; WANG, HONG-TAO; ZHANG, WEI; LI, XUE; LIAN, CHENG; ZHENG, QIANG-SUN; FENG, ZHI-CHUN

    2016-01-01

    Patients with essential hypertension undergo endothelial dysfunction, particularly in the conduit arteries. Cilostazol, a type III phosphodiesterase inhibitor, serves a role in the inhibition of platelet aggregation and it is widely used in the treatment of peripheral vascular diseases. Previous studies have suggested that cilostazol suppresses endothelial dysfunction; however, it remains unknown whether cilostazol protects the endothelial function in essential hypertension. The aim of the present study was to investigate whether, and how, cilostazol suppresses angiotensin II (angII)-induced endothelial dysfunction. Human umbilical vein endothelial cells (HUVECs) and Sprague Dawley rats were exposed to angII and treated with cilostazol. Endothelial cell apoptosis and function, nitric oxide and superoxide production, phosphorylation (p) of Akt, and caspase-3 protein expression levels were investigated. AngII exposure resulted in the apoptosis of endothelial cells in vitro and in vivo. In vitro, cilostazol significantly suppressed the angII-induced apoptosis of HUVECs; however, this effect was reduced in the presence of LY294002, a phosphoinositide 3 kinase (PI3K) inhibitor. Furthermore, cilostazol suppressed the angII-induced p-Akt downregulation and cleaved caspase-3 upregulation. These effects were also alleviated by LY294002. In vivo, cilostazol suppressed the angII-induced endothelial cell apoptosis and dysfunction. Cilostazol was also demonstrated to partially reduced the angII-induced increase in superoxide production. The results of the present study suggested that cilostazol suppresses endothelial apoptosis and dysfunction by modulating the PI3K/Akt pathway. PMID:26862035

  12. Glutamate carboxypeptidase II (NAALADase) inhibition as a novel therapeutic strategy.

    PubMed

    Thomas, Ajit G; Wozniak, Krystyna M; Tsukamoto, Takashi; Calvin, David; Wu, Ying; Rojas, Camilo; Vornov, James; Slusher, Barbara S

    2006-01-01

    GCP II inhibition decreases extracellular excitotoxic glutamate and increases extracellular NAAG, both of which provide neuroprotection. We have demonstrated with our potent and selective GCP II inhibitors efficacy in models of stroke, ALS and neuropathic pain. GCP II inhibition may have significant potential benefits over existing glutamate-based neuroprotection strategies. The upstream mechanism seems selective for excitotoxic induced glutamate release, as GCP II inhibitors in normal animals induced no change in basal glutamate. This suggestion has recently been corroborated by Lieberman and coworkers24 who found that both NAAG release and increase in GCP II activity appear to be induced by electrical stimulation in crayfish nerve fibers and that subsequent NAAG hydrolysis to glutamate contributes, at least in part, to subsequent NMDA receptor activation. Interestingly, even at relatively high doses of compounds, GCP II inhibition did not appear to be associated with learning/memory deficits in animals. Additionally, quantitative neurophysiological testing data and visual analog scales for 'psychedelic effects' in Phase I single dose and repeat dose studies showed GCP II inhibition to be safe and well tolerated by both healthy volunteers and diabetic patients. GCP II inhibition may represent a novel glutamate regulating strategy devoid of the side effects that have hampered the development of postsynaptic glutamate receptor antagonists. PMID:16802724

  13. Pharmacophore modeling for protein tyrosine phosphatase 1B inhibitors.

    PubMed

    Bharatham, Kavitha; Bharatham, Nagakumar; Lee, Keun Woo

    2007-05-01

    A three dimensional chemical feature based pharmacophore model was developed for the inhibitors of protein tyrosine phosphatase 1B (PTP1B) using the CATALYST software, which would provide useful knowledge for performing virtual screening to identify new inhibitors targeted toward type II diabetes and obesity. A dataset of 27 inhibitors, with diverse structural properties, and activities ranging from 0.026 to 600 microM, was selected as a training set. Hypol, the most reliable quantitative four featured pharmacophore hypothesis, was generated from a training set composed of compounds with two H-bond acceptors, one hydrophobic aromatic and one ring aromatic features. It has a correlation coefficient, RMSD and cost difference (null cost-total cost) of 0.946, 0.840 and 65.731, respectively. The best hypothesis (Hypol) was validated using four different methods. Firstly, a cross validation was performed by randomizing the data using the Cat-Scramble technique. The results confirmed that the pharmacophore models generated from the training set were valid. Secondly, a test set of 281 molecules was scored, with a correlation of 0.882 obtained between the experimental and predicted activities. Hypol performed well in correctly discriminating the active and inactive molecules. Thirdly, the model was investigated by mapping on two PTP1B inhibitors identified by different pharmaceutical companies. The Hypol model correctly predicted these compounds as being highly active. Finally, docking simulations were performed on few compounds to substantiate the role of the pharmacophore features at the binding site of the protein by analyzing their binding conformations. These multiple validation approaches provided confidence in the utility of this pharmacophore model as a 3D query for virtual screening to retrieve new chemical entities showing potential as potent PTP1B inhibitors. PMID:17615669

  14. Structural insight into the inhibition of carbonic anhydrase by the COX-2-selective inhibitor polmacoxib (CG100649).

    PubMed

    Kim, Hyun Tae; Cha, Hyunju; Hwang, Kwang Yeon

    2016-09-01

    Polmacoxib is not only a selective COX-2 inhibitor but also a potent inhibitor of carbonic anhydrases (CAs). Both CA I and CA II are highly expressed in the GI tract and kidneys, organs that are also thought to be the sites at which selective COX-2 inhibitors show their side effects. By inhibition assays, we show that both CA I and CA II are strongly inhibited by polmacoxib, while CA II also demonstrates direct competition with COX-2. To understand, at the molecular level, how polmacoxib interacts with CA I and II, we solved the first crystal structures of CA I and CA II in complex with polmacoxib, at 2.0 Å and 1.8 Å, respectively. Interestingly, three polmacoxib molecules bind to the active site of CA I, whereas only one molecule binds CA II. In the active site, the three molecules of polmacoxib organize itself along hydrophobic interaction as "stack-on-formation", and fully occupy a cone-shaped active pocket in CA I. The binding mode of polmacoxib to CA II was found different than its binding to celecoxib and valdecoxib. Our results provide structural insight into inhibition of CA I and CA II by polmacoxib, to assess its potential clinical efficacy. PMID:27475498

  15. Local administration of N-acetylaspartylglutamate (NAAG) peptidase inhibitors is analgesic in peripheral pain in rats.

    PubMed

    Yamamoto, Tatsuo; Saito, Osamu; Aoe, Tomohiko; Bartolozzi, Alessandra; Sarva, Jayaprakash; Zhou, Jia; Kozikowski, Alan; Wroblewska, Barbara; Bzdega, Tomasz; Neale, Joseph H

    2007-01-01

    The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) selectively activates group II metabotropic glutamate receptors (mGluRs). Systemic administration of inhibitors of the enzymes that inactivate NAAG results in decreased pain responses in rat models of inflammatory and neuropathic pain. These effects are blocked by a group II mGluR antagonist. This research tested the hypothesis that some analgesic effects of NAAG peptidase inhibition are mediated by NAAG acting on sensory neurite mGluRs at the site of inflammation. Group II mGluR agonists, SLx-3095-1, NAAG and APDC, or NAAG peptidase inhibitors, ZJ-43 and 2-PMPA, injected into the rat footpad reduced pain responses in carrageenan or formalin models. The analgesic effects of SLx-3095-1, APDC, ZJ-43, 2-PMPA and NAAG were blocked by co-injection of LY341495, a selective group II mGluR antagonist. Injection of group II mGluR agonists, NAAG or the peptidase inhibitors into the contralateral rat footpad had no effect on pain perception in the injected paw. At 10-100 microm ZJ-43 and 2-PMPA demonstrated no consistent agonist activity at mGluR2 or mGluR3. Consistent with the conclusion that peripherally administered NAAG peptidase inhibitors increase the activation of mGluR3 by NAAG that is released from peripheral sensory neurites, we found that the tissue average concentration of NAAG in the unstimulated rat hind paw was about 6 microm. These data extend our understanding of the role of this peptide in sensory neurons and reveal the potential for treatment of inflammatory pain via local application of NAAG peptidase inhibitors at doses that may have little or no central nervous system effects. PMID:17241276

  16. Mechanisms for autophagy modulation by isoprenoid biosynthetic pathway inhibitors in multiple myeloma cells

    PubMed Central

    Dykstra, Kaitlyn M.; Allen, Cheryl; Born, Ella J.; Tong, Huaxiang; Holstein, Sarah A.

    2015-01-01

    Multiple myeloma (MM) is characterized by the production of monoclonal protein (MP). We have shown previously that disruption of the isoprenoid biosynthetic pathway (IBP) causes a block in MP secretion through a disruption of Rab GTPase activity, leading to an enhanced unfolded protein response and subsequent apoptosis in MM cells. Autophagy is induced by cellular stressors including nutrient deprivation and ER stress. IBP inhibitors have been shown to have disparate effects on autophagy. Here we define the mechanisms underlying the differential effects of IBP inhibitors on autophagic flux in MM cells utilizing specific pharmacological inhibitors. We demonstrate that IBP inhibition induces a net increase in autophagy as a consequence of disruption of isoprenoid biosynthesis which is not recapitulated by direct geranylgeranyl transferase inhibition. IBP inhibitor-induced autophagy is a cellular defense mechanism as treatment with the autophagy inhibitor bafilomycin A1 enhances the cytotoxic effects of GGPP depletion, but not geranylgeranyl transferase inhibition. Immunofluorescence microscopy studies revealed that IBP inhibitors disrupt ER to Golgi trafficking of monoclonal light chain protein and that this protein is not a substrate for alternative degradative pathways such as aggresomes and autophagosomes. These studies support further development of specific GGTase II inhibitors as anti-myeloma agents. PMID:26595805

  17. The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors.

    PubMed

    Peterson, J Thomas

    2006-02-15

    At least 56 matrix metalloproteinase (MMP) inhibitors have been pursued as clinical candidates since the late 1970's when the first drug discovery program targeting this enzyme family began. Some of these clinical candidates were pursued for multiple indications. However, the two primary indications that have been targeted are cancer (24 drugs) and anti-arthritis (27 drugs). Cardiovascular disease was listed as an indication for 10 drugs. Forty-six MMP inhibitors have been discontinued, 7 remain in clinical development, and only 1 (Periostat for periodontal disease) has been approved. Recently, negative phase II results were reported for the MMP inhibitor PG-116800, which was being evaluated as a treatment for post-ischemic myocardial remodeling to prevent heart failure. One major factor leading to the failure of PG-116800 and many of the other MMP inhibitors is the inadequate assessment of the therapeutic index, the ratio of dose required for efficacy vs. that for toxicology. This review describes the dose-limiting side effect that has hampered MMP inhibitor development (the musculoskeletal syndrome), cardiovascular clinical MMP inhibitor studies, a model of the therapeutic index using marimastat, and progress towards more selective MMP inhibitors not limited by the musculoskeletal syndrome. PMID:16413004

  18. The evolving role of FLT3 inhibitors in acute myeloid leukemia: quizartinib and beyond

    PubMed Central

    Wander, Seth A.; Levis, Mark J.

    2014-01-01

    Acute myeloid leukemia remains associated with poor outcomes despite advances in our understanding of the complicated molecular events driving leukemogenesis and malignant progression. Those patients harboring mutations in the FLT3 receptor tyrosine kinase have a particularly poor prognosis; however, significant excitement has been generated by the emergence of a variety of targeted inhibitors capable of suppressing FLT3 signaling in vivo. Here we will review results from preclinical studies and early clinical trials evaluating both first- and second-generation FLT3 inhibitors. Early FLT3 inhibitors (including sunitinib, midostaurin, and lestaurtinib) demonstrated significant promise in preclinical models of FLT3 mutant AML. Unfortunately, many of these compounds failed to achieve robust and sustained FLT3 inhibition in early clinical trials, at best resulting in only transient decreases in peripheral blast counts. These results have prompted the development of second-generation FLT3 inhibitors, epitomized by the novel agent quizartinib. These second-generation inhibitors have demonstrated enhanced FLT3 specificity and have been generally well tolerated in early clinical trials. Several FLT3 inhibitors have reached phase III clinical trials, and a variety of phase I/II trials exploring a role for these novel compounds in conjunction with conventional chemotherapy or hematopoietic stem cell transplantation are ongoing. Finally, molecular insights provided by FLT3 inhibitors have shed light upon the variety of mechanisms underlying the acquisition of resistance and have provided a rationale supporting the use of combinatorial regimens with other emerging targeted therapies. PMID:24883179

  19. Bioanalytical LC/MS study of potential bacterial transglycosylation inhibitors.

    PubMed

    Blanchaert, Bart; Palabiyik, Ismail Murat; Gökbulut, Alper; Wang, Ming-Juan; Dai, Zhong; Wei, Feng; Ma, Shuang-Cheng; Adams, Erwin; Van Schepdael, Ann

    2016-08-01

    Bacterial transglycosylation is an interesting target in antibiotic drug development. An in vitro transglycosylation assay was developed and used to search for possible inhibitors of Staphylococcus aureus Penicillin Binding Protein 2-mediated transglycosylation. Since the substrate, Lipid II, has no UV-chromophore, the assay relies on LC coupled to MS for analysis of the incubation mixtures. Extracts from Thymus sipyleus, Salvia verticillata, Salvia virgata and Oolong tea were tested, as well as epigallocatechin gallate and ursolic acid, which are chemical compounds derived from plants. Matrix effects hampered Lipid II quantification in samples treated with very high concentrations of extracts. None of these extracts or isolated compounds appeared to have inhibitory activities towards the transglycosylation function of Penicillin Binding Protein 2. PMID:26782294

  20. The dawn of hedgehog inhibitors: Vismodegib.

    PubMed

    Sandhiya, Selvarajan; Melvin, George; Kumar, Srinivasamurthy Suresh; Dkhar, Steven Aibor

    2013-01-01

    Cancer, one of the leading causes of death worldwide is estimated to increase to approximately 13.1 million by 2030. This has amplified the research in oncology towards the exploration of novel targets. Recently there has been lots of interest regarding the hedgehog (Hh) pathway, which plays a significant role in the development of organs and tissues during embryonic and postnatal periods. In a normal person, the Hh signaling pathway is under inhibition and gets activated upon the binding of Hh ligand to a transmembrane receptor called Patched (PTCH1) thus allowing the transmembrane protein, smoothened (SMO) to transfer signals through various proteins. One of the newer drugs namely vismodegib involves the inhibition of Hh pathway and has shown promising results in the treatment of advanced basal-cell carcinoma as well as medulloblastoma. It has been granted approval by US Food and Drug Administration's (US FDA) priority review program on January 30, 2012 for the treatment of advanced basal-cell carcinoma. The drug is also being evaluated in malignancies like medulloblastoma, pancreatic cancer, multiple myeloma, chondrosarcoma and prostate cancer. Moreover various Hh inhibitors namely LDE 225, saridegib, BMS 833923, LEQ 506, PF- 04449913 and TAK-441 are also undergoing phase I and II trials for different neoplasms. Hence this review will describe briefly the Hh pathway and the novel drug vismodegib. PMID:23662017

  1. ACE inhibitor potentiation of bradykinin-induced venoconstriction

    PubMed Central

    Hecker, Markus; Blaukat, Andree; Bara, Agnieszka T; Müller-Esterl, Werner; Busse, Rudi

    1997-01-01

    Angiotensin-converting enzyme (ACE) inhibitors exert their cardiovascular effects not only by preventing the formation of angiotensin II (AII), but also by promoting the accumulation of bradykinin in or at the vessel wall. In addition, certain ACE inhibitors have been shown to augment the vasodilator response to bradykinin, presumably by an interaction at the level of the B2 receptor. We have investigated whether this is a specific effect of the ACE inhibitor class of compounds in isolated endothelium-denuded segments of the rabbit jugular vein where bradykinin elicits a constrictor response which is exclusively mediated by activation of the B2 receptor. Moexiprilat and ramiprilat (⩽ 3 nM) enhanced the constrictor response to bradykinin three to four fold. Captopril and enalaprilat were less active by approximately one and quinaprilat by two orders of magnitude. Moexiprilat and ramiprilat, on the other hand, had no effect on the constrictor response to AII or the dilator response to acetylcholine. The bradykinin-potentiating effect of the ACE inhibitors was not mimicked by inhibitors of amino-, carboxy-, metallo- or serine peptidases or the synthetic ACE substrate, hippuryl-L-histidyl-L-leucine, at a concentration which almost abolished the residual ACE activity in the vessel wall. In contrast, angiotensin-(1–7) (10 μM), an angiotensin I metabolite, significantly enhanced the constrictor response to bradykinin. Ramiprilat did not alter the binding of [3H]-bradykinin to a membrane fraction prepared from endothelium-denuded rabbit jugular veins or to cultured fibroblasts, and there was no ACE inhibitor-sensitive, bradykinin-induced cleavage of the B2 receptor in cultured endothelial cells. These findings demonstrate that ACE inhibitors selectively potentiate the B2 receptor-mediated vascular effects of bradykinin. Their relative efficacy appears to be independent of their ACE-inhibiting properties and might be related to differences in molecule structure

  2. Angiotensin-II blockage, muscle strength, and exercise capacity in physically independent older adults

    PubMed Central

    Coelho, Vinícius A.; Probst, Vanessa S.; Nogari, Bruna M.; Teixeira, Denilson C.; Felcar, Josiane M.; Santos, Denis C.; Gomes, Marcus Vinícius M.; Andraus, Rodrigo A. C.; Fernandes, Karen B. P.

    2016-01-01

    [Purpose] This study aimed to assess the exercise capacity and muscle strength in elderly people using drugs for angiotensin-II blockage. [Subjects and Methods] Four hundred and seven older adults were recruited for this study. Data about comorbidities and medication use were recorded and the individuals were divided into three groups: control group- elderly people with normal exercise capacity (n=235); angiotensin-converting enzyme inhibitor group − individuals using angiotensin-converting enzyme inhibitors (n=140); and angiotensin-II receptor blocker group- patients using angiotensin-II receptor blockers (n= 32). Exercise capacity was evaluated by a 6-minute walking test and muscle strength was measured using a handgrip dynamometer. [Results] Patients from the angiotensin-converting enzyme inhibitor group (mean: 99 ± 12%) and the angiotensin-II receptor blocker group (mean: 101 ± 14%) showed higher predicted values in the 6-minute walking test than the control group patients (mean: 96 ± 10%). Patients from the angiotensin-converting enzyme inhibitor group (mean: 105 ± 19%) and the angiotensin-II receptor blocker group (mean: 105.1 ± 18.73%) showed higher predicted values of muscle strength than control group patients (mean: 98.15 ± 18.77%). [Conclusion] Older adults using angiotensin-converting enzyme inhibitors or angiotensin-II receptor blockers have better functional exercise capacity and muscle strength. PMID:27065543

  3. Combination of the dipeptidyl peptidase IV inhibitor LAF237 [(S)-1-[(3-hydroxy-1-adamantyl)ammo]acetyl-2-cyanopyrrolidine] with the angiotensin II type 1 receptor antagonist valsartan [N-(1-oxopentyl)-N-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-L-valine] enhances pancreatic islet morphology and function in a mouse model of type 2 diabetes.

    PubMed

    Cheng, Qianni; Law, Pui Ki; de Gasparo, Marc; Leung, Po Sing

    2008-12-01

    LAF237 [(S)-1-[(3-hydroxy-1-adamantyl)ammo]acetyl-2-cyanopyrrolidine] is an inhibitor of dipeptidyl peptidase IV that delays the degradation of glucagon-like peptide-1 (GLP-1). Valsartan [N-(1-oxopentyl)-N-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-l-valine] is an antagonist of the angiotensin II type 1 receptor (AT1R) that reduces the incidence of type 2 diabetes mellitus. LAF237 and valsartan act on a common target through separate pathways to improve pancreatic islet cell function. We hypothesize that the combination of these two drugs acts in a synergistic or additive manner on islet function and structure. To test this hypothesis, we performed in vitro and in vivo studies. To measure the acute effect of the treatment, pancreatic islets of db/db mice were isolated and stimulated in vitro with glucose in the presence of valsartan (1 microM) and exendin-4 (100 nM), a GLP-1 receptor agonist. Combination treatment with valsartan and exendin-4 significantly enhanced glucose-stimulated insulin secretion from isolated islets. For studies of chronic effect, db/db mice received LAF237 (1 mg/kg/day) and/or valsartan (10 mg/kg/day). Islet cell reactive oxygen species (ROS), proliferation, apoptosis, fibrosis, beta-cell area, and glucose homeostasis were evaluated after 8 weeks of treatment, which showed that combination treatment resulted in a significant increase in pancreatic islet beta-cell area compared with monotherapy. This beneficial effect correlated with an increase in beta-cell proliferation and a decrease in ROS-induced islet apoptosis and fibrosis. These in vitro and in vivo data indicate that combination treatment with LAF237 and valsartan has significant beneficial additive effects on pancreatic beta-cell structure and function compared with their respective monotherapeutic effects. PMID:18787107

  4. Aromatase Inhibitors and Other Compounds for Lowering Breast Cancer Risk

    MedlinePlus

    ... References Aromatase inhibitors and other compounds for lowering breast cancer risk Aromatase inhibitors (drugs that lower estrogen levels) ... day. Can aromatase inhibitors lower the risk of breast cancer? Aromatase inhibitors are used mainly to treat hormone ...

  5. Salicylanilide Inhibitors of Toxoplasma gondii

    PubMed Central

    Fomovska, Alina; Wood, Richard D.; Mui, Ernest; Dubey, Jitenter P.; Ferriera, Leandra R.; Hickman, Mark R.; Lee, Patricia J.; Leed, Susan E.; Auschwitz, Jennifer M.; Welsh, William J.; Sommerville, Caroline; Woods, Stuart; Roberts, Craig; McLeod, Rima

    2012-01-01

    Toxoplasma gondii(T. gondii) is an apicomplexan parasite that can cause eye disease, brain disease, and death, especially in congenitally infected and immune-compromised people. Novel medicines effective against both active and latent forms of the parasite are greatly needed. The current study focused on the discovery of such medicines by exploring a family of potential inhibitors whose anti-apicomplexan activity has not been previously reported. Initial screening efforts revealed that niclosamide, a drug approved for anthelmintic use, possessed promising activity in vitro against T. gondii. This observation inspired the evaluation of the activity of a series of salicylanilides and derivatives. Several inhibitors with activities in the nanomolar range with no appreciable in vitro toxicity to human cells were identified. An initial structure-activity relationship was explored. Four compounds were selected for evaluation in an in vivo model of infection, and two derivatives with potentially enhanced pharmacological parameters demonstrated the best activity profiles. PMID:22970937

  6. Macrocyclic compounds as corrosion inhibitors

    SciTech Connect

    Quraishi, M.A.; Rawat, J.; Ajmal, M.

    1998-12-01

    The influence of three macrocyclic compounds on corrosion of mild steel (MS) in hydrochloric acid (HCl) was investigated using weight loss, potentiodynamic polarization, alternating current (AC) impedance, and hydrogen permeation techniques. All the investigated compounds showed significant efficiencies and reduced permeation of hydrogen through MS in HCl. Inhibition efficiency (IE) varied with the nature and concentrations of the inhibitors, temperature, and concentrations of the acid solutions. The addition of iodide ions (I{sup {minus}}) increased IE of all the tested compounds as a result of the synergistic effect. Potentiodynamic polarization results revealed that macrocyclic compounds acted as mixed inhibitors in 1 M HCl to 5 M HCl. Adsorption on the metal surface obeyed Temkin`s adsorption isotherm. Auger electron spectroscopy (AES) of the polished MS surface, exposed with tetraphenyldithia-octaazacyclotetradeca-hexaene (PTAT) proved adsorption of this compound on the surface through nitrogen and sulfur atoms.

  7. [Proteasome inhibitors in cancer therapy].

    PubMed

    Romaniuk, Wioletta; Ołdziej, Agnieszka Ewa; Zińczuk, Justyna; Kłoczko, Janusz

    2015-01-01

    Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238), delanzomib (CEP-18770), oprozomib (ONX0912/PR-047) and marizomib (NPI-0052). PMID:27259216

  8. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  9. Carbonic anhydrase inhibitors drug design.

    PubMed

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported. PMID:24146385

  10. Bromodomains and their pharmacological inhibitors.

    PubMed

    Gallenkamp, Daniel; Gelato, Kathy A; Haendler, Bernard; Weinmann, Hilmar

    2014-03-01

    Over 60 bromodomains belonging to proteins with very different functions have been identified in humans. Several of them interact with acetylated lysine residues, leading to the recruitment and stabilization of protein complexes. The bromodomain and extra-terminal domain (BET) proteins contain tandem bromodomains which bind to acetylated histones and are thereby implicated in a number of DNA-centered processes, including the regulation of gene expression. The recent identification of inhibitors of BET and non-BET bromodomains is one of the few examples in which effective blockade of a protein-protein interaction can be achieved with a small molecule. This has led to major strides in the understanding of the function of bromodomain-containing proteins and their involvement in diseases such as cancer and inflammation. Indeed, BET bromodomain inhibitors are now being clinically evaluated for the treatment of hematological tumors and have also been tested in clinical trials for the relatively rare BRD-NUT midline carcinoma. This review gives an overview of the newest developments in the field, with a focus on the biology of selected bromodomain proteins on the one hand, and on reported pharmacological inhibitors on the other, including recent examples from the patent literature. PMID:24497428

  11. Acrylamide catalytically inhibits topoisomerase II in V79 cells.

    PubMed

    Sciandrello, Giulia; Mauro, Maurizio; Caradonna, Fabio; Catanzaro, Irene; Saverini, Marghereth; Barbata, Giusi

    2010-04-01

    The vinyl monomer acrylamide is characterized by the presence of an alpha,beta-unsaturated carbonyl group that makes it reactive towards thiol, hydroxyl or amino groups and towards the nucleophilic centers in DNA. The ability of acrylamide to chemically modify protein thiols has prompted us to consider topoisomerase II as one possible target of acrylamide, since agents targeting protein sulfhydryl groups act as either catalytic inhibitors or poisons of topoisomerase II. Nuclear extracts from V79 Chinese hamster cells incubated with acrylamide reduced topoisomerase II activity as inferred by an inability to convert kinetoplast DNA to the decatenated form. Nuclear extracts incubated with acrylamide pre-incubated with DTT converted kinetoplast DNA to the decatenated form, suggesting that acrylamide influences topoisomerase II activity through reaction with sulfhydryl groups on the enzyme. Furthermore, acrylamide did not induce the pBR322 DNA cleavage, as assessed by cleavage assay; thus, it cannot be regarded as a poison of topoisomerase II. As a catalytic inhibitor, acrylamide antagonizes the effect of etoposide, a topoisomerase II poison, as determined by clonogenic assay in V79 cells. This antagonism is confirmed by band depletion assay, from which it can be inferred that acrylamide reduces the level of catalytically active cellular topoisomerase II available for the action of etoposide. PMID:20006698

  12. Enhancing CHK1 inhibitor lethality in glioblastoma.

    PubMed

    Tang, Yong; Dai, Yun; Grant, Steven; Dent, Paul

    2012-04-01

    The present studies were initiated to determine whether inhibitors of MEK1/2 or SRC signaling, respectively, enhance CHK1 inhibitor lethality in primary human glioblastoma cells. Multiple MEK1/2 inhibitors (CI-1040 (PD184352); AZD6244 (ARRY-142886)) interacted with multiple CHK1 inhibitors (UCN-01, AZD7762) to kill multiple primary human glioma cell isolates that have a diverse set of genetic alterations typically found in the disease. Inhibition of SRC family proteins also enhanced CHK1 inhibitor lethality. Combined treatment of glioma cells with (MEK1/2 + CHK1) inhibitors enhanced radiosensitivity. Combined (MEK1/2 + CHK1) inhibitor treatment led to dephosphorylation of ERK1/2 and S6 ribosomal protein, whereas the phosphorylation of JNK and p38 was increased. MEK1/2 + CHK1 inhibitor-stimulated cell death was associated with the cleavage of pro-caspases 3 and 7 as well as the caspase substrate (PARP). We also observed activation of pro-apoptotic BCL-2 effector proteins BAK and BAX and reduced levels of pro-survival BCL-2 family protein BCL-XL. Overexpression of BCL-XL alleviated but did not completely abolish MEK1/2 + CHK1 inhibitor cytotoxicity in GBM cells. These findings argue that multiple inhibitors of the SRC-MEK pathway have the potential to interact with multiple CHK1 inhibitors to kill glioma cells. PMID:22313687

  13. Isolation and purification of trypsin inhibitors from the seeds of Abelmoschus moschatus L.

    PubMed

    Dokka, Muni Kumar; Seva, Lavanya; Davuluri, Siva Prasad

    2015-04-01

    Four trypsin inhibitors, AMTI-I, AMTI-II, AMTI-III, and AMTI-IV, have been isolated and purified to homogeneity from the seeds of Abelmoschus moschatus following ammonium sulphate fractionation, DEAE-cellulose ion exchange chromatography and gel permeation on Sephadex G-100, and their molecular weights were determined to be 22.4, 21.2, 20.8 and 20.2 kDa respectively by SDS-PAGE. While all the four inhibitors were very active against bovine trypsin, two of them (AMTI-III and AMTI-IV) showed moderate activity towards bovine chymotrypsin. AMTI-I and AMTI-II were found to be glycoproteins with neutral sugar content of 2.8 and 4 %, respectively, and all the four inhibitors were devoid of free sulphhydryl groups. The inhibitors were quite stable up to 80 °C for 10 min and were not affected at alkaline as well as acidic conditions tested. Treating them with 8 M urea and 1 % SDS for 24 h at room temperature did not result in any loss of their antitryptic activities. However, they lost considerable antitryptic activity when treated with 6 M guanidine hydrochloride. Activities of the inhibitors were unaffected even after their reduction with DTT suggesting that disulphide bonds are not needed for their inhibitory activities. PMID:25701144

  14. New Frontiers in Selective Human MAO-B Inhibitors.

    PubMed

    Carradori, Simone; Silvestri, Romano

    2015-09-10

    Accumulating evidence shows a relationship between the human MAO-B (hMAO-B) enzyme and neuropsychiatric/degenerative disorder, personality traits, type II alcoholism, borderline personality disorders, aggressiveness and violence in crime, obsessive-compulsive disorder, depression, suicide, schizophrenia, anorexia nervosa, migraine, dementia, and PD. Thus, MAO-B represents an attractive target for the treatment of a number of human diseases. The discovery, development, and therapeutic use of drugs that inhibit MAO-B are major challenges for future therapy. Various compounds and drugs that selectively target this isoform have been discovered recently. These agents are synthetic compounds or natural products and their analogues, including chalcones, pyrazoles, chromones, coumarins, xanthines, isatin derivatives, thiazolidindiones, (thiazol-2-yl)hydrazones, and analogues of marketed drugs. Despite considerable efforts in understanding the binding interaction with specific substrates or inhibitors, structural information available for the rational design of new hMAO-B inhibitors remains unsatisfactory. Therefore, the quest for novel, potent, and selective hMAO-B inhibitors remains of high interest. PMID:25915162

  15. Low molecular weight squash trypsin inhibitors from Sechium edule seeds.

    PubMed

    Laure, Hélen J; Faça, Vítor M; Izumi, Clarice; Padovan, Júlio C; Greene, Lewis J

    2006-02-01

    Nine chromatographic components containing trypsin inhibitor activity were isolated from Sechium edule seeds by acetone fractionation, gel filtration, affinity chromatography and RP-HPLC in an overall yield of 46% of activity and 0.05% of protein. The components obtained with highest yield of total activity and highest specific activity were sequenced by Edman degradation and their molecular masses determined by mass spectrometry. The inhibitors contained 31, 32 and 27 residues per molecule and their sequences were: SETI-IIa, EDRKCPKILMRCKRDSDCLAKCTCQESGYCG; SETI-IIb, EEDRKCPKILMRCKRDSDCLAKCTCQESGYCG and SETI-V, CPRILMKCKLDTDCFPTCTCRPSGFCG. SETI-IIa and SETI-IIb, which differed by an amino-terminal E in the IIb form, were not separable under the conditions employed. The sequences are consistent with consensus sequences obtained from 37 other inhibitors: CPriI1meCk_DSDCla_C_C_G_CG, where capital letters are invariant amino acid residues and lower case letters are the most preserved in this position. SETI-II and SETI-V form complexes with trypsin with a 1:1 stoichiometry and have dissociation constants of 5.4x10(-11)M and 1.1x10(-9)M, respectively. PMID:16406091

  16. [Phosphodiesterase-5 inhibitors for the treatment of pulmonary arterial hypertension].

    PubMed

    Beltrán-Gámez, Miguel E; Sandoval-Zárate, Julio; Pulido, Tomás

    2015-01-01

    In experimental and clinical cardiology, phosphodiesterase type 5 (PDE-5) inhibitors have brought scientific interest as a therapeutic tool in pulmonary arterial hypertension (PAH) management in recent years. Phosphodiesterases are a superfamily of enzymes that inactivate cyclic adenosine monophosphate and cyclic guanosine monophosphate, the second messengers of prostacyclin and nitric oxide. The rationale for the use of PDE-5 inhibitors in PAH is based on their capacity to overexpresss the nitric oxide pathway pursued inhibition of cyclic guanosine monophosphate hydrolysis. By increasing cyclic guanosine monophosphate levels it promotes vasodilation, antiproliferative and pro-apoptotic effects that may reverse pulmonary vascular remodeling. There is also evidence that these drugs may directly enhance right ventricular contractility through an increase in cyclic adenosine monophosphate mediated by the inhibition of the cyclic guanosine monophosphate -sensitive PDE-3. Sildenafil, tadalafil and vardenafil are 3 specific PDE-5 inhibitors in current clinical use, which share similar mechanisms of action but present some significant differences regarding potency, selectivity for PDE-5 and pharmacokinetic properties. Sildenafil received approval in 2005 by the Food and Drug Administration and the European Medicines Agency and tadalafil in 2009 by the Food and Drug Administration and the European Medicines Agency for the treatment of PAH in patients classified as NYHA/WHO functional class II and III. In Mexico, sildenafil and tadalafil were approved by Comisión Federal de Protección contra Riesgos Sanitarios for this indication in 2010 and 2011, respectively. PMID:26047999

  17. The burden of inhibitors in haemophilia patients.

    PubMed

    Walsh, Christopher E; Jiménez-Yuste, Víctor; Auerswald, Guenter; Grancha, Salvador

    2016-08-31

    The burden of disease in haemophilia patients has wide ranging implications for the family and to society. There is evidence that having a current inhibitor increases the risk of morbidity and mortality. Morbidity is increased by the inability to treat adequately and its consequent disabilities, which then equates to a poor quality of life compared with non-inhibitor patients. The societal cost of care, or `burden of inhibitors', increases with the ongoing presence of an inhibitor. Therefore, it is clear that successful eradication of inhibitors by immune tolerance induction (ITI) is the single most important milestone one can achieve in an inhibitor patient. The type of factor VIII (FVIII) product used in ITI regimens varies worldwide. Despite ongoing debate, there is in vitro and retrospective clinical evidence to support the use of plasma-derived VWF-containing FVIII concentrates in ITI regimens in order to achieve early and high inhibitor eradication success rates. PMID:27528280

  18. IMMUNOCHEMISTRY OF PNEUMOCOCCAL TYPES II, V, AND VI. II.

    PubMed Central

    Rebers, Paul A.; Hurwitz, Esther; Heidelberger, Michael

    1961-01-01

    Rebers, Paul A. (Rutgers University, New Brunswick, N. J.), Esther Hurwitz, and Michael Heidelberger. Immunochemistry of pneumococcal types II, V, and VI. II. Inhibition tests in the type VI precipitating system. J. Bacteriol. 82:920–926. 1961.—As in other immune systems involving polysaccharides, rabbit antibodies but not those engendered in the horse were found sensitive to degradation of type VI pneumococcal (Pn) polysaccharide (SVI), and were readily inhibited by fragments of SVI. Large amounts, 30 to 111 μmoles, of most sugars gave up to 15% inhibition, while sugar and polyol phosphates inhibited as much as 25%, with little relation to their presence or absence in SVI. The phosphate-free repeating unit of SVI was a good inhibitor, its phosphate monoester was better, and the “trimer” still better. The “trimer” precipitated most of the antibodies from horse anti-Pn VI. Although inhibition of precipitation of SVI anti-Pn horse sera could not be demonstrated with fragments of SVI, cross-reactions of antibodies in the horse sera could be inhibited. Precipitation of SII was inhibited by low concentrations of l-rhamnose, while even high concentrations of the other sugar components of SII and SVI were ineffective. Precipitation by guar gum was inhibited by galactose and α- and β-methyl-galactopyranosides, also by rhamnose, although guar gum does not contain this sugar, while SVI, the antigenic determinant, does. PMID:14490831

  19. Sibling rivalry: competition between MHC class II family members inhibits immunity.

    PubMed

    Denzin, Lisa K; Cresswell, Peter

    2013-01-01

    Peptide loading of major histocompatibility complex (MHC) class II molecules in the endosomes and lysosomes of antigen-presenting cells is catalyzed by human leukocyte antigen-DM (HLA-DM) and modulated by HLA-DO. In a structural study in this issue, Guce et al. show that HLA-DO is an MHC class II mimic and functions as a competitive and essentially irreversible inhibitor of HLA-DM activity, thereby inhibiting MHC class II antigen presentation. PMID:23288359

  20. Novel Inhibitor Cystine Knot Peptides from Momordica charantia

    PubMed Central

    Clark, Richard J.; Tang, Jun; Zeng, Guang-Zhi; Franco, Octavio L.; Cantacessi, Cinzia; Craik, David J.; Daly, Norelle L.; Tan, Ning-Hua

    2013-01-01

    Two new peptides, MCh-1 and MCh-2, along with three known trypsin inhibitors (MCTI-I, MCTI-II and MCTI-III), were isolated from the seeds of the tropical vine Momordica charantia. The sequences of the peptides were determined using mass spectrometry and NMR spectroscopy. Using a strategy involving partial reduction and stepwise alkylation of the peptides, followed by enzymatic digestion and tandem mass spectrometry sequencing, the disulfide connectivity of MCh-1 was elucidated to be CysI-CysIV, CysII-CysV and CysIII-CysVI. The three-dimensional structures of MCh-1 and MCh-2 were determined using NMR spectroscopy and found to contain the inhibitor cystine knot (ICK) motif. The sequences of the novel peptides differ significantly from peptides previously isolated from this plant. Therefore, this study expands the known peptide diversity in M. charantia and the range of sequences that can be accommodated by the ICK motif. Furthermore, we show that a stable two-disulfide intermediate is involved in the oxidative folding of MCh-1. This disulfide intermediate is structurally homologous to the proposed ancestral fold of ICK peptides, and provides a possible pathway for the evolution of this structural motif, which is highly prevalent in nature. PMID:24116036

  1. Flavonoid glycoside: a new inhibitor of eukaryotic DNA polymerase alpha and a new carrier for inhibitor-affinity chromatography.

    PubMed

    Mizushina, Yoshiyuki; Ishidoh, Tomomi; Kamisuki, Shinji; Nakazawa, Satoshi; Takemura, Masaharu; Sugawara, Fumio; Yoshida, Hiromi; Sakaguchi, Kengo

    2003-02-01

    Two flavonoid glycosides, kaempferol 3-O-(6"-acetyl)-beta-glucopyranoside (KAG) and quercetin 3-O-(6"-acetyl)-beta-glucopyranoside (QAG), were found to be inhibitors of eukaryotic DNA polymerases from a Japanese vegetable, Petasites japonicus. These compounds inhibited the activities of mammalian replicative DNA polymerases (i.e., pol alpha, delta, and epsilon), but not other pol beta, eta, kappa, and lambda activities. KAG was a stronger inhibitor and more selective to pol alpha than QAG. The IC(50) values of KAG for pol alpha, delta, and epsilon were 41, 164, and 127 microM, respectively. The pol alpha inhibition by KAG was non-competitive with respect to both the DNA template-primer and the dNTP substrate. KAG and QAG did not influence the activities of prokaryotic DNA polymerases or other mammalian DNA metabolic enzymes such as human immunodeficiency virus type 1 reverse transcriptase, human telomerase, human DNA topoisomerase I and II, T7 RNA polymerase, and bovine deoxyribonuclease I. Therefore, we concluded that these flavonoid glycosides are moderate replicative DNA polymerase inhibitors leaning more relatively to pol alpha, and could be used as chromatographic carriers to purify the DNA polymerases rather than cytotoxic agents. We then made a KAG-conjugated column such as the epoxy-activated Sepharose 6B. In the column, pol alpha was selectively adsorbed and eluted. PMID:12565887

  2. Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations.

    PubMed

    Carta, Fabrizio; Aggarwal, Mayank; Maresca, Alfonso; Scozzafava, Andrea; McKenna, Robert; Supuran, Claudiu T

    2012-02-11

    The zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1) is inhibited by several classes of zinc-binders (sulfonamides, sulfamates, and sulfamides) as well as by compounds which do not interact with the metal ion (phenols, polyamines and coumarins). Here we report a new class of potent CA inhibitors which bind the zinc ion: the dithiocarbamates (DTCs). They coordinate to the zinc ion from the enzyme active site in monodentate manner and establish many favorable interactions with amino acid residues nearby. Several low nanomolar CA I, II and IX inhibitors were detected. PMID:22218610

  3. Xylanase inhibitors bind to nonstarch polysaccharides.

    PubMed

    Fierens, Ellen; Gebruers, Kurt; Courtin, Christophe M; Delcour, Jan A

    2008-01-23

    This study is an in-depth investigation of the interaction between polysaccharides and the proteinaceous xylanase inhibitors, Triticum aestivum xylanase inhibitor (TAXI), xylanase inhibitor protein (XIP), and thaumatin-like xylanase inhibitor (TLXI). The binding affinities of all three known types of xylanase inhibitors from wheat are studied by measuring the residual xylanase inhibition activity after incubation of the inhibitors in the presence of different polysaccharides, such as beta-glucans and (arabino)xylans. The binding affinities of all three xylanase inhibitors for (arabino)xylans increased with a decreasing arabinose/xylose ratio (A/X ratio). This phenomenon was observed both with water-extractable and water-unextractable (arabino)xylans. The inhibitors also interacted with different soluble and insoluble beta-glucans. None of the inhibitors tested had the ability to hydrolyze the polysaccharides investigated. The present findings contribute to the unraveling of the function of xylanase inhibitors in nature and to the prediction of the effect of added xylanases in cereal-based biotechnological processes, such as bread making and gluten-starch separation. PMID:18092758

  4. Simple preparation of aminothiourea-modified chitosan as corrosion inhibitor and heavy metal ion adsorbent.

    PubMed

    Li, Manlin; Xu, Juan; Li, Ronghua; Wang, Dongen; Li, Tianbao; Yuan, Maosen; Wang, Jinyi

    2014-03-01

    By a simple and convenient method of using formaldehyde as linkages, two new chitosan (CS) derivatives modified respectively with thiosemicarbazide (TSFCS) and thiocarbohydrazide (TCFCS) were synthesized. The new compounds were characterized and studied by Fourier transform infrared spectroscopy, elemental analysis, thermal gravity analysis and differential scanning calorimetry, and their surface morphologies were determined via scanning electron microscopy. These CS derivatives could form pH dependent gels. The behavior of 304 steel in 2% acetic acid containing different inhibitors or different concentrations of inhibitor had been studied by potentiodynamic polarization test. The preliminary results show that the new compound TCFCS can act as a mixed-type metal anticorrosion inhibitor in some extent; its inhibition efficiency is 92% when the concentration was 60 mg/L. The adsorption studies on a metal ion mixture aqueous solution show that two samples TSFCS and TCFCS can absorb As (V), Ni (II), Cu (II), Cd (II) and Pb (II) efficiently at pH 9 and 4. PMID:24407668

  5. Combinatorial Optimization of Cystine-Knot Peptides towards High-Affinity Inhibitors of Human Matriptase-1

    PubMed Central

    Weber, Niklas; Fabritz, Sebastian; Tomaszowski, Michael; Fittler, Heiko; Christmann, Andreas; Avrutina, Olga; Kolmar, Harald

    2013-01-01

    Cystine-knot miniproteins define a class of bioactive molecules with several thousand natural members. Their eponymous motif comprises a rigid structured core formed by six disulfide-connected cysteine residues, which accounts for its exceptional stability towards thermic or proteolytic degradation. Since they display a remarkable sequence tolerance within their disulfide-connected loops, these molecules are considered promising frameworks for peptide-based pharmaceuticals. Natural open-chain cystine-knot trypsin inhibitors of the MCoTI (Momordica cochinchinensis trypsin inhibitor) and SOTI (Spinacia oleracea trypsin inhibitor) families served as starting points for the generation of inhibitors of matriptase-1, a type II transmembrane serine protease with possible clinical relevance in cancer and arthritic therapy. Yeast surface-displayed libraries of miniproteins were used to select unique and potent matriptase-1 inhibitors. To this end, a knowledge-based library design was applied that makes use of detailed information on binding and folding behavior of cystine-knot peptides. Five inhibitor variants, four of the MCoTI family and one of the SOTI family, were identified, chemically synthesized and oxidatively folded towards the bioactive conformation. Enzyme assays revealed inhibition constants in the low nanomolar range for all candidates. One subnanomolar binder (Ki = 0.83 nM) with an inverted selectivity towards trypsin and matriptase-1 was identified. PMID:24146945

  6. Combinatorial optimization of cystine-knot peptides towards high-affinity inhibitors of human matriptase-1.

    PubMed

    Glotzbach, Bernhard; Reinwarth, Michael; Weber, Niklas; Fabritz, Sebastian; Tomaszowski, Michael; Fittler, Heiko; Christmann, Andreas; Avrutina, Olga; Kolmar, Harald

    2013-01-01

    Cystine-knot miniproteins define a class of bioactive molecules with several thousand natural members. Their eponymous motif comprises a rigid structured core formed by six disulfide-connected cysteine residues, which accounts for its exceptional stability towards thermic or proteolytic degradation. Since they display a remarkable sequence tolerance within their disulfide-connected loops, these molecules are considered promising frameworks for peptide-based pharmaceuticals. Natural open-chain cystine-knot trypsin inhibitors of the MCoTI (Momordica cochinchinensis trypsin inhibitor) and SOTI (Spinacia oleracea trypsin inhibitor) families served as starting points for the generation of inhibitors of matriptase-1, a type II transmembrane serine protease with possible clinical relevance in cancer and arthritic therapy. Yeast surface-displayed libraries of miniproteins were used to select unique and potent matriptase-1 inhibitors. To this end, a knowledge-based library design was applied that makes use of detailed information on binding and folding behavior of cystine-knot peptides. Five inhibitor variants, four of the MCoTI family and one of the SOTI family, were identified, chemically synthesized and oxidatively folded towards the bioactive conformation. Enzyme assays revealed inhibition constants in the low nanomolar range for all candidates. One subnanomolar binder (Ki = 0.83 nM) with an inverted selectivity towards trypsin and matriptase-1 was identified. PMID:24146945

  7. Effects of camptothecin derivatives and topoisomerase dual inhibitors on Trypanosoma cruzi growth and ultrastructure

    PubMed Central

    2014-01-01

    Background Trypanosoma cruzi is the etiological agent of Chagas’ disease that is an endemic disease in Latin America and affects about 8 million people. This parasite belongs to the Trypanosomatidae family which contains a single mitochondrion with an enlarged region, named kinetoplast that harbors the mitochondrial DNA (kDNA). The kinetoplast and the nucleus present a great variety of essential enzymes involved in DNA replication and topology, including DNA topoisomerases. Such enzymes are considered to be promising molecular targets for cancer treatment and for antiparasitic chemotherapy. In this work, the proliferation and ultrastructure of T. cruzi epimastigotes were evaluated after treatment with eukaryotic topoisomerase I inhibitors, such as topotecan and irinotecan, as well as with dual inhibitors (compounds that block eukaryotic topoisomerase I and topoisomerase II activities), such as baicalein, luteolin and evodiamine. Previous studies have shown that such inhibitors were able to block the growth of tumor cells, however most of them have never been tested on trypanosomatids. Results Considering the effects of topoisomerase I inhibitors, our results showed that topotecan decreased cell proliferation and caused unpacking of nuclear heterochromatin, however none of these alterations were observed after treatment with irinotecan. The dual inhibitors baicalein and evodiamine decreased cell growth; however the nuclear and kinetoplast ultrastructures were not affected. Conclusions Taken together, our data showed that camptothecin is more efficient than its derivatives in decreasing T. cruzi proliferation. Furthermore, we conclude that drugs pertaining to a certain class of topoisomerase inhibitors may present different efficiencies as chemotherapeutical agents. PMID:24917086

  8. Characterization of interactions and pharmacophore development for DFG-out inhibitors to RET tyrosine kinase.

    PubMed

    Gao, Chunxia; Grøtli, Morten; Eriksson, Leif A

    2015-07-01

    RET (rearranged during transfection) tyrosine kinase is a promising target for several human cancers. Abt-348, Birb-796, Motesanib and Sorafenib are DFG-out multi-kinase inhibitors that have been reported to inhibit RET activity with good IC50 values. Although the DFG-out conformation has attracted great interest in the design of type II inhibitors, the structural requirements for binding to the RET DFG-out conformation remains unclear. Herein, the DFG-out conformation of RET was determined by homology modelling, the four inhibitors were docked, and the binding modes investigated by molecular dynamics simulation. Binding free energies were calculated using the molecular mechanics/Poisson-Bolzmann surface area (MM/PBSA) method. The trends in predicted binding free affinities correlated well with experimental data and were used to explain the activity difference of the studied inhibitors. Per-residue energy decomposition analyses provided further information on specific interaction properties. Finally, we also conducted a detailed e-pharmacophore modelling of the different RET-inhibitor complexes, explaining the common and specific pharmacophore features of the different complexes. The results reported herein will be useful in future rational design of novel DFG-out RET inhibitors. PMID:26044359

  9. Uptake, p53 Pathway Activation, and Cytotoxic Responses for Co(II) and Ni(II) in Human Lung Cells: Implications for Carcinogenicity

    PubMed Central

    Luczak, Michal W.; Zhitkovich, Anatoly

    2013-01-01

    Cobalt(II) and nickel(II) ions display similar chemical properties and act as hypoxia mimics in cells. However, only soluble Co(II) but not soluble Ni(II) is carcinogenic by inhalation. To explore potential reasons for these differences, we examined responses of human lung cells to both metals. We found that Co(II) showed almost 8 times higher accumulation than Ni(II) in H460 cells but caused a less efficient activation of the transcriptional factor p53 as measured by its accumulation, Ser15 phosphorylation, and target gene expression. Unlike Ni(II), Co(II) was ineffective in downregulating the p53 inhibitor MDM4 (HDMX). Co(II)-treated cells continued DNA replication at internal doses that caused massive apoptosis by Ni(II). Apoptosis and the overall cell death by Co(II) were delayed and weaker than by Ni(II). Inhibition of caspases but not programmed necrosis pathways suppressed Co(II)-induced cell death. Knockdown of p53 produced 50%–60% decreases in activation of caspases 3/7 and expression of 2 most highly upregulated proapoptotic genes PUMA and NOXA by Co(II). Overall, p53-mediated apoptosis accounted for 55% cell death by Co(II), p53-independent apoptosis for 20%, and p53/caspase-independent mechanisms for 25%. Similar to H460, normal human lung fibroblasts and primary human bronchial epithelial cells had several times higher accumulation of Co(II) than Ni(II) and showed a delayed and weaker caspase activation by Co(II). Thus, carcinogenicity of soluble Co(II) could be related to high survival of metal-loaded cells, which permits accumulation of genetic and epigenetic abnormalities. High cytotoxicity of soluble Ni(II) causes early elimination of damaged cells and is expected to be cancer suppressive. PMID:24068677

  10. Biomarkers associated with checkpoint inhibitors.

    PubMed

    Manson, G; Norwood, J; Marabelle, A; Kohrt, H; Houot, R

    2016-07-01

    Checkpoint inhibitors (CPI), namely anti-CTLA4 and anti-PD1/PD-L1 antibodies, demonstrated efficacy across multiple types of cancer. However, only subgroups of patients respond to these therapies. Additionally, CPI can induce severe immune-related adverse events (irAE). Biomarkers that predict efficacy and toxicity may help define the patients who may benefit the most from these costly and potentially toxic therapies. In this study, we review the main biomarkers that have been associated with the efficacy (pharmacodynamics and clinical benefit) and the toxicity (irAE) of CPIs in patients. PMID:27122549

  11. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  12. A phase II evaluation of the potent, highly selective PARP inhibitor veliparib in the treatment of persistent or recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in patients who carry a germline BRCA1 or BRCA2 mutation – an NRG Oncology/Gynecologic Oncology Group study

    PubMed Central

    Coleman, Robert L.; Sill, Michael W.; Bell-McGuinn, Katherine; Aghajanian, Carol; Gray, Heidi J.; Tewari, Krishnansu S.; Rubin, Steven C.; Rutherford, Thomas J.; Chan, John K; Chen, Alice; Swisher, Elizabeth M.

    2015-01-01

    Background Veliparib is a potent small molecule inhibitor of PARP-1/2, which is cytotoxic in tumor cells with deficiencies in BRCA1 or BRCA2. We studied the clinical activity and toxicity of veliparib in ovarian cancer patients carrying a germline BRCA1 or BRCA2 mutation (gBRCA). Methods Eligibility included three or fewer prior chemotherapy regimens, measurable disease and no prior use of a PARP inhibitor. Veliparib was administered at 400 mg orally BID with one cycle being 28 days. The two-stage Simon design was capable of detecting a 25% response probability with 90% power while controlling alpha=10% (at a 10% assumed null response probability). Results The median age of the 50 eligible patients was 57 years (range 37–94) and 14, 18, and 18 patients had 1, 2, and 3 prior therapies respectively. Thirty patients (60%) were platinum-resistant. The median number of cycles administered was 6 (1–27). There was one grade 4 thrombocytopenia. Grade 3 adverse events were: fatigue (n=3), nausea (2), leukopenia (1), neutropenia (1), dehydration (1), and ALT (1). Grade 2 events >10% were: nausea (46%), fatigue (26%), vomiting (18%), and anemia (14%). The proportion responding was 26% (90% CI: 16%–38%, CR:2, PR:11); for platinum-resistant and platinum-sensitive patients the proportion responding was 20% and 35%, respectively. The most common reason for treatment discontinuation was progression (62%). Twenty-nine patients are alive; two with SD remain on veliparib. The median PFS is 8.18 months. Conclusions The single agent efficacy and tolerability of veliparib for BRCA mutation-associated recurrent ovarian cancer warrants further investigation. PMID:25818403

  13. Predictive role of HER2/neu, topoisomerase-II-alpha, and tissue inhibitor of metalloproteinases (TIMP-1) for response to adjuvant taxane-based chemotherapy in patients with intermediate-risk breast cancer: results from the WSG-AGO EC-Doc trial.

    PubMed

    Erber, Ramona; Gluz, Oleg; Brünner, Nils; Kreipe, Hans Heinrich; Pelz, Enrico; Kates, Ronald; Bartels, Annette; Huober, Jens; Mohrmann, Svjetlana; Moustafa, Zehra; Liedtke, Cornelia; Möbus, Volker; Augustin, Doris; Thomssen, Christoph; Jänicke, Fritz; Kiechle, Marion; Kuhn, Walther; Nitz, Ulrike; Harbeck, Nadia; Hartmann, Arndt

    2015-04-01

    Taxane-anthracycline-based adjuvant chemotherapy is standard of care in patients with node-positive breast cancer (BC) but is also associated with severe side effects and significant costs. It is yet unclear, which biomarkers would predict benefit from taxanes and/or general chemoresistance. In this study, we investigate a large cohort of patients with intermediate-risk BC treated within the WSG EC-DOC Trial for the predictive impact of topoisomerase-II-alpha, HER2/neu, and TIMP-1. Tumor tissue was available in a representative cohort of 772 cases of the WSG EC-DOC Trial collective which compared 4xEC-4xDoc versus 6xCEF/CMF. In addition to hormone receptor status and Ki-67, HER2/neu+ and topoisomerase-II-alpha status using fluorescence in situ hybridisation (FISH) and immunohistochemistry, TIMP-1 using immunohistochemistry, and aneuploidy of chromosome 17 using FISH were evaluated and correlated with outcome and taxane benefit. There was significant superiority of EC-Doc over CEF regarding 5-year DFS (90 vs. 80 %, respectively, p = 0.006) particularly in patient subgroups defined by HR+, HER2/neu+, high proliferation (i.e., Ki-67 ≥ 20 %), patient age >50 years old and normal chromosome 17 status, high TIMP-1 and low topoisomerase-II-alpha protein expression. Significant prognostic factors in multivariate analysis were EC-Doc therapy (HR = 0.61; 95 %CI 0.38-0.986), age <50 years old (HR = 1.682; 95 %CI 1.025-2.579), centrally assessed grade 3 (HR = 4.657; 95 %CI 1.809-11.989), and high Ki-67 (HR = 2.232; 95 %CI 1.209-4.121). Interestingly, we observed a significant interaction between treatment arm (EC-Doc vs. CEF) and high topoisomerase-II-alpha protein expression (HR = 0.427; 95 %CI 0.203-0.900) in multivariate interaction analysis. Despite of univariate predictive effect of HER2/neu status among other factors only topoisomerase-II-alpha protein expression was associated with significant benefit from EC-Doc compared to CEF by multivariate interaction analysis

  14. Oligopeptide cyclophilin inhibitors: a reassessment.

    PubMed

    Schumann, Michael; Jahreis, Günther; Kahlert, Viktoria; Lücke, Christian; Fischer, Gunter

    2011-11-01

    Potent cyclophilin A (CypA) inhibitors such as non-immunosuppressive cyclosporin A (CsA) derivatives have been already used in clinical trials in patients with viral infections. CypA is a peptidyl prolyl cis/trans isomerase (PPIase) that catalyzes slow prolyl bond cis/trans interconversions of the backbone of substrate peptides and proteins. In this study we investigate whether the notoriously low affinity inhibitory interaction of linear proline-containing peptides with the active site of CypA can be increased through a combination of a high cis/trans ratio and a negatively charged C-terminus as has been recently reported for Trp-Gly-Pro. Surprisingly, isothermal titration calorimetry did not reveal formation of an inhibitory CypA/Trp-Gly-Pro complex previously described within a complex stability range similar to CsA, a nanomolar CypA inhibitor. Moreover, despite of cis content of 41% at pH 7.5 Trp-Gly-Pro cannot inhibit CypA-catalyzed standard substrate isomerization up to high micromolar concentrations. However, in the context of the CsA framework a net charge of -7 clustered at the amino acid side chain of position 1 resulted in slightly improved CypA inhibition. PMID:21963115

  15. New proteasome inhibitors in myeloma.

    PubMed

    Lawasut, Panisinee; Chauhan, Dharminder; Laubach, Jacob; Hayes, Catriona; Fabre, Claire; Maglio, Michelle; Mitsiades, Constantine; Hideshima, Teru; Anderson, Kenneth C; Richardson, Paul G

    2012-12-01

    Proteasome inhibition has a validated role in cancer therapy since the successful introduction of bortezomib for the treatment of multiple myeloma (MM) and mantle cell lymphoma, leading to the development of second-generation proteasome inhibitors (PI) for MM patients in whom currently approved therapies have failed. Five PIs have reached clinical evaluation, with the goals of improving efficacy and limiting toxicity, including peripheral neuropathy (PN). Carfilzomib, an epoxyketone with specific chymothrypsin-like activity, acts as an irreversible inhibitor and was recently FDA approved for the response benefit seen in relapsed and refractory MM patients previously treated with bortezomib, thalidomide and lenalidomide. ONX-0912 is now under evaluation as an oral form with similar activity. The boronate peptides MLN9708 and CEP-18770 are orally bioactive bortezomib analogs with prolonged activity and greater tissue penetration. NPI-0052 (marizomib) is a unique, beta-lactone non-selective PI that has been shown to potently overcome bortezomib resistance in vitro. All of these second-generation PIs demonstrate encouraging anti-MM activity and appear to reduce the incidence of PN, with clinical trials ongoing. PMID:23065395

  16. Norepinephrine metabolism in neuronal cultures is increased by angiotensin II

    SciTech Connect

    Sumners, C.; Shalit, S.L.; Kalberg, C.J.; Raizada, M.K.

    1987-06-01

    In this study the authors have examined the actions of angiotensin II (ANG II) on catecholamine metabolism in neuronal brain cell cultures prepared from the hypothalamus and brain stem. Neuronal cultures prepared from the brains of 1-day-old Sprague-Dawley rats exhibit specific neuronal uptake mechanisms for both norepinephrine (NE) and dopamine (DA), and also monoamine oxidase (MAO) and catechol O-methyltransferase (COMT) activity. Separate neuronal uptake sites for NE and DA were identified by using specific neuronal uptake inhibitors for each amine. In previous studies, they determined that ANG II (10 nM-1 ..mu..M) stimulates increased neuronal (/sup 3/H)NE uptake by acting as specific receptors. They have confirmed these results here and in addition have shown that ANG II has not significant effects on neuronal (/sup 3/H)DA uptake. These results suggest that the actions of ANG II are restricted to the NE transporter in neuronal cultures. It is possible that ANG II stimulates the intraneuronal metabolism of at least part of the NE that is taken up, because the peptide stimulates MAO activity, an effect mediated by specific ANG II receptors. ANG II had no effect on COMT activity in neuronal cultures. Therefore, the use of neuronal cultures of hypothalamus and brain stem they have determined that ANG II can specifically alter NE metabolism in these areas, while apparently not altering DA metabolism.

  17. New sulfur-containing corrosion inhibitor

    SciTech Connect

    Prince, P.

    2000-04-01

    No corrosion inhibitor available today is ideal in every way, but a new class of sulfur-containing compounds promises to address many field requirements. This article describes the performance characteristics of these compounds and discusses possible inhibition mechanisms. The emphasis in this work was on better understanding corrosion inhibition by sulfur-containing inhibitors under high shear-stress conditions, with special focus on localized (pitting) corrosion. The results indicate that the new sulfur-containing inhibitors (e.g., mercaptoalcohol [MA]) could be more effective in the field than currently available inhibitors.

  18. Juno II (AM-14)

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Juno II (AM-14) on the launch pad just prior to launch, March 3, 1959. The payload of AM-14 was Pioneer IV, America's first successful lunar mission. The Juno II was a modification of Jupiter ballistic missile

  19. Renal Inhibition of Heme Oxygenase-1 Increases Blood Pressure in Angiotensin II-Dependent Hypertension.

    PubMed

    Csongradi, Eva; Storm, Megan V; Stec, David E

    2012-01-01

    The goal of this study was to test the hypothesis that renal medullary heme oxygenase (HO) acts as a buffer against Ang-II dependent hypertension. To test this hypothesis, renal medullary HO activity was blocked using QC-13, an imidazole-dioxolane HO-1 inhibitor, or SnMP, a classical porphyrin based HO inhibitor. HO inhibitors were infused via IRMI catheters throughout the study starting 3 days prior to implantation of an osmotic minipump which delivered Ang II or saline vehicle. MAP was increased by Ang II infusion and further increased by IRMI infusion of QC-13 or SnMP. MAP averaged 113 ± 3, 120 ± 7, 141 ± 2, 153 ± 2, and 154 ± 3 mmHg in vehicle, vehicle + IRMI QC-13, Ang II, Ang II + IRMI QC-13, and Ang II + IRMI SnMP treated mice, respectively (n = 6). Inhibition of renal medullary HO activity with QC-13 in Ang II infused mice was also associated with a significant increase in superoxide production as well as significant decreases in antioxidant enzymes catalase and MnSOD. These results demonstrate that renal inhibition of HO exacerbates Ang II dependent hypertension through a mechanism which is associated with increases in superoxide production and decreases in antioxidant enzymes. PMID:22164328

  20. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent

    PubMed Central

    Bonenfant, Débora; Rubert, Joëlle; Vangrevelinghe, Eric; Scheufler, Clemens; Marque, Fanny; Régnier, Catherine H.; De Pover, Alain; Ryckelynck, Hugues; Bhagwat, Neha; Koppikar, Priya; Goel, Aviva; Wyder, Lorenza; Tavares, Gisele; Baffert, Fabienne; Pissot-Soldermann, Carole; Manley, Paul W.; Gaul, Christoph; Voshol, Hans; Levine, Ross L.; Sellers, William R.; Hofmann, Francesco; Radimerski, Thomas

    2016-01-01

    JAK inhibitors are being developed for the treatment of rheumatoid arthritis, psoriasis, myeloproliferative neoplasms and leukemias. Most of these drugs target the ATP-binding pocket and stabilize the active conformation of the JAK kinases. This type-I binding mode leads to an increase in JAK activation-loop phosphorylation, despite blockade of kinase function. Here we report that stabilizing the inactive state via type-II inhibition acts in the opposite manner, leading to a loss of activation-loop phosphorylation. We used X-ray crystallography to corroborate the binding mode and report for the first time the crystal structure of the JAK2 kinase domain in an inactive conformation. Importantly, JAK inhibitor-induced activation-loop phosphorylation requires receptor interaction, as well as intact kinase and pseudokinase domains. Hence, depending on the respective conformation stabilized by a JAK inhibitor, hyperphosphorylation of the activation-loop may or may not be elicited. PMID:22684457

  1. Angiotensin-I-Converting Enzyme (ACE) Inhibitors from Marine Resources: Prospects in the Pharmaceutical Industry

    PubMed Central

    Wijesekara, Isuru; Kim, Se-Kwon

    2010-01-01

    Hypertension or high blood pressure is one of the major independent risk factors for cardiovascular diseases. Angiotensin-I-converting enzyme (EC 3.4.15.1; ACE) plays an important physiological role in regulation of blood pressure by converting angiotensin I to angiotensin II, a potent vasoconstrictor. Therefore, the inhibition of ACE activity is a major target in the prevention of hypertension. Recently, the search for natural ACE inhibitors as alternatives to synthetic drugs is of great interest to prevent several side effects and a number of novel compounds such as bioactive peptides, chitooligosaccharide derivatives (COS) and phlorotannins have been derived from marine organisms as potential ACE inhibitors. These inhibitory derivatives can be developed as nutraceuticals and pharmaceuticals with potential to prevent hypertension. Hence, the aim of this review is to discuss the marine-derived ACE inhibitors and their future prospects as novel therapeutic drug candidates for treat hypertension. PMID:20479968

  2. Identification of the first low-molecular-weight inhibitors of matriptase-2.

    PubMed

    Sisay, Mihiret Tekeste; Steinmetzer, Torsten; Stirnberg, Marit; Maurer, Eva; Hammami, Maya; Bajorath, Jürgen; Gütschow, Michael

    2010-08-12

    As recently discovered, matriptase-2, a type II transmembrane serine protease, plays a crucial role in body iron homeostasis by down-regulating hepcidin expression, which results in increased iron levels. Thus, matriptase-2 represents a novel target for the development of enzyme inhibitors potentially useful for the treatment of systemic iron overload (hemochromatosis). A comparative three-dimensional model of the catalytic domain of matriptase-2 was generated and utilized for structure-based virtual screening in combination with similarity searching and knowledge-based compound design. Two N-protected dipeptide amides containing a 4-amidinobenzylamide as P1 residue (compounds 1 and 3) were identified as the first small molecule inhibitors of matriptase-2 with K(i) values of 170 and 460 nM, respectively. An inhibitor of the closely related protease matriptase (compound 2, K(i) = 220 nM), with more than 50-fold selectivity over matriptase-2, was also identified. PMID:20684597

  3. A selective inhibitor of the UFM1-activating enzyme, UBA5.

    PubMed

    da Silva, Sara R; Paiva, Stacey-Lynn; Bancerz, Matthew; Geletu, Mulu; Lewis, Andrew M; Chen, Jijun; Cai, Yafei; Lukkarila, Julie L; Li, Honglin; Gunning, Patrick T

    2016-09-15

    Protein conjugation with ubiquitin and ubiquitin-like small molecules, such as UFM1, is important for promoting cancer cell survival and proliferation. Herein, the development of the first selective micromolar inhibitor of the UBA5 E1 enzyme that initiates UFM1 protein conjugation is described. This organometallic inhibitor incorporates adenosine and zinc(II)cyclen within its core scaffold and inhibits UBA5 noncompetitively and selectively over other E1 enzymes and a panel of human kinases. Furthermore, this compound selectively impedes the cellular proliferation (above 50μM) of cancer cells containing higher levels of UBA5. This inhibitor may be used to further probe the intracellular role of the UFM1 pathway in disease progression. PMID:27520940

  4. Synovial sarcoma cell lines showed reduced DNA repair activity and sensitivity to a PARP inhibitor.

    PubMed

    Yamasaki, Hiroyuki; Miyamoto, Mamiko; Yamamoto, Yuki; Kondo, Tadashi; Watanabe, Toshiki; Ohta, Tsutomu

    2016-08-01

    Synovial sarcoma is a soft-tissue sarcoma and a rare type of cancer. Unfortunately, effective chemotherapies for synovial sarcomas have not been established. In this report, we show that synovial sarcoma cell lines have reduced repair activity for DNA damage induced by ionizing radiation (IR) and a topoisomerase II inhibitor (etoposide). We also observed reduced recruitment of RAD51 homologue (S. cerevisiae; RAD51) at sites of double-strand breaks (DSBs) in synovial sarcoma cell lines that had been exposed to IR. These findings showed that synovial sarcoma cell lines are defective in homologous recombination (HR) repair. Furthermore, we found that a poly-(ADP-ribose) polymerase (PARP) inhibitor (AZD2281; olaparib) effectively reduced the growth of synovial sarcoma cell lines in the presence of an alkylating agent (temozolomide). Our findings offer evidence that treatment combining a PARP inhibitor and an alkylating agent could have therapeutic benefits in the treatment of synovial sarcoma. PMID:27353471

  5. Inhibitors of cathepsins B and L induce autophagy and cell death in neuroblastoma cells

    PubMed Central

    Cartledge, Donna M.; Colella, Rita; Glazewski, Lisa; Lu, Guizhen; Mason, Robert W.

    2012-01-01

    Summary This study was designed to test the hypothesis that specific inhibition of cathepsins B and L will cause death of neuroblastoma cells. Five compounds that differ in mode and rate of inhibition of these two enzymes were all shown to cause neuroblastoma cell death. Efficacy of the different compounds was related to their ability to inhibit the activity of the isolated enzymes. A dose- and time-response for induction of cell death was demonstrated for each compound. A proteomic study showed that inhibitor treatment caused an increase of markers of cell stress, including induction of levels of the autophagy marker, LC-3-II. Levels of this marker protein were highest at cytotoxic inhibitor concentrations, implicating autophagy in the cell death process. An in vivo mouse model showed that one of these inhibitors markedly impaired tumor growth. It is concluded that development of drugs to target these two proteases may provide a novel approach to treating neuroblastoma. PMID:22549440

  6. New beginnings for matrix metalloproteinase inhibitors: identification of high-affinity zinc-binding groups.

    PubMed

    Puerta, David T; Lewis, Jana A; Cohen, Seth M

    2004-07-14

    In an effort to identify promising non-hydroxamate inhibitors of matrix metalloproteinases (MMPs), several new zinc-binding groups (ZBGs) based on pyrone, pyrothione, hydroxypyridinone, and hydroxypyridinethione chelators have been examined. Structural studies with tris(pyrazolyl)borate model complexes show that these ligands bind to the MMP active site zinc(II) ion in a bidentate fashion, similar to that found with hydroxamate-based inhibitors. Fluorescence- and colorimetric-based enzyme assays have been used to determine the IC50 values for these ZBGs against MMP-3; mixed O,S-donor ligands were found to be remarkably potent, with IC50 values as much as 700-fold lower than that found for acetohydroxamic acid. Inhibitory activity was found to parallel metal binding affinity as determined in titrations with model complexes. These results demonstrate that MPIs based on new ZBGs are feasible and may indeed improve the overall performance of inhibitors designed against these important medicinal targets. PMID:15237990

  7. OF4949, new inhibitors of aminopeptidase B. I. Taxonomy, fermentation, isolation and characterization.

    PubMed

    Sano, S; Ikai, K; Kuroda, H; Nakamura, T; Obayashi, A; Ezure, Y; Enomoto, H

    1986-12-01

    New aminopeptidase B inhibitors that we named OF4949-I, II, III and IV were isolated from the culture broth of a fungus, Penicillium rugulosum OF4949. The molecular formula of I was C23H26N4O8 and that of II, C22H24O8, judging from elemental analysis and secondary ion mass spectrometry. The concentrations of I, II, III and IV required for 50% inhibition of aminopeptidase, using Ehrlich ascites carcinoma cells as the source of the enzyme, were 0.0054, 0.0048, 3.4 and 1.7 micrograms/ml, respectively. Components I and II augmented delayed-type hypersensitivity in mice to sheep red blood cells. PMID:3818441

  8. Simultaneous exposure of transformed cells to SRC family inhibitors and CHK1 inhibitors causes cell death.

    PubMed

    Mitchell, Clint; Hamed, Hossein A; Cruickshanks, Nichola; Tang, Yong; Bareford, M Danielle; Hubbard, Nissan; Tye, Gary; Yacoub, Adly; Dai, Yun; Grant, Steven; Dent, Paul

    2011-08-01

    The present studies were initiated to determine in greater molecular detail the regulation of CHK1 inhibitor lethality in transfected and infected breast cancer cells and using genetic models of transformed fibrobalsts. Multiple MEK1/2 inhibitors (PD184352, AZD6244 (ARRY-142886)) interacted with multiple CHK1 inhibitors (UCN-01 (7-hydroxystaurosporine), AZD7762) to kill mammary carcinoma cells and transformed fibroblasts. In transformed cells, CHK1 inhibitor -induced activation of ERK1/2 was dependent upon activation of SRC family non-receptor tyrosine kinases as judged by use of multiple SRC kinase inhibitors (PP2, Dasatinib; AZD0530), use of SRC/FYN/YES deleted transformed fibroblasts or by expression of dominant negative SRC. Cell killing by SRC family kinase inhibitors and CHK1 inhibitors was abolished in BAX/BAK -/- transformed fibroblasts and suppressed by over expression of BCL-XL. Treatment of cells with BCL-2/BCL-XL antagonists promoted SRC inhibitor + CHK1 inhibitor -induced lethality in a BAX/BAK-dependent fashion. Treatment of cells with [SRC + CHK1] inhibitors radio-sensitized tumor cells. These findings argue that multiple inhibitors of the SRC-RAS-MEK pathway interact with multiple CHK1 inhibitors to kill transformed cells. PMID:21642769

  9. Inhibitors of angiotensin-converting enzyme modulate mitosis and gene expression in pancreatic cancer cells

    SciTech Connect

    Reddy, M.K.; Baskaran, K.; Molteni, A.

    1995-12-01

    The angiotensin-converting enzyme (ACE) inhibitor captopril inhibits mitosis in several cell types that contain ACE and renin activity. In the present study, we evaluated the effect of the ACE inhibitors captopril and CGS 13945 (10{sup {minus}8} to 10{sup {minus}2}M) on proliferation and gene expression in hamster pancreatic duct carcinoma cells in culture. These cells lack renin and ACE activity. Both ACE inhibitors produced a dose-dependent reduction in tumor cell proliferation within 24 hr. Captopril at a concentration of 0.36 mM and CGS 13945 at 150 {mu}M decreased cellular growth rate to approximately half that of the control. Neither drug influenced the viability or the cell cycle distribution of the tumor cells. Slot blot analysis of mRNA for four genes, proliferation associated cell nuclear antigen (PCNA), K-ras, protein kinase C-{Beta} (PKC-{Beta}) and carbonic anhydrase II (CA II) was performed. Both ACE inhibitors increased K-ras expression by a factor of 2, and had no effect on CA II mRNA levels. Captopril also lowered PCNA by 40% and CGS 13945 lowered PKC-{Beta} gene expression to 30% of the control level. The data demonstrate that ACE inhibitors exhibit antimitotic activity and differential gene modulation in hamster pancreatic duct carcinoma cells. The absence of renin and ACE activity in these cells suggests that the antimitotic action of captopril and CGS 13945 is independent of renin-angiotensin regulation. The growth inhibition may occur through downregulation of growth-related gene expression. 27 refs., 5 figs.

  10. Controlling CO{sub 2} corrosion with inhibitors

    SciTech Connect

    Dougherty, J.A.

    1998-12-31

    Transport of corrosion inhibitor to the location where they are needed is one of the primary concerns in the use of corrosion inhibitors. Two different types of inhibitors for controlling CO{sub 2} corrosion in gas well wellheads and flowlines are used as examples. In one example, the inhibitor forms a micelle in water which assists in the transport of inhibitor to the metal surface . In the other example, the inhibitor is readily dispersible in the water phase but must be stirred to ensure transport of the inhibitor to the metal surface. Field monitored corrosion rates using continuous application of inhibitor are presented for both types of inhibitor.

  11. Furazan and furoxan sulfonamides are strong α-carbonic anhydrase inhibitors and potential antiglaucoma agents.

    PubMed

    Chegaev, Konstantin; Lazzarato, Loretta; Tamboli, Yasinalli; Boschi, Donatella; Blangetti, Marco; Scozzafava, Andrea; Carta, Fabrizio; Masini, Emanuela; Fruttero, Roberta; Supuran, Claudiu T; Gasco, Alberto

    2014-08-01

    A series of furazan and furoxan sulfonamides were prepared and studied for their ability to inhibit human carbonic anhydrase (CA, EC 4.2.1.1) isoforms hCA I, hCA II, hCA IX, and hCA XII. The simple methyl substituted products 3-5 were potent inhibitors. Differing structural modifications of these leads had differing effects on potency and selectivity. In particular, products in which the sulfonamide group is separated from the hetero ring by a phenylene bridge retained high potency only on the hCA XII isoform. The sulfonamides 3-5 exerted intraocular pressure (IOP) lowering effects in vivo in hypertensive rabbits more efficiently than dorzolamide. Some other products (39-42), although less effective in vitro hCA II/XII inhibitors, also effectively lowered IOP in two different animal models of glaucoma. PMID:25022971

  12. Structure-Activity Relationships of Novel Tryptamine-Based Inhibitors of Bacterial Transglycosylase.

    PubMed

    Sosič, Izidor; Anderluh, Marko; Sova, Matej; Gobec, Martina; Mlinarič Raščan, Irena; Derouaux, Adeline; Amoroso, Ana; Terrak, Mohammed; Breukink, Eefjan; Gobec, Stanislav

    2015-12-24

    Penicillin-binding proteins represent well-established, validated, and still very promising targets for the design and development of new antibacterial agents. The transglycosylase domain of penicillin-binding proteins is especially important, as it catalyzes polymerization of glycan chains, using the peptidoglycan precursor lipid II as a substrate. On the basis of the previous discovery of a noncovalent small-molecule inhibitor of transglycosylase activity, we systematically explored the structure-activity relationships of these tryptamine-based inhibitors. The main aim was to reduce the nonspecific cytotoxic properties of the initial hit compound and concurrently to retain the mode of its inhibition. A focused library of tryptamine-based compounds was synthesized, characterized, and evaluated biochemically. The results presented here show the successful reduction of the nonspecific cytotoxicity, and the retention of the inhibition of transglycosylase enzymatic activity, as well as the ability of these compounds to bind to lipid II and to have antibacterial actions. PMID:26588190

  13. Design of [(2-pyrimidinylthio)acetyl]benzenesulfonamides as inhibitors of human carbonic anhydrases.

    PubMed

    Čapkauskaitė, Edita; Zubrienė, Asta; Baranauskienė, Lina; Tamulaitienė, Giedrė; Manakova, Elena; Kairys, Visvaldas; Gražulis, Saulius; Tumkevičius, Sigitas; Matulis, Daumantas

    2012-05-01

    A series of [(2-pyrimidinylthio)acetyl]benzenesulfonamides were designed and synthesized. Their binding affinities as inhibitors of several recombinant human carbonic anhydrase (CA) isozymes were determined by isothermal titration calorimetry (ITC) and thermal shift assay (TSA). A group of compounds containing a chlorine atom in the benzenesulfonamide ring were found to exhibit higher selectivity but lower binding affinity toward tested CAs. The crystal structures of selected compounds in complex with CA II were determined to atomic resolution. Docking studies were performed to compare the binding modes of experimentally determined crystallographic structures with computational prediction of the pyrimidine derivative binding to CA II. Several compounds bound to select CAs with single-digit nanomolar affinities and could be used as leads for inhibitor development toward a select CA isozyme. PMID:22440859

  14. Role of neprilysin inhibitor combinations in hypertension: insights from hypertension and heart failure trials.

    PubMed

    Bavishi, Chirag; Messerli, Franz H; Kadosh, Bernard; Ruilope, Luis M; Kario, Kazuomi

    2015-08-01

    Neprilysin is a neutral endopeptidase and its inhibition increases bioavailability of natriuretic peptides, bradykinin, and substance P, resulting in natriuretic, vasodilatatory, and anti-proliferative effects. In concert, these effects are prone to produce a powerful ventricular unloading and antihypertensive response. LCZ696 (Valsartan/sacubitril) is a first-in-class angiotensin II-receptor neprilysin inhibitor. LCZ696 is a novel drug not only for the treatment of heart failure but it is also likely to be a useful antihypertensive drug and may have a preferential effect on systolic pressure. This review discusses (i) the mechanism of action, pharmacokinetics, and pharmacodynamics of this novel drug, (ii) the efficacy, safety, and tolerability of LCZ696 in treatment of hypertension from the available trials, (iii) evidence from other contemporary trials on combined Neprilysin inhibitors, (iv) future trials and areas of research to identify hypertensive patient populations that would most benefit from LCZ696. PMID:25898846

  15. Panobinostat (LBH589): a potent pan-deacetylase inhibitor with promising activity against hematologic and solid tumors.

    PubMed

    Prince, H Miles; Bishton, Mark J; Johnstone, Ricky W

    2009-06-01

    The deacetylase inhibitors are a structurally diverse class of targeted antineoplastic agents that have demonstrated in vitro and in vivo preclinical activity in a wide range of malignancies. Based on this preclinical activity, several deacetylase inhibitors have undergone rapid clinical development in recent years. Among these, the deacetylase inhibitor panobinostat is one of the most widely studied, with extensive pharmacokinetic, pharmacodynamic and dose-finding data available across a wide variety of hematologic and solid tumors. Furthermore, panobinostat has demonstrated favorable clinical activity against various hematologic malignancies, most notably lymphomas and myeloid malignancies in Phase I and II studies. In this article, we discuss the preclinical data on panobinostat and emerging data from Phase I and II studies in cancer patients. PMID:19519200

  16. Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy.

    PubMed

    Clement, Omoshile O; Freeman, Clive M; Hartmann, Rolf W; Handratta, Venkatesh D; Vasaitis, Tadas S; Brodie, Angela M H; Njar, Vincent C O

    2003-06-01

    We report here a molecular modeling investigation of steroidal and nonsteroidal inhibitors of human cytochrome P450 17alpha-hydroxylase-17,20-lyase (CYP17). Using the pharmacophore perception technique, we have generated common-feature pharmacophore model(s) to explain the putative binding requirements for two classes of human CYP17 inhibitors. Common chemical features in the steroid and nonsteroid human CYP17 enzyme inhibitors, as deduced by the Catalyst/HipHop program, are one to two hydrogen bond acceptors (HBAs) and three hydrophobic groups. For azole-steroidal ligands, the 3beta-OH group of ring A and the N-3 of the azole ring attached to ring D at C-17 act as hydrogen bond acceptors. A model that permits hydrogen bond interaction between the azole functionality on ring D and the enzyme is consistent with experimental deductions for type II CYP17 inhibitors where a sixth ligating atom interacts with Fe(II) of heme. In general, pharmacophore models derived for steroid and nonsteroidal compounds bear striking similarities to all azole sites mapping the HBA functionality and to three hydrophobic features describing the hydrophobic interactions between the ligands and the enzyme. Using the pharmacophore model derived for azole-steroidal inhibitors as a 3D search query against several 3D multiconformational Catalyst formatted databases, we identified several steroidal compounds with potential inhibition of this enzyme. Biological testing of some of these compounds show low to high inhibitory potency against the human CYP17 enzyme. This shows the potential of our pharmacophore model in identifying new and potent CYP17 inhibitors. Further refinement of the model is in progress with a view to identifying and optimizing new leads. PMID:12773039

  17. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  18. KH-30 Parafin Inhibitor Treatment

    SciTech Connect

    Rochelle, J.

    2001-09-30

    United Energy Corporation (UNRG) and the U.S. Department of Energy personnel tested KH-30 at the Rocky Mountain Oilfield Testing Center (RMOTC) outside Casper, Wyoming on two separate occasions. KH-30 is a non-toxic, non-hazardous product, which combines the functions of a solvent dispersant, crystal modifier and inhibitor into a single solution. The first test was held in March of 2001, wherein five wells were treated with a mixture of KH-30 and brine water, heated to 180 degrees F. No increase in production was attained in these tests. In June, 2001, three shallow, low pressure RMOTC wells with 30 years of production were treated with a mixture of 40% KH-30 and 60% diesel. Increases were seen in three wells. The wells then returned to their original rates.

  19. Natural Products as Aromatase Inhibitors

    PubMed Central

    Balunas, Marcy J.; Su, Bin; Brueggemeier, Robert W.; Kinghorn, A. Douglas

    2010-01-01

    With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating also the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.g., botanical dietary supplements) may also afford AIs with reduced side effects. A thorough review of the literature regarding natural product extracts and secondary metabolites of plant, microbial, and marine origin that have been shown to exhibit aromatase inhibitory activity is presented herein. PMID:18690828

  20. Loratadine analogues as MAGL inhibitors.

    PubMed

    Patel, Jayendra Z; Ahenkorah, Stephen; Vaara, Miia; Staszewski, Marek; Adams, Yahaya; Laitinen, Tuomo; Navia-Paldanius, Dina; Parkkari, Teija; Savinainen, Juha R; Walczyński, Krzysztof; Laitinen, Jarmo T; Nevalainen, Tapio J

    2015-04-01

    Compound 12a (JZP-361) acted as a potent and reversible inhibitor of human recombinant MAGL (hMAGL, IC50=46 nM), and was found to have almost 150-fold higher selectivity over human recombinant fatty acid amide hydrolase (hFAAH, IC50=7.24 μM) and 35-fold higher selectivity over human α/β-hydrolase-6 (hABHD6, IC50=1.79 μM). Additionally, compound 12a retained H1 antagonistic affinity (pA2=6.81) but did not show cannabinoid receptor activity, when tested at concentrations ⩽ 10 μM. Hence, compound 12a represents a novel dual-acting pharmacological tool possessing both MAGL-inhibitory and antihistaminergic activities. PMID:25752982

  1. Inhibitors of apoptosis catch ubiquitin.

    PubMed

    Rajalingam, Krishnaraj; Dikic, Ivan

    2009-01-01

    IAP (inhibitor of apoptosis) proteins are a class of anti-apoptotic regulators characterized by the presence of BIR (baculoviral IAP repeat) domains. Some of the IAPs also possess a RING (really interesting new gene) domain with E3 ubiquitin ligase activity. In this issue of the Biochemical Journal, Blankenship et al. unveil the presence of an UBA (ubiquitin-associated domain) in several IAPs. UBAs in c-IAPs (cellular IAPs) bind to monoubiquitin and ubiquitin chains and are implicated in degradation of c-IAPs by promoting their interaction with proteasomes as well as in regulation of TNF-alpha (tumour necrosis factor-alpha)-induced apoptosis. These novel observations establish IAPs as ubiquitin-interacting proteins and opens up new lines of investigation. PMID:19061481

  2. Quinolone-based HDAC inhibitors.

    PubMed

    Balasubramanian, Gopalan; Kilambi, Narasimhan; Rathinasamy, Suresh; Rajendran, Praveen; Narayanan, Shridhar; Rajagopal, Sridharan

    2014-08-01

    HDAC inhibitors emerged as promising drug candidates in combating wide variety of cancers. At present, two of the compounds SAHA and Romidepsin were approved by FDA for cutaneous T-cell lymphoma and many are in various clinical phases. A new quinolone cap structure was explored with hydroxamic acid as zinc-binding group (ZBG). The pan HDAC inhibitory and antiproliferative activities against three human cancer cell lines HCT-116 (colon), NCI-H460 (lung) and U251 (glioblastoma) of the compounds (4a-4w) were evaluated. Introduction of heterocyclic amines in CAP region increased the enzyme inhibitory and antiproliferative activities and few of the compounds tested are metabolically stable in both MLM and HLM. PMID:25019596

  3. The direct thrombin inhibitor hirudin.

    PubMed

    Greinacher, Andreas; Warkentin, Theodore E

    2008-05-01

    This review discusses the pharmacology and clinical applications of hirudin, a bivalent direct thrombin inhibitor (DTI). Besides the current major indication for hirudin--anticoagulation of patients with heparin-induced thrombocytopenia (HIT)--the experience with hirudin in other indications, especially acute coronary syndromes, are briefly presented. Hirudins have been formally studied prior to their regulatory approval; however, important information on their side effects and relevant preventative measures only became available later. Therefore, current recommendations and dosing schedules for hirudin differ considerably from the information given in the package inserts. Drawbacks of hirudin and important precautions for avoiding potential adverse effects are discussed in detail in the third part of this review. PMID:18449411

  4. Enzyme-Inhibitor Association Thermodynamics

    PubMed Central

    Resat, Haluk; Marrone, Tami J.; McCammon, J. Andrew

    1997-01-01

    Studying the thermodynamics of biochemical association reactions at the microscopic level requires efficient sampling of the configurations of the reactants and solvent as a function of the reaction pathways. In most cases, the associating ligand and receptor have complementary interlocking shapes. Upon association, loosely connected or disconnected solvent cavities at and around the binding site are formed. Disconnected solvent regions lead to severe statistical sampling problems when simulations are performed with explicit solvent. It was recently proposed that, when such limitations are encountered, they might be overcome by the use of the grand canonical ensemble. Here we investigate one such case and report the association free energy profile (potential of mean force) between trypsin and benzamidine along a chosen reaction coordinate as calculated using the grand canonical Monte Carlo method. The free energy profile is also calculated for a continuum solvent model using the Poisson equation, and the results are compared to the explicit water simulations. The comparison shows that the continuum solvent approach is surprisingly successful in reproducing the explicit solvent simulation results. The Monte Carlo results are analyzed in detail with respect to solvation structure. In the binding site channel there are waters bridging the carbonyl oxygen groups of Asp189 with the NH2 groups of benzamidine, which are displaced upon inhibitor binding. A similar solvent-bridging configuration has been seen in the crystal structure of trypsin complexed with bovine pancreatic trypsin inhibitor. The predicted locations of other internal waters are in very good agreement with the positions found in the crystal structures, which supports the accuracy of the simulations. ImagesFIGURE 5 PMID:9017183

  5. Induction of autophagy by proteasome inhibitor is associated with proliferative arrest in colon cancer cells

    SciTech Connect

    Wu, William Ka Kei Wu Yachun; Yu Le; Li Zhijie; Sung, Joseph Jao Yiu; Cho, C.H.

    2008-09-19

    The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Blockade of UPS by proteasome inhibitors has been shown to activate autophagy. Recent evidence also suggests that proteasome inhibitors may inhibit cancer growth. In this study, the effect of a proteasome inhibitor MG-132 on the proliferation and autophagy of cultured colon cancer cells (HT-29) was elucidated. Results showed that MG-132 inhibited HT-29 cell proliferation and induced G{sub 2}/M cell cycle arrest which was associated with the formation of LC3{sup +} autophagic vacuoles and the accumulation of acidic vesicular organelles. MG-132 also increased the protein expression of LC3-I and -II in a time-dependent manner. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3{sup +} autophagic vacuoles and the expression of LC3-II but not LC3-I induced by MG-132. Taken together, this study demonstrates that inhibition of proteasome in colon cancer cells lowers cell proliferation and activates autophagy. This discovery may shed a new light on the novel function of proteasome in the regulation of autophagy and proliferation in colon cancer cells.

  6. How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation.

    PubMed

    Mangerich, Aswin; Bürkle, Alexander

    2011-01-15

    Poly(ADP-ribosyl)ation is a post-translational modification catalyzed by the enzyme family of poly(ADP-ribose) polymerases (PARPs). PARPs exhibit pleiotropic cellular functions ranging from maintenance of genomic stability and chromatin remodeling to regulation of cell death, thereby rendering PARP homologues promising targets in cancer therapy. Depending on the molecular status of a cancer cell, low-molecular weight PARP inhibitors can (i) either be used as monotherapeutic agents following the concept of synthetic lethality or (ii) to support classical chemotherapy or radiotherapy. The rationales are the following: (i) in cancers with selective defects in homologous recombination repair, inactivation of PARPs directly causes cell death. In cancer treatment, this phenomenon can be employed to specifically target tumor cells while sparing nonmalignant tissue. (ii) PARP inhibitors can also be used to sensitize cells to cytotoxic DNA-damaging treatments, as some PARPs actively participate in genomic maintenance. Apart from that, PARP inhibitors possess antiangiogenic functions, thus opening up a further option to inhibit tumor growth. In view of the above, a number of high-potency PARP inhibitors have been developed during the last decade and are currently evaluated as cancer therapeutics in clinical trials by several leading pharmaceutical companies. PMID:20853319

  7. Protease inhibitor homologues from mamba venoms: facilitation of acetylcholine release and interactions with prejunctional blocking toxins.

    PubMed

    Harvey, A L; Karlsson, E

    1982-09-01

    1 Five polypeptides, which were isolated from elapid snake venoms and which are structurally related to protease inhibitors, were tested for action on isolated biventer cervicis nerve-muscle preparations of the chick. 2 Dendrotoxin from the Eastern green mamba (Dendroaspis angusticeps) and toxins K and I from the black mamba (Dendroaspis polylepis polylepis) increased to indirect stimulation without affecting responses to exogenous acetylcholine, carbachol of KCl. 3 The two other protease inhibitor homologues, HHV-II from Ringhals cobra (Hemachatus haemachatus) and NNV-II from Cape cobra (Naja nivea) did not increase responses to nerve stimulation. Trypsin inhibitor from bovine pancreas also had no facilitatory effects on neuromuscular transmission. 4 The facilitatory toxins from mamba venoms interacted with the prejunctional blocking toxins, beta-bungarotoxin, crotoxin and notexin, but not with taipoxin. The blocking effects of beta-bungarotoxin were reduced by pretreatment with the mamba toxins, whereas the blocking actions of crotoxin and notexin were enhanced. 5 The results indicate that protease inhibitor homologues from mamba venoms form a new class of neurotoxin, which acts to increase the release of acetylcholine in response to motor nerve stimulation. 6 From the interaction studies it is concluded that the facilitatory toxins bind to motor nerve terminals at sites related to those occupied by the prejunctional blocking toxins. However, differences in interactions with individual toxins suggest that there must be several related binding sites on the nerve terminals. PMID:6751453

  8. MLN8054 and Alisertib (MLN8237): Discovery of Selective Oral Aurora A Inhibitors

    PubMed Central

    2015-01-01

    The Aurora kinases are essential for cell mitosis, and the dysregulation of Aurora A and B have been linked to the etiology of human cancers. Investigational agents MLN8054 (8) and alisertib (MLN8237, 10) have been identified as high affinity, selective, orally bioavailable inhibitors of Aurora A that have advanced into human clinical trials. Alisertib (10) is currently being evaluated in multiple Phase II and III clinical trials in hematological malignancies and solid tumors. PMID:26101564

  9. MLN8054 and Alisertib (MLN8237): Discovery of Selective Oral Aurora A Inhibitors.

    PubMed

    Sells, Todd B; Chau, Ryan; Ecsedy, Jeffrey A; Gershman, Rachel E; Hoar, Kara; Huck, Jessica; Janowick, David A; Kadambi, Vivek J; LeRoy, Patrick J; Stirling, Matthew; Stroud, Stephen G; Vos, Tricia J; Weatherhead, Gabriel S; Wysong, Deborah R; Zhang, Mengkun; Balani, Suresh K; Bolen, Joseph B; Manfredi, Mark G; Claiborne, Christopher F

    2015-06-11

    The Aurora kinases are essential for cell mitosis, and the dysregulation of Aurora A and B have been linked to the etiology of human cancers. Investigational agents MLN8054 (8) and alisertib (MLN8237, 10) have been identified as high affinity, selective, orally bioavailable inhibitors of Aurora A that have advanced into human clinical trials. Alisertib (10) is currently being evaluated in multiple Phase II and III clinical trials in hematological malignancies and solid tumors. PMID:26101564

  10. Novel tricyclics (e.g., GSK945237) as potent inhibitors of bacterial type IIA topoisomerases.

    PubMed

    Miles, Timothy J; Hennessy, Alan J; Bax, Ben; Brooks, Gerald; Brown, Barry S; Brown, Pamela; Cailleau, Nathalie; Chen, Dongzhao; Dabbs, Steven; Davies, David T; Esken, Joel M; Giordano, Ilaria; Hoover, Jennifer L; Jones, Graham E; Kusalakumari Sukmar, Senthill K; Markwell, Roger E; Minthorn, Elisabeth A; Rittenhouse, Steve; Gwynn, Michael N; Pearson, Neil D

    2016-05-15

    During the course of our research on the lead optimisation of the NBTI (Novel Bacterial Type II Topoisomerase Inhibitors) class of antibacterials, we discovered a series of tricyclic compounds that showed good Gram-positive and Gram-negative potency. Herein we will discuss the various subunits that were investigated in this series and report advanced studies on compound 1 (GSK945237) which demonstrates good PK and in vivo efficacy properties. PMID:27055939

  11. Intellectual property issues of immune checkpoint inhibitors.

    PubMed

    Storz, Ulrich

    2016-01-01

    Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors. PMID:26466763

  12. Trypsin inhibitors for the treatment of pancreatitis.

    PubMed

    Brandl, Trixi; Simic, Oliver; Skaanderup, Philip R; Namoto, Kenji; Berst, Frederic; Ehrhardt, Claus; Schiering, Nikolaus; Mueller, Irene; Woelcke, Julian

    2016-09-01

    Proline-based trypsin inhibitors occupying the S1-S2-S1' region were identified by an HTS screening campaign. It was discovered that truncation of the P1' moiety and appropriate extension into the S4 region led to highly potent trypsin inhibitors with excellent selectivity against related serine proteases and a favorable hERG profile. PMID:27476144

  13. Aminofurazans as potent inhibitors of AKT kinase

    SciTech Connect

    Rouse, Meagan B.; Seefeld, Mark A.; Leber, Jack D.; McNulty, Kenneth C.; Sun, Lihui; Miller, William H.; Zhang, ShuYun; Minthorn, Elisabeth A.; Concha, Nestor O.; Choudhry, Anthony E.; Schaber, Michael D.; Heerding, Dirk A.

    2009-06-24

    AKT inhibitors containing an imidazopyridine aminofurazan scaffold have been optimized. We have previously disclosed identification of the AKT inhibitor GSK690693, which has been evaluated in clinical trials in cancer patients. Herein we describe recent efforts focusing on investigating a distinct region of this scaffold that have afforded compounds (30 and 32) with comparable activity profiles to that of GSK690693.

  14. Discovery and SAR of hydantoin TACE inhibitors

    SciTech Connect

    Yu, Wensheng; Guo, Zhuyan; Orth, Peter; Madison, Vincent; Chen, Lei; Dai, Chaoyang; Feltz, Robert J.; Girijavallabhan, Vinay M.; Kim, Seong Heon; Kozlowski, Joseph A.; Lavey, Brian J.; Li, Dansu; Lundell, Daniel; Niu, Xiaoda; Piwinski, John J.; Popovici-Muller, Janeta; Rizvi, Razia; Rosner, Kristin E.; Shankar, Bandarpalle B.; Shih, Neng-Yang; Siddiqui, M.A.; Sun, J.; Tong, L.; Umland, S.; Wong, M.K.; Yang, D.Y.; Zhou, G.

    2010-09-03

    We disclose inhibitors of TNF-{alpha} converting enzyme (TACE) designed around a hydantoin zinc binding moiety. Crystal structures of inhibitors bound to TACE revealed monodentate coordination of the hydantoin to the zinc. SAR, X-ray, and modeling designs are described. To our knowledge, these are the first reported X-ray structures of TACE with a hydantoin zinc ligand.

  15. Tyrosinase inhibitors from Bolivian medicinal plants.

    PubMed

    Kubo, I; Yokokawa, Y; Kinst-Hori, I

    1995-05-01

    Bioassay-guided fractionation monitored by mushroom tyrosinase (EC 1.14.18.1) activity, afforded six inhibitors from three Bolivian medicinal plants, Buddleia coriacea, Gnaphalium cheiranthifolium, and Scheelea princeps. These inhibitors, which are all known phenolic compounds, inhibited the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) mediated by a mushroom tyrosinase. PMID:7623048

  16. The therapeutic potential of microbial proteasome inhibitors.

    PubMed

    Momose, Isao; Kawada, Manabu

    2016-08-01

    The proteasome influences cellular homeostasis through the degradation of regulatory proteins, many of which are also involved in disease pathogenesis. In particular, numerous regulatory proteins associated with tumor growth, such as cyclins, cyclin-dependent kinase inhibitors, tumor suppressors, and NF-κB inhibitors are degraded by the proteasome. Proteasome inhibitors can stabilize these regulatory proteins, resulting in the suppression of tumor development and the regulation of immune responses. Thus, proteasome inhibitors are promising candidate antitumor agents and immune-regulatory agents. Bortezomib is the first-in-class proteasome inhibitor approved for the treatment of multiple myeloma. Despite its high efficiency, however, a large proportion of patients do not attain sufficient clinical response due to toxicity and drug resistance. Therefore, the development of new proteasome inhibitors with improved pharmacological properties is needed. Natural products produced by microorganisms are a promising source of such compounds. This review provides an overview of proteasome inhibitors produced by microorganisms, with special focus on inhibitors isolated from actinomycetes. PMID:26589840

  17. Primary structure of Streptomyces griseus metalloendopeptidase II.

    PubMed

    Kojima, S; Kumazaki, T; Ishii, S; Miura, K

    1998-07-01

    Streptomyces griseus metalloendopeptidase II (SGMPII) is a unique protease, since it shows anomalous susceptibility to the proteinaceous "serine protease inhibitors" produced by Streptomyces, such as Streptomyces subtilisin inhibitor (SSI) and its homologous proteins. In this study, we analyzed the amino acid sequence of SGMPII by analyzing various peptide fragments produced enzymatically. The sequence of SGMPII, which is composed of 334 amino acids, showed no extensive similarity to SSI-insensitive metalloproteases produced by other species of Streptomyces, except for the amino acid residues essential for catalysis and zinc binding. However, SGMPII is 35-41% similar to thermolysin and its related metalloproteases, which are not inhibited by SSI, and the residues presumed to be critical for catalysis and zinc-binding are well conserved in SGMPII. Glu137 in a "His-Glu-Xaa-His" motif of SGMPII was identified as the residue modified by CICH2 CO-DL-(N-OH)Leu-Ala-Gly-NH2, an active-site-directed irreversible inhibitor of thermolysin-like metalloproteases. Based on the sequence comparison of SGMPII and other bacterial metalloproteases, we discuss the structural basis for the differences in substrate specificity and stability between SGMPII and other thermolysin-like proteases. A possible SSI-binding locus of SGMPII is also proposed. PMID:9720222

  18. [Recent development of selective cyclooxygenase-2 inhibitors].

    PubMed

    Kawai, Shinichi

    2002-12-01

    Nonsteroidal anti-inflammatory drugs(NSAIDs) are clinically effective against the inflammatory symptoms of rheumatoid arthritis. Recent attention has been focused on selective cyclooxygenase(COX)-2 inhibitors, a type of NSAID that inhibits a subtype of COX. Because of the different actions of COX-1 and COX-2, selective COX-2 inhibitors were expected to reduce adverse reactions such as gastrointestinal disorders. Various clinical studies have confirmed that the efficacy of COX-2 inhibitors for RA is similar to that of conventional NSAIDs, but they cause fewer severe gastrointestinal disorders. The incidence of complications related to renal dysfunction, such as edema and hypertension, is not different. Patients using selective COX-2 inhibitors have recently been reported to show an increase in thrombotic complications such as myocardial infarction. Therefore, more data on adverse events should be collected in the future from large-scale clinical studies to further clarify the actual value of selective COX-2 inhibitors. PMID:12510364

  19. Current acetylcholinesterase-inhibitors: a neuroinformatics perspective.

    PubMed

    Shaikh, Sibhghatulla; Verma, Anupriya; Siddiqui, Saimeen; Ahmad, Syed S; Rizvi, Syed M D; Shakil, Shazi; Biswas, Deboshree; Singh, Divya; Siddiqui, Mohmmad H; Shakil, Shahnawaz; Tabrez, Shams; Kamal, Mohammad A

    2014-04-01

    This review presents a concise update on the inhibitors of the neuroenzyme, acetylcholinesterase (AChE; EC 3.1.1.7). AChE is a serine protease, which hydrolyses the neurotransmitter, acetylcholine into acetate and choline thereby terminating neurotransmission. Molecular interactions (mode of binding to the target enzyme), clinical applications and limitations have been summarized for each of the inhibitors discussed. Traditional inhibitors (e.g. physostigmine, tacrine, donepezil, rivastigmine etc.) as well as novel inhibitors like various physostigmine-derivatives have been covered. This is followed by a short glimpse on inhibitors derived from nature (e.g. Huperzine A and B, Galangin). Also, a discussion on 'hybrid of pre-existing drugs' has been incorporated. Furthermore, current status of therapeutic applications of AChEinhibitors has also been summarized. PMID:24059296

  20. Pharmacological inhibitors of cyclin-dependent kinases.

    PubMed

    Knockaert, Marie; Greengard, Paul; Meijer, Laurent

    2002-09-01

    Cyclin-dependent kinases (CDKs) regulate the cell division cycle, apoptosis, transcription and differentiation in addition to functions in the nervous system. Deregulation of CDKs in various diseases has stimulated an intensive search for selective pharmacological inhibitors of these kinases. More than 50 inhibitors have been identified, among which >20 have been co-crystallized with CDK2. These inhibitors all target the ATP-binding pocket of the catalytic site of the kinase. The actual selectivity of most known CDK inhibitors, and thus the underlying mechanism of their cellular effects, is poorly known. Pharmacological inhibitors of CDKs are currently being evaluated for therapeutic use against cancer, alopecia, neurodegenerative disorders (e.g. Alzheimer's disease, amyotrophic lateral sclerosis and stroke), cardiovascular disorders (e.g. atherosclerosis and restenosis), glomerulonephritis, viral infections (e.g. HCMV, HIV and HSV) and parasitic protozoa (Plasmodium sp. and Leishmania sp.). PMID:12237154