Science.gov

Sample records for ii fracture mechanics

  1. Mechanics of tungsten blistering II: Analytical treatment and fracture mechanical assessment

    NASA Astrophysics Data System (ADS)

    Li, Muyuan; You, Jeong-Ha

    2015-10-01

    Since a decade the blistering of pure tungsten under hydrogen implantation has been one of the major research topics in relation to the plasma-wall interaction of tungsten-armored first wall. Overall blistering may reduce the erosion lifetime of the wall. Mature blisters grown by high internal pressure are likely to burst leading to exfoliation of the surface. Therefore, the control and suppression of blistering is an important concern for sustainable operation of the tungsten-armored plasma-facing components. In this context, a quantitative assessment of the mechanical conditions for blister bulging and growth is an important concern. In this article a theoretical framework is presented to describe the bulging deformation of tungsten blisters and to estimate the mechanical driving force of blister growth. The validity of the analytical formulations based on the theory of elastic plates is evaluated with the help of finite element analysis. Plastic strains and J-integral values at the blister boundary edge are assessed by means of numerical simulation. Extensive parametric studies were performed for a range of blister geometry (cap aspect ratio), gas pressure, yield stress and hardening rate. The characteristic features of the blistering mechanics are discussed and the cracking energy is quantitatively estimated for the various combinations of parameters.

  2. The mechanics of delamination in fiber-reinforced composite materials. II - The delamination behavior and fracture mechanics parameters

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1983-01-01

    Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extension. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined. Previously announced in STAR as N84-13222

  3. Fracture mechanics: 26. volume

    SciTech Connect

    Reuter, W.G.; Underwood, J.H.; Newman, J.C. Jr.

    1995-12-31

    The original objective of these symposia was to promote technical interchange between researchers from the US and worldwide in the field of fracture. This objective was recently expanded to promote technical interchange between researchers in the field of fatigue and fracture. The symposium began with the Swedlow Memorial Lecture entitled ``Patterns and Perspectives in Applied Fracture Mechanics.`` The remaining 42 papers are divided into the following topical sections: Constraint crack initiation; Constraint crack growth; Weldments; Engineered materials; Subcritical crack growth; Dynamic loading; and Applications. Papers within the scope of the Energy Data Base have been processed separately.

  4. Phase Field Fracture Mechanics.

    SciTech Connect

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  5. Fracture mechanics principles.

    PubMed

    Mecholsky, J J

    1995-03-01

    The principles of linear elastic fracture mechanics (LEFM) were developed in the 1950s by George Irwin (1957). This work was based on previous investigations of Griffith (1920) and Orowan (1944). Irwin (1957) demonstrated that a crack shape in a particular location with respect to the loading geometry had a stress intensity associated with it. He also demonstrated the equivalence between the stress intensity concept and the familiar Griffith criterion of failure. More importantly, he described the systematic and controlled evaluation of the toughness of a material. Toughness is defined as the resistance of a material to rapid crack propagation and can be characterized by one parameter, Kic. In contrast, the strength of a material is dependent on the size of the initiating crack present in that particular sample or component. The fracture toughness of a material is generally independent of the size of the initiating crack. The strength of any product is limited by the size of the cracks or defects during processing, production and handling. Thus, the application of fracture mechanics principles to dental biomaterials is invaluable in new material development, production control and failure analysis. This paper describes the most useful equations of fracture mechanics to be used in the failure analysis of dental biomaterials. PMID:8621030

  6. Fracture mechanics validity limits

    NASA Technical Reports Server (NTRS)

    Lambert, Dennis M.; Ernst, Hugo A.

    1994-01-01

    Fracture behavior is characteristics of a dramatic loss of strength compared to elastic deformation behavior. Fracture parameters have been developed and exhibit a range within which each is valid for predicting growth. Each is limited by the assumptions made in its development: all are defined within a specific context. For example, the stress intensity parameters, K, and the crack driving force, G, are derived using an assumption of linear elasticity. To use K or G, the zone of plasticity must be small as compared to the physical dimensions of the object being loaded. This insures an elastic response, and in this context, K and G will work well. Rice's J-integral has been used beyond the limits imposed on K and G. J requires an assumption of nonlinear elasticity, which is not characteristic of real material behavior, but is thought to be a reasonable approximation if unloading is kept to a minimum. As well, the constraint cannot change dramatically (typically, the crack extension is limited to ten-percent of the initial remaining ligament length). Rice, et al investigated the properties required of J-type parameters, J(sub x), and showed that the time rate, dJ(sub x)/dt, must not be a function of the crack extension rate, da/dt. Ernst devised the modified-J parameter, J(sub M), that meets this criterion. J(sub M) correlates fracture data to much higher crack growth than does J. Ultimately, a limit of the validity of J(sub M) is anticipated, and this has been estimated to be at a crack extension of about 40-percent of the initial remaining ligament length. None of the various parameters can be expected to describe fracture in an environment of gross plasticity, in which case the process is better described by deformation parameters, e.g., stress and strain. In the current study, various schemes to identify the onset of the plasticity-dominated behavior, i.e., the end of fracture mechanics validity, are presented. Each validity limit parameter is developed in

  7. Linear elastic fracture mechanics primer

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher D.

    1992-07-01

    This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.

  8. Linear elastic fracture mechanics primer

    NASA Technical Reports Server (NTRS)

    Wilson, Christopher D.

    1992-01-01

    This primer is intended to remove the blackbox perception of fracture mechanics computer software by structural engineers. The fundamental concepts of linear elastic fracture mechanics are presented with emphasis on the practical application of fracture mechanics to real problems. Numerous rules of thumb are provided. Recommended texts for additional reading, and a discussion of the significance of fracture mechanics in structural design are given. Griffith's criterion for crack extension, Irwin's elastic stress field near the crack tip, and the influence of small-scale plasticity are discussed. Common stress intensities factor solutions and methods for determining them are included. Fracture toughness and subcritical crack growth are discussed. The application of fracture mechanics to damage tolerance and fracture control is discussed. Several example problems and a practice set of problems are given.

  9. Fracture mechanics: Perspectives and directions

    SciTech Connect

    Wei, R.P.; Gangloff, R.P.

    1989-01-01

    The present work includes twelve invited review papers with comprehensive descriptions of the challenges in six topical areas: analytical fracture mechanics, nonlinear and time-dependent fracture mechanics, microstructure and micromechanical modeling, fatigue crack propagation, environmentally assisted cracking, and fracture mechanics of nonmetals and new frontiers. Specific challenge areas include the analytical front, advanced heterogeneous materials, subcritical crack growth for both fatigue and sustained-load crack growth in deleterious environments at elevated temperatures, and problems of education. The book demonstrates that the existing fracture mechanics foundation is well positioned to meet these challenges over the next decades.

  10. Mechanics of Hydraulic Fractures

    NASA Astrophysics Data System (ADS)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  11. Dynamic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Kobayashi, A. S.; Ramulu, M.

    1985-01-01

    Dynamic fracture and crack propagation concepts for ductile materials are reviewed. The equations for calculating dynamic stress integrity and the dynamic energy release rate in order to study dynamic crack propagation are provided. The stress intensity factor versus crack velocity relation is investigated. The uses of optical experimental techniques and finite element methods for fracture analyses are described. The fracture criteria for a rapidly propagating crack under mixed mode conditions are discussed; crack extension and fracture criteria under combined tension and shear loading are based on maximum circumferential stress or energy criteria such as strain energy density. The development and use of a Dugdale model and finite element models to represent crack and fracture dynamics are examined.

  12. Geometrically Frustrated Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Mitchell, Noah; Koning, Vinzenz; Vitelli, Vincenzo; Irvine, William T. M.

    2015-03-01

    When a flat elastic sheet is forced to conform to a surface with Gaussian curvature, stresses arise in the sheet. The mismatch between initial and final metrics gives rise to new fracture behavior which cannot be achieved by boundary loading alone. Using experiments of PDMS sheets frustrated on 3D-printed surfaces and a linearized analytical model, we demonstrate the ability of curvature to govern the sheets' fracture phenomenology. In this talk, we first show that curvature can both stimulate and suppress fracture initiation, depending on the position and orientation of the initial slit. Secondly, we show that curvature can steer the path of a crack as it propagates through the material. Lastly, the curvature can arrest cracks which would otherwise continue to propagate.

  13. (Fracture mechanics of porous materials)

    SciTech Connect

    Gray, L.J.

    1989-09-15

    The primary subject of this trip was the development of a boundary element/finite element analysis system for computational fracture mechanics. The procedures for merging the ORNL/Cornell University boundary element fracture code with the finite element program SESAM were agreed upon, and are currently being implemented. The adopted algorithm relies on the superelement capabilities of the SESAM code. Discussions were held with scientists at the Bergen Scientific Centre on the modeling of fractured rock. A project to develop realistic computer models of naturally occurring fracture patterns is being carried out by a geologist and a physicist; it is expected that these models can be employed in future environmental modeling work. 6 refs.

  14. Modelling the graphite fracture mechanisms

    SciTech Connect

    Jacquemoud, C.; Marie, S.; Nedelec, M.

    2012-07-01

    In order to define a design criterion for graphite components, it is important to identify the physical phenomena responsible for the graphite fracture, to include them in a more effective modelling. In a first step, a large panel of experiments have been realised in order to build up an important database; results of tensile tests, 3 and 4 point bending tests on smooth and notched specimens have been analysed and have demonstrated an important geometry related effects on the behavior up to fracture. Then, first simulations with an elastic or an elastoplastic bilinear constitutive law have not made it possible to simulate the experimental fracture stress variations with the specimen geometry, the fracture mechanisms of the graphite being at the microstructural scale. That is the reason why a specific F.E. model of the graphite structure has been developed in which every graphite grain has been meshed independently, the crack initiation along the basal plane of the particles as well as the crack propagation and coalescence have been modelled too. This specific model has been used to test two different approaches for fracture initiation: a critical stress criterion and two criteria of fracture mechanic type. They are all based on crystallographic considerations as a global critical stress criterion gave unsatisfactory results. The criteria of fracture mechanic type being extremely unstable and unable to represent the graphite global behaviour up to the final collapse, the critical stress criterion has been preferred to predict the results of the large range of available experiments, on both smooth and notched specimens. In so doing, the experimental observations have been correctly simulated: the geometry related effects on the experimental fracture stress dispersion, the specimen volume effects on the macroscopic fracture stress and the crack propagation at a constant stress intensity factor. In addition, the parameters of the criterion have been related to

  15. Fracture mechanics of cellular glass

    NASA Technical Reports Server (NTRS)

    Zwissler, J. G.; Adams, M. A.

    1981-01-01

    The fracture mechanics of cellular glasses (for the structural substrate of mirrored glass for solr concentrator reflecting panels) are discussed. Commercial and developmental cellular glasses were tested and analyzed using standard testing techniques and models developed from linear fracture mechanics. Two models describing the fracture behavior of these materials were developed. Slow crack growth behavior in cellular glass was found to be more complex than that encountered in dense glasses or ceramics. The crack velocity was found to be strongly dependent upon water vapor transport to the tip of the moving crack. The existence of a static fatigue limit was not conclusively established, however, it is speculated that slow crack growth behavior in Region 1 may be slower, by orders of magnitude, than that found in dense glasses.

  16. Fracture mechanics and corrosion fatigue.

    NASA Technical Reports Server (NTRS)

    Mcevily, A. J.; Wei, R. P.

    1972-01-01

    Review of the current state-of-the-art in fracture mechanics, particularly in relation to the study of problems in environment-enhanced fatigue crack growth. The usefulness of this approach in developing understanding of the mechanisms for environmental embrittlement and its engineering utility are discussed. After a brief review of the evolution of the fracture mechanics approach and the study of environmental effects on the fatigue behavior of materials, a study is made of the response of materials to fatigue and corrosion fatigue, the modeling of the mechanisms of the fatigue process is considered, and the application of knowledge of fatigue crack growth to the prediction of the high cycle life of unnotched specimens is illustrated.

  17. Theory of fracture mechanics based upon plasticity

    NASA Technical Reports Server (NTRS)

    Lee, J. D.

    1976-01-01

    A theory of fracture mechanics is formulated on the foundation of continuum mechanics. Fracture surface is introduced as an unknown quantity and is incorporated into boundary and initial conditions. Surface energy is included in the global form of energy conservation law and the dissipative mechanism is formulated into constitutive equations which indicate the thermodynamic irreversibility and the irreversibility of fracture process as well.

  18. Compressive fracture morphology and mechanism of metallic glass

    NASA Astrophysics Data System (ADS)

    Qu, R. T.; Zhang, Z. F.

    2013-11-01

    We quantitatively investigated the fracture morphologies of Zr52.5Cu17.9Ni14.6Al10Ti5 and Pd78Cu6Si16 metallic glasses (MGs) under compression. The characteristic features of the compressive fracture morphology were captured, and the shear vein patterns were found to be not a one-to-one correspondence between two opposing fracture surfaces in an identical sample. This finding experimentally confirms that the compressive failure behaves in a fracture mode of pure shear (mode II). Quantitative measurements show that a ˜1 μm thickness layer with materials not only inside but also adjacent to the major shear band contributes to the formation of shear vein patterns. The critical shear strain to break a shear band was found to be more than 105% and higher in more ductile MGs under compression than tension. Estimation on the temperature rise at the fracture moment indicates that only ˜5% of the total elastic energy stored in the sample converts into the heat required for melting the layer to form the vein patterns. The mode II fracture toughness was also estimated based on the quantitative measurements of shear vein pattern and found larger than the mode I fracture toughness. Finally, the deformation and fracture mechanisms of MGs under tension and compression were compared and discussed. These results may improve the understanding on the fracture behaviors and mechanisms of MGs and may provide instructions on future design for ductile MGs with high resistance for fracture.

  19. Some recent theoretical and experimental developments in fracture mechanics

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Eftis, J.; Hones, D. L.

    1978-01-01

    Recent theoretical and experimental developments in four distinct areas of fracture mechanics research are described. These are as follows: experimental comparisons of different nonlinear fracture toughness measures, including the nonlinear energy, R curve, COD and J integral methods; the singular elastic crack-tip stress and displacement equations and the validity of the proposition of their general adequacy as indicated, for example, by the biaxially loaded infinite sheet with a flat crack; the thermodynamic nature of surface energy induced by propagating cracks in relation to a general continuum thermodynamic description of brittle fracture; and analytical and experimental aspects of Mode II fracture, with experimental data for certain aluminum, steel and titanium alloys.

  20. (Fracture mechanics of inhomogeneous materials)

    SciTech Connect

    Bass, B.R.

    1990-10-01

    Discussions were held with Japanese researchers concerning (1) the Elastic-Plastic Fracture Mechanics in Inhomogeneous Materials and Structures (EPI) Program, and (2) ongoing large-scale pressurized- thermal-shock (PTS) experiments in Japan. In the EPI Program, major activities in the current fiscal year include round-robin analyses of measured data from inhomogeneous base metal/weld metal compact- tension (CT) specimens fabricated from welded plates of A533 grade B class 1 steel. The round-robin task involves participants from nine research organizations in Japan and is scheduled for completion by the end of 1990. Additional experiments will be performed on crack growth in inhomogeneous CT specimens and three-point bend (3PB) specimens 10 mm thick. The data will be compared with that generated previously from 19-mm-thick-specimens. A new type of inhomogeneous surface-cracked specimen will be tested this year, with ratio of crack depth to surface length (a/c) satisfying 0.2 {le} (a/c) {le} 0. 8 and using a 3PB type of applied load. Plans are under way to fabricate a new welded plate of A533 grade B class 1 steel (from a different heat than that currently being tested) in order to provide an expanded fracture-toughness data base. Other topics concerning fracture-prevention issues in reactor pressure vessels were discussed with each of the host organizations, including an overview of ongoing work in the Heavy-Section Steel Technology (HSST) Program.

  1. Mechanical Coal-Face Fracturer

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1984-01-01

    Radial points on proposed drill bit take advantage of natural fracture planes of coal. Radial fracture points retracted during drilling and impacted by piston to fracture coal once drilling halts. Group of bits attached to array of pneumatic drivers to fracture large areas of coal face.

  2. Compendium of fracture mechanics problems

    NASA Technical Reports Server (NTRS)

    Stallworth, R.; Wilson, C.; Meyers, C.

    1990-01-01

    Fracture mechanics analysis results are presented from the following structures/components analyzed at Marshall Space Flight Center (MSFC) between 1982 and 1989: space shuttle main engine (SSME), Hubble Space Telescope (HST), external tank attach ring, B-1 stand LOX inner tank, and solid rocket booster (SRB). Results from the SSME high pressure fuel turbopump (HPFTP) second stage blade parametric analysis determine a critical flaw size for a wide variety of stress intensity values. The engine 0212 failure analysis was a time dependent fracture life assessment. Results indicated that the disk ruptured due to an overspeed condition. Results also indicated that very small flaws in the curvic coupling area could propagate and lead to failure under normal operating conditions. It was strongly recommended that a nondestructive evaluation inspection schedule be implemented. The main ring of the HST, scheduled to launch in 1990, was analyzed by safe-life and fail-safe analyses. First safe-life inspection criteria curves for the ring inner and outer skins and the fore and aft channels were derived. Afterwards the skins and channels were determined to be fail-safe by analysis. A conservative safe-life analysis was done on the 270 redesign external tank attach ring. Results from the analysis were used to determine the nondestructive evaluation technique required.

  3. Chemical and Mechanical Alteration of Fractured Caprock Under Reactive Flow

    NASA Astrophysics Data System (ADS)

    Elkhoury, J. E.; Ameli, P.; Detwiler, R. L.

    2013-12-01

    Permeability evolution of fractures depends on chemical and mechanical processes. Stress perturbations lead to mechanical deformation and fracture propagation that can increase formation permeability. Chemical disequilibrium between fluids and resident minerals leads to dissolution and precipitation that further alter fracture porosity and permeability. The ability to predict whether these coupled chemical and mechanical processes will enhance or diminish fracture permeability remains elusive. Here, we present results from reactive-transport experiments in fractured anhydrite cores, with significant alteration of the rock matrix, where only the flow rate differed. For high flow rate, the transformation of anhydrite to gypsum occurred uniformly within the fracture leading to compaction and a two-order-of-magnitude decrease in permeability. For low flow rate, rock-fluid reactions proceeded to near equilibrium within the fracture with preferential flow paths persisting over the 6-month duration of the experiment and a negligible change in permeability. Anticipating such permeability evolution is critical for successful geologic CO2 sequestration and waste injection. Additionally, reactive alteration of the porous matrix bounding fractures will influence the strength of earthquake fault zones. Comparison of the aperture field before (a) and after (b) the reactive flow-through experiment at low flow rate. a) Aperture field from optical profilometry measurements of the fracture surfaces. b) Inferred aperture from x-ray computed tomography scans. Color scale I (blue) denotes mainly unaltered regions of the fracture and/or aperture < 200 μm. Color scale II (green/yellow) denotes reacted regions of the fracture surfaces and the matrix adjacent to the fracture. Persistent flow paths are clearly observed in panel (b) (color scale III corresponds to aperture > 200 μm) leading to negligible change in permeability after a 6-month run.

  4. Fracture healing: mechanisms and interventions

    PubMed Central

    Einhorn, Thomas A.; Gerstenfeld, Louis C.

    2015-01-01

    Fractures are the most common large-organ, traumatic injuries to humans. The repair of bone fractures is a postnatal regenerative process that recapitulates many of the ontological events of embryonic skeletal development. Although fracture repair usually restores the damaged skeletal organ to its pre-injury cellular composition, structure and biomechanical function, about 10% of fractures will not heal normally. This article reviews the developmental progression of fracture healing at the tissue, cellular and molecular levels. Innate and adaptive immune processes are discussed as a component of the injury response, as are environmental factors, such as the extent of injury to the bone and surrounding tissue, fixation and the contribution of vascular tissues. We also present strategies for fracture treatment that have been tested in animal models and in clinical trials or case series. The biophysical and biological basis of the molecular actions of various therapeutic approaches, including recombinant human bone morphogenetic proteins and parathyroid hormone therapy, are also discussed. PMID:25266456

  5. Nonlinear fracture mechanics. Volume 1. Time-dependent fracture

    SciTech Connect

    Saxena, A.; Landes, J.D.; Bassani, J.L.

    1989-01-01

    Various papers on time-dependent fracture in nonlinear fracture mechanics are presented. Individual subjects considered include: numerical study of non-steady-state creep at stationary crack tips, crack growth in small-scale creep, growth of macroscopic cracks by void coalescence under extensive creeping conditions, creep embrittlement susceptibility and creep crack growth behavior in low-alloy steels, and experimental determination of the high-temperature crack growth behavior of Incoloy 800H. Also discussed are: three-dimensional transient analysis of a dynamically loaded three-point-bend ductile fracture specimen, experimental study of the validity of a Delta J criterion for fatigue crack growth, combined-mode low-cycle fatigue crack growth under torsional loading, fatigue crack-tip mechanics in 7075-T6 aluminum alloy from high-sensitivity displacement field measurements, and nonlinear fracture of concrete and ceramics.

  6. Fracture mechanisms and fracture control in composite structures

    NASA Astrophysics Data System (ADS)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  7. Fracture mechanics evaluation of GaAs

    NASA Technical Reports Server (NTRS)

    Chen, C. P.

    1984-01-01

    A data base of mechanical and fracture properties for GaAs was generated. The data for single crystal GaAs will be used to design reusable GaAs solar modules. Database information includes; (1) physical property characterizations; (2) fracture behavior evaluations; and (3) strength of cells determined as a function of cell processing and material parameters.

  8. Mode II Interlaminar Fracture Toughness and Fatigue Characterization of a Graphite Epoxy Composite Material

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin; Johnston, William M.; Toland, Gregory J.

    2010-01-01

    Mode II interlaminar fracture toughness and delamination onset and growth characterization data were generated for IM7/8552 graphite epoxy composite materials from two suppliers for use in fracture mechanics analyses. Both the fracture toughness testing and the fatigue testing were conducted using the End-notched Flexure (ENF) test. The ENF test for mode II fracture toughness is currently under review by ASTM as a potential standard test method. This current draft ASTM protocol was used as a guide to conduct the tests on the IM7/8552 material. This report summarizes the test approach, methods, procedures and results of this characterization effort.

  9. Microstructural effects on fracture toughness of polycrystalline ceramics in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, D.; Shetty, D. K.

    1988-01-01

    Fracture toughness of polycrystalline alumina and ceria partially-stabilized tetragonal zirconia (CeO2-TZP) ceramics were assessed in combined mode I and mode II loading using precracked disk specimens in diametral compression. Stress states ranging from pure mode I, combined mode I and mode II, and pure mode II were obtained by aligning the center crack at specific angles relative to the loading diameter. The resulting mixed-mode fracture toughness envelope showed significant deviation to higher fracture toughness in mode II relative to the predictions of the linear elastic fracture mechanics theory. Critical comparison with corresponding results on soda-lime glass and fracture surface observations showed that crack surface resistance arising from grain interlocking and abrasion was the main source of the increased fracture toughness in mode II loading of the polycrystalline ceramics. The normalized fracture toughness for pure mode II loading, (KII/KIc), increased with increasing grain size for the CeO2-TZP ceramics. Quantitative fractography confirmed an increased percentage of transgranular fracture of the grains in mode II loading.

  10. Mechanisms for shrinkage fracturing at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Watters, W. A.; Squyres, S. W.

    2009-12-01

    We investigate the role of water in fracturing at Meridiani Planum with the aim of shedding light on the history of densely-fractured outcroppings of light-toned rocks at low-latitudes on Mars. The fractures that occur throughout the inter-crater plains at Meridiani exhibit many characteristics of shrinkage cracks: they have significant width (i.e., not hairline), commonly connect in 90-degree and 120-degree junctions, and exhibit a "hierarchical" organization: i.e., the longest fractures are widest, and narrower fractures terminate against wider fractures at 90-degree junctions (T-shaped). Using the Pancam and Navcam stereo-pair images acquired by the Opportunity rover, we have measured the geometric scaling of fracture networks at Meridiani (e.g., fracture width vs. fracture separation) as well as the total volume change. We have also characterized the diversity of patterns in detail, as well as the modification of fractures and polygonal "tiles" by wind-blown sand abrasion. Identical observations were carried-out for an analogue site where similar fractures are ubiquitous in the playas of Death Valley, California, and where modification processes are also comparable. By also estimating the expected volume change and results from numerical models of shrinkage fracturing, we evaluate the likelihood of three candidate contraction mechanisms: loss of water bound in hydrated minerals (dehydration), loss of water from pore spaces (desiccation), and contraction from cooling (thermal fracturing). The evidence to date favors the second of these (desiccation); this result would have significant implications for the history of Meridiani since the time when sulfate-rich sediments were deposited.

  11. Proceedings of the 20th symposium on fracture mechanics

    SciTech Connect

    Wei, R.P. ); Gangloff, R.P. )

    1987-01-01

    This book contains the proceeding of the ASTM symposium on fracture mechanics. Topics covered include: Analytical fracture mechanics, Environmentally assisted cracking, and Microstructure and micromechanical modeling.

  12. Integration of NDE Reliability and Fracture Mechanics

    SciTech Connect

    Becker, F. L.; Doctor, S. R.; Heas!er, P. G.; Morris, C. J.; Pitman, S. G.; Selby, G. P.; Simonen, F. A.

    1981-03-01

    The Pacific Northwest Laboratory is conducting a four-phase program for measuring and evaluating the effectiveness and reliability of in-service inspection (lSI} performed on the primary system piping welds of commercial light water reactors (LWRs). Phase I of the program is complete. A survey was made of the state of practice for ultrasonic rsr of LWR primary system piping welds. Fracture mechanics calculations were made to establish required nondestrutive testing sensitivities. In general, it was found that fatigue flaws less than 25% of wall thickness would not grow to failure within an inspection interval of 10 years. However, in some cases failure could occur considerably faster. Statistical methods for predicting and measuring the effectiveness and reliability of lSI were developed and will be applied in the "Round Robin Inspections" of Phase II. Methods were also developed for the production of flaws typical of those found in service. Samples fabricated by these methods wilI be used in Phase II to test inspection effectiveness and reliability. Measurements were made of the influence of flaw characteristics {i.e., roughness, tightness, and orientation) on inspection reliability. These measurernents, as well as the predictions of a statistical model for inspection reliability, indicate that current reporting and recording sensitivities are inadequate.

  13. A Hierarchical Approach to Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Taasan, Shlomo

    2004-01-01

    Recent research conducted under NASA LaRC's Creativity and Innovation Program has led to the development of an initial approach for a hierarchical fracture mechanics. This methodology unites failure mechanisms occurring at different length scales and provides a framework for a physics-based theory of fracture. At the nanoscale, parametric molecular dynamic simulations are used to compute the energy associated with atomic level failure mechanisms. This information is used in a mesoscale percolation model of defect coalescence to obtain statistics of fracture paths and energies through Monte Carlo simulations. The mathematical structure of predicted crack paths is described using concepts of fractal geometry. The non-integer fractal dimension relates geometric and energy measures between meso- and macroscales. For illustration, a fractal-based continuum strain energy release rate is derived for inter- and transgranular fracture in polycrystalline metals.

  14. Fatigue and fracture mechanics: 27. volume

    SciTech Connect

    Piascik, R.S.; Newman, J.C. Jr.; Dowling, N.E.

    1997-12-01

    During the two and one-half day symposium, an international group of experts from the United States, Canada, the United Kingdom, The Netherlands, Sweden, Germany, Austria, Japan, France, the Peoples Republic of China, India, and korea presented their research findings concerning issues relating to fatigue and fracture mechanics. Published herein are papers grouped in four technical categories relating to elastic-plastic fracture, fatigue, advanced materials and applications, and analytical methods. Papers have been processed separately for inclusion on the database.

  15. Fractal materials, beams, and fracture mechanics

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin; Li, Jun

    2009-11-01

    Continuing in the vein of a recently developed generalization of continuum thermomechanics, in this paper we extend fracture mechanics and beam mechanics to materials described by fractional integrals involving D, d and R. By introducing a product measure instead of a Riesz measure, so as to ensure that the mechanical approach to continuum mechanics is consistent with the energetic approach, specific forms of continuum-type equations are derived. On this basis we study the energy aspects of fracture and, as an example, a Timoshenko beam made of a fractal material; the local form of elastodynamic equations of that beam is derived. In particular, we review the crack driving force G stemming from the Griffith fracture criterion in fractal media, considering either dead-load or fixed-grip conditions and the effects of ensemble averaging over random fractal materials.

  16. Mechanical and transport properties of rocks at high temperatures and pressures. Task II: fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration

    SciTech Connect

    Not Available

    1981-01-01

    The primary objective is to measure and understand the variation of the fracture permeability of quartzite subjected to hydrothermal conditions. Pore fluids will consist of distilled water and aqueous Na/sub 2/CO/sub 3/ solutions at temperatures to 250/sup 0/C, fluid pressures to 20 MPa and effective normal stresses to 70 MPa. Fluid flow rates will be controllable to rates at least as small as 0.2 ml/day (approx. 4 fracture volumes). Experiments are designed to assess what role, if any, pressure solution may play at time scales of those of the experiments (less than or equal to 2 weeks). Secondary objectives are: (1) continue simulated fracture studies, incorporating inelastic deformation into model and characterize the nature of inelastic deformation occurring on loaded tensile fractures in quartzite; (2) continue dissolution experiment, with emphasis on dissolution modification of tensile fracture surfaces on quartzite; and (3) study natural fractures in a quartzite exhibiting hydrothermal dissolution features.

  17. Fracture Mechanism Maps in Unirradiated and Irradiated Metals

    SciTech Connect

    Li, Meimei; Zinkle, Steven J

    2007-01-01

    This paper presents a methodology for computing a fracture mechanism map in two-dimensional space of tensile stress and temperature using physically-based constitutive equations. Four principal fracture mechanisms were considered: cleavage fracture, low temperature ductile fracture, transgranular creep fracture, and intergranular creep fracture. The methodology was applied to calculate fracture mechanism maps for several selected reactor materials, CuCrZr, 316 type stainless steel, F82H ferritic-martensitic steel, V4Cr4Ti and Mo. The calculated fracture maps are in good agreement with empirical maps obtained from experimental observations. The fracture mechanism maps of unirradiated metals and alloys were modified to include radiation hardening effects on cleavage fracture and high temperature helium embrittlement. Future refinement of fracture mechanism maps is discussed.

  18. HFIR vessel probabilistic fracture mechanics analysis

    SciTech Connect

    Cheverton, R.D.; Dickson, T.L.

    1997-01-01

    The life of the High Flux Isotope Reactor (HFIR) pressure vessel is limited by a radiation induced reduction in the material`s fracture toughness. Hydrostatic proof testing and probabilistic fracture mechanics analyses are being used to meet the intent of the ASME Code, while extending the life of the vessel well beyond its original design value. The most recent probabilistic evaluation is more precise and accounts for the effects of gamma as well as neutron radiation embrittlement. This analysis confirms the earlier estimates of a permissible vessel lifetime of at least 50 EFPY (100 MW).

  19. Damage and fracture mechanics of composite materials

    NASA Astrophysics Data System (ADS)

    Abdussalam, Saleh Ramadan

    The design of structural systems in the aerospace industry has been characterized by a continuing search for strong, yet lightweight, materials to achieve maximum payload capability for minimum weight. In recent years, this search has led to a wide use of fiber reinforced composites, such as carbon, glass and kevelar based composites. Comparison of these new materials with the traditional ones (metals) according to the basic properties, such as density, elastic modulus and also long-time and short-time strength, shows their superiority over traditional materials, when weight is a major design factor, like in the aerospace industry. Most composite materials of interest to aerospace applications have been adequately characterized under static loading conditions. Related work to study their fracture behaviour has been limited. Since most failure mechanisms involve crack growth and/or delamination, design of such components requires knowledge and understanding of their fracture properties. This thesis includes an experimental and analytical investigation of fracture characteristics of composite materials. The post-peak response of notched specimens subjected to uniaxial cyclic loading is established to evaluate the fracture energy associated with progressive matrix damage and subsequent crack growth. A total of 75 uniaxial tension specimens were tested. The experimental work consisted of first testing several un-notched specimens with different thickness (number of layers) to determine the initial and secondary elastic modulus as well as the tensile strength. The investigation studied the effect of the various fracture parameters, including thickness, fiber orientation, and crack width ratio (a/w) on the behaviour of crack propagation, peak load, and post-peak response. The specimens used in this research were prepared using the vacuum bagging technique, with a chosen number of fiber glass cloth layers and fiber orientation. The experimental results provided

  20. A review of fracture mechanics life technology

    NASA Technical Reports Server (NTRS)

    Besuner, P. M.; Harris, D. O.; Thomas, J. M.

    1986-01-01

    Lifetime prediction technology for structural components subjected to cyclic loads is examined. The central objectives of the project are: (1) to report the current state of the art, and (2) recommend future development of fracture mechanics-based analytical tools for modeling subcritical fatigue crack growth in structures. Of special interest is the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. The authors conducted a survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.

  1. A review of fracture mechanics life technology

    NASA Technical Reports Server (NTRS)

    Thomas, J. M.; Besuner, P. M.; Harris, D. O.

    1985-01-01

    Current lifetime prediction technology for structural components subjected to cyclic loads was reviewed. The central objectives of the project were to report the current state of and recommend future development of fracture mechanics-based analytical tools for modeling and forecasting subcritical fatigue crack growth in structures. Of special interest to NASA was the ability to apply these tools to practical engineering problems and the developmental steps necessary to bring vital technologies to this stage. A survey of published literature and numerous discussions with experts in the field of fracture mechanics life technology were conducted. One of the key points made is that fracture mechanics analyses of crack growth often involve consideration of fatigue and fracture under extreme conditions. Therefore, inaccuracies in predicting component lifetime will be dominated by inaccuracies in environment and fatigue crack growth relations, stress intensity factor solutions, and methods used to model given loads and stresses. Suggestions made for reducing these inaccuracies include: development of improved models of subcritical crack growth, research efforts aimed at better characterizing residual and assembly stresses that can be introduced during fabrication, and more widespread and uniform use of the best existing methods.

  2. Computational simulation methods for composite fracture mechanics

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.

    1988-01-01

    Structural integrity, durability, and damage tolerance of advanced composites are assessed by studying damage initiation at various scales (micro, macro, and global) and accumulation and growth leading to global failure, quantitatively and qualitatively. In addition, various fracture toughness parameters associated with a typical damage and its growth must be determined. Computational structural analysis codes to aid the composite design engineer in performing these tasks were developed. CODSTRAN (COmposite Durability STRuctural ANalysis) is used to qualitatively and quantitatively assess the progressive damage occurring in composite structures due to mechanical and environmental loads. Next, methods are covered that are currently being developed and used at Lewis to predict interlaminar fracture toughness and related parameters of fiber composites given a prescribed damage. The general purpose finite element code MSC/NASTRAN was used to simulate the interlaminar fracture and the associated individual as well as mixed-mode strain energy release rates in fiber composites.

  3. Fracture mechanics; Proceedings of the Seventeenth National Symposium, Albany, NY, August 7-9, 1984

    NASA Technical Reports Server (NTRS)

    Underwood, J. M. (Editor); Chait, R. (Editor); Smith, C. W. (Editor); Wilhem, D. P. (Editor); Andrews, W. A. (Editor); Newman, J. C. (Editor)

    1986-01-01

    The present conference gives attention to topics in the application of fracture mechanics, subcritical crack growth phenomena, fracture testing methods, ductile fracture behavior, and fracture mechanisms and their analysis. Specific papers treat the resistance curve approach to composite materials characterization, fracture toughness in ductile iron and cast steel, hold-time effects in elevated temperature fatigue crack propagation, creep crack growth under nonsteady conditions, viscoplastic fatigue in a superalloy at elevated temperatures, fracture testing with arc bend specimens, one-point bend impact test application, and a compact mode II fracture specimen. Also discussed are the computation of stable crack growth using the J-integral, the use of plastic energy dissipation to characterize crack growth, the extension of surface cracks under cyclic loading, the minimum time criterion for crack instability in structural materials, dynamic crack propagation and branching under biaxial loading, and boundary layer effects in cracked bodies.

  4. Fracture mechanics analyses for skin-stiffener debonding

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Sistla, R.; Krishnamurthy, T.; Lotts, C. G.

    1993-01-01

    The debond configurations presently subjected to 3D FEM fracture mechanics analyses are respectively of the flange-skin strip and skin-stiffener configuration type. Two methods employing the virtual crack closure technique were used to evaluate the strain energy release rate, or 'G-value' distributions across the debond front. Both methods yielded nearly identical G-value distributions for the debond configurations studied; they were compared with plane strain and shell analyses results from the literature for the flange skin strip configuration, and found to be in good agreement. Mode II is dominant for the skin-stiffener debond configuration.

  5. Fracture mechanics of model fiber composites

    SciTech Connect

    Wang Chi.

    1992-01-01

    Fracture of matrix material caused by a tensile break in a fiber was investigated. A model was constructed, consisting of two inextensible fibers touching end-to-end and embedded in an elastic block. Energy release rates were calculated by FEA for a circular crack growing outwards from the point where the fiber ends separated as they were pulled apart. The results are compared with experimental observations on steel rod/silicone resin systems. It is found that, when a fiber breaks, a circular crack grows outward in a stable way under increasing load. After the crack reaches a certain size, approximately halfway to the edge of the resin block, the strain energy release reaches a minimum value and then increases, and the crack accelerates. The force required to propagate a crack is predicted successfully by linear elastic fracture mechanics at all stages of crack growth. In particular, good agreement was obtained with the maximum force that the system could support - the breaking load. Fracture of fiber composites under shear deformation was simulated by applying a tension to the rod in a bush mounting.

  6. Analogy between fluid cavitation and fracture mechanics

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Mullen, R. L.; Braun, M. J.

    1983-01-01

    When the stresses imposed on a fluid are sufficiently large, rupture or cavitation can occur. Such conditions can exist in many two-phase flow applications, such as the choked flows, which can occur in seals and bearings. Nonspherical bubbles with large aspect ratios have been observed in fluids under rapid acceleration and high shear fields. These bubbles are geometrically similar to fracture surface patterns (Griffith crack model) existing in solids. Analogies between crack growth in solid and fluid cavitation are proposed and supported by analysis and observation (photographs). Healing phenomena (void condensation), well accepted in fluid mechanics, have been observed in some polymers and hypothesized in solid mechanics. By drawing on the strengths of the theories of solid mechanics and cavitation, a more complete unified theory can be developed.

  7. References and conference proceedings towards the understanding of fracture mechanics

    NASA Technical Reports Server (NTRS)

    Toor, P. M.; Hudson, C. M.

    1986-01-01

    A list of books, reports, periodicals, and conference proceedings, as well as individual papers, centered on specific aspects of fracture phenomenon has been compiled by the ASTM Committee E-24 on Fracture Testing. A list of basic references includes the articles on the development of fracture toughness, evaluation of stress intensity factors, fatigue crack growth, fracture testing, fracture of brittle materials, and fractography. Special attention is given to the references on application of fracture mechanics to new designs and on reevaluation of failed designs, many of them concerned with naval and aircraft structures.

  8. Fracture mechanics parameters for small fatigue cracks

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1992-01-01

    This paper presents a review of some common small-crack test specimens, the underlying causes of the small-crack effect, and the fracture-mechanics parameters that have been used to correlate or predict their growth behavior. This review concentrates on continuum mechanics concepts and on the nonlinear behavior of small cracks. The paper reviews some stress-intensity factor solutions for small-crack test specimens and develops some simple elastic-plastic J integral and cyclic J integral expressions that include the influence of crack-closure. These parameters were applied to small-crack growth data on two aluminum alloys, and a fatigue life prediction methodology is demonstrated. For these materials, the crack-closure transient from the plastic wake was found to be the major factor in causing the small-crack effect.

  9. Patterns and perspectives in applied fracture mechanics

    SciTech Connect

    Merkle, J.G.

    1994-12-31

    This lecture begins with a overview of applied fracture mechanics pertinent to safety of pressure vessels. It then progresses to a chronological panorama of experimental and analytical results. To be useful and dependable in safety analysis of real structures, new analysis developments must be physically realistic, which means that they must accurately describe physical cause and effect. Consequently, before mathematical modeling can begin, cause and effect must be established from experimental data. This can be difficult and time consuming, but worth the effort. Accordingly, the theme of this paper is that the search for patterns is constant and vital. This theme is illustrated by the development of small, single-specimen, fracture toughness testing techniques. It is also illustrated by the development, based on two different published large-strain, elastic-plastic, three-dimensional finite-element analyses, of a hypothesis concerning three-dimensional loss of constraint. When a generalization of Irwin`s thickness-normalized plastic-zone parameter, reaches a value close to 2{pi}, the through-thickness contraction strain at the apex of the near-tip logarithmic-spiral slip-line region becomes the dominant negative strain accommodating crack opening. Because slip lines passing from the midplane to the stress-free side surfaces do not have to curve, once these slip lines are established, stresses near the crack tip are only elevated by strain hardening and constraint becomes significantly relaxed. This hypothesis, based on published three-dimensional elastic-plastic analyses, provides a potentially valuable means for gaining additional insight into constraint effects on fracture toughness by considering the roles played by the plastic strains as well as the stresses that develop near a crack tip.

  10. Mechanics of fracture - Fundamentals and some recent developments

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Subramonian, N.; Lee, J. D.

    1979-01-01

    An overview is presented of the fundamental aspects of and recent developments in fracture mechanics. Reference is made to linear elastic fracture mechanics including the state of stresses and displacements in the vicinity of cracks, effects of crack geometry and orientation on stress intensity factors, energy balance of Griffith, Irwin's stress intensity concept, and linear elastic fracture mechanics testing for fracture toughness. Other aspects of this paper include the non-linear behavior of materials and their influence on fracture mechanics parameters, consideration of viscoelasticity and plasticity, non-linear fracture toughness parameters as C.O.D., R-curve and J-integral, and a non-linear energy method, proposed by Liebowitz. Finite element methods applied to fracture mechanics problems are indicated. Also, consideration has been given to slow crack growth, dynamic effects on K(IC), Sih's criterion for fracture, Lee and Liebowitz's criterion relating crack growth with plastic energy, and applications of fracture mechanics to aircraft design. Suggestions are offered for future research efforts to be undertaken in fracture mechanics.

  11. Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part II: Mechanical Characterization and Modeling

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; De Geuser, Frédéric; Estevez, Rafael; Parry, Guillaume; Deschamps, Alexis

    2014-12-01

    This paper presents an experimental and modeling study of the mechanical behavior of an electron beam welded EN-AW 7020 aluminum alloy. The heterogeneous distribution of mechanical properties is characterized by micro-tensile tests and by strain field measurements using digital image correlation technic. These results are related to the microstructural observation presented in the companion paper. The mechanical behavior of the weld is simulated by a finite element model including a Gurson-type damage evolution model for void evolution. The model is shown to be capable of describing accurately experimental situations where the sample geometry is varied, resulting in stress triaxiality ratios ranging from 0.45 to 1.3.

  12. Relationship Between Microstructure, Strength, and Fracture in an Al-Zn-Mg Electron Beam Weld: Part II: Mechanical Characterization and Modeling

    NASA Astrophysics Data System (ADS)

    Puydt, Quentin; Flouriot, Sylvain; Ringeval, Sylvain; De Geuser, Frédéric; Estevez, Rafael; Parry, Guillaume; Deschamps, Alexis

    2014-09-01

    This paper presents an experimental and modeling study of the mechanical behavior of an electron beam welded EN-AW 7020 aluminum alloy. The heterogeneous distribution of mechanical properties is characterized by micro-tensile tests and by strain field measurements using digital image correlation technic. These results are related to the microstructural observation presented in the companion paper. The mechanical behavior of the weld is simulated by a finite element model including a Gurson-type damage evolution model for void evolution. The model is shown to be capable of describing accurately experimental situations where the sample geometry is varied, resulting in stress triaxiality ratios ranging from 0.45 to 1.3.

  13. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (FALSIRE II)

    SciTech Connect

    Bass, B.R.; Pugh, C.E.; Keeney, J.; Schulz, H.; Sievers, J.

    1996-11-01

    A summary of Phase II of the Project for FALSIRE is presented. FALSIRE was created by the Fracture Assessment Group (FAG) of the OECD/NEA`s Committee on the Safety of Nuclear Installations (CNSI) Principal Working Group No. 3. FALSIRE I in 1988 assessed fracture methods through interpretive analyses of 6 large-scale fracture experiments in reactor pressure vessel (RPV) steels under pressurized- thermal-shock (PTS) loading. In FALSIRE II, experiments examined cleavage fracture in RPV steels for a wide range of materials, crack geometries, and constraint and loading conditions. The cracks were relatively shallow, in the transition temperature region. Included were cracks showing either unstable extension or two stages of extensions under transient thermal and mechanical loads. Crack initiation was also investigated in connection with clad surfaces and with biaxial load. Within FALSIRE II, comparative assessments were performed for 7 reference fracture experiments based on 45 analyses received from 22 organizations representing 12 countries. Temperature distributions in thermal shock loaded samples were approximated with high accuracy and small scatter bands. Structural response was predicted reasonably well; discrepancies could usually be traced to the assumed material models and approximated material properties. Almost all participants elected to use the finite element method.

  14. An investigation of the effects of history dependent damage in time dependent fracture mechanics; Phases I, II, and one half of Phase III - variable load conditions. Progress report

    SciTech Connect

    Brust, F.W.; Krishnaswamy, P.; Majumdar, B.S.

    1993-10-15

    The demands for structural systems to perform reliably under severe temperatures and load conditions continue to increase. These demands will continue with the development of advanced power generation methods, for aging nuclear and fossil fueled power plants, and for future aerospace applications. An understanding of the high-temperature creep crack growth process, which is a frequent failure mechanism in these structures, is important. Many investigations which have appeared to date are concerned with creep crack growth which occurs under a constant load and temperature. However, most structural components experience complicated load histories. The history of degradation and damage which accumulates at the crack tip is greatly influenced by these transients. This program aims at gaining an understanding of the history dependent high temperature failure process through a combined experimental and analytical effort. The development of a useful predictive methodology for characterizing this process is being undertaken.

  15. Solution-adaptive finite element method in computational fracture mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1993-01-01

    Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.

  16. Application of fracture mechanics on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Forman, R. G.; Hu, T.

    1984-01-01

    During the design stages of the shuttle orbiter, fracture-mechanics concepts were applied extensively to the highly stressed areas of the structure. This was the first space program to require a comprehensive fracture mechanics approach to prevent structural failures from crack or crack-like defects. As anticipated, some difficult problems were encountered. This paper briefly describes some of them together with the procedure used for fracture control on the orbiter. It is believed that the principles and methods as presented herein can serve as an example of fracture control for aerospace and other industries.

  17. Effects of pulp capping materials on fracture resistance of Class II composite restorations

    PubMed Central

    Kucukyilmaz, Ebru; Yasa, Bilal; Akcay, Merve; Savas, Selcuk; Kavrik, Fevzi

    2015-01-01

    Objective: The aim of this study was to investigate the effect of cavity design and the type of pulp capping materials on the fracture resistance of Class II composite restorations. Materials and Methods: Sixty freshly extracted, sound molar teeth were selected for the study. A dovetail cavity on the mesio-occlusal and a slot cavity on disto-occlusal surfaces of each tooth were prepared, and the teeth were divided 4 groups which one of them as a control group. The pulp capping materials (TheraCal LC, Calcimol LC, Dycal) applied on pulpo-axial wall of each cavity, and the restoration was completed with composite resin. The teeth were subjected to a compressive load in a universal mechanical testing machine. The surfaces of the tooth and restoration were examined under a stereomicroscope. The data were analyzed using factorial analysis of variance and Tukey's test. Results: For pulp capping materials, the highest fracture load (931.15 ± 203.81 N) and the lowest fracture load (832.28 ± 245.75 N) were calculated for Control and Dycal group, respectively. However, there were no statistically significant differences among all groups (P > 0.05). The fracture load of the dovetail groups was significantly higher than those of the slot cavity groups (P < 0.05). Conclusion: Dovetail cavity design shows better fracture resistance in Class II composite restorations, independent of used or not used pulp capping materials. PMID:26038653

  18. Breakdown of Continuum Fracture Mechanics at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Shimada, Takahiro; Ouchi, Kenji; Chihara, Yuu; Kitamura, Takayuki

    2015-02-01

    Materials fail by the nucleation and propagation of a crack, the critical condition of which is quantitatively described by fracture mechanics that uses an intensity of singular stress field characteristically formed near the crack-tip. However, the continuum assumption basing fracture mechanics obscures the prediction of failure of materials at the nanoscale due to discreteness of atoms. Here, we demonstrate the ultimate dimensional limit of fracture mechanics at the nanoscale, where only a small number of atoms are included in a singular field of continuum stress formed near a crack tip. Surprisingly, a singular stress field of only several nanometers still governs fracture as successfully as that at the macroscale, whereas both the stress intensity factor and the energy release rate fail to describe fracture below a critically confined singular field of 2-3 nm, i.e., breakdown of fracture mechanics within the framework of the continuum theory. We further propose an energy-based theory that explicitly accounts for the discrete nature of atoms, and demonstrate that our theory not only successfully describes fracture even below the critical size but also seamlessly connects the atomic to macroscales. It thus provides a more universal fracture criterion, and novel atomistic insights into fracture.

  19. Breakdown of Continuum Fracture Mechanics at the Nanoscale

    PubMed Central

    Shimada, Takahiro; Ouchi, Kenji; Chihara, Yuu; Kitamura, Takayuki

    2015-01-01

    Materials fail by the nucleation and propagation of a crack, the critical condition of which is quantitatively described by fracture mechanics that uses an intensity of singular stress field characteristically formed near the crack-tip. However, the continuum assumption basing fracture mechanics obscures the prediction of failure of materials at the nanoscale due to discreteness of atoms. Here, we demonstrate the ultimate dimensional limit of fracture mechanics at the nanoscale, where only a small number of atoms are included in a singular field of continuum stress formed near a crack tip. Surprisingly, a singular stress field of only several nanometers still governs fracture as successfully as that at the macroscale, whereas both the stress intensity factor and the energy release rate fail to describe fracture below a critically confined singular field of 2–3 nm, i.e., breakdown of fracture mechanics within the framework of the continuum theory. We further propose an energy-based theory that explicitly accounts for the discrete nature of atoms, and demonstrate that our theory not only successfully describes fracture even below the critical size but also seamlessly connects the atomic to macroscales. It thus provides a more universal fracture criterion, and novel atomistic insights into fracture. PMID:25716684

  20. Fracture mechanics analysis for various fiber/matrix interface loadings

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1991-01-01

    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.

  1. Fracture mechanics analysis for various fiber/matrix interface loadings

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1992-01-01

    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, theory avoiding fractional effects. A F/M interface toughness test based on this configuration would provide data for K(sub I/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.

  2. Fracture mechanics analysis for various fiber/matrix interface loadings

    NASA Technical Reports Server (NTRS)

    Naik, R. A.; Crews, J. H., Jr.

    1991-01-01

    Fiber/matrix (F/M) cracking was analyzed to provide better understanding and guidance in developing F/M interface fracture toughness tests. Two configurations, corresponding to F/M cracking at a broken fiber and at the free edge, were investigated. The effects of mechanical loading, thermal cooldown, and friction were investigated. Each configuration was analyzed for two loadings: longitudinal and normal to the fiber. A nonlinear finite element analysis was performed to model friction and slip at the F/M interface. A new procedure for fitting a square-root singularity to calculated stresses was developed to determine stress intensity factors (K sub I and K sub II) for a bimaterial interface crack. For the case of F/M cracking at a broken fiber with longitudinal loading, crack tip conditions were strongly influenced by interface friction. As a result, an F/M interface toughness test based on this case was not recommended because nonlinear data analysis methods would be required. For the free edge crack configuration, both mechanical and thermal loading caused crack opening, thereby avoiding frictional effects. An F/M interface toughness test based on this configuration would provide data for K(sub I)/K(sub II) ratios of about 0.7 and 1.6 for fiber and radial normal loading, respectively. However, thermal effects must be accounted for in the data analysis.

  3. Fracture Mechanics for Composites: State of the Art and Challenges

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Krueger, Ronald

    2006-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on the structural level. In this paper, the state-of-the-art in fracture toughness characterization, and interlaminar fracture mechanics analysis tools are described. To demonstrate the application on the structural level, a panel was selected which is reinforced with stringers. Full implementation of interlaminar fracture mechanics in design however remains a challenge and requires a continuing development effort of codes to calculate energy release rates and advancements in delamination onset and growth criteria under mixed mode conditions.

  4. On nonlinear effects in fracture mechanics.

    NASA Technical Reports Server (NTRS)

    Liebowitz, H.; Eftis, J.

    1971-01-01

    Linear elastic treatment of fracture is considered applicable for net section stress up to about 0.8 the uniaxial tensile yield stress. Crack front plastic yield is still small enough to be viewed and treated as a small perturbation to the local crack front elastic stress field. Assuming these same circumstances and adopting the same point of view, an approach is presented for incorporating the nonlinear effects of small scale crack front plastic yield and slow crack extension in determination of the energy release rate and fracture toughness. Deviation from linearity of the load-displacement record in a fracture toughness test offers a quantifiable measure of these effects and is used to calculate the energy release rate. Fracture toughness values for one-eight inch thick 7075-T6 center cracked aluminum sheet are compared with uncorrected values and with values obtained by the Irwin method of plasticity correction.

  5. Combined Type II Odontoid Fracture with Jefferson's Fracture Treated with Temporary Internal Fixation.

    PubMed

    Pawar, Abhijit Yuvaraj; O'Leary, Patrick F

    2015-12-01

    An 18-year-old male presented after a motor vehicle rollover accident. Computed tomography (CT) scan confirmed the diagnosis of Type II odontoid fracture. Considering the patient's young age and the limitations of C1-C2 fusion including significant loss of cervical rotation, temporary internal fixation with a lateral mass fixation of C1 and pedicle fixation of C2 without fusion was done. CT scan done at 6-month follow-up visit showed healed odontoid fracture and excellent C1-C2 alignment. At ninth postoperative month, internal fixation was removed. Patient had normal movements of cervical spine at 1-year follow-up. Temporary internal fixation can be an important tool in the armamentarium of the surgeon in treating type II odontoid fractures in young adults and children. This strategy avoids the complications halo fixation and immobilizes the unstable C1-C2 segment without fusion. Removal of the internal fixation after healing allows restoration of the rotational motion. PMID:26713132

  6. Hinged external fixation for Regan-Morrey type I and II fractures and fracture-dislocations.

    PubMed

    Castelli, Alberto; D'amico, Salvatore; Combi, Alberto; Benazzo, Francesco

    2016-06-01

    Elbow fracture-dislocation is always demanding to manage due to the considerable soft-tissue swelling or damage involved, which can make an early open approach and ligamentous reconstruction impossible. The purpose of this study was to evaluate the role of elbow hinged external fixation (HEF) as a definitive treatment in patients with elbow dislocations associated with Regan-Morrey (R-M) type I and II coronoid fractures and soft-tissue damage. We treated 11 patients between 2010 and 2012 with HEF. Instability tests and standard X-ray examinations were performed before surgery and 1-3 to 3-6 months after surgery, respectively. All patients underwent a preoperative CT scan. Outcomes were assessed with a functional assessment scale (Mayo Elbow Performance Score, MEPS) that included 4 parameters: pain, ROM, stability, and function. The results were good or excellent in all 11 patients, and no patient complained of residual instability. Radiographic examination showed bone metaplasia involving the anterior and medial sides of the joint in 5 patients. HEF presented several advantages: it improves elbow stability and it avoids long and demanding surgery in particular in cases with large soft tissue damage. We therefore consider elbow HEF to be a viable option for treating R-M type I and II fracture-dislocations. PMID:26875088

  7. Use of fractography and sectioning techniques to study fracture mechanisms

    NASA Technical Reports Server (NTRS)

    Van Stone, R. H.; Cox, T. B.

    1976-01-01

    Recent investigations of the effect of microstructure on the fracture mechanisms and fracture toughness of steels, aluminum alloys, and titanium alloys have used standard fractographic techniques and a sectioning technique on specimens plastically deformed to various strains up to fracture. The specimens are prepared metallographically for observation in both optical and electron beam instruments. This permits observations to be made about the fracture mechanism as it occurs in thick sections and helps remove speculation from the interpretation of fractographic features. This technique may be used in conjunction with other standard techniques such as extraction replicas and microprobe analyses. Care must be taken to make sure that the microstructural features which are observed to play a role in the fracture process using the sectioning technique can be identified with fractography.

  8. Fatigue and fracture mechanics: 28. volume

    SciTech Connect

    Underwood, J.H.; Macdonald, B.D.; Mitchell, M.R.

    1997-12-31

    The papers published here cover topics including general overview papers, constraint effects on fracture toughness, technology and applications of fatigue, weld applications, and analysis of fracture in various materials and components. These five topics were used to group the papers, but it is clear that there is considerable overlap of these topics in many of the papers. Many basic concepts and results in fatigue and fracture are well understood and have been documented in prior technical literature, so that the problems now being addressed are often the difficult and complex questions. Nearly every paper here addresses an unproven material or manufacturing process or a set of severe service conditions that requires very careful testing or analysis. To the extent that the problems and solutions are complex, this Symposium and its papers are intended for those who have some experience with the field of fatigue and fracture. Nevertheless, the introductory and reference materials contained in the papers can be used by those with less experience to gain some understanding of subtopics within the overall field. In addition, the three keynote papers and the many papers dealing with industrial applications will also be useful for those with limited experience in fatigue and fracture. Separate abstracts were prepared for most papers in this volume.

  9. Fracture mechanics /Dryden Lecture/. [aerospace structural design applications

    NASA Technical Reports Server (NTRS)

    Hardrath, H. F.

    1974-01-01

    A historical outline of the engineering discipline of fracture mechanics is presented, and current analytical procedures are summarized. The current status of the discipline is assessed, and engineering applications are discussed, along with recommended directions for future study.

  10. A nonlinear high temperature fracture mechanics basis for strainrange partitioning

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Halford, Gary R.

    1989-01-01

    A direct link was established between Strainrange Partitioning (SRP) and high temperature fracture mechanics by deriving the general SRP inelastic strain range versus cyclic life relationships from high temperature, nonlinear, fracture mechanics considerations. The derived SRP life relationships are in reasonable agreement based on the experience of the SRP behavior of many high temperature alloys. In addition, fracture mechanics has served as a basis for derivation of the Ductility-Normalized SRP life equations, as well as for examination of SRP relations that are applicable to thermal fatigue life prediction. Areas of additional links between nonlinear fracture mechanics and SRP were identified for future exploration. These include effects of multiaxiality as well as low strain, nominally elastic, long life creep fatigue interaction.

  11. Adaptive Finite-Element Computation In Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Bass, J. M.; Spradley, L. W.

    1995-01-01

    Report discusses recent progress in use of solution-adaptive finite-element computational methods to solve two-dimensional problems in linear elastic fracture mechanics. Method also shown extensible to three-dimensional problems.

  12. Fatigue and fracture mechanics: Twenty-ninth volume

    SciTech Connect

    Panontin, T.L. . Ames Research Center); Sheppard, S.D. )

    1999-01-01

    The twenty ninth National Symposium on Fatigue and Fracture Mechanics met at Stanford University in Stanford, California on June 24--25, 1997. Information was exchanged on recent developments on modeling and analyzing fatigue and fracture processes; on applications to real structures and new materials; and on directions for future research. Papers were presented on fracture mechanics with mathematical modeling and new materials, fatigue with crack growth models and improved fatigue test methods, and structural applications covering a variety of materials and their performance. Fifty papers have been processed separately for inclusion on the data base.

  13. Deformation and Fracture Mechanisms of Polymer-Silicate Nanocomposites

    NASA Astrophysics Data System (ADS)

    Harcup, Jason; Yee, Albert

    1998-03-01

    The deformation and fracture behavior of a series of nanocomposites comprising polyamide, silicate and in some cases rubber has been studied. Mechanical properties including Young modulus and fracture toughness were measured and it was found that compared to conventional composites, the nanocomposites exhibited far greater improvement in properties over the neat matrix for a given silicate fraction. It was also found that the addition of the rubber phase produced an increase in toughness. The arrested crack tip process zone was obtained using the Double Notch Four Point Bend test geometry and the process zone morphology was studied using TEM and TOM. Fracture surfaces were probed with XEDS and SEM. The use of these techniques enabled the mechanisms which occur during fracture to be studied and related to the mechanical properties and toughening of these materials.

  14. Fracture mechanics for delamination problems in composite materials

    NASA Technical Reports Server (NTRS)

    Wang, S. S.

    1983-01-01

    A fracture mechanics approach to the well-known delamination problem in composite materials is presented. Based on the theory of anisotropic laminate elasticity and interlaminar fracture mechanics concepts, the composite delamination problem is formulated and solved. The exact order of the delamination crack-tip stress singularity is determined. Asymptotic stress and displacement fields for an interlaminar crack are obtained. Fracture mechanics parameters such as mixed-mode stress intensity factors, KI, KII, KIII, and the energy release rate, G, for composite delamination problems are defined. To illustrate the fundamental nature of the delamination crack behavior, solutions for edge-delaminated graphite-epoxy composites under uniform axial extension are presented. Effects of fiber orientation, ply thickness, and delamination length on the interlaminar fracture are examined.

  15. Material properties and fracture mechanics in relation to ceramic machining

    SciTech Connect

    Griffith, L.V.

    1993-12-02

    Material removal rate, surface finish, and subsurface damage are largely governed by fracture mechanics and plastic deformation, when ceramics are machined using abrasive methods. A great deal of work was published on the fracture mechanics of ceramics in the late 1970s and early 1980s, although this work has never resulted in a comprehensive model of the fixed abrasive grinding process. However, a recently published model describes many of the most important features of the loose abrasive machining process, for example depth of damage, surface roughness, and material removal rate. Many of the relations in the loose abrasive machining model can be readily discerned from fracture mechanics models, in terms of material properties. By understanding the mechanisms of material removal, from a material properties perspective, we can better estimate how one material will machine in relation to another. Although the fracture mechanics models may have been developed for loose abrasive machining, the principles of crack initiation and propagation are equally valuable for fixed abrasive machining. This report provides a brief review of fracture in brittle materials, the stress distribution induced by abrasives, critical indenter loads, the extension of cracks, and the relation of the fracture process to material removal.

  16. Work of fracture of a composite resin: fracture-toughening mechanisms.

    PubMed

    Baudin, Carmen; Osorio, Raquel; Toledano, Manuel; de Aza, Salvador

    2009-06-01

    The aim of this work was to investigate those mechanical parameters able to describe the fracture behavior of dental composite resins. A commercially available fine-particle micro-hybrid resin composite was used. Classical parameters as Young's modulus, strength distribution, and critical stress intensity factor were considered. Strength values were determined using the diametrical compression of discs test and for the critical stress intensity factor both unstable and controlled fracture tests were used. Controlled fracture tests allowed determining the work of fracture. Microstructure was studied by optical and field emission scanning electron microscopy. The obtained properties have been Young's modulus, 17.7 +/- 0.6 GPa; Weibull modulus, m = 14 (upper and lower limits for 90% confidence: 17 and 10); characteristic strength 51 MPa (upper and lower limits for 90% confidence: 53 and 49 MPa); critical stress intensity factor in mode I, K(IC) = 1.3 +/- 0.1 and work of fracture, gamma(wof) = 8-9 J/m(2). Pores and bubbles formed during the packing of the composite were identified as critical defects in the tested specimens. Crack deflection and branching have been identified as toughening mechanisms. Classical mechanical parameters (Young's modulus, hardness...) are not able to efficiently predict the major clinical failure mode of composite resins by fatigue. Work of fracture analysis, which is dependant on microstructural parameters such as particle size and shape, have to be included when testing mechanical properties of dental composite resins in future research studies. PMID:18465813

  17. In Vitro Fracture of Human Cortical Bone: Local Fracture Criteria and Toughening Mechanisms

    SciTech Connect

    Nalla, R; Stolken, J; Kinney, J; Ritchie, R

    2004-08-18

    A micro-mechanistic understanding of bone fracture that encompasses how cracks interact with the underlying microstructure and defines their local failure mode is lacking, despite extensive research on the response of bone to a variety of factors like aging, loading, and/or disease. Micro-mechanical models for fracture incorporating such local failure criteria have been widely developed for metallic and ceramic materials systems; however, few such deliberations have been undertaken for the fracture of bone. In fact, although the fracture event in mineralized tissues such as bone is commonly believed to be locally strain controlled, until recently there has been little experimental evidence to support this widely held belief. In the present study, a series of in vitro experiments involving a double-notch bend test geometry are performed in order to shed further light on the nature of the local cracking events that precede catastrophic fracture in bone and to define their relationship to the microstructure. Specifically, crack-microstructure interactions are examined to determine the salient toughening mechanisms in human cortical bone and to characterize how these may affect the anisotropy in fracture properties. Based on preliminary micro-mechanical models of these processes, in particular crack deflection and uncracked ligament bridging, the relative importance of these toughening mechanisms is established.

  18. Mechanics of dynamic fracture in notched polycarbonate

    NASA Astrophysics Data System (ADS)

    Faye, Anshul; Parmeswaran, Venkitanarayanan; Basu, Sumit

    2015-04-01

    Fracture toughness of brittle amorphous polymers (e.g. polymethyl methacrylate (PMMA)) has been reported to decrease with loading rate at moderate rates and increase abruptly thereafter to close to 5 times the static value at very high loading rates. Dynamic fracture toughness that is much higher than the static values has attractive technological possibilities. However, the reasons for the sharp increase remain unclear. Motivated by these observations, the present work focuses on the dynamic fracture behavior of polycarbonate (PC), which is also an amorphous polymer but unlike PMMA, is ductile at room temperature. Towards this end, a combined experimental and numerical approach is adopted. Dynamic fracture experiments at various loading rates are conducted on single edge notched (SEN) specimens with a notch of radius 150 μm, using a Hopkinson bar setup equipped with ultra high-speed imaging (>105 fps) for real-time observation of dynamic processes during fracture. Concurrently, 3D dynamic finite element simulations are performed using a well calibrated material model for PC. Experimentally, we were able to clearly capture the intricate details of the process, for both slowly and dynamically loaded samples, of damage nucleation and growth ahead of the notch tip followed by unstable crack propagation. These observations coupled with fractography and computer simulations led us to conclude that in PC, the fracture toughness remains invariant with loading rate at Jfrac = 12 ± 3 kN / m for the entire range of loading rates (J ˙) from static to 1 ×106 kN / m - s. However, the damage initiation toughness is significantly higher in dynamic loading compared to static situations. In dynamic situations, damage nucleation is quickly followed by initiation of radial crazes from around the void periphery that initiate and quickly bridge the ligament between the initial damaged region and the notch. Thus for PC, two criteria for two major stages in the failure process emerge

  19. Adhesive fracture mechanics. [stress analysis for bond line interface

    NASA Technical Reports Server (NTRS)

    Bennett, S. J.; Devries, K. L.; Williams, M. L.

    1974-01-01

    In studies of fracture mechanics the adhesive fracture energy is regarded as a fundamental property of the adhesive system. It is pointed out that the value of the adhesive fracture energy depends on surface preparation, curing conditions, and absorbed monolayers. A test method reported makes use of a disk whose peripheral part is bonded to a substrate material. Pressure is injected into the unbonded central part of the disk. At a certain critical pressure value adhesive failure can be observed. A numerical stress analysis involving arbitrary geometries is conducted.

  20. Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings

    SciTech Connect

    Rutqvist, J.

    2014-09-19

    The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on local in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.

  1. Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings

    DOE PAGESBeta

    Rutqvist, J.

    2014-09-19

    The purpose of this paper is to (i) review field data on stress-induced permeability changes in fractured rock; (ii) describe estimation of fractured rock stress-permeability relationships through model calibration against such field data; and (iii) discuss observations of temperature and chemically mediated fracture closure and its effect on fractured rock permeability. The field data that are reviewed include in situ block experiments, excavation-induced changes in permeability around tunnels, borehole injection experiments, depth (and stress) dependent permeability, and permeability changes associated with a large-scale rock-mass heating experiment. Data show how the stress-permeability relationship of fractured rock very much depends on localmore » in situ conditions, such as fracture shear offset and fracture infilling by mineral precipitation. Field and laboratory experiments involving temperature have shown significant temperature-driven fracture closure even under constant stress. Such temperature-driven fracture closure has been described as thermal overclosure and relates to better fitting of opposing fracture surfaces at high temperatures, or is attributed to chemically mediated fracture closure related to pressure solution (and compaction) of stressed fracture surface asperities. Back-calculated stress-permeability relationships from field data may implicitly account for such effects, but the relative contribution of purely thermal-mechanical and chemically mediated changes is difficult to isolate. Therefore, it is concluded that further laboratory and in situ experiments are needed to increase the knowledge of the true mechanisms behind thermally driven fracture closure, and to further assess the importance of chemical-mechanical coupling for the long-term evolution of fractured rock permeability.« less

  2. RSRM nozzle actuator bracket/lug fracture mechanics qualification test

    NASA Technical Reports Server (NTRS)

    Kelley, Peggy

    1993-01-01

    This is the final report for the actuator bracket/lug fracture mechanics qualification test. The test plan (CTP-0071) outlined a two-phase test program designed to answer questions about the fracture criticality of the redesigned solid rocket motor (RSRM) nozzle actuator bracket. An analysis conducted using the NASA/FLAGRO fracture mechanics computer program indicated that the actuator bracket might be a fracture critical component. In the NASA/FLAGRO analysis, a simple lug model was used to represent the actuator bracket. It was calculated that the bracket would fracture if subjected to an actuator stall load in the presence of a 0.10 in. corner crack at the actuator attachment hole. The 0.10 in. crack size corresponds to the nondestructive inspection detectability limit for the actuator bracket. The inspection method used is the dye penetrant method. The actuator stall load (103,424 lb) is the maximum load which the actuator bracket is required to withstand during motor operation. This testing was designed to establish the accuracy of the analytical model and to directly determine whether the actuator bracket is capable of meeting fracture mechanics safe-life requirements.

  3. RSRM nozzle actuator bracket/lug fracture mechanics qualification test

    NASA Astrophysics Data System (ADS)

    Kelley, Peggy

    1993-07-01

    This is the final report for the actuator bracket/lug fracture mechanics qualification test. The test plan (CTP-0071) outlined a two-phase test program designed to answer questions about the fracture criticality of the redesigned solid rocket motor (RSRM) nozzle actuator bracket. An analysis conducted using the NASA/FLAGRO fracture mechanics computer program indicated that the actuator bracket might be a fracture critical component. In the NASA/FLAGRO analysis, a simple lug model was used to represent the actuator bracket. It was calculated that the bracket would fracture if subjected to an actuator stall load in the presence of a 0.10 in. corner crack at the actuator attachment hole. The 0.10 in. crack size corresponds to the nondestructive inspection detectability limit for the actuator bracket. The inspection method used is the dye penetrant method. The actuator stall load (103,424 lb) is the maximum load which the actuator bracket is required to withstand during motor operation. This testing was designed to establish the accuracy of the analytical model and to directly determine whether the actuator bracket is capable of meeting fracture mechanics safe-life requirements.

  4. Toughness of carbon nanotubes conforms to classic fracture mechanics

    PubMed Central

    Yang, Lin; Greenfeld, Israel; Wagner, H. Daniel

    2016-01-01

    Defects in crystalline structure are commonly believed to degrade the ideal strength of carbon nanotubes. However, the fracture mechanisms induced by such defects, as well as the validity of solid mechanics theories at the nanoscale, are still under debate. We show that the fracture toughness of single-walled nanotubes (SWNTs) conforms to the classic theory of fracture mechanics, even for the smallest possible vacancy defect (~2 Å). By simulating tension of SWNTs containing common types of defects, we demonstrate how stress concentration at the defect boundary leads to brittle (unstable) fracturing at a relatively low strain, degrading the ideal strength of SWNTs by up to 60%. We find that, owing to the SWNT’s truss-like structure, defects at this scale are not sharp and stress concentrations are finite and low. Moreover, stress concentration, a geometric property at the macroscale, is interrelated with the SWNT fracture toughness, a material property. The resulting SWNT fracture toughness is 2.7 MPa m0.5, typical of moderately brittle materials and applicable also to graphene. PMID:26989774

  5. Toughness of carbon nanotubes conforms to classic fracture mechanics.

    PubMed

    Yang, Lin; Greenfeld, Israel; Wagner, H Daniel

    2016-02-01

    Defects in crystalline structure are commonly believed to degrade the ideal strength of carbon nanotubes. However, the fracture mechanisms induced by such defects, as well as the validity of solid mechanics theories at the nanoscale, are still under debate. We show that the fracture toughness of single-walled nanotubes (SWNTs) conforms to the classic theory of fracture mechanics, even for the smallest possible vacancy defect (~2 Å). By simulating tension of SWNTs containing common types of defects, we demonstrate how stress concentration at the defect boundary leads to brittle (unstable) fracturing at a relatively low strain, degrading the ideal strength of SWNTs by up to 60%. We find that, owing to the SWNT's truss-like structure, defects at this scale are not sharp and stress concentrations are finite and low. Moreover, stress concentration, a geometric property at the macroscale, is interrelated with the SWNT fracture toughness, a material property. The resulting SWNT fracture toughness is 2.7 MPa m(0.5), typical of moderately brittle materials and applicable also to graphene. PMID:26989774

  6. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs.

    PubMed

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  7. Theoretical Analysis of the Mechanism of Fracture Network Propagation with Stimulated Reservoir Volume (SRV) Fracturing in Tight Oil Reservoirs

    PubMed Central

    Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong

    2015-01-01

    Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285

  8. Fracture mechanics life analytical methods verification testing

    NASA Technical Reports Server (NTRS)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-01-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  9. Fracture mechanics life analytical methods verification testing

    NASA Astrophysics Data System (ADS)

    Favenesi, J. A.; Clemons, T. G.; Riddell, W. T.; Ingraffea, A. R.; Wawrzynek, P. A.

    1994-09-01

    The objective was to evaluate NASCRAC (trademark) version 2.0, a second generation fracture analysis code, for verification and validity. NASCRAC was evaluated using a combination of comparisons to the literature, closed-form solutions, numerical analyses, and tests. Several limitations and minor errors were detected. Additionally, a number of major flaws were discovered. These major flaws were generally due to application of a specific method or theory, not due to programming logic. Results are presented for the following program capabilities: K versus a, J versus a, crack opening area, life calculation due to fatigue crack growth, tolerable crack size, proof test logic, tearing instability, creep crack growth, crack transitioning, crack retardation due to overloads, and elastic-plastic stress redistribution. It is concluded that the code is an acceptable fracture tool for K solutions of simplified geometries, for a limited number of J and crack opening area solutions, and for fatigue crack propagation with the Paris equation and constant amplitude loads when the Paris equation is applicable.

  10. Fracture mechanism of amorphous polymers at strain fields.

    PubMed

    Huang, Lan; Yang, Xiaoping; Jia, Xiaolong; Cao, Dapeng

    2014-12-01

    Owing to the wide application of polymeric materials, understanding the fracture mechanism of amorphous polymers at strain fields is a fundamentally important challenge. In this work, we use molecular dynamics simulations to investigate the uniaxial deformation of amorphous polyethylene and further monitor the polyethylene fracture process induced by stretching. Results indicate that the polyethylene systems with chain lengths of 600-800 united atoms exhibit the fracture behavior at a temperature T < 200 K and the strain of 1.0. Further study shows that in the stretching process, the disentanglement and orientation of chains lead to the formation of small cavities in the middle region of the system, and the small cavities subsequently form a large hole, causing the fracture of the whole system. Definitely, the fracture is determined by the two factors of mobility and entanglement of chains. The polyethylene systems with a high chain mobility or a high chain entanglement do not fracture. Finally, a schematic diagram is put forward to illustrate the fracture behavior. PMID:25322468

  11. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  12. Fracture mechanics criteria for turbine engine hot section components

    NASA Technical Reports Server (NTRS)

    Meyers, G. J.

    1982-01-01

    The application of several fracture mechanics data correlation parameters to predicting the crack propagation life of turbine engine hot section components was evaluated. An engine survey was conducted to determine the locations where conventional fracture mechanics approaches may not be adequate to characterize cracking behavior. Both linear and nonlinear fracture mechanics analyses of a cracked annular combustor liner configuration were performed. Isothermal and variable temperature crack propagation tests were performed on Hastelloy X combustor liner material. The crack growth data was reduced using the stress intensity factor, the strain intensity factor, the J integral, crack opening displacement, and Tomkins' model. The parameter which showed the most effectiveness in correlation high temperature and variable temperature Hastelloy X crack growth data was crack opening displacement.

  13. Meshfree simulations of thermo-mechanical ductile fracture

    NASA Astrophysics Data System (ADS)

    Simkins, D. C.; Li, S.

    2006-08-01

    In this work, a meshfree method is used to simulate thermo-mechanical ductile fracture under finite deformation. A Galerkin meshfree formulation incorporating the Johnson-Cook damage model is implemented in numerical computations. We are interested in the simulation of thermo-mechanical effects on ductile fracture under large scale yielding. A rate form adiabatic split is proposed in the constitutive update. Meshfree techniques, such as the visibility criterion, are used to modify the particle connectivity based on evolving crack surface morphology. The numerical results have shown that the proposed meshfree algorithm works well, the meshfree crack adaptivity and re-interpolation procedure is versatile in numerical simulations, and it enables us to predict thermo-mechanical effects on ductile fracture.

  14. Fixation of unstable type II clavicle fractures with distal clavicle plate and suture button.

    PubMed

    Johnston, Peter S; Sears, Benjamin W; Lazarus, Mark R; Frieman, Barbara G

    2014-11-01

    This article reports on a technique to treat unstable type II distal clavicle fractures using fracture-specific plates and coracoclavicular augmentation with a suture button. Six patients with clinically unstable type II distal clavicle fractures underwent treatment using the above technique. All fractures demonstrated radiographic union at 9.6 (8.4-11.6) weeks with a mean follow-up of 15.6 (12.4-22.3) months. American Shoulder and Elbow Surgeons, Penn Shoulder Score, and Single Assessment Numeric Evaluation scores were 97.97 (98.33-100), 96.4 (91-99), and 95 (90-100), respectively. One patient required implant removal. Fracture-specific plating with suture-button augmentation for type II distal clavicle fractures provides reliable rates of union without absolute requirement for implant removal. PMID:24667803

  15. Mechanical transport in two-dimensional networks of fractures

    SciTech Connect

    Endo, H.K.

    1984-04-01

    The objectives of this research are to evaluate directional mechanical transport parameters for anisotropic fracture systems, and to determine if fracture systems behave like equivalent porous media. The tracer experiments used to measure directional tortuosity, longitudinal geometric dispersivity, and hydraulic effective porosity are conducted with a uniform flow field and measurements are made from the fluid flowing within a test section where linear length of travel is constant. Since fluid flow and mechanical transport are coupled processes, the directional variations of specific discharge and hydraulic effective porosity are measured in regions with constant hydraulic gradients to evaluate porous medium equivalence for the two processes, respectively. If the fracture region behaves like an equivalent porous medium, the system has the following stable properties: (1) specific discharge is uniform in any direction and can be predicted from a permeability tensor; and (2) hydraulic effective porosity is directionally stable. Fracture systems with two parallel sets of continuous fractures satisfy criterion 1. However, in these systems hydraulic effective porosity is directionally dependent, and thus, criterion 2 is violated. Thus, for some fracture systems, fluid flow can be predicted using porous media assumptions, but it may not be possible to predict transport using porous media assumptions. Two discontinuous fracture systems were studied which satisfied both criteria. Hydraulic effective porosity for both systems has a value between rock effective porosity and total porosity. A length-density analysis (LDS) of Canadian fracture data shows that porous media equivalence for fluid flow and transport is likely when systems have narrow aperture distributions. 54 references, 90 figures, 7 tables.

  16. Fracture mechanics analysis of a high-pressure hydrogen facility compressor

    NASA Technical Reports Server (NTRS)

    Vroman, G. A.

    1974-01-01

    The investigation and analysis of a high-pressure hydrogen facility compressor is chronicled, and a life prediction based on fracture mechanics is presented. Crack growth rates in SA 105 Gr II steel are developed for the condition of sustained loading, using a hypothesis of hydrogen embrittlement associated with plastic zone reverse yielding. The resultant formula is compared with test data obtained from laboratory specimens.

  17. Mechanical stability of propped hydraulic fractures: A numerical study

    SciTech Connect

    Asgian, M.I.; Cundall, P.A.; Brady, B.H.

    1995-03-01

    Proppant is sometimes produced along with hydrocarbons in hydraulically fractured petroleum wells. Sometimes 10% to 20% of the proppant is backproduced, which can lead to damaged equipment and downtime. Furthermore, proppant flowback can lead to a substantial loss of fracture conductivity. A numerical study was conducted to help understand what conditions are likely to lead to proppant flowback. In the simulations, the mechanical interaction of a larger number (several thousand) individual proppant grains was modeled with a distinct-element-type code. The numerical simulations show that hydraulic fractures propped with cohesionless, unbonded proppant fail under closure stress at a critical ratio of mean grain diameter to fracture width. This is consistent with published laboratory studies. The simulations identify the mechanism (arch failure) that triggers the mechanical instability and also show that the primary way that drawdowns (less than {approx} 75 psi/ft) affect proppant flowback is to transport loose proppant grains in front of the stable arch to the wellbore. Drawdowns > 75 psi/ft are sufficient to destabilize the arch and to cause progressive failure of the propped fractures.

  18. Measurements of residual stress in fracture mechanics coupons

    SciTech Connect

    Prime, Michael B; Hill, Michael R; Nav Dalen, John E

    2010-01-01

    This paper describes measurements of residual stress in coupons used for fracture mechanics testing. The primary objective of the measurements is to quantify the distribution of residual stress acting to open (and/or close) the crack across the crack plane. The slitting method and the contour method are two destructive residual stress measurement methods particularly capable of addressing that objective, and these were applied to measure residual stress in a set of identically prepared compact tension (C(T)) coupons. Comparison of the results of the two measurement methods provides some useful observations. Results from fracture mechanics tests of residual stress bearing coupons and fracture analysis, based on linear superposition of applied and residual stresses, show consistent behavior of coupons having various levels of residual stress.

  19. Fracture mechanics evaluation for at typical PWR primary coolant pipe

    SciTech Connect

    Tanaka, T.; Shimizu, S.; Ogata, Y.

    1997-04-01

    For the primary coolant piping of PWRs in Japan, cast duplex stainless steel which is excellent in terms of strength, corrosion resistance, and weldability has conventionally been used. The cast duplex stainless steel contains the ferrite phase in the austenite matrix and thermal aging after long term service is known to change its material characteristics. It is considered appropriate to apply the methodology of elastic plastic fracture mechanics for an evaluation of the integrity of the primary coolant piping after thermal aging. Therefore we evaluated the integrity of the primary coolant piping for an initial PWR plant in Japan by means of elastic plastic fracture mechanics. The evaluation results show that the crack will not grow into an unstable fracture and the integrity of the piping will be secured, even when such through wall crack length is assumed to equal the fatigue crack growth length for a service period of up to 60 years.

  20. In-plane response and mode II fracture response of Z-pin woven laminates

    NASA Astrophysics Data System (ADS)

    Huang, Hseng-Ji

    Textile composites are proven to be an attractive choice over traditional pre-preg based composites because of reduced manufacturing costs and improved transverse mechanical properties. However, similar to traditional pre-preg composites, 2D laminates consisting of multiple layers of laminae still suffer from delamination under impact or transverse loads. Z-pin (carbon fiber of small diameter inserted in the thickness direction-z) composites are a means to provide higher through-thethickness stiffness and strength that 2D woven composites lack. In this thesis, The influences of Z-pin density and Z-pin diameter on the response of Z-pin under in-plane loads (compression) and transverse loads (mode II fracture) are examined. Both experiments and numerical simulations were performed to address the problems. Compression tests were conducted first and failure mechanism in each loading scenario was identified, through optical and mechanical measurements, during and after the tests. This was followed by the development of different numerical models of varying degree of sophistication, which include in-plane 2D models, (used to study fiber distortion and damage due to Z-pin insertion), multi-layer 2D models, (used to provide an inexpensive multi-layer model to study the effect of phase difference due to stacking consolidation), and multi-layer-multi-cell models (used to provide a full 3D multi-layer and multi-representative unit cell description). The second part of this thesis investigates the mode II fracture response under static and dynamic loading. Discrete Cohesive Zone Model (DCZM) was adopted to obtain the fracture toughness in conjunction with experimental data. In dynamic test, a crack advance gage (CAG) was designed to capture the exact time when the crack begins to propagate. By use of these CAGs, the corresponding crack propagation speed between different CAGs can be computed accordingly. These observations are supplemented through high speed optical images

  1. Investigation of the fracture mechanics of boride composites

    NASA Technical Reports Server (NTRS)

    Clougherty, E. V.; Pober, R. L.; Kaufman, L.

    1972-01-01

    Significant results were obtained in fabrication studies of the role of metallic additives of Zr, Ti, Ni, Fe and Cr on the densification of ZrB2. All elemental additions lower the processing temperatures required to effect full densification of ZrB2. Each addition effects enhanced densification by a clearly distinguishable and different mechanism and the resulting fabricated materials are different. A significant improvement in strength and fracture toughness was obtained for the ZrB2/Ti composition. Mechanical characterization studies for the ZrB2/SiC/C composites and the new ZrB2/Metal materials produced data relevant to the effect of impacting load on measured impact energies, a specimen configuration for which controlled fracture could occur in a suitably hard testing apparatus, and fracture strength data. Controlled fracture--indicative of measurable fracture toughness--was obtained for the ZrB2-SiC-C composite, and a ZrB2/Ti composite fabricated from ZrB2 with an addition of 30 weight per cent Ti. The increased strength and toughness of the ZrB2/Ti composite is consistent with the presence of a significantly large amount of a fine grained acicular phase formed by reaction of Ti with ZrB2 during processing.

  2. Fracture mechanics applied to the machining of brittle materials

    SciTech Connect

    Hiatt, G.D.; Strenkowski, J.S.

    1988-12-01

    Research has begun on incorporating fracture mechanics into a model of the orthogonal cutting of brittle materials. Residual stresses are calculated for the machined material by a combination of Eulerian and Lagrangian finite element models and then used in the calculation of stress intensity factors by the Green`s Function Method.

  3. Circumferential strut fracture as a mechanism of "crush" bifurcation restenosis.

    PubMed

    Rathore, Sulaiman; Ball, Timothy; Nakano, Masataka; Kaplan, Aaron; Virmani, Renu; Foerst, Jason

    2013-03-01

    The "Crush" procedure is a 2-stent technique for the treatment of bifurcation lesions with greater rates of in-stent restenosis than the Culotte technique. In conclusion, we report a possible mechanism for this discrepancy in the case of severe Crush stent fracture with associated focal restenosis identified by postmortem microcomputed tomography and histologic examination. PMID:23291090

  4. Probabilistic fracture mechanics and optimum fracture control of the solid rocket motor case of the shuttle

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1977-01-01

    Development of a procedure for the reliability analysis of the solid rocket motor case of the space shuttle is described. The analysis is based on probabilistic fracture mechanics and consideration of a probability distribution for the initial flaw sizes. The reliability analysis can be used to select design variables, such as the thickness of the SRM case, projected design life and proof factor, on the basis of minimum expected cost and specified reliability bounds. Effects of fracture control plans such as the non-destructive inspections and the material erosion between missions can also be considered in the developed methodology for selection of design variables. The reliability-based procedure can be easily modified to consider other similar structures and different fracture control plans.

  5. Structure, mechanical properties, and fracture of 20GL cast steel

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, V. M.; Tabatchikova, T. I.; Yakovleva, I. L.; Klyueva, S. Yu.

    2014-04-01

    The structure and mechanical properties of 20GL steel are studied. It is shown that a significant decrease in the ductility and impact toughness of the steel is caused by intercrystalline fracture, which is induced by a weakening of the intercrystallite bonds due to the existence of coarse lamellar pearlite and nonmetallic inclusions, namely, film inclusions and eutectic-type oxysulfides, at the boundaries of primary crystals. Annealing from a temperature in the intercritical range is found to improve the mechanical properties.

  6. Fracture mechanics analysis of composite microcracking - Experimental results in fatigue

    NASA Technical Reports Server (NTRS)

    Nairn, J. A.; Liu, S.

    1990-01-01

    The Nairn (1989) variational mechanics analysis, which yields the energy release rate of a microcrack's formation between two existing microcracks, has proven useful in the fracture mechanics interpretation of cross-ply laminates' microcracking. Attention is presently given to the application of this energy release rate analysis to a fracture mechanics-based interpretation of microcrack formation during fatigue loading, for the case of fatigue experiments on three layups of Avimid K/IM6 laminates and four layups of Fiberite 934/T300 laminates. The single master Paris-law plot onto which the data from all layups of a given material system fall is claimed to offer a complete characterization of that system's microcrack-formation resistance during fatigue loading.

  7. Hydraulic fracture extending into network in shale: reviewing influence factors and their mechanism.

    PubMed

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  8. Hydraulic Fracture Extending into Network in Shale: Reviewing Influence Factors and Their Mechanism

    PubMed Central

    Ren, Lan; Zhao, Jinzhou; Hu, Yongquan

    2014-01-01

    Hydraulic fracture in shale reservoir presents complex network propagation, which has essential difference with traditional plane biwing fracture at forming mechanism. Based on the research results of experiments, field fracturing practice, theory analysis, and numerical simulation, the influence factors and their mechanism of hydraulic fracture extending into network in shale have been systematically analyzed and discussed. Research results show that the fracture propagation in shale reservoir is influenced by the geological and the engineering factors, which includes rock mineral composition, rock mechanical properties, horizontal stress field, natural fractures, treating net pressure, fracturing fluid viscosity, and fracturing scale. This study has important theoretical value and practical significance to understand fracture network propagation mechanism in shale reservoir and contributes to improving the science and efficiency of shale reservoir fracturing design. PMID:25032240

  9. Physical and mechanical modelling of neutron irradiation effect on ductile fracture. Part 1. Prediction of fracture strain and fracture toughness of austenitic steels

    NASA Astrophysics Data System (ADS)

    Margolin, Boris; Sorokin, Alexander; Smirnov, Valeriy; Potapova, Vera

    2014-09-01

    A physical-and-mechanical model of ductile fracture has been developed to predict fracture toughness and fracture strain of irradiated austenitic steels taking into account stress-state triaxiality and radiation swelling. The model is based on criterion of plastic collapse of a material unit cell controlled by strain hardening of a material and criterion of voids coalescence due to channel shearing of voids. The model takes into account deformation voids nucleation and growth of deformation and vacancy voids. For justification of the model experimental data on fracture strain and fracture toughness of austenitic steel 18Cr-10Ni-Ti grade irradiated up to maximal dose 150 dpa with various swelling were used. Experimental data on fracture strain and fracture toughness were compared with the results predicted by the model. It has been shown that for prediction of the swelling effect on fracture toughness the dependence of process zone size on swelling should be taken into account.

  10. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Astrophysics Data System (ADS)

    Ernst, Hugo A.; Lambert, D. M.

    1994-08-01

    The Elastic Plastic Fracture Mechanics Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an elastic plastic fracture mechanics methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA which may contain flaws. The project is divided into three tasks that deal with (1) constraint and thickness effects, (2) three-dimensional cracks, and (3) the Leak-Before-Burst (LBB) criterion. This report period (March 1994 to August 1994) is a continuation of attempts to characterize three dimensional aspects of fracture present in 'two dimensional' or planar configuration specimens (Chapter Two), especially, the determination of, and use of, crack face separation data. Also, included, are a variety of fracture resistance testing results (J(m)R-curve format) and a discussion regarding two materials of NASA interest (6061-T651 Aluminum alloy and 1N718-STA1 nickel-base super alloy) involving a bases for like constraint in terms of ligament dimensions, and their comparison to the resulting J(m)R-curves (Chapter Two).

  11. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Lambert, D. M.

    1994-01-01

    The Elastic Plastic Fracture Mechanics Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an elastic plastic fracture mechanics methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA which may contain flaws. The project is divided into three tasks that deal with (1) constraint and thickness effects, (2) three-dimensional cracks, and (3) the Leak-Before-Burst (LBB) criterion. This report period (March 1994 to August 1994) is a continuation of attempts to characterize three dimensional aspects of fracture present in 'two dimensional' or planar configuration specimens (Chapter Two), especially, the determination of, and use of, crack face separation data. Also, included, are a variety of fracture resistance testing results (J(m)R-curve format) and a discussion regarding two materials of NASA interest (6061-T651 Aluminum alloy and 1N718-STA1 nickel-base super alloy) involving a bases for like constraint in terms of ligament dimensions, and their comparison to the resulting J(m)R-curves (Chapter Two).

  12. Critical review of the state-of-the-art of fracture mechanics with emphasis on layered rocks

    SciTech Connect

    Kuruppu, M.D.; Cheng, K.P.; Edl, J.N. Jr.

    1983-07-01

    Results are presented of a literature survey of over 70 pertinent publications and critical reviews of fracture mechanics emphasizing the fracture behavior of layered rocks. Historical perspective, fracture mechanisms, linear and nonlinear fracture mechanics, energy theories, ductile and brittle fractures, process regions, specific work of fracture, J-integrals, failure theories, static and dynamic fractures, rock fracture mechanics, fracture toughness of layered rocks (e.g., oil shale), experimental and numerical methods are reviewed and discussed. Innovative and promising methods tailored for the fracture mechanics of layered rocks are recommended.

  13. Deformation and fracture of Macadamia nuts Part 2: Microstructure and fracture mechanics analysis of nutshell

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Hui; Mai, Yiu-Wing

    A study of the microstructure and mechanical properties of Macadamia nutshells subjected to various heat treatments is given in Part 2 of this paper. It is found that the nutshell has a three-dimensional, close-packed, cell structure. The cells have a diameter to length ratio of about 1 to 3, and the orientation of the cells is reasonably isotropic with no apparent variation with either position or direction. The material behaves in a very brittle manner under tension and compression. Based on the elastic stress analysis of a nut under diametrical compression and the mechanical properties of the shell, it is shown that cracks that cause the final fracture are initiated from the inner surface beneath the loading point. A theoretical model is proposed and predictions of the fracture load for Macadamia nuts are in good agreement with experimental results.

  14. Fracture control methods for space vehicles. Volume 2: Assessment of fracture mechanics technology for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Ehret, R. M.

    1974-01-01

    The concepts explored in a state of the art review of those engineering fracture mechanics considered most applicable to the space shuttle vehicle include fracture toughness, precritical flaw growth, failure mechanisms, inspection methods (including proof test logic), and crack growth predictive analysis techniques.

  15. Fracture development and mechanical stratigraphy of Austin Chalk, Texas

    SciTech Connect

    Corbett, K.; Friedman, M.; Spang, J.

    1987-01-01

    The mechanical stratigraphy of the Upper Cretaceous Austin Chalk is established from study of fracture intensity along its outcrop trend from Dallas to San Antonio and westward to Langtry, Texas, and in the subsurface from study of cores and/or fracture identification logs from 30 wells. Three mechanical-stratigraphic units are recognized. Representative samples from the three mechanical-stratigraphic units were experimentally shortened, dry, at 10, 17, 34, and 70 MPa confining pressure, at 24/sup 0/C, and at a strain rate of 2.5 x 10/sup -4/ sec/sup -1/ to determine if the relative mechanical behavior observed at the surface could be extrapolated into the subsurface at different simulated burial depths. SEM photomicrographs of undeformed specimens show that smectite and other clays are distributed as large (30 ..mu..m), discrete, amorphous, concentrated masses throughout the chalk. They are comminuted along the induced fracture surfaces where their grain size is 0.5 ..mu..m or less. These observations suggest that smectite acts as a soft-inclusion, localizing shear failure and corresponding weakening the material. 9 figures, 5 tables.

  16. Extrinsic fracture mechanisms in two laminated metal composites

    SciTech Connect

    Lesuer, D.; Syn, C.; Riddle, R.; Sherby, O.

    1994-11-29

    The crack growth behavior and fracture toughness of two laminated metal composites (6090/SiC/25p laminated with 5182 and ultrahigh-carbon steel laminated with brass) have been studied in both ``crack arrester`` and ``crack divider`` orientations. The mechanisms of crack growth were analyzed and extrinsic toughening mechanisms were found to contribute significantly to the toughness. The influence of laminate architecture (layer thickness and component volume function), component material properties and residual stress on these mechanisms and the resulting crack growth resistance are discussed.

  17. [Study on hemolytic mechanism of polyphyllin II].

    PubMed

    Ning, Li-hua; Zhou, Bo; Zhang, Yao-xiang; Li, Xin-ping

    2015-09-01

    To study the hemolytic effect of polyphyllin II (PP II) mediated by anion channel protein and glucose transporter 1 (GLUT1), in order to initially reveal its hemolytic mechanism in vitro. In the experiment, the spectrophotometric method was adopted to detect the hemolysis of PP II in vitro and the effect of anion channel-related solution and blocker, glucose channel-related inhibitor and multi-target drugs dehydroepiandrosterone (DHEA) and diazepam on the hemolysis of PP II. The scanning electron microscope and transmission electron microscope were used to observe the effect of PP II on erythrocyte (RBC) morphology. The results showed that PP II -processed blood cells were severely deformed into spherocytes, acanthocyturia and vesicae. According to the results of the PP II hemolysis experiment in vitro, the anion hypertonic solution LiCl, NaHCO3, Na2SO4 and PBS significantly inhibited the hemolysis induced by PP II (P < 0.05), while blockers NPPB and DIDS remarkably promoted it (P < 0.01). Hyperosmotic sodium chloride, fructose and glucose at specific concentrations notably antagonized the hemolysis induced by PP II (P < 0.05). The glucose channel inhibitor Cytochalasin B and verapamil remarkably antagonized the hemolysis induced by PP II (P < 0.01). The hemolysis induced by PP II could also be antagonized by 1 gmol x L(1) diazepam and 100 μmol x L(-1) DHEA pretreated for 1 min (P < 0.01). In conclusion, the hemolytic mechanism of PP II in vitro may be related to the increase in intracellular osmotic pressure and rupture of erythrocytes by changing the anion channel transport activity, with GLUT1 as the major competitive interaction site. PMID:26983211

  18. Discrete fracture patterns of virus shells reveal mechanical building blocks.

    PubMed

    Ivanovska, Irena L; Miranda, Roberto; Carrascosa, Jose L; Wuite, Gijs J L; Schmidt, Christoph F

    2011-08-01

    Viral shells are self-assembled protein nanocontainers with remarkable material properties. They combine simplicity of construction with toughness and complex functionality. These properties make them interesting for bionanotechnology. To date we know little about how virus structure determines assembly pathways and shell mechanics. We have here used atomic force microscopy to study structural failure of the shells of the bacteriophage Φ29. We observed rigidity patterns following the symmetry of the capsid proteins. Under prolonged force exertion, we observed fracture along well-defined lines of the 2D crystal lattice. The mechanically most stable building block of the shells was a trimer. Our approach of "reverse engineering" the virus shells thus made it possible to identify stable structural intermediates. Such stable intermediates point to a hierarchy of interactions among equal building blocks correlated with distinct next-neighbor interactions. The results also demonstrate that concepts from macroscopic materials science, such as fracture, can be usefully employed in molecular engineering. PMID:21768340

  19. Mechanical Stability and Reversible Fracture of Vault Particles

    PubMed Central

    Llauró, Aida; Guerra, Pablo; Irigoyen, Nerea; Rodríguez, José F.; Verdaguer, Núria; de Pablo, Pedro J.

    2014-01-01

    Vaults are the largest ribonucleoprotein particles found in eukaryotic cells, with an unclear cellular function and promising applications as vehicles for drug delivery. In this article, we examine the local stiffness of individual vaults and probe their structural stability with atomic force microscopy under physiological conditions. Our data show that the barrel, the central part of the vault, governs both the stiffness and mechanical strength of these particles. In addition, we induce single-protein fractures in the barrel shell and monitor their temporal evolution. Our high-resolution atomic force microscopy topographies show that these fractures occur along the contacts between two major vault proteins and disappear over time. This unprecedented systematic self-healing mechanism, which enables these particles to reversibly adapt to certain geometric constraints, might help vaults safely pass through the nuclear pore complex and potentiate their role as self-reparable nanocontainers. PMID:24507609

  20. Chest compressions in an infant with osteogenesis imperfecta type II: No new rib fractures.

    PubMed

    Sewell, R D; Steinberg, M A

    2000-11-01

    The case report of a newborn female with osteogenesis imperfecta type II who underwent cardiopulmonary resuscitation (CPR) with manual chest compressions for several minutes is presented. Chest radiographs taken before and after the chest compressions were administered were reviewed by several radiologists from 3 different hospitals and demonstrated no new radiographically visible rib fractures. Collagen analysis, the patient's clinical appearance, and clinical course, as well as a consultant's opinion aided in confirmation of the diagnosis of osteogenesis imperfecta type II. A review of 4 previous studies concerning rib fractures and CPR is included. This unique case supports previous articles that have concluded that rib fractures rarely, if ever, result from CPR in pediatrics, even in children with a lethal underlying bone disease, such as osteogenesis imperfecta type II. cardiopulmonary resuscitation, chest compressions, osteogenesis imperfecta, rib fractures, bone disease. PMID:11061808

  1. Use of three-dimensional photoelasticity in fracture mechanics

    NASA Technical Reports Server (NTRS)

    Smith, C. W.

    1973-01-01

    The philosophy of fracture mechanics is reviewed and utilized to formulate a simplified approach to the determination of the stress-intensity factor photoelastically for three-dimensional problems. The method involves a Taylor Series correction for the maximum in-plane shear stress (TSCM) and does not involve stress separation. The results are illustrated by applying the TSCM to surface flaws in bending fields. Other three-dimensional problems solved by the TSCM are cited.

  2. Non-destructive testing and fracture mechanics: A short discussion

    NASA Astrophysics Data System (ADS)

    Zerbst, Uwe; Heckel, Thomas; Carboni, Michele

    2016-02-01

    A short discussion is provided on the relationship between non-destructive testing and fracture mechanics. The basic tasks behind this are to guarantee the safety of a component at a potential hazard loading event, to specify inspection intervals or, alternatively, of demands on non-destructive testing for a fixed inspection regime, to plan accompanying actions for cases of temporary continued operation of structures in which cracks have been detected, and, finally, fatigue strength considerations which take into account initial defects.

  3. Results of fracture mechanics tests on PNC SUS 304 plate

    SciTech Connect

    Mills, W.J.; James, L.A.; Blackburn, L.D.

    1985-08-01

    PNC provided SUS 304 plate to be irradiated in FFTF at about 400/sup 0/C to a target fluence of 5 x 10/sup 21/ n/cm/sup 2/ (E > 0.1 MeV). The actual irradiation included two basically different exposure levels to assure that information would be available for the exposure of interest. After irradiation, tensile properties, fatigue-crack growth rates and J-integral fracture toughness response were determined. These same properties were also measured for the unirradiated material so radiation damage effects could be characterized. This report presents the results of this program. It is expected that these results would be applicable for detailed fracture analysis of reactor components. Recent advances in elastic-plastic fracture mechanics enable reasonably accurate predictions of failure conditions for flawed stainless steel components. Extensive research has focused on the development of J-integral-based engineering approach for assessing the load carrying capacity of low-strength, high-toughness structural materials. Furthermore, Kanninen, et al., have demonstrated that J-integral concepts can accurately predict the fracture response for full-scale cracked structures manufactured from Type 304 stainless steel.

  4. Wide-range displacement expressions for standard fracture mechanics specimens

    NASA Technical Reports Server (NTRS)

    Kapp, J. A.; Gross, B.; Leger, G. S.

    1985-01-01

    Wide-range algebraic expressions for the displacement of cracked fracture mechanics specimens are developed. For each specimen two equations are given: one for the displacement as a function of crack length, the other for crack length as a function of displacement. All the specimens that appear in ASTM Test for Plane-Strain Fracture Toughness of Metallic Materials (E 399) are represented in addition to the crack mouth displacement for a pure bending specimen. For the compact tension sample and the disk-shaped compact tension sample, the displacement at the crack mouth and at the load line are both considered. Only the crack mouth displacements for the arc-shaped tension samples are presented. The agreement between the displacements or crack lengths predicted by the various equations and the corresponding numerical data from which they were developed are nominally about 3 percent or better. These expressions should be useful in all types of fracture testing including fracture toughness, K-resistance, and fatigue crack growth.

  5. State-of-the-art report on piping fracture mechanics

    SciTech Connect

    Wilkowski, G.M.; Olson, R.J.; Scott, P.M.

    1998-01-01

    This report is an in-depth summary of the state-of-the-art in nuclear piping fracture mechanics. It represents the culmination of 20 years of work done primarily in the US, but also attempts to include important aspects from other international efforts. Although the focus of this work was for the nuclear industry, the technology is also applicable in many cases to fossil plants, petrochemical/refinery plants, and the oil and gas industry. In compiling this detailed summary report, all of the equations and details of the analysis procedure or experimental results are not necessarily included. Rather, the report describes the important aspects and limitations, tells the reader where he can go for further information, and more importantly, describes the accuracy of the models. Nevertheless, the report still contains over 150 equations and over 400 references. The main sections of this report describe: (1) the evolution of piping fracture mechanics history relative to the developments of the nuclear industry, (2) technical developments in stress analyses, material property aspects, and fracture mechanics analyses, (3) unresolved issues and technically evolving areas, and (4) a summary of conclusions of major developments to date.

  6. Fracture and Stress Evolution on Europa: New Insights Into Fracture Interpretation and Ice Thickness Estimates Using Fracture Mechanics Analyses

    NASA Technical Reports Server (NTRS)

    Kattenhorn, Simon

    2004-01-01

    The work completed during the funding period has provided many important insights into fracturing behavior in Europa's ice shell. It has been determined that fracturing through time is likely to have been controlled by the effects of nonsynchronous rotation stresses and that as much as 720 deg of said rotation may have occurred during the visible geologic history. It has been determined that there are at least two distinct styles of strike-slip faulting and that their mutual evolutionary styles are likely to have been different, with one involving a significant dilational component during shear motion. It has been determined that secondary fracturing in perturbed stress fields adjacent to older structures such as faults is a prevalent process on Europa. It has been determined that cycloidal ridges are likely to experience shear stresses along the existing segment portions as they propagate, which affects propagation direction and ultimately induces tailcracking at the segment tip than then initiates a new cycle of cycloid segment growth. Finally, it has been established that mechanical methods (e.g., flexure analysis) can be used to determine the elastic thickness of the ice shell, which, although probably only several km thick, is likely to be spatially variable, being thinner under bands but thicker under ridged plains terrain.

  7. Characterization of mode II fracture behavior in fiber-reinforced ceramic composite utilizing laser interferometry

    SciTech Connect

    Mall, S.; Truskowski, J.W. USAF, Wright-Patterson AFB, OH )

    1992-09-01

    A test technique to characterize the mode II fracture behavior in fiber-reinforced ceramic composites utilizing laser interferometry was developed. This was demonstrated by measuring the mode II critical strain energy release rate at room temperature. The present study used the silicon-carbide-fiber/glass-ceramic matrix composite system. 13 refs.

  8. Mechanical and fracture behavior of calcium phosphate cements

    NASA Astrophysics Data System (ADS)

    Jew, Victoria Chou

    Apatite-based calcium phosphate cements are currently employed to a limited extent in the biomedical and dental fields. They present significant potential for a much broader range of applications, particularly as a bone mineral substitute for fracture fixation. Specifically, hydroxyapatite (HA) is known for its biocompatibility and non-immunogenicity, attributed to its similarity to the mineral phase of natural bone. The advantages of a cement-based HA include injectability, greater resorbability and osteoconductivity compared to sintered HA, and an isothermal cement-forming reaction that avoids necrosis during cement setting. Although apatite cements demonstrate good compressive strength, tensile properties are very weak compared to natural bone. Applications involving normal weight-bearing require better structural integrity than apatite cements currently provide. A more thorough understanding of fracture behavior can elucidate failure mechanisms and is essential for the design of targeted strengthening methods. This study investigated a hydroxyapatite cement using a fracture mechanics approach, focusing on subcritical crack growth properties. Subcritical crack growth can lead to much lower load-bearing ability than critical strength values predict. Experiments show that HA cement is susceptible to crack growth under both cyclic fatigue-crack growth and stress corrosion cracking conditions, but only environmental, not mechanical, mechanisms contribute to crack extension. This appears to be the first evidence ever presented of stress corrosion crack growth behavior in calcium phosphate cements. Stress corrosion cracking was examined for a range of environmental conditions. Variations in pH have surprisingly little effect. Behavior in water at elevated temperature (50°C) is altered compared to water at ambient temperature (22°C), but only for crack-growth velocities below 10-7 m/s. However, fracture resistance of dried HA cement in air increases significantly

  9. Compensating Mechanisms That Minimize Flux Variability Through Unsaturated Fractures

    NASA Astrophysics Data System (ADS)

    Nimmo, J. R.; Su, G. W.

    2001-12-01

    Fast flow in fractures and macropores is a major cause of discrepancy between measurements and unsaturated flow models. Most models treat preferential flow as diffuse Darcy-Richards flow, so it is important to ascertain whether the mechanisms of unsaturated fracture flow accord with Darcy's law. The key issue is whether water flux is directly proportional to driving force with a proportionality factor, the hydraulic conductivity (K), that is independent of flux and force. We consider flow in a partially water-filled fracture with continuously supplied (e.g. ponded) water, responding to a change in driving force such as a change in tilt angle with respect to gravity. Four general flow modes, alone or in combination, can account for the dominant portion of the flow for these conditions, as shown by the experimental studies of Su and others (1999) and Tokunaga and Wan (1997). (1) Film flow occurs within a sheet or film that contacts a wall of the fracture. (2) Connected rivulet flow occurs when a rivulet that bridges across the fracture aperture by capillary force is consistently connected across the domain of interest from the inflow point to the outflow point. (3) Snapping rivulet flow occurs if the rivulet sometimes but not always extends continuously across the domain. (4) Pulsating-blob flow occurs in isolated blobs that bridge across the fracture aperture and move across the domain of interest without ever extending completely between the inflow and outflow points. Where fractures are large enough that the air-water interfaces are free to change shape or position in response to an externally applied change, each flow mode has its own characteristic relation between force and flow rate. This contrasts with the air-water interfaces commonly visualized in fine-textured media, in which the interface is constrained to a particular shape and position by capillarity and adsorption, so that the consistent geometry of the effective flow conduits leads to Darcian flow. In

  10. Study of mechanism of cleavage fracture at low temperature

    NASA Astrophysics Data System (ADS)

    Chen, J. H.; Wang, G. Z.

    1992-02-01

    In this investigation, a series of crack opening displacement (COD) tests were carried out at several low temperatures for C-Mn weld steel. Some of the specimens were loaded until fracture, and the mechanical properties and microscopic parameters on fracture surfaces were measured. Other specimens were unloaded before fracture at different applied loads. The distributions of the elongated cavities and the cleavage microcracks ahead of fatigue crack tips were observed in detail. Based on the experimental results, the combined criterion of a critical strain ɛ p ≥ ɛc) for initiating a crack nucleus, a critical stress triaxiality (σ m/σ ≥ tc) for preventing it from blunting, and a critical normal stress (σ yy/σf) for the cleavage extension was proposed again, and the critical values of ɛp and σm/-σ for the C-Mn weld steel were measured. The reason why the minimum COD value could not be zero is explained. The mechanism of generation of the lower limit COD value on the lower shelf of the toughness transition curve is proposed.

  11. Measurement of residual stresses using fracture mechanics weight functions

    SciTech Connect

    Fan, Y.

    2000-10-01

    A residual stress measurement method has been developed to quantify through-the-thickness residual stresses. Accurate measurement of residual stresses is crucial for many engineering structures. Fabrication processes such as welding and machining generate residual stresses that are difficult to predict. Residual stresses affect the integrity of structures through promoting failures due to brittle fracture, fatigue, stress corrosion cracking, and wear. In this work, the weight function theory of fracture mechanics is used to measure residual stresses. The weight function theory is an important development in computational fracture mechanics. Stress intensity factors for arbitrary stress distribution on the crack faces can be accurately and efficiently computed for predicting crack growth. This paper demonstrates that the weight functions are equally useful in measuring residual stresses. In this method, an artificial crack is created by a thin cut in a structure containing residual stresses. The cut relieves the residual stresses normal to the crack-face and allows the relieved residual stresses to deform the structure. Strain gages placed adjacent to the cut measure the relieved strains corresponding to incrementally increasing depths of the cut. The weight functions of the cracked body relate the measured strains to the residual stresses normal to the cut within the structure. The procedure details, such as numerical integration of the singular functions in applying the weight function method, will be discussed.

  12. Conference addresses thermo-hydro-mechanical coupling in fractured rock

    NASA Astrophysics Data System (ADS)

    Kümpel, Hans-Joachim

    Various environmental problems and the use of certain energy resources are closely related to fluid flow in and the mechanical behavior of porous or fractured rock. Subjects of obvious socioeconomic relevance are the supply and protection of groundwater, the production of hydrocarbon reservoirs, land subsidence in coastal areas, exploitation of geothermal energy and the long-term disposal of critical wastes. Efficient management of such issues is often hampered by the fact that rocks and rock formations are inherently complex. Any rock sample is an aggregate of the myriad mineral particles forming its matrix and fluid molecules residing in voids. Any two rock samples differ in many aspects, including geochemical constituents, size and shape of grains, structure of pore space, and fracture networks.

  13. [Radius fractures in children--causes and mechanisms of injury].

    PubMed

    Antabak, Anko; Stanić, Lana; Matković, Nikša; Papeš, Dino; Romić, Ivan; Fuchs, Nino; Luetić, Tomislav

    2015-01-01

    Radius fractures are the most common fractures in childhood. The main mechanism of injury is fall onto an outstretched hand. This retrospective study analyzed the data on 201 children admitted for radius fractures at KBC-Zagreb in the period 2011-2013. The study included 85 girls (42.3%) and 116 boys (57.7%) . The average age of the children was 9.6 years. Radius was injured in the distal segment in 79.1% of children. The sites of injuries were: park, campi and beach (24.9% of all children), playground, skate park and swimming pool (23.9%), kindergarten or school (20.9%), at home and around the house (17.9%), in the street (11.4%) and in the store or at a hotel (0.9%). The boys were mostly injured at playgrounds, during skating and at swimming pools (37.1% of all boys), while girls were mostly injured in parks, camps and at beach (42.4% girls). Fall was the major cause of the injury (49.3%), and children usually fell during ice skating and skating (32.3% of all falls). In 20.4% the injury was caused by pushing and hitting. The smallest percentage (9.5%) of children were injured in traffic accidents while riding a bike (only one child was hit by a car). Sport related activities caused injuries in 53.7% of the cases. Sport activities are the most important cause of the radial fractures in the pediatric population and falls during sports are the main mechanism of injury. The peak incidence is at 12 years for boys and at 10 years for girls, so intervention and/or prevention should be aimed at the age groups. Preventive actions should be focused on injuries that tend to occur in parks, schools and during sport activities. PMID:26065283

  14. Use of adjoint methods in the probabilistic finite element approach to fracture mechanics

    NASA Technical Reports Server (NTRS)

    Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted

    1988-01-01

    The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.

  15. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  16. Mason type II radial head fractures fixed with Herbert bone screws.

    PubMed Central

    Pearce, M S; Gallannaugh, S C

    1996-01-01

    The management of radial head fractures remains controversial. Accurate classification of the fracture (Mason) may necessitate the use of special X-ray views (45 degrees arterior oblique or radio-capitellar). We present the results of 19 cases of Mason type II fractures treated operatively by open reduction and internal fixation with the Herbert bone screw. All patients achieved 'good-to-excellent' outcome at follow-up. Our results compare favourably with other forms of treatment for this injury. Images Figure 2 (a) Figure 2 (b) Figure 2 (c) Figure 2 (d) Figure 3 (a) Figure 3 (b) PMID:8758194

  17. [Fractures of the metacarpal bones II to V--conservative and surgical treatment].

    PubMed

    Lumplesch, R; Zilch, H; Friedebold, G

    1985-06-01

    Fractures of the metacarpals II-V can normally be handled conservatively. After reposition under local anaesthetic plaster of Paris is applied for a duration of 3 to 4 weeks. Open fractures usually with accompanying injuries, should be stabilized operatively. The functional results of conservative treatment are very good. Slight sidewards deviation of up to 1/3 of the width of the shaft and shortening of up to 6 mm don't interfere with good hand function. Palmar deviation of the distal fragment of up to 35 degrees following subcapitular fractures does not reduce hand function. PMID:4035810

  18. Under-coracoid-around-clavicle (UCAC) loop in type II distal clavicle fractures.

    PubMed

    Soliman, O; Koptan, W; Zarad, A

    2013-07-01

    In Neer type II (Robinson type 3B) fractures of the distal clavicle the medial fragment is detached from the coracoclavicular ligaments and displaced upwards, whereas the lateral fragment, which is usually small, maintains its position. Several fixation techniques have been suggested to treat this fracture. The aim of this study was to assess the outcome of patients with type II distal clavicle fractures treated with coracoclavicular suture fixation using three loops of Ethibond. This prospective study included 14 patients with Neer type II fractures treated with open reduction and coracoclavicular fixation. Ethibond sutures were passed under the coracoid and around the clavicle (UCAC loop) without making any drill holes in the proximal or distal fragments. There were 11 men and three women with a mean age of 34.57 years (29 to 41). Patients were followed for a mean of 24.64 months (14 to 31) and evaluated radiologically and clinically using the Constant score. Fracture union was obtained in 13 patients at a mean of 18.23 weeks (13 to 23) and the mean Constant score was 96.07 (91 to 100). One patient developed an asymptomatic fibrous nonunion at one year. This study suggests that open reduction and internal fixation of unstable distal clavicle fractures using UCAC loops can provide rigid fixation and lead to bony union. This technique avoids using metal hardware, preserves the acromioclavicular joint and provides adequate stability with excellent results. PMID:23814254

  19. Recommendations for the determination of valid mode II fracture toughnesses K{sub IIc}

    SciTech Connect

    Hiese, W.; Kalthoff, J.F.

    1999-07-01

    From a discussion of the sizes of the plastic zones at the tip of a crack under shear (Mode II) and tensile (Mode I) conditions of loading, hypotheses on specimen size requirements are derived for determining valid values of the shear fracture toughness K{sub IIc}. The following conclusions are drawn: The minimum specimen thickness for a K{sub IIc} test can be smaller, but the minimum in-plane specimen dimensions should be larger than for a K{sub Ic} test. For verification of these hypotheses, Mode II and additionally Mode I fracture toughnesses were determined for the aluminum alloy 7075 and the tool steel 90 MnCrV 8. Measurements were performed with specimens of different sizes with respect to the size of the crack tip plastic zones. The obtained data are in good agreement with the derived criteria for measuring Mode II fracture toughnesses K{sub IIc} and confirm their validity.

  20. The method of lines in three dimensional fracture mechanics

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, J.; Berke, L.

    1980-01-01

    A review of recent developments in the calculation of design parameters for fracture mechanics by the method of lines (MOL) is presented. Three dimensional elastic and elasto-plastic formulations are examined and results from previous and current research activities are reported. The application of MOL to the appropriate partial differential equations of equilibrium leads to coupled sets of simultaneous ordinary differential equations. Solutions of these equations are obtained by the Peano-Baker and by the recurrance relations methods. The advantages and limitations of both solution methods from the computational standpoint are summarized.

  1. Probabilistic/Fracture-Mechanics Model For Service Life

    NASA Technical Reports Server (NTRS)

    Watkins, T., Jr.; Annis, C. G., Jr.

    1991-01-01

    Computer program makes probabilistic estimates of lifetime of engine and components thereof. Developed to fill need for more accurate life-assessment technique that avoids errors in estimated lives and provides for statistical assessment of levels of risk created by engineering decisions in designing system. Implements mathematical model combining techniques of statistics, fatigue, fracture mechanics, nondestructive analysis, life-cycle cost analysis, and management of engine parts. Used to investigate effects of such engine-component life-controlling parameters as return-to-service intervals, stresses, capabilities for nondestructive evaluation, and qualities of materials.

  2. Improvement of the mode II interface fracture toughness of glass fiber reinforced plastics/aluminum laminates through vapor grown carbon fiber interleaves

    NASA Astrophysics Data System (ADS)

    Ning, Huiming; Li, Yuan; Hu, Ning; Cao, Yanping; Yan, Cheng; Azuma, Takesi; Peng, Xianghe; Wu, Liangke; Li, Jinhua; Li, Leilei

    2014-06-01

    The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m-2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%-73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.

  3. Fracture mechanics; Proceedings of the Twenty-first ASTM National Symposium, Annapolis, MD, June 28-30, 1988

    SciTech Connect

    Gudas, J.P.; Hackett, E.M.; Joyce, J.A.

    1990-01-01

    The papers presented in this volume provide an overview of recent theoretical and experimental research in various areas of fracture mechanics and its applications. The papers are grouped under the following headings: elastic-plastic fracture mechanics, dynamic fracture, transition fracture, micromechanics of fracture, computational mechanics, fracture mechanics applications, and fracture mechanics testing. Specific topics discussed include dynamic fracture behavior of a structural steel; finite element meshing criteria for crack problems; method and models for R-curve instability calculations; and closure measurements via a generalized threshold concept.

  4. Mechanical Properties and Fracture Behavior of Nanoporous Au

    SciTech Connect

    Biener, J; Hodge, A M; Wang, Y M; Hayes, J R; Hamza, A V

    2005-06-16

    Nanoporous metals have recently attracted considerable interest fueled by potential sensor and actuator applications. From a material science point of view, one of the key issues in this context is the synthesis of nanoporous metals with both high tensile and compressive strength. Nanoporous gold (np-Au) has been suggested as a candidate material for this application due to its monolithic character. The material can be synthesized by electrochemically-driven dealloying of Ag-Au alloys, and exhibits an open sponge-like structure of interconnecting ligaments with a typical pore size distribution on the nanometer length scale. However, besides the observation of a ductile-brittle transition very little is known about the mechanical behavior of this material. Here, we present our results regarding the mechanical properties and the fracture behavior of np-Au. Depth-sensing nanoindentation reveals that the yield strength of np-Au is almost one order of magnitude higher than the value predicted by scaling laws developed for macroscopic open-cell foams. The unexpectedly high value of the yield strength indicates the presence of a distinct size effect of the mechanical properties due to the sub-micron dimensions of the ligaments, thus potentially opening a door to a new class of high yield strength--low density materials. The failure mechanism of np-Au under tensile stress was evaluated by microscopic examination of fracture surfaces using scanning electron microscopy. On a macroscopic level, np-Au is a very brittle material. However, microscopically np-Au is very ductile as ligaments strained by as much as 200% can be observed in the vicinity of crack tips. Cell-size effects on the microscopic failure mechanism were studied by annealing experiments whereby increasing the typical pore size/ligament diameter from {approx}100 nm to {approx}1{micro}m.

  5. Type II Intertrochanteric Fractures: Proximal Femoral Nailing (PFN) Versus Dynamic Hip Screw (DHS)

    PubMed Central

    Jonnes, Cyril; SM, Shishir; Najimudeen, Syed

    2016-01-01

    Background: Intertrochanteric fracture is one of the most common fractures of the hip especially in the elderly with osteoporotic bones, usually due to low-energy trauma like simple falls. Dynamic Hip Screw (DHS) is still considered the gold standard for treating intertrochanteric fractures by many. Not many studies compare the DHS with Proximal femoral nail (PFN), in Type II intertrochanteric fractures (Boyd and Griffin classification). This study was done to compare the functional and radiological outcome of PFN with DHS in treatment of Type II intertrochanteric fractures. Methods: From October 2012 to March 2015, a prospective comparative study was done where 30 alternative cases of type II intertrochanteric fractures of hip were operated using PFN or DHS. Intraoperative complications were noted. Functional outcome was assessed using Harris Hip Score and radiological findings were compared at 3, 6, and 12 months postoperatively. Results: The average age of the patients was 60 years. In our series we found that patients with DHS had increased intraoperative blood loss (159ml), longer duration of surgery (105min), and required longer time for mobilization while patients who underwent PFN had lower intraoperative blood loss (73ml), shorter duration of surgery (91min), and allowed early mobilization. The average limb shortening in DHS group was 9.33 mm as compared with PFN group which was only 4.72 mm. The patients treated with PFN started early ambulation as they had better Harris Hip Score in the early post-op period. At the end of 12th month, there was not much difference in the functional outcome between the two groups. Conclusion: PFN is better than DHS in type II intertrochanteric fractures in terms of decreased blood loss, reduced duration of surgery, early weight bearing and mobilization, reduced hospital stay, decreased risk of infection and decreased complications. PMID:26894214

  6. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2- 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of K(sub I)/K(sub II) were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma-sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  7. Application of probabilistic fracture mechanics to the PTS issue

    SciTech Connect

    Cheverton, R.D.; Ball, D.G.

    1985-01-01

    As a part of the NRC effort to obtain a resolution to the PWR PTS issue, a probabilistic approach has been applied that includes a probabilistic fracture-mechanics (PFM) analysis. The PFM analysis is performed with OCA-P, a computer code that performs thermal, stress and fracture-mechanics analyses and estimates the conditional probability of vessel failure, P(F/E), using Monte Carlo techniques. The stress intensity factor (K/sub I/) is calculated for two- and three-dimensional surface flaws using superposition techniques and influence coefficients. Importance-sampling techniques are used, as necessary, to limit to a reasonable value the number of vessels actually calculated. Analyses of three PWR plants indicate that (1) the critical initial flaw depth is very small (5 to 15 mm), (2) the benefit of warm prestressing and the role of crack arrest are transient dependent, (3) crack arrest does not occur for the dominant transients, and (4) the single largest uncertainty in the overall probabilistic analysis is the number of surface flaws per vessel. 30 refs., 6 figs., 4 tabs.

  8. Elevated temperature fracture of RS/PM alloy 8009; Part 1: Fracture mechanics behavior

    SciTech Connect

    Porr, W.C. Jr. ); Gangloff, R.P. )

    1994-02-01

    Increasing temperature and decreasing loading rate degrade the planes strain initiation (K[sub ICi] from the J integral) and growth (tearing modulus, T[sub R]) fracture toughnesses of RS/PM 8009 (Al-8.5Fe-1.3V-1.7Si, wt pct). K[sub ICi] decreases with increasing temperature from 25[degree]C to 175[degree]C (33 to 15 MPa[radical]m at 316[degree]C) without a minimum. T[sub R] is greater than zero at all temperatures and is minimized at 200[degree]C. A four order-of-magnitude decrease in loading rate, at 175[degree]C, results in a 2.5-fold decrease in K[sub ICi] and a 5-fold reduction in T[sub R]. K[sub ICi] and T[sub R] are anisotropic for extruded 8009 but are isotropic for cross-rolled plate. Cross rolling does not improve the magnitude or adverse temperature dependence of toughness. Delamination occurs along oxide-decorated particle boundaries for extruded but not cross-rolled 8009. Delamination toughening plays no role in the temperature dependence of K[sub ICi], however, T[sub R] is increased by this mechanism. Macroscopic work softening and flow localization do not occur for notch-root deformation; such uniaxial tensile phenomena may not be directly relevant to crack-tip fracture. Micromechanical modeling, employing temperature-dependent flow strength, modulus, and constrained fracture strain, reasonably predicts the temperature dependencies of K[sub ICi] and T[sub R] for 8009.

  9. Coupled Flow and Mechanics in Porous and Fractured Media*

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Newell, P.; Bishop, J.

    2012-12-01

    Numerical models describing subsurface flow through deformable porous materials are important for understanding and enabling energy security and climate security. Some applications of current interest come from such diverse areas as geologic sequestration of anthropogenic CO2, hydro-fracturing for stimulation of hydrocarbon reservoirs, and modeling electrochemistry-induced swelling of fluid-filled porous electrodes. Induced stress fields in any of these applications can lead to structural failure and fracture. The ultimate goal of this research is to model evolving faults and fracture networks and flow within the networks while coupling to flow and mechanics within the intact porous structure. We report here on a new computational capability for coupling of multiphase porous flow with geomechanics including assessment of over-pressure-induced structural damage. The geomechanics is coupled to the flow via the variation in the fluid pore pressures, whereas the flow problem is coupled to mechanics by the concomitant material strains which alter the pore volume (porosity field) and hence the permeability field. For linear elastic solid mechanics a monolithic coupling strategy is utilized. For nonlinear elastic/plastic and fractured media, a segregated coupling is presented. To facilitate coupling with disparate flow and mechanics time scales, the coupling strategy allows for different time steps in the flow solve compared to the mechanics solve. If time steps are synchronized, the controller allows user-specified intra-time-step iterations. The iterative coupling is dynamically controlled based on a norm measuring the degree of variation in the deformed porosity. The model is applied for evaluation of the integrity of jointed caprock systems during CO2 sequestration operations. Creation or reactivation of joints can lead to enhanced pathways for leakage. Similarly, over-pressures can induce flow along faults. Fluid flow rates in fractures are strongly dependent on the

  10. Fracture mechanics investigation of oil shale to aid in understanding the explosive fragmentation process. Final technical report, January 1983-July 1984

    SciTech Connect

    Chong, K.P.

    1984-09-01

    This report summarizes goals and findings achieved in developing technologies to improve the overall efficiency of oil shale recovery processes. The objectives are to (a) develop theoretical fracture mechanics tools that are applicable to transversely isotropic materials such as sedimentary rock, more particularly oil shale; and (b) develop a fracture mechanics test procedure that can be conveniently used for rock specimens. Such a test procedure would: utilize the geometry of a typical rock core for the test; require a minimum amount of specimen machining; and provide meaningful, reproducible data that corresponds well to test data obtained from conventional fracture mechanics tests. Critical review of the state-of-the-art of fracture mechanics on layered rocks has been completed. Recommendations are made for innovative and promising methods for oil shale fracture mechanics. Numerical and analytical studies of mixed mode fracture mechanics are investigated. Transversely isotropic properties of oil shale are input using isoparametric finite elements with singular elements at the crack tip. The model is a plate with an edge crack whose angle with the edge varies to study the effect of mixed mode fracture under various conditions. The three-dimensional plate is in tension, and stress, energy methods are used in the fracture analysis. Precracked disks of oil shale cored perpendicular to bedding planes are analyzed numerically. Stress intensity factors are determined by (i) strain energy method, and (ii) elliptic simulation method. 47 refs., 12 figs., 1 tab.

  11. Fracture Mechanics Modelling of an In Situ Concrete Spalling Experiment

    NASA Astrophysics Data System (ADS)

    Siren, Topias; Uotinen, Lauri; Rinne, Mikael; Shen, Baotang

    2015-07-01

    During the operation of nuclear waste disposal facilities, some sprayed concrete reinforced underground spaces will be in use for approximately 100 years. During this time of use, the local stress regime will be altered by the radioactive decay heat. The change in the stress state will impose high demands on sprayed concrete, as it may suffer stress damage or lose its adhesion to the rock surface. It is also unclear what kind of support pressure the sprayed concrete layer will apply to the rock. To investigate this, an in situ experiment is planned in the ONKALO underground rock characterization facility at Olkiluoto, Finland. A vertical experimental hole will be concreted, and the surrounding rock mass will be instrumented with heat sources, in order to simulate an increase in the surrounding stress field. The experiment is instrumented with an acoustic emission system for the observation of rock failure and temperature, as well as strain gauges to observe the thermo-mechanical interactive behaviour of the concrete and rock at several levels, in both rock and concrete. A thermo-mechanical fracture mechanics study is necessary for the prediction of the damage before the experiment, in order to plan the experiment and instrumentation, and for generating a proper prediction/outcome study due to the special nature of the in situ experiment. The prediction of acoustic emission patterns is made by Fracod 2D and the model later compared to the actual observed acoustic emissions. The fracture mechanics model will be compared to a COMSOL Multiphysics 3D model to study the geometrical effects along the hole axis.

  12. Fracture mechanics of human cortical bone: The relationship of geometry, microstructure and composition with the fracture of the tibia, femoral shaft and the femoral neck

    NASA Astrophysics Data System (ADS)

    Yeni, Yener Nail

    Bone fracture is a major health problem in old population with its complications leading to mortality and morbidity. Therapies mostly involve preventing bone mass loss. Individuals with high bone mass, however, may still suffer fractures suggesting that additional components such as bone microstructure and composition may be responsible for increased fracture risk in the elderly. The relationship of bone constituents with bone fragility, however, is not well-understood. A better understanding of these relationships will help improving therapies by controlling the relevant biological processes. Bone is a composite material with many constituents such as osteons embedded with vascular channels, collagen fibers, mineral crystals, etc. The nature of interfacing between these constituents makes bone a more complex material. Bone also has a structure that adapts itself, both internally and externally, to better fit its needs. This suggested that, unlike man-made materials, a relationship between material properties and structural properties may exist. Because bone has some similarities with engineering composite materials and also experiences microcracks, a fracture mechanics approach would be more appropriate for investigating its fragility. Choosing mode I and mode II fracture toughness (Gsb{Ic} and Gnsb{IIc}, respectively) as indicators of bone fragility, their relationship with bone microstructure (porosity, osteon morphology, mineral crystal imperfection and microdamage), composition (density, mineral, organic, water and collagen content) and macrostructure (thickness, diameter and moment of inertia of the shaft and angle between the femoral neck and femoral shaft from different views) was investigated. Use of x-ray radiogrammetry for detecting the latter was tested. Differences among the femoral shaft, femoral neck and the tibia were investigated for an age range of 22-94 years. In general, fracture toughness increased with increasing bone quantity. However, the

  13. NASGRO(registered trademark): Fracture Mechanics and Fatigue Crack Growth Analysis Software

    NASA Technical Reports Server (NTRS)

    Forman, Royce; Shivakumar, V.; Mettu, Sambi; Beek, Joachim; Williams, Leonard; Yeh, Feng; McClung, Craig; Cardinal, Joe

    2004-01-01

    This viewgraph presentation describes NASGRO, which is a fracture mechanics and fatigue crack growth analysis software package that is used to reduce risk of fracture in Space Shuttles. The contents include: 1) Consequences of Fracture; 2) NASA Fracture Control Requirements; 3) NASGRO Reduces Risk; 4) NASGRO Use Inside NASA; 5) NASGRO Components: Crack Growth Module; 6) NASGRO Components:Material Property Module; 7) Typical NASGRO analysis: Crack growth or component life calculation; and 8) NASGRO Sample Application: Orbiter feedline flowliner crack analysis.

  14. Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow

    NASA Astrophysics Data System (ADS)

    Cooke, Michele L.; Simo, J. A.; Underwood, Chad A.; Rijken, Peggy

    2006-02-01

    Groundwater flow in low matrix-permeability carbonate rocks is largely controlled by fracture networks. The stratigraphic features that control fracture initiation and termination within a sequence of sedimentary rock strata define the mechanical stratigraphy of the sequence. We investigate the effectiveness of various types of stratigraphic horizons in terminating opening-mode fractures in two different carbonate rock sequences: a relatively homogeneous dolomite sequence, in Door County, WI and an interbedded chalk and marl sequence within the Austin Chalk, TX. Additionally, we present analog and numerical modeling results that delineate the specific mechanisms that facilitate fracture termination. The combination of model results and empirical relationships between observed sedimentary features and mechanical stratigraphy shows: (1) fractures terminate at weak contacts (e.g. thin organic layers), shallowly buried contacts or thick fine-grained units adjacent to thin fractured beds, (2) fractures propagate across strong contacts (e.g. intracycle contacts between different lithology) and thin fine-grained units adjacent to thick fractured beds and (3) fractures step-over at moderate strength contacts. We use these guidelines to predict fracture network from sedimentary stratigraphy by qualitatively assessing the mechanical stratigraphy of a portion of the relatively complex Cretaceous shelf-margin sequence at Sant Corneli, Spain. This predictive demonstration illustrates the utility of assessing the mechanical stratigraphy of subsurface strata within which fractures are not directly observable. We conclude that for a variety of carbonate mechanical stratigraphic sequences, dominant fluid flow characteristics, such as horizontal high flow zones and flow compartmentalization, can be evaluated using fracture spacing and connectivity within fracture networks that is predicted from sedimentary stratigraphy. Although the resulting heterogeneous flow networks do not rely

  15. Probabilistic Fracture Mechanics and Optimum Fracture Control Analytical Procedures for a Reusable Solid Rocket Motor Case

    NASA Technical Reports Server (NTRS)

    Hanagud, S.; Uppaluri, B.

    1977-01-01

    A methodology for the reliability analysis of a reusable solid rocket motor case is discussed. The analysis is based on probabilistic fracture mechanics and probability distribution for initial flaw sizes. The developed reliability analysis is used to select the structural design variables of the solid rocket motor case on the basis of minimum expected cost and specified reliability bounds during the projected design life of the case. Effects of failure prevention plans such as nondestructive inspection and the material erosion between missions are also considered in the developed procedure for selection of design variables. The reliability-based procedure can be modified to consider other similar structures of reusable space vehicle systems with different failure prevention plans.

  16. Fundamental mechanisms of tensile fracture in aluminum sheet undirectionally reinforced with boron filament

    NASA Technical Reports Server (NTRS)

    Herring, H. W.

    1972-01-01

    Results are presented from an experimental study of the tensile-fracture process in aluminum sheet unidirectionally reinforced with boron filament. The tensile strength of the material is severely limited by a noncumulative fracture mechanism which involves the initiation and sustenance of a chain reaction of filament fractures at a relatively low stress level. Matrix fracture follows in a completely ductile manner. The minimum filament stress for initiation of the fracture mechanism is shown to be approximately 1.17 GN/sq m (170 ksi), and appears to be independent of filament diameter, number of filament layers, and the strength of the filament-matrix bond. All the commonly observed features of tensile fracture surfaces are explained in terms of the observed noncumulative fracture mechanism.

  17. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  18. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-01-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  19. Type II odontoid fractures in the elderly: an evidence-based narrative review of management

    PubMed Central

    Pal, D.; Sell, P.

    2010-01-01

    Considerable controversy exists regarding the optimal management of elderly patients with type II odontoid fractures. There is uncertainty regarding the consequences of non-union. The best treatment remains unclear because of the morbidity associated with prolonged cervical immobilisation versus the risks of surgical intervention. The objective of the study was to evaluate the published literature and determine the current evidence for the management of type II odontoid fractures in elderly. A search of the English language literature from January 1970 to date was performed using Medline and the following keywords: odontoid, fractures, cervical spine and elderly. The search was supplemented by cross-referencing between articles. Case reports and review articles were excluded although some were referred to in the discussion. Studies in patients aged 65 years with a minimum follow-up of 12 months were selected. One-hundred twenty-six articles were reviewed. No class I study was identified. There were two class II studies and the remaining were class III. Significant variability was found in the literature regarding mortality and morbidity rates in patients treated with and without halo vest immobilisation. In recent years several authors have claimed satisfactory results with anterior odontoid screw fixation while others have argued that this may lead to increased complications in this age group. Lately, the posterior cervical (Goel–Harms) construct has also gained popularity amongst surgeons. There is insufficient evidence to establish a standard or guideline for odontoid fracture management in elderly. While most authors agree that cervical immobilisation yields satisfactory results for type I and III fractures in the elderly, the optimal management for type II fractures remain unsolved. A prospective randomised controlled trial is recommended. PMID:20835875

  20. Fracture and mechanical stratigraphy for Mississippian-Pennsylvanian age carbonates, Ozark Dome, NW Arkansas

    NASA Astrophysics Data System (ADS)

    Peppers, M.; Burberry, C. M.

    2014-12-01

    Identifying natural fracture patterns in an area gives a detailed look into the local tectonic history. Comparing those fractures to the mechanical properties of the rocks provides key insights into predicting fractures in the subsurface. The Ozark Dome is an ideal study area for fracture research due to multiple fracturing events resulting from the multi-stage deformation Ouachita Orogeny during the late Paleozoic. This study used field observations of lithology and fracture attributes over ~10 outcrops in the Mississppian-Pennsylvanian (360-298 ma) carbonate sequence of the Ozark Plateau. Outcrops were chosen having excellent lithological exposure up the sequence from the Boone to Atoka formations and with 3D representations of the fracture patterns. In all, the area investigated covered nearly 60 square miles. Fracture attributes collected included fracture intensity, length, and abutting relationships; and rock hardness data collected from a Schmidt Hammer. Data was analyzed using programs such as Stereonet and MOVE structural software that generated rose diagrams, structural cross sections, and products. Initial results indicate 4 main fracture orientations that resulted from at least 3 discrete phases of deformation during the Miss-Penn. Initial results also indicate that the present-day mechanical stratigraphy is not the same one that existed during the deformation phases. Work done at the Tiger Blvd. outcrops showed at least 2 distinct mechanical units. Fractures observed at the outcrop did not respect mechanical bed boundaries, and showed no relationship to the differences in mechanical properties observed. This study will aid in the interpretation of fractures in regards to mechanical stratigraphy, which allows for a better understanding of subsurface fracture prediction in carbonate sequences worldwide. Finally, the fracture work here will also help in elucidating the tectonic history of the field area during the Mississippian and Pennsylvanian.

  1. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.

    PubMed

    Libonati, Flavia; Nair, Arun K; Vergani, Laura; Buehler, Markus J

    2013-04-01

    Geometric confinement to the nanoscale, a concept that refers to the characteristic dimensions of structural features of materials at this length scale, has been shown to control the mechanical behavior of many biological materials or their building blocks, and such effects have also been suggested to play a crucial role in enhancing the strength and toughness of bone. Here we study the effect of geometric confinement on the fracture mechanism of hydroxyapatite (HAP) crystals that form the mineralized phase in bone. We report a series of molecular simulations of HAP crystals with an edge crack on the (001) plane under tensile loading, and we systematically vary the sample height whilst keeping the sample and the crack length constant. We find that by decreasing the sample height the stress concentration at the tip of the crack disappears for samples with a height smaller than 4.15nm, below which the material shows a different failure mode characterized by a more ductile mechanism with much larger failure strains, and the strength approaching that of a flaw-less crystal. This study directly confirms an earlier suggestion of a flaw-tolerant state that appears under geometric confinement and may explain the mechanical stability of the reinforcing HAP platelets in bone. PMID:23500480

  2. Fracture mechanics concepts in reliability analysis of monolithic ceramics

    NASA Technical Reports Server (NTRS)

    Manderscheid, Jane M.; Gyekenyesi, John P.

    1987-01-01

    Basic design concepts for high-performance, monolithic ceramic structural components are addressed. The design of brittle ceramics differs from that of ductile metals because of the inability of ceramic materials to redistribute high local stresses caused by inherent flaws. Random flaw size and orientation requires that a probabilistic analysis be performed in order to determine component reliability. The current trend in probabilistic analysis is to combine linear elastic fracture mechanics concepts with the two parameter Weibull distribution function to predict component reliability under multiaxial stress states. Nondestructive evaluation supports this analytical effort by supplying data during verification testing. It can also help to determine statistical parameters which describe the material strength variation, in particular the material threshold strength (the third Weibull parameter), which in the past was often taken as zero for simplicity.

  3. Chemical and Mechanical Alteration of Fractures: Micro-Scale Simulations and Comparison to Experimental Results

    NASA Astrophysics Data System (ADS)

    Ameli, P.; Detwiler, R. L.; Elkhoury, J. E.; Morris, J. P.

    2012-12-01

    Fractures are often the main pathways for subsurface fluid flow especially in rocks with low matrix porosity. Therefore, the hydro-mechanical properties of fractures are of fundamental concern for subsurface CO2 sequestration, enhanced geothermal energy production, enhanced oil recovery, and nuclear waste disposal. Chemical and mechanical stresses induced during these applications may lead to significant alteration of the hydro-mechanical properties of fractures. Laboratory experiments aimed at understanding the chemo-hydro-mechanical response of fractures have shown a range of results that contradict simple conceptual models. For example, under conditions favoring mineral dissolution, where one would expect an overall increase in permeability and fracture aperture, permeability increases under some conditions and decreases under others. Recent experiments have attempted to link these core-scale observations to the relevant small-scale processes occurring within fractures. Results suggest that the loss of mechanical strength in asperities due to chemical alteration may cause non-uniform deformation and alteration of fracture apertures. However, it remains difficult to directly measure the coupled chemical and mechanical processes that lead to alteration of contacting fracture surfaces, which challenges our ability to predict the long-term evolution of the hydro-mechanical properties of fractures. Here, we present a computational model that uses micro-scale surface roughness and explicitly couples dissolution and elastic deformation to calculate local alterations in fracture aperture under chemical and mechanical stresses. Chemical alteration of the fracture surfaces is modeled using a depth-averaged algorithm of fracture flow and reactive transport. Then, we deform the resulting altered fracture-surfaces using an algorithm that calculates the elastic deformation. Nonuniform dissolution may cause the location of the resultant force between the two contacting

  4. A mechanism-based approach to modeling ductile fracture.

    SciTech Connect

    Bammann, Douglas J.; Hammi, Youssef; Antoun, Bonnie R.; Klein, Patrick A.; Foulk, James W., III; McFadden, Sam X.

    2004-01-01

    Ductile fracture in metals has been observed to result from the nucleation, growth, and coalescence of voids. The evolution of this damage is inherently history dependent, affected by how time-varying stresses drive the formation of defect structures in the material. At some critically damaged state, the softening response of the material leads to strain localization across a surface that, under continued loading, becomes the faces of a crack in the material. Modeling localization of strain requires introduction of a length scale to make the energy dissipated in the localized zone well-defined. In this work, a cohesive zone approach is used to describe the post-bifurcation evolution of material within the localized zone. The relations are developed within a thermodynamically consistent framework that incorporates temperature and rate-dependent evolution relationships motivated by dislocation mechanics. As such, we do not prescribe the evolution of tractions with opening displacements across the localized zone a priori. The evolution of tractions is itself an outcome of the solution of particular, initial boundary value problems. The stress and internal state of the material at the point of bifurcation provides the initial conditions for the subsequent evolution of the cohesive zone. The models we develop are motivated by in-situ scanning electron microscopy of three-point bending experiments using 6061-T6 aluminum and 304L stainless steel, The in situ observations of the initiation and evolution of fracture zones reveal the scale over which the failure mechanisms act. In addition, these observations are essential for motivating the micromechanically-based models of the decohesion process that incorporate the effects of loading mode mixity, temperature, and loading rate. The response of these new cohesive zone relations is demonstrated by modeling the three-point bending configuration used for the experiments. In addition, we survey other methods with the potential

  5. Combined Mode I and Mode II Fracture of Plasma-Sprayed Thermal Barrier Coatings at Ambient and Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Zhu, Dongming; Miller, Robert A.

    2003-01-01

    The mode I, mode II, and combined mode I-mode II fracture behavior of ZrO2 - 8wt%Y2O3 thermal barrier coatings was determined in asymmetric flexure loading at both ambient and elevated temperatures. Precracks were introduced in test specimens using the single-edge-v-notched beam (SEVNB) method incorporated with final diamond polishing to achieve sharp crack tips. A fracture envelope of KI versus KII was determined for the coating material at ambient and elevated temperatures. Propagation angles of fracture as a function of KI/KII were also determined. The mixed-mode fracture behaviors of the coating material were compared with those of monolithic advanced ceramics determined previously. The mixed-mode fracture behavior of the plasma- sprayed thermal barrier coating material was predicted in terms of fracture envelope and propagation angle using mixed-mode fracture theories.

  6. Mechanical rock properties, fracture propagation and permeability development in deep geothermal reservoirs

    NASA Astrophysics Data System (ADS)

    Leonie Philipp, Sonja; Reyer, Dorothea

    2010-05-01

    Deep geothermal reservoirs are rock units at depths greater than 400 m from which the internal heat can be extracted using water as a transport means in an economically efficient manner. In many geothermal reservoirs, fluid flow is largely, and may be almost entirely, controlled by the permeability of the fracture network. No flow, however, takes place along a particular fracture network unless the fractures are interconnected. For fluid flow to occur from one site to another there must be at least one interconnected cluster of fractures that links these sites, that is, the percolation threshold must be reached. In "hydrothermal systems", only the natural fracture system (extension and shear fractures) creates the rock or reservoir permeability that commonly exceeds the matrix permeability by far; in "petrothermal systems", by contrast, interconnected fracture systems are formed by creating hydraulic fractures and massive hydraulic stimulation of the existing fracture system in the host rock. Propagation (or termination, that is, arrest) of both natural extension and shear fractures as well as man-made hydraulic fractures is mainly controlled by the mechanical rock properties, particularly rock toughness, stiffness and strengths, of the host rock. Most reservoir rocks are heterogeneous and anisotropic, in particular they are layered. For many layered rocks, the mechanical properties, particularly their Young's moduli (stiffnesses), change between layers, that is, the rocks are mechanically layered. Mechanical layering may coincide with changes in grain size, mineral content, fracture frequencies, or facies. For example, in sedimentary rocks, stiff limestone or sandstone layers commonly alternate with soft shale layers. In geothermal reservoirs fracture termination is important because non-stratabound fractures, that is, fractures not affected by layering, are more likely to form an interconnected fracture network than stratabound fractures, confined to single rock

  7. Thermal-Hydrologic-Mechanical Behavior of Single Fractures in EGS Reservoirs

    NASA Astrophysics Data System (ADS)

    Zyvoloski, G.; Kelkar, S.; Yoshioka, K.; Rapaka, S.

    2010-12-01

    Enhanced Geothermal Systems (EGS) rely on the creation a connected fracture system or the enhancement of existing (natural) fractures by hydraulic and chemical treatments. EGS studies at Fenton Hill (New Mexico, USA) and Hijiori (Japan) have revealed that only a limited number of fractures contribute to the effective heat transfer surface area. Thus, the economic viability of EGS depends strongly on the creation and spacing of single fractures in order to efficiently mine heat from given volume of rock. Though there are many similarities between EGS and natural geothermal reservoirs, a major difference between the reservoir types is the (typically) high pumping pressures and induced thermal stresses at the injection wells of an EGS reservoir. These factors can be responsible for fracture dilation/extension and thermal short circuiting and depend strongly on the surrounding state of stress in the reservoir and mechanical properties. We will present results from our study of the thermal-hydrologic-mechanical (THM) behavior of a single fracture in a realistic subsurface stress field. We will show that fracture orientation, the stress environment, fracture permeability structure, and the relationship between permeability changes in a fracture resulting from mechanical displacement are all important when designing and managing an EGS reservoir. Lastly, we present a sensitivity analysis of the important parameters that govern fracture behavior with respect to field measurements. Temperature in high permeability fracture in an EGS reservoir

  8. Effective Hydro-Mechanical Properties of Fluid-Saturated Fracture Networks

    NASA Astrophysics Data System (ADS)

    Pollmann, N.; Vinci, C.; Renner, J.; Steeb, H.

    2015-12-01

    Consideration of hydro-mechanical processes is essential for the characterization of liquid-resources as well as for many engineering applications. Furthermore, the modeling of seismic waves in fractured porous media finds application not only in geophysical exploration but also reservoir management. Fractures exhibit high-aspect-ratio geometries, i.e. they constitute thin and long hydraulic conduits. Motivated by this peculiar geometry, the investigation of the hydro-mechanically coupled processes is performed by means of a hybrid-dimensional modeling approach. The effective material behavior of domains including complex fracture patterns in a porous rock is assessed by investigating the fluid pressure and the solid displacement of the skeleton saturated by compressible fluids. Classical balance equations are combined with a Poiseuille-type flow in the dimensionally reduced fracture. In the porous surrounding rock, the classical Biot-theory is applied. For simple geometries, our findings show that two main fluid-flow processes occur, leak-off from fractures to the surrounding rock and fracture flow within and between the connected fractures. The separation of critical frequencies of the two flow processes is not straightforward, in particular for systems containing a large number of fractures. Our aim is to model three dimensional hydro-mechanically coupled processes within complex fracture patterns and in particular determine the frequency-dependent attenuation characteristics. Furthermore, the effect of asperities of the fracture surfaces on the fracture stiffness and on the hydraulic conductivity will be added to the approach.

  9. Modification of fracture surfaces by dissolution. Part II

    SciTech Connect

    Johnson, B.

    1983-01-01

    This study focuses upon how and to what extent dissolution related fluid/rock interactions modify the morphology and roughness of surfaces on Sioux Quartzite. Dissolution experiments consisted of reacting small discs of Sioux Quartzite in sealed gold capsules containing either distilled water or 0.05 N to 4.0 N aqueous solutions of Na/sub 2/CO/sub 3/. Samples were reacted at 200/sup 0/C and 20 to 30 MPa fluid pressures for 2 to 5 days. Two markedly different starting surface textures were used: polished, optically flat surfaces and tensile fracture surfaces. An exploratory experiment also was performed to assess the occurrence of a pressure solution phenomenon on a polished quartzite surface at contact regions of indenting quartz sand grains. Scanning electron microscopy studies indicate progressive increases in the amount of dissolution produced significant changes of surface roughness for both initial surface textures. Surface roughness increased measurably, with the initially polished surfaces exhibiting the more dramatic changes. The pressure solution experiments did not produce definite results, but several surface features are suggestive of dissolution enhancement at load carrying contacts. 9 refs., 10 figs.

  10. Comprehensive fracture diagnostics experiment. Part II. Comparison of seven fracture azimuth measurements

    SciTech Connect

    Smith, M.B.; Ren, N.K.; Sorrells, G.G.; Teufel, L.W.

    1985-01-01

    A great deal of effort has been devoted recently to find geophysical techniques for measuring the hydraulic fracture azimuth. This paper discusses a comparison of seven different measurements used to determine the azimuth in a sandstone formation at a depth of 1000 ft (320 m). The azimuth was determined as N95E, but significant differences existed between some of the results. This is of fundamental importance since in developing new measurements, the limits of these must be found and honored. Of particular interest are the results from microseismic monitoring. The lack of results suggests that remote (e.g., surface) monitoring for seismic events may be impractical for normal, sedimentary, hydrocarbon-bearing formations. 33 refs., 6 figs., 3 tabs.

  11. Thermal mechanical modeling of cooling history and fracture development in inflationary basalt lava flows

    NASA Astrophysics Data System (ADS)

    Kattenhorn, Simon A.; Schaefer, Conrad J.

    2008-03-01

    Thermal-mechanical analyses of isotherms in low-volume basalt flows having a range of aspect ratios agree with inferred isotherm patterns deduced from cooling fracture patterns in field examples on the eastern Snake River Plain, Idaho, and highlight the caveats of analytical models of sheet flow cooling when considering low-volume flows. Our field observations show that low-volume lava flows have low aspect ratios (width divided by thickness), typically < 5. Four fracture types typically develop: column-bounding, column-normal, entablature (all of which are cooling fractures), and inflation fractures. Cooling fractures provide a proxy for isotherms during cooling and produce patterns that are strongly influenced by flow aspect ratio. Inflation fractures are induced by lava pressure-driven inflationary events and introduce a thermal perturbation to the flow interior that is clearly evidenced by fracture patterns around them. Inflation fracture growth occurs incrementally due to blunting of the lower tip within viscoelastic basalt, allowing the inflation fracture to pivot open. The final stage of growth involves propagation beyond the blunted tip towards the stress concentration at the tapered tip of a lava core, resulting in penetration of the core that causes quenching of the lava and the formation of a densely fractured entablature. We present numerical models that include the effects of inflation fractures on lava cooling and which support field-based inferences that inflation fractures depress the isotherms in the vicinity of the fracture, cause a subdivision of the lava core, control the location of the final portion of the lava flow to solidify, and cause significant changes in the local cooling fracture orientations. In addition to perturbing isotherms, inflation fractures cause a lava flow to completely solidify in a shorter amount of time than an identically shaped flow that does not contain an inflation fracture.

  12. Isolated posterior malleolus fracture: a rare injury mechanism

    PubMed Central

    Serbest, Sancar; Tiftikçi, Uğur; Tosun, Haci Bayram; Kesgin, Engin; Karataş, Metin

    2015-01-01

    Sprain of the ankle is undoubtedly a common injury during athletic activity, and the sprain can be also associated with fracture of the ankle. Isolated posterior malleolus fracture is a very rare condition, which is usually missed. Here, we are presenting a 37 years old female patient, who suffered injury secondary pressing on brake pedal during collision in a traffic accident. Clinical evaluation is based on Ottawa Ankle Rules and a fracture is diagnosed; patient is started on daily activities at postoperative Week 8. This study aims to emphasize that Ottawa Ankle Rules are usually efficient for evaluating fractures of ankle, but clinicians should always make a detailed physical examination. PMID:26097627

  13. Isolated posterior malleolus fracture: a rare injury mechanism.

    PubMed

    Serbest, Sancar; Tiftikçi, Uğur; Tosun, Haci Bayram; Kesgin, Engin; Karataş, Metin

    2015-01-01

    Sprain of the ankle is undoubtedly a common injury during athletic activity, and the sprain can be also associated with fracture of the ankle. Isolated posterior malleolus fracture is a very rare condition, which is usually missed. Here, we are presenting a 37 years old female patient, who suffered injury secondary pressing on brake pedal during collision in a traffic accident. Clinical evaluation is based on Ottawa Ankle Rules and a fracture is diagnosed; patient is started on daily activities at postoperative Week 8. This study aims to emphasize that Ottawa Ankle Rules are usually efficient for evaluating fractures of ankle, but clinicians should always make a detailed physical examination. PMID:26097627

  14. On the localization of fracture in highly constrained polymeric layer subjected to mode II loading

    SciTech Connect

    Chiang, M.Y.M.; Chai, H.

    1996-12-31

    The tight spatial constraints imposed on the interlayer by the relatively rigid substrates in adhesive bonding may impede the natural development and growth of damage sources such as voids, kinks and microcracks. This may lead to extensive nonlinear deformations and intense strain localization prior to fracture in ductile or brittle adhesive systems. Moreover, the localized deformation in the bond may be highly triaxial regardless of the nature of the far-field loading. Fracture criteria based on conventional linear elastic fracture mechanics and small-scale yielding condition may not be applicable on large strain. Therefore, the purpose of the authors work is to focus on the local deformation at the crack tip in an effort to demonstrate a fracture criterion, which is independent of the specimen geometry, for the situation in large (or small) plastic deformation.

  15. Spinal cord injury-related bone impairment and fractures: an update on epidemiology and physiopathological mechanisms.

    PubMed

    Dionyssiotis, Y

    2011-09-01

    A sudden loss of motor function in segments of the spinal cord results in immobilisation and is complicated by bone loss and fractures in areas below the level of injury. Despite the acceptance of osteoporosis and fractures as two major public health problems, in people with spinal cord injuries, the mechanisms are not adequately investigated. Multiple risk factors for bone loss and fractures are present in this disabled population. This review is an update on the epidemiology and physiopathological mechanisms in spinal cord injury-related bone impairment and fractures. PMID:21885901

  16. Investigation of translaminar fracture in fibrereinforced composite laminates---applicability of linear elastic fracture mechanics and cohesive-zone model

    NASA Astrophysics Data System (ADS)

    Hou, Fang

    With the extensive application of fiber-reinforced composite laminates in industry, research on the fracture mechanisms of this type of materials have drawn more and more attentions. A variety of fracture theories and models have been developed. Among them, the linear elastic fracture mechanics (LEFM) and cohesive-zone model (CZM) are two widely-accepted fracture models, which have already shown applicability in the fracture analysis of fiber-reinforced composite laminates. However, there remain challenges which prevent further applications of the two fracture models, such as the experimental measurement of fracture resistance. This dissertation primarily focused on the study of the applicability of LEFM and CZM for the fracture analysis of translaminar fracture in fibre-reinforced composite laminates. The research for each fracture model consisted of two sections: the analytical characterization of crack-tip fields and the experimental measurement of fracture resistance parameters. In the study of LEFM, an experimental investigation based on full-field crack-tip displacement measurements was carried out as a way to characterize the subcritical and steady-state crack advances in translaminar fracture of fiber-reinforced composite laminates. Here, the fiber-reinforced composite laminates were approximated as anisotropic solids. The experimental investigation relied on the LEFM theory with a modification with respect to the material anisotropy. Firstly, the full-field crack-tip displacement fields were measured by Digital Image Correlation (DIC). Then two methods, separately based on the stress intensity approach and the energy approach, were developed to measure the crack-tip field parameters from crack-tip displacement fields. The studied crack-tip field parameters included the stress intensity factor, energy release rate and effective crack length. Moreover, the crack-growth resistance curves (R-curves) were constructed with the measured crack-tip field parameters

  17. Mechanical and petrophysical study of fractured shale materials

    NASA Astrophysics Data System (ADS)

    Bonnelye, A.; Schubnel, A.; David, C.; Henry, P.; Guglielmi, Y.; Gout, C.; Dick, P.

    2015-12-01

    Mechanical and physical properties of shales are of major importance for upper crustal fault hydro-mechanical behavior. In particular, relationships between applied stress, textural anisotropy and transport properties. These relations can be investigated in the laboratory and here, was used shales from Tournemire (southern France). Triaxial tests were performed in order to determine the elasto-plastic yield envelope on 3 sets of samples with 3various bedding orientations (0°, 45°, and 90°). For each set, experiments were carried out at increasing confining pressures (2.5, 5, 10, 20, 40, 80MPa). They were performed under nominally drained conditions, at strain rates ranging between 5x10-7 s-1 - 1x10-5 s-1up to failure. During each experiment, P and S wave elastic velocities were continuously measured, in order to monitor the evolution of elastic anisotropy. Results show that the orientation of principal stress relative to bedding plays an important role on the brittle strength. Minimum strength is observed for samples deformed at 45° to bedding. Strength anisotropy increases both with confining pressure and strain rate. We interpret this result as the cohesive strength (and fracture toughness) being strain rate dependent. Although brittle failure and stress drops were systematically observed, deformation remained aseismic. This confirms that shales are good lithological candidates for shallow aseismic creep and slow slip events. Brittle failure was preceded by the development of P wave anisotropy, due to both crack growth and mineral re-orientation. Anisotropy variations were largest for samples deformed perpendicular to bedding, at the onset of rupture. Anisotropy reversal was observed at the highest confining pressures. For samples deformed parallel to bedding, the P wave anisotropy development is weaker. For both of these orientations, Thomsens parameters were inverted from the elastic wave data in order to quantify the evolution of elastic anisotropy. We

  18. Fractures

    PubMed Central

    Hall, Michael C.

    1963-01-01

    Recent studies on the epidemiology and repair of fractures are reviewed. The type and severity of the fracture bears a relation to the age, sex and occupation of the patient. Bone tissue after fracture shows a process of inflammation and repair common to all members of the connective tissue family, but it repairs with specific tissue. Cartilage forms when the oxygen supply is outgrown. After a fracture, the vascular bed enlarges. The major blood supply to healing tissue is from medullary vessels and destruction of them will cause necrosis of the inner two-thirds of the cortex. Callus rapidly mineralizes, but full mineralization is achieved slowly; increased mineral metabolism lasts several years after fracture. PMID:13952119

  19. Spartan Release Engagement Mechanism (REM) stress and fracture analysis

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The revised stress and fracture analysis of the Spartan REM hardware for current load conditions and mass properties is presented. The stress analysis was performed using a NASTRAN math model of the Spartan REM adapter, base, and payload. Appendix A contains the material properties, loads, and stress analysis of the hardware. The computer output and model description are in Appendix B. Factors of safety used in the stress analysis were 1.4 on tested items and 2.0 on all other items. Fracture analysis of the items considered fracture critical was accomplished using the MSFC Crack Growth Analysis code. Loads and stresses were obtaind from the stress analysis. The fracture analysis notes are located in Appendix A and the computer output in Appendix B. All items analyzed met design and fracture criteria.

  20. Mechanical test and fractal analysis on anisotropic fracture of cortical bone

    NASA Astrophysics Data System (ADS)

    Yin, Dagang; Chen, Bin; Ye, Wei; Gou, Jihua; Fan, Jinghong

    2015-12-01

    The mechanical properties of the cortical bone of fresh bovine femora along three different directions are tested through four-point bending experiments. It is indicated that the fracture energy along the transversal direction of the bone is distinctly larger than those of the longitudinal and radial directions. The fracture surfaces of the three different directions are observed by scanning electron microscope (SEM). It is shown that the roughness of the fracture surface of the transversal direction is obviously larger than those of the fracture surfaces of the longitudinal and radial directions. It is also revealed that the osteons in the bone are perpendicular to the fracture surface of the transversal direction and parallel to the fracture surfaces of the longitudinal and radial directions. Based on these experimental results, the fractal dimensions of the fracture surfaces of different directions are calculated by box-counting method in MATLAB. The calculated results show that the fractal dimension of the fracture surface of the transversal direction is remarkably larger than those of the fracture surfaces of the longitudinal and radial directions. The fracture energies of different directions are also calculated based on their fractal models. It is denoted that the fracture energy of the transversal direction is remarkably larger than those of the longitudinal and radial directions. The calculated results are in good agreement with the tested results.

  1. Chemically- and mechanically-mediated influences on the transport and mechanical characteristics of rock fractures

    SciTech Connect

    Min, K.-B.; Rutqvist, J.; Elsworth, D.

    2009-02-01

    A model is presented to represent changes in the mechanical and transport characteristics of fractured rock that result from coupled mechanical and chemical effects. The specific influence is the elevation of dissolution rates on contacting asperities, which results in a stress- and temperature-dependent permanent closure. A model representing this pressure-dissolution-like behavior is adapted to define the threshold and resulting response in terms of fundamental thermodynamic properties of a contacting fracture. These relations are incorporated in a stress-stiffening model of fracture closure to define the stress- and temperature-dependency of aperture loss and behavior during stress and temperature cycling. These models compare well with laboratory and field experiments, representing both decoupled isobaric and isothermal responses. The model was applied to explore the impact of these responses on heated structures in rock. The result showed a reduction in ultimate induced stresses over the case where chemical effects were not incorporated, with permanent reduction in final stresses after cooling to ambient conditions. Similarly, permeabilities may be lower than they were in the case where chemical effects were not considered, with a net reduction apparent even after cooling to ambient temperature. These heretofore-neglected effects may have a correspondingly significant impact on the performance of heated structures in rock, such as repositories for the containment of radioactive wastes.

  2. Effects of Strain Rates on Mechanical Properties and Fracture Mechanism of DP780 Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Li, Shengci; Kang, Yonglin; Zhu, Guoming; Kuang, Shuang

    2015-06-01

    The mechanical properties of DP780 dual phase steel were measured by quasi-static and high-speed tensile tests at strain rates between 0.001 and 1000 s-1 at room temperature. The deformation and fracture mechanisms were analyzed by observation of the tensile fracture and microstructure near the fracture. Dynamic factor and feret ratio quantitative methods were applied to study the effect of strain rate on the microstructure and properties of DP780 steel. The constitutive relation was described by a modified Johnson-Cook and Zerilli-Armstrong model. The results showed that the strain rate sensitivity of yield strength is bigger than that of ultimate tensile strength; as strain rate increased, the formation of microcracks and voids at the ferrite/martensite interface can be alleviated; the strain rate effect is unevenly distributed in the plastic deformation region. Moreover, both models can effectively describe the experimental results, while the modified Zerilli-Armstrong model is more accurate because the strain-hardening rate of this model is independent of strain rate.

  3. Fracture mechanics parameters for cracks on a slightly undulating interface

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Qu, Jianmin

    1993-11-01

    Typical bimaterial interfaces are nonplanar due to surface facets or roughness. Crack-tip stress fields of an interface crack must be influenced by nonplanarity of the interface. Consequently, interface toughness is affected. The crack-tip fields of a finite crack on an elastic/rigid interface with periodic undulation are studied. Particular emphasis is given to the fracture mechanics parameters, such as the stress intensity factors, crack-tip energy release rate, and crack-tip mode mixity. When the amplitude of interface undulation is very small relative to the crack length (which is the case for rough interfaces), asymptotic analysis is used to convert the nonplanarity effects into distributed dislocations located on the planar interface. Then, the resulting stress fields near the crack tip are obtained by using the Fourier integral transform method. It is found that the stress fields at the crack tip are strongly influenced by nonplanarity of the interface. Generally speaking, nonplanarity of the interface tends to shield the crack tip by reducing the crack-tip stress concentration.

  4. Fracture Mechanics Analyses for Interface Crack Problems - A Review

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Shivakumar, Kunigal; Raju, Ivatury S.

    2013-01-01

    Recent developments in fracture mechanics analyses of the interfacial crack problem are reviewed. The intent of the review is to renew the awareness of the oscillatory singularity at the crack tip of a bimaterial interface and the problems that occur when calculating mode mixity using numerical methods such as the finite element method in conjunction with the virtual crack closure technique. Established approaches to overcome the nonconvergence issue of the individual mode strain energy release rates are reviewed. In the recent literature many attempts to overcome the nonconvergence issue have been developed. Among the many approaches found only a few methods hold the promise of providing practical solutions. These are the resin interlayer method, the method that chooses the crack tip element size greater than the oscillation zone, the crack tip element method that is based on plate theory and the crack surface displacement extrapolation method. Each of the methods is validated on a very limited set of simple interface crack problems. However, their utility for a wide range of interfacial crack problems is yet to be established.

  5. Mechanical and petrophysical study of fractured shale materials

    NASA Astrophysics Data System (ADS)

    Bonnelye, A.; Schubnel, A.; David, C.; Henry, P.; Guglielmi, Y.; Gout, C.; Dick, P.

    2013-12-01

    Understanding of the mechanical and physical properties of shales is of major importance in many fields such as faults hydro-mechanical behavior, cap-rock and unconventional reservoir studies or nuclear waste disposal. In particular, relationships between fluid transport properties, applied stress and textural anisotropy are critical both in intact and fractured shales. Therefore, these relations need to be investigated in the laboratory in order to have a better understanding on in-situ mechanisms. Hence, the mechanical behavior and the petrophysical properties of Toarcian shale of the Tournemire underground laboratory (France) have been investigated. The petrophysical properties have been measured along a 20 meters core drilled through a fault zone from the Tournemire tunnel. Along the core, P and S waves velocity and anisotropy, as well as magnetic susceptibility anisotropy and porosity were measured. In addition, conventional triaxial tests have been performed in order to determine the elasto-plastic yield envelope on three sets of samples with different orientations relative to bedding (0°, 45°, and 90° to the vertical axe). For each set, six experiments were carried out at increasing confining pressures (2.5, 5, 10, 20, 40, 80MPa). Experiments were performed in dry conditions, at a strain rate of 5x10-7 s-1 up to failure. During each experiment, P and S wave elastic velocities were continuously measured along different directions, in order to assess both P wave anisotropy and shear wave splitting and their evolutions with deformation. Our results show that brittle failure is preceded by the development of P wave anisotropy and shear wave splitting, due to crack re-opening and crack growth. However, the orientation of principal stress components relative to the bedding plane plays an important role on both the brittle strength, as well as on the magnitude of shear-enhanced P wave velocity anisotropy and S wave splitting. Our perspective is now to perform

  6. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    SciTech Connect

    Dickson, T.L.

    1993-04-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness.

  7. FAVOR: A new fracture mechanics code for reactor pressure vessels subjected to pressurized thermal shock

    SciTech Connect

    Dickson, T.L.

    1993-01-01

    This report discusses probabilistic fracture mechanics (PFM) analysis which is a major element of the comprehensive probabilistic methodology endorsed by the NRC for evaluation of the integrity of Pressurized Water Reactor (PWR) pressure vessels subjected to pressurized-thermal-shock (PTS) transients. It is anticipated that there will be an increasing need for an improved and validated PTS PFM code which is accepted by the NRC and utilities, as more plants approach the PTS screening criteria and are required to perform plant-specific analyses. The NRC funded Heavy Section Steel Technology (HSST) Program at Oak Ridge National Laboratories is currently developing the FAVOR (Fracture Analysis of Vessels: Oak Ridge) PTS PFM code, which is intended to meet this need. The FAVOR code incorporates the most important features of both OCA-P and VISA-II and contains some new capabilities such as PFM global modeling methodology, the capability to approximate the effects of thermal streaming on circumferential flaws located inside a plume region created by fluid and thermal stratification, a library of stress intensity factor influence coefficients, generated by the NQA-1 certified ABAQUS computer code, for an adequate range of two and three dimensional inside surface flaws, the flexibility to generate a variety of output reports, and user friendliness.

  8. Fracture mechanics; Proceedings of the 22nd National Symposium, Atlanta, GA, June 26-28, 1990. Vols. 1 & 2

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A. (Editor); Saxena, Ashok (Editor); Mcdowell, David L. (Editor); Atluri, Satya N. (Editor); Newman, James C., Jr. (Editor); Raju, Ivatury S. (Editor); Epstein, Jonathan S. (Editor)

    1992-01-01

    Current research on fracture mechanics is reviewed, focusing on ductile fracture; high-temperature and time-dependent fracture; 3D problems; interface fracture; microstructural aspects of fatigue and fracture; and fracture predictions and applications. Particular attention is given to the determination and comparison of crack resistance curves from wide plates and fracture mechanics specimens; a relationship between R-curves in contained and uncontained yield; the creep crack growth behavior of titanium alloy Ti-6242; a crack growth response in three heat resistant materials at elevated temperature; a crack-surface-contact model for determining effective-stress-intensity factors; interfacial dislocations in anisotropic bimaterials; an effect of intergranular crack branching on fracture toughness evaluation; the fracture toughness behavior of exservice chromium-molybdenum steels; the application of fracture mechanics to assess the significance of proof loading; and a load ratio method for estimating crack extension.

  9. Experimental Investigation of Damage and Fracture Mechanisms Controlling the Performance of Full Aperture Easy Open Ends for Food Containers

    NASA Astrophysics Data System (ADS)

    Taylor, D. L. P.; Nagy, G. T.; Owen, D. R. J.

    2011-05-01

    Can manufacturers produce hundreds of millions of cans annually, increasingly, food cans are being opened by lifting a tab on the can end that initiates a fracture, which then propagates around a circumferential score. The damage and fracture mechanisms that lead to crack initiation and propagation in the opening process, however, are not fully understood, therefore optimisation of easy open end scores is largely based on trial and error. This paper presents an experimental analysis that concentrates on the combined shear and bending forces as applied to the particular industrial method concerning full aperture easy open ends. The influence of a gradually increasing gap measured between the score and shear force location on traditional groove geometries and depths are examined for two different packaging steels. Earlier studies have shown that the complete opening cycle depends on fracture modes I, II & III as well as their combination. Experimental results for Modes I, II & III will be presented, however attention will focus on the behaviour of the initial fracture point, whereby prior investigations have shown it to be influenced primarily by mode II shearing. After initial specimen manufacture, where the score is formed by pressing a punch into a thin steel sheet the predeformed scored specimens are loaded in shear to simulate the local stress field found during the initial opening phase. Experiments have been completed using a novel Mode II experimental technique that has been designed for use in the majority of commercially available tensile test machines. Experimental results indicate that opening forces can change radically with different gap sizes and that there is considerable potential for the industrialised process of can end manufacture to be optimised through the efficient management and control of the can ends dimensional parameters.

  10. Fracture strength and elastic modulus as a function of porosity for hydroxyapatite and other brittle materials, Part II

    SciTech Connect

    Fan, Xiaofeng; Case, Eldon D; Ren, Fei; Shu, Yutian; Baumann, Melissa

    2012-01-01

    Part I of this paper discussed the Weibull modulus m, versus porosity P behavior of brittle materials, including HA. While the Weibull modulus m deals with the scatter in fracture strength data, this paper (Part II) focuses on two additional key mechanical properties of porous materials, namely the average fracture strength f , and Young s modulus E, for P in the interval from P zero to P PG (the porosity of the unfired compacts). The f versus P data for HA from this study and the literature data for alumina, yttria stabilized zirconia (YSZ) and silicon nitride are describedwell by functions of , where = 1 P/PG = the degree of densification. A similar function of applies to the E versus P behavior of HA from this study and data from the literature for alumina, titanium and YSZ. All of the data analyzed in this study (Part II) are based on partially and fully sintered powder compacts (excluding green powder compacts), thus the f / 0 versus and E /E0 versus relationships may apply only to such specimens.

  11. Fractures

    MedlinePlus

    ... commonly happen because of car accidents, falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the bones. Overuse can cause stress fractures, which are very small cracks in the ...

  12. Fractures

    MedlinePlus

    A fracture is a break, usually in a bone. If the broken bone punctures the skin, it is called an open ... falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the ...

  13. The peel test in experimental adhesive fracture mechanics

    NASA Technical Reports Server (NTRS)

    Anderson, G. P.; Devries, K. L.; Williams, M. L.

    1974-01-01

    Several testing methods have been proposed for obtaining critical energy release rate or adhesive fracture energy in bond systems. These tests include blister, cone, lap shear, and peel tests. Peel tests have been used for many years to compare relative strengths of different adhesives, different surface preparation techniques, etc. The present work demonstrates the potential use of the peel test for obtaining adhesive fracture energy values.

  14. An extension of fracture mechanics/technology to larger and smaller cracks/defects

    PubMed Central

    Abé, Hiroyuki

    2009-01-01

    Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper. PMID:19907123

  15. An extension of fracture mechanics/technology to larger and smaller cracks/defects.

    PubMed

    Abé, Hiroyuki

    2009-01-01

    Fracture mechanics/technology is a key science and technology for the design and integrity assessment of the engineering structures. However, the conventional fracture mechanics has mostly targeted a limited size of cracks/defects, say of from several hundred microns to several tens of centimeters. The author and his group has tried to extend that limited size and establish a new version of fracture technology for very large cracks used in geothermal energy extraction and for very small cracks/defects or damage often appearing in the combination of mechanical and electronic components of engineering structures. Those new versions are reviewed in this paper. PMID:19907123

  16. Mechanisms and Management of Stress Fractures in Physically Active Persons

    PubMed Central

    Romani, William A.; Gieck, Joe H.; Perrin, David H.; Saliba, Ethan N.; Kahler, David M.

    2002-01-01

    Objective: To describe the anatomy of bone and the physiology of bone remodeling as a basis for the proper management of stress fractures in physically active people. Data Sources: We searched PubMed for the years 1965 through 2000 using the key words stress fracture, bone remodeling, epidemiology, and rehabilitation. Data Synthesis: Bone undergoes a normal remodeling process in physically active persons. Increased stress leads to an acceleration of this remodeling process, a subsequent weakening of bone, and a higher susceptibility to stress fracture. When a stress fracture is suspected, appropriate management of the injury should begin immediately. Effective management includes a cyclic process of activity and rest that is based on the remodeling process of bone. Conclusions/Recommendations: Bone continuously remodels itself to withstand the stresses involved with physical activity. Stress fractures occur as the result of increased remodeling and a subsequent weakening of the outer surface ofthe bone. Once a stress fracture is suspected, a cyclic management program that incorporates the physiology of bone remodeling should be initiated. The cyclic program should allow the physically active person to remove the source of the stress to the bone, maintain fitness, promote a safe return to activity, and permit the bone to heal properly. PMID:16558676

  17. A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass

    SciTech Connect

    Bower, K.M.

    1996-06-01

    Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

  18. Analysis of seismic sources for different mechanisms of fracture growth for microseismic monitoring applications

    SciTech Connect

    Duchkov, A. A.; Stefanov, Yu. P.

    2015-10-27

    We have developed and illustrated an approach for geomechanic modeling of elastic wave generation (microsiesmic event occurrence) during incremental fracture growth. We then derived properties of effective point seismic sources (radiation patterns) approximating obtained wavefields. These results establish connection between geomechanic models of hydraulic fracturing and microseismic monitoring. Thus, the results of the moment tensor inversion of microseismic data can be related to different geomechanic scenarios of hydraulic fracture growth. In future, the results can be used for calibrating hydrofrac models. We carried out a series of numerical simulations and made some observations about wave generation during fracture growth. In particular when the growing fracture hits pre-existing crack then it generates much stronger microseismic event compared to fracture growth in homogeneous medium (radiation pattern is very close to the theoretical dipole-type source mechanism)

  19. Analysis of seismic sources for different mechanisms of fracture growth for microseismic monitoring applications

    NASA Astrophysics Data System (ADS)

    Duchkov, A. A.; Stefanov, Yu. P.

    2015-10-01

    We have developed and illustrated an approach for geomechanic modeling of elastic wave generation (microsiesmic event occurrence) during incremental fracture growth. We then derived properties of effective point seismic sources (radiation patterns) approximating obtained wavefields. These results establish connection between geomechanic models of hydraulic fracturing and microseismic monitoring. Thus, the results of the moment tensor inversion of microseismic data can be related to different geomechanic scenarios of hydraulic fracture growth. In future, the results can be used for calibrating hydrofrac models. We carried out a series of numerical simulations and made some observations about wave generation during fracture growth. In particular when the growing fracture hits pre-existing crack then it generates much stronger microseismic event compared to fracture growth in homogeneous medium (radiation pattern is very close to the theoretical dipole-type source mechanism).

  20. Borehole Breakouts in Berea Sandstone Reveal a New Fracture Mechanism

    NASA Astrophysics Data System (ADS)

    Haimson, B. C.

    - Vertical drilling experiments in high-porosity (22% and 25%) Berea sandstone subjected to critical true triaxial far-field stresses, in which σH (maximum horizontal stress) >σv (vertical stress) >σh (least horizontal stress), revealed a new and non-dilatant failure mechanism that results in thin and very long tabular borehole breakouts that have the appearance of fractures, and which counterintuitively develop orthogonally to σH. These breakouts are fundamentally different from those induced in crystalline rocks, as well as limestones and medium-porosity Berea sandstone. Breakouts in these rocks are typically dog-eared in shape, a result of dilatant multi-cracking tangential to the hole and subparallel to the maximum far-field horizontal stress σH, followed by progressive buckling and shearing of detached rock flakes created by the cracks. In the high-porosity sandstone a narrow layer of grains compacted normal to σH is observed just ahead of the breakout tip. This layer is nearly identical to ``compaction bands'' observed in the field. It is suggested that when a critical tangential stress concentration is reached along the σh spring line at the borehole wall, grain bonding breaks down and a compaction band is formed normal to σH. Debonded loose grains are expelled into the borehole, assisted by the circulating drilling fluid. As the breakout tip advances, the stress concentration ahead of it persists or may even increase, extending the compaction band, which in turn leads to breakout lengthening.

  1. Fracture resistance of teeth restored with class II bonded composite resin.

    PubMed

    Eakle, W S

    1986-02-01

    The purpose of this study was to determine whether composite resin bonded to enamel or to both enamel and dentin can increase the fracture resistance of teeth with Class II cavity preparations. Extracted maxillary pre-molars with MOD slot preparations were restored with composite resin bonded to enamel (P-30 and Enamel Bond) or composite resin bonded to enamel and dentin (P-30 and Scotch-bond). Teeth in a control group were prepared but left unrestored. All teeth were loaded occlusally in a universal testing machine until they fractured. Means of forces required to fracture teeth in each of the three groups were statistically compared (one-way ANOVA and Bonferroni t test). Teeth restored with combined enamel- and dentin-bonded composite resins were significantly more resistant to fracture than were similarly prepared but unrestored teeth and also than teeth restored with enamel-bonded composite resin (p less than 0.05). A significant difference was not demonstrated between the enamel-bonded group and the unrestored group. Further testing is needed to determine the durability of the bonds between tooth and restoration in the clinical setting. PMID:3511111

  2. Non-Linear Analysis of Mode II Fracture in the end Notched Flexure Beam

    NASA Astrophysics Data System (ADS)

    Rizov, V.

    2016-03-01

    Analysis is carried-out of fracture in the End Notched Flex- ure (ENF) beam configuration, taking into account the material nonlin- earity. For this purpose, the J-integral approach is applied. A non-linear model, based on the Classical beam theory is used. The mechanical be- haviour of the ENF configuration is described by the Ramberg-Osgood stress-strain curve. It is assumed that the material possesses the same properties in tension and compression. The influence is evaluated of the material constants in the Ramberg-Osgood stress-strain equation on the fracture behaviour. The effect of the crack length on the J-integral value is investigated, too. The analytical approach, developed in the present paper, is very useful for parametric analyses, since the simple formulae obtained capture the essentials of the non-linear fracture in the ENF con- figuration.

  3. Effects of Temperature on Mode II Fracture Toughness of Multidirectional CFRP Laminates

    NASA Astrophysics Data System (ADS)

    Kim, Hyoung Soo; Wang, Wen Xue; Takao, Yoshihiro; Ben, Goichi

    End notched flexure (ENF) tests were performed to investigate the effects of temperature and fiber orientation on Mode II interlaminar fracture behavior, GIIC (GII at the crack initiation), of carbon fiber-reinforced epoxy composites, T800H/#3631. The values of GIIC for three kinds of laminates, [012//012], [22.5/-22.5/08/-22.5/22.5//-22.5/22.5/08/22.5/-22.5] and [45/-45/08/-45/45//-45/45/08/45/-45], with a pre-cracked interface, that is // in each laminate, were obtained at three temperatures, i.e. -100°C, 25°C and 150°C. It is shown that GIIC is obviously affected by the temperature and fiber orientation. The scanning electron microscope (SEM) observation was also carried out to investigate the fracture surface. SEM analysis suggested that the decreased Mode II interlaminar fracture toughness for all kinds of specimens at high temperature could be attributed to temperature-induced matrix property change or fiber-matrix interfacial weakening.

  4. Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P. S.; Suvorov, A. P.; Selvadurai, P. A.

    2015-07-01

    The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach that takes into account thermo-poroelasticity of the intact geological formation and the presence of a system of sessile but hydraulically interacting fractures (fracture zones). The modelling considers coupled thermo-hydro-mechanical effects in both the intact rock and the fracture zones due to contact normal stresses and fluid pressure at the base of the advancing glacier. Computational modelling provides an assessment of the role of fractures in modifying the pore pressure generation within the entire rock mass.

  5. Thermo-hydro-mechanical processes in fractured rock formations during glacial advance

    NASA Astrophysics Data System (ADS)

    Selvadurai, A. P. S.; Suvorov, A. P.; Selvadurai, P. A.

    2014-11-01

    The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach that takes into account thermo-poroelasticity of the intact geological formation and the presence of a system of sessile but hydraulically interacting fractures (fracture zones). The modeling considers coupled thermo-hydro-mechanical effects in both the intact rock and the fracture zones due to contact normal stresses and fluid pressure at the base of the advancing glacier. Computational modelling provides an assessment of the role of fractures that can modify the pore pressure generation within the entire rock mass.

  6. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  7. Mechanical behavior and fracture characteristics of off-axis fiber composites. 2: Theory and comparisons

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    The mechanical behavior and stresses inducing fracture modes of unidirectional high-modulus graphite-fiber/epoxy composites subjected to off-axis tensile loads were investigated theoretically. The investigation included the use of composite mechanics, combined-stress failure criteria, and finite-element stress analysis. The results are compared with experimental data and led to the formulation of criteria and convenient plotting procedures for identifying, characterizing, and quantifying these fracture modes.

  8. Fracture Mechanics Analyses of the Slip-Side Joggle Regions of Wing-Leading-Edge Panels

    NASA Technical Reports Server (NTRS)

    Raju, Ivatury S.; Knight, Norman F., Jr.; Song, Kyongchan; Phillips, Dawn R.

    2011-01-01

    The Space Shuttle wing-leading edge consists of panels that are made of reinforced carbon-carbon. Coating spallation was observed near the slip-side region of the panels that experience extreme heating. To understand this phenomenon, a root-cause investigation was conducted. As part of that investigation, fracture mechanics analyses of the slip-side joggle regions of the hot panels were conducted. This paper presents an overview of the fracture mechanics analyses.

  9. Integrity of the osteocyte bone cell network in osteoporotic fracture: Implications for mechanical load adaptation

    NASA Astrophysics Data System (ADS)

    Kuliwaba, J. S.; Truong, L.; Codrington, J. D.; Fazzalari, N. L.

    2010-06-01

    The human skeleton has the ability to modify its material composition and structure to accommodate loads through adaptive modelling and remodelling. The osteocyte cell network is now considered to be central to the regulation of skeletal homeostasis; however, very little is known of the integrity of the osteocyte cell network in osteoporotic fragility fracture. This study was designed to characterise osteocyte morphology, the extent of osteocyte cell apoptosis and expression of sclerostin protein (a negative regulator of bone formation) in trabecular bone from the intertrochanteric region of the proximal femur, for postmenopausal women with fragility hip fracture compared to age-matched women who had not sustained fragility fracture. Osteocyte morphology (osteocyte, empty lacunar, and total lacunar densities) and the degree of osteocyte apoptosis (percent caspase-3 positive osteocyte lacunae) were similar between the fracture patients and non-fracture women. The fragility hip fracture patients had a lower proportion of sclerostin-positive osteocyte lacunae in comparison to sclerostin-negative osteocyte lacunae, in contrast to similar percent sclerostin-positive/sclerostin-negative lacunae for non-fracture women. The unexpected finding of decreased sclerostin expression in trabecular bone osteocytes from fracture cases may be indicative of elevated bone turnover and under-mineralisation, characteristic of postmenopausal osteoporosis. Further, altered osteocytic expression of sclerostin may be involved in the mechano-responsiveness of bone. Optimal function of the osteocyte cell network is likely to be a critical determinant of bone strength, acting via mechanical load adaptation, and thus contributing to osteoporotic fracture risk.

  10. Relationships between fracture patterns, geodynamics and mechanical stratigraphy in Carbonates (South-East Basin, France)

    NASA Astrophysics Data System (ADS)

    Lamarche, Juliette; Lavenu, Arthur P. C.; Gauthier, Bertrand D. M.; Guglielmi, Yves; Jayet, Océane

    2012-12-01

    This study aims at improving the understanding of fracture genesis in layered carbonate sedimentary sequences, focusing on field analysis of Jurassic to Maastrichtian age carbonates of Provence (France). Fracture patterns of 9 outcrops were characterized in 3D: 6 of Urgonian, 1 of Tithonian and 2 of Campanian-Late Maastrichtian ages. Seven sites are located in relatively weakly deformed areas away from larges fault and fold zones where strain partitioning and stress localization effects may take place. Two sites are located in fold flanks for the purpose of relative dating and for comparison with the sites in the weakly deformed areas. Patterns and detailed fracture attributes were compared to host rock sedimentary facies, porosity and P-wave velocities. Fracture chronology was determined with cross-cutting relationships and compared to burial/uplift history reconstructed from subsidence curves and from a regional structural analysis. Our results show that fractures are clustered in two perpendicular joint sets whatever the host rock age. We observe an average spacing of 20 cm and no control of strike, age, facies, or bed thickness on fracture size. There is no mechanical stratigraphy. The fracture sequence compared to subsidence curves indicates that fractures occurred before tectonic inversion, during early and rapid burial, whatever the host rock age and facies. The abundance of burial stylolites does not correlate with maximum burial depth but with fracture frequency, host rock porosity and P-wave velocity. We conclude that the studied carbonates had early brittle properties controlled by their geographic position rather than by depositional facies types and undergone early diagenesis. The porosity loss/gain and the mechanical differentiation in carbonates of Provence could have been acquired during very early burial and diagenesis and have preserved through time. This study also demonstrates that regional fracturing is not necessarily driven by large scale

  11. Variations in Fracturing Mechanisms Observed by Broadband Microseismic Monitoring of Hydraulic Treatment

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Niu, F.; Chen, H.; Zuo, Q.

    2015-12-01

    Hydraulic fracturing is the key stimulation technology to improve unconventional hydrocarbon recovery nowadays. Stimulation increases permeability of tight formations by causing fractures at depth. It involves pumping high-pressure fluid into reservoir rocks to force the opening of cracks, which could allow oil and gas to flow freely. The progress of a fracturing operation must be monitored carefully as fracturing could activate existing faults, leading the fluid mixed with chemicals to propagate beyond the targeted treatment zone. In order to study dynamic processes involved in hydraulic fracturing, we deployed a small-scale seismic array consisting of 22 broadband seismographs at the surface above a hydraulic fracturing area to monitor the whole fracturing progress. We made continuous recording for 20 days, and detected a total of 961 microseismic events with relatively high signal-to-noise ratio (SNR) recordings. We found that these events occurred either during the fracturing operation or after the fluid pumping. Some of the events also do not seem to be directly induced by the pumping, based on their locations and sizes. We determined the focal mechanisms of all events using the P-wave polarity data, and found that both the microseismicity and their focal mechanisms exhibit significant spatial and temporal variations. This variability can be associated with the hydraulic treatment, pre-existing faults, as well as the evolving stress field during the treatment. We computed the Coulomb stress changes of the observed seismicity to seek its contribution to the observed seismic variability.

  12. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures

    NASA Astrophysics Data System (ADS)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Ding, Zhiwei; Jiang, Jin-Wu; Zhang, Yong-Wei

    2015-10-01

    Phosphorene, a new two-dimensional (2D) material beyond graphene, has attracted great attention in recent years due to its superior physical and electrical properties. However, compared to graphene and other 2D materials, phosphorene has a relatively low Young’s modulus and fracture strength, which may limit its applications due to possible structure failures. For the mechanical reliability of future phosphorene-based nanodevices, it is necessary to have a deep understanding of the mechanical properties and fracture behaviors of phosphorene. Previous studies on the mechanical properties of phosphorene were based on first principles calculations at 0 K. In this work, we employ molecular dynamics simulations to explore the mechanical properties and fracture behaviors of phosphorene at finite temperatures. It is found that temperature has a significant effect on the mechanical properties of phosphorene. The fracture strength and strain reduce by more than 65% when the temperature increases from 0 K to 450 K. Moreover, the fracture strength and strain in the zigzag direction is more sensitive to the temperature rise than that in the armchair direction. More interestingly, the failure crack propagates preferably along the groove in the puckered structure when uniaxial tension is applied in the armchair direction. In contrast, when the uniaxial tension is applied in the zigzag direction, multiple cracks are observed with rough fracture surfaces. Our present work provides useful information about the mechanical properties and failure behaviors of phosphorene at finite temperatures.

  13. A Fracture-Mechanical Model of Crack Growth and Interaction: Application to Pre-eruptive Seismicity

    NASA Astrophysics Data System (ADS)

    Matthews, C.; Sammonds, P.; Kilburn, C.

    2007-12-01

    A greater understanding of the physical processes occurring within a volcano is a key aspect in the success of eruption forecasting. By considering the role of fracture growth, interaction and coalescence in the formation of dykes and conduits as well as the source mechanism for observed seismicity we can create a more general, more applicable model for precursory seismicity. The frequency of volcano-tectonic earthquakes, created by fracturing of volcanic rock, often shows a short-term increase prior to eruption. Using fracture mechanics, the model presented here aims to determine the conditions necessary for the acceleration in fracture events which produces the observed pre-eruptive seismicity. By focusing on the cause of seismic events rather than simply the acceleration patterns observed, the model also highlights the distinction between an accelerating seismic sequence ending with an eruption and a short-term increase which returns to background levels with no activity occurring, an event also observed in the field and an important capability if false alarms are to be avoided. This 1-D model explores the effects of a surrounding stress field and the distribution of multi-scale cracks on the interaction and coalescence of these cracks to form an open pathway for magma ascent. Similarly to seismic observations in the field, and acoustic emissions data from the laboratory, exponential and hyperbolic accelerations in fracturing events are recorded. Crack distribution and inter-crack distance appears to be a significant controlling factor on the evolution of the fracture network, dominating over the effects of a remote stress field. The generality of the model and its basis on fundamental fracture mechanics results makes it applicable to studies of fracture networks in numerous situations. For example looking at the differences between high temperature fracture processes and purely brittle failure the model can be similarly applied to fracture dynamics in the

  14. Molecular mechanisms of osteoporotic hip fractures in elderly women.

    PubMed

    Föger-Samwald, Ursula; Vekszler, György; Hörz-Schuch, Edith; Salem, Sylvia; Wipperich, Markus; Ritschl, Peter; Mousavi, Mehdi; Pietschmann, Peter

    2016-01-01

    A common manifestation of age-related bone loss and resultant osteoporosis are fractures of the hip. Age-related osteoporosis is thought to be determined by a number of intrinsic factors including genetics, hormonal changes, changes in levels of oxidative stress, or an inflammatory status associated with the aging process. The aim of this study was to investigate gene expression and bone architecture in bone samples derived from elderly osteoporotic women with hip fractures (OP) in comparison to bone samples from age matched women with osteoarthritis of the hip (OA). Femoral heads and adjacent neck tissue were collected from 10 women with low-trauma hip fractures (mean age 83±6) and consecutive surgical hip replacement. Ten bone samples from patients undergoing hip replacement due to osteoarthritis (mean age 80±5) served as controls. One half of each bone sample was subjected to gene expression analysis. The second half of each bone sample was analyzed by microcomputed tomography. From each half, samples from four different regions, the central and subcortical region of the femoral head and neck, were analyzed. We could show a significantly decreased expression of the osteoblast related genes RUNX2, Osterix, Sclerostin, WNT10B, and Osteocalcin, a significantly increased ratio of RANKL to Osteoprotegerin, and a significantly increased expression of the enzymes superoxide dismutase 2 (SOD2) and glutathione peroxidase GPX3, and of the inflammatory cytokine IL6 in bone samples from hip fracture patients compared to controls. Major microstructural changes in OP bone were seen in the neck and were characterized by a significant decrease of bone volume, trabecular number, and connectivity density and a significant increase of trabecular separation. In conclusion, our data give evidence for a decreased expression of osteoblast related genes and increased expression of osteoclast related genes. Furthermore, increased expression of SOD2 and GPX3 suggest increased

  15. Correlating laboratory observations of fracture mechanical properties to hydraulically-induced microseismicity in geothermal reservoirs.

    SciTech Connect

    Stephen L. Karner, Ph.D

    2006-02-01

    To date, microseismicity has provided an invaluable tool for delineating the fracture network produced by hydraulic stimulation of geothermal reservoirs. While the locations of microseismic events are of fundamental importance, there is a wealth of information that can be gleaned from the induced seismicity (e.g. fault plane solutions, seismic moment tensors, source characteristics). Closer scrutiny of the spatial and temporal evolution of seismic moment tensors can shed light on systematic characteristics of fractures in the geothermal reservoir. When related to observations from laboratory experiments, these systematic trends can be interpreted in terms of mechanical processes that most likely operate in the fracture network. This paper reports on mechanical properties that can be inferred from observations of microseismicity in geothermal systems. These properties lead to interpretations about fracture initiation, seismicity induced after hydraulic shut-in, spatial evolution of linked fractures, and temporal evolution of fracture strength. The correlations highlight the fact that a combination of temperature, stressing rate, time, and fluid-rock interactions can alter the mechanical and fluid transport properties of fractures in geothermal systems.

  16. On the mechanical interaction between a fluid-filled fracture and the earth's surface

    USGS Publications Warehouse

    Pollard, D.D.; Holzhausen, G.

    1979-01-01

    The mechanical interaction between a fluid-filled fracture (e.g., hydraulic fracture joint, or igneous dike) and the earth's surface is analyzed using a two-dimensional elastic solution for a slit of arbitrary inclination buried beneath a horizontal free surface and subjected to an arbitrary pressure distribution. The solution is obtained by iteratively superimposing two fundamental sets of analytical solutions. For uniform internal pressure the slit behaves essentially as if it were in an infinite region if the depth-to-center is three times greater than the half-length. For shallower slits interaction with the free surface is pronounced: stresses and displacements near the slit differ by more than 10% from values for the deeply buried slit. The following changes are noted as the depth-to-center decreases: 1. (1) the mode I stress intensity factor increases for both ends of the slit, but more rapidly at the upper end; 2. (2) the mode II stress-intensity factor is significantly different from zero (except for vertical slits) suggesting propagation out of the original plane of the slit; 3. (3) displacements of the slit wall are asymmetric such that the slit gaps open more widely near the upper end. Similar changes are noted if fluid density creates a linear pressure gradient that is smaller than the lithostatic gradient. Under such conditions natural fractures should propagate preferentially upward toward the earth's surface requiring less pressure as they grow in length. If deformation near the surface is of interest, the model should account explicitly for the free surface. Stresses and displacements at the free surface are not approximated very well by values calculated along a line in an infinite region, even when the slit is far from the line. As depth-to-center of a shallow pressurized slit decreases, the following changes are noted: 1. (1) displacements of the free surface increase to the same order of magnitude as the displacements of the slit walls, 2. (2

  17. Micro-mechanical analysis of damage growth and fracture in discontinuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Goree, James G.; Richardson, David E.

    1991-01-01

    An experimental verification is presented for a new two parameter fracture model based on the equivalent remote biaxial stresses (ERBS). A detailed comparison is made between the new theory and the constant K(sub IC) approach of linear elastic fracture mechanics (LEFM). Fracture is predicted through a failure curve representing the change in a variable fracture toughness K(sub IC) with the ERBS ratio B(sub E). The nonsingular term (T) in the series expansion of the near crack-tip transverse stress is included in the model. Experimental results for polymethyl methacrylate (PPMA) show that the theory can account for the effects of geometry on fracture toughness as well as indicate the initiation of crack branching. It is shown that the new criterion predicts failure for PMMA with a 95 percent confidence zone which is nearly three times smaller than that of the LEFM K(sub IC) approach.

  18. The effect of nonsetting calcium hydroxide on root fracture and mechanical properties of radicular dentine: a systematic review.

    PubMed

    Yassen, G H; Platt, J A

    2013-02-01

    The aim of this review was to identify and analyse all studies related to the effect of nonsetting calcium hydroxide [Ca(OH)(2)] on root fracture and various mechanical properties of radicular dentine. A PubMed search was conducted using the keywords 'calcium hydroxide' and 'dentistry' combined with MeSH terms 'tooth fractures' or 'mechanical phenomena' or 'compressive strength'. The search was expanded by including Embase and Web of Science databases, using the keywords 'calcium hydroxide' and 'root' and 'fracture'. The search was supplemented by checking the reference lists from each selected article. Each study had to meet the following criteria to be selected for review: (i) Inclusion of at least one experimental group with root or radicular dentine either filled with or exposed to nonsetting Ca(OH)(2); (ii) inclusion of at least one appropriate control group; and (iii) a minimum of five samples per experimental group. Only articles written in English were included. Of the 16 studies selected initially, 12 in vitro studies fulfilled the selection criteria for inclusion in the final review. No clinical studies that directly supported the correlation between Ca(OH)(2) intracanal dressing and root fracture were found in the literature. However, the majority of in vitro studies showed reduction in the mechanical properties of radicular dentine after exposure to Ca(OH)(2) for 5 weeks or longer. Conversely, the data were inconclusive regarding whether Ca(OH)(2) exposure for 1 month or less had a negative effect on the mechanical properties of radicular dentine. PMID:22970899

  19. Radiology of Fractures in Intoxicated Emergency Department Patients: Locations, Mechanisms, Presentation, and Initial Interpretation Accuracy

    PubMed Central

    Morita, Yuka; Nozaki, Taiki; Starkey, Jay; Okajima, Yuka; Ohde, Sachiko; Matsusako, Masaki; Yoshioka, Hiroshi; Saida, Yukihisa; Kurihara, Yasuyuki

    2015-01-01

    Abstract The purpose of this study was to investigate the relationship of alcohol intoxication to time-to-presentation following injury, fracture type, mechanism of injury leading to fracture, and initial diagnostic radiology interpretation performance of emergency physicians versus diagnostic radiologists in patients who present to the emergency department (ED) and are subsequently diagnosed with fracture. Medical records of 1286 patients who presented to the ED and were diagnosed with fracture who also underwent plain film or computed tomography (CT) imaging were retrospectively reviewed. The subjects were divided into intoxicated and sober groups. Patient characteristics, injury-to-presentation time, fracture location, and discrepancies between initial clinical and radiological evaluations were compared. Of 1286 subjects, 181 patients were included in the intoxicated group. Only intoxicated patients presented with head/neck fractures more than 24 hours after injury. The intoxicated group showed a higher rate of head/neck fractures (skull 23.2% vs 5.8%, face and orbit 30.4% vs 9.5%; P < 0.001) and a lower rate of extremity injuries. The rate of nondiagnosis of fractures by emergency physicians later identified by radiologists was the same in both groups (7.7% vs 7.7%, P = 0.984). While the same proportion of intoxicated patients presented more than 24 hours following injury, only intoxicated patients presented with craniofacial and cervical spinal fractures during this period. Alcohol-related injuries are more often associated with head/neck fractures but less extremity injuries. The rate of fractures missed by emergency physicians but later diagnosed by radiologists was the same in intoxicated and sober patients.

  20. FEM analysis of deformation localization mechanisms in a 3-D fractured medium under rotating compressive stress orientations

    NASA Astrophysics Data System (ADS)

    Strijker, Geertje; Beekman, Fred; Bertotti, Giovanni; Luthi, Stefan M.

    2013-05-01

    Stress distributions and deformation patterns in a medium with a pre-existing fracture set are analyzed as a function of the remote compressive stress orientation (σH) using finite element models with increasingly complex fracture configurations. Slip along the fractures causes deformation localization at the tips as wing cracks or shear zones. The deformation intensity is proportional to the amount of slip, attaining a peak value for α = 45° (α: angle between the fracture strike and σH) and slip is linearly proportional with fracture length. Wing cracks develop for high deformation intensities for 30° < α < 60°, whereas primary plastic shear zones develop for low deformation intensities. Additionally, two types of secondary shear zones develop for α < 30° and α > 60°, with constant angles of 135° and - 60° with σH, respectively. Mechanical interaction between fractures in a fracture zone, quantified as change in slip compared to an isolated fracture, decreases with increasing fracture separation. Fracture underlap elongates the fracture length and therefore increases the amount of slip, while fracture overlap exhibits the opposite effect. Fracture slip decreases with an increasing amount of directly adjacent fractures. Mechanical interaction becomes negligible for fracture configurations with spacing-to-length and spacing-to-overlap ratios exceeding 0.5 and that in this case fractures are decoupled. Independent of the pre-existing fracture configuration, the development of a secondary systematic fracture set driven by a remote stress rotation is dominated by σH; development of wing cracks or shear zones is restricted to the fracture tips. Blocks with tapered geometries are present in models with a variable fracture strike, where the maximum principal stress (σ1, applying the geological convention that compressive stresses are positive) trajectories consistently deviate from σH; the presence of two systematic σ1 trajectory orientations suggests

  1. E. coli RS2GFP Retention Mechanisms in Laboratory-Scale Fractured Rocks: A Statistical Model

    NASA Astrophysics Data System (ADS)

    Rodrigues, S. N.; Qu, J.; Dickson, S. E.

    2011-12-01

    With billions of gallons of groundwater being withdrawn every day in the US and Canada, it is imperative to understand the mechanisms which jeopardize this resource and the health of those who rely on it. Porous media aquifers have typically been considered to provide significant filtration of particulate matter (e.g. microorganisms), while the fractures in fractured rock aquifers and aquitards are considered to act as contaminant highways allowing a large fraction of pathogens to travel deep into an aquifer relatively quickly. Recent research results indicate that fractured rocks filter out more particulates than typically believed. The goal of the research presented here is to quantify the number of E. coli RS2GFP retained in a single, saturated, laboratory-scale fracture, and to relate the retention of E. coli RS2GFP to the aperture field characteristics and groundwater flow rate. To achieve this goal, physical experiments were conducted at the laboratory-scale to quantify the retention of E. coli RS2GFP through several single, saturated, dolomitic limestone fractures under a range of flow rates. These fractures were also cast with a transparent epoxy in order to visualize the transport mechanisms in the various different aperture fields. The E. coli RS2GFP is tagged with a green-fluorescent protein (GFP) that is used to obtain visualization data when excited by ultraviolet light. A series of experiments was conducted, each of which involved the release of a known number of E. coli RS2GFP at the upstream end of the fracture and measuring the effluent concentration profile. These experiments were conducted using both the natural rock and transparent cast of several different aperture fields, under a range of flow rates. The effects of different aperture field characteristics and flow rates on the retention of E. coli RS2GFP will be determined by conducting a statistical analysis of the retention data under different experimental conditions. The images captured

  2. Mechanical properties and fracture toughness of rail steels and thermite welds at low temperature

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-qing; Zhou, Hui; Shi, Yong-jiu; Feng, Bao-rui

    2012-05-01

    Brittle fracture occurs frequently in rails and thermite welded joints, which intimidates the security and reliability of railway service. Railways in cold regions, such as Qinghai-Tibet Railway, make the problem of brittle fracture in rails even worse. A series of tests such as uniaxial tensile tests, Charpy impact tests, and three-point bending tests were carried out at low temperature to investigate the mechanical properties and fracture toughness of U71Mn and U75V rail steels and their thermite welds. Fracture micromechanisms were analyzed by scanning electron microscopy (SEM) on the fracture surfaces of the tested specimens. The ductility indices (percentage elongation after fracture and percentage reduction of area) and the toughness indices (Charpy impact energy A k and plane-strain fracture toughness K IC) of the two kinds of rail steels and the corresponding thermite welds all decrease as the temperature decreases. The thermite welds are more critical to fracture than the rail steel base metals, as indicated by a higher yield-to-ultimate ratio and a much lower Charpy impact energy. U71Mn rail steel is relatively higher in toughness than U75V, as demonstrated by larger A k and K IC values. Therefore, U71Mn rail steel and the corresponding thermite weld are recommended in railway construction and maintenance in cold regions.

  3. Mechanisms of orbital floor fractures: a clinical, experimental, and theoretical study.

    PubMed Central

    Bullock, J D; Warwar, R E; Ballal, D R; Ballal, R D

    1999-01-01

    PURPOSE: The purpose of this study was to investigate the two accepted mechanisms of the orbital blow-out fracture (the hydraulic and the buckling theories) from a clinical, experimental, and theoretical standpoint. METHODS: Clinical cases in which blow-out fractures resulted from both a pure hydraulic mechanism and a pure buckling mechanism are presented. Twenty-one intact orbital floors were obtained from human cadavers. A metal rod was dropped, experimentally, onto each specimen until a fracture was produced, and the energy required in each instance was calculated. A biomathematical model of the human bony orbit, depicted as a thin-walled truncated conical shell, was devised. Two previously published (by the National Aeronautics Space Administration) theoretical structural engineering formulas for the fracture of thin-walled truncated conical shells were used to predict the energy required to fracture the bone of the orbital floor via the hydraulic and buckling mechanisms. RESULTS: Experimentally, the mean energy required to fracture the bone of the human cadaver orbital floor directly was 78 millijoules (mj) (range, 29-127 mj). Using the engineering formula for the hydraulic theory, the predicted theoretical energy is 71 mj (range, 38-120 mj); for the buckling theory, the predicted theoretical energy is 68 mj (range, 40-106 mj). CONCLUSION: Through this study, we have experimentally determined the amount of energy required to fracture the bone of the human orbital floor directly and have provided support for each mechanism of the orbital blow-out fracture from a clinical and theoretical basis. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5A FIGURE 5B FIGURE 5E FIGURE 5F PMID:10703119

  4. Investigation of the fracture mechanics of boride composites

    NASA Technical Reports Server (NTRS)

    Kaufman, L.; Clougherty, E. V.; Nesor, H.

    1971-01-01

    Fracture energies of WC-6Co, Boride 5 (ZrB2+SiC), Boride 8(ZrB2+SiC+C) and Boride 8-M2(ZrB2+SiC+C) were measured by slow bend and impact tests of notched charpy bars. Cobalt bonded tungsten carbide exhibited impact energies of 0.76 ft-lb or 73.9 in-lb/square inch. Boride 5 and the Boride 8 exhibit impact energies one third and one quarter of that observed for WC-6Co comparing favorably with measurements for SiC and Si3N4. Slow bend-notched bar-fracture energies for WC-6Co were near 2.6 in-lb/square inch or 1/20 the impact energies. Slow bend energies for Boride 8-M2, Boride 8 and Boride 5 were 58%, 42% and 25% of the value observed for WC-6Co. Fractograph showed differences for WC-6Co where slow bend testing resulted in smooth transgranular cleavage while samples broken by impact exhibited intergranular failures. By contrast the boride fractures showed no distinction based on testing method. Fabrication studies were conducted to effect alteration of the boride composites by alloying and introduction of graphite cloth.

  5. Evolution of Stiffness and Permeability in Fractures Subject to - and Mechanically-Activated Dissolution

    NASA Astrophysics Data System (ADS)

    Faoro, I.; Elsworth, D.; Candela, T.

    2013-12-01

    Strong feedbacks link thermal gradients (T), hydrologic flow (H), chemical alteration (C) and mechanical deformation (M) in fractured rock. These processes are strongly interconnected since one process effects the initiation and progress of another. Dissolution and precipitation of minerals are affected by temperature and stress, and can result in significant changes in permeability and solute transport characteristics. Understanding these couplings is important for oil, gas, and geothermal reservoir engineering and for waste disposal in underground repositories and reservoirs. In order to experimentally investigate the interactions between THCM processes in a natural stressed fracture, we report on heated ( up to 150C) flow-through experiments on fractured core samples of Westerly granite. These experiments are performed to examine the influence of thermally and mechanically activated dissolution on the mechanical (stress/strain) and transport (permeability) characteristics of fractures. The evolutions of both the permeability and stiffness of the sample are recorded as the experimental thermal conditions change and chemical alteration progresses. Furthermore efflux of dissolved mineral mass is measured periodically to provide a record of the net mass removal, to correlate this with observed changes in fracture aperture, defined by the flow test. During the experiments the fracture shows high hydraulic sensitivity to the changing conditions of stress and temperature. Significant variation of the effluent fluid chemistry is observed. We argue that the formation of clay (Kaolinite) is the main mechanism responsible for the permanent change in permeability recorded at higher confining stresses (40 MPa).

  6. A revisit to high-rate mode-II fracture characterization of composites with Kolsky bar techniques.

    SciTech Connect

    Lu, Wei-Yang; Song, Bo; Jin, Huiqing

    2010-03-01

    Nowadays composite materials have been extensively utilized in many military and industrial applications. For example, the newest Boeing 787 uses 50% composite (mostly carbon fiber reinforced plastic) in production. However, the weak delamination strength of fiber reinforced composites, when subjected to external impact such as ballistic impact, has been always potential serious threats to the safety of passengers. Dynamic fracture toughness is a critical indicator of the performance from delamination in such impact events. Quasi-static experimental techniques for fracture toughness have been well developed. For example, end notched flexure (ENF) technique, which is illustrated in Fig. 1, has become a typical method to determined mode-II fracture toughness for composites under quasi-static loading conditions. However, dynamic fracture characterization of composites has been challenging. This has resulted in conflictive and confusing conclusions in regard to strain rate effects on fracture toughness of composites.

  7. The fracture mechanics of human bone: influence of disease and treatment.

    PubMed

    Zimmermann, Elizabeth A; Busse, Björn; Ritchie, Robert O

    2015-01-01

    Aging and bone diseases are associated with increased fracture risk. It is therefore pertinent to seek an understanding of the origins of such disease-related deterioration in bone's mechanical properties. The mechanical integrity of bone derives from its hierarchical structure, which in healthy tissue is able to resist complex physiological loading patterns and tolerate damage. Indeed, the mechanisms through which bone derives its mechanical properties make fracture mechanics an ideal framework to study bone's mechanical resistance, where crack-growth resistance curves give a measure of the intrinsic resistance to the initiation of cracks and the extrinsic resistance to the growth of cracks. Recent research on healthy cortical bone has demonstrated how this hierarchical structure can develop intrinsic toughness at the collagen fibril scale mainly through sliding and sacrificial bonding mechanisms that promote plasticity. Furthermore, the bone-matrix structure develops extrinsic toughness at much larger micrometer length-scales, where the structural features are large enough to resist crack growth through crack-tip shielding mechanisms. Although healthy bone tissue can generally resist physiological loading environments, certain conditions such as aging and disease can significantly increase fracture risk. In simple terms, the reduced mechanical integrity originates from alterations to the hierarchical structure. Here, we review how human cortical bone resists fracture in healthy bone and how changes to the bone structure due to aging, osteoporosis, vitamin D deficiency and Paget's disease can affect the mechanical integrity of bone tissue. PMID:26380080

  8. Mechanical behavior and essential work of fracture of starch-based blown films

    NASA Astrophysics Data System (ADS)

    Nottez, M.; Chaki, S.; Soulestin, J.; Lacrampe, M. F.; Krawczak, P.

    2015-05-01

    A fracture mechanics approach (Essential Work of Fracture, EWF) was applied to assess the toughness of novel partly starch-grafted polyolefin blown films, compared to that of a neat polyethylene reference. Tests were performed on double-end notched samples. The digital image correlation method was used to monitor the deformation field around the notch. Regular tensile and tear tests were also carried out. The specific essential work of fracture is a characteristic which is much more sensitive to materials structural modifications than the tensile or tear properties.

  9. Insights into the fracture mechanisms and strength of amorphous and nanocomposite carbon.

    PubMed

    Fyta, M G; Remediakis, I N; Kelires, P C; Papaconstantopoulos, D A

    2006-05-12

    Tight-binding molecular dynamics simulations shed light into the fracture mechanisms and the ideal strength of tetrahedral amorphous carbon and of nanocomposite carbon containing diamond crystallites, two of the hardest materials. It is found that fracture in the nanocomposites, under tensile or shear load, occurs intergrain and so their ideal strength is similar to the pure amorphous phase. The onset of fracture takes place at weakly bonded sites in the amorphous matrix. On the other hand, the nanodiamond inclusions significantly enhance the elastic moduli, which approach those of diamond. PMID:16712372

  10. Assessment of strength-limiting flaws in ceramic heat exchanger components INEL support: Fracture mechanics and nondestructive evaluation technology. Final report, June 1, 1986--May 31, 1993

    SciTech Connect

    Lloyd, W.R.; Reuter, W.G.

    1993-06-01

    An examination of a siliconized SiC material, CS101K, has been performed to determine if linear fracture mechanics concepts can be used to characterize and predict the behavior of this material. Phase II of this project showed that a value that appeared to represent the true fracture toughness could be measured using small specimens with a machined notch, if the notch root radius was less than 75 {mu}m. Methods to produce sharply cracked specimens were then investigated to verify this hypothesis. A new technique, called the {open_quotes}beam support{close_quotes} precracking method, was subsequently developed and used to make sharply cracked SE(B) specimens. Tests of these specimens showed a slightly rising R-curve-type of behavior, with elevated values of plane strain fracture toughness. Interference of the crack surfaces in the precrack wake was hypothesized as the most likely cause of these phenomena. Subsequent testing with various precrack lengths provided preliminary verification of the hypothesis. Test results show that, for fracture mechanics-based design and assessment, adequate values of fracture toughness can be obtained from EDM-notched specimens, instead of the more costly precracked specimens. These results imply that, for the Si-SiC material tested, caution is warranted when using any of the methods of assessing fracture toughness that use a sharp precrack. It is also reasoned that these results may generally be more applicable to the coarser-grained structural ceramics that exhibit a rougher fracture surface. Based on results of testing EDM-notched bend specimens in 1250{degrees}C air, no degradation of material properties were observed for exposures, under applied stress, up to 900 h. Instead, some increase in fracture toughness was measured for these conditions. These same tests indicated that the threshold stress intensity factor for stress corrosion cracking (static fatigue) in the hot air environment was the same as the fracture toughness.

  11. The sustentaculum tali screw fixation for the treatment of Sanders type II calcaneal fracture: A finite element analysis

    PubMed Central

    Pang, Qing-Jiang; Yu, Xiao; Guo, Zong-Hui

    2014-01-01

    Objective: In the surgery of calcaneal fracture, whether the sustentaculum tali screw should always be placed is widely controversial. The aim of this study was to explore the necessity and function of the sustentaculum tali screw placement for the treatment of Sanders type II calcaneal fracture. Methods: The finite element analysis was used in this study. After the establishment of the finite element model of Sanders type II calcaneal fracture, the two internal fixation simulations were designed. In one model, the AO calcaneal plate was simulated on the lateral side of the calcanues with 7 screws being fixated at different position of the plate. In the other model, the calcaneus was fixated with the same AO calcaneal plate together with an additional screw being infiltrated into the sustentaculum tali. The two models were simulated under the same loading and the displacement of the fracture line and the stress distribution in the two models were calculated respectively. Results: The maximum principal stress focused on the cortical bone of sustentaculum tali in both the models under the same loading. The displacement of the fracture line, the maximum principal stress of calcaneus and internal fixation system in the model with sustentaculum screw fixation were smaller than that in the model without sustentaculum screw fixation. The stress in the model with sustentaculum screw fixation was more dispersed. Conclusions: The placement of sustentaculum tali screw is essential for fixation of type II calcaneal fracture to achieve the biomechanical stability. PMID:25225534

  12. A new mechanism of injury for scaphoid fractures: 'test your strength' punch-bag machines.

    PubMed

    Sutton, P A; Clifford, O; Davis, T R C

    2010-06-01

    We investigated the mechanism of injury in a consecutive series of 153 confirmed scaphoid fractures. We found that ten (6%) occurred as a result of using a 'test your strength' punch-bag machine, a device found in public houses and amusement arcades. Clinicians should be aware that scaphoid fractures can occur as a result of punching these machines or other similar objects. PMID:20100710

  13. Development and fracture mechanics data for 6Al-6V-2 Sn titanium alloy

    NASA Technical Reports Server (NTRS)

    Fiftal, C. F.; Beck, E. J.

    1974-01-01

    Fracture mechanics properties of 6Al-6V-2Sn titanium in the annealed, solution-treated, and aged condition are presented. Tensile, fracture toughness, cyclic flaw growth, and sustained-load threshold tests were conducted. Both surface flaw and compact tension-specimen geometries were employed. Temperatures and/or environments used were -65 F (220 K) air, ambient, 300 F (422 K) air, and room-temperature air containing 10 and 100% relative humidity.

  14. Association of microstructural and mechanical properties of cancellous bone and their fracture risk assessment tool scores

    PubMed Central

    Wu, Dengke; Li, Xin; Tao, Cheng; Dai, Ruchun; Ni, Jiangdong; Liao, Eryuan

    2015-01-01

    This study is to investigate the association between fracture probabilities determined by using the fracture risk assessment tool (FRAX) and the microstructure and mechanical properties of femoral bone trabecula in osteoporosis (OP) and osteoarthritis (OA) patients with hip replacements. By using FRAX, we evaluated fracture risks of the 102 patients with bone replacements. Using micro CT scanning, we obtained the analysis parameters of microstructural properties of cancellous bone. Through morphometric observations, fatigue tests and compression tests, we obtained parameters of mechanical properties of cancellous bones. Relevant Pearson analysis was performed to investigate the association between the fracture probability and the microstructure and mechanical properties of femoral bone trabecula in patients. Fifteen risk factors in FRAX were compared between OP and OA patients. FRAX hip fracture risk score and major osteoporotic in OP and OA patients were significantly different. FRAX was associated with tissue bone mineral density and volumetric bone mineral density. Our study suggests that the probabilities of major osteoporotic and hip fracture using FRAX is associated with bone mass but not with micro bone quality. PMID:26064297

  15. Association of microstructural and mechanical properties of cancellous bone and their fracture risk assessment tool scores.

    PubMed

    Wu, Dengke; Li, Xin; Tao, Cheng; Dai, Ruchun; Ni, Jiangdong; Liao, Eryuan

    2015-01-01

    This study is to investigate the association between fracture probabilities determined by using the fracture risk assessment tool (FRAX) and the microstructure and mechanical properties of femoral bone trabecula in osteoporosis (OP) and osteoarthritis (OA) patients with hip replacements. By using FRAX, we evaluated fracture risks of the 102 patients with bone replacements. Using micro CT scanning, we obtained the analysis parameters of microstructural properties of cancellous bone. Through morphometric observations, fatigue tests and compression tests, we obtained parameters of mechanical properties of cancellous bones. Relevant Pearson analysis was performed to investigate the association between the fracture probability and the microstructure and mechanical properties of femoral bone trabecula in patients. Fifteen risk factors in FRAX were compared between OP and OA patients. FRAX hip fracture risk score and major osteoporotic in OP and OA patients were significantly different. FRAX was associated with tissue bone mineral density and volumetric bone mineral density. Our study suggests that the probabilities of major osteoporotic and hip fracture using FRAX is associated with bone mass but not with micro bone quality. PMID:26064297

  16. A Mixed-Mode (I-II) Fracture Criterion for AS4/8552 Carbon/Epoxy Composite Laminate

    NASA Astrophysics Data System (ADS)

    Karnati, Sidharth Reddy

    A majority of aerospace structures are subjected to bending and stretching loads that introduce peel and shear stresses between the plies of a composite laminate. These two stress components cause a combination of mode I and II fracture modes in the matrix layer of the composite laminate. The most common failure mode in laminated composites is delamination that affects the structural integrity of composite structures. Damage tolerant designs of structures require two types of materials data: mixed-mode (I-II) delamination fracture toughness that predicts failure and delamination growth rate that predicts the life of the structural component. This research focuses determining mixed-mode (I-II) fracture toughness under a combination of mode I and mode II stress states and then a fracture criterion for AS4/8552 composite laminate, which is widely used in general aviation. The AS4/8552 prepreg was supplied by Hexcel Corporation and autoclave fabricated into a 20-ply unidirectional laminate with an artificial delamination by a Fluorinated Ethylene Propylene (FEP) film at the mid-plane. Standard split beam specimens were prepared and tested in double cantilever beam (DCB) and end notched flexure modes to determine mode I (GIC) and II (GIIC) fracture toughnesses, respectively. The DCB specimens were also tested in a modified mixed-mode bending apparatus at GIIm /GT ratios of 0.18, 0.37, 0.57 and 0.78, where GT is total and GIIm is the mode II component of energy release rates. The measured fracture toughness, GC, was found to follow the locus a power law equation. The equation was validated for the present and literature experimental data.

  17. Updated Fatigue-Crack-Growth And Fracture-Mechanics Software

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Shivakumar, Venkataraman; Newman, James C., Jr.

    1995-01-01

    NASA/FLAGRO 2.0 developed as analytical aid in predicting growth and stability of preexisting flaws and cracks in structural components of aerospace systems. Used for fracture-control analysis of space hardware. Organized into three modules to maximize efficiency in operation. Useful in: (1) crack-instability/crack-growth analysis, (2) processing raw crack-growth data from laboratory tests, and (3) boundary-element analysis to determine stresses and stress-intensity factors. Written in FORTRAN 77 and ANSI C.

  18. Mechanical behavior and fracture characteristics of off-axis fiber composites. 1: Experimental investigation. [at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Sinclair, J. H.; Chamis, C. C.

    1977-01-01

    The mechanical behavior, fracture surfaces, and fracture modes of unidirectional high-modulus graphite-fiber/epoxy composites subjected to off-axis tensile loads were investigated experimentally. The investigation included the generation of stress-strain-to-fracture data and scanning electron microscope studies of the fractured surfaces. The results led to the identification of fracture modes and distinct fracture surface characteristics for off-axis tensile loading. The results also led to the formulation of critical for identifying and characterizing these fracture modes and their associated fracture surfaces. The results presented and discussed herein were used in the theoretical investigation and comparisons described in Part 2. These results should also provide a good foundation for identifying, characterizing, and quantifying fracture modes in both off-axis and angle-plied laminates.

  19. Results of fracture mechanics analyses of the ederer cranes in the device assembly facility using reduced static fracture-toughness values

    SciTech Connect

    Dalder, E. N. C.

    1996-11-01

    The effects of a decreased static fracture-toughness value from that used in the previous fracture-mechanics analyses of the Ederer cranes in the Device Assembly Facility were examined to see what effects, if any, would be exerted on the fatigue crack growth and fracture behavior of the cranes. In particular, the behavior of the same 3 critical locations on the lower flanges of the load beams of the Ederer 5 ton and 4 ton cranes, were examined, with the reduced static fracture-toughness value.

  20. A Mixed-Mode I/II Fracture Criterion and Its Application in Crack Growth Predictions

    NASA Technical Reports Server (NTRS)

    Sutton, Michael A.; Deng, Xiaomin; Ma, Fashang; Newman, James S., Jr.

    1999-01-01

    A crack tip opening displacement (CTOD)-based, mixed mode fracture criterion is developed for predicting the onset and direction of crack growth. The criterion postulates that crack growth occurs in either the Mode I or Mode II direction, depending on whether the maximum in either the opening or the shear component of CTOD, measured at a specified distance behind the crack tip, attains a critical value. For crack growth direction prediction, the proposed CTOD criterion is shown to be equivalent to seven commonly used crack growth criteria under linearly elastic and asymptotic conditions. Under elastic-plastic conditions the CTOD criterion's prediction of the dependence of the crack growth direction on the crack-up mode mixity is in excellent agreement with the Arcan test results. Furthermore, the CTOD criterion correctly predicts the existence of a crack growth transition from mode I to mode II as the mode mixity approaches the mode II loading condition. The proposed CTOD criterion has been implemented in finite element crack growth simulation codes Z1P2DL and FRANC2DL to predict the crack growth paths in (a) a modified Arcan test specimen and fixture made of AL 2024-T34 and (b) a double cantilever beam (DCB) specimen made of AL 7050. A series of crack growth simulations have been carried out for the crack growth tests in the Arcan and DCB specimens and the results further demonstrate the applicability of the mixed mode CTOD fracture criterion crack growth predictions and residual strength analyses for airframe materials.

  1. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading.

    PubMed

    Wang, Gaoqi; Zhang, Song; Bian, Cuirong; Kong, Hui

    2014-11-01

    Few studies have focused on the interface fracture performance of zirconia/veneer bilayered structure, which plays an important role in dental all-ceramic restorations. The purpose of this study was to evaluate the fracture mechanics performance of zirconia/veneer interface in a wide range of mode-mixities (at phase angles ranging from 0° to 90°), and to examine the effect of mechanical properties of the materials and the interface on the fracture initiation and crack path of an interfacial crack. A modified sandwich test configuration with an oblique interfacial crack was proposed and calibrated to choose the appropriate geometry dimensions by means of finite element analysis. The specimens with different interface inclination angles were tested to failure under three-point bending configuration. Interface fracture parameters were obtained with finite element analyses. Based on the interfacial fracture mechanics, three fracture criteria for crack kinking were used to predict crack initiation and propagation. In addition, the effects of residual stresses due to coefficient of thermal expansion mismatch between zirconia and veneer on the crack behavior were evaluated. The crack initiation and propagation were well predicted by the three fracture criteria. For specimens at phase angle of 0, the cracks propagated in the interface; whereas for all the other specimens the cracks kinked into the veneer. Compressive residual stresses in the veneer can improve the toughness of the interface structure. The results suggest that, in zirconia/veneer bilayered structure the veneer is weaker than the interface, which can be used to explain the clinical phenomenon that veneer chipping rate is larger than interface delamination rate. Consequently, a veneer material with larger fracture toughness is needed to decrease the failure rate of all-ceramic restorations. And the coefficient of thermal expansion mismatch of the substrates can be larger to produce larger compressive

  2. Modeling of Colloid Transport Mechanisms Facilitating Migration of Radionuclides in Fractured Media

    SciTech Connect

    Li Shihhai; Yang, H.-T.; Jen, C.-P.

    2004-12-15

    Performance assessments of high-level radioactive waste disposal have emphasized the role of colloids in the migration of radionuclides in the geosphere. The transport of colloids often brings them in contact with fracture surfaces or porous rock matrix. Colloids that attach to these surfaces are treated as being immobile and are called filtered colloids. The filtered colloids could be released into the fracture again; that is, the attachment of colloids may be reversible. Also, the colloids in the fracture could diffuse into the porous matrix rock. A methodology is proposed to evaluate a predictive model to assess transport within the fractured rock as well as various phenomenological coefficients employed in the different mechanisms, such as filtration, remobilization, and matrix diffusion of colloids. The governing equations of colloids considering mechanisms of the colloidal transport in the fractured media, including filtration, remobilization, and matrix diffusion, have been modeled and solved analytically in previous studies. In the present study, transport equations of colloids and radionuclides that consider the combination of the aforementioned transport mechanisms have also been solved numerically and investigated. The total concentration of mobile radionuclides in the fracture becomes lower because the concentration of mobile colloids in the fracture decreases when the filtration coefficient for colloids increases. Additionally, the concentration of mobile radionuclides was increased at any given time step due to the higher sorption partition coefficient of radionuclides associated with colloids. The results also show that the concentration of radionuclides in the fracture zone decreases when the remobilization coefficient of colloids or the percentages of the matrix diffusion flux of colloids increase.

  3. Two-parameter fracture mechanics: Theory and applications

    SciTech Connect

    O`Dowd, N.P.; Shih, C.F.

    1993-02-01

    A family of self-similar fields provides the two parameters required to characterize the full range of high- and low-triaxiality crack tip states. The two parameters, J and Q, have distinct roles: J sets the size scale of the process zone over which large stresses and strains develop, while Q scales the near-tip stress distribution relative to a high triaxiality reference stress state. An immediate consequence of the theory is this: it is the toughness values over a range of crack tip constraint that fully characterize the material`s fracture resistance. It is shown that Q provides a common scale for interpreting cleavage fracture and ductile tearing data thus allowing both failure modes to be incorporated in a single toughness locus. The evolution of Q, as plasticity progresses from small scale yielding to fully yielded conditions, has been quantified for several crack geometries and for a wide range of material strain hardening properties. An indicator of the robustness of the J-Q fields is introduced; Q as a field parameter and as a pointwise measure of stress level is discussed.

  4. Two-parameter fracture mechanics theory and applications

    NASA Astrophysics Data System (ADS)

    Odowd, N. P.; Shih, C. F.

    1992-11-01

    A family of self-similar fields provides the two parameters required to characterize the full range of high- and low-triaxiality crack tip states. The two parameters, J and Q, have distinct roles: J sets the size scale of the process zone over which large stresses and strains develop, while Q scales the near-tip stress distribution relative to a high triaxiality reference stress state. An immediate consequence of the theory is this: it is the toughness values over a range of crack tip constraint that fully characterize the material's fracture resistance. It is shown that Q provides a common scale for interpreting cleavage fracture and ductile tearing data thus allowing both failure modes to be incorporated in a single toughness locus. The evolution of Q, as plasticity progresses from small scale yielding to fully yielded conditions, was quantified for several crack geometries and for a wide range of material strain hardening properties. An indicator of the robustness of the J-Q fields is introduced; Q as a field parameter and as a pointwise measure of stress level is discussed.

  5. Two-parameter fracture mechanics: Theory and applications

    SciTech Connect

    O'Dowd, N.P. . Dept. of Mechanical Engineering); Shih, C.F. . Div. of Engineering)

    1993-02-01

    A family of self-similar fields provides the two parameters required to characterize the full range of high- and low-triaxiality crack tip states. The two parameters, J and Q, have distinct roles: J sets the size scale of the process zone over which large stresses and strains develop, while Q scales the near-tip stress distribution relative to a high triaxiality reference stress state. An immediate consequence of the theory is this: it is the toughness values over a range of crack tip constraint that fully characterize the material's fracture resistance. It is shown that Q provides a common scale for interpreting cleavage fracture and ductile tearing data thus allowing both failure modes to be incorporated in a single toughness locus. The evolution of Q, as plasticity progresses from small scale yielding to fully yielded conditions, has been quantified for several crack geometries and for a wide range of material strain hardening properties. An indicator of the robustness of the J-Q fields is introduced; Q as a field parameter and as a pointwise measure of stress level is discussed.

  6. Fracture mechanics in fiber reinforced composite materials, taking as examples B/A1 and CRFP

    NASA Technical Reports Server (NTRS)

    Peters, P. W. M.

    1982-01-01

    The validity of linear elastic fracture mechanics and other fracture criteria was investigated with laminates of boron fiber reinforced aluminum (R/A1) and of carbon fiber reinforced epoxide (CFRP). Cracks are assessed by fracture strength Kc or Kmax (critical or maximum value of the stress intensity factor). The Whitney and Nuismer point stress criterion and average stress criterion often show that Kmax of fiber composite materials increases with increasing crack length; however, for R/A1 and CFRP the curve showing fracture strength as a function of crack length is only applicable in a small domain. For R/A1, the reason is clearly the extension of the plastic zone (or the damage zone n the case of CFRP) which cannot be described with a stress intensity factor.

  7. Natural hydraulic fractures and the mechanical stratigraphy of shale-dominated strata

    NASA Astrophysics Data System (ADS)

    Imber, Jonathan; Armstrong, Howard; Atar, Elizabeth; Clancy, Sarah; Daniels, Susan; Grattage, Joshua; Herringshaw, Liam; Trabucho-Alexandre, João; Warren, Cassandra; Wille, Jascha; Yahaya, Liyana

    2016-04-01

    .2-4.3 fractures per m, consistent with field observations that this formation is more highly fractured than the Cleveland Ironstone Formation. Semi-quantitative estimates of the mineralogical "brittleness index" suggest the highly fractured, clay-rich Mulgrave Shale Member of the Whitby Mudstone Formation has a low brittleness. Our results are therefore inconsistent with the widely held assumption that natural fracture density is greatest within units characterised by a high brittleness index. We propose that stratigraphic variations in fracture densities are more likely to result from the different distributions of crack driving stresses; formations containing decimetre-scale, and most likely stiff, carbonate layers (such as the Cleveland Ironstone Formation) will have differing crack driving stresses compared with silt- and mudstone dominated successions (such as the Whitby Mudstone Formation). The high fracture density observed within the Mulgrave Shale Member is also consistent with propagation of natural hydraulic fractures driven by fluid overpressure caused by maturation of organic matter concentrated within this unit. The next step is to investigate the relative importance of maturation-driven overpressure v. mechanical heterogeneity by analysing the stratigraphic variations in fracture density within the underlying, organic-matter lean Redcar Mudstone Formation.

  8. Application of fracture mechanics in maintenance of high temperature equipment -- An assessment of critical needs

    SciTech Connect

    Saxena, A.

    1997-12-31

    Extending the operating life of power-plant, chemical reactor and land, sea and air based gas turbine components beyond their original design life has considerable economic advantages. Fracture mechanics is used extensively to predict the remaining life and safe inspection intervals as part of maintenance programs for these systems. The presence of creep deformation and time-dependent damage accumulation in these components present very significant challenges. Therefore, the emphasis of this paper is on the time-dependent fracture mechanics concepts. A critical assessment of the current state-of-the-art of time dependent fracture mechanics concepts, test techniques, analytical procedures and application tools is made to demonstrate the potential of this technology in maintenance engineering. In addition, future developments that are needed to enhance the application of this technology are also described and limits of the current approaches are also discussed.

  9. Non-double-couple mechanisms of microearthquakes induced by hydraulic fracturing

    USGS Publications Warehouse

    Sileny, J.; Hill, D.P.; Eisner, L.; Cornet, F.H.

    2009-01-01

    We have inverted polarity and amplitude information of representative microearthquakes to investigate source mechanisms of seismicity induced by hydraulic fracturing in the Carthage Cotton Valley, east Texas, gas field. With vertical arrays of four and eight three-component geophones in two monitoring wells, respectively, we were able to reliably determine source mechanisms of the strongest events with the best signal-to-noise ratio. Our analysis indicates predominantly non-double-couple source mechanisms with positive volumetric component consistent with opening cracks oriented close to expected hydraulic fracture orientation. Our observations suggest the induced events are directly the result of opening cracks by fluid injection, in contrast to many previous studies where the seismicity is interpreted to be primarily shearing caused by pore pressure diffusion into the surrounding rock or associated with shear stresses created at the hydraulic fracture tip. Copyright 2009 by the American Geophysical Union.

  10. Fracture processes and mechanisms of crack growth resistance in human enamel

    NASA Astrophysics Data System (ADS)

    Bajaj, Devendra; Park, Saejin; Quinn, George D.; Arola, Dwayne

    2010-07-01

    Human enamel has a complex micro-structure that varies with distance from the tooth’s outer surface. But contributions from the microstructure to the fracture toughness and the mechanisms of crack growth resistance have not been explored in detail. In this investigation the apparent fracture toughness of human enamel and the mechanisms of crack growth resistance were evaluated using the indentation fracture approach and an incremental crack growth technique. Indentation cracks were introduced on polished surfaces of enamel at selected distances from the occlusal surface. In addition, an incremental crack growth approach using compact tension specimens was used to quantify the crack growth resistance as a Junction of distance from the occlusal surface. There were significant differences in the apparent toughness estimated using the two approaches, which was attributed to the active crack length and corresponding scale of the toughening mechanisms.