Science.gov

Sample records for ii post-lbv wolf-rayet

  1. Uncovering multiple Wolf-Rayet star clusters and the ionized ISM in Mrk 178: the closest metal-poor Wolf-Rayet H II galaxy

    NASA Astrophysics Data System (ADS)

    Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Brinchmann, J.; Kunth, D.; García-Benito, R.; Crowther, P. A.; Hernández-Fernández, J.; Durret, F.; Contini, T.; Fernández-Martín, A.; James, B. L.

    2013-07-01

    New integral field spectroscopy (IFS) has been obtained for the nearby metal-poor Wolf-Rayet (WR) galaxy Mrk 178 to examine the spatial correlation between its WR stars and the neighbouring ionized interstellar medium (ISM). The strength of the broad WR features and its low metallicity make Mrk 178 an intriguing object. We have detected the blue and red WR bumps in different locations across the field of view (˜300 pc × 230 pc) in Mrk 178. The study of the WR content has been extended, for the first time, beyond its brightest star-forming knot uncovering new WR star clusters. Using Large/Small Magellanic Cloud-template WR stars, we empirically estimate a minimum of ˜20 WR stars within the region sampled. Maps of the spatial distribution of the emission lines and of the physical-chemical properties of the ionized ISM have been created and analysed. Here, we refine the statistical methodology by Pérez-Montero et al. (2011) to probe the presence of variations in the ISM properties. An error-weighted mean of 12+log(O/H) = 7.72 ± 0.01 is taken as the representative oxygen abundance for Mrk 178. A localized N and He enrichment, spatially correlated with WR stars, is suggested by this analysis. Nebular He II λ4686 emission is shown to be spatially extended reaching well beyond the location of the WR stars. This spatial offset between WRs and He II emission can be explained based on the mechanical energy input into the ISM by the WR star winds, and does not rule out WR stars as the He II ionization source. We study systematic aperture effects on the detection and measurement of the WR features, using Sloan Digital Sky Survey spectra combined with the power of IFS. In this regard, the importance of targeting low metallicity nearby systems is discussed.

  2. Ionizing stellar population in the disc of NGC 3310 - II. The Wolf-Rayet population

    NASA Astrophysics Data System (ADS)

    Miralles-Caballero, D.; Rosales-Ortega, F. F.; Díaz, A. I.; Otí-Floranes, H.; Pérez-Montero, E.; Sánchez, S. F.

    2014-12-01

    We use integral field spectroscopy to study in detail the Wolf-Rayet (WR) population in NGC 3310, spatially resolving 18 star-forming knots with typical sizes of 200-300 pc in the disc of the galaxy hosting a substantial population of WRs. The detected emission in the so-called blue bump is attributed mainly to late-type nitrogen WRs (WNL), ranging from a few dozens to several hundreds of stars per region. Our estimated WNL/(WNL+O) ratio is comparable to reported empirical relations once the extinction-corrected emission is further corrected by the presence of dust grains inside the nebula that absorb a non-negligible fraction of UV photons. Comparisons of observables with stellar population models show disagreement by factors larger than 2-3. However, if the effects of interacting binaries and/or photon leakage are taken into account, observations and predictions tend to converge. We estimate the binary fraction of the H II regions hosting WRs to be significant in order to recover the observed X-ray flux, hence proving that the binary channel can be critical when predicting observables. We also explore the connection of the environment with the current hypothesis that WRs can be progenitors to long-duration gamma-ray bursts (GRBs). Galaxy interactions, which can trigger strong episodes of star formation in the central regions, may be a plausible environment where WRs may act as progenitors of GRBs. Finally, even though the chemical abundance is generally homogeneous, we also find weak evidence for rapid N pollution by WR stellar winds at scales of ˜200 pc.

  3. Wolf-Rayet nebulae

    NASA Astrophysics Data System (ADS)

    Chu, You-Hua

    2016-07-01

    Since the discovery of nebulae around Wolf-Rayet (WR) stars in the 1960s, it has been established that WR stars are massive stars at advanced evolutionary stages and that their surrounding nebulae result from the interactions between the stellar mass loss and the ambient interstellar medium. Surveys of WR nebulae have been made in the Galaxy, Magellanic Clouds, and other nearby galaxies in the Local Group. Some WR nebulae exhibit He II λ4686 line emission, indicating stellar effective temperatures of 90 — 100 x 103 K. The shocked fast stellar winds from WR nebulae have been detected in soft X-rays, but theoretical models have not been able to reproduce the observed X-ray spectral properties. Elemental abundances of WR nebulae consisting of synthesized stellar material can constrain stellar evolution models, but high-dispersion spectra are needed to kinematically separate the expanding shell of a WR nebula and the background interstellar medium for accurate abundance analyses.

  4. Wolf-Rayet stars in the Small Magellanic Cloud. II. Analysis of the binaries

    NASA Astrophysics Data System (ADS)

    Shenar, T.; Hainich, R.; Todt, H.; Sander, A.; Hamann, W.-R.; Moffat, A. F. J.; Eldridge, J. J.; Pablo, H.; Oskinova, L. M.; Richardson, N. D.

    2016-06-01

    Context. Massive Wolf-Rayet (WR) stars are evolved massive stars (Mi ≳ 20 M⊙) characterized by strong mass-loss. Hypothetically, they can form either as single stars or as mass donors in close binaries. About 40% of all known WR stars are confirmed binaries, raising the question as to the impact of binarity on the WR population. Studying WR binaries is crucial in this context, and furthermore enable one to reliably derive the elusive masses of their components, making them indispensable for the study of massive stars. Aims: By performing a spectral analysis of all multiple WR systems in the Small Magellanic Cloud (SMC), we obtain the full set of stellar parameters for each individual component. Mass-luminosity relations are tested, and the importance of the binary evolution channel is assessed. Methods: The spectral analysis is performed with the Potsdam Wolf-Rayet (PoWR) model atmosphere code by superimposing model spectra that correspond to each component. Evolutionary channels are constrained using the Binary Population and Spectral Synthesis (BPASS) evolution tool. Results: Significant hydrogen mass fractions (0.1

  5. Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Hillier, D.; Murdin, P.

    2000-11-01

    Wolf-Rayet (W-R) stars are a class of peculiar stars first identified in 1867 by C J E WOLF and G RAYET. Unlike the spectra of most stars, which are dominated by narrow absorption lines, the spectra of W-R stars show broad emission lines. The rich emission line spectrum makes them easy to identify, by spectroscopic observations, even at large distances....

  6. Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Hamann, Wolf-Rainer; Sander, Andreas; Todt, Helge

    Nearly 150 years ago, the French astronomers Charles Wolf and Georges Rayet described stars with very conspicuous spectra that are dominated by bright and broad emission lines. Meanwhile termed Wolf-Rayet Stars after their discoverers, those objects turned out to represent important stages in the life of massive stars. As the first conference in a long time that was specifically dedicated to Wolf-Rayet stars, an international workshop was held in Potsdam, Germany, from 1.-5. June 2015. About 100 participants, comprising most of the leading experts in the field as well as as many young scientists, gathered for one week of extensive scientific exchange and discussions. Considerable progress has been reported throughout, e.g. on finding such stars, modeling and analyzing their spectra, understanding their evolutionary context, and studying their circumstellar nebulae. While some major questions regarding Wolf-Rayet stars still remain open 150 years after their discovery, it is clear today that these objects are not just interesting stars as such, but also keystones in the evolution of galaxies. These proceedings summarize the talks and posters presented at the Potsdam Wolf-Rayet workshop. Moreover, they also include the questions, comments, and discussions emerging after each talk, thereby giving a rare overview not only about the research, but also about the current debates and unknowns in the field. The Scientific Organizing Committee (SOC) included Alceste Bonanos (Athens), Paul Crowther (Sheffield), John Eldridge (Auckland), Wolf-Rainer Hamann (Potsdam, Chair), John Hillier (Pittsburgh), Claus Leitherer (Baltimore), Philip Massey (Flagstaff), George Meynet (Geneva), Tony Moffat (Montreal), Nicole St-Louis (Montreal), and Dany Vanbeveren (Brussels).

  7. Fundamental parameters of Wolf-Rayet stars. II. Tailored analyses of Galactic WNL stars.

    NASA Astrophysics Data System (ADS)

    Crowther, P. A.; Hillier, D. J.; Smith, L. J.

    1995-01-01

    Quantitative analyses of 9 Galactic WNL (WN7-8) stars, with particular reference to the hydrogen, helium, carbon and nitrogen abundances, are presented. These analyses are based on extensive UV, optical and IR spectroscopy, and have been undertaken using the Wolf-Rayet (WR) standard model. Our results compare well with those from previous non-LTE analyses confirming that the influence of CNO elements is of minor importance for WN stars. Observed profiles of hydrogen and helium are generally reproduced to high precision, with some exceptions, while metal lines are simultaneously matched to within a factor of about two. We also investigate the influence of line blanketing on the resulting stellar parameters. We find that WNL stars belong to two distinct groups. Firstly, the WN7-8 stars with a fairly strong Hei signature, are found to have low terminal velocities (850km/s), moderate luminosities (L/Lsun_~10^5.5+/-0.3^) and very low hydrogen contents (X_H_=15+/-15%). Secondly, those single stars classified WN7+abs (i.e. absorption components present in the upper Balmer series) were found to have high velocity winds (2150km/s), high luminosities (L/Lsun_~10^5.9^), and a considerable hydrogen content (X_H_=48+/-4%). Carbon and nitrogen abundances are broadly in line with those expected for CNO-processed material from recent evolutionary models. A hydrogen content of <2% by mass was found for WR123 demonstrating that not all WNL stars contain substantial hydrogen. The evolutionary and mass-loss implications of our results are discussed elsewhere (Paper III, Crowther et al. 1994b).

  8. Wolf-Rayet stars and giant H II regions in M33 - Casual associations or meaningful relationships

    NASA Astrophysics Data System (ADS)

    Conti, P. S.; Massey, P.

    1981-10-01

    The discovery is reported of 14 new Wolf-Rayet stars in the Local Group galaxy M33, of which six are surrounded by small H II regions and have spectra and M(v) similar to field W-R stars in the Galaxy. In addition, eight of the stars are found to be among the brightest in the giant H II regions NGC 588, 592, 595 and 604, and similar to the superluminous W-R's found in 30 Dor in the Large Magellanic Cloud and HD 97950 in NGC 3603. It is concluded after a discussion of statistics pertaining to the W-R types known in M33 that selection effects still dominate the discovery process, and it is suggested that the morphological similarities among superluminous W-R star spectra and the dynamics of giant H II regions imply a shared evolutionary pattern where the nebulae may be dominated by the effects of a few massive, unstable objects with W-R spectra.

  9. The Wolf-Rayet star population in the most massive giant H II regions of M33

    NASA Technical Reports Server (NTRS)

    Drissen, Laurent; Moffat, Anthony F. J.; Shara, Michael M.

    1990-01-01

    Narrow-band images of NGC 604, NGC 595, and NGC 592, the most massive giant H II regions (GHRs) in M33 have been obtained, in order to study their Wolf-Rayet content. These images reveal the presence of nine candidates in NGC 604 (seven WN, two WC), 10 in NGC 595 (nine WN, one WC), and two in NGC 592 (two WN). Precise positions and estimated magnitudes are given for the candidates, half of which have so far been confirmed spectroscopically as genuine W-R stars. The flux in the emission lines of all candidates is comparable to that of normal Galactic W-R stars of similar subtype. A few of the putative superluminous W-R stars are shown to be close visual double or multiple stars; their newly estimated luminosities are now more compatible with those of normal W-R stars. NGC 595 seems to be overabundant in W-R stars for its mass compared to other GHRs, while NGC 604 is normal. Factors influencing the W-R/O number ratio in GHRs are discussed: metallicity and age appear to be the most important.

  10. Wolf-Rayet phenomena

    NASA Technical Reports Server (NTRS)

    Conti, P. S.

    1982-01-01

    The properties of stars showing Wolf-Rayet phenomena are outlined along with the direction of future work. Emphasis is placed on the characteristics of W-R spectra. Specifically the following topics are covered: the absolute visual magnitudes; the heterogeneity of WN spectra; the existence of transition type spectra and compositions the mass loss rates; and the existence of very luminous and possibly very massive W-R stars. Also, a brief overview of current understanding of the theoretical aspects of stellar evolution and stellar winds and the various scenarios that have been proposed to understand W-R spectra are included.

  11. New Wolf-Rayet stars in Galactic open clusters - Sher 1 and the giant H II region core Westerlund 2

    NASA Technical Reports Server (NTRS)

    Moffat, Anthony F. J.; Shara, Michael M.; Potter, Michael

    1991-01-01

    Two new Galactic Wolf-Rayet stars were found in open clusters: a WN4 star in the O9 cluster Sher 1 and a WN7 star in the O7 cluster Westerlund 2. This confirms a previous trend, namely that fainter, hotter WN stars tend to be older than brighter, cooler WN stars. This may be a consequence of evolution via extreme mass loss.

  12. X-ray emission from the Wolf-Rayet bubble NGC 6888 - II. XMM-Newton EPIC observations

    NASA Astrophysics Data System (ADS)

    Toalá, J. A.; Guerrero, M. A.; Chu, Y.-H.; Arthur, S. J.; Tafoya, D.; Gruendl, R. A.

    2016-03-01

    We present deep XMM-Newton European Photon Imaging Camera observations of the Wolf-Rayet (WR) bubble NGC 6888 around the star WR 136. The complete X-ray mapping of the nebula confirms the distribution of the hot gas in three maxima spatially associated with the caps and north-west blowout hinted at by previous Chandra observations. The global X-ray emission is well described by a two-temperature optically thin plasma model (T1 = 1.4 × 106 K, T2 = 8.2 × 106 K) with a luminosity of LX = 7.8 × 1033 erg s-1 in the 0.3-1.5 keV energy range. The rms electron density of the X-ray-emitting gas is estimated to be ne = 0.4 cm-3. The high-quality observations presented here reveal spectral variations within different regions in NGC 6888, which allowed us for the first time to detect temperature and/or nitrogen abundance inhomogeneities in the hot gas inside a WR nebula. One possible explanation for such spectral variations is that the mixing of material from the outer nebula into the hot bubble is less efficient around the caps than in other nebular regions.

  13. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  14. The spectrum of HM Sagittae: A planetary nebula excited by a Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Brown, L. W.; Feibelman, W. A.; Hobbs, R. W.; Mccracken, C. W.

    1977-01-01

    A total of image tube spectrograms of HM Sagittae were obtained. More than 70 emission lines, including several broad emission features, were identified. An analysis of the spectra indicates that HM Sagittae is a planetary nebula excited by a Wolf-Rayet star. The most conspicuous Wolf-Rayet feature is that attributed to a blend of C III at 4650 A and He II at 4686 A.

  15. NEAR-INFRARED COUNTERPARTS TO CHANDRA X-RAY SOURCES TOWARD THE GALACTIC CENTER. II. DISCOVERY OF WOLF-RAYET STARS AND O SUPERGIANTS

    SciTech Connect

    Mauerhan, J. C.; Stolovy, S. R.; Muno, M. P.; Morris, M. R.; Cotera, A.

    2010-02-10

    We present new identifications of infrared counterparts to the population of hard X-ray sources near the Galactic center detected by the Chandra X-ray Observatory. We have spectroscopically confirmed 16 new massive stellar counterparts to the X-ray population, including nitrogen-type (WN) and carbon-type (WC) Wolf-Rayet stars, and O supergiants. These discoveries increase the total sample of massive stellar X-ray sources in the Galactic center region to 30 (possibly 31). For the majority of these sources, the X-ray photometry is consistent with thermal emission from plasma having temperatures in the range of kT = 1-8 keV or non-thermal emission having power-law indices in the range of -1 {approx}< GAMMA {approx}< 3, and X-ray luminosities in the range of L{sub X} {approx} 10{sup 32}-10{sup 34} erg s{sup -1} (0.5-8.0 keV). Several sources have exhibited X-ray variability of several factors between observations. These X-ray properties are not a ubiquitous feature of single massive stars but are typical of massive binaries, in which the high-energy emission is generated by the collision of supersonic winds, or by accretion onto a compact companion. However, without direct evidence for companions, the possibility of intrinsic hard X-ray generation from single stars cannot be completely ruled out. The spectral energy distributions of these sources exhibit significant infrared excess, attributable to free-free emission from ionized stellar winds, supplemented by hot dust emission in the case of the WC stars. With the exception of one object located near the outer regions of the Quintuplet cluster, most of the new stars appear isolated or in loose associations. Seven hydrogen-rich WN and O stars are concentrated near the Sagittarius B H II region, while other similar stars and more highly evolved hydrogen-poor WN and WC stars lie scattered within {approx}50 pc, in projection, of Sagitarrius A West. We discuss various mechanisms capable of generating the observed X

  16. O stars and Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Conti, Peter S.; Underhill, Anne B.; Jordan, Stuart (Editor); Thomas, Richard (Editor)

    1988-01-01

    Basic information is given about O and Wolf-Rayet stars indicating how these stars are defined and what their chief observable properties are. Part 2 of the volume discussed four related themes pertaining to the hottest and most luminous stars. Presented are: an observational overview of the spectroscopic classification and extrinsic properties of O and Wolf-Rayet stars; the intrinsic parameters of luminosity, effective temperature, mass, and composition of the stars, and a discussion of their viability; stellar wind properties; and the related issues concerning the efforts of stellar radiation and wind on the immediate interstellar environment are presented.

  17. Photoelectric spectrophotometry of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Bahng, J. D. R.

    1974-01-01

    Photoelectric spectrum scans of five southern Wolf-Rayet stars in the spectral range lambda lambda 4600-4720 were analyzed to study the variability of brightness and of emission line strengths. No variations of any kind in short time scale were found. However, in WC stars night-to-night variations of three to four percent were detected in the emission line strengths.

  18. Multiple rings around Wolf-Rayet evolution

    NASA Technical Reports Server (NTRS)

    Marston, A. P.

    1995-01-01

    We present optical narrow-band imaging of multiple rings existing around galactic Wolf-Rayet (WR) stars. The existence of multiple rings of material around Wolf-Rayet stars clearly illustrates the various phases of evolution that massive stars go through. The objects presented here show evidence of a three stage evolution. O stars produce an outer ring with the cavity being partially filled by ejecta from a red supergiant of luminous blue variable phase. A wind from the Wolf-Rayet star then passes into the ejecta materials. A simple model is presented for this three stage evolution. Using observations of the size and dynamics of the rings allows estimates of time scales for each stage of the massive star evolution. These are consistent with recent theoretical evolutionary models. Mass estimates for the ejecta, from the model presented, are consistent with previous ring nebula mass estimates from IRAS data, showing a number of ring nebulae to have large masses, most of which must in be in the form of neutral material. Finally, we illustrate how further observations will allow the determination of many of the parameters of the evolution of massive stars such as total mass loss, average mass loss rates, stellar abundances, and total time spent in each evolutionary phase.

  19. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. II. GOING FAINTER: 71 MORE NEW W-R STARS

    SciTech Connect

    Shara, Michael M.; Faherty, Jacqueline K.; Zurek, David; Moffat, Anthony F. J.; Doyon, Rene; Gerke, Jill; Artigau, Etienne; Drissen, Laurent E-mail: jfaherty@amnh.org E-mail: moffat@astro.umontreal.ca E-mail: gerke@astronomy.ohio-state.edu E-mail: ldrissen@phy.ulaval.ca

    2012-06-15

    We are continuing a J, K and narrowband imaging survey of 300 deg{sup 2} of the plane of the Galaxy, searching for new Wolf-Rayet (W-R) stars. Our survey spans 150 Degree-Sign in Galactic longitude and reaches 1 Degree-Sign above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 (due to severe crowding) within a few degrees of the Galactic center. Thousands of emission-line candidates have been detected. In spectrographic follow-ups of 146 relatively bright W-R star candidates, we have re-examined 11 previously known WC and WN stars and discovered 71 new W-R stars, 17 of type WN and 54 of type WC. Our latest image analysis pipeline now picks out W-R stars with a 57% success rate. Star subtype assignments have been confirmed with the K-band spectra and distances approximated using the method of spectroscopic parallax. Some of the new W-R stars are among the most distant known in our Galaxy. The distribution of these new W-R stars is beginning to trace the locations of massive stars along the distant spiral arms of the Milky Way.

  20. A SYSTEMATIC SEARCH FOR COROTATING INTERACTION REGIONS IN APPARENTLY SINGLE GALACTIC WOLF-RAYET STARS. II. A GLOBAL VIEW OF THE WIND VARIABILITY

    SciTech Connect

    Chene, A.-N.; St-Louis, N. E-mail: stlouis@astro.umontreal.ca

    2011-08-01

    This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named corotating interaction regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of {approx}100 and determined its variability level using the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data on hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v {approx} 12.5, and some WR stars with 12.5 < v {<=} 13.5, i.e., all the stars presented in our two papers and four more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8%) present large-scale variability, but only 12/54 stars ({approx}22.1%) are potentially of CIR type. Also, we find that 31/68 stars (45.6%) only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data on hand for 14/68 (20.6%) stars. Interestingly, the variability with the highest amplitude also has the widest mean velocity dispersion.

  1. Decoupled sectors and Wolf-Rayet galaxies

    NASA Astrophysics Data System (ADS)

    Fischler, Willy; Jimmy; Lorshbough, Dustin

    2016-06-01

    It has recently been proposed that gamma-ray burst (GRB) events may be modified by the presence of a dark matter sector subcomponent that is charged under an unbroken U(1). This proposal depends upon there being a nontrivial density of charged dark matter in star forming regions of galaxies which host GRBs. We discuss four Wolf-Rayet galaxies (NGC 1614, NGC 3367, NGC 4216 and NGC 5430) which should contain comparable amounts of dark matter gas and visible matter gas in the star forming regions. We show that the ratio of dark jet power to visible jet power depends only on the ratio of particle mass and charge when the densities are equal, allowing for these input parameters to be probed directly by future observations of GRBs.

  2. Models of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Langer, Norbert

    1990-01-01

    The current status of knowledge about formation, structure and evolution of Wolf-Rayet stars is reviewed, with emphasis on a discussion of corresponding stellar models. The relevance of the LBV-scenario for WR star formation is outlined. Hydrogenless WR stars are shown to closely follow simple relations for the dependence of luminosity, radius, and surface temperature as a function of their mass. The use of these relations for simplified WR evolution calculations is demonstrated. Surface abundance predictions for the different WR types are discussed, with special emphasis to the WN + WC spectral type. Details are presented concerning the WR phase of a recent 60 solar mass evolutionary calculation, which was computed with the same input physics which reproduced the progenitor evolution of SN 1987 A in a 20 solar mass case, and which may be a representative case concerning WR stars in many respects.

  3. Properties of Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.

    2008-06-01

    A review of recent progress relating to Wolf-Rayet (WR) stars is presented. Topics include improved Milky Way statistics from near-IR surveys, different flavours of hydrogen-rich and hydrogen-poor WN stars, WR masses from binary orbits, plus spectroscopic analysis of WR stars resulting in stellar temperatures, luminosities, ionizing fluxes, plus wind properties accounting for clumping. Chemical abundances of WN and WC stars are presented, including a discussion of neon abundances in WC and WO stars from Spitzer observations. Empirical evidence supporting metallicity-dependent winds is also presented, including its effect on subtype distributions in different environments. Finally, difficulties in comparisons between evolutionary models and observations are highlighted, plus outstanding issues with predictions from continuous star formation and instantaneous bursts in the Milky Way,

  4. A study of the moderately wide Wolf-Rayet spectroscopic binary HD 190918

    NASA Astrophysics Data System (ADS)

    Underhill, Anne B.; Hill, Grant M.

    1994-09-01

    Radial-velocity observations of the Wolf-Rayet spectroscopic binary HD 190918 obtained from 25 spectrograms covering the yellow-green range are presented. In general three absorption lines were measured to determine the line-of-sight motion of the O star and one unblended emission line, He II lambda 5411.52, for the Wolf-Rayet star. A sharp C III lambda 5696 emission line, as seen in most Of type spectra, was detected on each spectrogram and measured. This line follows the predicted radial-velocity curve of the O star fairly well when the radial velocities are shifted by an appropriate amount. New orbital elements have been found for the O star, for the Wolf-Rayet star, and for the C III emission line. The estimated systemic velocity is -20.9 +/- 0.7 km/s for the O star, +70.1 +/- 4.6 km/s for the Wolf-Rayet star, and -34.2 +/- 1.5 km/s for the sharp C III emission line. The systemic velocity of the O star is reasonable considering the expected line-of-sight component of motion due to the peculiar motion of Population I stars, Galactic rotation, and reflex solar motion. We adopt the O-star systemic velocity as a fiducial radial velocity for the binary HD 190918. This shows that the He II lambda 5411 line of the WN4.5 star is displaced longward by 91.1 km/s, while the sharp C III line appears to be formed in a body of gas moving toward the observer by an additional 13.3 km/s. We discuss the implications of each possible solution including the swath traversed by the O star in the outer part of the line emitting region of the Wolf-Rayet star and the possible generation of X-rays. We conclude that our observations of the sharp C III lambda 5696 emission line confirm the hydrodynamic models of Stevens, Blondin, and Pollock which show that extensive, chaotic tongues of cooling plasma are formed perpendicular to the line joining the stars in the case of colliding winds in massive binary systems. We describe observational tests which may be used to confirm what type of

  5. DISCOVERY OF A WOLF-RAYET STAR THROUGH DETECTION OF ITS PHOTOMETRIC VARIABILITY

    SciTech Connect

    Littlefield, Colin; Garnavich, Peter; McClelland, Colin; Rettig, Terrence; Marion, G. H.; Vinko, Jozsef; Wheeler, J. Craig

    2012-06-15

    We report the serendipitous discovery of a heavily reddened Wolf-Rayet star that we name WR 142b. While photometrically monitoring a cataclysmic variable, we detected weak variability in a nearby field star. Low-resolution spectroscopy revealed a strong emission line at 7100 A, suggesting an unusual object and prompting further study. A spectrum taken with the Hobby-Eberly Telescope confirms strong He II emission and an N IV 7112 A line consistent with a nitrogen-rich Wolf-Rayet star of spectral class WN6. Analysis of the He II line strengths reveals no detectable hydrogen in WR 142b. A blue-sensitive spectrum obtained with the Large Binocular Telescope shows no evidence for a hot companion star. The continuum shape and emission line ratios imply a reddening of E(B - V) = 2.2-2.6 mag. We estimate that the distance to WR 142b is 1.4 {+-} 0.3 kpc.

  6. The chemical enrichment by massive stars in Wolf-Rayet galaxies.

    NASA Astrophysics Data System (ADS)

    Esteban, C.; Peimbert, M.

    1995-08-01

    We present stellar population models for starbursts in a sample of eleven Wolf-Rayet galaxies. Taking into account the observational data available, we try to reconstruct the number of Wolf-Rayet stars observed and estimate the number of type II supernovae that have exploded in the ionizing cluster. Using the stellar yields of the most recent stellar evolutionary models for massive stars, we derive the expected chemical enrichment in helium, oxygen and nitrogen produced by the burst on the surrounding ionized gas. The results of this modelling indicate that since the helium and nitrogen production accounts for a fraction of the total content of the H II regions in these elements - implying the occurrence of previous star formation events in the history of the parent galaxies -, the oxygen appears strongly overproduced in most of the objects. This fact and the correlation between the supernova rates derived for the bursts and their corresponding oxygen overproduction as well as the large volume filling factors expected for the hot gas that fills the supernova remnants, suggest the action of differential mass loss from the H II regions that could lead to galactic winds. We find that the chemical evolution of WR galaxies in the Y vs. N/H diagram appears to run parallel to the fit of the observational data for "normal" H II galaxies obtained by Pagel et al. (1992). Moreover, the pollution by the present-day population of Wolf-Rayet stars is unable to explain the apparently abnormal position of some Wolf-Rayet galaxies on that diagram. We find that the effect of temperature fluctuations in the determination of the electron temperature of the ionized gas probably due to the presence of shocks could be an alternative explanation for this problem.

  7. Comprehensive Radiation-Hydrodynamic Models for Wolf-Rayet Galaxy Spectra

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus

    2012-10-01

    We propose to compute a grid of radiation-hydrodynamic models of Wolf-Rayet star spectra for implementation in population synthesis models. Guided by stellar evolutionary tracks, we will calculate the wind density structure and iteratively solve the radiative transfer using a modified version of the CMFGEN code. The deliverables are stellar spectra at 0.5 A resolution covering 912 to 3000 A for super-solar to near-zero metallicity. The models will be tested by comparison with ultraviolet archival data. By virtue of their luminosities, strong mass loss and peculiar chemical abundances, Wolf-Rayet stars can make a significant - sometimes the dominant - contribution to the line spectra of star-forming galaxies, in particular in the ultraviolet. The new models will provide synthetic ultraviolet spectra of these stars, with parameters optimized for the population synthesis code Starburst99. The parameter range will cover that encountered in local Wolf-Rayet galaxies, in Lyman-break galaxies at redshift 3 - 5, and in primeval galaxies expected to be observed with JWST. Since Wolf-Rayet stars are related to the most massive stars, calibrating and understanding their tell-tale spectral features is a prerequsite for using them as population probes.Our suite of models will allow us and the astronomical community to tackle a diverse set of astrophysical issues: How do the final stages of massive-star evolution differ in different environments? How important are WR stars for the ionization of the ISM and the primordial IGM? Does the anomalous strength of He II 1640 indicate an IMF enriched in massive stars? Are galaxies with WR features preferred hosts of Type Ib SNe and long GRBs?

  8. The Multiplicity of Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Wallace, Debra J.

    2004-01-01

    The most massive stars drastically reconfigure their surroundings via their strong stellar winds and powerful ionizing radiation. With this mass fueling their large luminosities, these stars are frequently used as standard candles in distance determination, and as tracers of stellar evolution in different regions and epochs. In their dieing burst, some of the once massive stars will enter a Wolf-Rayet (WR) phase lasting approx.10% of the stellar lifetime. This phase is particularly useful for study because these stars have strong spectroscopic signatures that allow them to be easily identified at great distances. But how accurate are these identifications? Increasingly, the relatively nearby stars we once assumed to be single are revealing themselves to be binary or multiple. New techniques, such as high-resolution imaging and interferometry, are changing our knowledge of these objects. I will discuss recent results in the literature and how this affects the binary distribution of WR stars. I will also discuss the implications of binary vs. single star evolution on evolution through the WR phase. Finally, I will discuss the implications of these revised numbers on both massive stellar evolution itself, and the impact that this has on the role of WR stars as calibrators.

  9. Wolf-Rayet Stars and the Isotopic Anomaly Connection

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Paulus, G.; Meynet, G.

    1993-07-01

    Isotopic anomalies are now known to be carried by high-temperature inclusions of primitive meteorites that formed from solar reservoirs out of equilibrium with the rest of the solar nebula, as well as by various types of grains (diamond, graphite, SiC) that are considered to be of circumstellar origin, and have survived the process of incorporation into the solar system (see e.g. [1] for a recent review). Such anomalies provide new clues to many important astrophysical problems, and raise the question of their nucleosynthetic origin. In fact, they offer the exciting perspective of confronting abundance observations with nucleosynthesis models for a very limited number of events, even possibly a single one. This situation is in marked contrast with the one encountered when trying to understand the bulk solar system composition. Up to now, Red Giant stars, massive mass loosing objects (of the Wolf-Rayet type), novae or supernovae have been proposed as possible contributors to the observed anomalies. In this paper, we revisit the role that could possibly be played in that respect by Wolf-Rayet (WR) stars. Wolf-Rayet stars are appealing isotopic anomaly contributors for many reasons. In particular (1) they are observed to loose mass at very large rates that can exceed 10^-5M solar masses yr^-l, the ejected material being contaminated with the products of hydrogen and helium burning, and (2) certain WR stars are known to make dust episodically in their winds [e.g., 2]. In addition, the role of WR stars would be well in line with the "bing-bang" model for the isotopic anomalies promoted by Reeves [3]. The aim of this contribution is to extent and update previous calculations [4,5] of the isotopic anomalies that could be carried by the wind of WR stars of various masses and initial compositions during different phases of their evolution, those anomalies possibly loading circumstellar WR grains. The calculation of the WR wind composition is performed on grounds of detailed

  10. The Sixth Catalogue of galactic Wolf-Rayet stars, their past and present

    NASA Technical Reports Server (NTRS)

    Van Der Hucht, K. A.; Conti, P. S.; Lundstrom, I.; Stenholm, B.

    1981-01-01

    This paper presents the Sixth Catalogue of galactic Wolf-Rayet stars (Pop. I), a short history on the five earlier WR catalogues, improved spectral classification, finding charts, a discussion on related objects, and a review of the current status of Wolf-Rayet star research. The appendix presents a bibliography on most of the Wolf-Rayet literature published since 1867.

  11. Wolf-Rayet central stars of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Todt, H.; Hamann, W.-R.

    A significant number of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient, showing a chemical composition of helium, carbon, and oxygen. Most of them exhibit Wolf-Rayet-like emission line spectra, similar to those of the massive WC Pop I stars, and are therefore classified as of spectral type [WC]. In the last years, CSPNe of other Wolf-Rayet spectral subtypes have been identified, namely PB 8, which is of spectral type [WN/C], and IC 4663 and Abell 48, which are of spectral type [WN]. We review spectral analyses of Wolf-Rayet type central stars of different evolutionary stages and discuss the results in the context of stellar evolution. Especially we consider the question of a common evolutionary channel for [WC] stars. The constraints on the formation of [WN] or [WC/N] subtype stars will also be addressed.

  12. Diagnostics of the unstable envelopes of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Grassitelli, L.; Chené, A.-N.; Sanyal, D.; Langer, N.; St-Louis, N.; Bestenlehner, J. M.; Fossati, L.

    2016-05-01

    Context. The envelopes of stars near the Eddington limit are prone to various instabilities. A high Eddington factor in connection with the iron opacity peak leads to convective instability, and a corresponding envelope inflation may induce pulsational instability. Here, we investigate the occurrence and consequences of both instabilities in models of Wolf-Rayet stars. Aims: We determine the convective velocities in the sub-surface convective zones to estimate the amplitude of the turbulent velocity at the base of the wind that potentially leads to the formation of small-scale wind structures, as observed in several Wolf-Rayet stars. We also investigate the effect of stellar wind mass loss on the pulsations of our stellar models. Methods: We approximated solar metallicity Wolf-Rayet stars in the range 2-17 M⊙ by models of mass-losing helium stars, computed with the Bonn stellar evolution code. We characterized the properties of convection in the envelope of these stars adopting the standard mixing length theory. Results: Our results show the occurrence of sub-surface convective regions in all studied models. Small (≈1 km s-1) surface velocity amplitudes are predicted for models with masses below ≈10 M⊙. For models with M ≳ 10 M⊙, the surface velocity amplitudes are of the order of 10 km s-1. Moreover we find the occurrence of pulsations for stars in the mass range 9-14 M⊙, while mass loss appears to stabilize the more massive Wolf-Rayet stars. We confront our results with observationally derived line variabilities of 17 WN stars, of which we analysed eight here for the first time. The data suggest variability to occur for stars above 10 M⊙, which is increasing linearly with mass above this value, in agreement with our results. We further find our models in the mass range 9-14M⊙ to be unstable to radial pulsations, and predict local magnetic fields of the order of hundreds of gauss in Wolf-Rayet stars more massive than ≈10 M⊙. Conclusions: Our

  13. Diagnostics of the unstable envelopes of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Grassitelli, L.; Chené, A.-N.; Sanyal, D.; Langer, N.; St-Louis, N.; Bestenlehner, J. M.; Fossati, L.

    2016-04-01

    Context. The envelopes of stars near the Eddington limit are prone to various instabilities. A high Eddington factor in connection with the iron opacity peak leads to convective instability, and a corresponding envelope inflation may induce pulsational instability. Here, we investigate the occurrence and consequences of both instabilities in models of Wolf-Rayet stars. Aims: We determine the convective velocities in the sub-surface convective zones to estimate the amplitude of the turbulent velocity at the base of the wind that potentially leads to the formation of small-scale wind structures, as observed in several Wolf-Rayet stars. We also investigate the effect of stellar wind mass loss on the pulsations of our stellar models. Methods: We approximated solar metallicity Wolf-Rayet stars in the range 2-17 M⊙ by models of mass-losing helium stars, computed with the Bonn stellar evolution code. We characterized the properties of convection in the envelope of these stars adopting the standard mixing length theory. Results: Our results show the occurrence of sub-surface convective regions in all studied models. Small (≈1 km s-1) surface velocity amplitudes are predicted for models with masses below ≈10 M⊙. For models with M ≳ 10 M⊙, the surface velocity amplitudes are of the order of 10 km s-1. Moreover we find the occurrence of pulsations for stars in the mass range 9-14 M⊙, while mass loss appears to stabilize the more massive Wolf-Rayet stars. We confront our results with observationally derived line variabilities of 17 WN stars, of which we analysed eight here for the first time. The data suggest variability to occur for stars above 10 M⊙, which is increasing linearly with mass above this value, in agreement with our results. We further find our models in the mass range 9-14M⊙ to be unstable to radial pulsations, and predict local magnetic fields of the order of hundreds of gauss in Wolf-Rayet stars more massive than ≈10 M⊙. Conclusions: Our

  14. A new ejecta shell surrounding a Wolf-Rayet star in the LMC

    NASA Technical Reports Server (NTRS)

    Garnett, Donald R.; Chu, You-Hua

    1994-01-01

    We have obtained CCD spectra of newly discovered shell-like nebulae around the WN4 star Breysacher 13 and the WN1 star Breysacher 2 in the Large Magellanic Cloud (LMC). The shell around Br 13 shows definite signs of enrichment in both nitrogen and helium, having much stronger (N II) and He I emission lines than are seen in typical LMC H II regions. From the measured electron temperature of about 17,000 K in the shell, we derive He/H and N/O abundance ratios which are factors of 2 and more than 10 higher, respectively, than the average LMC interstellar values. The derived oxygen abundance in the Br 13 shell is down by a factor of 8 compared to the local LMC interstellar medium (ISM); however, the derived electron temperature is affected by the presence of an incomplete shock arising from the interaction of the stellar wind with photoionized material. This uncertainty does not affect the basic conclusion that the Br 13 shell is enriched by processed material from the Wolf-Rayet star. In contrast, the shell around Br 2 shows no clear evidence of enrichment. The nebular spectrum is characterized by extremely strong (O III) and He II emission and very weak (N II). We derive normal He, O, and N abundances from our spectrum. This object therefore appears to be simply a wind-blown structure associated with a relatively dense cloud near the Wolf-Rayet star, although the very high-ionization state of the gas is unusual for a nebula associated with a Wolf-Rayet star.

  15. The Masses of Black Holes with Wolf-Rayet Companions

    NASA Astrophysics Data System (ADS)

    Laycock, Silas; Steiner, James F.; Maccarone, Thomas J.; Christodoulou, Dimitris M.; Binder, Breanna A.; Yang, Jun; Cappallo, Rigel

    2016-04-01

    Black Holes with Wolf-Rayet companions represent a channel for forming the most massive stellar BHs. The recent, stunning LIGO detection of the gravitational wave signature from a merging stellar BH binary points to the importance of understanding the progenitor systems formation and evolution. The BH+WR binary IC 10 X-1 holds important clues to the puzzle, by helping establish the upper observed BH mass and pointing to an association between maximum possible BH mass and low metallicity environments. However, securing dynamical mass determiniations for WR+BH binaries appears to be complicated by interaction between the radiation field of the BH and the stellar wind. This causes a substantial change to our understanding of IC 10 X-1, and by extension to the mass distribution of BH binaries. A high precision ephemeris derived from a decade of Chandra/XMM X-ray timing observations, when combined with the optical RV curve, reveals a surprizing simultenaity of mid X-ray eclipse and the maximum blueshift velocity of He II emission lines. The optical emission lines appear to originate in a shielded sector of the WR star's stellar wind which escapes total X-ray ionization by the compact object. Unravelling this projection effect is necessary to obtain the system's true mass function. Complementary Chandra, XMM and NuStar datasets offer new insights into the mass and spin of the BH, and the structure of the photo-ionized wind. We will discuss possible routes toward the mass function in BH+WR binaries via multi-wavelength observations, and the additional leverage provided by further constraining the orbital period derivative.

  16. Searching for Wolf-Rayet Stars in the Local Group

    NASA Astrophysics Data System (ADS)

    Shara, M. M.; Zurek, D.; Kanarek, G.; Faherty, J.

    2012-12-01

    Tony Moffat has been inspiring the hunt for new Wolf-Rayet stars for over 40 years. These extraordinary objects offer critical tests of stellar evolution theory, and are predicted to be progenitors of type Ib and Ic supernovae. We're only going to know if that prediction is correct (in our lifetimes) by locating and spectrographically confirming of order 10 000 WR stars - a daunting but increasingly doable task. Our 2009 prediction that roughly 6 500 Wolf-Rayet stars live in our Galaxy has been followed by demonstrations in the past few years that, via narrowband infrared imaging and spectroscopy, we can find and confirm almost all Galactic WR stars. The rest of the Local Group is unlikely to contain more than 1 000 WR stars, so the Milky Way is THE place to search exhaustively for them. I briefly describe how we hunt and gather WR stars and give a current (mid-2011) Local Group census of them.

  17. Multiple Shells Around Wolf-Rayet Stars: Space Based Astrometric Observing

    NASA Technical Reports Server (NTRS)

    Marston, Anthony P.

    1995-01-01

    The completion of a complementary optical emission-line survey of the nebulae associated with Wolf-Rayet stars in the southern sky is reported, along with the completion of a survey the large-scale environments of Wolf-Rayet stars using IRAS Skyflux data. HIRES IRAS maps in the four IRAS wavebands for appoximately half of all galactic Wolf-Rayet stars are created.

  18. Discovery of two Galactic Wolf-Rayet stars in Circinus

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.

    2011-01-01

    I report the discovery of two new Galactic Wolf-Rayet stars in Circinus via detection of their C, N and He near-infrared emission lines, using ESO-NTT-SOFI archival data. The H- and K-band spectra of WR 67a and WR 67b indicate that these are Wolf-Rayet stars of WN 6h and WC 8 subtypes, respectively. WR 67a presents a weak-lined spectrum probably reminiscent of young hydrogen-rich main-sequence stars, such as WR 25 in Car OB1 and HD 97950 in NGC 3603. Indeed, this conclusion is reinforced by the close morphological match of the WR 67a H- and K-band spectra with that for WR 21a, a known extremely massive binary system. WR 67b is probably a non-dusty WC 8 Wolf-Rayet star that has an estimated heliocentric distance of 2.7 ± 0.9 kpc, which for its Galactic coordinates puts the star probably in the near portion of the Scutum-Centaurus arm.

  19. Le Phénomène Wolf-Rayet au Sein des Etoiles chaudes de Populations I et II: Histoire des Vents stellaires et Impact sur la Structure nébulaire circumstellaire

    NASA Astrophysics Data System (ADS)

    Grosdidier, Yves

    2000-12-01

    Les spectres des étoiles Wolf-Rayet pop. I (WR) présentent de larges raies en émission dues à des vents stellaires chauds en expansion rapide (vitesse terminale de l'ordre de 1000 km/s). Le modèle standard des étoiles WR reproduit qualitativement le profil général et l'intensité des raies observées. Mais la spectroscopie intensive à moyenne résolution de ces étoiles révèle l'existence de variations stochastiques dans les raies (sous-pics mobiles en accélération échelles de temps: environ 10-100 min.). Ces variations ne sont pas comprises dans le cadre du modèle standard et suggèrent une fragmentation intrinsèque des vents. Cette thèse de doctorat présente une étude de la variabilité des raies spectrales en émission des étoiles WR pop. II; la question de l'impact d'un vent WR fragmenté sur le milieu circumstellaire est aussi étudiée: 1) à partir du suivi spectroscopique intensif des raies CIIIl5696 et CIVl5801/12, nous analysons quantitativement (via le calcul des Spectres de Variance Temporelle) les vents issus de 5 étoiles centrales de nébuleuses planétaires (NP) galactiques présentant le phénomène WR; 2) nous étudions l'impact de la fragmentation des vents issus de deux étoiles WR pop. I sur le milieu circumstellaire via: i) l'imagerie IR (NICMOS2/HST) de WR 137, et ii) l'imagerie H-alpha (WFPC2/HST) et l'interférométrie Fabry-Perot H-alpha (SIS-CFHT) de la nébuleuse M 1-67 (étoile centrale: WR 124). Les principaux résultats sont les suivants: VENTS WR POP. II: (1) Nous démontrons la variabilité spectroscopique intrinsèque des vents issus des noyaux de NP HD 826 ([WC 8]), BD +30 3639 ([WC 9]) et LSS 3169 ([WC 9]), observés durant respectivement 22, 15 et 1 nuits, et rapportons des indications de variabilité pour les noyaux [WC 9] HD 167362 et He 2-142. Les variabilités de HD 826 et BD +30 3639 apparaissent parfois plus soutenues (``bursts'' qui se maintiennent durant plusieurs nuits); (2) La cinématique des sous

  20. UV and radiofrequency observations of Wolf-Rayet stars.

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1973-01-01

    Available spectrometric and photometric observations of Wolf-Rayet stars by the OAO 2 spacecraft in the UV range are discussed along with radio astronomical observations of W stars with symmetrical nebulae around them. The scanned spectrum of the WN5 star HD 50896 between 1200 and 1900 A is illustrated together with the photometered spectrum of the WN6 star HD 192163 from 1330 to 3320 A. RF observations of NGC 6888 around HD 192163 are examined relative to interpretation of the properties of a WN6 star ejecting mass into a nebular shell.

  1. The missing Wolf-Rayet X-ray binary systems

    NASA Astrophysics Data System (ADS)

    Munoz, M.; Moffat, A. F. J.; Hill, G. M.; Richardson, N. D.; Pablo, H.

    We investigate the rarity of the Wolf-Rayet X-ray binaries (WRXRBs) in contrast to their predecessors, the high mass X-ray binaries (HMXRBs). Recent studies suggest that common envelope (CE) mergers during the evolution of a HMXRBs may be responsible (Linden et al. 2012). We conduct a binary population synthesis to generate a population of HMXRBs mimicking the Galactic sample and vary the efficiency parameter during the CE phase to match the current WRXRB to HMXRB ratio. We find that ˜50% of systems must merge to match observational constraints.

  2. Potsdam Wolf-Rayet model atmosphere grids for WN stars

    NASA Astrophysics Data System (ADS)

    Todt, H.; Sander, A.; Hainich, R.; Hamann, W.-R.; Quade, M.; Shenar, T.

    2015-07-01

    We present new grids of Potsdam Wolf-Rayet (PoWR) model atmospheres for Wolf-Rayet stars of the nitrogen sequence (WN stars). The models have been calculated with the latest version of the PoWR stellar atmosphere code for spherical stellar winds. The WN model atmospheres include the non-LTE solutions of the statistical equations for complex model atoms, as well as the radiative transfer equation in the co-moving frame. Iron-line blanketing is treated with the help of the superlevel approach, while wind inhomogeneities are taken into account via optically thin clumps. Three of our model grids are appropriate for Galactic metallicity. The hydrogen mass fraction of these grids is 50%, 20%, and 0%, thus also covering the hydrogen-rich late-type WR stars that have been discovered in recent years. Three grids are adequate for LMC WN stars and have hydrogen fractions of 40%, 20%, and 0%. Recently, additional grids with SMC metallicity and with 60%, 40%, 20%, and 0% hydrogen have been added. We provide contour plots of the equivalent widths of spectral lines that are usually used for classification and diagnostics. The full set of synthetic spectra and the spectral energy distributions are available online at http://www.astro.physik.uni-potsdam.de/PoWR.html

  3. ELEVEN NEW HEAVILY REDDENED FIELD WOLF-RAYET STARS

    SciTech Connect

    Smith, J. D. T.; Cushing, Michael; Barletta, Anthony; McCarthy, Don; Kulesa, Craig; Van Dyk, Schuyler D.

    2012-12-01

    We report the results of a medium-narrowband 2 {mu}m line survey covering 5.8 deg{sup 2} near the Galactic plane. We confirm 11 new field Wolf-Rayet stars along three lines of sight probing the inner Galaxy, demonstrating the capability to uncover distant and highly reddened populations of Galactic wind-borne emission-line stars suffering extinction as high as A{sub V} {approx} 40 and as distant as 9 kpc down to modest magnitude limits of K{sub s} {approx} 12.5. All stars are of subtype WC7-8, with median distance d = 6 kpc and median extinction A{sub K{sub s}} = 2.5. Over the fields surveyed, the density of Wolf-Rayet stars to limiting magnitude K{sub s} {approx} 12.5 was found to be 1.9 deg{sup -2}. We compare this to models which predict their distribution within the Galaxy and find that, even neglecting survey and subtype incompleteness, they consistently underpredict the number of newly discovered stars along the surveyed lines of sight.

  4. Theories for the winds from Wolf Rayet stars

    NASA Astrophysics Data System (ADS)

    Cassinelli, J. P.

    The massive and fast winds of Wolf Rayet stars present a serious momentum problem for the line-driven wind theories that are commonly used to explain the fast winds of early type stars. It is perhaps possible for the winds to be driven by lines, if multiple scattering occurs and if there are a sufficient number of lines in the spectrum so that large fraction of the continuum is blocked by line opacity in the winds. Several other mechanisms are discussed, in particular two that rely on strong magnetic fields: (1) Alfven wave driven wind models like those recently developed by Hartmann and MacGregor for late type supergiants and (2) the 'Fast Magnetic Rotator' model that was developed by Belcher and MacGregor for the winds from pre-main sequence stars. In either model, large magnetic fields (about 10,000 gauss) are required to drive the massive and fast winds of Wolf Rayet stars. Smaller fields might be possible if the multiple scattering line radiation force can be relied on to provide a final acceleration to terminal velocity.

  5. A spectropolarimetric study of the Wolf-Rayet star EZ CMa1

    NASA Astrophysics Data System (ADS)

    de la Chevrotière, Antoine; St-Louis, Nicole; Moffat, Anthony F. J.

    2012-05-01

    We report on the first deep, direct search for a magnetic field via Zeeman splitting in a Wolf-Rayet star. Using the highly-efficient ESPaDOnS (Echelle Spectro-Polarimetric Device for the Observations of Stars) at the Canada-France-Hawaii telescope, we observed at four different rotation phases one of the best WR candidates in the sky expected to harbor a magnetic field, the bright, variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field. Based on the work of Gayley and Ignace [1], we investigate the split-monopole scenario as a possible magnetic configuration and obtain an upper limit of ~ 300 G in the formation region of the strongest emission line HeII λ4686A˚.

  6. Investigating the Wolf-Rayet + Black Hole Binary NGC 300 X-1 With Chandra and Hubble

    NASA Astrophysics Data System (ADS)

    Gross, Jacob; Binder, Breanna A.; Williams, Benjamin F.; Laycock, Silas

    2016-01-01

    We observed the Wolf-Rayet + black hole binary NGC 300 X-1 twice with the Chandra X-ray Observatory (~65 ksec each). In the first observation, we observed a secular increase in brightness of the X-ray source, consistent with an eclipse egress. The Chandra data were also used to construct a spectral model of the black hole that could help us better understand how X-rays are being produced in the binary. We observe an X-ray energy dependence on the orbital phase, consistent with the black hole moving through the dense stellar wind of the donor star. Prior to our study, NGC 300 X-1 had only been observed by ground-based telescopes and these images of the system made it difficult to separate the optical source from other nearby stars. We obtained Hubble imaging of NGC 300 X-1 for the first time, and found a bright AGB star withing the X-ray error circle, in addition to the Wolf-Rayet star. We cannot rule out the possibility that the AGB star is the companion. We have compared the X-ray light curve with the He II λ 4648 emission line radial velocity from the literature to the X-ray light curve, and found that the He II emission line likely originates from the black hole accretion disk or from a focused wind from the donor, and not the donor star itself. These observations demonstrates that the mass of the black hole -- previously estimated at ~15 M⊙ -- may not be accurate.

  7. Searching for Wolf-Rayet Stars Beyond the Local Group

    NASA Astrophysics Data System (ADS)

    Bibby, J. L.; Shara, M. M.; Crowther, P. A.; Moffat, A. F. J.

    2012-12-01

    We present preliminary results from our HST/WFC3 F469N narrow-band imaging of the nearby star-forming galaxy M101 in which we search for Wolf-Rayet (WR) stars, possible progenitors of Type Ibc core-collapse supernovae (ccSNe). From analysis of the central pointing of M101 we identify ˜1000 WR candidates from photometric analysis and estimate ˜ 450 using the “blinking” method. From analysis of a sample region we find that 35% of our WR candidates would not be detected in ground-based surveys and 40% of sources are not detected in the HST F435W images, highlighting the importance of high spatial resolution narrow-band imaging.

  8. Wolf-Rayet content of the Milky Way

    NASA Astrophysics Data System (ADS)

    Crowther, P. A.

    An overview of the known Wolf-Rayet (WR) population of the Milky Way is presented, including a brief overview of historical catalogues and recent advances based on infrared photometric and spectroscopic observations resulting in the current census of 642 (vl.13 online catalogue). The observed distribution of WR stars is considered with respect to known star clusters, given that ≤20% of WR stars in the disk are located in clusters. WN stars outnumber WC stars at all galactocentric radii, while early-type WC stars are strongly biased against the inner Milky Way. Finally, recent estimates of the global WR population in the Milky Way are reassessed, with 1,200±100 estimated, such that the current census may be 50% complete. A characteristic WR lifetime of 0.25 Myr is inferred for an initial mass threshold of 25 M⊙.

  9. The 'Baldwin Effect' in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Morris, Patrick; Conti, Peter S.; Lamers, Henny J. G. L. M.; Koenigsberger, Gloria

    1993-01-01

    The equivalent widths of a number of emission lines in the spectra of WN-type Wolf-Rayet stars are found to inversely correlate with the luminosity of the underlying continuum. This is the well-known Baldwin Effect that has previously been observed in quasars and some Seyfert I galaxies. The Effect can be inferred from line and continuum predictions in published non-LTE model helium atmospheres and is explainable in terms of differences in wind density among WN stars. Using a simple wind model, we show that the Effect arises from the fact that both the effective radius for the local continuum and the emission measure of the layers above the continuum-forming region depend on the density in the wind. The Effect provides a new method for distance determinations of W-R stars.

  10. Wolf-Rayet stars in the Andromeda Galaxy

    SciTech Connect

    Moffat, A.F.J.; Shara, M.M.

    1987-09-01

    A survey of M31 for strong-line Wolf-Rayet (W-R) stars has been completed, confirming the trends found previously, that (1) M31 is at present about an order of magnitude less active in star formation than the Galaxy, as reflected in the total number of W-R stars, assumed to have evolved from massive progenitors; (2) the number ratio of late to early WC stars, WCL/WCE, varies systematically with galactocentric radius as in the Galaxy, possibly a consequence of the metallicity gradient in the disk; and (3) most W-R stars lie in the prominent ring of active star formation at R = 7-12 kpc from the center of M31. 19 references.

  11. A New Galactic Wolf-Rayet Star in Centaurus

    NASA Astrophysics Data System (ADS)

    Roman-Lopes, A.

    2011-09-01

    I communicate the detection of a new Galactic Wolf-Rayet star (WR60a) in Centaurus. The H- and K-band spectra of WR60a show strong carbon near-infrared emission lines, characteristic of Wolf-Rayet stars of the WC5-7 subtype. Adopting mean absolute magnitude MK and mean intrinsic (J-Ks) and (H-Ks) colours, it was found that WR60a suffers a mean visual extinction of 3.8+/-1.3 magnitudes, being located at a probable heliocentric distance of 5.2+/-0.8 Kpc, which for the related Galactic longitude puts this star probably in the Carina-Sagittarius arm at about 5.9 kpc from the Galactic center. I searched for clusters in the vicinity of WR60a and in principle found no previously known clusters in a search radius region of several tens arcminutes. The detection of a well-isolated WR star induced us to seek for some still unknown cluster, somewhere in the vicinity of WR60a. From inspection of 5.8 microns and 8.0 microns Spitzer/IRAC GLIMPSE images of the region around the new WR star, strong mid-infrared extended emission at about 13.5 arcmin south-west of WR60a was found. The study of the H-KS colour distribution of point sources associated with the extended emission reveals the presence of a new Galactic cluster candidate probably formed by at least 85 stars.

  12. A survey of nebulae around galactic wolf-rayet stars in the southern sky, 2.

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Yocum, D. R.; Garcia-Segura, G.; Chu, Y.-H.

    1994-01-01

    We present the second half of a charge coupled device (CCD) narrow-band imaging survey of galactic Wolf-Rayet stars located in the southern hemisphere as listed by van der Hucht et al. (1981). Images of 50 Wolf-Rayet stars were taken using a wide-field CCD and narrowband interference filters centered on H alpha and (O III) 5007 A wavelengths. The first half of the survey (Marston, Chu, & Garcia-Segura 1993, hereafter Paper I) revealed six new ring nebulae residing around Wolf-Rayet stars. Here we reveal a possible 11 new rings and the existence of multiple rings associated with two previously known nebula, RCW 118 and G2.4+1.4 and around the stars WR 16 and WR 43. Combining our results with those of Miller & Chu (1993) and Paper I, 92% of the van der Hucht catalog of Wolf-Rayet stars have now been surveyed. Of the 38 possible ring nebulae found in our surveys to date, 22 reside around WN subtype Wolf-Rayet stars, 13 around WC stars, one around a triplet of Wolf-Rayet stars and one around a WO star (WR 102). One ring exists around a WN/WC star (WR 98). A bias toward rings being observed around W-R + OB binaries is noted. Such pairings are generally bright, and the detection of a ring around them may merely be a function of their combined luminosity. Several Wolf-Rayet stars are shown to be surrounded by multiple rings (two or three) which suggests that a number of ejections of stellar material have taken place during their evolution.

  13. Massive Wolf-Rayet stars on the verge to explode

    NASA Astrophysics Data System (ADS)

    Tramper, F.; Straal, S. M.; Sanyal, D.; Sana, H.; de Koter, A.; Gräfener, G.; Langer, N.; Vink, J. S.; de Mink, S. E.; Kaper, L.

    The enigmatic oxygen-sequence Wolf-Rayet stars represent a rare stage in the evolution of massive stars. Their properties can provide unique constraints on the pre-supernova evolution of massive stars. This work presents the results of a quantitative spectroscopic analysis of the known single WO stars, with the aim to obtain the key stellar parameters and deduce their evolutionary state.X-Shooter spectra of the WO stars are modeled using the line-blanketed non-local thermal equilibrium atmosphere code cmfgen. The obtained stellar parameters show that the WO stars are very hot, with temperatures ranging from 150 kK to 210 kK. Their chemical composition is dominated by carbon (>50%), while the helium mass fraction is very low (down to 14%). Oxygen mass fractions reach as high as 25%. These properties can be reproduced with dedicated evolutionary models for helium stars, which show that the stars are post core-helium burning and very close to their eventual supernova explosion. The helium-star masses indicate initial masses or approximately 40 - 60M⊙.Thus, WO stars represent the final evolutionary stage of stars with estimated initial masses of 40 - 60M⊙. They are post core-helium burning and may explode as type Ic supernovae within a few thousand years.

  14. TRIGGERED STAR FORMATION SURROUNDING WOLF-RAYET STAR HD 211853

    SciTech Connect

    Liu Tie; Wu Yuefang; Zhang Huawei; Qin Shengli

    2012-05-20

    The environment surrounding Wolf-Rayet (W-R) star HD 211853 is studied in molecular, infrared, as well as radio, and H I emission. The molecular ring consists of well-separated cores, which have a volume density of 10{sup 3} cm{sup -3} and kinematic temperature {approx}20 K. Most of the cores are under gravitational collapse due to external pressure from the surrounding ionized gas. From the spectral energy distribution modeling toward the young stellar objects, the sequential star formation is revealed on a large scale in space spreading from the W-R star to the molecular ring. A small-scale sequential star formation is revealed toward core 'A', which harbors a very young star cluster. Triggered star formations are thus suggested. The presence of the photodissociation region, the fragmentation of the molecular ring, the collapse of the cores, and the large-scale sequential star formation indicate that the 'collect and collapse' process functions in this region. The star-forming activities in core 'A' seem to be affected by the 'radiation-driven implosion' process.

  15. Helium stars: towards an understanding of Wolf-Rayet evolution

    NASA Astrophysics Data System (ADS)

    McClelland, L. A. S.; Eldridge, J. J.

    2016-06-01

    Wolf-Rayet (WR) stars are massive stars that have lost most or all of their hydrogen via powerful stellar winds. Recent observations have indicated that hydrogen-free WR stars have cooler temperatures than those predicted by current evolutionary models. To investigate how varying mass-loss rate affects WR evolution, we have created a grid of pure helium star models. We compare our results with Galactic and Large Magellanic Cloud WR observations and show that the temperature ranges of observed WR stars can be reproduced by varying the mass-loss rate, which effectively determines the size of the helium envelope around the core. We also find that WN and WO stars arise from more massive stars, whereas WC stars come from lower masses. This contradicts the standard Conti scenario by which WN and WC stars evolve in an age sequence. We also predict the magnitudes of our models at core-collapse and compare with observations of nearby progenitors of Type Ib/c supernovae. We confirm the findings of previous studies that suggest WR stars are the progenitors of core-collapse supernovae; the progenitors would remain unobserved except in the cases where the progenitor is a low-mass helium giant, as is the case of iPTF13bvn.

  16. A survey of nebulae around Galactic Wolf-Rayet stars in the southern sky, 1

    NASA Technical Reports Server (NTRS)

    Marston, A. P.; Chu, Y.-H.; Garcia-Segura, G.

    1994-01-01

    Images are presented from the first half of a survey of all Galactic Wolf-Rayet stars in the catalog of van der Hucht et al. (1981) residing in the southern skies. Previous surveys used only existing broad-band photographic plates. Encouraged by successes using CCD imaging with interference filters of the LMC and northern Galaxy (Miller & Chu 1993), we have expanded the survey to the southern hemisphere. In the first half of our southern survey, H alpha and (O III) narrow-band CCD images of fields centered on known Wolf-Rayet stars have indicated the existence of six new ring nebulae as well as revealing previously unobserved morphological features in the known ring nebulae. An example of this is an almost perfect ring of (O III) emission residing interior to the previously observed H alpha filaments of the Wolf-Rayet ring nebulae RCW 104. Our surveys to date indicate that 21% of all Wolf-Rayet stars have ring nebulae, with WN-type Wolf-Rayet stars having a greater likelihood for an associated ring.

  17. The first transition Wolf-Rayet WN/C star in M31

    NASA Astrophysics Data System (ADS)

    Shara, Michael M.; Mikołajewska, Joanna; Caldwell, Nelson; Iłkiewicz, Krystian; Drozd, Katarzyna; Zurek, David

    2016-02-01

    Three decades of searches have revealed 154 Wolf-Rayet (WR) stars in M31, with 62 of WC type, 92 of WN type and zero of transition-type WN/C or WC/N. In apparent contrast, about two per cent of the WR stars in the Galaxy, the LMC and M33 simultaneously display strong lines of carbon and nitrogen, i.e. they are transition-type WN/C or WC/N stars. We report here the serendipitous discovery of M31 WR 84-1, the first transition star in M31, located at RA = 00h43m43{^s.}61 Dec. = +41°45'27{^''.}95 (J2000). We present its spectrum, classify it as WN5/WC6, and compare it with other known transition stars. The star is unresolved in Hubble Space Telescope narrow-band and broad-band images, while its spectrum displays strong, narrow emission lines of hydrogen, [N II], [S II] and [O III]; this indicates a nebula surrounding the star. The radial velocity of the nebular lines is consistent with that of gas at the same position in the disc of M31. The metallicity at the 11.8 kpc galactocentric distance of M31 WR 84-1 is approximately solar, consistent with other known transition stars. We suggest that modest numbers of reddened WR stars remain to be found in M31.

  18. THE WOLF-RAYET CONTENT OF M33

    SciTech Connect

    Neugent, Kathryn F.; Massey, Philip E-mail: phil.massey@lowell.edu

    2011-06-01

    Wolf-Rayet (WR) stars are evolved massive stars, and the relative number of WC-type and WN-type WRs should vary with metallicity, providing a sensitive test of stellar evolutionary theory. The observed WC/WN ratio is much higher than that predicted by theory in some galaxies but this could be due to observational incompleteness for WN types, which have weaker lines. Previous studies of M33's WR content show a galactocentric gradient in the relative numbers of WCs and WNs, but only small regions have been surveyed with sufficient sensitivity to detect all of the WNs. Here, we present a sensitive survey for WRs covering all of M33, finding 55 new WRs, mostly of WN type. Our spectroscopy also improves the spectral types of many previously known WRs, establishing in one case that the star is actually a background quasar. The total number of spectroscopically confirmed WRs in M33 is 206, a number we argue is complete to {approx}5%, with most WRs residing in OB associations, although {approx}2% are truly isolated. The WC/WN ratio in the central regions (<2 kpc) of M33 is much higher than that predicted by the current Geneva evolutionary models, while the WC/WN ratios in the outer regions are in good accord, as are the values in the Small Magellanic Cloud and Large Magellanic Cloud. The WC/WN ratio and the WC subtype distribution both argue that the oxygen abundance gradient in M33 is significantly larger than that found by some recent studies, but are consistent with the two-component model proposed by Magrini et al.

  19. Finding Wolf-Rayet Stars in the Milky Way

    NASA Astrophysics Data System (ADS)

    Marston, A. P.; Mauerhan, J.; Morris, P. W.; Van Dyk, S.

    The total population of Wolf-Rayet (WR) stars in the Galaxy is predicted by models to be as many as ~6000 stars, and yet the number of catalogued WR stars as a result of optical surveys was far lower than this (~200) at the turn of this century. When beginning our WR searches using infrared techniques it was not clear whether WR number predictions were too optimistic or whether there was more hidden behind interstellar and circumstellar extinction. During the last decade we pioneered a technique of exploiting the near- and mid-infrared continuum colours for individual point sources provided by large-format surveys of the Galaxy, including 2MASS and Spitzer/GLIMPSE, to pierce through the dust and reveal newly discovered WR stars throughout the Galactic Plane. The key item to the colour discrimination is via the characteristic infrared spectral index produced by the strong winds of the WR stars, combined with dust extinction, which place WR stars in a relatively depopulated area of infrared colour-colour diagrams. The use of the Spitzer/GLIMPSE 8µm and, more recently, WISE 22µm fluxes together with cross-referencing with X-ray measurements in selected Galactic regions have enabled improved candidate lists that increased our confirmation success rate, achieved via follow-up infrared and optical spectroscopy. To date a total of 102 new WR stars have been found with many more candidates still available for follow-up. This constitutes an addition of ~16% to the current inventory of 642 Galactic WR stars. In this talk we review our methods and provide some new results and a preliminary review of their stellar and interstellar medium environments. We provide a roadmap for the future of this search, including statistical modeling, and what we can add to star formation and high mass star evolution studies.

  20. Absolute spectrophotometry of Wolf-Rayet stars from 1200 to 7000 A - A cautionary tale

    NASA Technical Reports Server (NTRS)

    Garmany, C. D.; Conti, P. S.; Massey, P.

    1984-01-01

    It is demonstrated that absolute spectrophotometry of the continua of Wolf-Rayet stars may be obtained over the wavelength range 1200-7000 A using IUE and optical measurements. It is shown that the application of a 'standard' reddening law to the observed data gives spurious results in many cases. Additional UV extinction is apparently necessary and may well be circumstellar in origin. In such hot stars, the long-wavelength 'tail' of the emergent stellar continuum are measured. The inadequacy of previous attempts to determine intrinsic continua and effective temperatures of Wolf-Rayet stars is pointed out.

  1. Long-term Observations of Wolf-Rayet Type Binary Systems WR 127 and WR 141

    NASA Astrophysics Data System (ADS)

    Akoz, Ibrahim; Yakut, Kadri

    2016-07-01

    New UBVRI long-term photometric observations of the Wolf-Rayet systems WR 127 and WR 141 are obtained at the TÜBİTAK National Observatory with the 60cm Robotic telescope. Our new observations are combined with the earlier observations. We analyzed all the available light variation of the systems and revised the orbital parameters of the systems.

  2. Short-lived radionuclide production by non-exploding Wolf-Rayet stars.

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Paulus, G.; Meynet, G.

    1997-05-01

    This paper presents an extension and update of previous calculations of the production by non-exploding Wolf-Rayet stars of radionuclides that could be responsible for certain isotopic anomalies discovered in meteoritic inclusions, or in meteoritic grains of probable circumstellar origin. Quantitative predictions of the time dependence of the radionuclide composition of the wind of Wolf-Rayet stars with initial masses in the wide 25<=M_i_<=120Msun_ range and for metallicities 0.001<=Z<=0.04 are obtained from a set of revised stellar evolution models. Special emphasis is put on the radionuclides with half-lives between about 10^5^ and 10^8^yr that could be produced by neutron captures during central helium burning and ejected during the WC-WO evolutionary phases. We stress that the radionuclide yield predictions are much more secure for Wolf-Rayet stars than for any other potential source of these species that has been contemplated up to now. This relates directly to the simplicity of these stars compared to highly difficult to model objects like Asymptotic Giant Branch stars, novae or supernovae. Our abundance predictions are confronted with existing observational data, or are hoped to help unravelling cases of potential interest for further laboratory quest when observations are lacking. The case of ^26^Al, of special interest for γ-ray line astronomy as well as for cosmochemistry, is also briefly revisited. In contrast to the other considered radionuclides, ^26^Al is produced during hydrogen burning, and is ejected at the WN evolutionary phase of the Wolf-Rayet stars. Our computed yields are also used as the basis for a qualitative discussion of the astrophysical plausibility of the contamination of the protosolar nebula with the radionuclides loading the Wolf-Rayet winds. Our calculations indicate that ^26^Al, ^41^Ca and ^107^Pd can be produced at a level compatible with the observations from a large variety of Wolf-Rayet stars with different masses and initial

  3. X ray emission from Wolf-Rayet stars with recurrent dust formation

    NASA Technical Reports Server (NTRS)

    Rawley, Gayle L.

    1993-01-01

    We were granted a ROSAT observation of the Wolf-Rayet star WR 137 (equals HD 192641) to test a proposed mechanism for producing the infrared variability reported by Williams et al. (1987). These studies showed one clear infrared outburst preceded by what may be the dimming of a previous outburst. The recurrent dust formation model was put forward by Williams et al. (1990) to account for similar variability seen in WR 140, which varies in both the infrared and X-ray bands. The detected X-ray flux from WR 140 was observed to decrease from its normally high (for Wolf-Rayet stars) level as the infrared flux increased. Observation of two apparently-periodic infrared outbursts led to the hypothesis that WR 140 had an O star companion in an eccentric orbit, and that the increase in infrared flux came from a dust formation episode triggered by the compression of the O star and Wolf-Rayet star winds. The absorption of the X-rays by the increased material explained the decrease in flux at those wavelengths. If the infrared variability in WR 137 were caused by a similar interaction of the Wolf-Rayet star with a companion, we might expect that WR 137 would show corresponding X-ray variability and an X-ray luminosity somewhat higher than typical WC stars, as well as a phase-dependent non-thermal X-ray spectrum. Our goals in this study were to obtain luminosity estimates from our counting rates for comparison with previous observations of WR 137 and other WC class stars, especially WR 140; to compare the luminosity with the IR lightcurve; and to characterize the spectral shape of the X-ray emission, including the column density.

  4. Concerning the Wolf-Rayet and other luminous early-type stars

    NASA Technical Reports Server (NTRS)

    Underhill, A. B.

    1981-01-01

    Effective temperatures, radii, and luminosities were determined from S2/68, ANS, UBV, and uvby photometry for four B0/B1 supergiants, four O4 stars, and four WN7/WN8 stars as well as for four test stars having spectral types between B1.5 V and 09 V and five stars with known angular diameters and effective temperatures. The effective temperatures of B1 Ia+ stars are found to be near 17,000 K, those of O4 stars near 45,000, and those of WN7/WN8 stars near 26,000 K. The question of modeling the atmospheres of hot luminous stars is examined, and it is noted that the photosphere can be modeled adequately using a classical plane-parallel layer model atmosphere. In addition, it is found that the Wolf-Rayet stars of types WN7/WN8 fall in the H-R diagram near the B0 Ia stars, while the others fall near B0.5 III stars. The evolutionary relationship between the Wolf-Rayet and O stars is considered; it is suggested that a Wolf-Rayet spectrum is a short-lived phase in the life of a massive star.

  5. Imaging of the Wolf-Rayet galaxy He 2-10

    NASA Technical Reports Server (NTRS)

    Corbin, Michael R.; Korista, Kirk T.; Vacca, William D.

    1993-01-01

    We present B, V, and emission-line CCD images of the Wolf-Rayet galaxy He 2-10. The broad band images reveal the galaxy to consist of two starburst regions at the center of an elliptical stellar envelope about 10 times their size, with a major axis diameter of approximately 3.8 kpc. Previous imaging detected only the starburst regions, leading to the erroneous description of the object as an interacting pair. Morphologically, He 2-10 resembles the majority of blue compact dwarf galaxies (BCDGs), some of which also show Wolf-Rayet features in their spectra. The lack of nearby neighbors to He 2-10 suggests that its star formation is proceeding stochastically, rather than as the result of interaction, and its morphological similarity to other BCDGs suggests that all such galaxies may pass through a Wolf-Rayet phase. The similarity of the outer regions of He 2-10 and other BCDGs to normal dwarf ellipticals also supports models in which the former evolve into the latter.

  6. Spectrum and light curve of a supernova shock breakout through a thick Wolf-Rayet wind

    SciTech Connect

    Svirski, Gilad; Nakar, Ehud

    2014-06-20

    Wolf-Rayet stars are known to eject winds. Thus, when a Wolf-Rayet star explodes as a supernova, a fast (≳ 40, 000 km s{sup –1}) shock is expected to be driven through a wind. We study the signal expected from a fast supernova shock propagating through an optically thick wind and find that the electrons behind the shock driven into the wind are efficiently cooled by inverse Compton over soft photons that were deposited by the radiation-mediated shock that crossed the star. Therefore, the bolometric luminosity is comparable to the kinetic energy flux through the shock, and the spectrum is found to be a power law, whose slope and frequency range depend on the number flux of soft photons available for cooling. Wolf-Rayet supernovae that explode through a thick wind have a high flux of soft photons, producing a flat spectrum, νF {sub ν} = Const, in the X-ray range of 0.1 ≲ T ≲ 50 keV. As the shock expands into an optically thin wind, the soft photons are no longer able to cool the shock that plows through the wind, and the bulk of the emission takes the form of a standard core-collapse supernova (without a wind). However, a small fraction of the soft photons is upscattered by the shocked wind and produces a transient unique X-ray signature.

  7. THE PROPAGATION OF NEUTRINO-DRIVEN JETS IN WOLF-RAYET STARS

    SciTech Connect

    Nagakura, Hiroki

    2013-02-20

    We numerically investigate the jet propagation through a rotating collapsing Wolf-Rayet star with detailed central engine physics constructed based on the neutrino-driven collapsar model. The collapsing star determines the evolution of the mass accretion rate, black hole mass, and spin, all of which are important ingredients for determining the jet luminosity. We reveal that neutrino-driven jets in rapidly spinning Wolf-Rayet stars are capable of breaking out from the stellar envelope, while those propagating in slower rotating progenitors fail to break out due to insufficient kinetic power. For progenitor models with successful jet breakouts, the kinetic energy accumulated in the cocoon could be as large as {approx}10{sup 51} erg and might significantly contribute to the luminosity of the afterglow emission or to the kinetic energy of the accompanying supernova if nickel production takes place. We further analyze the post-breakout phase using a simple analytical prescription and conclude that the relativistic jet component could produce events with an isotropic luminosity L {sub p(iso)} {approx} 10{sup 52} erg s{sup -1} and isotropic energy E {sub j(iso)} {approx} 10{sup 54} erg. Our findings support the idea of rapidly rotating Wolf-Rayet stars as plausible progenitors of GRBs, while slowly rotational ones could be responsible for low-luminosity or failed GRBs.

  8. Momentum deposition on Wolf-Rayet winds: Nonisotropic diffusion with effective gray opacity

    NASA Technical Reports Server (NTRS)

    Gayley, Kenneth G.; Owocki, Stanley P.; Cranmer, Steven R.

    1995-01-01

    We derive the velocity and mass-loss rate of a steady state Wolf-Rayet (WR) wind, using a nonisotropic diffusion approximation applied to the transfer between strongly overlapping spectral lines. Following the approach of Friend & Castor (1983), the line list is assumed to approximate a statistically parameterized Poisson distribution in frequency, so that photon transport is controlled by an angle-dependent, effectively gray opacity. We show the nonisotropic diffusion approximation yields good agreement with more accurate numerical treatments of the radiative transfer, while providing analytic insight into wind driving by multiple scattering. We illustrate, in particular, that multiple radiative momentum deposition does not require that potons be repeatedly reflected across substantial distances within the spherical envelope, but indeed is greatest when photons undergo a nearly local diffusion, e.g., through scattering by many lines closely spaced in frequency. Our results reiterate the view that the so-called 'momentum problem' of Wolf-Rayet winds is better characterized as an 'opacity problem' of simply identfying enough lines. One way of increasing the number of thick lines in Wolf-Rayet winds is to transfer opacity from saturated to unsaturated lines, yielding a steeper opacity distribution than that found in OB winds. We discuss the implications of this perspective for extending our approach to W-R wind models that incorporate a more fundamental treatment of the ionization and excitation processes that determine the line opacity. In particular, we argue that developing statistical descriptions of the lines to allow an improved effective opacity for the line ensemble would offer several advantages for deriving such more fundamental W-R wind models.

  9. Recent Star Formation in the Wolf-Rayet BCDG MRK 1094

    NASA Astrophysics Data System (ADS)

    Mendez, D. I.; Cairos, L. M.; Esteban, C.; Vilchez, J. M.

    1998-12-01

    We present preliminary results on high resolution Hα imaging of the Wolf-Rayet blue compact dwarf galaxy (BCDG) Mrk 1094. This galaxy presents a bar-shape structure and is currently undergoing a strong star formation burst distributed in several knots. Spatially resolved photometry of the different knots indicates that star formation seems to be propagating from the center outwards all along the bar. We discuss the different processes that could explain these observational facts. In this sense, Mrk 1094 is the first BCDG in which this kind of phenomena is detected.

  10. The Wolf-Rayet Population and ISM Interaction in Nearby Starbursts

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.; Monreal-Ibero, A.; Vílchez, J. M.; Pérez-Montero, E.; Iglesias-Páramo, J.; Sandin, C.; Relano, M.; Amorín, R.

    The interaction between massive star formation and gas is a key ingredient in galaxy evolution. Given the level of observational detail currently achievable in nearby starbursts, they constitute ideal laboratories to study interaction process that contribute to global evolution in all types of galaxies. Wolf-Rayet (WR) stars, as an observational marker of high mass star formation, play a pivotal role and their winds can strongly influence the surrounding gas. Imaging spectroscopy of two nearby (<4 Mpc) starbursts, both of which show multiple regions with WR stars, are discussed. The relation between the WR content and the physical and chemical properties of the surrounding ionized gas is explored.

  11. Modeling the Variation of X-Rays from Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    McFall, Michael, Ignace, Richard

    2012-02-01

    Wolf-Rayet (WR) stars are massive stars with powerful, x-ray-emitting winds. Some single stars have been observed to have a periodic behavior. A model using a spiral structure in the winds has been created to explain what causes this variability. We used this model to examine the possibility of x-ray variation in single WR stars. We have then used the model to determine probabilities of finding previously unknown variation in the x-rays of single WR stars given a set of parameters that define the spiral structure and the properties of the wind.

  12. A deep survey for Galactic Wolf-Rayet stars. I - Motivation, search technique, and first results

    NASA Technical Reports Server (NTRS)

    Shara, Michael M.; Smith, Lindsey F.; Potter, Michael; Moffat, Anthony F. J.

    1991-01-01

    Results are presented from a survey of large areas of the southern Milky Way for Wolf-Rayet (WR) stars to 17-18th magnitude, carried out using direct narrowband and broadband Schmidt plates. Thirteen new WR stars were detected in an about 40-deg-sq region in Carina, where 24 WR stars were already known; the new stars were found to be significantly redder, fainter, and farther away than the known stars. Of the new WR stars, 11 are of subtype WN, and two are WC, compared to the 17 WN and seven WC stars among the previously known WR stars in the same area.

  13. The vast population of Wolf-Rayet and red supergiant stars in M101. I. Motivation and first results

    SciTech Connect

    Shara, Michael M.; Bibby, Joanne L.; Zurek, David; Crowther, Paul A.; Moffat, Anthony F. J.; Drissen, Laurent

    2013-12-01

    Assembling a catalog of at least 10,000 Wolf-Rayet (W-R) stars is an essential step in proving (or disproving) that these stars are the progenitors of Type Ib and Type Ic supernovae. To this end, we have used the Hubble Space Telescope (HST) to carry out a deep, He II optical narrowband imaging survey of the ScI spiral galaxy M101. Almost the entire galaxy was imaged with the unprecedented depth and resolution that only the HST affords. Differenced with archival broadband images, the narrowband images allow us to detect much of the W-R star population of M101. We describe the extent of the survey and our images, as well as our data reduction procedures. A detailed broadband-narrowband imaging study of a field east of the center of M101, containing the giant star-forming region NGC 5462, demonstrates our completeness limits, how we find W-R candidates, their properties and spatial distribution, and how we rule out most contaminants. We use the broadband images to locate luminous red supergiant (RSG) candidates. The spatial distributions of the W-R and RSG stars near NGC 5462 are strikingly different. W-R stars dominate the complex core, while RSGs dominate the complex halo. Future papers in this series will describe and catalog more than a thousand W-R and RSG candidates that are detectable in our images, as well as spectra of many of those candidates.

  14. SN 2008D: A Wolf-Rayet Explosion Through a Thick Wind

    NASA Astrophysics Data System (ADS)

    Svirski, Gilad; Nakar, Ehud

    2014-06-01

    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN exploding through a thick wind and show that it naturally explains all of the observed features of SN 2008D X-ray emission, including the energetics, the spectrum, and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius and the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass-loss rate taking effect about 10 days prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion.

  15. DISCOVERY OF TWIN WOLF-RAYET STARS POWERING DOUBLE RING NEBULAE

    SciTech Connect

    Mauerhan, Jon C.; Wachter, Stefanie; Van Dyk, Schuyler D.; Hoard, D. W.; Morris, Patrick W.

    2010-11-20

    We have spectroscopically discovered a pair of twin, nitrogen-type, hydrogen-rich, Wolf-Rayet stars (WN8-9h) that are both surrounded by circular, mid-infrared-bright nebulae detected with the Spitzer Space Telescope and MIPS instrument. The emission is probably dominated by a thermal continuum from cool dust, but also may contain contributions from atomic line emission. There is no counterpart at shorter Spitzer/IRAC wavelengths, indicating a lack of emission from warm dust. The two nebulae are probably wind-swept stellar ejecta released by the central stars during a prior evolutionary phase. The nebulae partially overlap on the sky and we speculate on the possibility that they are in the early stage of a collision. Two other evolved massive stars have also been identified within the area subtended by the nebulae, including a carbon-type Wolf-Rayet star (WC8) and an O7-8 III-I star, the latter of which appears to be embedded in one of the larger WN8-9h nebulae. The derived distances to these stars imply that they are coeval members of an association lying 4.9 {+-} 1.2 kpc from Earth, near the intersection of the Galaxy's Long Bar and the Scutum-Centaurus spiral arm. This new association represents an unprecedented display of complex interactions between multiple stellar winds, outflows, and the radiation fields of evolved massive stars.

  16. Lattice Structure in Astrophysics: A reconsideration of White Dwarfs, Variables, and Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Robitaille, Pierre-Marie

    2016-03-01

    Stars of the main sequence display a mass-luminosity relation which indicates that they share a common building block (hydrogen) and lattice structure (hexagonal planar) with the solar photosphere. White dwarfs however display very low luminosity in spite of their elevated color temperature. Rather than postulate that these stars represent degenerate matter, as Eddington and Chandrasekhar were forced to assume given their gaseous models, within the context of a Liquid Metallic Hydrogen Solar Model white dwarfs might simply be thought as possessing a different lattice structure (e.g. body centered cubic) and hence a lowered emissivity. They do not need to possess exceeding densities, reduced radii, and degeneracy in order to account for their lowered emissivity. Similarly, variable stars might well be oscillating between lattices types wherein the energy differences involved in the transformations are small. Other stars, such as Wolf-Rayet stars, which lack photospheric emission, might be too hot to enable a discrete lattice to form. Though condensed, the photosphere in that case would have a lattice which is so poorly organized that its emissivity is trivial. Nonetheless, the broad emission lines of Wolf-Rayet stars indicates that these objects are not breaking apart but rather, are important sites of condensation.

  17. The importance of Wolf-Rayet ionization and feedback on super star cluster evolution

    NASA Astrophysics Data System (ADS)

    Sokal, K. R.; Johnson, K. E.; Massey, P.; Indebetouw, R.

    The feedback from massive stars is important to super star cluster (SSC) evolution and the timescales on which it occurs. SSCs form embedded in thick material, and eventually, the cluster is cleared out and revealed at optical wavelengths - however, this transition is not well understood. We are investigating this critical SSC evolutionary transition with a multi-wavelength observational campaign. Although previously thought to appear after the cluster has fully removed embedding natal material, we have found that SSCs may host large populations of Wolf-Rayet stars. These evolved stars provide ionization and mechanical feedback that we hypothesize is the tipping point in the combined feedback processes that drive a SSC to emerge. Utilizing optical spectra obtained with the 4m Mayall Telescope at Kitt Peak National Observatory and the 6.5m MMT, we have compiled a sample of embedded SSCs that are likely undergoing this short-lived evolutionary phase and in which we confirm the presence of Wolf-Rayet stars. Early results suggest that WRs may accelerate the cluster emergence.

  18. SN 2008D: A WOLF-RAYET EXPLOSION THROUGH A THICK WIND

    SciTech Connect

    Svirski, Gilad; Nakar, Ehud

    2014-06-10

    Supernova (SN) 2008D/XRT 080109 is considered to be the only direct detection of a shock breakout from a regular SN to date. While a breakout interpretation was favored by several papers, inconsistencies remain between the observations and current SN shock breakout theory. Most notably, the duration of the luminous X-ray pulse is considerably longer than expected for a spherical breakout through the surface of a type Ibc SN progenitor, and the X-ray radiation features, mainly its flat spectrum and its luminosity evolution, are enigmatic. We apply a recently developed theoretical model for the observed radiation from a Wolf-Rayet SN exploding through a thick wind and show that it naturally explains all of the observed features of SN 2008D X-ray emission, including the energetics, the spectrum, and the detailed luminosity evolution. We find that the inferred progenitor and SN parameters are typical for an exploding Wolf-Rayet. A comparison of the wind density found at the breakout radius and the density at much larger radii, as inferred by late radio observations, suggests an enhanced mass-loss rate taking effect about 10 days prior to the SN explosion. This finding joins accumulating evidence for a possible late phase in the stellar evolution of massive stars, involving vigorous mass loss a short time before the SN explosion.

  19. Multiwavelength observations of NaSt1 (WR 122): equatorial mass loss and X-rays from an interacting Wolf-Rayet binary

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon; Smith, Nathan; Van Dyk, Schuyler D.; Morzinski, Katie M.; Close, Laird M.; Hinz, Philip M.; Males, Jared R.; Rodigas, Timothy J.

    2015-07-01

    NaSt1 (aka Wolf-Rayet 122) is a peculiar emission-line star embedded in an extended nebula of [N II] emission with a compact dusty core. The object was previously characterized as a Wolf-Rayet (WR) star cloaked in an opaque nebula of CNO-processed material, perhaps analogous to η Car and its Homunculus nebula, albeit with a hotter central source. To discern the morphology of the [N II] nebula we performed narrow-band imaging using the Hubble Space Telescope and Wide-field Camera 3. The images reveal that the nebula has a disc-like geometry tilted ≈12° from edge-on, composed of a bright central ellipsoid surrounded by a larger clumpy ring. Ground-based spectroscopy reveals radial velocity structure (±10 km s-1) near the outer portions of the nebula's major axis, which is likely to be the imprint of outflowing gas. Near-infrared adaptive-optics imaging with Magellan AO has resolved a compact ellipsoid of Ks-band emission aligned with the larger [N II] nebula, which we suspect is the result of scattered He I line emission (λ2.06 μm). Observations with the Chandra X-ray Observatory have revealed an X-ray point source at the core of the nebula that is heavily absorbed at energies <1 keV and has properties consistent with WR stars and colliding-wind binaries. We suggest that NaSt1 is a WR binary embedded in an equatorial outflow that formed as the result of non-conservative mass transfer. NaSt1 thus appears to be a rare and important example of a stripped-envelope WR forming through binary interaction, caught in the brief Roche lobe overflow phase.

  20. The close binary frequency of Wolf-Rayet stars as a function of metallicity in M31 and M33

    SciTech Connect

    Neugent, Kathryn F.; Massey, Philip E-mail: phil.massey@lowell.edu

    2014-07-01

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the 'extra' WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in the lower metallicity environments of the middle and outer regions of M33. After identifying ∼100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations.

  1. Investigating Binary Wolf-Rayet Binary Stars as Potential Gamma-Ray Source

    NASA Astrophysics Data System (ADS)

    Meadows, Jacqueline; Alexander, Michael J.; McSwain, M. Virginia

    2015-01-01

    Wolf-Rayets are massive, hot, and luminous evolved stars with strong stellar winds. When paired with another massive star emitting strong stellar winds, the region where their winds collide produces a bow shock that may emit gamma-rays. This work seeks to find such a colliding wind binary by correlating the orbital period of a binary Wolf-Rayet with periodic changes in flux in nearby gamma-ray sources observed by Fermi Gamma-ray Space Telescope Large Area Telescope (LAT). We selected three binary Wolf-Rayet stars for analysis. WR 39 and WR 48 are in close proximity to unassociated sources from the LAT 2-Year Point Source Catalog (2FGL). WR 140 was selected on the basis of being a double-lined spectroscopic binary; the close passage of the two stars may contribute to colliding winds that could produce gamma-rays. We first used the Fermi Science Tools to calculate average flux values. The orbital period of WR 39 has not been established; so rather than creating a folded light curve, photon data for its proposed 2FGL counterpart were next analyzed using seven-day time bins in an attempt to use periodic behavior in the 2FGL source to find the orbital period of WR 39. However, no periodic behavior was evident in the plotted data. Since WR 48 lies just outside error ellipse of its proposed 2FGL counterpart, we performed the six-year likelihood analysis twice. First, WR 48 was manually inserted as a point source; this resulted in a non-converging fit. Instead, we used the proposed 2FGL counterpart as the object of interest. After calculating the average flux, we separated the photon data into phase bins based on the 18.34 day period of WR 48. The resulting folded light curve does not show any periodic behavior. WR 140 was also manually inserted as a point source; the analysis of the six-year data set failed to establish the existence of a gamma-ray source at the location of WR 140 and no further analysis was performed on this source.This research took place at Lehigh

  2. First Detections of Molecular Gas Associated with the Wolf-Rayet Ring Nebula NGC 3199

    NASA Astrophysics Data System (ADS)

    Marston, A. P.

    2001-12-01

    This paper presents the first observations of molecular gas associated with the Wolf-Rayet ring nebula NGC 3199 around the WR star WR 18. This includes first observations of the molecules HCN, HCO+, CN, and HNC seen in any Wolf-Rayet ring nebula. Our observations immediately suggest the presence of high-density molecular gas (>104 cm-3) in the nebula with significant amounts of associated molecular gas, which is in the form of clumpy ejecta and/or interstellar material. Molecular CO gas was mapped across the optically bright portion of the nebula and out into the diffuse ionized component using the 12CO J=1-->0 line. CO gas is not seen within the optically bright rim of NGC 3199 but adjacent to it. The optical emission rim therefore appears to mark regions of photodissociation. Velocity components in the CO data are consistent with those seen in high-resolution optical spectra of the Hα line but extend beyond the visible emission. A prior suggestion of the formation of the nebula via a bow shock appears unlikely since Hipparcos measurements show the proper motion of WR 18 is almost at right angles to the direction required for the bow shock model. Instead, line splitting toward the north of the nebula suggests that a possible blowout of the Wolf-Rayet wind through surrounding ejecta may be responsible for some of the velocity features observed. Preliminary estimates of molecular abundances in the nebula seen toward the central star are significantly higher than for the interstellar medium and are similar to those in planetary nebulae, although CN is distinctly underabundant in comparison to the very high values found in many planetary nebulae. The abundances found are consistent with the idea that at least a portion of the molecular material is associated with ejecta from the central star. Based on observations collected at the Swedish-ESO Submillimetre Telescope (SEST) at the European Southern Observatory, La Silla, Chile. The Swedish-ESO Submillimetre Telescope

  3. Gamma-ray burst progenitors and the population of rotating Wolf-Rayet stars.

    PubMed

    Vink, Jorick S

    2013-06-13

    In our quest for gamma-ray burst (GRB) progenitors, it is relevant to consider the progenitor evolution of normal supernovae (SNe). This is largely dominated by mass loss. We discuss the mass-loss rate for very massive stars up to 300M⊙. These objects are in close proximity to the Eddington Γ limit. We describe the new concept of the transitional mass-loss rate, enabling us to calibrate wind mass loss. This allows us to consider the occurrence of pair-instability SNe in the local Universe. We also discuss luminous blue variables and their link to luminous SNe. Finally, we address the polarization properties of Wolf-Rayet (WR) stars, measuring their wind asphericities. We argue to have found a group of rotating WR stars that fulfil the required criteria to make long-duration GRBs. PMID:23630373

  4. The Results of the 2013 Pro-Am Wolf-Rayet Campaign

    NASA Astrophysics Data System (ADS)

    Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; World-Wide WR Pro-Am Campaign Team

    Professional and amateur astronomers around the world contributed to a 4-month long campaign in 2013, mainly in spectroscopy but also in photometry, interferometry and polarimetry, to observe the first 3 Wolf-Rayet stars discovered: WR 134 (WN6b), WR 135 (WC8) and WR 137 (WC7pd+O9). Each of these stars are interesting in their own way, showing a variety of stellar wind structures. The spectroscopic data from this campaign were reduced and analyzed for WR 134 in order to better understand its behavior and long-term periodicity in the context of CIRs in the wind. We will be presenting the results of these spectroscopic data, which include the confirmation of the CIR variability and a time-coherency of ˜ 40 days (half-life of ˜ 20 days).

  5. Modeling The Variation Of X-rays From Wolf-rayet Stars

    NASA Astrophysics Data System (ADS)

    McFall, Michael; Ignace, R.

    2011-01-01

    Wolf-Rayet (WR) stars are massive stars with powerful, x-ray-emitting winds. Some single stars have been observed to have a periodic behavior. A model using a spiral structure in the winds has been created to explain what causes this variability. We used this model to examine the possibility of x-ray variation in single WR stars. We have then used the model to determine probabilities of finding before unknown variation in the x-rays of single WR stars given a set of parameters that define the spiral structure and the properties of the wind. This project was funded by the National Science Foundation Research Experiences for Undergraduates (REU) program through grant NSF AST-1004872.

  6. International ultraviolet explorer observations of Wolf-Rayet binaries: Wind structures

    NASA Astrophysics Data System (ADS)

    Avena, G. K.

    Spectra of six WN + OB Wolf-Rayet systems obtained with the IUE are analyzed for phase-dependent variations. Periodic variability at emission ine frequencis is detected in V444 Cyg, HD 90657, HD 211853, HD 186943 and HD 94546 on low dispersion SWP (lambda lambda 1200 - 1900 A) images. No changes in the low dispersion spectra of HD 193077 are apparent. The variations in the UV are found to be similar in nature to those observed in optical spectra of various WR sources. That is, there is a strengthening of absorption components in P Cygni - type features at orbital phases in which the O-star is behind the WR wind. With the aid of a computer code which models this type of variations, and through a comparison with HD 193077, the dominant mechanism producing the variations is shown to be selective atmospheric eclipses of the O-star by the WR wind.

  7. On the rarity of X-ray binaries with Wolf-Rayet donors

    SciTech Connect

    Linden, T.; Valsecchi, F.; Kalogera, V.

    2012-03-14

    The paucity of High mass X-Ray binaries (HMXB) consisting of a neutron star (NS) accretor and Wolf-Rayet (WR) donor has long been at odds with expectations from population synthesis studies indicating that these systems should survive as the evolved offspring of the observed HMXB population. This tension is particularly troubling in light of recent observations uncovering a preponderance of HMXBs containing loosely bound Be donors which would be expected to naturally evolve into WR-HMXBs. Reconciling the unexpectedly large population of Be-HMXBs with the lack of observed WR-HMXB sources thus serves to isolate the dynamics of CE physics from other binary evolution parameters. We find that binary mergers during CE events must be common in order to resolve tension between these observed populations. Furthermore, future observations which better constrain the background population of loosely bound O/B-NS binaries are likely to place significant constraints on the efficiency of CE removal.

  8. Neutron-rich nuclei in cosmic rays and Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Prantzos, N.; Casse, M.; Arnould, M.; Arcoragi, J. P.

    1985-01-01

    Wolf-Rayet stars figure prominently in astrophysical research. As a bonus, they seem to offer, in the recent past, an interesting connection between classical astronomy and high energy astrophysics due to their unusual composition and their huge mechanical power. The material flowing from WC stars (carbon-rich WR stars) contains gas which has been processed through core-helium burning, i.e., considerably enriched into 12C,16O, 22Ne, and 25,26Mg. This composition is reminiscent of the cosmic ray source anomalies. Encouraging agreement is obtained with observation in the mass range 12 A 26 assuming acceleration of wind particles at the shock that delineates the WR cavity, and adequate dilution with normal cosmic rays, but silicon poses.

  9. Spectrophotometry of Wolf-Rayet stars - Intrinsic colors and absolute magnitudes

    NASA Technical Reports Server (NTRS)

    Torres-Dodgen, Ana V.; Massey, Philip

    1988-01-01

    Absolute spectrophotometry of about 10-A resolution in the range 3400-7300 A have been obtained for southern Wolf-Rayet stars, and line-free magnitudes and colors have been constructed. The emission-line contamination in the narrow-band ubvr systems of Westerlund (1966) and Smith (1968) is shown to be small for most WN stars, but to be quite significant for WC stars. It is suggested that the more severe differences in intrinsic color from star to star of the same spectral subtype noted at shorter wavelengths are due to differences in atmospheric extent. True continuum absolute visual magnitudes and intrinsic colors are obtained for the LMC WR stars. The most visually luminous WN6-WN7 stars are found to be located in the core of the 30 Doradus region.

  10. A new Wolf-Rayet star and its circumstellar nebula in Aquila

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Hamann, W.-R.; Berdnikov, L. N.; Fabrika, S.; Valeev, A. F.

    2010-04-01

    We report the discovery of a new Wolf-Rayet star in Aquila via detection of its circumstellar nebula (reminiscent of ring nebulae associated with late WN stars) using the Spitzer Space Telescope archival data. Our spectroscopic follow-up of the central point source associated with the nebula showed that it is a WN7h star (we named it WR121b). We analysed the spectrum of WR121b by using the Potsdam Wolf-Rayet model atmospheres, obtaining a stellar temperature of ~=50kK. The stellar wind composition is dominated by helium with ~20 per cent of hydrogen. The stellar spectrum is highly reddened [E(B - V) = 2.85mag]. Adopting an absolute magnitude of Mv = -5.7, the star has a luminosity of logL/Lsolar = 5.75 and a mass-loss rate of 10-4.7Msolaryr-1, and resides at a distance of 6.3kpc. We searched for a possible parent cluster of WR121b and found that this star is located at ~=1° from the young star cluster embedded in the giant HII region W43 (containing a WN7+a/OB? star - WR121a). We also discovered a bow shock around the O9.5III star ALS9956, located at from the cluster. We discuss the possibility that WR121b and ALS9956 are runaway stars ejected from the cluster in W43. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); wrh@astro.physik.uni-potsdam.de (WRH); berdnik@sai.msu.ru (LNB); fabrika@sao.ru (SF); azamat@sao.ru (AFV)

  11. Wolf-Rayet Ionization and Feedback as the Tipping Point in Super Star Cluster Emergence

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey; Massey, Philip; Indebetouw, Remy

    2015-08-01

    The feedback from massive stars is extremely important to super star cluster (SSC) evolution, especially the timescales on which it occurs. SSCs form embedded in thick material, and eventually, the cluster is cleared out and revealed at optical wavelengths. However, this transition is not well understood, particularly which physical processes are essential and how they couple to the surrounding material. If radiation pressure were solely responsible, we would expect clusters to be cleared in less than ~2 Myr. Yet, some SSCs are observed to remain embedded until ~4 Myr. Although previously thought to appear after the cluster has fully removed natal material, embedded SSCs can host large populations of Wolf-Rayet (WR) stars that provide ionization and mechanical feedback. We hypothesize that WR feedback may be the tipping point in the combined feedback processes that drive some SSCs to emerge - the process of which could impact their ability to remain bound. We are investigating this critical SSC evolutionary transition with a multi-wavelength observational campaign that was spurred by an in-depth pilot study of the massive cluster S26 in NGC 4449. Utilizing optical spectra obtained with the 4m Mayall Telescope at Kitt Peak National Observatory and the 6.5m MMT combined with archival data from Hubble, Spitzer, and Herschel Space Telescopes, we have compiled a sample of (partially) embedded SSCs that are likely undergoing this short-lived evolutionary phase and in which we confirm the presence of Wolf-Rayet stars. In each source, we determine the massive star populations and study the physical environments such as metallicity and age; we then compare the sample to predictions as well as observations of SSCs in other evolutionary phases. The ionizing radiation is clearly extreme throughout the sample -- observed optical ionized line ratios of H-alpha, H-beta, [NII], and [OIII] show that these sources border the theoretical and empirical limits produced by star

  12. Searching for a magnetic field in Wolf-Rayet stars using FORS 2 spectropolarimetry

    NASA Astrophysics Data System (ADS)

    Hubrig, S.; Scholz, K.; Hamann, W.-R.; Schöller, M.; Ignace, R.; Ilyin, I.; Gayley, K. G.; Oskinova, L. M.

    2016-05-01

    To investigate if magnetic fields are present in Wolf-Rayet stars, we selected a few stars in the Galaxy and one in the Large Magellanic Cloud (LMC). We acquired low-resolution spectropolarimetric observations with the European Southern Observatory FORS 2 (FOcal Reducer low dispersion Spectrograph) instrument during two different observing runs. During the first run in visitor mode, we observed the LMC Wolf-Rayet star BAT99 7 and the stars WR 6, WR 7, WR 18, and WR 23 in our Galaxy. The second run in service mode was focused on monitoring the star WR 6. Linear polarization was recorded immediately after the observations of circular polarization. During our visitor observing run, the magnetic field for the cyclically variable star WR 6 was measured at a significance level of 3.3σ ( = 258 ± 78 G). Among the other targets, the highest value for the longitudinal magnetic field, = 327 ± 141 G, was measured in the LMC star BAT99 7. Spectropolarimetric monitoring of the star WR 6 revealed a sinusoidal nature of the variations with the known rotation period of 3.77 d, significantly adding to the confidence in the detection. The presence of the rotation-modulated magnetic variability is also indicated in our frequency periodogram. The reported field magnitude suffers from significant systematic uncertainties at the factor of 2 level, in addition to the quoted statistical uncertainties, owing to the theoretical approach used to characterize it. Linear polarization measurements showed no line effect in the stars, apart from WR 6. BAT99 7, WR 7, and WR 23 do not show variability of the linear polarization over two nights.

  13. An IRAS-based search for new Dusty Late-Type WC Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles ('ADDSCANs') and two-dimensional full-resolution images ('FRESCOs'). The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be examined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IRAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for the absolute value of l greater than 30 deg, and to 2.9 kpc even in the innermost Galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  14. An IRAS-Based Search for New Dusty Late-Type WC Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1995-01-01

    I have examined all Infrared Astronomical Satellite (IRAS) data relevant to the 173 Galactic Wolf-Rayet (W-R) stars in an updated catalog, including the 13 stars newly discovered by Shara and coworkers. Using the W-R coordinates in these lists, I have examined the IRAS Point Source Catalog (PSC), the Faint Source Catalog, and the Faint Source Reject Catalog, and have generated one-dimensional spatial profiles, 'ADDSCANs', and two-dimensional full-resolution images, 'FRESCOS'. The goal was to assemble the best set of observed IRAS color indices for different W-R types, in particular for known dusty late-type WC Wolf-Rayet (WCL) objects. I have also unsuccessfully sought differences in IRAS colors and absolute magnitudes between single and binary W-R stars. The color indices for the entire ensemble of W-R stars define zones in the IRAS color-color ([12] - [25], [25] - [60])-plane. By searching the PSC for otherwise unassociated sources that satisfy these colors, I have identified potential new W-R candidates, perhaps too faint to have been recognized in previous optical searches. I have extracted these candidates' IRAS low-resolution spectrometer (LRS) data and compared the spectra with the highly characteristic LRS shape for known dusty WCL stars. The 13 surviving candidates must now be ex amined by optical spectroscopy. This work represents a much more rigorous and exhaustive version of the LRS study that identified IRAS 17380 - 3031 (WR98a) as the first new W-R (WC9) star discovered by IPAS. This search should have detected dusty WCL stars to a distance of 7.0 kpc from the Sun, for l is greater than 30 degrees, and to 2.9 kpc even in the innermost galaxy. For free-free-dominated W-R stars the corresponding distances are 2.5 and 1.0 kpc, respectively.

  15. The Close Binary Frequency of Wolf-Rayet Stars as a Function of Metallicity in M31 and M33

    NASA Astrophysics Data System (ADS)

    Neugent, Kathryn F.; Massey, Philip

    2014-07-01

    Massive star evolutionary models generally predict the correct ratio of WC-type and WN-type Wolf-Rayet stars at low metallicities, but underestimate the ratio at higher (solar and above) metallicities. One possible explanation for this failure is perhaps single-star models are not sufficient and Roche-lobe overflow in close binaries is necessary to produce the "extra" WC stars at higher metallicities. However, this would require the frequency of close massive binaries to be metallicity dependent. Here we test this hypothesis by searching for close Wolf-Rayet binaries in the high metallicity environments of M31 and the center of M33 as well as in the lower metallicity environments of the middle and outer regions of M33. After identifying ~100 Wolf-Rayet binaries based on radial velocity variations, we conclude that the close binary frequency of Wolf-Rayets is not metallicity dependent and thus other factors must be responsible for the overabundance of WC stars at high metallicities. However, our initial identifications and observations of these close binaries have already been put to good use as we are currently observing additional epochs for eventual orbit and mass determinations. The spectroscopic observations reported here were obtained at the MMT Observatory, a joint facility of the University of Arizona and the Smithsonian Institution. MMT telescope time was granted by NOAO, through the Telescope System Instrumentation Program (TSIP). TSIP is funded by the National Science Foundation. This paper uses data products produced by the OIR Telescope Data Center, supported by the Smithsonian Astrophysical Observatory.

  16. The origin of extended interstellar shells around Wolf-Rayet stars having bright optical ring nebulae

    NASA Technical Reports Server (NTRS)

    Nichols, J. S.; Fesen, R. A.

    1994-01-01

    Investigations of the interstellar environment around Wolf-Rayet (WR) stars have lead to the discovery of extended shells of gas and dust 50-100 pc in diameter in the lines of sight toward three WR stars. In this paper, several origins for these extended shells are discussed. While positional coincidences cannot be excluded, the locations of the WR stars near the projected centers of the shells, the detection of only shortward-shifted, high-velocity UV absorption line components in their IUE spectra, plus commonality of some WR star properties which are rare in the general WR star population suggest some casual connections between the WR stars and formation of interstellar shells. To access whether the high-velocity UV interstellar absorption lines are a frequent phenomenon related to WR stellar winds, we present a survey of such features in all WR stars observed with IUE through 1991. Of 35 stars studied, only four are found to have components with velocity displacements greater than 45 km/s which are not attributable to previously identified OB association superbubbles. The means a surprising 82% of non-OB association WR stars show no evidence of high-velocity gas in their lines of sight at IUE's spectral resolution, suggesting that high-velocity interstellar absorption lines are not a common consequence of Wolf-Rayet star stellar winds alone. We review the properties of three WR stars (HD 50896, HD 96548, and HD 192163) which may reside inside extended interstellar shells and find that they are similar in terms of spectral class (WN5-8), presence of an optical ring nebula, and reported photometric variability. Evaluation of possible origins of the extended shells suggests these three stars are in a post X-ray binary stage of high-mass binary star evolution. If this is correct, then the large interstellar shells detected might be evidence of either supernova remnant shells generated by the explosion of the binary's primary star, or non-conservative mass transfer

  17. Ultraviolet observations of clusters of Wolf-Rayet stars in the SBm3 galaxy NGC 4214 and Ultraviolet and optical observations of LINER's

    NASA Technical Reports Server (NTRS)

    Filippenko, Alexei V.

    1992-01-01

    The purpose of the grant was to obtain and analyze IUE (UV) and ground-based (optical) spectra of the central bar of NGC 4214, which contains several bright H II regions, in order to further explore the properties of the Wolf-Rayet stars in this galaxy. Several spatially distinct regions, with widely different equivalent widths of optical Wolf-Rayet lines, could be sampled by the large IUE entrance aperture. By using newly developed extraction techniques, the spectra of these H II regions could be isolated, and differences in their stellar populations would be systematically studied. Data were obtained with IUE in late February and early March, 1992. Some of the shifts were successful, but a few were not -- apparently the blind offset from the nearby star did not work equally well in all cases. Thus, the signal-to-noise ratio is somewhat lower than we had hoped. This necessitated a more careful extraction of the spectra of individual H II regions from the two-dimensional spectra. (A program that models the point spread function in the spatial direction was used to deblend the distinct H II regions.) The IUE data are currently being analyzed in conjunction with ground-based optical spectra. There appear to be obvious variations in the stellar population over angular scales of only a few arc seconds. The second part of the research performed under this grant was a continuation of a project that uses IUE (UV) and ground-based (optical) spectra to infer the physical conditions in Low-Ionization Nuclear Emission-Line Regions (LINER's). We have obtained spectra of a few key objects that cover a representative range in LINER continuum and emission-line properties. The overall goals are to (1) separate the emission into spatially distinct components, (2) establish whether the observed nuclear ultraviolet continua indicate sufficient photoionizing fluxes to account for the emission lines, (3) determine whether the nuclear emission can be explained by hot stars alone, (4

  18. International Ultraviolet Explorer Observations of Wolf-Rayet Binaries: Wind Structures. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Koenigsberger, G.

    1983-01-01

    Spectra of six WN + OB Wolf-Rayet systems obtained with the IUE are analyzed for phase-dependent variations. Periodic variability at emission-line frequencies is detected in V444 Cyg, HD 90657, HD 211853, HD 186943 and HD 94546 on low dispersion SWP images. No changes in the low dispersion spectra of HD 193077 are apparent. We find the variations in the UV to be similar in nature to those observed in optical spectra of various WR sources. That is, there is a strengthening of absorption components in P Cygni-type features at orbital phases in which the O-star is behind the WR wind. With the aid of a computer code which models this type of variations, and through a comparison with HD 193077, the dominant mechanism producing the variations is shown to be selective atmospheric eclipses of the O-star by the WR wind. Based on this interpretation, a straightforward technique is applied to the line of N IV 1718, by which an optical depth distribution in the WN winds of the form tau varies as r(-1) is derived for 16 r 66 solar radii. Phase-dependent variations in the width of the C IV 1550 absorption component in V444 Cyg, HD 90657 and HD 211853 are interpretated as wind-wind collision effects.

  19. A Chandra Observation of the Eclipsing Wolf-Rayet Binary CQ Cep

    NASA Astrophysics Data System (ADS)

    Skinner, Steve L.; Zhekov, Svetozar; Guedel, Manuel; Schmutz, Werner

    2015-01-01

    The short-period (1.64 day) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning one day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T > 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4 - 40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star but, surprisingly, no significant X-ray variability was detected. Because of the high inclination orbit, this implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind shock picture. We will summarize the Chandra results in the context of predictions from colliding wind theory.

  20. Disentangling the Nature of the Radio Emission in Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Montes, Gabriela; Pérez-Torres, Miguel A.; Alberdi, Antonio; González, Ricardo F.

    2009-11-01

    We present quasi-simultaneous, multi-frequency Very Large Array observations at 4.8, 8.4, and 22.5 GHz of a sample of 13 Wolf-Rayet (WR) stars, aimed at disentangling the nature of their radio emission and the possible detection of a non-thermal behavior in close binary systems. We detected 12 stars from our sample, for which we derived spectral information and estimated their mass-loss rates. From our data, we identified four thermal sources (WR 89, 113, 138, and 141), and three sources with a composite spectrum (similar contribution of thermal and non-thermal emission; WR 8, 98, and 156). On the other hand, from the comparison with previous observations, we confirm the non-thermal spectrum of one (WR 105), and also found evidence of a composite spectrum for WR 79a, 98a, 104, and 133. Finally, we discuss the possible scenarios to explain the nature of the emission for the observed objects.

  1. Wolf-Rayet optically thick winds with Alfvén waves

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Jatenco-Pereira, V.

    2010-08-01

    The Wolf-Rayet (WR) stars are hot luminous objects which are suffering an extreme mass loss via a continuous stellar wind. The high values of mass loss rates and high terminal velocities of the WR stellar winds constitute a challenge to the theories of radiation driven winds. Several authors incorporated magnetic forces to the line driven mechanism in order to explain these characteristics of the wind. Observations indicate that the WR stellar winds may reach, at the photosphere, velocities of the order of the terminal values, which means that an important part of the wind acceleration occurs at the optically thick region. The aim of this study is to analyze a model in which the wind in a WR star begins to be accelerated in the optically thick part of the wind. We used as initial conditions stellar parameters taken from the literature and solved the energy, mass and momentum equations. We demonstrate that the acceleration only by radiative forces is prevented by the general behavior of the opacities. Combining radiative forces plus a flux of Alfvén waves, we found in the simulations a fast drop in the wind density profile which strongly reduces the extension of the optically thick region and the wind becomes optically thin too close its base. The understanding how the WR wind initiate is still an open issue.

  2. FUSE Observations of Neutron-Capture Elements in Wolf-Rayet Planetary Nebulae

    NASA Astrophysics Data System (ADS)

    Dinerstein, H.

    We propose to obtain FUSE observations of planetary nebula central stars of the WC Wolf-Rayet ([WC]) class, in order to search for the products of neutron-capture processes in these stars and provide constraints on their evolutionary status. Although the origin of the [WC]'s is controversial, their H-deficient, C-rich surface compositions indicate that they have experienced a high degree of mixing and/or mass loss. Thus one might expect the nebulae they produce to show enhanced concentrations of He-burning and other nuclear products, such as nuclei produced by slow neutron capture during the AGB phase. We have already detected an absorption line from one such element, Germanium (Sterling, Dinerstein, & Bowers 2002), while conducting a search for H2 absorption from nebular molecular material FUSE GI programs A085 and B069). Since the strongest Ge enhancements were found in PNe with [WC] central stars, we propose to enlarge the sample of such objects observed by FUSE. THIS TEMPORARY AND PARTIAL SCRIPT COVERS ONE TARGET, HE 2-99, AND REQUESTS AN EXPOSURE TIME OF 15 KSEC. PHASE 2 INFORMATION FOR THE REMAINDER OF THE PROGRAM'S TOTAL TIME ALLOCATION OF 60 KSEC WILL BE SUBMITTED AT A LATER TIME.

  3. Using MOST to reveal the secrets of the mischievous Wolf-Rayet binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, Alexandre; Moffat, Anthony F. J.; Chené, André-Nicolas; Rowe, Jason F.; Lange, Nicholas; Guenther, David B.; Kuschnig, Rainer; Matthews, Jaymie M.; Rucinski, Slavek M.; Sasselov, Dimitar; Weiss, Werner W.

    2012-11-01

    The Wolf-Rayet (WR) binary CV Serpentis (= WR113, WC8d + O8-9IV) has been a source of mystery since it was shown that its atmospheric eclipses change with time over decades, in addition to its sporadic dust production. The first high-precision time-dependent photometric observations obtained with the Microvariability and Oscillations of STars (MOST) space telescope in 2009 show two consecutive eclipses over the 29-d orbit, with varying depths. A subsequent MOST run in 2010 showed a seemingly asymmetric eclipse profile. In order to help make sense of these observations, parallel optical spectroscopy was obtained from the Mont Megantic Observatory (2009, 2010) and from the Dominion Astrophysical Observatory (2009). Assuming these depth variations are entirely due to electron scattering in a β-law wind, an unprecedented 62 per cent increase in M⊙ is observed over one orbital period. Alternatively, no change in mass-loss rate would be required if a relatively small fraction of the carbon ions in the wind globally recombined and coaggulated to form carbon dust grains. However, it remains a mystery as to how this could occur. There also seems to be evidence for the presence of corotating interaction regions (CIR) in the WR wind: a CIR-like signature is found in the light curves, implying a potential rotation period for the WR star of 1.6 d. Finally, a new circular orbit is derived, along with constraints for the wind collision.

  4. Line profiles variations from atmospheric eclipses: Constraints on the wind structure in Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Auer, L. H.; Koenigsberger, G.

    1994-01-01

    Binary systems in which one of the components has a stellar wind may present a phenomenon known as 'wind' or 'atmospheric eclipse', in which that wind occults the luminous disk of the companion. The enhanced absorption profile, relative to the spectrum at uneclipsed orbital phases, can be be modeled to yield constraints on the spatial structure of the eclipsing wind. A new, very efficient approach to the radiative transfer problem, which makes no requirements with respect to monotonicity of the velocity gradient or size of that gradient, is presented. The technique recovers both the comoving frame calculation and the Sobolev approximation in the appropiate limits. Sample computer simulations of the line profile variations induced by wind eclipses are presented. It is shown that the location of the wind absorption features in frequency is a diagnostic tool for identifying the size of the wind acceleration region. Comparison of the model profile variations with the observed variations in the Wolf-Rayet (W-R)+6 binary system V444 Cyg illustrate how the method can be used to derive information on the structure of the wind of the W-R star constrain the size of the W-R core radius.

  5. On the Launching and Structure of Radiatively Driven Winds in Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Ro, Stephen; Matzner, Christopher D.

    2016-04-01

    Hydrostatic models of Wolf-Rayet (WR) stars typically contain low-density outer envelopes that inflate the stellar radii by a factor of several and are capped by a denser shell of gas. Inflated envelopes and density inversions are hallmarks of envelopes that become super-Eddington as they cross the iron-group opacity peak, but these features disappear when mass loss is sufficiently rapid. We re-examine the structures of steady, spherically symmetric wind solutions that cross a sonic point at high optical depth, identifying the physical mechanism through which the outflow affects the stellar structure, and provide an improved analytical estimate for the critical mass-loss rate above which extended structures are erased. Weak-flow solutions below this limit resemble hydrostatic stars even in supersonic zones; however, we infer that these fail to successfully launch optically thick winds. WR envelopes will therefore likely correspond to the strong, compact solutions. We also find that wind solutions with negligible gas pressure are stably stratified at and below the sonic point. This implies that convection is not the source of variability in WR stars, as has been suggested; however, acoustic instabilities provide an alternative explanation. Our solutions are limited to high optical depths by our neglect of Doppler enhancements to the opacity, and do not account for acoustic instabilities at high Eddington factors; yet, they do provide useful insights into WR stellar structures.

  6. A Chandra grating observation of the dusty Wolf-Rayet star WR 48a

    SciTech Connect

    Zhekov, Svetozar A.; Gagné, Marc; Skinner, Stephen L. E-mail: mgagne@wcupa.edu

    2014-04-10

    We present results of a Chandra High-Energy Transmission Grating (HETG) observation of the carbon-rich Wolf-Rayet (WR) star WR 48a. These are the first high-resolution spectra of this object in X-ray. Blueshifted centroids of the spectral lines of ∼ – 360 km s{sup –1} and line widths of 1000-1500 km s{sup –1} (FWHM) were deduced from the analysis of the line profiles of strong emission lines. The forbidden line of Si XIII is strong and not suppressed, indicating that the rarified 10-30 MK plasma forms far from strong sources of far-ultraviolet emission, most likely in a wind collision zone. Global spectral modeling showed that the X-ray spectrum of WR 48a suffered higher absorption in the 2012 October Chandra observation compared with a previous 2008 January XMM-Newton observation. The emission measure of the hot plasma in WR 48a decreased by a factor ∼3 over the same period of time. The most likely physical picture that emerges from the analysis of the available X-ray data is that of colliding stellar winds in a wide binary system with an elliptical orbit. We propose that the unseen secondary star in the system is another WR star or perhaps a luminous blue variable.

  7. DISENTANGLING THE NATURE OF THE RADIO EMISSION IN WOLF-RAYET STARS

    SciTech Connect

    Montes, Gabriela; Perez-Torres, Miguel A.; Alberdi, Antonio; Gonzalez, Ricardo F. E-mail: torres@iaa.e E-mail: g.montes@astrosmo.unam.m

    2009-11-01

    We present quasi-simultaneous, multi-frequency Very Large Array observations at 4.8, 8.4, and 22.5 GHz of a sample of 13 Wolf-Rayet (WR) stars, aimed at disentangling the nature of their radio emission and the possible detection of a non-thermal behavior in close binary systems. We detected 12 stars from our sample, for which we derived spectral information and estimated their mass-loss rates. From our data, we identified four thermal sources (WR 89, 113, 138, and 141), and three sources with a composite spectrum (similar contribution of thermal and non-thermal emission; WR 8, 98, and 156). On the other hand, from the comparison with previous observations, we confirm the non-thermal spectrum of one (WR 105), and also found evidence of a composite spectrum for WR 79a, 98a, 104, and 133. Finally, we discuss the possible scenarios to explain the nature of the emission for the observed objects.

  8. An atlas of Copernicus ultraviolet spectra of Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1978-01-01

    An atlas of Copernicus UV scans is presented, and line identifications are tabulated, for the Wolf-Rayet stars Gamma-2 Vel (WC 8 + O7), HD 50896 (= EZ CMa; WN 5), and HD 92740 (WN 7). The atlas covers the wavelength ranges from 946.8 to 3182 A for Gamma-2 Vel, from 1012 to 1294 A for HD 50896, and from 1051 to 1243 A for HD 92740. The wavelengths include corrections for components of satellite velocity, earth velocity, and stellar heliocentric velocity; each spectral feature is classified as interstellar, photospheric, emission, UV-displaced P Cygni line absorption, or P Cygni line emission. UV-edge velocities of the P Cygni profiles are estimated, P Cygni profile types are discussed, and the results are compared with Copernicus scans of OB stars exhibiting UV P Cygni profiles. It is noted that: (1) the line-strength ratio of molecular hydrogen to atomic species appears to be substantially greater in the scans of the WN stars than in the Gamma-2 Vel scans; (2) some of the P Cygni profiles in Gamma-2 Vel differ significantly from the corresponding profiles in OB stars; and (3) there may be a slight inverse correlation between ejection velocities and excitation potentials in Gamma-2 Vel.

  9. An Evolutionary Transition of Massive Star Clusters: Emerging Wolf-Rayet Clusters

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Remy; Massey, Philip

    2016-01-01

    It is not yet well understood how massive star clusters emerge from their natal material, despite huge implications for the fate of the cluster itself and potentially to the entire host galaxy. While this evolutionary transition from embedded natal clusters to cleared-out optical star clusters is clearly the result of the star formation, it is important to understand what physical processes are contributing to this feedback. We highlight an overlooked yet potentially significant source of feedback -- Wolf-Rayet (WR) stars. While a massive star cluster is expected to have cleared out before the WR phase, we have identified an emerging cluster, S26 in NGC 4449, that hosts a substantial population of evolved WRs and shows signs of ongoing feedback. We follow up this significant discovery with an observational survey to search for more sources undergoing this evolutionary phase. We obtain optical spectra of a sample of radio-selected targets (characteristics chosen to identify those early in their evolution) to look for WR signatures; we term successful detections as 'emerging WR clusters'. We evaluate the importance of WR ionization and feedback on massive star cluster evolution and find that while many massive star clusters may emerge quickly, it seems that some might require additional feedback from the WRs.

  10. The violent interstellar environment around the Wolf-Rayet star HD 192163

    NASA Technical Reports Server (NTRS)

    Nichols-Bohlin, Joy; Fesen, Robert A.

    1993-01-01

    IRAS Skyflux IR images, high-dispersion IUE UV spectra, optical spectra, and optical interference filter images are used to investigate the nature of the interstellar environment around the Wolf-Rayet star HD 192163. IRAS images show an apparent 1.5 x 1.8 deg IR emission shell very nearly centered on HD 192163, which is designated G75.5+2.4. It is suggested that this shell is a possible unrecognized SNR with an estimated age of not less than 100,000 yr if at the assumed 1.8-kpc distance of HD 192163. A well-defined 2 x 4.5 deg region of weak IR emission lying to the southeast of HD 192163 appears to be the IR signature of the Cyg OB1 superbubble. Analysis of IUE spectra shows that high-velocity components of UV interstellar absorption lines are present for both high and low ionization lines in 18 of 22 stars located in the Cyg OB1/OB3 direction with a velocity range of +/- 90 km/s. A possible evolutionary history for this region is outlined.

  11. X-RAY EMISSION FROM THE WOLF-RAYET BUBBLE S 308

    SciTech Connect

    Toala, J. A.; Guerrero, M. A.; Arthur, S. J.; Smith, R. C.

    2012-08-10

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its northwest quadrant, map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a central cavity {approx}22' in size and a shell thickness of {approx}8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at 0.43 keV and O VII at 0.57 keV, and declines toward high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T{sub 1} {approx} 1.1 Multiplication-Sign 10{sup 6} K, T{sub 2} {approx} 13 Multiplication-Sign 10{sup 6} K), with a total X-ray luminosity {approx}2 Multiplication-Sign 10{sup 33} erg s{sup -1} at the assumed distance of 1.5 kpc.

  12. A Global Assessment of Wolf-Rayet Binaries in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Moffat, A. F. J.

    2008-08-01

    In the Galaxy, comprehensive empirical studies of advanced massive-star evolution via Wolf-Rayet (WR) stars have been hampered by huge disparities in apparent brightness and interstellar extinction, and by uncertainties in the distances. These problems all but disappear in the Magellanic Clouds (MCs), where one can also systematically probe the effects of lower initial metallicity (Z). Over two decades ago I began, partly involving Virpi Niemela, a vast optical spectroscopic program to examine all of the (then about 100) known MC WR stars for binarity and use them to extract information on general properties of WR stars. Now in 2006 the last step of this project is being wrapped up by the third doctoral student [Olivier Schnurr working on the WNL stars, after Peter Bartzakos (WC) in 1998 and Cédric Foellmi (WNE) in 2002] to embark on this project, now including the 144 known MC WR stars, as defined by the catalogues of Breysacher et al. for the LMC and Massey et al. for the SMC. Here we will summarize the highlights of this work. These include (1) a normal binary WR frequency in both MCs as in the Galaxy, (2) the increased presence of H in WNE stars, even binaries, as one goes to lower Z, (3) colliding winds, and (4) very massive WNLha stars. I will end with some suggestions for future work.

  13. Circumstellar Carbonaceous Material Associated with Late-Type Dusty WC Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Chiar, J. E.; Tielens, A. G. G. M.

    2001-04-01

    We have studied the 5-8.5 μm infrared spectra of the late-type Wolf-Rayet stars WR 118, WR 112, and WR 104, the WN star WR 147, the B5 hypergiant Cygnus OB2 No. 12, and the Galactic center luminous blue variable Pistol Star using the Short Wavelength Spectrometer on the Infrared Space Observatory. We attribute an absorption feature at 6.2 μm in the spectra of WC stars to amorphous carbon dust. This absorption feature is not detected in the diffuse interstellar medium toward the WR 147, Cyg OB2 No. 12, or the Pistol Star, and therefore we suggest that it is circumstellar in nature. In addition, we detect a broad absorption feature extending from approximately 6.5 to 8 μm. We tentatively attribute this absorption to the CC stretching modes that accompany the 6.2 μm band in aromatic materials. Our analysis of the 6.2 μm absorption profile suggests that the dust grains have to be rather large (~1 μm) and point toward dense clumps as the sites of dust formation. Based on observations made with the Infrared Space Observatory, an ESA project with instruments funded by ESA member states (especially the PI countries: France, Germany, the Netherlands, and the United Kingdom) and with the participation of ISAS and NASA.

  14. Stellar envelope inflation near the Eddington limit. Implications for the radii of Wolf-Rayet stars and luminous blue variables

    NASA Astrophysics Data System (ADS)

    Gräfener, G.; Owocki, S. P.; Vink, J. S.

    2012-02-01

    Context. It has been proposed that the envelopes of luminous stars may be subject to substantial radius inflation. The peculiar structure of such inflated envelopes, with an almost void, radiatively dominated region beneath a thin, dense shell could mean that many in reality compact stars are hidden below inflated envelopes, displaying much lower effective temperatures. The inflation effect has been discussed in relation to the radius problem of Wolf-Rayet (WR) stars, but has yet failed to explain the large observed radii of Galactic WR stars. Aims: We wish to obtain a physical perspective of the inflation effect, and study the consequences for the radii of WR stars, and luminous blue variables (LBVs). For WR stars the observed radii are up to an order of magnitude larger than predicted by theory, whilst S Doradus-type LBVs are subject to humongous radius variations, which remain as yet ill-explained. Methods: We use a dual approach to investigate the envelope inflation, based on numerical models for stars near the Eddington limit, and a new analytic formalism to describe the effect. An additional new aspect is that we take the effect of density inhomogeneities (clumping) within the outer stellar envelopes into account. Results: Due to the effect of clumping we are able to bring the observed WR radii in agreement with theory. Based on our new formalism, we find that the radial inflation is a function of a dimensionless parameter W, which largely depends on the topology of the Fe-opacity peak, i.e., on material properties. For W > 1, we discover an instability limit, for which the stellar envelope becomes gravitationally unbound, i.e. there no longer exists a static solution. Within this framework we are also able to explain the S Doradus-type instabilities for LBVs like AG Car, with a possible triggering due to changes in stellar rotation. Conclusions: The stellar effective temperatures in the upper Hertzsprung-Russell (HR) diagram are potentially strongly affected

  15. First survey of Wolf-Rayet star populations over the full extension of nearby galaxies observed with CALIFA

    NASA Astrophysics Data System (ADS)

    Miralles-Caballero, D.; Díaz, A. I.; López-Sánchez, Á. R.; Rosales-Ortega, F. F.; Monreal-Ibero, A.; Pérez-Montero, E.; Kehrig, C.; García-Benito, R.; Sánchez, S. F.; Walcher, C. J.; Galbany, L.; Iglesias-Páramo, J.; Vílchez, J. M.; González Delgado, R. M.; van de Ven, G.; Barrera-Ballesteros, J.; Lyubenova, M.; Meidt, S.; Falcon-Barroso, J.; Mast, D.; Mendoza, M. A.; Califa Collaboration

    2016-08-01

    The search of extragalactic regions with conspicuous presence of Wolf-Rayet (WR) stars outside the Local Group is challenging task owing to the difficulty in detecting their faint spectral features. In this exploratory work, we develop a methodology to perform an automated search of WR signatures through a pixel-by-pixel analysis of integral field spectroscopy (IFS) data belonging to the Calar Alto Legacy Integral Field Area survey, CALIFA. This procedure has been applied to a sample of nearby galaxies spanning a wide range of physical, morphological, and environmental properties. This technique allowed us to build the first catalogue of regions rich in WR stars with spatially resolved information, and enabled us to study the properties of these complexes in a two-dimensional (2D) context. The detection technique is based on the identification of the blue WR bump (around He iiλ4686 Å, mainly associated with nitrogen-rich WR stars; WN) and the red WR bump (around C ivλ5808 Å, mainly associated with carbon-rich WR stars; WC) using a pixel-by-pixel analysis that maximizes the number of independent regions within a given galaxy. We identified 44 WR-rich regions with blue bumps distributed in 25 out of a total of 558 galaxies. The red WR bump was identified only in 5 of those regions. Most of the WR regions are located within one effective radius from the galaxy centre, and around one-third are located within ~1 kpc or less from the centre. We found that the majority of the galaxies hosting WR populations in our sample are involved in some kind of interaction process. Half of the host galaxies share some properties with gamma-ray burst (GRB) hosts where WR stars, such as potential candidates to the progenitors of GRBs, are found. We also compared the WR properties derived from the CALIFA data with stellar population synthesis models, and confirm that simple star models are generally not able to reproduce the observations. We conclude that other effects, such as

  16. Photon loss from the helium Lyα line - the key to the acceleration of Wolf-Rayet winds.

    NASA Astrophysics Data System (ADS)

    Schmutz, W.

    1997-05-01

    It is demonstrated that the ionization equilibrium of helium in non-LTE atmospheres for Wolf-Rayet stars is very sensitive to photon loss from the Heii Lyα line. A removal of 0.001% of the photons is sufficient to initiate an abruptly recombining ionization equilibrium. The assumption of photon loss allows to address the wind momentum problem of Wolf-Rayet stars. It is possible for the first time to construct a line blanketed non-LTE model of a Wolf-Rayet star that reproduces the observed spectrum and simultaneously, provides the radiation force to drive its outer velocity structure. A method is developed to determine the free model parameters L, R_phot_, ˙(M), vinfinity_, v_phot_, C (clumping factor), and f (photon loss factor), by an analysis of an observed Wolf-Rayet spectrum. The method is applied to the spectrum of the WN5 star HD 50896 resulting in good fits in shape and strength to the observed helium emission lines. In particular the profile of the Hei λ10830 line, which is a tracer of the outer velocity structure, is reproduced remarkably well. The hydrodynamically calculated velocity law differs significantly from the commonly adopted β-law with β=1. The outer part can be approximated by a β-law with β=3 if the core radius of the atmosphere model is used, or by β=8, if the velocity law is calculated referring to the hydrostatic radius of a stellar evolution model in the Wolf-Rayet phase. Close to the photosphere the velocity structure is flat with an expansion velocity of v_phot_ =~1100 km/s. The resulting luminosity L= 5.5x10^5^ Lsun_ and terminal wind velocity vinfinity_=2060 km/s are found to be considerably larger than the values from previous determinations. On the other hand, the mass loss rate is lower ˙(M)=3.2x10^-5^ Msun_yr^-1^ due to an inhomogeneous wind with a clumping factor C=~4. There is evidence for a decrease of the clumping factor with distance from the star. The photon loss factor is determined empirically to have a value of f

  17. Constraints on the minor merging and star formation history of the Wolf-Rayet galaxy NGC 5430 through observations

    NASA Astrophysics Data System (ADS)

    Pan, Hsi-An; Kuno, Nario; Sorai, Kazuo; Umei, Michiko

    2015-12-01

    We used multi-wavelength analysis of the newly observed molecular gas [12CO and 13CO(1-0)] with interferometer CARMA and archival star formation tracers to constrain the interaction, merging, and star formation history of an off-center minor merger, a three-spiral barred galaxy NGC 5430 and its satellite embedded in the bar. Morphology of the molecular gas in the bar of NGC 5430 shows minimal signs of recent interactions with our resolution. The apparent morphological remnant of the past galaxy interaction is an asymmetric spiral arm, containing more molecular gas and exhibiting higher star formation rate (SFR) surface density than the two primary arms. Rotation curve analysis suggests that NGC 5430 collided with its satellite several Gyr ago. History of star formation was constrained by using SFRs that trace different timescales (infrared, radio continuum, and Hα). The collision occurred 5-10 Myr ago, triggering a transient off-center starburst of Wolf-Rayet stars at the eastern bar end. In the past, the global SFR during the Wolf-Rayet starburst peaked at 35 M⊙ yr-1. At present, the merger-driven starburst is rapidly decaying and the current global SFR has decreased to the Galactic value. The SFR will continue to decay as suggested by the present amount of dense gas [traced by HCN(1-0)]. Nonetheless, the global SFR is still dominated by the Wolf-Rayet region rather than the circumnuclear region. Compared with other barred galaxies, the circumnuclear region exhibits a particularly low dense gas fraction, low star formation activity, and high concentration of gas. Physical properties of the molecular gas are inferred by using the large velocity gradient calculations. The initial mass ratio of NGC 5430 to its satellite is suggested to be in an intermediate ratio range of 7:1-20:1.

  18. A Chandra Observation of the Eclipsing Wolf-Rayet Binary CQ Cep

    NASA Astrophysics Data System (ADS)

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel; Schmutz, Werner

    2015-02-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ~1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T >~ 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ~ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P orb = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.

  19. X-RAY EMISSION FROM NITROGEN-TYPE WOLF-RAYET STARS

    SciTech Connect

    Skinner, Stephen L.; Sokal, Kimberly R.; Zhekov, Svetozar A.; Guedel, Manuel; Schmutz, Werner

    2010-03-15

    We summarize new X-ray detections of four nitrogen-type Wolf-Rayet (WR) stars obtained in a limited survey aimed at establishing the X-ray properties of WN stars across their full range of spectral subtypes. None of the detected stars is so far known to be a close binary. We report Chandra detections of WR 2 (WN2), WR 18 (WN4), and WR 134 (WN6), and an XMM-Newton detection of WR79a (WN9ha). These observations clearly demonstrate that both WNE and WNL stars are X-ray sources. We also discuss Chandra archive detections of the WN6h stars WR 20b, WR 24, and WR 136 and ROSAT non-detections of WR 16 (WN8h) and WR 78 (WN7h). The X-ray spectra of all WN detections show prominent emission lines and an admixture of cool (kT < 1 keV) and hot (kT > 2 keV) plasma. The hotter plasma is not predicted by radiative wind shock models and other as yet unidentified mechanisms are at work. Most stars show X-ray absorption in excess of that expected from visual extinction (A {sub V}), likely due to their strong winds or cold circumstellar gas. Existing data suggest a falloff in X-ray luminosity toward later WN7-9 subtypes, which have higher L {sub bol} but slower, denser winds than WN2-6 stars. This provides a clue that wind properties may be a more crucial factor in determining emergent X-ray emission levels than bolometric luminosity.

  20. Characterizing Wolf-Rayet stars in the near- and mid-infrared

    SciTech Connect

    Faherty, Jacqueline K.; Shara, Michael M.; Zurek, David; Kanarek, Graham; Moffat, Anthony F. J.

    2014-05-01

    We present refined color-color selection criteria for identifying Wolf-Rayet (WR) stars using available mid-infrared (MIR) photometry from WISE in combination with near-infrared (NIR) photometry from the Two Micron All Sky Survey. Using a sample of spectrally classified objects, we find that WR stars are well distinguished from the field stellar population in the (W1 – W2) versus (J – K{sub s} ) color-color diagram, and further distinguished from other emission line objects such as planetary nebulae, Be, and cataclysmic variable stars using a combination of NIR and MIR color constraints. As proof of concept we applied the color constraints to a photometric sample in the Galactic plane, located WR star candidates, and present five new spectrally confirmed and classified WC (1) and WN (4) stars. Analysis of the 0.8-5.0 μm spectral data for a subset of known, bright WC and WN stars shows that emission lines (primarily He I) extend into the 3.0-5.0 μm spectral region, although their strength is greatly diminished compared to the 0.8-2.5 μm region. The WR population stands out relative to background field stars at NIR and MIR colors due to an excess continuum contribution, likely caused by free-free scattering in dense winds. Mean photometric properties of known WRs are presented and imply that reddened late-type WN and WC sources are easier to detect than earlier-type sources at larger Galactic radii. WISE W3 and W4 images of 10 WR stars show evidence of circumstellar shells linked to mass ejections from strong stellar winds.

  1. Massive stars on the verge of exploding: the properties of oxygen sequence Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Tramper, F.; Straal, S. M.; Sanyal, D.; Sana, H.; de Koter, A.; Gräfener, G.; Langer, N.; Vink, J. S.; de Mink, S. E.; Kaper, L.

    2015-09-01

    Context. Oxygen sequence Wolf-Rayet (WO) stars are a very rare stage in the evolution of massive stars. Their spectra show strong emission lines of helium-burning products, in particular highly ionized carbon and oxygen. The properties of WO stars can be used to provide unique constraints on the (post-)helium burning evolution of massive stars, and their remaining lifetimes and the expected properties of their supernovae. Aims: We aim to homogeneously analyze the currently known presumed-single WO stars to obtain the key stellar and outflow properties and to constrain their evolutionary state. Methods: We use the line-blanketed non-local thermal equilibrium atmosphere code cmfgen to model the X-Shooter spectra of the WO stars and to deduce the atmospheric parameters. We calculate dedicated evolutionary models to determine the evolutionary state of the stars. Results: The WO stars have extremely high temperatures that range from 150 kK to 210 kK, and very low surface helium mass fractions that range from 44% down to 14%. Their properties can be reproduced by evolutionary models with helium zero-age main sequence masses of MHe,ini = 15-25 M⊙ that exhibit a fairly strong (a few times 10-5M⊙ yr-1), homogeneous (fc> 0.3) stellar wind. Conclusions: WO stars represent the final evolutionary stage of stars with estimated initial masses of Mini = 40-60 M⊙. They are post core-helium burning and predicted to explode as type Ic supernovae within a few thousand years. Based on observations obtained at the European Southern Observatory under program IDs 091.C-0934 and 093.D-0591.Appendices are available in electronic form at http://www.aanda.org

  2. A modern search for Wolf-Rayet stars in the Magellanic Clouds: First results

    SciTech Connect

    Massey, Philip; Neugent, Kathryn F.; Morrell, Nidia; Hillier, D. John E-mail: kneugent@lowell.edu E-mail: hillier@pitt.edu

    2014-06-10

    Over the years, directed surveys and incidental spectroscopy have identified 12 Wolf-Rayet (WR) stars in the Small Magellanic Cloud (SMC) and 139 in the Large Magellanic Cloud (LMC), numbers which are often described as 'essentially complete'. Yet, new WRs are discovered in the LMC almost yearly. We have therefore initiated a new survey of both Magellanic Clouds using the same interference-filter imaging technique previously applied to M31 and M33. We report on our first observing season, in which we have successfully surveyed ∼15% of our intended area of the SMC and LMC. Spectroscopy has confirmed nine newly found WRs in the LMC (a 6% increase), including one of WO-type, only the third known in that galaxy and the second to be discovered recently. The other eight are WN3 stars that include an absorption component. In two, the absorption is likely from an O-type companion, but the other six are quite unusual. Five would be classified naively as 'WN3+O3 V', but such a pairing is unlikely given the rarity of O3 stars, the short duration of this phase (which is incommensurate with the evolution of a companion to a WN star), and because these stars are considerably fainter than O3 V stars. The sixth star may also fall into this category. CMFGEN modeling suggests these stars are hot, bolometrically luminous, and N-rich like other WN3 stars, but lack the strong winds that characterize WNs. Finally, we discuss two rare Of?p stars and four Of supergiants we found, and propose that the B[e] star HD 38489 may have a WN companion.

  3. Hα imaging survey of Wolf-Rayet galaxies: morphologies and star formation rates

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Omar, A.

    2016-06-01

    The Hα and optical broadband images of 25 nearby Wolf-Rayet (WR) galaxies are presented. The WR galaxies are known to have the presence of a recent (≤10 Myr) and massive star formation episode. The photometric Hα fluxes are estimated, and corrected for extinction and line contamination in the filter pass-bands. The star formation rates (SFRs) are estimated using Hα images and from the archival data in the far-ultraviolet (FUV), far-infrared (FIR) and 1.4 GHz radio continuum wave-bands. A comparison of SFRs estimated from different wavebands is made after including similar data available in literature for other WR galaxies. The Hα based SFRs are found to be tightly correlated with SFRs estimated from the FUV data. The correlations also exist with SFRs estimates based on the radio and FIR data. The WR galaxies also follow the radio-FIR correlation known for normal star forming galaxies, although it is seen here that majority of dwarf WR galaxies have radio deficiency. An analysis using ratio of non-thermal to thermal radio continuum and ratio of FUV to Hα SFR indicates that WR galaxies have lesser non-thermal radio emission compared to normal galaxies, most likely due to lack of supernova from the very young star formation episode in the WR galaxies. The morphologies of 16 galaxies in our sample are highly suggestive of an ongoing tidal interaction or a past merger in these galaxies. This survey strengthens the conclusions obtained from previous similar studies indicating the importance of tidal interactions in triggering star-formation in WR galaxies.

  4. SEARCH FOR A MAGNETIC FIELD VIA CIRCULAR POLARIZATION IN THE WOLF-RAYET STAR EZ CMa

    SciTech Connect

    De la Chevrotiere, A.; St-Louis, N.; Moffat, A. F. J.; Collaboration: MiMeS Collaboration

    2013-02-20

    We report on the first deep, direct search for a magnetic field via the circular polarization of Zeeman splitting in a Wolf-Rayet (W-R) star. Using the highly efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we observed at three different epochs one of the best W-R candidates in the sky expected to harbor a magnetic field, the bright, highly variable WN4 star EZ CMa = WR6 = HD 50896. We looked for the characteristic circular polarization (Stokes V) pattern in strong emission lines that would arise as a consequence of a global, rotating magnetic field with a split monopole configuration. We also obtained nearly simultaneous linear polarization spectra (Stokes Q and U), which are dominated by electron scattering, most likely from a flattened wind with large-scale corotating structures. As the star rotates with a period of 3.766 days, our view of the wind changes, which in turn affects the value of the linear polarization in lines versus continuum at the {approx}0.2% level. Depending on the epoch of observation, our Stokes V data were affected by significant crosstalk from Stokes Q and U to V. We removed this spurious signal from the circular polarization data and experimented with various levels of spectral binning to increase the signal-to-noise ratio of our data. In the end, no magnetic field is unambiguously detected in EZ CMa. Assuming that the star is intrinsically magnetic and harbors a split monopole configuration, we find an upper limit of B {approx} 100 G for the intensity of its field in the line-forming regions of the stellar wind.

  5. A CHANDRA OBSERVATION OF THE ECLIPSING WOLF-RAYET BINARY CQ Cep

    SciTech Connect

    Skinner, Stephen L.; Zhekov, Svetozar A.; Güdel, Manuel; Schmutz, Werner E-mail: szhekov@space.bas.bg E-mail: werner.schmutz@pmodwrc.ch

    2015-02-01

    The short-period (1.64 d) near-contact eclipsing WN6+O9 binary system CQ Cep provides an ideal laboratory for testing the predictions of X-ray colliding wind shock theory at close separation where the winds may not have reached terminal speeds before colliding. We present results of a Chandra X-ray observation of CQ Cep spanning ∼1 day during which a simultaneous Chandra optical light curve was acquired. Our primary objective was to compare the observed X-ray properties with colliding wind shock theory, which predicts that the hottest shock plasma (T ≳ 20 MK) will form on or near the line-of-centers between the stars. The X-ray spectrum is strikingly similar to apparently single WN6 stars such as WR 134 and spectral lines reveal plasma over a broad range of temperatures T ∼ 4-40 MK. A deep optical eclipse was seen as the O star passed in front of the Wolf-Rayet star and we determine an orbital period P {sub orb} = 1.6412400 d. Somewhat surprisingly, no significant X-ray variability was detected. This implies that the hottest X-ray plasma is not confined to the region between the stars, at odds with the colliding wind picture and suggesting that other X-ray production mechanisms may be at work. Hydrodynamic simulations that account for such effects as radiative cooling and orbital motion will be needed to determine if the new Chandra results can be reconciled with the colliding wind picture.

  6. X-Ray Emission from the Wolf-Rayet Bubble S 308

    NASA Technical Reports Server (NTRS)

    Toala, J. A.; Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Arthur, S. J.; Smith, R. C.; Snowden, S. L.

    2012-01-01

    The Wolf-Rayet (WR) bubble S 308 around the WR star HD 50896 is one of the only two WR bubbles known to possess X-ray emission. We present XMM-Newton observations of three fields of this WR bubble that, in conjunction with an existing observation of its Northwest quadrant (Chu et al. 2003), map most of the nebula. The X-ray emission from S 308 displays a limb-brightened morphology, with a 22' in size central cavity and a shell thickness of approx. 8'. This X-ray shell is confined by the optical shell of ionized material. The spectrum is dominated by the He-like triplets of N VI at approx.0.43 keV and O VII at approx.0.5 keV, and declines towards high energies, with a faint tail up to 1 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T1 approx.1.1 x 10(exp 6) K, T2 approx.13 x 10(exp 6) K), with a total X-ray luminosity approx.3 x 10(exp 33) erg/s at the assumed distance of 1.8 kpc. Qualitative comparison of the X-ray morphology of S 308 with the results of numerical simulations of wind-blown WR bubbles suggests a progenitor mass of 40 Stellar mass and an age in the WR phase approx.20,000 yrs. The X-ray luminosity predicted by simulatioms including the effects of heat conduction is in agreement with the observations, however, the simulated X-ray spectrum indicates generally hotter gas than is derived from the observations. We suggest that non-equilibrium ionization (NEI) may provide an explanation for this discrepancy.

  7. An Emerging Wolf-Rayet Massive Star Cluster in NGC 4449

    NASA Astrophysics Data System (ADS)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy; Reines, Amy E.

    2015-03-01

    We present a panchromatic investigation of the partially embedded, emerging massive cluster Source 26 (=S26) in NGC 4449 with optical spectra obtained at Apache Point Observatory and archival Hubble, Spitzer, and Herschel 5 Space Telescope images. First identified as a radio continuum source with a thermal component due to ionized material, the massive cluster S26 also exhibits optical Wolf-Rayet (WR) emission lines that reveal a large evolved massive star population. We find that S26 is host to ˜240 massive stars, of which ˜18 are WR stars; the relative populations are roughly consistent with other observed massive star-forming clusters and galaxies. We construct SEDs over two spatial scales (˜100 and ˜300 pc) that clearly exhibit warm dust and polycyclic aromatic hydrocarbon (PAH) emission. The best fit dust and grain models reveal that both the intensity of the exciting radiation and PAH grain destruction increase toward the cluster center. Given that the timescale of evacuation is important for the future dynamical evolution of the cluster, it is important to determine whether O-type and WR stars can evacuate the material gradually before supernova do so on a much faster timescale. With a minimum age of ≈ 3 Myr, it is clear that S26 has not yet fully evacuated its natal material, which indicates that unevolved O-type stars alone do not provide sufficient feedback to remove the gas and dust. We hypothesize that the feedback of WR stars in this cluster may be necessary for clearing the material from the gravitational potential of the cluster. We find S26 is similar to emission line clusters observed in the Antennae galaxies and may be considered a younger analog to 30 Doradus in the LMC.

  8. Spatial distribution of Galactic Wolf-Rayet stars and implications for the global population

    NASA Astrophysics Data System (ADS)

    Rosslowe, C. K.; Crowther, P. A.

    2015-03-01

    We construct revised near-infrared absolute magnitude calibrations for 126 Galactic Wolf-Rayet (WR) stars at known distances, based in part upon recent large-scale spectroscopic surveys. Application to 246 WR stars located in the field permits us to map their Galactic distribution. As anticipated, WR stars generally lie in the thin disc (˜40 pc half-width at half-maximum) between Galactocentric radii 3.5-10 kpc, in accordance with other star formation tracers. We highlight 12 WR stars located at vertical distances of ≥300 pc from the mid-plane. Analysis of the radial variation in WR subtypes exposes a ubiquitously higher NWC/NWN ratio than predicted by stellar evolutionary models accounting for stellar rotation. Models for non-rotating stars or accounting for close binary evolution are more consistent with observations. We consolidate information acquired about the known WR content of the Milky Way to build a simple model of the complete population. We derive observable quantities over a range of wavelengths, allowing us to estimate a total number of 1900 ± 250 Galactic WR stars, implying an average duration of ˜ 0.4 Myr for the WR phase at the current Milky Way star formation rate. Of relevance to future spectroscopic surveys, we use this model WR population to predict follow-up spectroscopy to KS ≃ 17.5 mag will be necessary to identify 95 per cent of Galactic WR stars. We anticipate that ESA's Gaia mission will make few additional WR star discoveries via low-resolution spectroscopy, though will significantly refine existing distance determinations. Appendix A provides a complete inventory of 322 Galactic WR stars discovered since the VIIth catalogue (313 including Annex), including a revised nomenclature scheme.

  9. WIND STRUCTURE AND LUMINOSITY VARIATIONS IN THE WOLF-RAYET/LUMINOUS BLUE VARIABLE HD 5980

    SciTech Connect

    Georgiev, Leonid; Koenigsberger, Gloria; Hillier, D. John; Morrell, Nidia; Gamen, Roberto E-mail: gloria@astro.unam.mx

    2011-12-15

    Over the past 40 years, the massive luminous blue variable/Wolf-Rayet system HD 5980 in the Small Magellanic Cloud (SMC) has undergone a long-term S Doradus-type variability cycle and two brief and violent eruptions in 1993 and 1994. In this paper we analyze a collection of UV and optical spectra obtained between 1979 and 2009 and perform CMFGEN model fits to spectra of 1994, 2000, 2002, and 2009. The results are as follows: (1) the long-term S Dor-type variability is associated with changes of the hydrostatic radius; (2) the 1994 eruption involved changes in its bolometric luminosity and wind structure; (3) the emission-line strength, the wind velocity, and the continuum luminosity underwent correlated variations in the sense that a decreasing V{sub {infinity}} is associated with increasing emission line and continuum levels; and (4) the spectrum of the third star in the system (Star C) is well fit by a T{sub eff} = 32 K model atmosphere with SMC chemical abundances. For all epochs, the wind of the erupting star is optically thick at the sonic point and is thus driven mainly by the continuum opacity. We speculate that the wind switches between two stable regimes driven by the 'hot' (during the eruption) and the 'cool' (post-eruption) iron opacity bumps as defined by Lamers and Nugis and Graefener and Hamann, and thus the wind may undergo a bi-stability jump of a different nature from that which occurs in OB stars.

  10. A Wolf-Rayet-Like Progenitor of SN 2013cu from Spectral Observations of a Stellar Wind

    NASA Technical Reports Server (NTRS)

    Gal-Yam, Avishay; Arcavi, I.; Ofek, E. O.; Ben-Ami, S.; Cenko, S. B.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Silverman, J. M.; Horesh, A.; Cia, A. De; Taddia, F.; Sollerman, J.; Perley, D.; Vreeswijk, P. M.; Kulkarni, S. R.; Nugent, P. E.; Filippenko, A. V.; Wheeler, J. C.

    2014-01-01

    The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen- deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic. A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib, but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(exp 12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star).We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.

  11. Red Eyes on Wolf-Rayet Stars: 60 New Discoveries via Infrared Color Selection

    NASA Astrophysics Data System (ADS)

    Mauerhan, Jon C.; Van Dyk, Schuyler D.; Morris, Patrick W.

    2011-08-01

    We have spectroscopically identified 60 Galactic Wolf-Rayet (WR) stars, including 38 nitrogen types (WN) and 22 carbon types (WC). Using photometry from the Spitzer/GLIMPSE and Two Micron All Sky Survey databases, the new WRs were selected via a method we have established that exploits their unique infrared colors, which is mainly the result of excess radiation generated by free-free scattering within their dense ionized winds. The selection criterion has been refined since the last report, resulting in a WR detection rate of ≈20% in spectroscopic follow-up of candidates that comprise a broad color space defined by the color distribution of all known WRs having B > 14 mag. However, there are smaller regions within this color space that yield WRs at a rate of >50% in spectroscopic follow-up. Candidates that are not WRs are mainly Be stars, which is possibly attributable to the physical similarities between the free-free emission parameters of Be disks and WR winds. As an additional selection experiment, the list of WR candidates was cross-correlated with archival X-ray point-source catalogs, which increases the WR detection rate of the broad color space to ≈40% 10 new WR X-ray sources have been found in addition to a previously unrecognized X-ray counterpart to a known WR. The extinction values, distances, and Galactocentric radii of all new WRs are calculated using the method of spectroscopic parallax. Although the majority of the new WRs have no obvious association with stellar clusters, two WC8 stars reside in a previously unknown massive-star cluster, in which five OB supergiants were also identified. The new system lies at an estimated distance of ≈6.1 kpc, near the intersection of the Scutum-Centaurus Arm with the Galaxy's bar. In addition, two WC and four WN stars, all but one of which are X-ray sources, were identified in association with the stellar clusters Danks 1 and 2. A WN9 star has also been associated with the cluster [DBS2003] 179. This work

  12. Photometric and spectroscopic studies of star-forming regions within Wolf-Rayet galaxies

    NASA Astrophysics Data System (ADS)

    Karthick, M. Chrisphin; López-Sánchez, Ángel R.; Sahu, D. K.; Sanwal, B. B.; Bisht, Shuchi

    2014-03-01

    We present a study of the properties of star-forming regions within a sample of seven Wolf-Rayet (WR) galaxies. We analyse their morphologies, colours, star-formation rates (SFRs), metallicities and stellar populations, combining broad-band and narrow-band photometry with low-resolution optical spectroscopy. The UBVRI observations were made with the 2-m HCT (Himalayan Chandra Telescope) and 1-m ARIES telescope. The spectroscopic data were obtained using the Hanle Faint Object Spectrograph Camera (HFOSC) mounted on the 2-m HCT. The observed galaxies are NGC 1140, IRAS 07164+5301, NGC 3738, UM 311, NGC 6764, NGC 4861 and NGC 3003. The optical spectra were used to search for the faint WR features, to confirm that the ionization of the gas is caused by the massive stars, and to quantify the oxygen abundance of each galaxy using several independent empirical calibrations. We detected broad features originating in WR stars in NGC 1140 and 4861 and used them to derive the massive star populations. For these two galaxies we also derived the oxygen abundance using a direct estimation of the electron temperature of the ionized gas. The N/O ratio in NGC 4861 is ˜0.25-0.35 dex higher than expected, which may be a consequence of the chemical pollution by N-rich material released by WR stars. Using our Hα images we identified tens of star-forming regions within these galaxies, for which we derived the SFR. Our Hα-based SFR usually agrees with the SFR computed using the far-infrared and the radio-continuum flux. For all regions we found that the most recent star-formation event is 3-6 Myr old. We used the optical broad-band colours in combination with Starburst99 models to estimate the internal reddening and the age of the dominant underlying stellar population within all these regions. Knots in NGC 3738, 6764 and 3003 generally show the presence of an important old (400-1000 Myr) stellar population. However, the optical colours are not able to detect stars older than 20

  13. RED EYES ON WOLF-RAYET STARS: 60 NEW DISCOVERIES VIA INFRARED COLOR SELECTION

    SciTech Connect

    Mauerhan, Jon C.; Van Dyk, Schuyler D.; Morris, Patrick W.

    2011-08-15

    We have spectroscopically identified 60 Galactic Wolf-Rayet (WR) stars, including 38 nitrogen types (WN) and 22 carbon types (WC). Using photometry from the Spitzer/GLIMPSE and Two Micron All Sky Survey databases, the new WRs were selected via a method we have established that exploits their unique infrared colors, which is mainly the result of excess radiation generated by free-free scattering within their dense ionized winds. The selection criterion has been refined since the last report, resulting in a WR detection rate of {approx}20% in spectroscopic follow-up of candidates that comprise a broad color space defined by the color distribution of all known WRs having B > 14 mag. However, there are smaller regions within this color space that yield WRs at a rate of >50% in spectroscopic follow-up. Candidates that are not WRs are mainly Be stars, which is possibly attributable to the physical similarities between the free-free emission parameters of Be disks and WR winds. As an additional selection experiment, the list of WR candidates was cross-correlated with archival X-ray point-source catalogs, which increases the WR detection rate of the broad color space to {approx}40%; 10 new WR X-ray sources have been found in addition to a previously unrecognized X-ray counterpart to a known WR. The extinction values, distances, and Galactocentric radii of all new WRs are calculated using the method of spectroscopic parallax. Although the majority of the new WRs have no obvious association with stellar clusters, two WC8 stars reside in a previously unknown massive-star cluster, in which five OB supergiants were also identified. The new system lies at an estimated distance of {approx}6.1 kpc, near the intersection of the Scutum-Centaurus Arm with the Galaxy's bar. In addition, two WC and four WN stars, all but one of which are X-ray sources, were identified in association with the stellar clusters Danks 1 and 2. A WN9 star has also been associated with the cluster [DBS2003

  14. The onset of Wolf-Rayet wind outflow and the nature of the hot component in the symbiotic nova PU Vulpecula

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Shore, Steven N.; Ready, Christian J.; Scheible, Maureen P.

    1993-01-01

    We have analyzed temporal variations in the far ultraviolet He II (1640), Si IV (1393, 1402), and C IV (1548, 1550) line profiles in eight high dispersion, International Ultraviolet Explorer Short Wavelength Prime spectra of the symbiotic nova PU Vul by comparatively examining these profiles on a common velocity scale. We see clear evidence of the onset of a Wolf-Rayet-like wind outflow from the bloated, contracting white dwarf hot component with terminal velocity of approximately equals -550 to -600 km/s. We have quantitatively analyzed the complicated He II (1640) emission region for the first time and show that the discrete absorption features seen in the He II region occur at precisely the same velocites in each spectrum, thus demonstrating that the absorbing source is steady and not affected by any orbital motion. We demonstrate that there is an underlying He II wind emission feature whose true shape is hidden by superposed absorption due to the foreground red giant wind flowing in front of the white dwarf and abscuring the white dwarf's wind outflow. We present synthetic spectra of He II emission behind an absorbing slab with u = 20 km/s, T = 5000 K, and column densities in the range N = 1 x 10(exp 22) and 1 x 10(exp 23)/sq cm which explain these absorptions. Our analysis of the Si IV and C IV resonance doublets, in velocity space, reveal temporal variations in the profile between 1987 and 1991 with the emergence of clear P Cygni profiles in Si IV by 1990. A nebular emission feature in C III 1909 also appears in the most recent spectra (e.g., SW42538H) while it was absent or extremely weak in the earliest spectra (e.g., SW36332H), thus strengthening evidence that the nebular emission, as seen in permitted and semiforbidden lines, intensities in step with the onset of the hot, fast, wind outflow. We also report the first detection of narrow interstellar (circumbinary shell?) absorption lines near -1 km/s, most strongly in Al III (1854, 1862) and Si IV (1392

  15. Source-plane reconstruction of the giant gravitational arc in A2667: A candidate Wolf-Rayet galaxy at z ∼ 1

    SciTech Connect

    Cao, Shuo; Zhu, Zong-Hong; Covone, Giovanni; Jullo, Eric; Richard, Johan; Izzo, Luca

    2015-01-01

    We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of its counterparts at higher redshift, z ∼ 2. The surface brightness of the reconstructed source galaxy in the z {sub 850} band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec{sup –2} and a characteristic radius r{sub s} = 2.01 ± 0.16 kpc at redshift z ∼ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (∼1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.

  16. Ionization structure and chemical abundances of the Wolf-Rayet nebula NGC 6888 with integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Fernández-Martín, A.; Martín-Gordón, D.; Vílchez, J. M.; Pérez Montero, E.; Riera, A.; Sánchez, S. F.

    2012-05-01

    Context. The study of nebulae around Wolf-Rayet (WR) stars gives us clues about the mass-loss history of massive stars, as well as about the chemical enrichment of the interstellar medium (ISM). Aims: This work aims to search for the observational footprints of the interactions between the ISM and stellar winds in the WR nebula NGC 6888 in order to understand its ionization structure, chemical composition, and kinematics. Methods: We have collected a set of integral field spectroscopy observations across NGC 6888, obtained with PPAK in the optical range performing both 2D and 1D analyses. Attending to the 2D analysis in the northeast part of NGC 6888, we have generated maps of the extinction structure and electron density. We produced statistical frequency distributions of the radial velocity and diagnostic diagrams. Furthermore, we performed a thorough study of integrated spectra in nine regions over the whole nebula. Results: The 2D study has revealed two main behaviours. We have found that the spectra of a localized region to the southwest of this pointing can be represented well by shock models assuming n = 1000 cm-3, twice solar abundances, and shock velocities from 250 to 400 km s-1. With the 1D analysis we derived electron densities ranging from <100 to 360 cm-3. The electron temperature varies from ~7700 K to ~10 200 K. A strong variation of up to a factor 10 between different regions in the nitrogen abundance has been found: N/H appears lower than the solar abundance in those positions observed at the edges and very enhanced in the observed inner parts. Oxygen appears slightly underabundant with respect to solar value, whereas the helium abundance is found to be above it. We propose a scenario for the evolution of NGC 6888 to explain the features observed. This scheme consists of a structure of multiple shells: i) an inner and broken shell with material from the interaction between the supergiant and WR shells, presenting an overabundance in N/H and a

  17. Fundamental parameters of Wolf-Rayet stars. I. Ofpe/WN9 stars.

    NASA Astrophysics Data System (ADS)

    Crowther, P. A.; Hillier, D. J.; Smith, L. J.

    1995-01-01

    to that of the Luminous Blue Variable (LBV) R71 indicating that it is probably associated with an LBV phase rather than a post-red supergiant as suggested by Schmutz et al. (1991). The status of the remaining LMC stars is less clear, although their common spectral characteristics suggest that they are also related to LBVs, with Sk-66 40 the least evolved of the present sample. For WR108, its spectral appearance, derived parameters and abundances (H/He=1.5, C/N~0.10) suggest an intimate relationship with extreme Galactic Ofpe stars, with the wind density being the principal difference, and evolution probably proceeding directly from Of to Wolf-Rayet.

  18. Two New Wolf-Rayet Stars and a Luminous Blue Variable Star in the Quintuplet (AFGL 2004) near the Galactic Center

    NASA Astrophysics Data System (ADS)

    Figer, Donald F.; McLean, Ian S.; Morris, Mark

    1995-07-01

    As part of an 1800 pc2 survey of the Galactic center region in the lines of He I (2.058 mu m), Br gamma (2.166 mu m), and the He II/C IV complex (3.09 mu m), we have found two new Wolf-Rayet stars, a WN9 and a WC9, near the Galactic center. K-band spectra of both stars show broad helium emission lines, and the WC9 shows broad carbon emission lines. A third emission-line star in the region has a spectrum and luminosity similar to a luminous blue variable (LBV). The stars are within 2 pc, in projection, of the Quintuplet cluster (AFGL 2004) and are probably members of this cluster on the basis of their proximity and expected ages. All three stars are evolved descendants of massive main-sequence stars having Minitial >~ 50 M⊙ (WC9), >~ 20 M⊙ (WN9), and >~ 40 M⊙ (LBV candidate). The LBV candidate has a luminosity of L ~ 106.3 L⊙, comparable to that of eta Carinae (L = 106.5 L⊙), one of the most luminous stars in the local group of galaxies. A total of five emission-line stars are now known to reside in the Quintuplet, and they collectively produce NLyc ~ 1049 photons s-1. The new LBV candidate generates enough ionizing photons to account for the "Pistol" H II region (G0.15-0.05), while the nearby "Sickle" (G0.18-0.04) may be ionized by a population of O stars accompanying the five emission-line stars.

  19. X-ray Observations of Binary and Single Wolf-Rayet Stars with XMM-Newton and Chandra

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen; Gudel, Manuel; Schmutz, Werner; Zhekov, Svetozar

    2006-01-01

    We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Ka line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only nondetections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.

  20. Galactic ring nebulae associated with Wolf-Rayet stars. VI. NGC 3199, anon (MR 26), RCW 58, and RCW 104

    SciTech Connect

    Chu, Y.

    1982-03-15

    We have obtained narrow-band interference filter photographs and high resolution Fabry-Perot spectra for four galactic ring nebulae associated with Wolf-Rayet stars: NGC 3199, anon (MR 26), RCW 58, and RCW 104. All of these four nebulae show interaction between the stellar wind and the ambient interstellar medium. NGC 3199, anon (MR 26), and RCW 104 are classified as W-type nebulae. RCW 58, having a prominent ring of stellar ejecta, is classified as an E-type nebula. For most W-type nebulae, the kinetic energy in the shell is only about 1% of the total mechanical energy input from the stellar wind, while the ratio of the shell momentum to the total momentum injected by the stellar wind is about 0.5 and apparently increases with the nebular age.

  1. THE DISCOVERY OF A RARE WO-TYPE WOLF-RAYET STAR IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Neugent, Kathryn F.; Massey, Philip; Morrell, Nidia E-mail: phil.massey@lowell.edu

    2012-12-01

    While observing OB stars within the most crowded regions of the Large Magellanic Cloud, we happened upon a new Wolf-Rayet (WR) star in Lucke-Hodge 41, the rich OB association that contains S Doradus and numerous other massive stars. At first glance the spectrum resembled that of a WC4 star, but closer examination showed strong O VI {lambda}{lambda}3811, 34 lines, leading us to classify it as a WO4. This is only the second known WO in the LMC, and the first known WO4 (the other being a WO3). This rarity is to be expected due to these stars' short lifespans as they represent the most advanced evolutionary stage in a massive star's lifetime before exploding as supernovae. This discovery shows that while the majority of WRs within the LMC have been discovered, there may be a few WRs left to be found.

  2. Wolf-Rayet stars of type WN/WC and mixing processes during core helium burning of massive stars

    NASA Technical Reports Server (NTRS)

    Langer, N.

    1991-01-01

    Consequences of the recent finding that most WN/WC spectra probably originate from individual Wolf-Rayet stars for the internal structure of massive stars are discussed. Numerical models including the effect of slow-down or prevention of convective mixing due to molecular weight gradients are presented, in which a transition layer with a composition mixture of H- and He-burning ashes is formed above the convective He-burning core. These models are able to qualitatively account for the observed WN/WC frequency and agree quantitatively with the only WN/WC-composition determination so far. It is argued that the same transition layer may be responsible for the final blue loop which the SN 1987 A progenitor performed some 10,000 yr before explosion. These results indicate that composition barriers may be efficient in restricting convection during central helium burning, in contrast to computations relying on the Schwarzschild criterion for convection, with or without overshooting.

  3. Pinwheels in the sky, with dust: 3D modelling of the Wolf-Rayet 98a environment

    NASA Astrophysics Data System (ADS)

    Hendrix, Tom; Keppens, Rony; van Marle, Allard Jan; Camps, Peter; Baes, Maarten; Meliani, Zakaria

    2016-08-01

    The Wolf-Rayet 98a (WR 98a) system is a prime target for interferometric surveys, since its identification as a `rotating pinwheel nebulae', where infrared images display a spiral dust lane revolving with a 1.4 yr periodicity. WR 98a hosts a WC9+OB star, and the presence of dust is puzzling given the extreme luminosities of Wolf-Rayet stars. We present 3D hydrodynamic models for WR 98a, where dust creation and redistribution are self-consistently incorporated. Our grid-adaptive simulations resolve details in the wind collision region at scales below one percent of the orbital separation (˜4 au), while simulating up to 1300 au. We cover several orbital periods under conditions where the gas component alone behaves adiabatic, or is subject to effective radiative cooling. In the adiabatic case, mixing between stellar winds is effective in a well-defined spiral pattern, where optimal conditions for dust creation are met. When radiative cooling is incorporated, the interaction gets dominated by thermal instabilities along the wind collision region, and dust concentrates in clumps and filaments in a volume-filling fashion, so WR 98a must obey close to adiabatic evolutions to demonstrate the rotating pinwheel structure. We mimic Keck, ALMA or future E-ELT observations and confront photometric long-term monitoring. We predict an asymmetry in the dust distribution between leading and trailing edge of the spiral, show that ALMA and E-ELT would be able to detect fine-structure in the spiral indicative of Kelvin-Helmholtz development, and confirm the variation in photometry due to the orientation. Historic Keck images are reproduced, but their resolution is insufficient to detect the details we predict.

  4. Pinwheels in the sky, with dust: 3D modeling of the Wolf-Rayet 98a environment

    NASA Astrophysics Data System (ADS)

    Hendrix, Tom; Keppens, Rony; van Marle, Allard Jan; Camps, Peter; Baes, Maarten; Meliani, Zakaria

    2016-05-01

    The Wolf-Rayet 98a (WR 98a) system is a prime target for interferometric surveys, since its identification as a "rotating pinwheel nebulae", where infrared images display a spiral dust lane revolving with a 1.4 year periodicity. WR 98a hosts a WC9+OB star, and the presence of dust is puzzling given the extreme luminosities of Wolf-Rayet stars. We present 3D hydrodynamic models for WR 98a, where dust creation and redistribution are self-consistently incorporated. Our grid-adaptive simulations resolve details in the wind collision region at scales below one percent of the orbital separation (˜ 4 AU), while simulating up to 1300 AU. We cover several orbital periods under conditions where the gas component alone behaves adiabatic, or is subject to effective radiative cooling. In the adiabatic case, mixing between stellar winds is effective in a well-defined spiral pattern, where optimal conditions for dust creation are met. When radiative cooling is incorporated, the interaction gets dominated by thermal instabilities along the wind collision region, and dust concentrates in clumps and filaments in a volume-filling fashion, so WR 98a must obey close to adiabatic evolutions to demonstrate the rotating pinwheel structure. We mimic Keck, ALMA or future E-ELT observations and confront photometric long-term monitoring. We predict an asymmetry in the dust distribution between leading and trailing edge of the spiral, show that ALMA and E-ELT would be able to detect fine-structure in the spiral indicative of Kelvin-Helmholtz development, and confirm the variation in photometry due to the orientation. Historic Keck images are reproduced, but their resolution is insufficient to detect the details we predict.

  5. ISOLATED WOLF-RAYET STARS AND O SUPERGIANTS IN THE GALACTIC CENTER REGION IDENTIFIED VIA PASCHEN-{alpha} EXCESS

    SciTech Connect

    Mauerhan, J. C.; Stolovy, S. R.; Cotera, A.; Dong, H.; Wang, Q. D.; Morris, M. R.; Lang, C.

    2010-12-10

    We report the discovery of 19 hot, evolved, massive stars near the Galactic center region (GCR). These objects were selected for spectroscopy owing to their detection as strong sources of Paschen-{alpha} (P{alpha}) emission-line excess, following a narrowband imaging survey of the central 0.{sup 0}65 x 0.{sup 0}25 (l, b) around Sgr A* with the Hubble Space Telescope. Discoveries include six carbon-type (WC) and five nitrogen-type (WN) Wolf-Rayet stars, six O supergiants, and two B supergiants. Two of the O supergiants have X-ray counterparts having properties consistent with solitary O stars and colliding-wind binaries. The infrared photometry of 17 stars is consistent with the Galactic center distance, but 2 of them are located in the foreground. Several WC stars exhibit a relatively large infrared excess, which is possibly thermal emission from hot dust. Most of the stars appear scattered throughout the GCR, with no relation to the three known massive young clusters; several others lie near the Arches and Quintuplet clusters and may have originated within one of these systems. The results of this work bring the total sample of Wolf-Rayet (WR) stars in the GCR to 88. All sources of strong P{alpha} excess have been identified in the area surveyed with HST, which implies that the sample of WN stars in this region is near completion, and is dominated by late (WNL) types. The current WC sample, although probably not complete, is almost exclusively dominated by late (WCL) types. The observed WR subtype distribution in the GCR is a reflection of the intrinsic rarity of early subtypes (WNE and WCE) in the inner Galaxy, an effect that is driven by metallicity.

  6. A Wolf-Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind.

    PubMed

    Gal-Yam, Avishay; Arcavi, I; Ofek, E O; Ben-Ami, S; Cenko, S B; Kasliwal, M M; Cao, Y; Yaron, O; Tal, D; Silverman, J M; Horesh, A; De Cia, A; Taddia, F; Sollerman, J; Perley, D; Vreeswijk, P M; Kulkarni, S R; Nugent, P E; Filippenko, A V; Wheeler, J C

    2014-05-22

    The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen-deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic (ref. 2). A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib (ref. 3), but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star). We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions. PMID:24848059

  7. Pinwheels in the sky, with dust: 3D modelling of the Wolf-Rayet 98a environment

    NASA Astrophysics Data System (ADS)

    Hendrix, Tom; Keppens, Rony; van Marle, Allard Jan; Camps, Peter; Baes, Maarten; Meliani, Zakaria

    2016-08-01

    The Wolf-Rayet 98a (WR 98a) system is a prime target for interferometric surveys, since its identification as a "rotating pinwheel nebulae", where infrared images display a spiral dust lane revolving with a 1.4 year periodicity. WR 98a hosts a WC9+OB star, and the presence of dust is puzzling given the extreme luminosities of Wolf-Rayet stars. We present 3D hydrodynamic models for WR 98a, where dust creation and redistribution are self-consistently incorporated. Our grid-adaptive simulations resolve details in the wind collision region at scales below one percent of the orbital separation (~4 AU), while simulating up to 1300 AU. We cover several orbital periods under conditions where the gas component alone behaves adiabatic, or is subject to effective radiative cooling. In the adiabatic case, mixing between stellar winds is effective in a well-defined spiral pattern, where optimal conditions for dust creation are met. When radiative cooling is incorporated, the interaction gets dominated by thermal instabilities along the wind collision region, and dust concentrates in clumps and filaments in a volume-filling fashion, so WR 98a must obey close to adiabatic evolutions to demonstrate the rotating pinwheel structure. We mimic Keck, ALMA or future E-ELT observations and confront photometric long-term monitoring. We predict an asymmetry in the dust distribution between leading and trailing edge of the spiral, show that ALMA and E-ELT would be able to detect fine-structure in the spiral indicative of Kelvin-Helmholtz development, and confirm the variation in photometry due to the orientation. Historic Keck images are reproduced, but their resolution is insufficient to detect the details we predict.

  8. Recherche de champs magnetiques chez les etoiles Wolf-Rayet par l'analyse d'observations spectropolarimetriques

    NASA Astrophysics Data System (ADS)

    de la Chevrotiere, Antoine

    This thesis presents the results of a spectropolarimetric survey aimed at detecting directly the presence of magnetic fields in Wolf-Rayet (WR) stars. The search for the elusive WR fields began by observing the highly variable WN4 star EZ CMa = WR6 = HD 50896 and continued among a sample of eleven bright WR stars. All observations were obtained using the highly-efficient ESPaDOnS spectropolarimeter at the Canada-France-Hawaii telescope. The methodology used in this study attempts to detect the characteristic circular polarization (Stokes V) pattern in strong emission lines that is expected to arise as a consequence of a global magnetic field with a split monopole configuration. Since Stokes V data were affected by significant cross-talk from linear polarization to circular polarization, the spurious cross-talk signal was removed prior to applying the magnetic analysis. In the end, no magnetic fields are unambiguously detected in any of the observed stars. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137 and WR138 for which the most probable field intensities, in the observable parts of the stellar winds, are B wind ˜ 200, 130 and 80 G, respectively. In the case of non-detections, the average field strength upper-limit for the magnetic field is Bmaxwind ˜ 500 G. Finally, this study cannot confirm the magnetic origin of co-rotating interaction regions observed in several WR stars since, out of 4 stars showing CIR-type variability, none showed decisive evidence for the presence of magnetic fields. Keywords: magnetic fields, polarization, Wolf-Rayet, spectropolarimetry..

  9. An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134

    NASA Astrophysics Data System (ADS)

    Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; Shenar, T.; Artigau, É.; Gauza, B.; Knapen, J. H.; Kubát, J.; Kubátová, B.; Maltais-Tariant, R.; Muñoz, M.; Pablo, H.; Ramiaramanantsoa, T.; Richard-Laferrière, A.; Sablowski, D. P.; Simón-Díaz, S.; St-Jean, L.; Bolduan, F.; Dias, F. M.; Dubreuil, P.; Fuchs, D.; Garrel, T.; Grutzeck, G.; Hunger, T.; Küsters, D.; Langenbrink, M.; Leadbeater, R.; Li, D.; Lopez, A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.; dos Santos, E. M.; Schanne, L.; Schmidt, J.; Sieske, H.; Strachan, J.; Stinner, E.; Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.; Verilhac, D.; Waldschläger, U.; Weiss, D.; Wendt, A.

    2016-08-01

    During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analyzed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analyzing the variability of the He II $\\lambda$5411 emission line, the previously identified period was refined to P = 2.255 $\\pm$ 0.008 (s.d.) days. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 $\\pm$ 6 days, or $\\sim$ 18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grayscale difference images with theoretical grayscales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of $\\Delta \\phi \\simeq$ 90$^{\\circ}$ was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C IV $\\lambda\\lambda$5802,5812 and He I $\\lambda$5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He I $\\lambda$5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist.

  10. An extensive spectroscopic time-series of three Wolf-Rayet stars. I. The lifetime of large-scale structures in the wind of WR 134

    NASA Astrophysics Data System (ADS)

    Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; Shenar, T.; Artigau, É.; Gauza, B.; Knapen, J. H.; Kubát, J.; Kubátová, B.; Maltais-Tariant, R.; Muñoz, M.; Pablo, H.; Ramiaramanantsoa, T.; Richard-Laferrière, A.; Sablowski, D. P.; Simón-Díaz, S.; St-Jean, L.; Bolduan, F.; Dias, F. M.; Dubreuil, P.; Fuchs, D.; Garrel, T.; Grutzeck, G.; Hunger, T.; Küsters, D.; Langenbrink, M.; Leadbeater, R.; Li, D.; Lopez, A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.; dos Santos, E. M.; Schanne, L.; Schmidt, J.; Sieske, H.; Strachan, J.; Stinner, E.; Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.; Verilhac, D.; Waldschläger, U.; Weiss, D.; Wendt, A.

    2016-05-01

    During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analyzed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analyzing the variability of the He II λ5411 emission line, the previously identified period was refined to P = 2.255 ± 0.008 (s.d.) days. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 ± 6 days, or ˜ 18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grayscale difference images with theoretical grayscales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Δφ ≃ 90° was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C IV λλ5802,5812 and He I λ5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He I λ5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist.

  11. An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134

    NASA Astrophysics Data System (ADS)

    Aldoretta, E. J.; St-Louis, N.; Richardson, N. D.; Moffat, A. F. J.; Eversberg, T.; Hill, G. M.; Shenar, T.; Artigau, É.; Gauza, B.; Knapen, J. H.; Kubát, J.; Kubátová, B.; Maltais-Tariant, R.; Muñoz, M.; Pablo, H.; Ramiaramanantsoa, T.; Richard-Laferrière, A.; Sablowski, D. P.; Simón-Díaz, S.; St-Jean, L.; Bolduan, F.; Dias, F. M.; Dubreuil, P.; Fuchs, D.; Garrel, T.; Grutzeck, G.; Hunger, T.; Küsters, D.; Langenbrink, M.; Leadbeater, R.; Li, D.; Lopez, A.; Mauclaire, B.; Moldenhawer, T.; Potter, M.; dos Santos, E. M.; Schanne, L.; Schmidt, J.; Sieske, H.; Strachan, J.; Stinner, E.; Stinner, P.; Stober, B.; Strandbaek, K.; Syder, T.; Verilhac, D.; Waldschläger, U.; Weiss, D.; Wendt, A.

    2016-08-01

    During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He II λ5411 emission line, the previously identified period was refined to P = 2.255 ± 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 ± 6 d, or ˜18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Δφ ≃ 90° was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C IV λλ5802,5812 and He I λ5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He I λ5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist.

  12. RE-EXAMINING HIGH ABUNDANCE SLOAN DIGITAL SKY SURVEY MASS-METALLICITY OUTLIERS: HIGH N/O, EVOLVED WOLF-RAYET GALAXIES?

    SciTech Connect

    Berg, Danielle A.; Skillman, Evan D.; Marble, Andrew R. E-mail: skillman@astro.umn.edu

    2011-09-01

    We present new MMT spectroscopic observations of four dwarf galaxies representative of a larger sample observed by the Sloan Digital Sky Survey and identified by Peeples et al. as low-mass, high oxygen abundance outliers from the mass-metallicity relation. Peeples showed that these four objects (with metallicity estimates of 8.5 {<=} 12 + log(O/H) {<=} 8.8) have oxygen abundance offsets of 0.4-0.6 dex from the M{sub B} luminosity-metallicity relation. Our new observations extend the wavelength coverage to include the [O II] {lambda}{lambda}3726, 3729 doublet, which adds leverage in oxygen abundance estimates and allows measurements of N/O ratios. All four spectra are low excitation, with relatively high N/O ratios (N/O {approx}> 0.10), each of which tend to bias estimates based on strong emission lines toward high oxygen abundances. These spectra all fall in a regime where the 'standard' strong-line methods for metallicity determinations are not well calibrated either empirically or by photoionization modeling. By comparing our spectra directly to photoionization models, we estimate oxygen abundances in the range of 7.9 {<=} 12 + log (O/H) {<=} 8.4, consistent with the scatter of the mass-metallicity relation. We discuss the physical nature of these galaxies that leads to their unusual spectra (and previous classification as outliers), finding their low excitation, elevated N/O, and strong Balmer absorption are consistent with the properties expected from galaxies evolving past the 'Wolf-Rayet galaxy' phase. We compare our results to the 'main' sample of Peeples and conclude that they are outliers primarily due to enrichment of nitrogen relative to oxygen and not due to unusually high oxygen abundances for their masses or luminosities.

  13. Inverse Kinematic Study of the Alg26(d ,p )27Al Reaction and Implications for Destruction of 26Al in Wolf-Rayet and Asymptotic Giant Branch Stars

    NASA Astrophysics Data System (ADS)

    Margerin, V.; Lotay, G.; Woods, P. J.; Aliotta, M.; Christian, G.; Davids, B.; Davinson, T.; Doherty, D. T.; Fallis, J.; Howell, D.; Kirsebom, O. S.; Mountford, D. J.; Rojas, A.; Ruiz, C.; Tostevin, J. A.

    2015-08-01

    In Wolf-Rayet and asymptotic giant branch (AGB) stars, the Alg26(p ,γ )27Si reaction is expected to govern the destruction of the cosmic γ -ray emitting nucleus 26Al. The rate of this reaction, however, is highly uncertain due to the unknown properties of key resonances in the temperature regime of hydrogen burning. We present a high-resolution inverse kinematic study of the Alg26(d ,p )27Al reaction as a method for constraining the strengths of key astrophysical resonances in the Alg26(p ,γ )27Si reaction. In particular, the results indicate that the resonance at Er=127 keV in 27Si determines the entire Alg26(p ,γ )27Si reaction rate over almost the complete temperature range of Wolf-Rayet stars and AGB stars.

  14. Suzaku monitoring of the Wolf-Rayet binary WR 140 around periastron passage: An approach for quantifying the wind parameters

    NASA Astrophysics Data System (ADS)

    Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko; Hamaguchi, Kenji; Corcoran, Michael; Pollock, Andy M. T.; Moffat, Anthony F. J.; Williams, Peredur M.; Dougherty, Sean; Pittard, Julian

    2015-12-01

    Suzaku observations of the Wolf-Rayet (W-R) binary WR 140 (WC7pd+O5.5fc) were made at four different times around periastron passage in 2009 January. The spectra changed in shape and flux with the phase. As periastron approached, the column density of the low-energy absorption increased, which indicates that the emission from the wind-wind collision plasma was absorbed by the dense W-R wind. The spectra can be mostly fitted with two different components: a warm component with kBT = 0.3-0.6 keV and a dominant hot component with kBT ˜ 3 keV. The emission measure of the dominant, hot component is not inversely proportional to the distance between the two stars. This can be explained by the O star wind colliding before it has reached its terminal velocity, leading to a reduction in its wind momentum flux. At phases closer to periastron, we discovered a cool plasma component in a recombining phase, which is less absorbed. This component may be a relic of the wind-wind collision plasma, which was cooled down by radiation, and may represent a transitional stage in dust formation.

  15. New Constraints on the Origin of the Short-term Cyclical Variability of the Wolf-Rayet Star WR 46

    NASA Astrophysics Data System (ADS)

    Hénault-Brunet, V.; St-Louis, N.; Marchenko, S. V.; Pollock, A. M. T.; Carpano, S.; Talavera, A.

    2011-07-01

    The Wolf-Rayet star WR 46 is known to exhibit a very complex variability pattern on relatively short timescales of a few hours. Periodic but intermittent radial velocity shifts of optical lines as well as multiple photometric periods have been found in the past. Non-radial pulsations, rapid rotational modulation, or the presence of a putative low-mass companion have been proposed to explain the short-term behavior. In an effort to unveil its true nature, we observed WR 46 with the Far Ultraviolet Spectroscopic Explorer (FUSE) over several short-term variability cycles. We found significant variations on a timescale of ~8 hr in the far-ultraviolet (FUV) continuum, in the blue edge of the absorption trough of the O VI λλ1032, 1038 doublet P Cygni profile and in the S VI λλ933, 944 P Cygni absorption profile. We complemented these observations with X-ray and UV light curves and an X-ray spectrum from archival X-ray Multi-Mirror Mission-Newton Space Telescope (XMM-Newton) data. The X-ray and UV light curves show variations on a timescale similar to the variability found in the FUV. We discuss our results in the context of the different scenarios suggested to explain the short-term variability of this object and reiterate that non-radial pulsations is the scenario most likely to occur.

  16. Detached dust shell around Wolf-Rayet star WR60-6 in the young stellar cluster VVV CL036

    SciTech Connect

    Borissova, J.; Amigo, P.; Kurtev, R.; Kumar, M. S. N.; Chené, A.-N.; Minniti, D.

    2014-01-01

    The discovery of a detached dust shell around the Wolf-Rayet (WR) star WR60-6 in the young stellar cluster VVV CL036 is reported. This shell is uncovered through the Spitzer-MIPS 24 μm image, where it appears brightest, and it is invisible at shorter wavelengths. Using new APEX observations and other data available from the literature, we have estimated some of the shell parameters: the inner and outer radii of 0.15 and 0.90 pc, respectively; the overall systemic velocity of the molecular {sup 12}CO(3 → 2) emission of –45.7 ± 2.3 km s{sup –1}; an expansion velocity of the gas of 16.3 ± 1 km s{sup –1}; the dust temperature and opacity of 122 ± 12 K and 1.04, respectively; and an age of 2.8 × 10{sup 4} yr. The WR star displays some cyclic variability. The mass computed for the WR60-6 nebula indicates that the material was probably ejected during its previous stages of evolution. In addition, we have identified a bright spot very close to the shell, which can be associated with the Midcourse Space Experiment source G312.13+00.20.

  17. Herschel observations of the nebula M1-67 around the Wolf-Rayet star WR 124

    NASA Astrophysics Data System (ADS)

    Vamvatira-Nakou, C.; Hutsemékers, D.; Royer, P.; Waelkens, C.; Groenewegen, M. A. T.; Barlow, M. J.

    2016-04-01

    Infrared Herschel imaging and spectroscopic observations of the nebula M1-67 around the Wolf-Rayet star WR 124 have been obtained along with optical imaging observations. The infrared images reveal a clumpy dusty nebula that extends up to 1 pc. The comparison with the optical images shows that the ionized gas nebula coincides with the dust nebula, the dust and the gas being mixed together. A photodissociation region is revealed from the infrared spectroscopic analysis. The analysis of the infrared spectrum of the nebula, where forbidden emission lines of ionized elements were detected, showed that the nebula consists of mildly processed material with the calculated abundance number ratios being N/O = 1.0 ± 0.5 and C/O = 0.46 ± 0.27. Based on a radiative transfer model, the dust mass of the nebula was estimated to be 0.22 M⊙ with a population of large grains being necessary to reproduce the observations. The comparison of the mass-loss rate and the abundance ratios to theoretical models of stellar evolution led to the conclusion that the nebular ejection took place during a RSG/YSG evolutionary phase of a central star with an initial mass of 32 M⊙. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Based in part on observations collected at the European Southern Observatory, La Silla, Chile.

  18. Wolf-Rayet stars in M81: detection and characterization using GTC/OSIRIS spectra and HST/ACS images

    NASA Astrophysics Data System (ADS)

    Gómez-González, V. M. A.; Mayya, Y. D.; Rosa-González, D.

    2016-08-01

    We here report the properties of Wolf-Rayet (W-R) stars in 14 locations in the nearby spiral galaxy M81. These locations were found serendipitously while analysing the slit spectra of a sample of ˜150 star-forming complexes, taken using the long-slit and multiobject spectroscopic modes of the OSIRIS instrument at the 10.4-m Gran Telescopio Canarias. Colours and magnitudes of the identified point sources in the Hubble Space Telescope images compare well with those of individual W-R stars in the Milky Way. Using templates of individual W-R stars, we infer that the objects responsible for the observed W-R features are single stars in 12 locations, comprising of three WNLs, three WNEs, two WCEs and four transitional WN/C types. In diagrams involving bump luminosities and the width of the bumps, the W-R stars of the same sub-class group together, with the transitional stars occupying locations intermediate between the WNE and WCE groups, as expected from the evolutionary models. However, the observed number of 4 transitional stars out of our sample of 14 is statistically high as compared to the 4 per cent expected in stellar evolutionary models.

  19. Detached Dust Shell around Wolf-Rayet Star WR60-6 in the Young Stellar Cluster VVV CL036

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Kumar, M. S. N.; Amigo, P.; Chené, A.-N.; Kurtev, R.; Minniti, D.

    2014-01-01

    The discovery of a detached dust shell around the Wolf-Rayet (WR) star WR60-6 in the young stellar cluster VVV CL036 is reported. This shell is uncovered through the Spitzer-MIPS 24 μm image, where it appears brightest, and it is invisible at shorter wavelengths. Using new APEX observations and other data available from the literature, we have estimated some of the shell parameters: the inner and outer radii of 0.15 and 0.90 pc, respectively; the overall systemic velocity of the molecular 12CO(3 → 2) emission of -45.7 ± 2.3 km s-1 an expansion velocity of the gas of 16.3 ± 1 km s-1 the dust temperature and opacity of 122 ± 12 K and 1.04, respectively; and an age of 2.8 × 104 yr. The WR star displays some cyclic variability. The mass computed for the WR60-6 nebula indicates that the material was probably ejected during its previous stages of evolution. In addition, we have identified a bright spot very close to the shell, which can be associated with the Midcourse Space Experiment source G312.13+00.20. Based on observations gathered as part of observing programs 179.B-2002, VIRCAM, VISTA at ESO, Paranal Observatory, NTT at ESO, and APEX C-090.F-9705B-2012.

  20. NEW CONSTRAINTS ON THE ORIGIN OF THE SHORT-TERM CYCLICAL VARIABILITY OF THE WOLF-RAYET STAR WR 46

    SciTech Connect

    Henault-Brunet, V.; St-Louis, N.; Marchenko, S. V.; Pollock, A. M. T.; Talavera, A.; Carpano, S. E-mail: stlouis@astro.umontreal.ca E-mail: andy.pollock@esa.int E-mail: scarpano@rssd.esa.int

    2011-07-01

    The Wolf-Rayet star WR 46 is known to exhibit a very complex variability pattern on relatively short timescales of a few hours. Periodic but intermittent radial velocity shifts of optical lines as well as multiple photometric periods have been found in the past. Non-radial pulsations, rapid rotational modulation, or the presence of a putative low-mass companion have been proposed to explain the short-term behavior. In an effort to unveil its true nature, we observed WR 46 with the Far Ultraviolet Spectroscopic Explorer (FUSE) over several short-term variability cycles. We found significant variations on a timescale of {approx}8 hr in the far-ultraviolet (FUV) continuum, in the blue edge of the absorption trough of the O VI {lambda}{lambda}1032, 1038 doublet P Cygni profile and in the S VI {lambda}{lambda}933, 944 P Cygni absorption profile. We complemented these observations with X-ray and UV light curves and an X-ray spectrum from archival X-ray Multi-Mirror Mission-Newton Space Telescope (XMM-Newton) data. The X-ray and UV light curves show variations on a timescale similar to the variability found in the FUV. We discuss our results in the context of the different scenarios suggested to explain the short-term variability of this object and reiterate that non-radial pulsations is the scenario most likely to occur.

  1. CHANDRA DETECTS THE RARE OXYGEN-TYPE WOLF-RAYET STAR WR 142 AND OB STARS IN BERKELEY 87

    SciTech Connect

    Sokal, Kimberly R.; Skinner, Stephen L.; Zhekov, Svetozar A.; Guedel, Manuel; Schmutz, Werner E-mail: stephen.skinner@colorado.ed

    2010-06-01

    We present first results of a Chandra X-ray observation of the rare oxygen-type Wolf-Rayet (WR) star WR 142 (= Sand 5 = St 3) harbored in the young, heavily obscured cluster Berkeley 87. Oxygen-type WO stars are thought to be the most evolved of the WRs and progenitors of supernovae or gamma-ray bursts. As part of an X-ray survey of supposedly single WR stars, we observed WR 142 and the surrounding Berkeley 87 region with Chandra ACIS-I. We detect WR 142 as a faint yet extremely hard X-ray source. Due to weak emission, its nature as a thermal or non-thermal emitter is unclear and thus we discuss several emission mechanisms. Additionally, we report seven detections and eight non-detections by Chandra of massive OB stars in Berkeley 87, two of which are bright yet soft X-ray sources whose spectra provide a dramatic contrast to the hard emission from WR 142.

  2. POPULATION I WOLF-RAYET RUNAWAY STARS: THE CASE OF WR124 AND ITS EXPANDING NEBULA M1-67

    SciTech Connect

    Marchenko, S. V.; Moffat, A. F. J.; Crowther, P. A. E-mail: moffat@astro.umontreal.c

    2010-11-20

    In 1997 and 2008 we used the WFPC2 camera on board the Hubble Space Telescope to obtain two sets of narrow-band H{alpha} images of the runaway Wolf-Rayet (WR) star WR 124 surrounded by its nebula M1-67. This two-epoch imaging provides an expansion parallax and thus a practically assumption-free geometric distance to the nebula, d = 3.35 {+-} 0.67 kpc. Combined with the global velocity distribution in the ejected nebula, this confirms the extreme runaway status of WR 124. WR stars embedded within such ejection nebulae at the point of core collapse would produce different supernova characteristics from those expected for stars surrounded by wind-filled cavities. In galaxies with extremely low ambient metallicity, Z {<=} 10{sup -3} Z {sub sun}, {gamma}-ray bursts originating from fast-moving runaway WR stars may produce afterglows which appear to be coming from regions with a relatively homogeneous circumburst medium.

  3. A {approx} 40 YEAR VARIABILITY CYCLE IN THE LUMINOUS BLUE VARIABLE/WOLF-RAYET BINARY SYSTEM HD 5980?

    SciTech Connect

    Koenigsberger, Gloria; Hillier, D. John; Morrell, Nidia; Gamen, Roberto E-mail: georgiev@astro.unam.m E-mail: nmorrell@lco.c E-mail: rgamen@gmail.co

    2010-06-15

    The massive Wolf-Rayet stellar system HD 5980 in the Small Magellanic Cloud entered a sudden and brief {approx} 1-3 mag eruptive state in the mid-1990s. The cause of the instability is not yet understood, but mechanisms similar to those in luminous blue variables are suspected. Using a previously unreported set of spectroscopic data obtained in 1955-1967 and recently acquired optical and HST/STIS spectra, we find that (1) the brief eruptions of 1993 and 1994 occurred at the beginning of an extended ({approx} decades) high state of activity characterized by large emission-line intensities; (2) the level of activity is currently subsiding; and (3) another strong emission-line episode appears to have occurred between 1960 and 1965, suggesting the possibility that the long-term cyclical variability may be recurrent on a {approx} 40 year timescale. These characteristics suggest the possible classification of HD 5980 as an S Doradus-type variable. The effects due to binary interactions in the system are discussed, and we tentatively suggest that the short duration and relatively hot spectral type (WN11/B1.5I) observed during maximum in the visual light curve may be attributed to these interactions.

  4. A RUNAWAY WOLF-RAYET STAR AS THE ORIGIN OF {sup 26}Al IN THE EARLY SOLAR SYSTEM

    SciTech Connect

    Tatischeff, Vincent; Duprat, Jean; De Sereville, Nicolas

    2010-05-01

    Establishing the origin of the short-lived radionuclide (SLR) {sup 26}Al, which was present in refractory inclusions in primitive meteorites, has profound implications for the astrophysical context of solar system formation. Recent observations that {sup 26}Al was homogeneously distributed in the inner solar system prove that this SLR has a stellar origin. In this Letter, we address the issue of the incorporation of hot {sup 26}Al-rich stellar ejecta into the cold protosolar nebula. We first show that the {sup 26}Al atoms produced by a population of massive stars in an OB association cannot be injected into protostellar cores with enough efficiency. We then show that this SLR likely originated in a Wolf-Rayet star that escaped from its parent cluster and interacted with a neighboring molecular cloud. The explosion of this runaway star as a supernova probably triggered the formation of the solar system. This scenario also accounts for the meteoritic abundance of {sup 41}Ca.

  5. Discovery of X-Ray Emission from the Wolf-Rayet Star WR 142 of Oxygen Subtype

    NASA Astrophysics Data System (ADS)

    Oskinova, L. M.; Hamann, W.-R.; Feldmeier, A.; Ignace, R.; Chu, Y.-H.

    2009-03-01

    We report the discovery of weak yet hard X-ray emission from the Wolf-Rayet (WR) star WR 142 with the XMM-Newton X-ray telescope. Being of spectral subtype WO2, WR 142 is a massive star in a very advanced evolutionary stage shortly before its explosion as a supernova or γ-ray burst. This is the first detection of X-ray emission from a WO-type star. We rule out any serendipitous X-ray sources within ≈1'' of WR 142. WR 142 has an X-ray luminosity of L X ≈ 7 × 1030 erg s-1, which constitutes only lsim10-8 of its bolometric luminosity. The hard X-ray spectrum suggests a plasma temperature of about 100 MK. Commonly, X-ray emission from stellar winds is attributed to embedded shocks due to the intrinsic instability of the radiation driving. From qualitative considerations we conclude that this mechanism cannot account for the hardness of the observed radiation. There are no hints for a binary companion. Therefore the only remaining, albeit speculative explanation must refer to magnetic activity. Possibly related, WR 142 seems to rotate extremely fast, as indicated by the unusually round profiles of its optical emission lines. Our detection implies that the wind of WR 142 must be relatively transparent to X-rays, which can be due to strong wind ionization, wind clumping, or nonspherical geometry from rapid rotation.

  6. The binary systems IC 10 X-1 and NGC 300 X-1: Accretion of matter from an intense Wolf-Rayet stellar wind onto a black hole

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Fedorova, A. V.

    2016-01-01

    The current evolutionary stage of the binary systems IC 10 X-1 and NGC 300 X-1, which contain a massive black hole and a Wolf-Rayet star with a strong stellar wind that does not fill its Roche lobe, is considered. The high X-ray luminosity and X-ray properties testify to the presence of accretion disks in these systems. The consistency of the conditions for the existence of such a disk and the possibility of reproducing the observed X-ray luminosity in the framework of the Bondi-Hoyle-Littleton theory for a spherically symmetric stellar wind is analyzed. A brief review of information about the mass-loss rates of Wolf-Rayet stars and the speeds of their stellar winds is given. The evolution of these systems at the current stage is computed. Estimates made using the derived parameters show that it is not possible to achieve consistency, since the conditions for the existence of an accretion disk require that the speed of the Wolf-Rayetwind be appreciably lower than is required to reproduce the observedX-ray luminosity. Several explanations of this situation are possible: (1) the real pattern of the motion of the stellar-wind material in the binary is substantially more complex than is assumed in the Bondi-Hoyle-Littleton theory, changing the conditions for the formation of an accretion disk and influencing the accretion rate onto the black hole; (2) some of the accreting material leaves the accretor due to X-ray heating; (3) the accretion efficiency in these systems is nearly an order of magnitude lower than in the case of accretion through a thin disk onto a non-rotating black hole; (4) the intensity of the Wolf-Rayet wind is one to two orders of magnitude lower than has been suggested by modern studies.

  7. Revealing the Asymmetry of the Wind of the Variable Wolf-Rayet Star WR1 (HD 4004) through Spectropolarization

    NASA Astrophysics Data System (ADS)

    St-Louis, N.

    2013-11-01

    In this paper, high quality spectropolarimetric observations of the Wolf-Rayet (WR) star WR1 (HD 4004) obtained with ESPaDOnS at the Canada-France-Hawaii Telescope are presented. All major emission lines present in the spectrum show depolarization in the relative Stokes parameters Q/I and U/I. From the behavior of the amount of line depolarization as a function of line strength, the intrinsic continuum light polarization of WR1 is estimated to be P/I = 0.443% ± 0.028% with an angle of θ = -26.°2. Although such a level of polarization could in principle be caused by a wind flattened by fast rotation, the scenario in which it is a consequence of the presence of corotating interaction regions (CIRs) in the wind is preferred. This is supported by previous photometric and spectroscopic observations showing periodic variations with a period of 16.9 days. This is now the third WR star thought to exhibit CIRs in its wind that is found to have line depolarization. Previous authors have found a strong correlation between line depolarization and the presence of an ejected nebula, which they interpret as a sign that the star has relatively recently reached the WR phase since the nebula are thought to dissipate very fast. In cases where the presence of CIRs in the wind is favored to explain the depolarization across spectral lines, the above-mentioned correlation may indicate that those massive stars have only very recently transited from the previous evolutionary phase to the WR phase.

  8. X-ray emission from the Wolf-Rayet bubble NGC 6888. I. Chandra ACIS-S observations

    SciTech Connect

    Toalá, J. A.; Guerrero, M. A.

    2014-02-01

    We analyze Chandra observations of the Wolf-Rayet (W-R) bubble NGC 6888. This W-R bubble presents similar spectral and morphological X-ray characteristics to those of S 308, the only other W-R bubble also showing X-ray emission. The observed spectrum is soft, peaking at the N VII line emission at 0.5 keV, with additional line emission at 0.7-0.9 keV and a weak tail of harder emission up to ∼1.5 keV. This spectrum can be described by a two-temperature optically thin plasma emission model (T {sub 1} ∼ 1.4 × 10{sup 6} K, T {sub 2} ∼ 7.4 × 10{sup 6} K). We confirm the results of previous X-ray observations that no noticeable temperature variations are detected in the nebula. The X-ray-emitting plasma is distributed in three apparent morphological components: two caps along the tips of the major axis and an extra contribution toward the northwest blowout not reported in previous analyses of the X-ray emission toward this W-R nebula. Using the plasma model fits of the Chandra ACIS spectra for the physical properties of the hot gas and the ROSAT PSPC image to account for the incomplete coverage of Chandra observations, we estimate a luminosity of L {sub X} = (7.7 ± 0.1) ×10{sup 33} erg s{sup –1} for NGC 6888 at a distance of 1.26 kpc. The average rms electron density of the X-ray-emitting gas is ≳ 0.4 cm{sup –3} for a total mass ≳ 1.2 M {sub ☉}.

  9. Searching for magnetic fields in 11 Wolf-Rayet stars: Analysis of circular polarization measurements from ESPaDOnS

    SciTech Connect

    De la Chevrotière, A.; St-Louis, N.; Moffat, A. F. J.; Collaboration: MiMeS Collaboration

    2014-02-01

    With recent detections of magnetic fields in some of their progenitor O stars, combined with known strong fields in their possible descendant neutron stars, it is natural to search for magnetic fields in Wolf-Rayet (WR) stars, despite the problems associated with the presence of winds enhanced by an order of magnitude over those of O stars. We continue our search among a sample of 11 bright WR stars following our introductory study in a previous paper of WR6 = EZ CMa using the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope, most of them in all four Stokes parameters. This sample includes six WN stars and five WC stars encompassing a range of spectral subclasses. Six are medium/long-period binaries and three show corotating interaction regions. We report no definite detections of a magnetic field in the winds in which the lines form (which is about the same distance from the center of the star as it is from the surface of the progenitor O star) for any of the eleven stars. Possible reasons and their implications are discussed. Nonetheless, the data show evidence supporting marginal detections for WR134, WR137, and WR138. According to the Bayesian analysis, the most probable field intensities are B {sub wind} ∼ 200, 130, and 80 G, respectively, with a 95.4% probability that the magnetic fields present in the observable parts of their stellar wind, if stronger, does not exceed B{sub wind}{sup max}∼1900 G, ∼1500 G, and ∼1500 G, respectively. In the case of non-detections, we report an average field strength upper limit of B{sub wind}{sup max}∼500 G.

  10. REVEALING THE ASYMMETRY OF THE WIND OF THE VARIABLE WOLF-RAYET STAR WR1 (HD 4004) THROUGH SPECTROPOLARIZATION

    SciTech Connect

    St-Louis, N.

    2013-11-01

    In this paper, high quality spectropolarimetric observations of the Wolf-Rayet (WR) star WR1 (HD 4004) obtained with ESPaDOnS at the Canada-France-Hawaii Telescope are presented. All major emission lines present in the spectrum show depolarization in the relative Stokes parameters Q/I and U/I. From the behavior of the amount of line depolarization as a function of line strength, the intrinsic continuum light polarization of WR1 is estimated to be P/I = 0.443% ± 0.028% with an angle of θ = –26.°2. Although such a level of polarization could in principle be caused by a wind flattened by fast rotation, the scenario in which it is a consequence of the presence of corotating interaction regions (CIRs) in the wind is preferred. This is supported by previous photometric and spectroscopic observations showing periodic variations with a period of 16.9 days. This is now the third WR star thought to exhibit CIRs in its wind that is found to have line depolarization. Previous authors have found a strong correlation between line depolarization and the presence of an ejected nebula, which they interpret as a sign that the star has relatively recently reached the WR phase since the nebula are thought to dissipate very fast. In cases where the presence of CIRs in the wind is favored to explain the depolarization across spectral lines, the above-mentioned correlation may indicate that those massive stars have only very recently transited from the previous evolutionary phase to the WR phase.

  11. The X-ray light curve of the massive colliding wind Wolf-Rayet + O binary WR 21a

    NASA Astrophysics Data System (ADS)

    Gosset, Eric; Nazé, Yaël

    2016-05-01

    Our dedicated XMM-Newton monitoring, as well as archival Chandra and Swift datasets, were used to examine the behaviour of the WN5h+O3V binary WR 21a at high energies. For most of the orbit, the X-ray emission exhibits few variations. However, an increase in strength of the emission is seen before periastron, following a 1 /D relative trend, where D is the separation between both components. This increase is rapidly followed by a decline due to strong absorption as the Wolf-Rayet (WR) comes in front. The fitted local absorption value appears to be coherent with a mass-loss rate of about 1 × 10-5 M⊙ yr-1 for the WR component. However, absorption is not the only parameter affecting the X-ray emission at periastron as even the hard X-ray emission decreases, suggesting a possible collapse of the colliding wind region near to or onto the photosphere of the companion just before or at periastron. An eclipse may appear as another potential scenario, but it would be in apparent contradiction with several lines of evidence, notably the width of the dip in the X-ray light curve and the absence of variations in the UV light curve. Afterwards, the emission slowly recovers, with a strong hysteresis effect. The observed behaviour is compatible with predictions from general wind-wind collision models although the absorption increase is too shallow. Based on observations collected at ESO as well as with Swift, Chandra, and the ESA science mission XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).

  12. LARGE-SCALE PERIODIC VARIABILITY OF THE WIND OF THE WOLF-RAYET STAR WR 1 (HD 4004)

    SciTech Connect

    Chene, A.-N.

    2010-06-20

    We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR 1 = HD 4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P = 16.9{sup +0.6}{sub -0.3} days. The same period is also found in our spectral data. The light curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR 1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely corotating interaction regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR 6, WR 134, and WR 137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out, i.e., v{sub rot} = 6.5, 40, 70, and 275 km s{sup -1} for WR 1, WR 6, WR 134, and WR 137, respectively.

  13. A 10-h period revealed in optical spectra of the highly variable WN8 Wolf-Rayet star WR 123

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Foellmi, C.; Marchenko, S. V.; St-Louis, N.; Moffat, A. F. J.; Ballereau, D.; Chauville, J.; Zorec, J.; Poteet, C. A.

    2011-06-01

    Aims: What is the origin of the large-amplitude variability in Wolf-Rayet WN8 stars in general and WR123 in particular? A dedicated spectroscopic campaign targets the ten-hour period previously found in the high-precision photometric data obtained by the MOST satellite. Methods: In June-August 2003 we obtained a series of high signal-to-noise, mid-resolution spectra from several sites in the λλ 4000-6940 Å domain. We also followed the star with occasional broadband (Johnson V) photometry. The acquired spectroscopy allowed a detailed study of spectral variability on timescales from ~5 min to months. Results: We find that all observed spectral lines of a given chemical element tend to show similar variations and that there is a good correlation between the lines of different elements, without any significant time delays, save the strong absorption components of the Hei lines, which tend to vary differently from the emission parts. We find a single sustained periodicity, P ~ 9.8 h, which is likely related to the relatively stable pulsations found in MOST photometry obtained one year later. In addition, seemingly stochastic, large-amplitude variations are also seen in all spectral lines on timescales of several hours to several days. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Concil of Canada, the Institut National des Sciences de l'Univers of the Centre National de Recherche Scientifique of France, and the University of Hawaii. Based also on observations made with ESO Telescopes at the La Silla Observatory, under programme ID 271.D-5025.Photometric data presented in Fig. 1 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A151

  14. Combined stellar structure and atmosphere models for massive stars. Wolf-Rayet models with spherically outflowing envelopes.

    NASA Astrophysics Data System (ADS)

    Schaerer, D.

    1996-05-01

    We present a simple analytical method to describe the structure of a spherically expanding envelope with strong mass outflow. The structure is consistently connected to the hydrostatic stellar interior and provides an adequate description of the outer boundary conditions for stellar models with large mass loss rates. We apply our treatment to evolutionary models of Wolf-Rayet (WR) stars in order to study the possible influence of the stellar winds on the interior, and to determine more reliable radii of WR stars. Independently of the wind parameters (wind density, opacity, velocity law) the interior structure and evolution of WR stars is found to be unaffected by the outer layers. On the other hand, the stellar parameters (radii, effective temperatures) may well depend on the wind structure. For hydrogen rich WR stars (WNL) we find the existence of a temperature domain in the HR-diagram, where a transient concentration of stars on their blueward track is predicted in case of a strong backwarming from the wind. For WNE and WC/WO stars with strong mass loss rates we also derive subphotospheric radii corresponding to Rosseland optical depths of τ~10-20. The dependence of the subphotospheric radii on the adopted envelope structure is discussed. With respect to wind-free stellar models the subphotospheric radii are increased by up to a factor of ~4 for the most luminous WNE or WC stars. These radii and the corresponding effective temperatures should roughly be comparable with the stellar parameters (``core'' radii and temperatures) of non-LTE atmosphere models of WR stars. Comparisons using the newly derived subphotospheric radii yields a better agreement with observations. The stellar parameters obtained with the new treatment allow a better assignment of theoretical spectra to evolutionary tracks of evolved WR stars (WNE, WC). This also provides the base for future studies of the spectral evolution of post main-sequence massive stars and their descendants. We also

  15. Large-scale Periodic Variability of the Wind of the Wolf-Rayet Star WR 1 (HD 4004)

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; St-Louis, N.

    2010-06-01

    We present the results of an intensive photometric and spectroscopic monitoring campaign of the WN4 Wolf-Rayet (WR) star WR 1 = HD 4004. Our broadband V photometry covering a timespan of 91 days shows variability with a period of P = 16.9+0.6 -0.3 days. The same period is also found in our spectral data. The light curve is non-sinusoidal with hints of a gradual change in its shape as a function of time. The photometric variations nevertheless remain coherent over several cycles and we estimate that the coherence timescale of the light curve is of the order of 60 days. The spectroscopy shows large-scale line-profile variability which can be interpreted as excess emission peaks moving from one side of the profile to the other on a timescale of several days. Although we cannot unequivocally exclude the unlikely possibility that WR 1 is a binary, we propose that the nature of the variability we have found strongly suggests that it is due to the presence in the wind of the WR star of large-scale structures, most likely corotating interaction regions (CIRs), which are predicted to arise in inherently unstable radiatively driven winds when they are perturbed at their base. We also suggest that variability observed in WR 6, WR 134, and WR 137 is of the same nature. Finally, assuming that the period of CIRs is related to the rotational period, we estimate the rotation rate of the four stars for which sufficient monitoring has been carried out, i.e., v rot = 6.5, 40, 70, and 275 km s-1 for WR 1, WR 6, WR 134, and WR 137, respectively. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de Recherche Scientifique of France, and the University of Hawaii. Also based on observations obtained at the Observatoire du Mont Mégantic with is operated by the Centre de Recherche en Astrophysique du Québec and the Observatoire de

  16. Analysis of ultraviolet atmospheric eclipses in the Wolf-Rayet binary CV Serpentis

    NASA Technical Reports Server (NTRS)

    Eaton, J. A.; Cherepashchuk, A. M.; Khaliullin, Kh. F.

    1985-01-01

    While no eclipses deeper than 0.04 mag are noted in the present UV spectra, covering one-half of an orbital cycle of CV Ser, in the electron scattering continuum at 2400-3200 A or in fine error sensor observations, marked atmospheric eclipses of up to 0.5 mag depth are observed in individual strong lines and over large ranges of the continuum at shorter wavelengths. The flux above the continuum in the C II 1247 A, Si IV 1400 A, and Si IV 1723 lines showed similar phase dependence with emission weakening, as well as with the emission's going into absorption as phase progresses from superior to inferior conjunction of the WC star (primary eclipse). These observations show effects very similar to the behavior of WN stars in the UV.

  17. Photometric and polarimetric variability and mass-loss rate of the massive binary Wolf-Rayet star HDE 311884 (WN6 + 05: V)

    SciTech Connect

    Moffat, A.F.J.; Drissen, L.; Robert, C.; Lamontagne, R.; Coziol, R. )

    1990-02-01

    Photometric and polarimetric monitoring of the Wolf-Rayet (W-R) + O-type binary system HDE 311884 = WR 47 over many orbital cycles shows the clear effects of phase-dependent electron scattering of O-star light as the orbiting O companion shines through varying column density of W-R stellar wind material. In contrast to this wind-type eclipse, the stars themselves do not quite eclipse. Both photometry and polarimetry give a consistent estimate of the mass-loss rate of the W-R component: at about 0.00003 solar mass/yr. The orbital inclination, i = 70 deg, along with the previously published velocity orbit, yields high masses: M(WN6) = 48 solar masses and M(O5:V) = 57 solar masses. 33 refs.

  18. Line formation in winds with enhanced equatorial mass-loss rates and its application to the Wolf-Rayet star HD 50896

    NASA Technical Reports Server (NTRS)

    Rumpl, W. M.

    1980-01-01

    A model having a spherically symmetric velocity distribution with a higher density at the equatorial region was developed to simulate the UV spectrum of the Wolf-Rayet star HD 50896. The spectrum showed P Cygni-shaped profiles whose emissions are stronger than expected in a spherically symmetric stellar wind. The model was studied varying the inclination angle of the star-wind system and the polar to equatorial density ratios; it was shown that HD 50896 could possess a nonspherically symmetric wind and that its symmetry axis is inclined between 60 and 90 deg. It is possible that the velocity distribution of the wind could include an inner constant velocity plateau beyond which the wind accelerates to its terminal velocity as indicated by infrared continuum investigations.

  19. GRO source candidates: (A) Nearby modest-size molecular clouds; (B) Pulsar with Wolf-Rayet companion that has lost its H-envelope

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Murphy, Ronald J.

    1989-01-01

    Within 100 pc of the sun there are over a hundred cirrus clouds with masses of approx. 60 solar mass and dense molecular clouds with masses of approx. 4 solar mass. If the local interstellar density of cosmic rays is also present in these clouds, the flux of neutral pion from the decay of gamma rays from the core of a cloud at a distance of 20 pc is approx. 13 x 10(exp -8) photons/sq cm/s. The flux from the more extensive cirrus cloud is approx 4 x 10(exp -7) photons/sq cm/s. A relativistic beam of particles generated by a compact stellar object and incident upon a large, close companion can be a strong gamma ray line source if more of the beam energy is used in interactions with C and O and heavier nuclei and less with H and He. This would be the case if the companion has lost its hydrogen envelope and nucleosynthesized much of its He into C, O, and Ne. Such objects are Wolf-Rayet stars and it is believed that some Wolf-Rayet stars do, in fact, have compact companions. For a beam of protons of 10(exp 37) erg/s, the flux at 1 kpc of the 4.4 MeV C-12 line could be as high as 5 x 10(exp -6) photons/sq cm/s. The fluxes of the deexcitation lines from the spallation products of O-16 are also presented.

  20. Inverse Kinematic Study of the (26g)Al(d,p)(27)Al Reaction and Implications for Destruction of (26)Al in Wolf-Rayet and Asymptotic Giant Branch Stars.

    PubMed

    Margerin, V; Lotay, G; Woods, P J; Aliotta, M; Christian, G; Davids, B; Davinson, T; Doherty, D T; Fallis, J; Howell, D; Kirsebom, O S; Mountford, D J; Rojas, A; Ruiz, C; Tostevin, J A

    2015-08-01

    In Wolf-Rayet and asymptotic giant branch (AGB) stars, the (26g)Al(p,γ)(27)Si reaction is expected to govern the destruction of the cosmic γ-ray emitting nucleus (26)Al. The rate of this reaction, however, is highly uncertain due to the unknown properties of key resonances in the temperature regime of hydrogen burning. We present a high-resolution inverse kinematic study of the (26g)Al(d,p)(27)Al reaction as a method for constraining the strengths of key astrophysical resonances in the (26g)Al(p,γ)(27)Si reaction. In particular, the results indicate that the resonance at E(r)=127  keV in (27)Si determines the entire (26g)Al(p,γ)(27)Si reaction rate over almost the complete temperature range of Wolf-Rayet stars and AGB stars. PMID:26296114

  1. Coupled Line-Profile and Continuum Variations in EZ Canis Majoris: Implications for the Driving Mechanism of Global Wind Structures in Wolf-Rayet Winds

    NASA Astrophysics Data System (ADS)

    Morel, Thierry; St-Louis, Nicole; Moffat, Anthony F. J.; Cardona, Octavio; Koenigsberger, Gloria; Hill, Grant M.

    1998-05-01

    EZ CMa is an apparently unusual Wolf-Rayet star of the nitrogen sequence that exhibits strong variations on a period of 3.77 days with coherency lasting typically about 10 cycles. We have used an extensive set of optical spectroscopic observations to investigate a possible link between its line-profile and photometric continuum variability. Despite the strong epoch dependency of the variations, a persistent correlation is found between changes in the wind line profiles (N V λλ4604, 4620 in particular) and in continuum flux emanating near the stellar core. We suggest that these observations give further support to the idea that the physical conditions prevailing in the vicinity of the star's photosphere have a significant impact on the wind structure and that a spatial dependence of these conditions at the base of the outflow induces the formation of azimuthal wind structures in EZ CMa. The epoch-dependent nature of the variability could be related to long-term behavior of corotating magnetic structures, although pulsational instabilities constitute a viable alternative.

  2. A NEAR-INFRARED SURVEY OF THE INNER GALACTIC PLANE FOR WOLF-RAYET STARS. I. METHODS AND FIRST RESULTS: 41 NEW WR STARS

    SciTech Connect

    Shara, Michael M.; Gerke, Jill; Zurek, David; Moffat, Anthony F. J.; Doyon, Rene; Villar-Sbaffi, Alfredo; Stanonik, Kathryn; Artigau, Etienne; Drissen, Laurent E-mail: jgerke@amnh.org E-mail: moffat@astro.umontreal.ca E-mail: alfredovs@hotmail.com E-mail: eartigau@gemini.edu

    2009-08-15

    The discovery of new Wolf-Rayet (WR) stars in our Galaxy via large-scale narrowband optical surveys has been severely limited by dust extinction. Recent improvements in infrared technology have made narrowband-broadband imaging surveys viable again. We report a new J, K, and narrowband imaging survey of 300 deg{sup 2} of the plane of the Galaxy, spanning 150 degrees in Galactic longitude and reaching 1 degree above and below the Galactic plane. The survey has a useful limiting magnitude of K = 15 over most of the observed Galactic plane, and K = 14 within a few degrees of the Galactic center. Thousands of emission line candidates have been detected. In spectrographic follow-ups of 173 WR star candidates we have discovered 41 new WR stars, 15 of type WN and 26 of type WC. Star subtype assignments have been confirmed with K-band spectra, and distances approximated using the method of spectroscopic parallax. A few of the new WR stars are among the most distant known in our Galaxy. The distribution of these new WR stars is seen to follow that of previously known WR stars along the spiral arms of the Galaxy. Tentative radial velocities were also measured for most of the new WR stars.

  3. Outflow-Induced Dynamical and Radiative Instability in Stellar Envelopes with an Application to Luminous Blue Variables and Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Hansen, James E. (Technical Monitor)

    2002-01-01

    Theoretical models of the remnants of massive stars in a very hot, post-red-supergiant phase display no obvious instability if standard assumptions are made. However, the brightest observed classical luminous blue variables (LBVs) may well belong to such a phase. A simple time-dependent theory of moving stellar envelopes is developed in order to treat deep hydrodynamical disturbances caused by surface mass loss and to test the moving envelopes for dynamical instability. In the case of steady-state outflow, the theory reduces to the equivalent of the Castor, Abbott, and Klein formulation for optically thick winds at distances well above the sonic point. The time-dependent version indicates that the brightest and hottest LBVs are both dynamically and radiatively unstable, as a result of the substantial lowering of the generalized Eddington luminosity limit by the mass-loss acceleration. It is suggested that dynamical instability, by triggering secular cycles of mass loss, is primarily what differentiates LBVs from the purely radiatively unstable Wolf-Rayet stars. Furthermore, when accurate main-sequence mass-loss rates are used to calculate the evolutionary tracks, the predicted surface hydrogen and nitrogen abundances of the blue remnants agree much better with observations of the brightest LBVs than before.

  4. XMM-NEWTON OBSERVATIONS REVEAL VERY HIGH X-RAY LUMINOSITY FROM THE CARBON-RICH WOLF-RAYET STAR WR 48a

    SciTech Connect

    Zhekov, Svetozar A.; Gagne, Marc; Skinner, Stephen L. E-mail: mgagne@wcupa.edu

    2011-01-20

    We present XMM-Newton observations of the dusty Wolf-Rayet (W-R) star WR 48a. This is the first detection of this object in X-rays. The XMM-Newton EPIC spectra are heavily absorbed and the presence of numerous strong emission lines indicates a thermal origin of the WR 48a X-ray emission, with dominant temperature components at kT{sub cool} {approx} 1 keV and kT{sub hot} {approx} 3 keV, the hotter component dominating the observed flux. No significant X-ray variability was detected on timescales {<=}1 day. Although the distance to WR 48a is uncertain, if it is physically associated with Open clusters Danks 1 and 2 at d {approx}4 kpc, then the resultant X-ray luminosity L{sub X}{approx} 10{sup 35} erg s{sup -1} makes it the most X-ray luminous W-R star in the Galaxy detected so far, after the black hole candidate Cyg X-3. We assume the following scenarios as the most likely explanation for the X-ray properties of WR 48a: (1) colliding stellar winds in a wide WR+O binary system, or in a hierarchical triple system with non-degenerate stellar components and (2) accretion shocks from the WR 48a wind onto a close companion (possibly a neutron star). More specific information about WR 48a and its wind properties will be needed to distinguish between the above possibilities.

  5. A Clue to the Extent of Convective Mixing Inside Massive Stars: The Surface Hydrogen Abundances of Luminous Blue Variables and Hydrogen-Poor Wolf-Rayet Stars

    NASA Technical Reports Server (NTRS)

    Stothers, Richard B.; Chin, Chao-wen

    1999-01-01

    Interior layers of stars that have been exposed by surface mass loss reveal aspects of their chemical and convective histories that are otherwise inaccessible to observation. It must be significant that the surface hydrogen abundances of luminous blue variables (LBVs) show a remarkable uniformity, specifically X(sub surf) = 0.3 - 0.4, while those of hydrogen-poor Wolf-Rayet (WN) stars fall, almost without exception, below these values, ranging down to X(sub surf) = 0. According to our stellar model calculations, most LBVs are post-red-supergiant objects in a late blue phase of dynamical instability, and most hydrogen-poor WN stars are their immediate descendants. If this is so, stellar models constructed with the Schwarzschild (temperature-gradient) criterion for convection account well for the observed hydrogen abundances, whereas models built with the Ledoux (density-gradient) criterion fail. At the brightest luminosities, the observed hydrogen abundances of LBVs are too large to be explained by any of our highly evolved stellar models, but these LBVs may occupy transient blue loops that exist during an earlier phase of dynamical instability when the star first becomes a yellow supergiant. Independent evidence concerning the criterion for convection, which is based mostly on traditional color distributions of less massive supergiants on the Hertzsprung-Russell diagram, tends to favor the Ledoux criterion. It is quite possible that the true criterion for convection changes over from something like the Ledoux criterion to something like the Schwarzschild criterion as the stellar mass increases.

  6. A Search for X-Ray Evidence of a Compact Companion to the Unusual Wolf-Rayet Star HD 50896 (EZ CMa)

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.; Itoh, Masayuki; Nagase, Fumiaki

    1998-01-01

    We analyze results of a approx.25 ksec ASCA X-ray observation of the unusual Wolf-Rayet star HD 50896 (= EZ CMa). This WN5 star shows optical and ultraviolet variability at a 3.766 day period, which has been interpreted as a possible signature of a compact companion. Our objective was to search for evidence of hard X-rays (greater than or equal to 5 keV) which could be present if the WN5 wind is accreting onto a compact object. The ASCA spectra are dominated by emission below 5 keV and show no significant emission in the harder 5-10 keV range. Weak emission lines are present, and the X-rays arise in an optically thin plasma which spans a range of temperatures from less than or equal to 0.4 keV up to at least approx. 2 keV. Excess X-ray absorption above the interstellar value is present, but the column density is no larger than N(sub H) approx. 10(exp 22)/sq cm. The absorption-corrected X-ray luminosity L(sub x)(0.5 - 10 keV) = 10(exp 32.85) erg/s gives L(sub x)/ L(sub bol) approx. 10(exp -6), a value that is typical of WN stars. No X-ray variability was detected. Our main conclusion is that the X-ray properties of HD 50896 are inconsistent with the behavior expected for wind accretion onto a neutron star or black hole companion. Alternative models based on wind shocks can explain most aspects of the X-ray behavior, and we argue that the hotter plasma near approx. 2 keV could be due to the WR wind shocking onto a normal (nondegenerate) companion.

  7. THE DUST PROPERTIES OF TWO HOT R CORONAE BOREALIS STARS AND A WOLF-RAYET CENTRAL STAR OF A PLANETARY NEBULA: IN SEARCH OF A POSSIBLE LINK

    SciTech Connect

    Clayton, Geoffrey C.; Gallagher, J. S.; Freeman, W. R.; Camp, K. A. E-mail: wfreem2@lsu.edu

    2011-08-15

    We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy, V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebulae (CSPNe), such as CPD -56{sup 0} 8032, that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but shares the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPN star, CPD -56{sup 0} 8032, displays evidence of dual-dust chemistry showing both polycyclic aromatic hydrocarbons (PAHs) and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from that of CPD -56{sup 0} 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 {mu}m. This feature is not identified with either PAHs or silicates. Several other cool RCB stars, novae, and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56{sup 0} 8032 shows emission features that may be associated with C{sub 60}. The other two stars do not show evidence of C{sub 60}. The different nature of the dust around these stars does not help us in establishing further links that may indicate a common origin. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56{sup 0} 8032 have been detected by AKARI/Far-Infrared Surveyor. These data were combined with Spitzer, IRAS, Two Micron All Sky Survey, and other photometry to produce their spectral energy distributions (SEDs) from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the circumstellar dust

  8. Relación física entre el cúmulo abierto Hogg 15 y la estrella Wolf-Rayet WR 47

    NASA Astrophysics Data System (ADS)

    Piatti, A. E.; Bica, E.; Santos, J. F. C., Jr.; Clariá, J. J.

    We revise the fundamental parameters of the faint open cluster Hogg 15, for which two recent colour-magnitude diagram (CMD) studies have obtained significantly different ages (Sagar et al. 2001, MNRAS, 327, 23; Piatti & Clariá 2001, A&A, 370, 931). In the present study, we combine a series of methods trying to constrain age, together with other fundamental parameters. We employ spatial extractions to construct the CMDs, and the cluster integrated spectrum to compare the latter with those of templates of known age. For Hogg 15 we derive an age of (20 ± 10) Myr, a reddening of (1.10 ± 0.05) mag, and a distance of (3.1 ± 0.5) kpc. We conclude that the estimation of an older age in the study of Piatti & Clariá can be accounted for in terms of main sequence/turnoff curvature being blurred in the CMDs, an effect mainly caused by field contamination. To clarify the issue of whether the Wolf-Rayet star HDE 311884 (WR 47), known to be a WN6 + O5V binary system, is associated or not with Hogg 15, we discuss its fundamental parameters, particularly its distance. Based on the WR 47 spectrum and available photometry, we assume that the underestimated distance implied by the Hipparcos parallax (216 pc) is affected by its binary character. By comparing the WR 47 spectrum with those of WR stars of a similar type, we conclude that WR 47 is not affected by a E(B-V) colour excess much higher than that associated with Hogg 15, namely E(B-V) = 1.10. On the basis of the WR 47's resulting distance of (5.2 ± 0.9) kpc, which largely surpasses that of the cluster, we conclude that WR 47 is not related to Hogg 15 from the point of view of origin, since the cluster and the star do not belong to the same formation event.

  9. FUSE Observations of the SMC 16 day Wolf-Rayet Binary Sanduleak 1 (WO4+O4): Atmospheric Eclipses and Colliding Stellar Winds

    NASA Astrophysics Data System (ADS)

    St-Louis, Nicole; Moffat, Anthony F. J.; Marchenko, Sergey; Pittard, Julian Mark

    2005-08-01

    In this paper we present the results of a FUSE monitoring campaign of the SMC WO4+O4 V Wolf-Rayet binary Sanduleak 1. Our 18 spectra obtained during a little more than one orbital cycle in 2000 October combined with four archival spectra show variability in the S VI, C III, C IV, and O VI P Cygni profiles, which we attribute to emission from the shock cone resulting from the collision between the two strong winds and to atmospheric eclipses of the O star continuum light by the W-R wind. All the lines vary in concert indicating that the cooling is such that even lines such as the OVI λλ1032, 1038 doublet form in the linear part of the cone. We have also applied both a simple geometrical model and profile fits, including emission from the normal wind, extra emission from the shock cone, and the atmospheric eclipse. Adopting an orbital inclination of ~40°, we deduce a total cone opening angle of ~80° and a streaming velocity for the gas along the shock cone of ~3000 km s-1. The luminosity ratio required to fit our spectra is LO/LW-R=3.5, and the stellar radii are 3.5 and 12 Rsolar, respectively, for the W-R and O stars. We also present radiative driving models for this binary system having two massive stars with strong winds and discuss radiative inhibition and braking effects. In particular, we address the coupling of the O star radiation with the W-R star wind. Finally, we present a PICA hydrodynamic colliding-wind model for Sand 1. We find an opening angle for the shock cone similar to that deduced from the line-profile fitting, but significantly longer cooling lengths along the shock cone. However, the model reveals some cold gas that is stripped off the O4 surface and mixed with the hotter WO4 material, thereby accelerating its cooling. This could very well explain why shorter cooling lengths are inferred from the profile fits. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer. FUSE is operated for NASA by Johns Hopkins

  10. The Rise and Fall of the Type Ib Supernova iPTF13bvn Not a Massive Wolf-Rayet Star

    NASA Technical Reports Server (NTRS)

    Fremling, C.; Sollerman, J.; Taddia, F.; Ergon, M.; Valenti, S.; Arcavi, I.; Ben-Ami, S.; Cao, Y.; Cenko, S. B.; Filippenko, A. V.; Gal-Yam, A.; Howell, D. A.

    2014-01-01

    Context. We investigate iPTF13bvn, a core-collapse (CC) supernova (SN) in the nearby spiral galaxy NGC 5806. This object was discovered by the intermediate Palomar Transient Factory (iPTF) very close to the estimated explosion date and was classified as a stripped-envelope CC SN, likely of Type Ib. Furthermore, a possible progenitor detection in pre-explosion Hubble Space Telescope (HST) images was reported, making this the only SN Ib with such an identification. Based on the luminosity and color of the progenitor candidate, as well as on early-time spectra and photometry of the SN, it was argued that the progenitor candidate is consistent with a single, massive Wolf-Rayet (WR) star. Aims. We aim to confirm the progenitor detection, to robustly classify the SN using additional spectroscopy, and to investigate if our follow-up photometric and spectroscopic data on iPTF13bvn are consistent with a single-star WR progenitor scenario. Methods. We present a large set of observational data, consisting of multi-band light curves (UBVRI, g'r'i'z') and optical spectra. We perform standard spectral line analysis to track the evolution of the SN ejecta. We also construct a bolometric light curve and perform hydrodynamical calculations to model this light curve to constrain the synthesized radioactive nickel mass and the total ejecta mass of the SN. Late-time photometry is analyzed to constrain the amount of oxygen. Furthermore, image registration of pre- and post-explosion HST images is performed. Results. Our HST astrometry confirms the location of the progenitor candidate of iPTF13bvn, and follow-up spectra securely classify this as a SN Ib. We use our hydrodynamical model to fit the observed bolometric light curve, estimating the total ejecta mass to be 1.9 solar mass and the radioactive nickel mass to be 0.05 solar mass. The model fit requires the nickel synthesized in the explosion to be highly mixed out in the ejecta. We also find that the late-time nebular r

  11. Copernicus observations of distant unreddened stars. II - Line of sight to HD 50896

    NASA Technical Reports Server (NTRS)

    Shull, J. M.

    1977-01-01

    Copernicus UV data on interstellar lines toward HD 50896, a Wolf-Rayet star, are analyzed to study abundances and physical conditions in the line of sight. About 20% of the low-velocity neutral gas is contained in a dense cloud with 10% to 50% of its hydrogen in molecular form; the atomic abundances show typical interstellar depletions. The low-velocity H II gas may be associated with the high ionizing flux of the Wolf-Rayet star or with H II regions along the line of sight. Si III exhibits strong absorption shortward of the low-velocity H II gas, characteristic of a collisionally ionized component at 30,000 to 80,000 K; the possible connections with an unobserved supernova remnant or stellar mass loss are discussed. High-velocity features at 78 and -96 km/sec, in which Fe and Si are near their cosmic abundances, are also indicative of strong shocks.

  12. Polarimetry of four Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, Regina E.; Van Der Hucht, Karel A.

    1989-01-01

    Time-dependent broadband linear polarimetric observations of four WR stars are presented. On a time basis of days, WR 3 and SR 131 displayed no polarization variability above measurement errors. The position angle of WR 3 was consistent with the polarization being mainly of interstellar origin. The polarization of WR 103 showed variations, in one night on a time scale of hours. The polarization of WR 151 showed a modulation with orbital phase that was used to derive an estimate of the WN5 and O8 star's masses, of 6 and 14 solar masses, respectively. Four phenomenological types of polarization variability are introduced, and the stars are described in terms of them.

  13. The death of massive stars - II. Observational constraints on the progenitors of Type Ibc supernovae

    NASA Astrophysics Data System (ADS)

    Eldridge, John J.; Fraser, Morgan; Smartt, Stephen J.; Maund, Justyn R.; Crockett, R. Mark

    2013-11-01

    The progenitors of many Type II core-collapse supernovae (SNe) have now been identified directly on pre-discovery imaging. Here, we present an extensive search for the progenitors of Type Ibc SNe in all available pre-discovery imaging since 1998. There are 12 Type Ibc SNe with no detections of progenitors in either deep ground-based or Hubble Space Telescope archival imaging. The deepest absolute BVR magnitude limits are between -4 and - 5 mag. We compare these limits with the observed Wolf-Rayet population in the Large Magellanic Cloud and estimate a 16 per cent probability that we have failed to detect such a progenitor by chance. Alternatively, the progenitors evolve significantly before core-collapse or we have underestimated the extinction towards the progenitors. Reviewing the relative rates and ejecta mass estimates from light-curve modelling of Ibc SNe, we find both incompatible with Wolf-Rayet stars with initial masses >25 M⊙ being the only progenitors. We present binary evolution models that fit these observational constraints. Stars in binaries with initial masses ≲ 20 M⊙ lose their hydrogen envelopes in binary interactions to become low-mass helium stars. They retain a low-mass hydrogen envelope until ≈104 yr before core-collapse; hence, it is not surprising that Galactic analogues have been difficult to identify.

  14. Infrared spectral properties of wolf-rayet galaxies

    NASA Astrophysics Data System (ADS)

    Martirosian, J. R.; Sargsyan, L. A.

    2012-09-01

    We present infrared properties of 22 WR galaxies having optical classifications as Starburst Galaxies and having Spitzer IRS mid-infrared spectra available from CASSIS. To understand infrared properties of these galaxies we have compared our sample with two independent ultraviolet-selected starburst galaxy samples. We have compared the hardness of radiation of these three samples, using the ratio of total fluxes of [NeIII] 15.55 μm and PAH 11.3 μm , which shows a presence of younger stars in WR galaxies, compared to other UV samples. We also have calibrated the IR and UV SFRs. Our results show that the ~35% of the UV luminosity of WR SB galaxies is observed, compared to ~9% and ~25% of other UV samples. We determine that the classification of objects to pure SB based on criteria EW(6.2μm)> 0.4μm is not applicable for SB galaxies with the youngest star populations.

  15. The Unusual Wolf-Rayet Star EZ CMa

    NASA Technical Reports Server (NTRS)

    Skinner, Stephen L.

    2002-01-01

    The XMM-Newton observations were obtained on 29 - 30 October 2001 during the AO-1 Guest Observer program. Our X-ray analysis focused on data from the European Photon Imaging Camera (EPIC). The VLA observations were obtained during a 3.5 hour interval on 1999 Oct. 19 with the array in hybrid BnA configuration. Radio continuum data were acquired at five different frequencies 1.42 GHz (21 cm), 4.86 GHz (6 cm), 8.44 GHz (3.6 cm), 14.94 GHz (2 cm), and 22.46 GHz (1.3 cm). These radio data are unique since they provide an excellent snapshot picture of the dependence of the radio flux on frequency obtained over a short time interval and are thus immune to the variability effects which can distort results obtained from non-contemporaneous observations at different frequencies.

  16. Spectrophotometry of Wolf-Rayet stars. I - Continuum energy distributions

    NASA Technical Reports Server (NTRS)

    Morris, Patrick W.; Brownsberger, Kenneth R.; Conti, Peter S.; Massey, Philip; Vacca, William D.

    1993-01-01

    All available low-resolution IUE spectra are assembled for Galactic, LMC, and SMC W-R stars and are merged with ground-based optical and NIR spectra in order to collate in a systematic fashion the shapes of these energy distributions over the wavelength range 0.1-1 micron. They can be consistently fitted by a power law of the form F(lambda) is approximately equal to lambda exp -alpha over the range 1500-9000 A to derive color excesses E(B-V) and spectral indices by removing the 2175-A interstellar absorption feature. The WN star color excesses derived are found to be in good agreement with those of Schmutz and Vacca (1991) and Koesterke et al. (1991). Significant heterogeneity in spectral index values was generally seen with any given subtype, but the groups consisting of the combined set of Galactic and LMC W-R stars, the separate WN and WC sequences, and the Galactic and LMC W-R stars all showed a striking and consistent Gaussian-like frequency distribution of values.

  17. Spectroscopy and photometry campaign on three bright Wolf Rayet stars

    NASA Astrophysics Data System (ADS)

    Waagen, Elizabeth O.

    2013-06-01

    Dr. Noel Richardson (Universite de Montreal) and colleagues have invited AAVSO observers to participate in an international professional-amateur spectroscopy and photometry campaign on the Wof Rayet stars WR 134, WR 135, and WR 137 (HD 191765, HD 192103, and HD 192641). The campaign has begun and runs through September 17, 2013. The purpose of the campaign is to study clumping aspects of the strong winds and changes present in large structures in the stellar winds in these WR stars. Spectroscopy and UBVRI time-series observations are requested. Supplemental targets to be observed if time permits are V905 Sco (HD 160529) and V4375 Sgr (HD 316285). Finder charts with sequences may be created using the AAVSO Variable Star Plotter (http://www.aavso.org/vsp). Photometry should be submitted to the AAVSO International Database. Details of the campaign are given at: http://www.stsci.de/wr134/index.htm. Instructions for sending spectroscopy data to Dr. Richardson are given at http! ://www.stsci.de/wr134/pdf/data_transfer.pdf.

  18. The Ionizing Star Clusters of Giant H II Regions in NGC 2403

    NASA Astrophysics Data System (ADS)

    Drissen, Laurent; Roy, Jean-René; Moffat, Anthony F. J.; Shara, Michael M.

    1999-03-01

    We present the results of a study on the massive star population down to about M_V~-3.1, or 12-15 M_solar, of the most luminous giant H II regions in the nearby spiral galaxy NGC 2403, based on Hubble Space Telescope images and ground-based spectrograms. Particular emphasis is placed on the distribution of the Wolf-Rayet and red supergiant stars and the information they provide about the recent star-forming history of these large complexes. We find direct evidence for the presence of Wolf-Rayet (WR) stars in five of the six giant H II regions investigated; 25-40 WR stars are inferred for the sole NGC 2403-I giant H II region. Red supergiant (RSG) stars are mainly distributed over a more extended halo, while the young blue stars and most WR stars are in or close to a compact core. One appears to be seeing young cores of O and WR stars surrounded by older halos containing red supergiants. We propose a scenario in which RSG stars belonging to an early phase of star formation were followed by a more recent burst corresponding to a very blue mean sequence. Delayed trigger with preheating over several 100 pc by the first generation of massive stars allowed the build-up of the required confinement for the production of parsec-scale cluster cores with luminosity up to a few times 10^6 L_solar. Finally, we present some interesting objects found in the field of NGC 2403 outside the giant H II regions, such as field WR stars, globular clusters and background galaxies.

  19. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    SciTech Connect

    Boss, Alan P.; Keiser, Sandra A. E-mail: keiser@dtm.ciw.edu

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  20. Fundamental parameters of Wolf-Rayet stars. III. The evolutionary status of WNL stars.

    NASA Astrophysics Data System (ADS)

    Crowther, P. A.; Smith, L. J.; Hillier, D. J.; Schmutz, W.

    1995-01-01

    New high S/N optical observations of 9 Galactic WNL (WN7-8) stars are presented. The spectra have been analysed using tailored non-LTE model atmospheres by Crowther et al. (1994c). Here we use the derived stellar parameters and abundances for a thorough investigation of the evolutionary status and mass-loss properties of WNL stars. We have identified two distinct groups of WNL stars from their observed properties. The WNL+abs and WN7 stars have high luminosities (log L/Lsun_~5.9) and form a continuity in morphology and physical parameters from the Of stars. They appear to be intimately related to these stars, confirming the suspicion of Walborn (1973) and are descended from extremely massive progenitors (M_initial_>60Msun_) through the sequence O->Of->WNL+abs->WN7(->WNE)->WC->SN. In contrast, the evolutionary sequence for WN8 stars is identified as O->LBV or RSG->WN8->WNE->WC->SN. These stars, with lower luminosities (log L/Lsun_~5.5), are descended from less massive stars, and have either red supergiant (RSG, 25Msun_

  1. An atlas of optical spectrophotometry of Wolf-Rayet carbon and oxygen stars

    NASA Technical Reports Server (NTRS)

    Torres, Ana V.; Massey, Philip

    1987-01-01

    The atlas contains a homogeneous set of optical spectrophotometric observations (3300-7300 A) at moderate resolution (about 10 A) of almost all WC and WO stars in the Galaxy, the LMC, and the SMC. The data are presented in the form of spectral tracings (in magnitude units) arranged by subtype, with no correction for interstellar reddening. A montage of prototype stars of each spectral class is also shown. Comprehensive line identifications are given for the optical lines of WC and WO spectra, with major contributions tabulated and unidentified lines noted.

  2. Remarkable long-term changes in the small Magellanic Cloud Wolf-Rayet system HD 5980

    NASA Technical Reports Server (NTRS)

    Koenigsberger, G.; Moffat, A. F. J.; St-Louis, N.; Auer, L. H.; Drissen, L.; Seggewiss, W.

    1994-01-01

    In this paper we report the remarkable changes which occured in the Small Magellanic Cloud W-R system HD5980 = AB5 between 1978 and 1991. Within this timescale, there has been a systematic enhancement (by factors of 2-10 depending on the line) in the equivalent widths of all emission lines, and a change in the relative strengths of N III, N IV, and N V lines. Currently, the W-R spectrum is more typical of a WN6 star than a WN3 or WN4, as it was originally classified. The terminal speed of the wind has diminished by approximately 600 km/s, while the system has brightened in the visual by 0.45 mag. The UV (1850 A) continuum changed by less than 0.13 mag. The change from WN3 or WN4 to WN6 is unprecedented. The system appears to be composed at least three stars: two WNs in mutual 19.266 day orbit and an O-type supergiant. We propose that the changes observed in HD 5980 are related to an increase in wind density of one (or both?) of the W-R components, where the brighter WN6 component will dominate the W-R spectrum after the change, and we speculate that this modification of the wind structure is driven by tidal interaction induced by a possible current periastron passage of the third component in the system.

  3. VizieR Online Data Catalog: Wolf-Rayet population in NGC 5068 (Bibby+, 2012)

    NASA Astrophysics Data System (ADS)

    Bibby, J. L.; Crowther, P. A.

    2012-10-01

    NGC 5068 has been imaged with the ESO VLT and Focal Reduced Low-dispersion Spectrograph #1 (FORS1) covering a field of view of 6.8x6.8arcmin2 with a plate scale of 0.25arcsec/pixel. Both broad- and narrow-band imaging were obtained on 2008 April 7 under program ID 081.B-0289 (P.I. Crowther). In addition, the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South telescope was used to obtain follow-up spectroscopy in 2009 March-April under program ID GS-2009A-Q-20 (P.I. Crowther). The R150 grating was placed at a central wavelength of 510 and 530nm with a dispersion of ~3.5Å/pix. (2 data files).

  4. Luminous clusters of Wolf-Rayet stars in the SBmIII galaxy NGC 4214

    NASA Technical Reports Server (NTRS)

    Sargent, Wallace L. W.; Filippenko, Alexei V.

    1991-01-01

    Observations are reported of strong broad emission lines attributed to WR stars in the spectra of several bright knots in the nearby Magellanic irregular galaxy NGC 4214 (classified as type SBmIII), in addition to the emission produced by the more prevalent WN stars). Data are presented on measurements of the line fluxes, the line equivalent widths, and continuum flux densities in the four observed knots, showing that the strongest WR lines generally appear in knots having the most luminous stellar continuum. The significance of this observation is discussed.

  5. A source of observational constraints on the structure of Wolf-Rayet winds

    SciTech Connect

    Auer, L.H.; Koenigsberger, G.; Universidad Nacional Autonoma de Mexico, Mexico City . Inst. de Astronomia)

    1989-01-01

    In some WR + O-star binary systems the WR wind eclipses the O star. The profile changes as function of impact are reproduced with a simple model which gives information on both the radial dependence of the velocity and opacity. 2 refs.

  6. WR 110: A SINGLE WOLF-RAYET STAR WITH COROTATING INTERACTION REGIONS IN ITS WIND?

    SciTech Connect

    Chene, A.-N.; Moffat, A. F. J.; Fahed, R.; St-louis, N.; Muntean, V.; Chevrotiere, A. De La; Cameron, C.; Matthews, J. M.; Gamen, R. C.; Rowe, J. F.; Guenther, D. B.; Kuschnig, R.; Weiss, W. W.; Rucinski, S. M.; Sasselov, D. E-mail: moffat@astro.umontreal.ca

    2011-07-01

    A 30 day contiguous photometric run with the Microvariability and Oscillations of STars (MOST) satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 {+-} 0.55 days along with a number of harmonics at periods P/n, with n {approx} 2, 3, 4, 5, and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic radial velocity studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude {approx}0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base, of a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs {approx}two-thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.

  7. Wolf-Rayet Stellar Wind Instability: Very Rapid Variability of the Line Spectrum of HD 90657

    NASA Astrophysics Data System (ADS)

    Auer, Lawrence

    In our IUE observation of the WN+O6 binary system, HD 90657, changes in the spectrum were detected with a time scale shorter than 90 minutes (Koenigsberger and Auer 1987). The variation requires the existence of significant changes in the small scale structure of the wind. We propose to augment this result by observation of the system at four distinct orbital phases, using absorption of the O-star flux as a direct probe of the small scale wind structure. The data obtained will both give general information on the growth of wind instabilities and determine if they are periodio-an important constraint on their origin. We will also inspect the IUE archives for other evidence of short time scale variations in WR targets.

  8. WR 110: A Single Wolf-Rayet Star with Corotating Interaction Regions in its Wind?

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Moffat, A. F. J.; Cameron, C.; Fahed, R.; Gamen, R. C.; Lefèvre, L.; Rowe, J. F.; St-louis, N.; Muntean, V.; De La Chevrotière, A.; Guenther, D. B.; Kuschnig, R.; Matthews, J. M.; Rucinski, S. M.; Sasselov, D.; Weiss, W. W.

    2011-07-01

    A 30 day contiguous photometric run with the Microvariability and Oscillations of STars (MOST) satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 ± 0.55 days along with a number of harmonics at periods P/n, with n ≈ 2, 3, 4, 5, and 6, and a few other possible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic radial velocity studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ~0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base, of a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ~two-thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods. Based on data from the MOST satellite, a Canadian Space Agency mission, jointly operated by Dynacon Inc., the University of Toronto Institute for Aerospace Studies and the University of British Columbia, with the assistance of the University of Vienna.

  9. Stellar wind variations in HD 45166: The continuing story. [Wolf-Rayet star

    NASA Technical Reports Server (NTRS)

    Willis, Allan J.; Stickland, David J.; Heap, Sara R.

    1988-01-01

    High resolution SWP IUE spectra of HD 45166 (qWR+B8V) obtained over a 36 hr continuous run, together with earlier observations, reveal 2 distinct modes of UV variability in this object. Gross, epoch-linked changes are seen in the strengths of the qWR emission lines, accompanied by large changes in its highly ionized photospheric absorption spectrum. Rapid (hours) variability in strong, multiple, high velocity, wind discrete absorption components (DAC), in the CIV lambda 1550 resonance lines, which superpose to give the appearance of a broad P Cygni absorption profile at many epochs is also observed. These multiple DAC's (often at least 3 are seen) propagate in velocity, from 0.6 to 1.0 v inf, on a timescale of 1 day, implying an acceleration of 180 cm/s comparable to that seen in O-type stars.

  10. Properties of the giant H II regions and bar in the nearby spiral galaxy NGC 5430

    NASA Astrophysics Data System (ADS)

    Brière, É.; Cantin, S.; Spekkens, K.

    2012-09-01

    In order to better understand the impact of the bar on the evolution of spiral galaxies, we measure the properties of giant H II regions and the bar in the SB(s)b galaxy NGC 5430. We use two complementary data sets, both obtained at the Observatoire du Mont-Mégantic: a hyperspectral data cube from the imaging Fourier transform spectrograph SpIOMM (Spectromètre-Imageur à transformée de Fourier de l-Observatoire du Mont-Mégantic) and high-resolution spectra across the bar from a long-slit spectrograph. We flux-calibrate SpIOMM spectra for the first time, and produce Hα and [N II]λ6584 Å intensity maps from which we identify 51 giant H II regions in the spiral arms and bar. We evaluate the type of activity, the oxygen abundance and the age of the young populations contained in these giant H II regions and in the bar. Thus, we confirm that NGC 5430 does not harbour a strong active galactic nucleus, and that its Wolf-Rayet knot shows a pure H II region nature. We find no variation in abundance or age between the bar and spiral arms, nor as a function of galactocentric radius. These results are consistent with the hypothesis that a chemical mixing mechanism is at work in the galaxy's disc to flatten the oxygen abundance gradient. Using the STARBURST99 model, we estimate the ages of the young populations, and again find no variations in age between the bar and the arms or as a function of radius. Instead, we find evidence for two galaxy-wide waves of star formation, about 7.1 and 10.5 Myr ago. While the bar in NGC 5430 is an obvious candidate to trigger these two episodes, it is not clear how the bar could induce widespread star formation on such a short time-scale.

  11. Searching for the Upper Mass Limit in NGC 3603, the Nearest Giant H II Region

    NASA Astrophysics Data System (ADS)

    Massey, Philip

    2009-07-01

    What is the mass of the highest mass star? 100Mo? 150Mo? 200Mo? Or higher? Theory gives us little guidance as to what physics sets the upper mass limit, presuming one exists. Is it due to limitations in the highest masses that can coalesce? Or is it due to stability issues in such a behemoth? Observationally, the upper mass limit is poorly constrained at present, with the strongest evidence coming from the K-band luminosity function of the Arches cluster near the Galactic Center. Here we propose to investigate this question by determining the Initial Mass Function of NGC 3603, the nearest giant H II region. This cluster is known to contain a wealth of O3 and hydrogen-rich Wolf-Rayets, the most luminous and massive of stars. By constructing an accurate H-R diagram for the cluster, we will construct a present day mass function using newly computed high mass evolutionary tracks, and convert this to an initial mass function using the inferred ages. This will allow us to see whether or not there is a true deficit of high mass stars, evidence of an upper mass cutoff. At the same time we are likely to establish good masses for the highest mass stars ever determined. We have laid the groundwork for this project using the Magellan 6.5-m telescope and the excellent seeing found on Las Campanas, plus analysis of archival ACS/HRS frames, but we now need to obtain spectra of the stars unobservable from the ground. This can only be done with HST and a reburbished STIS.

  12. Color excesses, intrinsic colors, and absolute magnitudes of Galactic and Large Magellanic Cloud Wolf-Rayet stars

    NASA Technical Reports Server (NTRS)

    Vacca, William D.; Torres-Dodgen, Ana V.

    1990-01-01

    A new method of determining the color excesses of WR stars in the Galaxy and the LMC has been developed and is used to determine the excesses for 44 Galactic and 32 LMC WR stars. The excesses are combined with line-free, narrow-band spectrophotometry to derive intrinsic colors of the WR stars of nearly all spectral subtypes. No correlation of UV spectral index or intrinsic colors with spectral subtype is found for the samples of single WN or WC stars. There is evidence that early WN stars in the LMC have flatter UV continua and redder intrinsic colors than early WN stars in the Galaxy. No separation is found between the values derived for Galactic WC stars and those obtained for LMC WC stars. The intrinsic colors are compared with those calculated from model atmospheres of WR stars and generally good agreement is found. Absolute magnitudes are derived for WR stars in the LMC and for those Galactic WR stars located in clusters and associations for which there are reliable distance estimates.

  13. A quantitative analysis of the prototype [WCL] star CPD-56° 8032

    NASA Astrophysics Data System (ADS)

    Crowther, Paul A.; De Marco, Orsola; Barlow, M. J.; Storey, P. J.

    1996-04-01

    We present a detailed, quantitative study of the standard [WC10] Wolf-Rayet central star CPD-56o 8032 based on new high resolution AAT UCLES observations and the Hillier (1990) WR standard model. Our analysis of CPD-56o 8032 gives the wind properties (T *=34500K, lg (L/L ⊙)=3.8, lg (M/M ⊙a-1)=-5.4,v ∞=225 km s-1) and chemistry (C/He=0.5, O/He=0.1, by number), the latter suggesting an intimate relationship with the O vi PN central stars and the PG 1159-035 objects. A comparison between the wind properties of CPD-56o 8032 and Sk-66o 40 (WN 10) indicates that low excitation, low wind velocity WR winds are common to both low mass PN central stars (WC sequence) and high mass post-LBV's (WN sequence).

  14. On Determining the Primordial Helium Abundance from the Spectra of H II Galaxies: Erratum

    NASA Astrophysics Data System (ADS)

    Campbell, Alison

    1993-03-01

    In the paper "On Determining the primordial Helium Abundance from the Spectra of H II Galaxies" by Alison Campbell (ApJ,401,157(1992]) a correction should be made to one of the values given for (He/HN)_p_. The value (He/N)_p_ = 0.0738 +/- 0.0016 which was quoted from the work of B. E. J. Pagel, E. A. Simonson, R. J. Terlevich, & M. Edmunds (MNRAS 255,325(1992]) is their standard least-squares fit to the 19 object O/H-He/H data set (Table 16). They prefer a value (He/N)_p_ = 0.0738+/-0.0021, based on the average of O/H-He/H and N/H-He/HN regressions and obtained by a maximum-likelihood technique which B. Pagel (private communication) has informed the author correctly accounts for errors in both y and x. This value for (He/N)_p_ is 2.0 σ, rather than 2.7 σ, below the theoretical lower limit of 0.078+/-0.0004. (The uncertainty in the theoretical (He/H)_p_ reflects the 1 σ experimental uncertainty in the neutron lifetime; T. P. Walker, G. Steigman, D. N. Schramm, K. A. Olive, & H. Kang, ApJ, 376, 5I (1991), and references therein.] Further, the ~2% overestimate of the true value of (He/H)_p_ which arises from the neglect of x uncertainties (Sections III and VI of the author's paper) does not apply to Pagel et al.'s result. The presence of an intrinsic dispersion in helium abundance at a given oxygen abundance was noted by B. E. J. Pagel, R. J. Terlevich, & J. Melnick (PASP, 98,1005(1986]) and was associated by them with winds from WolfRayet (WR) stars. Pagel et al. (1992) exclude from their regression analysis all H II galaxies exhibiting WR emission features and find that the remaining objects in their sample show no physical scatter.

  15. Progenitors of supernova Ibc: a single Wolf-Rayet star as the possible progenitor of the SN Ib iPTF13bvn

    NASA Astrophysics Data System (ADS)

    Groh, Jose H.; Georgy, Cyril; Ekström, Sylvia

    2013-10-01

    Core-collapse supernova (SN) explosions mark the end of the tumultuous life of massive stars. Determining the nature of their progenitors is a crucial step towards understanding the properties of SNe. Until recently, no progenitor has been directly detected for SN of type Ibc, which are believed to come from massive stars that lose their hydrogen envelope through stellar winds and from binary systems where the companion has stripped the H envelope from the primary. Here we analyze recently reported observations of iPTF13bvn, which could possibly be the first detection of a SN Ib progenitor based on pre-explosion images. Very interestingly, the recently published Geneva models of single stars can reproduce the observed photometry of the progenitor candidate and its mass-loss rate, confirming a recently proposed scenario. We find that a single WR star with initial mass in the range 31-35 M⊙ fits the observed photometry of the progenitor of iPTF13bvn. The progenitor likely has a luminosity of log (L⋆/L⊙) ~ 5.55, surface temperature ~45 000 K, and mass of ~10.9 M⊙ at the time of explosion. Our non-rotating 32 M⊙ model overestimates the derived radius of the progenitor, although this could likely be reconciled with a fine-tuned model of a more massive (between 40 and 50 M⊙), hotter, and luminous progenitor. Our models indicate a very uncertain ejecta mass of ~8 M⊙, which is higher than the average of the SN Ib ejecta mass that is derived from the lightcurve (2-4 M⊙). This possibly high ejecta mass could produce detectable effects in the iPTF13bvn lightcurve and spectrum. If the candidate is indeed confirmed to be the progenitor, our results suggest that stars with relatively high initial masses (> 30 M⊙) can produce visible SN explosions at their deaths and do not collapse directly to a black hole.

  16. The Dust Properties of Hot R Coronae Borealis Stars and a Wolf-Rayet Central Star of a Planetary Nebula: In Search of the Missing Link

    NASA Technical Reports Server (NTRS)

    Clayton, Geoffrey C.; De Marco, O.; Whitney, B. A.; Babler, B.; Gallagher, J. S.; Nordhaus, J.; Speck, A. K.; Wolff, M. J.; Freeman, W. R.; Camp, K. A.; Lawson, W. A.; Roman-Duval, J.; Misselt, K. A.; Meade, M.; Sonneborn, G.; Matsuura, M.; Meixner, M.

    2012-01-01

    We present new Spitzer IIRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy,V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects constitute a link between the RCB stars and the [WCL] class of central stars of planetary nebula (CSPNe) that has little or no hydrogen in their atmospheres such as CPD -560 8032. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but sharing the traits of hydrogen deficiency and dust formation that define the cooler RCB stars. The [WC] CSPNe star, CPD -560 8032, displays evidence for dual-dust chemistry showing both PAHs and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but shows no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from those of CPD -56deg 8032 and HV 2671. The PAH emission seen strongly in the other two stars is only weakly present. Instead, the spectrum is dominated by a broad emission centered at about 8.5 microns. This feature is not identified with either PAHs or silicates. Several other novae and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56deg 8032 shows emission features associated with C60 . The other two stars do not show evidence for C60. The nature of the dust around these stars does not help us in establishing further links that may indicate a common origin.

  17. MOST: A Powerful Tool to Reveal the True Nature of the Mysterious Dust-Forming Wolf-Rayet Binary CV Ser

    NASA Astrophysics Data System (ADS)

    David-Uraz, A.; Moffat, A. F. J.; Chené, A.-N.; MOST Collaboration

    2012-12-01

    The WR + O binary CV Ser has been a source of mystery since it was shown that its atmospheric eclipses change with time over decades, in addition to its sporadic dust production. However, the first high-precision time-dependent photometric observations obtained with the MOST space telescope in 2009 show two consecutive eclipses over the 29 day orbit, with varying depths. A subsequent MOST run in 2010 showed a somewhat asymmetric eclipse profile. Parallel optical spectroscopy was obtained from the Observatoire du Mont-Mégantic (2009 and 2010) and from the Dominion Astrophysical Observatory (2009).

  18. He II emitters in the VIMOS VLT Deep Survey: Population III star formation or peculiar stellar populations in galaxies at 2 < z < 4.6?

    NASA Astrophysics Data System (ADS)

    Cassata, P.; Le Fèvre, O.; Charlot, S.; Contini, T.; Cucciati, O.; Garilli, B.; Zamorani, G.; Adami, C.; Bardelli, S.; Le Brun, V.; Lemaux, B.; Maccagni, D.; Pollo, A.; Pozzetti, L.; Tresse, L.; Vergani, D.; Zanichelli, A.; Zucca, E.

    2013-08-01

    Aims: The aim of this work is to identify He II emitters at 2 < z < 4.6 and to constrain the source of the hard ionizing continuum that powers the He II emission. Methods: We assembled a sample of 277 galaxies with a highly reliable spectroscopic redshift at 2 < z < 4.6 from the VIMOS-VLT Deep Survey (VVDS) Deep and Ultra-Deep data, and we identified 39 He II λ1640 emitters. We studied their spectral properties, measuring the fluxes, equivalent widths (EW), and full width at half maximum (FWHM) for most relevant lines, including He II λ1640, Lyα line, Si II λ1527, and C IV λ1549. Results: About 10% of galaxies at z ~ 3 and iAB ≤ 24.75 show He II in emission, with rest frame equivalent widths EW0 ~ 1-7 Å, equally distributed between galaxies with Lyα in emission or in absorption. We find 11 (3.9% of the global population) reliable He II emitters with unresolved He II lines (FWHM0 < 1200 km s-1), 13 (4.6% of the global population) reliable emitters with broad He II emission (FWHM0 > 1200 km s-1), 3 active galactic nuclei (AGN), and an additional 12 possible He II emitters. The properties of the individual broad emitters are in agreement with expectations from a Wolf-Rayet (W-R) model. Instead, the properties of the narrow emitters are not compatible with this model, nor with predictions of gravitational cooling radiation produced by gas accretion, unless this is severely underestimated by current models by more than two orders of magnitude. Rather, we find that the EW of the narrow He II line emitters are in agreement with expectations for a Population III (PopIII) star formation, if the episode of star formation is continuous, and we calculate that a PopIII star formation rate (SFR) of 0.1-10 M⊙ yr-1 alone is enough to sustain the observed He II flux. Conclusions: We conclude that narrow He II emitters are powered either by the ionizing flux from a stellar population rare at z ~ 0 but much more common at z ~ 3, or by PopIII star formation. As proposed by

  19. A giant outburst two years before the core-collapse of a massive star.

    PubMed

    Pastorello, A; Smartt, S J; Mattila, S; Eldridge, J J; Young, D; Itagaki, K; Yamaoka, H; Navasardyan, H; Valenti, S; Patat, F; Agnoletto, I; Augusteijn, T; Benetti, S; Cappellaro, E; Boles, T; Bonnet-Bidaud, J-M; Botticella, M T; Bufano, F; Cao, C; Deng, J; Dennefeld, M; Elias-Rosa, N; Harutyunyan, A; Keenan, F P; Iijima, T; Lorenzi, V; Mazzali, P A; Meng, X; Nakano, S; Nielsen, T B; Smoker, J V; Stanishev, V; Turatto, M; Xu, D; Zampieri, L

    2007-06-14

    The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations. PMID:17568740

  20. Development of an Automatic Processing Program for BOES Data. II

    NASA Astrophysics Data System (ADS)

    Kang, Dong-Ii; Park, Hong-Suh; Han, In-Woo; Valyavin, G.; Lee, Byeong-Cheol; Kim, Kang-Min

    2006-12-01

    We developed a new program for automatic continuum normalization of Echelle spectrographic data. Using this algorithm, we have determined spectral continuum of almost BOES data. The first advantage of this algorithm is that we can save much time for continuum determination and normalization. The second advantage is that the result of this algorithm is very reliable for almost spectral type of spectrum. But this algorithm cannot be applied directly to the spectrum which has very strong and broad emission lines, for example Wolf-Rayet type spectrum. We implanted this algorithm to the program which was developed in the previous study [2005PKAS...20...97K]. And we introduced more upgraded BOES data reduction program. This program has more convenient graphical user interface environment, so users can easily reduce BOES data. Lastly, we presented the result of study on line profile variation of magnetic Ap/Bp stars analyzed using this program.

  1. He i in the central giant H ii region of NGC 5253. A 2D observational approach to collisional and radiative transfer effects

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Walsh, J. R.; Westmoquette, M. S.; Vílchez, J. M.

    2013-05-01

    Context. NGC 5253 is a nearby peculiar blue compact dwarf (BCD) galaxy that, on account of its proximity, provides an ideal laboratory for detailed spatial study of starburst galaxies. An open issue not addressed so far is how the collisional and self-absorption effects on He i emission influence the determination of the He+ abundance in 2D and what is the relation to the physical and chemical properties of the ionised gas. Aims: A 2D, imaging spectroscopy, study of the spatial behaviour of collisional and radiative transfer effects in He+ and their impact on the determination of He+ abundance is presented for the first time in a starburst galaxy. Methods: The He i lines were analysed based on previously presented integral field spectroscopy (IFS) data, obtained with FLAMES at the VLT and lower resolution gratings of the Giraffe spectrograph, as well as with GMOS at Gemini and the R381 grating. Results: Collisional effects reproduce the electron density (ne) structure. They are negligible (i.e. ~0.1-0.6%) for transitions in the singlet cascade but relatively important for those in the triplet cascade. In particular, they can contribute up to 20% of the flux in the He iλ7065 line. Radiative transfer effects are important over an extended and circular area of ~30 pc in diameter centred on the super star clusters (SSCs). The singly ionised helium abundance, y+, has been mapped using extinction-corrected fluxes of six He i lines, realistic assumptions for electron temperature (Te), ne, and the stellar absorption equivalent width, as well as the most recent emissivities. We find a mean(± standard deviation) of 103y+ ~ 80.3( ± 2.7) over the mapped area. The relation between the excitation and the total helium abundance, ytot, is consistent with no abundance gradient. Uncertainties in the derivation of helium abundances are dominated by the adopted assumptions. We illustrate the difficulty of detecting a putative helium enrichment owing to the presence of Wolf-Rayet

  2. CARBON STARS WITH INFRARED SPECTRA IN GROUP P OF THE IRAS/LRS DATABASE

    SciTech Connect

    Chen, P. S.

    2012-10-01

    Sources with infrared spectra in Group P of the IRAS/LRS database all show polycyclic aromatic hydrocarbon features. They are often planetary nebulae, H II regions, reflection/dark nebulae, Wolf-Rayet stars, or external galaxies. However, we noted that some carbon stars are also included in this group. We searched for and investigated all infrared spectra in Group P of the IRAS/LRS database. Finally, we found 11 previously known carbon stars and identified 8 new candidate carbon stars in Group P. Infrared spectra of these stars may present the 11.2 {mu}m SiC emission features indicative of their carbon-rich properties.

  3. Galactic Sodium from AGB Stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.; Gibson, B. K.; Stancliffe, R. J.

    2007-11-01

    Galactic chemical evolution (GCE) models which include sodium from type II supernovae (SNe) alone underestimate the abundance of sodium in the interstellar medium by a factor of 2 to 3 over about 3 ridex in metallicity and predict a flat behavior in the evolution of riNafe at super-solar metallicities. Conversely, recent observations of stars with rifeh ˜ +0.4 suggest that riNafe increases at high metallicity. We have combined stellar evolution models of asymptotic giant branch (AGB) and Wolf-Rayet (WR) stars with the latest SN yields in an attempt to resolve these problems dots and have created many more.

  4. Luminous variables in the Quintuplet cluster

    NASA Astrophysics Data System (ADS)

    Glass, I. S.; Matsumoto, S.; Carter, B. S.; Sekiguchi, K.

    1999-03-01

    We report observations of variability amongst the stars of the `Quintuplet' cluster located about 30 pc in projection from the centre of the Galaxy. Two of the five cocoon star members, which may be protostars or peculiar Wolf-Rayet stars, are seen to vary slowly with moderate amplitude (0.4-0.5 mag). The bright star within the `Pistol' H ii region, suspected of being a luminous blue variable (LBV), has in fact been found to show variability, confirming its tentative classification. A second nearby presumed LBV also varies. One of the apparent Quintuplet members is likely to be a Mira variable along the same line of sight.

  5. Sources of High-Energy Emission in the Green Pea Galaxies: New Constraints from Magellan Spectra

    NASA Astrophysics Data System (ADS)

    Carroll, Derek Alexander

    2016-01-01

    The recently discovered Green Pea galaxies display extreme starburst activity and may be some of the only possible Lyman continuum emitting galaxies at low redshift. Green Peas are characterized by their unusually high [O III]/[O II] ratios, similar to the ratios observed in high-redshift galaxies. In addition, the presence of the high-energy He II 4686 line shows that the Green Peas are highly ionized. However, the origin of the He II emission in the Green Peas, and many other starburst galaxies, is still an open question. We analyze IMACS and MagE spectra from the Magellan telescopes in order to evaluate the most probable cause of this He II emission. We also analyze other properties like dust content, temperature and density, and kinematic components. Our IMACS spectra show no Wolf-Rayet (WR) features. We set upper limits on the WR populations in our sample and conclude that Wolf-Rayet stars are not a likely candidate for the He II emission. With deeper MagE spectra we investigate energetic shocks as a possible source of the He II, and move one step closer to uncovering the origin of high-energy photons in these unique starbursts.

  6. Photometry of the 4686 A emission line of gamma(2) Velorum from the South Pole

    NASA Technical Reports Server (NTRS)

    Taylor, Maryjane

    1990-01-01

    An automated optical telescope located at the Amundsen-Scott South Pole station on Antarctica, has been used to obtain more than 78 h of photometry of the He II emission line (4686 A) of the spectroscopic binary gamma(2) Velorum. These data were obtained on seven different days during the 1987 austral winter; the longest continuous run spans 19 h. Two independent period search techniques have been used to search for periodic behavior in the strength of the He II emission line of this Wolf-Rayet star. They are: (1) power spectrum analysis and (2) a first-order sine function fit to the data using least squares. Various multiplicities of a period on the order of 1.3 h with amplitudes of a few percent are found in most of these data. According to recent theoretical models of Wolf-Rayet stars, fluctuations in the He II emission line may indicate vibrational instability in gamma(2) Vel. These pulsations may, in turn, give rise to shocks which propagate outward and which may provide the necessary conditions for periodic changes in the state of a given region of the atmosphere to occur.

  7. Mass-loss Rates for Very Massive Stars Up to 300 Solar Masses

    NASA Astrophysics Data System (ADS)

    Vink, J. S.

    2011-06-01

    One of the key questions in Astrophysics concerns the issue of whether there exists an upper mass limit to stars and if so, what physical mechanism determines this upper limit. Here we present the latest mass-loss predictions for the most massive stars in our Universe - in the mass range up to 300 solar masses - using a novel hydrodynamic method that includes the important effects of multiple photons interactions, allowing us to predict the rate of mass loss and the wind terminal velocity simultaneously. Our model stars have a high Eddington factor (Γ) and we find an upturn in the mass-loss versus Γ dependence, where the model winds become optically thick. This is also the point where our wind efficiency numbers - defined as the wind momentum over the photon momentum - surpass the single-scattering limit (of η = 1), reaching wind efficiency numbers up to η ≃ 2.5. Our modelling indicates a natural transition from common O-type stars to Wolf-Rayet characteristics when the wind becomes optically thick. This "transitional" behaviour is also reflected in the wind acceleration parameter β, which naturally reaches values as high as 1.5-2, as well as in the spectral morphology of the He II line at 4686Å - characteristic for Of and late WN stars. In Wolf-Rayet galaxy research, the feature is sometimes referred to as "the blue bump".

  8. Chemical evolution of fluorine in the bulge. High-resolution K-band spectra of giants in three fields

    NASA Astrophysics Data System (ADS)

    Jönsson, H.; Ryde, N.; Harper, G. M.; Cunha, K.; Schultheis, M.; Eriksson, K.; Kobayashi, C.; Smith, V. V.; Zoccali, M.

    2014-04-01

    Context. Possible main formation sites of fluorine in the Universe include asymptotic giant branch (AGB) stars, the ν-process in Type II supernova, and/or Wolf-Rayet stars. The importance of the Wolf-Rayet stars has theoretically been questioned and they are probably not needed in modeling the chemical evolution of fluorine in the solar neighborhood. It has, however, been suggested that Wolf-Rayet stars are indeed needed to explain the chemical evolution of fluorine in the bulge. The molecular spectral data, needed to determine the fluorine abundance, of the often used HF-molecule has not been presented in a complete and consistent way and has recently been debated in the literature. Aims: We intend to determine the trend of the fluorine-oxygen abundance ratio as a function of a metallicity indicator in the bulge to investigate the possible contribution from Wolf-Rayet stars. Additionally, we present here a consistent HF line list for the K- and L-bands including the often used 23 358.33 Å line. Methods: High-resolution near-infrared spectra of eight K giants were recorded using the spectrograph CRIRES mounted at the VLT. A standard setting was used that covered the HF molecular line at 23 358.33 Å. The fluorine abundances were determined using spectral fitting. We also re-analyzed five previously published bulge giants observed with the Phoenix spectrograph on Gemini using our new HF molecular data. Results: We find that the fluorine-oxygen abundance in the bulge probably cannot be explained with chemical evolution models that only include AGB stars and the ν-process in supernovae Type II, that is a significant amount of fluorine production in Wolf-Rayet stars is most likely needed to explain the fluorine abundance in the bulge. For the HF line data, we find that a possible reason for the inconsistencies in the literature, where two different excitation energies were used, is two different definitions of the zero-point energy for the HF molecule and therefore

  9. Stellar Populations in the Central 0.5 pc of the Galaxy. II. The Initial Mass Function

    NASA Astrophysics Data System (ADS)

    Lu, J. R.; Do, T.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Matthews, K.

    2013-02-01

    The supermassive black hole at the center of the Milky Way plays host to a massive, young cluster that may have formed in one of the most inhospitable environments in the Galaxy. We present new measurements of the global properties of this cluster, including the initial mass function (IMF), age, and cluster mass. These results are based on Keck laser-guide-star adaptive optics observations used to identify the young stars and measure their Kp-band luminosity function as presented in Do et al. A Bayesian inference methodology is developed to simultaneously fit the global properties of the cluster utilizing the observations and extensive simulations of synthetic star clusters. We find that the slope of the mass function for this cluster is α = 1.7 ± 0.2, which is steeper than previously reported, but still flatter than the traditional Salpeter slope of 2.35. The age of the cluster is between 2.5 and 5.8 Myr with 95% confidence, which is a younger age than typically adopted but consistent within the uncertainties of past measurements. The exact age of the cluster is difficult to determine since our results show two distinct age solutions (3.9 Myr and 2.8 Myr) due to model degeneracies in the relative number of Wolf-Rayet and OB stars. The total cluster mass is between 14,000 and 37,000 M ⊙ above 1 M ⊙ and it is necessary to include multiple star systems in order to fit the observed luminosity function and the number of observed Wolf-Rayet stars. The new IMF slope measurement is now consistent with X-ray observations indicating a factor of 10 fewer X-ray emitting pre-main-sequence stars than expected when compared with a Salpeter IMF. The young cluster at the Galactic center is one of the few definitive examples of an IMF that deviates significantly from the near-universal IMFs found in the solar neighborhood.

  10. STELLAR POPULATIONS IN THE CENTRAL 0.5 pc OF THE GALAXY. II. THE INITIAL MASS FUNCTION

    SciTech Connect

    Lu, J. R.; Do, T.; Ghez, A. M.; Morris, M. R.; Yelda, S.; Matthews, K. E-mail: tuan.do@uci.edu E-mail: morris@astro.ucla.edu

    2013-02-20

    The supermassive black hole at the center of the Milky Way plays host to a massive, young cluster that may have formed in one of the most inhospitable environments in the Galaxy. We present new measurements of the global properties of this cluster, including the initial mass function (IMF), age, and cluster mass. These results are based on Keck laser-guide-star adaptive optics observations used to identify the young stars and measure their Kp-band luminosity function as presented in Do et al. A Bayesian inference methodology is developed to simultaneously fit the global properties of the cluster utilizing the observations and extensive simulations of synthetic star clusters. We find that the slope of the mass function for this cluster is {alpha} = 1.7 {+-} 0.2, which is steeper than previously reported, but still flatter than the traditional Salpeter slope of 2.35. The age of the cluster is between 2.5 and 5.8 Myr with 95% confidence, which is a younger age than typically adopted but consistent within the uncertainties of past measurements. The exact age of the cluster is difficult to determine since our results show two distinct age solutions (3.9 Myr and 2.8 Myr) due to model degeneracies in the relative number of Wolf-Rayet and OB stars. The total cluster mass is between 14,000 and 37,000 M {sub Sun} above 1 M {sub Sun} and it is necessary to include multiple star systems in order to fit the observed luminosity function and the number of observed Wolf-Rayet stars. The new IMF slope measurement is now consistent with X-ray observations indicating a factor of 10 fewer X-ray emitting pre-main-sequence stars than expected when compared with a Salpeter IMF. The young cluster at the Galactic center is one of the few definitive examples of an IMF that deviates significantly from the near-universal IMFs found in the solar neighborhood.

  11. Abundances in "Green Pea" Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Hawley, Steven A.

    2012-01-01

    He II λ4686 is identified in the spectra of nine of the original "Green Peas," a type of compact star-forming galaxy characterized by low mass; low metallicity; strong [O III] λλ4959, 5007; and redshifts in the range of ~0.1-0.4. Measured λ4686/Hβ ratios are roughly 1-2%, consistent with photoionization by Wolf-Rayet stars. Emission-line intensities are measured from Sloan Digital Sky Survey spectra for 71 Green Peas and are used to determine Te-based abundances of O, N, Ne, S, and He. Neon abundances confirm the mass-metallicity relation inferred from O/H. The N/O ratio is roughly constant with O/H, and the average N/O is evidence of a modest nitrogen enhancement compared with other low-metallicity galaxies. Nitrogen enrichment could be due to Wolf-Rayet stars or to intermediate-mass stars during a previous quiescent period. The Te-based abundances allow a reevaluation of some of the strong-line methods favored for estimating O/H or N/O in large spectroscopic surveys of star-forming galaxies. Photoionization by Wolf-Rayet stars raises questions about the validity of strong-line methods based on [N II]/Hα, [N II]/[O III], or [N II]/[S II], as those line ratios are known to be ionization-sensitive. Analysis of these measurements shows that ionization, low metallicity, and the small variation in important line ratios in the Green Pea spectra all affect the behavior of one or more of the N2, O3N2, N2O2 and N2S2 strong-line methods. The previous findings for trends in O/H and N/O in the Green Peas can be reproduced and the discrepancies can be explained. In particular, the reported increase of N/O with O/H appears to be a bias introduced by combining N2 with N2S2. N2O2 does not give valid results in the Green Peas, while N2 and N2S2 do, although the calibrations of the N2 and N2S2 methods based on Green Pea abundances are different from the existing calibrations based primarily on abundances in extragalactic H II regions and H II galaxies.

  12. Neon and Oxygen Abundances in M33

    NASA Astrophysics Data System (ADS)

    Crockett, Nathan R.; Garnett, Donald R.; Massey, Philip; Jacoby, George

    2006-02-01

    We present new spectroscopic observations of 13 H II regions in the Local Group spiral galaxy M33. The regions observed range from 1 to 7 kpc in distance from the nucleus. Of the 13 H II regions observed, the [O III] λ4363 line was detected in six regions. Electron temperatures were thus able to be determined directly from the spectra using the [O III] λλ4959, 5007/λ4363 line ratio. Based on these temperature measurements, oxygen and neon abundances and their radial gradients were calculated. For neon, a gradient of -0.016+/-0.017 dex kpc-1 was computed, which agrees with the Ne/H gradient derived previously from ISO spectra. A gradient of -0.012+/-0.011 dex kpc-1 was computed for O/H, much shallower than was derived in previous studies. The newly calculated O/H and Ne/H gradients are in much better agreement with each other, as expected from predictions of stellar nucleosynthesis. We examine the correlation between the WC/WN ratio and metallicity, and find that the new M33 abundances do not impact the observed correlation significantly. We also identify two new He II-emitting H II regions in M33, the first to be discovered in a spiral galaxy other than the Milky Way. In both cases the nebular He II emission is not associated with Wolf-Rayet stars. Therefore, caution is warranted in interpreting the relationship between nebular He II emission and Wolf-Rayet stars when both are observed in the integrated spectrum of an H II region.

  13. Nebular phase observations of the Type-Ib supernova iPTF13bvn favour a binary progenitor

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Maeda, K.; Bersten, M. C.; Folatelli, G.; Morrell, N.; Hsiao, E. Y.; González-Gaitán, S.; Anderson, J. P.; Hamuy, M.; de Jaeger, T.; Gutiérrez, C. P.; Kawabata, K. S.

    2015-07-01

    Aims: We present and analyse late-time observations of the Type-Ib supernova with possible pre-supernova progenitor detection, iPTF13bvn, which were done ~300 days after the explosion. We discuss them in the context of constraints on the supernova's progenitor. Previous studies have proposed two possible natures for the progenitor of the supernova, i.e. a massive Wolf-Rayet star or a lower-mass star in a close binary system. Methods: Our observations show that the supernova has entered the nebular phase, with the spectrum dominated by Mg I]λλ4571, [O I]λλ6300, 6364, and [Ca II]λλ7291, 7324 emission lines. We measured the emission line fluxes to estimate the core oxygen mass and compared the [O I]/[Ca II] line ratio with other supernovae. Results.The core oxygen mass of the supernova progenitor was estimated to be ≲0.7 M⊙, which implies initial progenitor mass that does not exceed ~15-17 M⊙.Since the derived mass is too low for a single star to become a Wolf-Rayet star, this result lends more support to the binary nature of the progenitor star of iPTF13bvn. The comparison of [O I]/[Ca II] line ratio with other supernovae also shows that iPTF13bvn appears to be in close association with the lower mass progenitors of stripped-envelope and Type-II supernovae. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU); Chilean Telescope Time Allocation Committee proposal CN2014A-91.

  14. Is the Extraordinary Super Star Cluster NGC 3125-1 an Imposter?

    NASA Astrophysics Data System (ADS)

    Leitherer, Claus

    2010-09-01

    We propose a short, 4 orbit COS+STIS spectroscopic program to observe the extraordinary super star cluster in the local starburst galaxy NGC 3125. The cluster has the strongest He II 1640 emission ever observed in a starburst region in the local universe. This line is the tell-tale sign of Wolf-Rayet stars, the evolved descendants of very massive O stars. Taken at face value, the anomalous He II 1640 line indciates a Wolf-Rayet population that is very different from other starburst regions. However, previous attempts to interpret the observational data of the super star cluster were hampered by the low resolution of the ultraviolet spectra and the lack of co-spatial panchromatic data. As a result, the suggestion of the extraordinary nature of this super star cluster is still not unambiguous. The proposed program will settle the matter. We will test the upper initial mass function from several angles: the N V and Si IV stellar wind-lines, the elusive O V line associated with the hottest, most massive stars, and the ionizing radiation as probed by recombination lines. We will determine the dust redening with three independent methods: the SED, the Balmer decrement, and the He II 4686/1640 ratio. The STIS long-slit capabilities will allow us to perform a comparative study with a nearby super star cluster in the host galaxy. The ultraviolet spectrum of the super star cluster may be the missing link between local starbursts and star-forming galaxies at cosmological redshift. The UV spectra of the two classes of objects are rather similar, except for the He II 1640 line, which is much stronger at high redshift. Detailed observations of NGC 3125 may help shed light on understanding the details of star-formation at high redshift.

  15. Catalog of far-ultraviolet objective-prism spectrophotometry: Skylab experiment S-019, ultraviolet steller astronomy

    NASA Technical Reports Server (NTRS)

    Henize, K. G.; Wray, J. D.; Parsons, S. B.; Benedict, G. F.

    1979-01-01

    Ultraviolet stellar spectra in the wavelength region from 1300 to 5000 A (130 to 500) were photographed during the three manned Skylab missions using a 15 cm aperture objective-prism telescope. The prismatic dispersion varied from 58 A mm/1 at 1400 A to 1600 A mm/1 at 3000 A. Approximately 1000 spectra representing 500 stars were measured and reduced to observed fluxes. About 100 stars show absorption lines of Si IV, C IV, or C II. Numerous line features are also recorded in supergiant stars, shell stars, A and F stars, and Wolf-Rayet stars. Most of the stars in the catalog are of spectral class B, with a number of O and A type stars and a sampling of WC, WN, F and C type stars. Spectrophotometric results are tabulated for these 500 stars.

  16. First discoveries in the VLT-FLAMES Tarantula Survey

    NASA Astrophysics Data System (ADS)

    de Koter, A.; Sana, H.; Evans, C.; Besthenlehner, J. M.; Taylor, W. D.

    2013-01-01

    The VLT-FLAMES Tarantula Survey is a multi-epoch spectroscopic campaign targeting ˜800 of the most massive stars in the 30 Dor region of the Large Magellanic Cloud. The dataset comprises well over 300 O-type stars, including 20 Of/WN and Wolf-Rayet stars. A survey of this type has a large potential for serendipitous discoveries. We discuss three intriguing findings in the subset of O and WNh stars obtained in the first year of data analysis: (i) VFTS 682, the first ˜150 M⊙ star that is not located in the core of a massive star cluster; (ii) VFTS 102, a near-critically spinning O9 V star, and (iii) R139, found to be the most massive binary system where both components are O supergiants.

  17. Spectropolarimetry of hot, luminous stars

    NASA Technical Reports Server (NTRS)

    Schulte-Ladbeck, Regina E.

    1994-01-01

    I review polarimetric observations of presumably single, hot luminous stars. The stellar types discussed are OB stars. B(e) supergiants, Luminous Blue Variables (LBV), Wolf-Rayet (W-R) stars, and type II supernovae (SN). It is shown that variable, intrinsic polarization is a common phenomenon in that part of the Hertzsprung-Russell (HR) diagram which these stars occupy. However, much observational work remains to be done before we can answer the most basic, statistical questions about the polarimetric properties of different groups of hot, luminous stars. Insight into the diagnostic power of polarization observations has been gained, but cannot be exploited without detailed models. Thus, while polarimetric observations do tell us that the mass-loss processes of all types of massive stars are time-dependent and anisotropic, the significance that this might have for the accuracy of their stellar parameters and evolutionary paths remains elusive.

  18. DISSECTION OF H{alpha} EMITTERS : LOW-z ANALOGS OF z > 4 STAR-FORMING GALAXIES

    SciTech Connect

    Shim, Hyunjin; Chary, Ranga-Ram

    2013-03-01

    Strong H{alpha} emitters (HAEs) dominate the z {approx} 4 Lyman-break galaxy (LBG) population. We have identified local analogs of these HAEs using the Sloan Digital Sky Survey. At z < 0.4, only 0.04% of the galaxies are classified as HAEs with H{alpha} equivalent widths ({approx}> 500 A) comparable to that of z {approx} 4 HAEs. Local HAEs have lower stellar mass and lower ultraviolet (UV) luminosity than z {approx} 4 HAEs, yet the H{alpha}-to-UV luminosity ratio, as well as their specific star formation rate, is consistent with that of z {approx} 4 HAEs, indicating that they are scaled-down versions of high-z star-forming galaxies. Compared to the previously studied local analogs of LBGs selected using rest-frame UV properties, local HAEs show similar UV luminosity surface density, weaker D{sub n} (4000) break, lower metallicity, and lower stellar mass. This implies that the local HAEs are less evolved galaxies than the traditional Lyman break analogs. In the stacked spectrum, local HAEs show a significant He II {lambda}4686 emission line suggesting a population of hot, massive stars similar to that seen in some Wolf-Rayet galaxies. Low [N II]/[O III] line flux ratios imply that local HAEs are inconsistent with being systems that host bright active galactic nuclei. Instead, it is highly likely that local HAEs are galaxies with an elevated ionization parameter, either due to a high electron density or large escape fraction of hydrogen ionizing photons as in the case of Wolf-Rayet galaxies.

  19. The trace of the CNO cycle in the ring nebula NGC 6888

    SciTech Connect

    Mesa-Delgado, A.; Esteban, C.; García-Rojas, J.; Reyes-Pérez, J.; Morisset, C.; Bresolin, F.

    2014-04-20

    We present new results on the chemical composition of the Galactic ring nebula NGC 6888 surrounding the WN6(h) star WR136. The data are based on deep spectroscopical observations taken with the High Dispersion Spectrograph at the 8.2 m Subaru Telescope. The spectra cover the optical range from 3700 to 7400 Å. The effect of the CNO cycle is well-identified in the abundances of He, N, and O, while elements not involved in the synthesis such as Ar, S, and Fe present values consistent with the solar vicinity and the ambient gas. The major achievement of this work is the first detection of the faint C II λ4267 recombination line in a Wolf-Rayet nebula. This allows us to estimate the C abundance in NGC 6888 and therefore investigate for the first time the trace of the CNO cycle in a ring nebula around a Wolf-Rayet star. Although the detection of the C II line has a low signal-to-noise ratio, the C abundance seems to be higher than the predictions of recent stellar evolution models of massive stars. The Ne abundance also shows a puzzling pattern with an abundance of about 0.5 dex lower than the solar vicinity, which may be related to the action of the NeNa cycle. Attending to the constraints imposed by the dynamical timescale and the He/H and N/O ratios of the nebula, the comparison with stellar evolution models indicates that the initial mass of the stellar progenitor of NGC 6888 is between 25 M {sub ☉} and 40 M {sub ☉}.

  20. Juno II

    NASA Technical Reports Server (NTRS)

    1959-01-01

    The Juno II launch vehicle, shown here, was a modified Jupiter Intermediate-Range Ballistic missionile, developed by Dr. Wernher von Braun and the rocket team at Redstone Arsenal in Huntsville, Alabama. Between December 1958 and April 1961, the Juno II launched space probes Pioneer III and IV, as well as Explorer satellites VII, VIII and XI.

  1. Photosystem II

    ScienceCinema

    James Barber

    2010-09-01

    James Barber, Ernst Chain Professor of Biochemistry at Imperial College, London, gives a BSA Distinguished Lecture titled, "The Structure and Function of Photosystem II: The Water-Splitting Enzyme of Photosynthesis."

  2. Welding II.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding II, a performance-based course offered at the Community College of Allegheny County to introduce students to out-of-position shielded arc welding with emphasis on proper heats, electrode selection, and alternating/direct currents. After introductory…

  3. SAGE II

    Atmospheric Science Data Center

    2016-02-16

    ... of stratospheric aerosols, ozone, nitrogen dioxide, water vapor and cloud occurrence by mapping vertical profiles and calculating ... (i.e. MLS and SAGE III versus HALOE) Fixed various bugs Details are in the  SAGE II V7.00 Release Notes .   ...

  4. Juno II

    NASA Technical Reports Server (NTRS)

    1959-01-01

    Wernher von Braun and his team were responsible for the Jupiter-C hardware. The family of launch vehicles developed by the team also came to include the Juno II, which was used to launch the Pioneer IV satellite on March 3, 1959. Pioneer IV passed within 37,000 miles of the Moon before going into solar orbit.

  5. PORT II

    NASA Technical Reports Server (NTRS)

    Muniz, Beau

    2009-01-01

    One unique project that the Prototype lab worked on was PORT I (Post-landing Orion Recovery Test). PORT is designed to test and develop the system and components needed to recover the Orion capsule once it splashes down in the ocean. PORT II is designated as a follow up to PORT I that will utilize a mock up pressure vessel that is spatially compar able to the final Orion capsule.

  6. BORE II

    SciTech Connect

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migrate upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.

  7. BORE II

    Energy Science and Technology Software Center (ESTSC)

    2015-08-01

    Bore II, co-developed by Berkeley Lab researchers Frank Hale, Chin-Fu Tsang, and Christine Doughty, provides vital information for solving water quality and supply problems and for improving remediation of contaminated sites. Termed "hydrophysical logging," this technology is based on the concept of measuring repeated depth profiles of fluid electric conductivity in a borehole that is pumping. As fluid enters the wellbore, its distinct electric conductivity causes peaks in the conductivity log that grow and migratemore » upward with time. Analysis of the evolution of the peaks enables characterization of groundwater flow distribution more quickly, more cost effectively, and with higher resolution than ever before. Combining the unique interpretation software Bore II with advanced downhole instrumentation (the hydrophysical logging tool), the method quantifies inflow and outflow locations, their associated flow rates, and the basic water quality parameters of the associated formation waters (e.g., pH, oxidation-reduction potential, temperature). In addition, when applied in conjunction with downhole fluid sampling, Bore II makes possible a complete assessment of contaminant concentration within groundwater.« less

  8. Feedback from winds and supernovae in massive stellar clusters - II. X-ray emission

    NASA Astrophysics Data System (ADS)

    Rogers, H.; Pittard, J. M.

    2014-06-01

    The X-ray emission from a simulated massive stellar cluster is investigated. The emission is calculated from a 3D hydrodynamical model which incorporates the mechanical feedback from the stellar winds of three O stars embedded in a giant molecular cloud (GMC) clump containing 3240 M⊙ of molecular material within a 4 pc radius. A simple prescription for the evolution of the stars is used, with the first supernova (SN) explosion at t = 4.4 Myr. We find that the presence of the GMC clump causes short-lived attenuation effects on the X-ray emission of the cluster. However, once most of the material has been ablated away by the winds, the remaining dense clumps do not have a noticeable effect on the attenuation compared with the assumed interstellar medium (ISM) column. We determine the evolution of the cluster X-ray luminosity, LX, and spectra, and generate synthetic images. The intrinsic X-ray luminosity drops from nearly 1034 erg s-1 while the winds are `bottled up', to a near-constant value of 1.7 × 1032 erg s-1 between t = 1 and 4 Myr. LX reduces slightly during each star's red supergiant stage due to the depressurization of the hot gas. However, LX increases to ≈1034 erg s-1 during each star's Wolf-Rayet stage. The X-ray luminosity is enhanced by two to three orders of magnitude to ˜1037 erg s-1 for at least 4600 yr after each SN explosion, at which time the blast wave leaves the grid and the X-ray luminosity drops. The X-ray luminosity of our simulation is generally considerably fainter than predicted from spherically symmetric bubble models, due to the leakage of hot gas material through gaps in the outer shell. This process reduces the pressure within our simulation and thus the X-ray emission. However, the X-ray luminosities and temperatures which we obtain are comparable to similarly powerful massive young clusters.

  9. OPTICAL SPECTROPHOTOMETRIC MONITORING OF THE EXTREME LUMINOUS BLUE VARIABLE STAR GR 290 (ROMANO's STAR) IN M 33

    SciTech Connect

    Polcaro, V. F.; Viotti, R. F.; Rossi, C.; Galleti, S.; Gualandi, R.; Norci, L.

    2011-01-15

    We study the long-term, S Dor-type variability and the present hot phase of the luminous blue variable (LBV) star GR 290 (Romano's Star) in M 33 in order to investigate possible links between the LBV and the late, nitrogen sequence Wolf-Rayet Stars (WNL) stages of very massive stars. We use intermediate-resolution spectra, obtained with the William Herschel Telescope (WHT) in 2008 December, when GR 290 was at minimum (V = {approx}18.6), as well as new low-resolution spectra and BVRI photometry obtained with the Loiano and Cima Ekar telescopes during 2007-2010. We identify more than 80 emission lines in the 3100-10000 A range covered by the WHT spectra, belonging to different species: the hydrogen Balmer and Paschen series, neutral and ionized helium, C III, N II-III, S IV, Si III-IV, and many forbidden lines of [N II], [O III], [S III], [A III], [Ne III], and [Fe III]. Many lines, especially the He I triplets, show a P Cygni profile with an a-e radial velocity difference of -300 to -500 km s{sup -1}. The shape of the 4630-4713 A emission blend and of other emission lines resembles that of WN9 stars; the blend deconvolution shows that the He II 4686 A has a strong broad component with FWHM {approx_equal} 1700 km s{sup -1}. During 2003-2010 the star underwent large spectral variations, best seen in the 4630-4686 A emission feature. Using the late-WN spectral types of Crowther and Smith, GR 290 apparently varied between the WN11 and WN8-9 spectral types; the hotter the star was the fainter its visual magnitude was. This spectrum-visual luminosity anticorrelation of GR 290 is reminiscent of the behavior of the best-studied LBVs, such as S Dor and AG Car. During the 2008 minimum, we found a significant decrease in bolometric luminosity, which could be attributed to absorption by newly formed circumstellar matter. We suggest that the broad 4686 A line and the optical continuum formed in a central Wolf-Rayet region, while the narrow emission line spectrum originated in an

  10. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    shells typical of luminous blue variable and late WN-type Wolf-Rayet stars.