Science.gov

Sample records for ii quantum yields

  1. Cu(2+) inhibits photosystem II activities but enhances photosystem I quantum yield of Microcystis aeruginosa.

    PubMed

    Deng, Chunnuan; Pan, Xiangliang; Wang, Shuzhi; Zhang, Daoyong

    2014-08-01

    Responses of photosystem I and II activities of Microcystis aeruginosa to various concentrations of Cu(2+) were simultaneously examined using a Dual-PAM-100 fluorometer. Cell growth and contents of chlorophyll a were significantly inhibited by Cu(2+). Photosystem II activity [Y(II)] and electron transport [rETRmax(II)] were significantly altered by Cu(2+). The quantum yield of photosystem II [Y(II)] decreased by 29 % at 100 μg L(-1) Cu(2+) compared to control. On the contrary, photosystem I was stable under Cu(2+) stress and showed an obvious increase of quantum yield [Y(I)] and electron transport [rETRmax(I)] due to activation of cyclic electron flow (CEF). Yield of cyclic electron flow [Y(CEF)] was enhanced by 17 % at 100 μg L(-1) Cu(2+) compared to control. The contribution of linear electron flow to photosystem I [Y(II)/Y(I)] decreased with increasing Cu(2+) concentration. Yield of cyclic electron flow [Y(CEF)] was negatively correlated with the maximal photosystem II photochemical efficiency (F v/F m). In summary, photosystem II was the major target sites of toxicity of Cu(2+), while photosystem I activity was enhanced under Cu(2+) stress. PMID:24920130

  2. Action spectra of photosystems II and I and quantum yield of photosynthesis in leaves in State 1.

    PubMed

    Laisk, Agu; Oja, Vello; Eichelmann, Hillar; Dall'Osto, Luca

    2014-02-01

    The spectral global quantum yield (YII, electrons/photons absorbed) of photosystem II (PSII) was measured in sunflower leaves in State 1 using monochromatic light. The global quantum yield of PSI (YI) was measured using low-intensity monochromatic light flashes and the associated transmittance change at 810nm. The 810-nm signal change was calibrated based on the number of electrons generated by PSII during the flash (4·O2 evolution) which arrived at the PSI donor side after a delay of 2ms. The intrinsic quantum yield of PSI (yI, electrons per photon absorbed by PSI) was measured at 712nm, where photon absorption by PSII was small. The results were used to resolve the individual spectra of the excitation partitioning coefficients between PSI (aI) and PSII (aII) in leaves. For comparison, pigment-protein complexes for PSII and PSI were isolated, separated by sucrose density ultracentrifugation, and their optical density was measured. A good correlation was obtained for the spectral excitation partitioning coefficients measured by these different methods. The intrinsic yield of PSI was high (yI=0.88), but it absorbed only about 1/3 of quanta; consequently, about 2/3 of quanta were absorbed by PSII, but processed with the low intrinsic yield yII=0.63. In PSII, the quantum yield of charge separation was 0.89 as detected by variable fluorescence Fv/Fm, but 29% of separated charges recombined (Laisk A, Eichelmann H and Oja V, Photosynth. Res. 113, 145-155). At wavelengths less than 580nm about 30% of excitation is absorbed by pigments poorly connected to either photosystem, most likely carotenoids bound in pigment-protein complexes. PMID:24333386

  3. Structure-Triggered High Quantum Yield Luminescence and Switchable Dielectric Properties in Manganese(II) Based Hybrid Compounds.

    PubMed

    Wang, Zhong-Xia; Li, Peng-Fei; Liao, Wei-Qiang; Tang, Yuanyuan; Ye, Heng-Yun; Zhang, Yi

    2016-04-01

    Two new manganese(II) based organic-inorganic hybrid compounds, C11 H21 Cl3 MnN2 (1) and C11 H22 Cl4 MnN2 (2), with prominent photoluminescence and dielectric properties were synthesized by solvent modulation. Compound 1 with novel trigonal bipyramidal geometry exhibits bright red luminescence with a lifetime of 2.47 ms and high quantum yield of 35.8 %. Compound 2 with tetrahedral geometry displays intense long-lived (1.54 ms) green light emission with higher quantum yield of 92.3 %, accompanied by reversible solid-state phase transition at 170 K and a distinct switchable dielectric property. The better performance of 2 results from the structure, including a discrete organic cation moiety and inorganic metal anion framework, which gives the cations large freedom of motion. PMID:26864910

  4. Cobalt(II), Nickel(II) and Copper(II) complexes of a tetradentate Schiff base as photosensitizers: Quantum yield of 1O2 generation and its promising role in anti-tumor activity

    NASA Astrophysics Data System (ADS)

    Pradeepa, S. M.; Bhojya Naik, H. S.; Vinay Kumar, B.; Indira Priyadarsini, K.; Barik, Atanu; Ravikumar Naik, T. R.

    2013-01-01

    In the present investigation, a Schiff base N'1,N'3-bis[(E)-(5-bromo-2-hydroxyphenyl)methylidene]benzene-1,3-dicarbohydrazide and its metal complexes have been synthesized and characterized. The DNA-binding studies were performed using absorption spectroscopy, emission spectra, viscosity measurements and thermal denatuaration studies. The experimental evidence indicated that, the Co(II), Ni(II) and Cu(II) complexes interact with calf thymus DNA through intercalation with an intrinsic binding constant Kb of 2.6 × 104 M-1, 5.7 × 104 M-1 and 4.5 × 104 M-1, respectively and they exhibited potent photodamage abilities on pUC19 DNA, through singlet oxygen generation with quantum yields of 0.32, 0.27 and 0.30 respectively. The cytotoxic activity of the complexes resulted that they act as a potent photosensitizers for photochemical reactions.

  5. Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation.

    PubMed

    Wientjes, Emilie; van Amerongen, Herbert; Croce, Roberta

    2013-09-26

    We have studied thylakoid membranes of Arabidopsis thaliana acclimated to different light conditions and have related protein composition to excitation energy transfer and trapping kinetics in Photosystem II (PSII). In high light: the plants have reduced amounts of the antenna complexes LHCII and CP24, the overall trapping time of PSII is only ∼180 ps, and the quantum efficiency reaches a value of 91%. In low light: LHCII is upregulated, the PSII lifetime becomes ∼310 ps, and the efficiency decreases to 84%. This difference is largely caused by slower excitation energy migration to the reaction centers in low-light plants due to the LHCII trimers that are not part of the C2S2M2 supercomplex. This pool of "extra" LHCII normally transfers energy to both photosystems, whereas it transfers only to PSII upon far-red light treatment (state 1). It is shown that in high light the reduction of LHCII mainly concerns the LHCII-M trimers, while the pool of "extra" LHCII remains intact and state transitions continue to occur. The obtained values for the efficiency of PSII are compared with the values of Fv/Fm, a parameter that is widely used to indicate the PSII quantum efficiency, and the observed differences are discussed. PMID:23534376

  6. Nonperturbative theory for the optical response to strong light of the light harvesting complex II of plants: Saturation of the fluorescence quantum yield

    NASA Astrophysics Data System (ADS)

    Richter, M.; Renger, Th.; Renger, G.; Knorr, A.

    2007-08-01

    Recent progress in resolution of the structure of the light harvesting complex II provides the basis for theoretical predictions on nonlinear optical properties from microscopic calculations. An approach to absorption and fluorescence is presented within the framework of Bloch equations using a correlation expansion of relevant many particle interactions. The equations derived within the framework of this theory are applied to describe fluorescence saturation phenomena. The experimentally observed decrease of the normalized fluorescence quantum yield from 1 to 0.0001 upon increasing the intensity of laser pulse excitation at 645nm by five orders of magnitude [R Schödel et al., Biophys. J. 71, 3370 (1996)] is explained by Pauli blocking effects of optical excitation and excitation energy transfer.

  7. Yield Improvement in Steel Casting (Yield II)

    SciTech Connect

    Richard A. Hardin; Christoph Beckermann; Tim Hays

    2002-02-18

    This report presents work conducted on the following main projects tasks undertaken in the Yield Improvement in Steel Casting research program: Improvement of Conventional Feeding and Risering Methods, Use of Unconventional Yield Improvement Techniques, and Case Studies in Yield Improvement. Casting trials were conducted and then simulated using the precise casting conditions as recorded by the participating SFSA foundries. These results present a statistically meaningful set of experimental data on soundness versus feeding length. Comparisons between these casting trials and casting trials performed more than forty years ago by Pellini and the SFSA are quite good and appear reasonable. Comparisons between the current SFSA feeding rules and feeding rules based on the minimum Niyama criterion reveal that the Niyama-based rules are generally less conservative. The niyama-based rules also agree better with both the trials presented here, and the casting trails performed by Pellini an d the SFSA years ago. Furthermore, the use of the Niyama criterion to predict centerline shrinkage for horizontally fed plate sections has a theoretical basis according to the casting literature reviewed here. These results strongly support the use of improved feeding rules for horizontal plate sections based on the Niyama criterion, which can be tailored to the casting conditions for a given alloy and to a desired level of soundness. The reliability and repeatability of ASTM shrinkage x-ray ratings was investigated in a statistical study performed on 128 x-rays, each of which were rated seven different times. A manual ''Feeding and Risering Guidelines for Steel Castings' is given in this final report. Results of casting trials performed to test unconventional techniques for improving casting yield are presented. These use a stacked arrangement of castings and riser pressurization to increase the casting yield. Riser pressurization was demonstrated to feed a casting up to four time s the

  8. Effects of Bleaching by Nitrogen Deficiency on the Quantum Yield of Photosystem II in Synechocystis sp. PCC 6803 Revealed by Chl Fluorescence Measurements.

    PubMed

    Ogawa, Takako; Sonoike, Kintake

    2016-03-01

    Estimation of photosynthesis by Chl fluorescence measurement of cyanobacteria is always problematic due to the interference from respiratory electron transfer and from phycocyanin fluorescence. The interference from respiratory electron transfer could be avoided by the use of DCMU or background illumination by blue light, which oxidizes the plastoquinone pool that tends to be reduced by respiration. On the other hand, the precise estimation of photosynthesis in cells with a different phycobilisome content by Chl fluorescence measurement is difficult. By subtracting the basal fluorescence due to the phycobilisome and PSI, it becomes possible to estimate the precise maximum quantum yield of PSII in cyanobacteria. Estimated basal fluorescence accounted for 60% of the minimum fluorescence, resulting in a large difference between the 'apparent' yield and 'true' yield under high phycocyanin conditions. The calculated value of the 'true' maximum quantum yield of PSII was around 0.8, which was similar to the value observed in land plants. The results suggest that the cause of the apparent low yield reported in cyanobacteria is mainly ascribed to the interference from phycocyanin fluorescence. We also found that the 'true' maximum quantum yield of PSII decreased under nitrogen-deficient conditions, suggesting the impairment of the PSII reaction center, while the 'apparent' maximum quantum yield showed a marginal change under the same conditions. Due to the high contribution of phycocyanin fluorescence in cyanobacteria, it is essential to eliminate the influence of the change in phycocyanin content on Chl fluorescence measurement and to evaluate the 'true' photosynthetic condition. PMID:26858287

  9. The Oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II.

    PubMed

    Ananyev, Gennady; Gates, Colin; Dismukes, G Charles

    2016-09-01

    We have measured flash-induced oxygen quantum yields (O2-QYs) and primary charge separation (Chl variable fluorescence yield, Fv/Fm) in vivo among phylogenetically diverse microalgae and cyanobacteria. Higher O2-QYs can be attained in cells by releasing constraints on charge transfer at the Photosystem II (PSII) acceptor side by adding membrane-permeable benzoquinone (BQ) derivatives that oxidize plastosemiquinone QB(-) and QBH2. This method allows uncoupling PSII turnover from its natural regulation in living cells, without artifacts of isolating PSII complexes. This approach reveals different extents of regulation across species, controlled at the QB(-) acceptor site. Arthrospira maxima is confirmed as the most efficient PSII-WOC (water oxidizing complex) and exhibits the least regulation of flux. Thermosynechococcus elongatus exhibits an O2-QY of 30%, suggesting strong downregulation. WOC cycle simulations with the most accurate model (VZAD) show that a light-driven backward transition (net addition of an electron to the WOC, distinct from recombination) occurs in up to 25% of native PSIIs in the S2 and S3 states, while adding BQ prevents backward transitions and increases the lifetime of S2 and S3 by 10-fold. Backward transitions occur in PSIIs that have plastosemiquinone radicals in the QB site and are postulated to be physiologically regulated pathways for storing light energy as proton gradient through direct PSII-cyclic electron flow (PSII-CEF). PSII-CEF is independent of classical PSI/cyt-b6f-CEF and provides an alternative proton translocation pathway for energy conversion. PSII-CEF enables variable fluxes between linear and cyclic electron pathways, thus accommodating species-dependent needs for redox and ion-gradient energy sources powered by a single photosystem. PMID:27117512

  10. Are Very Small Emission Quantum Yields Characteristic of Pure Metal-to-Ligand Charge-Transfer Excited States of Ruthenium(II)-(Acceptor Ligand) Chromophores?

    PubMed

    Tsai, Chia Nung; Mazumder, Shivnath; Zhang, Xiu Zhu; Schlegel, H Bernhard; Chen, Yuan Jang; Endicott, John F

    2016-08-01

    Metal to ligand charge-transfer (MLCT) excited state emission quantum yields, ϕem, are reported in 77 K glasses for a series of pentaammine and tetraammine ruthenium(II) complexes with monodentate aromatic acceptor ligands (Ru-MDA) such as pyridine and pyrazine. These quantum yields are only about 0.2-1% of those found for their Ru-bpy (bpy = 2,2'-bipyridine) analogs in similar excited state energy ranges (hνem). The excited state energy dependencies of the emission intensity are characterized by mean radiative decay rate constants, kRAD, resolved from ϕem/τobs = kRAD (τobs = the observed emission decay lifetime; τobs(-1) = kRAD + kNRD; kNRD = nonradiative decay rate constant). Except for the Ru-pz chromophores in alcohol glasses, the values of kNRD for the Ru-MDA chromophores are slightly smaller, and their dependences on excited state energies are very similar to those of related Ru-bpy chromophores. In principle, one expects kRAD to be proportional to the product of (hνem)(3) and the square of the transition dipole moment (Me,g).(2) However, from experimental studies of Ru-bpy chromophores, an additional hνem dependence has been found that originates in an intensity stealing from a higher energy excited state with a much larger value of Me,g. This additional hνem dependence is not present in the kRAD energy dependence for Ru-MDA chromophores in the same energy regime. Intensity stealing in the phosphorescence of these complexes is necessary since the triplet-to-singlet transition is only allowed through spin-orbit coupling and since the density functional theory modeling implicates configurational mixing between states in the triplet spin manifold; this is treated by setting Me,g equal to the product of a mixing coefficient and the difference between the molecular dipole moments of the states involved, which implicates an experimental first order dependence of kRAD on hνem. The failure to observe intensity stealing for the Ru-MDA complexes suggests

  11. HYPERSENSITIVE TO HIGH LIGHT1 Interacts with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 and Functions in Protection of Photosystem II from Photodamage in Arabidopsis[C][W][OPEN

    PubMed Central

    Jin, Honglei; Liu, Bing; Luo, Lujun; Feng, Dongru; Wang, Peng; Liu, Jun; Da, Qingen; He, Yanming; Qi, Kangbiao; Wang, Jinfa; Wang, Hong-Bin

    2014-01-01

    Under high-irradiance conditions, plants must efficiently protect photosystem II (PSII) from damage. In this study, we demonstrate that the chloroplast protein HYPERSENSITIVE TO HIGH LIGHT1 (HHL1) is expressed in response to high light and functions in protecting PSII against photodamage. Arabidopsis thaliana hhl1 mutants show hypersensitivity to high light, drastically decreased PSII photosynthetic activity, higher nonphotochemical quenching activity, a faster xanthophyll cycle, and increased accumulation of reactive oxygen species following high-light exposure. Moreover, HHL1 deficiency accelerated the degradation of PSII core subunits under high light, decreasing the accumulation of PSII core subunits and PSII–light-harvesting complex II supercomplex. HHL1 primarily localizes in the stroma-exposed thylakoid membranes and associates with the PSII core monomer complex through direct interaction with PSII core proteins CP43 and CP47. Interestingly, HHL1 also directly interacts, in vivo and in vitro, with LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), which functions in the repair and reassembly of PSII. Furthermore, the hhl1 lqy1 double mutants show increased photosensitivity compared with single mutants. Taken together, these results suggest that HHL1 forms a complex with LQY1 and participates in photodamage repair of PSII under high light. PMID:24632535

  12. Primary quantum yields of NO2 photodissociation

    NASA Technical Reports Server (NTRS)

    Gardner, Edward P.; Sperry, Paul D.; Calvert, Jack G.

    1987-01-01

    The quantum yields of formation of NO, O2, and NO2 loss are measured for NO2 vapor at low pressures (0.13-0.30 torr) irradiated at 334-405 nm wavelengths and temperature in the range 273-370 K in order to study the primary quantum efficiencies of NO2 photodecomposition. The temperature and wavelength dependences of the primary quantum efficiencies are examined. It is observed that the primary quantum efficiencies increase rapidly from near zero at 424 nm to near unity for excitation at wavelengths less than 394 nm. The theory of Pitts et al. (1964) that the energy deficiency for photodissociation of NO2 excited at wavelengths greater than 397.9 nm is due to the rotational and vibrational energy of the NO2 molecules is confirmed by the data. Values for the primary quantum yields of NO2 photodecomposition as a function of wavelength are presented.

  13. Quantum dots fluorescence quantum yield measured by Thermal Lens Spectroscopy.

    PubMed

    Estupiñán-López, Carlos; Dominguez, Christian Tolentino; Cabral Filho, Paulo E; Fontes, Adriana; de Araujo, Renato E

    2014-01-01

    An essential parameter to evaluate the light emission properties of fluorophores is the fluorescence quantum yield, which quantify the conversion efficiency of absorbed photons to emitted photons. We detail here an alternative nonfluorescent method to determine the absolute fluorescence quantum yield of quantum dots (QDs). The method is based in the so-called Thermal Lens Spectroscopy (TLS) technique, which consists on the evaluation of refractive index gradient thermally induced in the fluorescent material by the absorption of light. Aqueous dispersion carboxyl-coated cadmium telluride (CdTe) QDs samples were used to demonstrate the Thermal Lens Spectroscopy technical procedure. PMID:25103802

  14. Spectroscopy characterization and quantum yield determination of quantum dots

    NASA Astrophysics Data System (ADS)

    Contreras Ortiz, S. N.; Mejía Ospino, E.; Cabanzo, R.

    2016-02-01

    In this paper we show the characterization of two kinds of quantum dots: hydrophilic and hydrophobic, with core and core/shell respectively, using spectroscopy techniques such as UV-Vis, fluorescence and Raman. We determined the quantum yield in the quantum dots using the quinine sulphate as standard. This salt is commonly used because of its quantum yield (56%) and stability. For the CdTe excitation, we used a wavelength of 549nm and for the CdSe/ZnS excitation a wavelength of 527nm. The results show that CdSe/ZnS (49%) has better fluorescence, better quantum dots, and confirm the fluorescence result. The quantum dots have shown a good fluorescence performance, so this property will be used to replace dyes, with the advantage that quantum dots are less toxic than some dyes like the rhodamine. In addition, in this work we show different techniques to find the quantum dots emission: fluorescence spectrum, synchronous spectrum and Raman spectrum.

  15. Quantum Yield of Gold-Cathode Photomultipliers

    NASA Technical Reports Server (NTRS)

    Childs, Charles B.

    1961-01-01

    Two gold-cathode EMI 6255G tubes have been investigated for their quantum yield between 3100 and 1900 A. The tubes had cathodes of different appearances. One of these, numbered 3012, had a slight bluish tinge and was very transparent to visible light; the other, numbered 3021, had a definite gold coloration. The relative quantum yield of each tube was determined with the aid of a Cary model 14 recording spectrophotometer used as a monochromator. The monochromator relative-energy output was determined from the current output of a sodium-salicylate-coated RCA 1P21 photomultiplier. Each gold-cathode tube was then operated at 3000 v, and the central 1.8 cm cube of the cathode was exposed to the monochromator output.

  16. Using the quantum yields of photosystem II and the rate of net photosynthesis to monitor high irradiance and temperature stress in chrysanthemum (Dendranthema grandiflora).

    PubMed

    Janka, Eshetu; Körner, Oliver; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-05-01

    Under a dynamic greenhouse climate control regime, temperature is adjusted to optimise plant physiological responses to prevailing irradiance levels; thus, both temperature and irradiance are used by the plant to maximise the rate of photosynthesis, assuming other factors are not limiting. The control regime may be optimised by monitoring plant responses, and may be promptly adjusted when plant performance is affected by extreme microclimatic conditions, such as high irradiance or temperature. To determine the stress indicators of plants based on their physiological responses, net photosynthesis (Pn) and four chlorophyll-a fluorescence parameters: maximum photochemical efficiency of PSII [Fv/Fm], electron transport rate [ETR], PSII operating efficiency [F'q/F'm], and non-photochemical quenching [NPQ] were assessed for potted chrysanthemum (Dendranthema grandiflora Tzvelev) 'Coral Charm' under different temperature (20, 24, 28, 32, 36 °C) and daily light integrals (DLI; 11, 20, 31, and 43 mol m(-2) created by a PAR of 171, 311, 485 and 667 μmol m(-2) s(-1) for 16 h). High irradiance (667 μmol m(-2) s(-1)) combined with high temperature (>32 °C) significantly (p < 0.05) decreased Fv/Fm. Under high irradiance, the maximum Pn and ETR were reached at 24 °C. Increased irradiance decreased the PSII operating efficiency and increased NPQ, while both high irradiance and temperature had a significant effect on the PSII operating efficiency at temperatures >28 °C. Under high irradiance and temperature, changes in the NPQ determined the PSII operating efficiency, with no major change in the fraction of open PSII centres (qL) (indicating a QA redox state). We conclude that 1) chrysanthemum plants cope with excess irradiance by non-radiative dissipation or a reversible stress response, with the effect on the Pn and quantum yield of PSII remaining low until the temperature reaches 28 °C and 2) the integration of online measurements to monitor photosynthesis and PSII

  17. Loss of quantum yield in extremely low light.

    PubMed

    Kirschbaum, Miko U F; Ohlemacher, Christian; Küppers, Manfred

    2004-04-01

    It has generally been assumed that the photosynthetic quantum yield of all C3 plants is essentially the same for all unstressed leaves at the same temperature and CO2 and O2 concentrations. However, some recent work by H.C. Timm et al. (2002, Trees 16:47-62) has shown that quantum yield can be reduced for some time after leaves have been exposed to darkness. To investigate under what light conditions quantum yield can be reduced, we carried out a number of experiments on leaves of a partial-shade (unlit greenhouse)-grown Coleus blumei Benth. hybrid. We found that after leaves had been exposed to complete darkness, quantum yield was reduced by about 60%. Only very low light levels were needed for quantum yield to be fully restored, with 5 micromol quanta m(-2) s(-1) being sufficient for 85% of the quantum yield of fully induced leaves to be achieved. Leaves regained higher quantum yields upon exposure to higher light levels with an estimated time constant of 130 s. It was concluded that the loss of quantum yield would be quantitatively important only for leaves growing in very dense understoreys where maximum light levels might not exceed 5 micromol quanta m(-2) s(-1) even in the middle of the day. Most leaves, even in understorey conditions, do, however, experience light levels in excess of 5 micromol quanta m(-2) s(-1) over periods where they obtain most of their carbon so that the loss of quantum yield would affect total carbon gain of those leaves only marginally. PMID:14722771

  18. One-pot green synthesis of high quantum yield oxygen-doped, nitrogen-rich, photoluminescent polymer carbon nanoribbons as an effective fluorescent sensing platform for sensitive and selective detection of silver(I) and mercury(II) ions.

    PubMed

    Wang, Zhong-Xia; Ding, Shou-Nian

    2014-08-01

    This work reports on a facile, economical, and green preparative strategy toward water-soluble, fluorescent oxygen-doped, nitrogen-rich, photoluminescent polymer carbon nanoribbons (ONPCRs) with a quantum yield of approximately 25.61% by the hydrothermal process using uric acid as a carbon-nitrogen source for the first time. The as-prepared fluorescent ONPCRs showed paddy leaf-like structure with 80-160 nm length and highly efficient fluorescent quenching ability in the presence of mercury(II) (Hg(2+)) or silver (Ag(+)) ions due to the formed nonfluorescent metal complexes via robust Hg(2+)-O or Ag(+)-N interaction with the O and N of fluorescent ONPCRs, which allowed the analysis of Hg(2+) and Ag(+) ions in a very simple method. By employing this sensor, excellent linear relationships existed between the quenching degree of the ONPCRs and the concentrations of Hg(2+) and Ag(+) ions in the range of 2.0 nM to 60 μM and 5.0 nM to 80 μM, respectively. By using ethylenediaminetetraacetate and ammonia as the masking agent of Hg(2+) and Ag(+) ions, respectively, Hg(2+) or Ag(+) ions were exclusively detected in coexistence with Ag(+) or Hg(2+) ions with high sensitivity, and the detection limits as low as 0.68 and 1.73 nM (3σ) were achieved, respectively, which also provided a reusable detection method for Hg(2+) and Ag(+) ions. Therefore, the easily synthesized fluorescent ONPCRs may have great potential applications in the detection of Hg(2+) and Ag(+) ions for biological assay and environmental protection. PMID:24979236

  19. On the photoelectric quantum yield of small dust particles

    NASA Astrophysics Data System (ADS)

    Kimura, Hiroshi

    2016-07-01

    Photoelectron emission is crucial to electric charging of dust particles around main-sequence stars and gas heating in various dusty environments. An estimate of the photoelectric processes contains an ill-defined parameter called the photoelectric quantum yield, which is the total number of electrons ejected from a dust particle per absorbed photon. Here we revisit the so-called small particle effect of photoelectron emission and provide an analytical model to estimate photoelectric quantum yields of small dust particles in sizes down to nanometers. We show that the small particle effect elevates the photoelectric quantum yields of nanoparticles up to by a factor of 103 for carbon, water ice, and organics, and a factor of 102 for silicate, silicon carbide, and iron. We conclude the surface curvature of the particles is a quantity of great importance to the small particle effect, unless the particles are submicrometers in radius or larger.

  20. High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.

    PubMed

    Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-11-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. PMID:27245962

  1. Investigating energy partitioning during photosynthesis using an expanded quantum yield convention

    NASA Astrophysics Data System (ADS)

    Ahn, Tae Kyu; Avenson, Thomas J.; Peers, Graham; Li, Zhirong; Dall'Osto, Luca; Bassi, Roberto; Niyogi, Krishna K.; Fleming, Graham R.

    2009-02-01

    In higher plants, regulation of excess absorbed light is essential for their survival and fitness, as it enables avoidance of a build up of singlet oxygen and other reactive oxygen species. Regulation processes (known as non-photochemical quenching; NPQ) can be monitored by steady-state fluorescence on intact plant leaves. Pulse amplitude modulated (PAM) measurements of chlorophyll a fluorescence have been used for over 20 years to evaluate the amount of NPQ and photochemistry (PC). Recently, a quantum yield representation of NPQ ( ΦNPQ), which incorporates a variable fraction of open reaction centers, was proposed by Hendrickson et al. [L. Hendrickson, R.T. Furbank, W.S. Chow, Photosynth. Res. 82 (2004) 73]. In this work we extend the quantum yield approach to describe the yields of reversible energy-dependent quenching ( ΦqE), state transitions to balance PC between photosystems II and I ( ΦqT), and photoinhibition quenching associated with damaged reaction centers ( ΦqI). We showed the additivity of the various quantum yield components of NPQ through experiments on wild-type and npq1 strains of Arabidopsis thaliana. The quantum yield approach enables comparison of ΦqE with data from a variety of techniques used to investigate the mechanism of qE. We showed that ΦqE for a series of A. thaliana genotypes scales linearly with the magnitude of zeaxanthin cation formation, suggesting that charge-transfer quenching is largely responsible for qE in plants.

  2. Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.

    PubMed

    Li, Qiang; Wei, Hong; Xu, Hongxing

    2015-12-01

    The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications. PMID:26583200

  3. Quantum yield of conversion of the dental photoinitiator camphorquinone

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chu; Ferracane, Jack L.; Prahl, Scott A.

    2005-06-01

    The primary absorber in dental resins is the photoinitiators, which start the photo polymerization process. We studied the quantum yield of conversion of camphorquinone (CQ), a blue light photoinitiator, using 3M FreeLight LED lamp as the light curing unit. The molar extinction coefficient, ɛ469, of CQ was measured to be 46+/-2 cm-1/(mol/L) at 469 nm. The absorption coefficient change to the radiant exposure was measured at three different irradiances. The relationship between the CQ absorption coefficient and curing lamp radiant exposure was the same for different irradiances and fit an exponential function: μa469(H)= μao exp(-H/Hthreshold), where μao is 4.46+/-0.05 cm-1, and Hthreshold=43+/-4 J/cm2. Combining this exponential relationship with CQ molar extinction coefficient and the absorbed photon energy (i.e., the product of the radiant exposure with the absorption coefficient), we plotted CQ concentration [number of molecules/cm3] as a function of the accumulated absorbed photons per volume. The slope of the relationship is the quantum yield of the CQ conversion. Therefore, in our formulation (0.7 w% CQ with reducing agents 0.35 w% DMAEMA and 0.05 w% BHT) the quantum yield was solved to be 0.07+/-0.01 CQ conversion per absorbed photon.

  4. Spatial mapping of fluorophore quantum yield in diffusive media.

    PubMed

    Zhao, Yanyu; Roblyer, Darren

    2015-08-01

    Fluorescence quantum yield (QY) indicates the efficiency of the fluorescence process. The QY of many fluorophores is sensitive to local tissue environments, highlighting the possibility of using QY as an indicator of important parameters such as pH or temperature. QY is commonly measured by comparison to a well-known standard in nonscattering media. We propose a new imaging method, called quantum yield imaging (QYI), to spatially map the QY of a fluorophore within an optically diffusive media. QYI utilizes the wide-field diffuse optical technique spatial frequency domain imaging (SFDI) as well as planar fluorescence imaging. SFDI is used to measure the optical properties of the background media and the absorption contributed by the fluorophore. The unknown QY is then calculated by combining information from both modalities. A fluorescent sample with known QY is used to account for instrument response. To demonstrate QYI, rhodamine B and SNARF-5 were imaged in liquid phantoms with different background optical properties. The methanol:water ratio and pH were changed for rhodamine B and SNARF-5 solvents, respectively, altering the QY of each through a wide range. QY was determined with an agreement of 0.021 and 0.012 for rhodamine B and SNARF-5, respectively. PMID:26308165

  5. Synthesis of Luminescent Graphene Quantum Dots with High Quantum Yield and Their Toxicity Study

    PubMed Central

    Jiang, Dan; Chen, Yunping; Li, Na; Li, Wen; Wang, Zhenguo; Zhu, Jingli; Zhang, Hong; Liu, Bin; Xu, Shan

    2015-01-01

    High fluorescence quantum yield graphene quantum dots (GQDs) have showed up as a new generation for bioimaging. In this work, luminescent GQDs were prepared by an ameliorative photo-Fenton reaction and a subsequent hydrothermal process using graphene oxide sheets as the precursor. The as-prepared GQDs were nanomaterials with size ranging from 2.3 to 6.4 nm and emitted intense green luminescence in water. The fluorescence quantum yield was as high as 24.6% (excited at 340 nm) and the fluorescence was strongest at pH 7. Moreover, the influences of low-concentration (12.5, 25 μg/mL) GQDs on the morphology, viability, membrane integrity, internal cellular reactive oxygen species level and mortality of HeLa cells were relatively weak, and the in vitro imaging demonstrated GQDs were mainly in the cytoplasm region. More strikingly, zebrafish embryos were co-cultured with GQDs for in vivo imaging, and the results of heart rate test showed the intake of small amounts of GQDs brought little harm to the cardiovascular of zebrafish. GQDs with high quantum yield and strong photoluminescence show good biocompatibility, thus they show good promising for cell imaging, biolabeling and other biomedical applications. PMID:26709828

  6. Luminescence quantum yields of gold nanoparticles varying with excitation wavelengths.

    PubMed

    Cheng, Yuqing; Lu, Guowei; He, Yingbo; Shen, Hongming; Zhao, Jingyi; Xia, Keyu; Gong, Qihuang

    2016-01-28

    Luminescence quantum yields (QYs) of gold nanoparticles including nanorods, nanobipyramids and nanospheres are measured elaborately at a single nanoparticle level with different excitation wavelengths. It is found that the QYs of the nanostructures are essentially dependent on the excitation wavelength. The QY is higher when the excitation wavelength is blue-detuned and close to the nanoparticles' surface plasmon resonance peak. A phenomenological model based on the plasmonic resonator concept is proposed to understand the experimental findings. The excitation wavelength dependent QY is attributed to the wavelength dependent coupling efficiency between the free electron oscillation and the intrinsic plasmon resonant radiative mode. These studies should contribute to the understanding of one-photon luminescence from metallic nanostructures and plasmonic surface enhanced spectroscopy. PMID:26731570

  7. Luminescence quantum yields of gold nanoparticles varying with excitation wavelengths

    NASA Astrophysics Data System (ADS)

    Cheng, Yuqing; Lu, Guowei; He, Yingbo; Shen, Hongming; Zhao, Jingyi; Xia, Keyu; Gong, Qihuang

    2016-01-01

    Luminescence quantum yields (QYs) of gold nanoparticles including nanorods, nanobipyramids and nanospheres are measured elaborately at a single nanoparticle level with different excitation wavelengths. It is found that the QYs of the nanostructures are essentially dependent on the excitation wavelength. The QY is higher when the excitation wavelength is blue-detuned and close to the nanoparticles' surface plasmon resonance peak. A phenomenological model based on the plasmonic resonator concept is proposed to understand the experimental findings. The excitation wavelength dependent QY is attributed to the wavelength dependent coupling efficiency between the free electron oscillation and the intrinsic plasmon resonant radiative mode. These studies should contribute to the understanding of one-photon luminescence from metallic nanostructures and plasmonic surface enhanced spectroscopy.

  8. Products and quantum yields for photolysis of chloroaromatics in water

    SciTech Connect

    Dulin, D.; Drossman, H.; Mill, T.

    1986-01-01

    Photolysis of chlorobenzene, 2- and 4-chlorobiphenyl, and 2- and 4-chlorobiphenyl ethers in water with 250-300-nm light produce corresponding phenols or, in the case of 2-chlorobiphenyl ether, dibenzofuran exclusively. Quantum yields in most cases are very similar to those reported in hexane for the reduction process. 1,2,4-Trichlorobenzene and 2,3,7,8-tetrachlorodibenzodioxin (TC-DD) photolyze much less efficiently in water than in hexane. A common pathway for photolysis of monochloroaromatics involving aryl cations accounts well for the experimental observations. C-O rather than C-Cl cleavage in TCDD may be a major pathway for its loss. Half-lives for photolysis of these chloroaromatics in sunlight in water range from 460 years to 5 days; TCDD photolyzes in water with a half-life of about 4-5 days in summer at 40/sup 0/ latitude. 40 references, 1 figure, 8 tables.

  9. Film quantum yields of EUV& ultra-high PAG photoresists

    SciTech Connect

    Hassanein, Elsayed; Higgins, Craig; Naulleau, Patrick; Matyi, Richard; Gallatin, Greg; Denbeaux, Gregory; Antohe, Alin; Thackery, Jim; Spear, Kathleen; Szmanda, Charles; Anderson, Christopher N.; Niakoula, Dimitra; Malloy, Matthew; Khurshid, Anwar; Montgomery, Cecilia; Piscani, Emil C.; Rudack, Andrew; Byers, Jeff; Ma, Andy; Dean, Kim; Brainard, Robert

    2008-01-10

    Base titration methods are used to determine C-parameters for three industrial EUV photoresist platforms (EUV-2D, MET-2D, XP5496) and twenty academic EUV photoresist platforms. X-ray reflectometry is used to measure the density of these resists, and leads to the determination of absorbance and film quantum yields (FQY). Ultrahigh levels ofPAG show divergent mechanisms for production of photo acids beyond PAG concentrations of 0.35 moles/liter. The FQY of sulfonium PAGs level off, whereas resists prepared with iodonium PAG show FQY s that increase beyond PAG concentrations of 0.35 moles/liter, reaching record highs of 8-13 acids generatedlEUV photons absorbed.

  10. Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements.

    PubMed

    Ahn, Tai-Sang; Al-Kaysi, Rabih O; Müller, Astrid M; Wentz, Katherine M; Bardeen, Christopher J

    2007-08-01

    A new method is presented for analyzing the effects of self-absorption on photoluminescence integrating sphere quantum yield measurements. Both the observed quantum yield and luminescence spectrum are used to determine the self-absorption probability, taking into account both the initial emission and subsequent absorption and reemission processes. The analysis is experimentally validated using the model system of the laser dye perylene red dispersed in a polymer film. This approach represents an improvement over previous methods that tend to overestimate the true quantum yield, especially in cases with high sample absorbance or quantum yield values. PMID:17764365

  11. Quantum spin Hall effect in inverted type-II semiconductors.

    PubMed

    Liu, Chaoxing; Hughes, Taylor L; Qi, Xiao-Liang; Wang, Kang; Zhang, Shou-Cheng

    2008-06-13

    The quantum spin Hall (QSH) state is a topologically nontrivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells and in this Letter we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. The quantum well exhibits an "inverted" phase similar to HgTe/CdTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking are essential. Remarkably, the topological quantum phase transition between the conventional insulating state and the quantum spin Hall state can be continuously tuned by the gate voltage, enabling quantitative investigation of this novel phase transition. PMID:18643529

  12. Near-unity photoluminescence quantum yield in MoS₂.

    PubMed

    Amani, Matin; Lien, Der-Hsien; Kiriya, Daisuke; Xiao, Jun; Azcatl, Angelica; Noh, Jiyoung; Madhvapathy, Surabhi R; Addou, Rafik; KC, Santosh; Dubey, Madan; Cho, Kyeongjae; Wallace, Robert M; Lee, Si-Chen; He, Jr-Hau; Ager, Joel W; Zhang, Xiang; Yablonovitch, Eli; Javey, Ali

    2015-11-27

    Two-dimensional (2D) transition metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure of merit, the room-temperature photoluminescence quantum yield (QY), is extremely low. The prototypical 2D material molybdenum disulfide (MoS2) is reported to have a maximum QY of 0.6%, which indicates a considerable defect density. Here we report on an air-stable, solution-based chemical treatment by an organic superacid, which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by more than two orders of magnitude. The treatment eliminates defect-mediated nonradiative recombination, thus resulting in a final QY of more than 95%, with a longest-observed lifetime of 10.8 ± 0.6 nanoseconds. Our ability to obtain optoelectronic monolayers with near-perfect properties opens the door for the development of highly efficient light-emitting diodes, lasers, and solar cells based on 2D materials. PMID:26612948

  13. Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products

    NASA Astrophysics Data System (ADS)

    Fery-Forgues*, Suzanne; Lavabre, Dominique

    1999-09-01

    Fluorescence quantum yields are used to quantify the efficiency of the emission process. In spite of the importance of these data, experimental directions for their acquisition are rarely given. A general procedure for determining the relative fluorescence quantum yield of solutions is described here, drawing attention to the many pitfalls that students may encounter. Starting materials are common yellow and pink highlighter pens.

  14. Local Density Fluctuations Predict Photoisomerization Quantum Yield of Azobenzene-Modified DNA.

    PubMed

    Kingsland, Addie; Samai, Soumyadyuti; Yan, Yunqi; Ginger, David S; Maibaum, Lutz

    2016-08-01

    Azobenzene incorporated into DNA has a photoisomerization quantum yield that depends on the DNA sequence near the azobenzene attachment site. We use Molecular Dynamics computer simulations to elucidate which physical properties of the modified DNA determine the quantum yield. We show for a wide range of DNA sequences that the photoisomerization quantum yield is strongly correlated with the variance of the number of atoms in close proximity to the outer phenyl ring of the azobenzene group. We infer that quantum yield is controlled by the availability of fluctuations that enable the conformational change. We demonstrate that these simulations can be used as a qualitative predictive tool by calculating the quantum yield for several novel DNA sequences, and confirming these predictions using UV-vis spectroscopy. Our results will be useful for the development of a wide range of applications of photoresponsive DNA nanotechnology. PMID:27428569

  15. Dielectric permittivity of quantum plasma. Part II

    NASA Astrophysics Data System (ADS)

    Bobylev, Yu. V.; Kuzelev, M. V.

    2014-05-01

    The transverse and longitudinal dielectric permittivities of isotropic quantum plasma are calculated in the quantum plasma models based on the Dirac and Pauli equations. The dispersion relations for transverse-longitudinal waves in quantum particle beams are derived. Relativistic longitudinal and transverse waves in cold isotropic quantum plasma in models based on the Klein-Gordon and Dirac equations, as well as spin waves in the model based on the Pauli equation, are considered. Conditions for wave-particle resonance interactions in relativistic quantum plasma are analyzed.

  16. Absolute 1* quantum yields for the ICN A state by diode laser gain versus absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I* quantum yields were measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The temperature yields are obtained by the technique of time-resolved diode laser gain-versus-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 +/- 2% and it falls off to 53.4 +/- 2% and 44.0 +/- 4% at 284 and 248 respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I* quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I* yields. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I* yield results.

  17. Gradient CdSe/CdS Quantum Dots with Room Temperature Biexciton Unity Quantum Yield.

    PubMed

    Nasilowski, Michel; Spinicelli, Piernicola; Patriarche, Gilles; Dubertret, Benoît

    2015-06-10

    Auger recombination is a major limitation for the fluorescent emission of quantum dots (QDs). It is the main source of QDs fluorescence blinking at the single-particle level. At high-power excitation, when several charge carriers are formed inside a QD, Auger becomes more efficient and severely decreases the quantum yield (QY) of multiexcitons. This limits the efficiency and the use of colloidal QDs in applications where intense light output is required. Here, we present a new generation of thick-shell CdSe/CdS QDs with dimensions >40 nm and a composition gradient between the core and the shell that exhibits 100% QY for the emission of both the monoexciton and the biexciton in air and at room temperature for all the QDs we have observed. The fluorescence emission of these QDs is perfectly Poissonian at the single-particle level at different excitation levels and temperatures, from 30 to 300 K. In these QDs, the emission of high-order (>2) multiexcitons is quite efficient, and we observe white light emission at the single-QD level when high excitation power is used. These gradient thick shell QDs confirm the suppression of Auger recombination in gradient core/shell structures and help further establish the colloidal QDs with a gradient shell as a very stable source of light even under high excitation. PMID:25990468

  18. Quantum yield and lifetime data analysis for the UV curable quantum dot nanocomposites

    PubMed Central

    Cheng, Qi; Liu, Cui; Wei, Wenjun; Xu, Heng; You, Qingliang; Zou, Linling; Liu, Xueqing; Liu, Jiyan; Cao, Yuan-Cheng; Zheng, Guang

    2016-01-01

    The quantum yield (QY) and lifetime are the important parameters for the photoluminescent materials. The data here report the changes of the QY and lifetime for the quantum dot (QD) nanocomposite after the UV curing of the urethane acrylate prepolymer. The data were collected based on the water soluble CdTe QDs and urethane acrylate prepolymer. Colloidal QDs were in various concentration from 0.5×10−3 molL−1 to 10×10−3 molL−1, and 1% (wt%) 1173 was the photoinitiator. The QY before the curing was 56.3%, 57.8% and 58.6% for the QDs 510 nm, 540 nm and 620 nm, respectively. The QY after the curing was changed to 8.9%, 9.6% and 13.4% for the QDs 510 nm, 540 nm and 620 nm, respectively. Lifetime data showed that the lifetime was changed from 23.71 ns, 24.55 ns, 23.52 ns to 1.29 ns, 2.74 ns, 2.45 ns for the QDs 510 nm, 540 nm and 620 nm, respectively. PMID:26909375

  19. Quantum yield and lifetime data analysis for the UV curable quantum dot nanocomposites.

    PubMed

    Cheng, Qi; Liu, Cui; Wei, Wenjun; Xu, Heng; You, Qingliang; Zou, Linling; Liu, Xueqing; Liu, Jiyan; Cao, Yuan-Cheng; Zheng, Guang

    2016-03-01

    The quantum yield (QY) and lifetime are the important parameters for the photoluminescent materials. The data here report the changes of the QY and lifetime for the quantum dot (QD) nanocomposite after the UV curing of the urethane acrylate prepolymer. The data were collected based on the water soluble CdTe QDs and urethane acrylate prepolymer. Colloidal QDs were in various concentration from 0.5×10(-3) molL(-1) to 10×10(-3) molL(-1), and 1% (wt%) 1173 was the photoinitiator. The QY before the curing was 56.3%, 57.8% and 58.6% for the QDs 510 nm, 540 nm and 620 nm, respectively. The QY after the curing was changed to 8.9%, 9.6% and 13.4% for the QDs 510 nm, 540 nm and 620 nm, respectively. Lifetime data showed that the lifetime was changed from 23.71 ns, 24.55 ns, 23.52 ns to 1.29 ns, 2.74 ns, 2.45 ns for the QDs 510 nm, 540 nm and 620 nm, respectively. PMID:26909375

  20. High quantum yield graphene quantum dots decorated TiO2 nanotubes for enhancing photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Qu, Ailan; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-07-01

    Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO2 nanotubes (GQDs/TiO2 NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600-800 nm. The photocatalytic activity of prepared GQDs/TiO2 NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO2 nanotubes (TiO2 NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV-vis light irradiation (λ = 380-780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO2 NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO2 NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO2 composite.

  1. A Comprehensive Strategy to Boost the Quantum Yield of Luminescence of Europium Complexes

    NASA Astrophysics Data System (ADS)

    Lima, Nathalia B. D.; Gonçalves, Simone M. C.; Júnior, Severino A.; Simas, Alfredo M.

    2013-08-01

    Lanthanide luminescence has many important applications in anion sensing, protein recognition, nanosized phosphorescent devices, optoelectronic devices, immunoassays, etc. Luminescent europium complexes, in particular, act as light conversion molecular devices by absorbing ultraviolet (UV) light and by emitting light in the red visible spectral region. The quantum yield of luminescence is defined as the ratio of the number of photons emitted over the number of UV photons absorbed. The higher the quantum yield of luminescence, the higher the sensitivity of the application. Here we advance a conjecture that allows the design of europium complexes with higher values of quantum yields by simply increasing the diversity of good ligands coordinated to the lanthanide ion. Indeed, for the studied cases, the percent boost obtained on the quantum yield proved to be strong: of up to 81%, accompanied by faster radiative rate constants, since the emission becomes less forbidden.

  2. A Comprehensive Strategy to Boost the Quantum Yield of Luminescence of Europium Complexes

    PubMed Central

    Lima, Nathalia B. D.; Gonçalves, Simone M. C.; Júnior, Severino A.; Simas, Alfredo M.

    2013-01-01

    Lanthanide luminescence has many important applications in anion sensing, protein recognition, nanosized phosphorescent devices, optoelectronic devices, immunoassays, etc. Luminescent europium complexes, in particular, act as light conversion molecular devices by absorbing ultraviolet (UV) light and by emitting light in the red visible spectral region. The quantum yield of luminescence is defined as the ratio of the number of photons emitted over the number of UV photons absorbed. The higher the quantum yield of luminescence, the higher the sensitivity of the application. Here we advance a conjecture that allows the design of europium complexes with higher values of quantum yields by simply increasing the diversity of good ligands coordinated to the lanthanide ion. Indeed, for the studied cases, the percent boost obtained on the quantum yield proved to be strong: of up to 81%, accompanied by faster radiative rate constants, since the emission becomes less forbidden. PMID:23928866

  3. Primary quantum yields of ketyl radicals in photoreduction by amines. Abstraction of H from N

    SciTech Connect

    Inbar, S.; Linschitz, H.; Cohen, S.G.

    1980-02-13

    Results of laser flash photolysis studies of the primary reaction of benzophenone triplet with aliphatic amines in benzene solution are reported. Quantum yield of formation of benzophenone ketyl radical was 0.9 - 1.0. Quantum yields for reduction of ketone also were determined for various amines, and the effects of tert-butyl alcohol on radical formation was investigated. Data indicated that H is not abstracted from -CH/sub 3/ but is abstracted efficiently from -NH/sub 2/. The very high quantum yields observed with tertiary and secondary amines were thought to imply exciplex formation, but lower quantum yields with primary amines were conditionally attributed to higher ionization potentials. (BLM)

  4. DETERMINATION OF APPARENT QUANTUM YIELD SPECTRA FOR THE FORMATION OF BIOLOGICALLY LABILE PHOTOPRODUCTS

    EPA Science Inventory

    Quantum yield spectra for the photochemical formation of biologically labile photoproducts from dissolved organic matter (DOM) have not been available previously, although they would greatly facilitate attempts to model photoproduct formation rates across latitudinal, seasonal, a...

  5. Quantum cascade light emitting diodes based on type-II quantum wells

    SciTech Connect

    Lin, C.H.; Yang, R.Q.; Zhang, D.; Murry, S.J.; Pei, S.S.; Allerman, A.A.; Kurtz, S.R.

    1997-01-21

    The authors have demonstrated room-temperature CW operation of type-II quantum cascade (QC) light emitting diodes at 4.2 {micro}m using InAs/InGaSb/InAlSb type-II quantum wells. The type-II QC configuration utilizes sequential multiple photon emissions in a staircase of coupled type-II quantum wells. The device was grown by molecular beam epitaxy on a p-type GaSb substrate and was compared of 20 periods of active regions separated by digitally graded quantum well injection regions. The maximum average output power is about 250 {micro}W at 80 K, and 140 {micro}W at 300 K at a repetition rate of 1 kHz with a duty cycle of 50%.

  6. Nanosecond flash studies of reduction of benzophenone by aliphatic amines. Quantum yields and kinetic isotope effects

    SciTech Connect

    Inbar, S.; Linschitz, H.; Cohen, S.G.

    1981-03-11

    Nanosecond flash photolysis, steady irradiation, and deuterium substitution studies have been carried out on solutions of benzophenone with added reductants. Quantum yields (phi/sub ketyl/) for reduction in benzene of benzophenone triplet to ketyl radical, based on phi = 2 for benzhydrol (I), were approx. 1 for cyclohexane (II), tert-butylamine (III), 2-aminobutane (IV), cyclohexylamine (V), di-n-propylamine (VI), and triethylamine (VII), approx. 0.7 for 1,4-diazabicyclo(2.2.2)octane (VIII), and approx. 0 for tert-butyl alcohol (IX). Thus, quenching, without radical formation by H abstraction from N and/or ..cap alpha..-C, does not occur with common aliphatic amines but does with Dabco (VIII). The latter quenching is markedly increased by small additions of acetonitrile; the flash spectrum from this compound indicates formation of a triplet amine CT complex or radical ion pair. Triplet-reductant interaction rate constants, k/sur ir/, are high for the amines (approx. 10/sup 8/-10/sup 9/ M/sup -1/ s/sup -1/) but also show significant deuterium kinetic isotope effects: 1.9 with III-N-d/sub 2/; 1.4 with IV-N-d/sub 2/; 1.2-1.3 with IV-..cap alpha..-C-d. It is proposed that k/sub ir/ measures H atom abstraction, favored in the transition state by an initial charge-transfer interaction. Overall steady irradiation quantum yields of reduction by amines, phi/sub Red/, are much lower than phi/sub ketyl/. This is attributed to disproportionationreactions of ketyl and alkylaminyl radicals for primary and secondary amines, and, possibly, aminoalkyl radicals for tertiary amines. In the case of tert-butylamine, the rate constant for disproportionation is obtained from the decay kinetics of ketyl radical and leads to phi/sub Red/ in agreement with that directly measured.

  7. Measurement of Quantum Yield, Quantum Requirement, and Energetic Efficiency of the O2-Evolving System of Photosynthesis by a Simple Dye Reaction

    NASA Astrophysics Data System (ADS)

    Ros Barcelò, A.; Zapata, J. M.

    1996-11-01

    Photosynthesis is the conversion of absorbed radiant energy from sunlight into various forms of chemical energy by the chloroplasts of higher green plants. The overall process of photosynthesis consists of the oxidation of water (with the release of O2 as a product) and the reduction of CO2 to form carbohydrates. In the test tube electrons produced by the photolytic cleavage of H2) may be deviated from their true acceptor by inserting a suitable dye in the electron chain; i.e.; 2,6-dichlorophenol indophenol (DCPIP) (E'o = + 0.217 V), which is blue in the oxidized quinone form and which becomes colorless when reduced to the phenolic form. This dye-electrom acceptor also has the advantage that it accepts electroms directly from the quinone (Qa) electron-acceptor of the photosystem II< the reaction center associated with the O2-evolving (or water-slplitting) system. Based in the bleaching of DCPIP by illuminated spinach leaf chloroplasts, a classroom laboratory protocol has been developed to determine the quantum yield (QY = micromol O2 s-1 / micromol photons s-1, the quantum requirement (1/QY) and the energetic efficiency (f = chemical energy stored / light energy supplied) of the O2-evolving system of photosynthesis. Although values for the quantum yield, the quantum requirement and the energetic efficiency calculated in the classroom laboratory differ widely from those expected theoretically, these calculations are useful for illustrating the transformation of light energy into chemical energy by the chloroplasts of green plants.

  8. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals

    DOE PAGESBeta

    Miller, Joseph B.; Van Sickle, Austin R.; Anthony, Rebecca J.; Kroll, Daniel M.; Kortshagen, Uwe R.; Hobbie, Erik K.

    2012-07-18

    Here, we report on the quantum yield, photoluminescence (PL) lifetime and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from themore » fractions, and we use a combination of measurement, simulation and modeling to link this ‘brightening’ to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.« less

  9. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals

    SciTech Connect

    Miller, Joseph B.; Van Sickle, Austin R.; Anthony, Rebecca J.; Kroll, Daniel M.; Kortshagen, Uwe R.; Hobbie, Erik K.

    2012-07-18

    Here, we report on the quantum yield, photoluminescence (PL) lifetime and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from the fractions, and we use a combination of measurement, simulation and modeling to link this ‘brightening’ to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.

  10. Relational quadrilateralland II: The Quantum Theory

    NASA Astrophysics Data System (ADS)

    Anderson, Edward; Kneller, Sophie

    2014-04-01

    We provide the quantum treatment of the relational quadrilateral. The underlying reduced configuration spaces are ℂℙ2 and the cone over this. We consider exact free and isotropic HO potential cases and perturbations about these. Moreover, our purely relational kinematical quantization is distinct from the usual one for ℂℙ2, which turns out to carry absolutist connotations instead. Thus, this paper is the first to note absolute-versus-relational motion distinctions at the kinematical rather than dynamical level. It is also an example of value to the discussion of kinematical quantization along the lines of Isham, 1984. The relational quadrilateral is the simplest RPM whose mathematics is not standard in atomic physics (the triangle and four particles on a line are both based on 𝕊2 and ℝ3 mathematics). It is far more typical of the general quantum relational N-a-gon than the previously studied case of the relational triangle. We consider useful integrals as regards perturbation theory and the peaking interpretation of quantum cosmology. We subsequently consider problem of time (PoT) applications of this: quantum Kuchař beables, the Machian version of the semiclassical approach and the timeless naïve Schrödinger interpretation. These go toward extending the combined Machian semiclassical-Histories-Timeless Approach of [Int. J. Mod. Phys. D23 (2014) 1450014] to the case of the quadrilateral, which will be treated in subsequent papers.

  11. Enhanced performance of quantum dot solar cells based on type II quantum dots

    SciTech Connect

    Xu, Feng; Yang, Xiao-Guang; Luo, Shuai; Lv, Zun-Ren; Yang, Tao

    2014-10-07

    The characteristics of quantum dot solar cells (QDSCs) based on type II QDs are investigated theoretically. Based on a drift-diffusion model, we obtained a much higher open circuit voltage (V{sub oc}) as well as conversion efficiency in a type II QDSC, compared to type I QDSCs. The improved V{sub oc} and efficiency are mainly attributed to the much longer Auger recombination lifetime in type II QDs. Moreover, the influence of the carrier lifetime on devices' performance is discussed and clarified. In addition, an explicit criterion to determine the role of quantum dots in solar cells is put forward.

  12. Quantum Spin Hall Effect in Inverted Type II Semiconductors

    SciTech Connect

    Liu, Chaoxing; Hughes, Taylor L.; Qi, Xiao-Liang; Wang, Kang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The quantum spin Hall (QSH) state is a topologically non-trivial state of quantum matter which preserves time-reversal symmetry; it has an energy gap in the bulk, but topologically robust gapless states at the edge. Recently, this novel effect has been predicted and observed in HgTe quantum wells. In this work we predict a similar effect arising in Type-II semiconductor quantum wells made from InAs/GaSb/AlSb. Because of a rare band alignment the quantum well band structure exhibits an 'inverted' phase similar to CdTe/HgTe quantum wells, which is a QSH state when the Fermi level lies inside the gap. Due to the asymmetric structure of this quantum well, the effects of inversion symmetry breaking and inter-layer charge transfer are essential. By standard self-consistent calculations, we show that the QSH state persists when these corrections are included, and a quantum phase transition between the normal insulator and the QSH phase can be electrically tuned by the gate voltage.

  13. [Fluorescence spectra and quantum yield of TiO2 nanocrystals synthesized by alcohothermal method].

    PubMed

    Song, Cui-Hong; Li, Yan-Ting; Li, Jing; Wei, Yong-Ju; Hu, Yu-Zhu; Wei, Yu

    2008-01-01

    Fluorescence spectra and fluorescence quantum yield of TiO2 nanocrystals were studied. Using tetra n-butyl titanate as a starting material, a facile alcohothermal technique was used to synthesize TiO2 nanocrystals. As can be seen from the transmittance electron microscopy (TEM) image, TiO2 nanocrystals with a relatively uniform particle size distribution of < 10 nm are present in the transparent sol. The transparent sol presents a strong stable fluorescence emission with a maximum at 450 nm, which is greatly dependent on the size quantization effects, defect energy level and the surface state of TiO2 nanocrystals. The quantum yield (gamma) of TiO2 was determined by the relative comparison procedure, using freshly prepared analytical purity quinine sulfate in 0.05 mol x L(-1) H2SO4 as a relative quantum yield standard. The emission quantum yield of TiO2 nanocrystals prepared in alcoholic media was calculated to be about 0.20 at wavelengths ranging from 330 to 370 nm, which was much higher than the values reported in previous works. So, it is supposed that nano-TiO2 will be applied as a potential quantum dots fluorescence probe in biological analysis. PMID:18422145

  14. A simple formulation of the CH2O photolysis quantum yields

    NASA Astrophysics Data System (ADS)

    Röth, E.-P.; Ehhalt, D. H.

    2015-07-01

    New expressions for the wavelength-dependent photolysis quantum yields of CH2O, Φj, are presented. They are based on combinations of functions of the type Ai/(1+exp[-(1/λ - 1/λ0i)/bi]). The parameters Ai, bi, and λ0i which have a physical meaning, are obtained by fits to the measured Φj data available from literature. The altitude dependence of the photolysis frequencies resulting from the new quantum yield expressions are compared to those derived from the Φj recommended by JPL and IUPAC.

  15. A simple formulation of the CH2O photolysis quantum yields

    NASA Astrophysics Data System (ADS)

    Röth, E.-P.; Ehhalt, D. H.

    2015-03-01

    New expressions for the various wavelength - dependent photolysis quantum yields of CH2O, Φj, are presented. They are based on combinations of functions of the type Ai/(1 + exp[-(1/λ -1/λ 0i)/bi]). The parameters Ai, bi, and λ0i which have a physical meaning are obtained by fits to the measured data of the Φji available from the literature. The altitude dependence of the photolysis frequencies resulting from the new quantum yield expressions are compared to those derived from the Φj recommended by JPL and IUPAC.

  16. Microanalysis of quantum dots with type II band alignments

    NASA Astrophysics Data System (ADS)

    Sarney, Wendy; Little, John; Svensson, Stefan

    2006-03-01

    We will discuss the structural characterization of a system consisting of undoped self-assembled InSb quantum dots having a type II band alignment with the surrounding In0.53Ga0.47As matrix. This differs from systems using conventional type-I quantum dots that must be doped and that rely on intersubband transitions for infrared photoresponse. Type II dots grown in a superlattice structure combine the advantages of quantum dots (3-dimensional confinement) with the tunability and photovoltaic operation of the type II superlattice. We grew a high surface density of InSb quantum dots with a narrow distribution of sizes and shapes and free of dislocations within the body of the dots. The dots are relaxed due to an array of misfit dislocations confined at the basal dot/matrix interface. This makes burying the dots with InGaAs not feasible without generating dislocations due to the large dot/matrix lattice mismatch. We are experimenting with strain-compensating or graded strain overlayers to lower the lattice mismatch.

  17. Measurement of the Fluorescence Quantum Yield Using a Spectrometer With an Integrating Sphere Detector.

    PubMed

    Gaigalas, Adolfas K; Wang, Lili

    2008-01-01

    A method is proposed for measuring the fluorescence quantum yield (QY) using a commercial spectrophotometer with a 150 mm integrating sphere (IS) detector. The IS detector is equipped with an internal cuvette holder so that absorbance measurements can be performed with the cuvette inside the IS. In addition, the spectrophotometer has a cuvette holder outside the IS for performing conventional absorbance measurements. It is shown that the fluorescence quantum yield can be obtained from a combination of absorbance measurements of the buffer and the analyte solution inside and outside the IS detector. Due to the simultaneous detection of incident and fluorescent photons, the absorbance measurements inside the IS need to be adjusted for the wavelength dependence of the photomultiplier detector and the wavelength dependence of the IS magnification factor. An estimate of the fluorescence emission spectrum is needed for proper application of the wavelength-dependent adjustments. Results are presented for fluorescein, quinine sulfate, myoglobin, rhodamine B and erythrosin B. The QY of fluorescein in 0.1 mol/L NaOH was determined as 0.90±0.02 where the uncertainty is equal to the standard deviation of three independent measurements. The method provides a convenient and rapid estimate of the fluorescence quantum yield. Refinements of the measurement model and the characteristics of the IS detector can in principle yield an accurate value of the absolute fluorescence quantum yield. PMID:27096110

  18. MnBr₂/18-crown-6 coordination complexes showing high room temperature luminescence and quantum yield.

    PubMed

    Hausmann, David; Kuzmanoski, Ana; Feldmann, Claus

    2016-04-21

    The reaction of manganese(ii) bromide and the crown ether 18-crown-6 in the ionic liquid [(n-Bu)3MeN][N(Tf)2] under mild conditions (80-130 °C) resulted in the formation of three different coordination compounds: MnBr2(18-crown-6) (), Mn3Br6(18-crown-6)2 () and Mn3Br6(18-crown-6) (). In general, the local coordination and the crystal structure of all compounds are driven by the mismatch between the small radius of the Mn(2+) cation (83 pm) and the ring opening of 18-crown-6 as a chelating ligand (about 300 pm). This improper situation leads to different types of coordination and bonding. MnBr2(18-crown-6) represents a molecular compound with Mn(2+) coordinated by two bromine atoms and only five oxygen atoms of 18-crown-6. Mn3Br6(18-crown-6)2 falls into a [MnBr(18-crown-6)](+) cation - with Mn(2+) coordinated by six oxygen atoms and Br - and a [MnBr(18-crown-6)MnBr4](-) anion. In this anion, Mn(2+) is coordinated by five oxygen atoms of the crown ether as well as by two bromine atoms, one of them bridging to an isolated (MnBr4) tetrahedron. Mn3Br6(18-crown-6), finally, forms an infinite, non-charged [Mn2(18-crown-6)(MnBr6)] chain. Herein, 18-crown-6 is exocyclically coordinated by two Mn(2+) cations. All compounds show intense luminescence in the yellow to red spectral range and exhibit remarkable quantum yields of 70% (Mn3Br6(18-crown-6)) and 98% (Mn3Br6(18-crown-6)2). The excellent quantum yield of Mn3Br6(18-crown-6)2 and its differentiation from MnBr2(18-crown-6) and Mn3Br6(18-crown-6) can be directly correlated to the local coordination. PMID:26956783

  19. Quantum statistical thermodynamics of hot finite nuclear systems: Temperatures and isotopic yield ratios

    SciTech Connect

    Majka, Z.; Staszel, P.; Cibor, J.; Natowitz, J.B.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Wada, R.; Zhao, Y.

    1997-06-01

    We investigate the importance of the quantum statistics and deexcitation of primary fragments on the isotope yield ratio temperature determination. A phenomenological formula is presented which allows derivation of the temperature of the decaying nuclear system at the freeze-out time from the measured double yield ratios of two isotope pairs. This prescription is applied to the recent ALADIN and EOS Collaboration data. {copyright} {ital 1997} {ital The American Physical Society}

  20. Separation of photoactive conformers based on hindered diarylethenes: efficient modulation in photocyclization quantum yields.

    PubMed

    Li, Wenlong; Jiao, Changhong; Li, Xin; Xie, Yongshu; Nakatani, Keitaro; Tian, He; Zhu, Weihong

    2014-04-25

    Endowing both solvent independency and excellent thermal bistability, the benzobis(thiadiazole)-bridged diarylethene system provides an efficient approach to realize extremely high photocyclization quantum yields (Φo-c , up to 90.6 %) by both separating completely pure anti-parallel conformer and suppressing intramolecular charge transfer (ICT). PMID:24668917

  1. Solvatochromic pyrene analogues of Prodan exhibiting extremely high fluorescence quantum yields in apolar and polar solvents.

    PubMed

    Niko, Yosuke; Kawauchi, Susumu; Konishi, Gen-ichi

    2013-07-22

    True colors: Novel pyrene analogues of Prodan exhibit outstanding photophysical properties with remarkably high fluorescence quantum yield (QY) in solvents ranging from apolar hexane to polar methanol (see figure). This is accompanied by strong solvatochromism and large Stokes shifts. These properties have not been previously achieved in enormous solvatochromic dyes, but are quite useful for emitting materials and imaging tools. PMID:23744761

  2. Optimum doping achieves high quantum yields in GaAs photoemitters

    NASA Technical Reports Server (NTRS)

    Sonnenberg, H.

    1971-01-01

    Experimental data indicate that optimum doping exists. Measured quantum yield curves indicate optimum overall response is obtained in GaAs emitters with doping in high 10 to the 18th power per cu cm range. Doping for optimum response is not necessarily in this range.

  3. Control of the external photoluminescent quantum yield of emitters coupled to nanoantenna phased arrays

    SciTech Connect

    Guo, Ke; Verschuuren, Marc A.; Lozano, Gabriel

    2015-08-21

    Optical losses in metals represent the largest limitation to the external quantum yield of emitters coupled to plasmonic antennas. These losses can be at the emission wavelength, but they can be more important at shorter wavelengths, i.e., at the excitation wavelength of the emitters, where the conductivity of metals is usually lower. We present accurate measurements of the absolute external photoluminescent quantum yield of a thin layer of emitting material deposited over a periodic nanoantenna phased array. Emission and absorptance measurements of the sample are performed using a custom-made setup including an integrating sphere and variable angle excitation. The measurements reveal a strong dependence of the external quantum yield on the angle at which the optical field excites the sample. Such behavior is attributed to the coupling between far-field illumination and near-field excitation mediated by the collective resonances supported by the array. Numerical simulations confirm that the inherent losses associated with the metal can be greatly reduced by selecting an optimum angle of illumination, which boosts the light conversion efficiency in the emitting layer. This combined experimental and numerical characterization of the emission from plasmonic arrays reveals the need to carefully design the illumination to achieve the maximum external quantum yield.

  4. Picosecond Lifetimes with High Quantum Yields from Single-Photon-Emitting Colloidal Nanostructures at Room Temperature.

    PubMed

    Bidault, Sébastien; Devilez, Alexis; Maillard, Vincent; Lermusiaux, Laurent; Guigner, Jean-Michel; Bonod, Nicolas; Wenger, Jérôme

    2016-04-26

    Minimizing the luminescence lifetime while maintaining a high emission quantum yield is paramount in optimizing the excitation cross-section, radiative decay rate, and brightness of quantum solid-state light sources, particularly at room temperature, where nonradiative processes can dominate. We demonstrate here that DNA-templated 60 and 80 nm diameter gold nanoparticle dimers, featuring one fluorescent molecule, provide single-photon emission with lifetimes that can fall below 10 ps and typical quantum yields in a 45-70% range. Since these colloidal nanostructures are obtained as a purified aqueous suspension, fluorescence spectroscopy can be performed on both fixed and freely diffusing nanostructures to quantitatively estimate the distributions of decay rate and fluorescence intensity enhancements. These data are in excellent agreement with theoretical calculations and demonstrate that millions of bright fluorescent nanostructures, with radiative lifetimes below 100 ps, can be produced in parallel. PMID:26972678

  5. Excitation-energy dependence of the phosphorescence quantum yields of pyridinecarboxaldehyde vapors.

    PubMed

    Itoh, Takao

    2008-12-15

    Emission and excitation spectra of 3- and 4-pyridinecarboxaldehyde vapors have been measured at different pressures down to 10(-2)Torr. The phosphorescence quantum yield measured at low pressure as a function of excitation energy is nearly constant in the range of excitation energy corresponding to the S1(n, pi*) state, but it decreases abruptly at the S2(pi, pi*) threshold. The onset of the abrupt decrease of the yield corresponds to the location of the S2 absorption origin of each molecule, indicating that the nonradiative pathway depends on the type of the excited singlet state to which the molecule is initially excited. The relaxation processes are discussed based on the pressure and excitation-energy dependence of the phosphorescence quantum yield. PMID:18515180

  6. Quantum yield for carbon monoxide production in the 248 nm photodissociation of carbonyl sulfide (OCS)

    NASA Technical Reports Server (NTRS)

    Zhao, Z.; Stickel, R. E.; Wine, P. H.

    1995-01-01

    Tunable diode laser absorption spectroscopy has been coupled with excimer laser flash photolysis to measure the quantum yield for CO production from 248 nm photodissociation of carbonyl sulfide (OCS) relative to the well-known quantum yield for CO production from 248 nm photolysis of phosgene (Cl2CO2). The temporal resolution of the experiments was sufficient to distinguish CO formed directly by photodissociation from that formed by subsequent S((sup 3)P(sub J)) reaction with OCS. Under the experimental conditions employed, CO formation via the fast S((sup 1)D(sub 2)) + OCS reaction was minimal. Measurements at 297K and total pressures from 4 to 100 Torr N2 + N2O show the CO yield to be greater than 0.95 and most likely unity. This result suggests that the contribution of OCS as a precursor to the lower stratospheric sulfate aerosol layer is somewhat larger than previously thought.

  7. Implementing an ancilla-free 1{yields}M economical phase-covariant quantum cloning machine with superconducting quantum-interference devices in cavity QED

    SciTech Connect

    Yu Longbao; Ye Liu; Zhang Wenhai

    2007-09-15

    We propose a simple scheme to realize 1{yields}M economical phase-covariant quantum cloning machine (EPQCM) with superconducting quantum interference device (SQUID) qubits. In our scheme, multi-SQUIDs are fixed into a microwave cavity by adiabatic passage for their manipulation. Based on this model, we can realize the EPQCM with high fidelity via adiabatic quantum computation.

  8. Photosensitized electron transfer processes in SiO/sub 2/ colloids and sodium lauryl sulfate micellar sytems: correlation of quantum yields with interfacial surface potentials

    SciTech Connect

    Laane, C.; Willner, I.; Otvos, J.W.; Calvin, M.

    1981-10-01

    The effectiveness of negatively charged colloidal SiO/sub 2/ particles in controlling photosensitized electron transfer reactions has been studied and compared with that of the negatively charged sodium lauryl sulfate (NaLauSO/sub 4/) micellar system. In particular, the photosensitized reduction of the zwitterionic electron acceptor propylviologen sulfonate (PVS/sup 0/) with tris(2,2'-bi-pyridinium)ruthenium(II) (Ru(bipy)/sub 3//sup 2 +/) as the sensitizer and triethanolamine as the electron donor is found to have a quantum yield of 0.033 for formation of the radical anion (PVS) in the SiO/sub 2/ colloid compared with 0.005 in the homogeneous system and 0.0086 in a NaLauSO/sub 4/ micellar solution. The higher quantum yields obtained with the SiO/sub 2/ colloidal system are attributed to substantial stabilization against back reaction of the intermediate photoproducts - i.e., Ru(bipy)/sub 3//sup 3 +/ and PVS/sup -/ - by electrostatic repulsion of the reduced electron acceptor from the negatively charged particle surface. The binding properties of the SiO/sub 2/ particles and NaLauSO/sub 4/ micelles were investigated by flow dialysis. The results show that the sensitizer binds to both interfaces and that the SiO/sub 2/ interface is characterized by much higher surface potential than the micellar interface. The effect of ionic strength on the surface potential was estimated from the Gouy-Chapman theory, and the measured quantum yields of photosensitized electron transfer were correlated shows that the quantum yield is not affected by surface potentials smaller than approx. = -40 mV. At larger potentials, the quantum yield increases rapidly. These results indicate that the surface potential is the dominant factor in the quantum yield improvement for PVS/sup 0/ reduction.

  9. Influence of the Inner-Shell Architecture on Quantum Yield and Blinking Dynamics in Core/Multishell Quantum Dots.

    PubMed

    Bajwa, Pooja; Gao, Feng; Nguyen, Anh; Omogo, Benard; Heyes, Colin D

    2016-03-01

    Choosing the composition of a shell for QDs is not trivial, as both the band-edge energy offset and interfacial lattice mismatch influence the final optical properties. One way to balance these competing effects is by forming multishells and/or gradient-alloy shells. However, this introduces multiple interfaces, and their relative effects on quantum yield and blinking are not yet fully understood. Here, we undertake a systematic, comparative study of the addition of inner shells of a single component versus gradient-alloy shells of cadmium/zinc chalogenides onto CdSe cores, and then capping with a thin ZnS outer shell to form various core/multishell configurations. We show that architecture of the inner shell between the CdSe core and the outer ZnS shell significantly influences both the quantum yield and blinking dynamics, but that these effects are not correlated-a high ensemble quantum yield doesn't necessarily equate to reduced blinking. Two mathematical models have been proposed to describe the blinking dynamics-the more common power-law model and a more recent multiexponential model. By binning the same data with 1 and 20 ms resolution, we show that the on times can be better described by the multiexponential model, whereas the off times can be better described by the power-law model. We discuss physical mechanisms that might explain this behavior and how it can be affected by the inner-shell architecture. PMID:26693950

  10. Absolute I(asterisk) quantum yields for the ICN A state by diode laser gain-vs-absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Hess, Wayne P.; Leone, Stephen R.

    1987-01-01

    Absolute I(asterisk) quantum yields have been measured as a function of wavelength for room temperature photodissociation of the ICN A state continuum. The yields are obtained by the technique of time-resolved diode laser gain-vs-absorption spectroscopy. Quantum yields are evaluated at seven wavelengths from 248 to 284 nm. The yield at 266 nm is 66.0 + or - 2 percent and it falls off to 53.4 + or - 2 percent and 44.0 + or - 4 percent at 284 and 248 nm, respectively. The latter values are significantly higher than those obtained by previous workers using infrared fluorescence. Estimates of I(asterisk) quantum yields obtained from analysis of CN photofragment rotational distributions, as discussed by other workers, are in good agreement with the I(asterisk) yields reported here. The results are considered in conjunction with recent theoretical and experimental work on the CN rotational distributions and with previous I(asterisk) quantum yield results.

  11. Fluorescence Quantum Yield Measurements of Fluorescent Proteins: A Laboratory Experiment for a Biochemistry or Molecular Biophysics Laboratory Course

    ERIC Educational Resources Information Center

    Wall, Kathryn P.; Dillon, Rebecca; Knowles, Michelle K.

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts…

  12. Influence of the QD luminescence quantum yield on photocurrent in QD/graphene hybrid structures

    NASA Astrophysics Data System (ADS)

    Reznik, Ivan A.; Gromova, Yulia A.; Zlatov, Andrei S.; Baranov, Mikhail A.; Orlova, Anna O.; Moshkalev, Stanislav A.; Maslov, Vladimir G.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2016-04-01

    Photoinduced changes in luminescent and photoelectrical properties of the hybrid structure based on CdSe/ZnS QDs and multilayer graphene nanobelts were studied. It was shown that an irradiation of the structures by 365 nm mercury line in doses up to 23 J led to growth of QD luminescent quantum yield and photocurrent in the QD/graphene structures. This confirms the proximity of the rates of the QD luminescence decay and energy/charge transfer from QDs to graphene, and opens an opportunity to photoinduced control of the photoelectric response of the graphene based hybrid structures with semiconductor quantum dots.

  13. An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Swayandipta; Zhou, Yadong; Tian, Xiangdong; Jenkins, Julie A.; Chen, Ou; Zou, Shengli; Zhao, Jing

    2015-04-01

    In this work, we systematically investigated the plasmonic effect on blinking, photon antibunching behavior and biexciton emission of single CdSe/CdS core/shell quantum dots (QDs) near gold nanoparticles (NPs) with a silica shell (Au@SiO2). In order to obtain a strong interaction between the plasmons and excitons, the Au@SiO2 NPs and CdSe/CdS QDs of appropriate sizes were chosen so that the plasmon resonance overlaps with the absorption and emission of the QDs. We observed that in the regime of a low excitation power, the photon antibunching and blinking properties of single QDs were modified significantly when the QDs were on the Au@SiO2 substrates compared to those on glass. Most significantly, second-order photon intensity correlation data show that the presence of plasmons increases the ratio of the biexciton quantum yield over the exciton quantum yield (QYBX/QYX). An electrodynamics model was developed to quantify the effect of plasmons on the lifetime, quantum yield, and emission intensity of the biexcitons for the QDs. Good agreement was obtained between the experimentally measured and calculated changes in QYBX/QYX due to Au@SiO2 NPs, showing the validity of the developed model. The theoretical studies also indicated that the relative position of the QDs to the Au NPs and the orientation of the electric field are important factors that regulate the emission properties of the excitons and biexcitons of QDs. The study suggests that the multiexciton emission efficiency in QD systems can be manipulated by employing properly designed plasmonic structures.In this work, we systematically investigated the plasmonic effect on blinking, photon antibunching behavior and biexciton emission of single CdSe/CdS core/shell quantum dots (QDs) near gold nanoparticles (NPs) with a silica shell (Au@SiO2). In order to obtain a strong interaction between the plasmons and excitons, the Au@SiO2 NPs and CdSe/CdS QDs of appropriate sizes were chosen so that the plasmon resonance

  14. An experimental and theoretical mechanistic study of biexciton quantum yield enhancement in single quantum dots near gold nanoparticles.

    PubMed

    Dey, Swayandipta; Zhou, Yadong; Tian, Xiangdong; Jenkins, Julie A; Chen, Ou; Zou, Shengli; Zhao, Jing

    2015-04-21

    In this work, we systematically investigated the plasmonic effect on blinking, photon antibunching behavior and biexciton emission of single CdSe/CdS core/shell quantum dots (QDs) near gold nanoparticles (NPs) with a silica shell (Au@SiO2). In order to obtain a strong interaction between the plasmons and excitons, the Au@SiO2 NPs and CdSe/CdS QDs of appropriate sizes were chosen so that the plasmon resonance overlaps with the absorption and emission of the QDs. We observed that in the regime of a low excitation power, the photon antibunching and blinking properties of single QDs were modified significantly when the QDs were on the Au@SiO2 substrates compared to those on glass. Most significantly, second-order photon intensity correlation data show that the presence of plasmons increases the ratio of the biexciton quantum yield over the exciton quantum yield (QYBX/QYX). An electrodynamics model was developed to quantify the effect of plasmons on the lifetime, quantum yield, and emission intensity of the biexcitons for the QDs. Good agreement was obtained between the experimentally measured and calculated changes in QYBX/QYX due to Au@SiO2 NPs, showing the validity of the developed model. The theoretical studies also indicated that the relative position of the QDs to the Au NPs and the orientation of the electric field are important factors that regulate the emission properties of the excitons and biexcitons of QDs. The study suggests that the multiexciton emission efficiency in QD systems can be manipulated by employing properly designed plasmonic structures. PMID:25806486

  15. Photodissociation of quantum state-selected diatomic molecules yields new insight into ultracold chemistry

    NASA Astrophysics Data System (ADS)

    McDonald, Mickey; McGuyer, Bart H.; Lee, Chih-Hsi; Apfelbeck, Florian; Zelevinsky, Tanya

    2016-05-01

    When a molecule is subjected to a sufficiently energetic photon it can break apart into fragments through a process called ``photodissociation''. For over 70 years this simple chemical reaction has served as a vital experimental tool for acquiring information about molecular structure, since the character of the photodissociative transition can be inferred by measuring the 3D photofragment angular distribution (PAD). While theoretical understanding of this process has gradually evolved from classical considerations to a fully quantum approach, experiments to date have not yet revealed the full quantum nature of this process. In my talk I will describe recent experiments involving the photodissociation of ultracold, optical lattice-trapped, and fully quantum state-resolved 88Sr2 molecules. Optical absorption images of the PADs produced in these experiments reveal features which are inherently quantum mechanical in nature, such as matter-wave interference between output channels, and are sensitive to the quantum statistics of the molecular wavefunctions. The results of these experiments cannot be predicted using quasiclassical methods. Instead, we describe our results with a fully quantum mechanical model yielding new intuition about ultracold chemistry.

  16. Type II Hydride Transferases from Different Microorganisms Yield Nitrite and Diarylamines from Polynitroaromatic Compounds▿ †

    PubMed Central

    van Dillewijn, Pieter; Wittich, Rolf-Michael; Caballero, Antonio; Ramos, Juan-Luis

    2008-01-01

    Homogenous preparations of XenB of Pseudomonas putida, pentaerythritol tetranitrate reductase of Enterobacter cloacae, and N-ethylmaleimide reductase of Escherichia coli, all type II hydride transferases of the Old Yellow Enzyme family of flavoproteins, are shown to reduce the polynitroaromatic compound 2,4,6-trinitrotoluene (TNT). The reduction of this compound yields hydroxylaminodinitrotoluenes and Meisenheimer dihydride complexes, which, upon condensation, yield stoichiometric amounts of nitrite and diarylamines, implying that type II hydride transferases are responsible for TNT denitration, a process with important environmental implications for TNT remediation. PMID:18791007

  17. Preparation of carbon quantum dots with a high quantum yield and the application in labeling bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Liu, Pengpeng; Zhang, Changchang; Liu, Xiang; Cui, Ping

    2016-04-01

    An economic and green approach of manufacturing carbon quantum dots (CQDs) with a high quantum yield (denoted with HQY-CQDs) and the application in labeling bovine serum albumin (BSA) were described in detail in this work. Firstly, the cheap resources of citric acid and glycine were pyrolysed in drying oven for preparing the CQDs. Then the product was immersed in tetrahydrofuran for 8 h. HQY-CQDs were obtained by removing tetrahydrofuran from the supernate and were evaluated that they possessed a much higher quantum yield compared with that without dealing with tetrahydrofuran and a wonderful photo-bleaching resistance. Such HQY-CQDs could be functionalized by N-hydroxysuccinimide and successively combined with BSA covalently. Thus fluorescent labeling on BSA was realized. The HQY-CQDs were demonstrated with transmission electron microscopy and the chemical modification with N-hydroxysuccinimide was proved by infrared and X-ray photoelectron spectra. Labeling BSA with the HQY-CQDs was confirmed by gel electrophoresis and fluorescence imaging.

  18. Quantum yield and excitation rate of single molecules close to metallic nanostructures.

    PubMed

    Holzmeister, Phil; Pibiri, Enrico; Schmied, Jürgen J; Sen, Tapasi; Acuna, Guillermo P; Tinnefeld, Philip

    2014-01-01

    The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments. PMID:25370834

  19. Quantum yield and excitation rate of single molecules close to metallic nanostructures

    PubMed Central

    Holzmeister, Phil; Pibiri, Enrico; Schmied, Jürgen J.; Sen, Tapasi; Acuna, Guillermo P.; Tinnefeld, Philip

    2014-01-01

    The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments. PMID:25370834

  20. Photoluminescence and quantum yields of organic/inorganic hybrids prepared through formic acid solvolysis

    NASA Astrophysics Data System (ADS)

    Fu, Lianshe; Sá Ferreira, R. A.; Fernandes, M.; Nunes, S. C.; de Zea Bermudez, V.; Hungerford, Graham; Rocha, J.; Carlos, L. D.

    2008-03-01

    Three undoped di-urea cross-linked poly(oxyethylene) (POE)/siloxane hybrid matrices, classed as di-ureasils, incorporating POE segments with different lengths were prepared through the carboxylic acid solvolysis sol-gel method using formic acid. The resulting hybrids were characterized by X-ray diffraction, Fourier transform mid-infrared spectroscopy, 29Si and cross-polarization 13C magic-angle spinning nuclear magnetic resonance and photoluminescence spectroscopy. The hybrids' structure is essentially independent of the polymer chain length and the materials are room temperature white-light emitters with emission quantum yields of ˜10 ± 1% and lifetime average values between 2 and 4 ns. For the di-ureasil host with short polymer chains the solvolysis method favours the increase of the PL quantum yields relatively to conventional sol-gel route.

  1. A quantum yield determination of O/1D/ production from ozone via laser flash photolysis

    NASA Technical Reports Server (NTRS)

    Philen, D. L.; Davis, D. D.; Watson, R. T.

    1977-01-01

    The quantum yield of electronically excited atomic oxygen produced from ozone photolysis was measured at 298 K from wavelengths of 293.0 to 316.5 nm. The reaction of the atomic oxygen with N2O to form excited NO2 was used to monitor the O production; a frequency-doubled flashlamp-pumped dye laser which provided tunable ultraviolet in the desired spectral region with 0.1-nm linewidth served as the photolysis source. The atomic oxygen quantum yield was found to be constant below 300 nm, with a sharp decrease centered at 308 nm and a diminution to less than one tenth of the constant value by 313.5 nm.

  2. Photo-dissociation quantum yields of mammalian oxyhemoglobin investigated by a nanosecond laser technique

    SciTech Connect

    Yang Ningli; Zhang Shuyi . E-mail: zhangsy@nju.edu.cn; Kuo Paokuang; Qu Min; Fang Jianwen; Li Jiahuang; Hua Zichun

    2007-02-23

    The photo-dissociations of oxyhemoglobin of several mammals, such as human, bovine, pig, horse, and rabbit, have been studied. By means of optical pump-probe technique, the quantum yields for photo-dissociation of these oxyhemoglobin have been determined at pH 7 and 20 {sup o}C. A nanosecond laser at 532 nm is used as the pumping source, and a xenon lamp through a monochrometer provides a probe light at 432 nm. The experimental results show that the quantum yields of these mammalian oxyhemoglobin are different from each other, especially for that of rabbit. By analyzing the amino acid sequences and tetramer structures as well as the flexibility and hydrophobicity of the different hemoglobin, possible explanations for the differences are proposed.

  3. Photocurrent Quantum Yield in Suspended Carbon Nanotube p-n Junctions.

    PubMed

    Aspitarte, Lee; McCulley, Daniel R; Minot, Ethan D

    2016-09-14

    We study photocurrent generation in individual suspended carbon nanotube p-n junctions using spectrally resolved scanning photocurrent microscopy. Spatial maps of the photocurrent allow us to determine the length of the p-n junction intrinsic region, as well as the role of the n-type Schottky barrier. We show that reverse-bias operation eliminates complications caused by the n-type Schottky barrier and increases the length of the intrinsic region. The absorption cross-section of the CNT is calculated using an empirically verified model, and the effect of substrate reflection is determined using FDTD simulations. We find that the room temperature photocurrent quantum yield is approximately 30% when exciting the carbon nanotube at the S44 and S55 excitonic transitions. The quantum yield value is an order of magnitude larger than previous estimates. PMID:27575386

  4. Quantum Yield Determination Based on Photon Number Measurement, Protocols for Firefly Bioluminescence Reactions.

    PubMed

    Niwa, Kazuki

    2016-01-01

    Quantum yield (QY), which is defined as the probability of photon production by a single bio/chemiluminescence reaction, is an important factor to characterize luminescence light intensity emitted diffusively from the reaction solution mixture. Here, methods to measure number of photons to determine QY according to the techniques of national radiometry standards are described. As an example, experiments using firefly bioluminescence reactions are introduced. PMID:27424895

  5. Photochemistry of matrix-isolated and thin film acid chlorides: Quantum yields and product structures

    SciTech Connect

    Rowland, B.; Hess, W.P.; Winter, P.R.; Ellison, G.B.; Radziszewski, J.G.

    1999-02-18

    Ultraviolet photoexcitation of matrix-isolated CH{sub 3}COCl, CH{sub 3}CH{sub 2}COCl, and CH{sub 3}CH{sub 2}CH{sub 2}CH{sub 2}COCl produces HCl{center_dot}CH{sub 2}{double_bond}C{double_bond}O, HCl{center_dot}CH{sub 3}CHC{double_bond}C{double_bond}O, and HCl{center_dot}CH{sub 3}CH{sub 2}CH{sub 2}CHC{double_bond}C{double_bond}O complexes. The authors report precursor and matrix dependent reaction quantum yields. Quantum yield values decrease with increasing alkyl chain length due to a reduced number of {alpha} H-atoms available for the elimination reaction and steric considerations. The authors found quantum yields in neat matrixes to be roughly half that in argon or xenon matrixes and assign structures for HCL and ketene complexes in argon and xenon matrixes by comparing IR spectra ab initio electronic structure calculations. In argon matrixes, the product complex HCl frequently is strongly shifted whereas the ketene remains unshifted with respect to matrix-isolated ketene. In xenon matrixes, HCl{center_dot}ketene complexes display absorption bands indicative of two distinct structures. Differences between HCl{center_dot}ketene structures in argon and xenon matrixes are attributed to size differences of the matrix lattice.

  6. Excitation-emission spectra and fluorescence quantum yields for fresh and aged biogenic secondary organic aerosols

    SciTech Connect

    Lee, Hyun Ji; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey A.

    2013-05-10

    Certain biogenic secondary organic aerosols (SOA) become absorbent and fluorescent when exposed to reduced nitrogen compounds such as ammonia, amines and their salts. Fluorescent SOA may potentially be mistaken for biological particles by detection methods relying on fluorescence. This work quantifies the spectral distribution and effective quantum yields of fluorescence of SOA generated from two monoterpenes, limonene and a-pinene, and two different oxidants, ozone (O3) and hydroxyl radical (OH). The SOA was generated in a smog chamber, collected on substrates, and aged by exposure to ~100 ppb ammonia vapor in air saturated with water vapor. Absorption and excitation-emission matrix (EEM) spectra of aqueous extracts of aged and control SOA samples were measured, and the effective absorption coefficients and fluorescence quantum yields (~0.005 for 349 nm excitation) were determined from the data. The strongest fluorescence for the limonene-derived SOA was observed for excitation = 420+- 50 nm and emission = 475 +- 38 nm. The window of the strongest fluorescence shifted to excitation = 320 +- 25 nm and emission = 425 +- 38 nm for the a-pinene-derived SOA. Both regions overlap with the excitation-emission matrix (EEM) spectra of some of the fluorophores found in primary biological aerosols. Our study suggests that, despite the low quantum yield, the aged SOA particles should have sufficient fluorescence intensities to interfere with the fluorescence detection of common bioaerosols.

  7. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites.

    PubMed

    Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali

    2016-01-13

    Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells. PMID:26691065

  8. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    SciTech Connect

    Feng, X. T.; Zhang, Y.; Liu, X. G.; Zhang, F.; Wang, Y. L.; Yang, Y. Z.

    2015-11-23

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation light source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.

  9. Luminescent carbon quantum dots with high quantum yield as a single white converter for white light emitting diodes

    NASA Astrophysics Data System (ADS)

    Feng, X. T.; Zhang, F.; Wang, Y. L.; Zhang, Y.; Yang, Y. Z.; Liu, X. G.

    2015-11-01

    Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation light source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.

  10. Magnetoexcitons in type-II semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Fuster, Gonzalo; Barticevic, Zdenka; Pacheco, Monica; Oliveira, Luiz E.

    2004-03-01

    We present a theoretical investigation of excitons in type-II semiconductor quantum dots (QD). In these systems the confinement of electrons inside the QD and the hole outside the QD produces a ring-like structure [1-2]. Recently, Ribeiro et al [3], in a magnetophotoluminescence study of type-II InP/GaAs self-assembled quantum dots, observed Aharonov-Bohm-type oscillations characteristic of the ring topology for neutral excitons. Using a simple model they have derived the groundstate hole energy as a function of the magnetic field, and obtained values for the ring parameters which are in good agreement with the measured values. However, some of the features observed experimentally, in the photoluminescence intensity, can not be well explained under that approach. In this work we present a more realistic model which considers the finite width of the ring and the electron-hole interaction included via a perturbative approach. The calculations are performed within the oneparticle formalism using the effective mass approximation. The confinement potential for electrons is modelled as the superposition of a quantum well potential along the axial direction, and a parabolic lateral confinement potential. The energies for the hole in the ring plane are calculated using the method of reference [4]. Theoretical calculations are in good agreement with the experimental results of reference [3] provided that excitonic effects are properly taken into account. References 1. A.O. Govorov et al., Physica E 13 , 297 (2002). 2. K. L. Janssens et al. Phys. Rev B64, 155324 (2001), and Phys. Rev. B66, 075314 (2002). 3. E. Ribeiro, G. Medeiros-Ribeiro, and W.Carvalho Jr., and A.O. Govorov, condmat/0304092 (2003). 4. Z. Barticevic, G. Fuster, and M. Pacheco,Phys. Rev. B 65, 193307 (2002).

  11. Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield.

    PubMed

    Tessier, M D; Mahler, B; Nadal, B; Heuclin, H; Pedetti, S; Dubertret, B

    2013-07-10

    Free standing two-dimensional materials appear as a novel class of structures. Recently, the first colloidal two-dimensional heterostructures have been synthesized. These core/shell nanoplatelets are the first step toward colloidal quantum wells. Here, we study in detail the spectroscopic properties of this novel generation of colloidal nanoparticles. We show that core/shell CdSe/CdZnS nanoplatelets with 80% quantum yield can be obtained. The emission time trace of single core/shell nanoplatelets exhibits reduced blinking compared to core nanoplatelets with a two level emission time trace. At cryogenic temperatures, these nanoplatelets have a quantum yield close to 100% and a stable emission time trace. A solution of core/shell nanoplatelets has emission spectra with a full width half-maximum close to 20 nm, a value much lower than corresponding spherical or rod-shaped heterostructures. Using single particle spectroscopy, we show that the broadening of the emission spectra upon the shell deposition is not due to dispersity between particles but is related to an intrinsic increased exciton-phonon coupling in the shell. We also demonstrate that optical spectroscopy is a relevant tool to investigate the presence of traps induced by shell deposition. The spectroscopic properties of the core/shell nanoplatelets presented here strongly suggest that this new generation of objects will be an interesting alternative to spherical or rod-shaped nanocrystals. PMID:23731211

  12. Maxwell's demon. (II) A quantum-theoretic exorcism

    NASA Astrophysics Data System (ADS)

    Gyftopoulos, Elias P.

    2002-05-01

    In Part II of this two-part paper we prove that Maxwell's demon is unable to accomplish his task of sorting air molecules into swift and slow because in air in a thermodynamic equilibrium state there are no such molecules. The proof is based on the principles of a unified quantum theory of mechanics and thermodynamics. The key idea of the unified theory is that von Neumann's concept of a homogeneous ensemble of identical systems, identically prepared, is valid not only for a density operator ρ equal to a projector (every member of the ensemble is assigned the same projector, ρi=| ψi> < ψi|= ρi2, or the same wave function ψ i as any other member) but also for a density operator that is not a projector (every member of the ensemble is assigned the same density operator, ρ>ρ 2, as any other member). So, the latter ensemble is not a statistical mixture of projectors. The broadening of the validity of the homogeneous ensemble is consistent with the quantum-theoretic postulates about observables, measurement results, and value of any observable. In the context of the unified theory, among the many novel results is the theorem that each molecule of a system in a thermodynamic equilibrium state has zero value of momentum, that is, each molecule is at a standstill and, therefore, there are no molecules to be sorted as swift and slow. Said differently, if Maxwell were cognizant of quantum theory, he would not have conceived of the idea of the demon. It is noteworthy that the zero value of momentum is not the result of averaging over different momenta of many molecules. Under the specified conditions, it is the quantum-theoretic value of the momentum of any one molecule, and the same result is valid even if the system consists of only one molecule.

  13. Wavefunction engineering: From quantum wells to near-infrared type-II colloidal quantum dots synthesized by layer-by-layer colloidal epitaxy.

    PubMed

    Li, J Jack; Tsay, James M; Michalet, Xavier; Weiss, Shimon

    2005-11-15

    We review the concept and the evolution of bandgap and wavefunction engineering, the seminal contributions of Dr. Chemla to the understanding of the rich phenomena displayed in epitaxially grown quantum confined systems, and demonstrate the application of these concepts to the colloidal synthesis of high quality type-II CdTe/CdSe quantum dots using successive ion layer adsorption and reaction chemistry. Transmission electron microscopy reveals that CdTe/CdSe can be synthesized layer by layer, yielding particles of narrow size distribution. Photoluminescence emission and excitation spectra reveal discrete type-II transitions, which correspond to energy lower than the type-I bandgap. The increase in the spatial separation between photoexcited electrons and holes as a function of successive addition of CdSe monolayers was monitored by photoluminescence lifetime measurements. Systematic increase in lifetimes demonstrates the high level of wavefunction engineering and control in these systems. PMID:22865949

  14. Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions

    SciTech Connect

    Greben, M.; Fucikova, A.; Valenta, J.

    2015-04-14

    The absolute photoluminescence (PL) quantum yield (QY) of oleic acid-capped colloidal PbS quantum dots (QDs) in toluene is thoroughly investigated as function of QD size, concentration, excitation photon energy, and conditions of storage. We observed anomalous decrease of QY with decreasing concentration for highly diluted suspensions. The ligand desorption and QD-oxidation are demonstrated to be responsible for this phenomenon. Excess of oleic acid in suspensions makes the QY values concentration-independent over the entire reabsorption-free range. The PL emission is shown to be dominated by surface-related recombinations with some contribution from QD-core transitions. We demonstrate that QD colloidal suspension stability improves with increasing the concentration and size of PbS QDs.

  15. Investigating photoluminescence quantum yield of silicon nanocrystals formed in SiOx with different initial Si excess

    NASA Astrophysics Data System (ADS)

    Chung, Nguyen Xuan; Limpens, Rens; Gregorkiewicz, Tom

    2015-09-01

    Optical properties of silicon nanocrystals dispersed in SiO2 matrix were investigated in terms of photoluminescence quantum yield at room temperature. Two multilayer samples, prepared from substoichiometric silicon oxide layers by annealing at 1150°C were used to investigate the influence of Si concentration. Significant reduction of photoluminescence quantum yield and a very specific change of its excitation energy dependence upon variation of silicon excess are concluded from the experimental data. Possible mechanisms leading to these changes are discussed.

  16. Quantum yield of photosensitized singlet oxygen (a[sup 1][Delta][sub g]) production in solid polystyrene

    SciTech Connect

    Scurlock, R.D.; Martire, D.O.; Ogilby, P.R. . Dept. of Chemistry); Taylor, V.L.; Clough, R.L. )

    1994-08-15

    The quantum yield of singlet oxygen (a[sup 1][Delta][sub g]), produced by energy transfer from the photosensitizer acridine, has been determined by two independent spectroscopic methods in solid polystyrene. Upon 355-nm pulsed-laser irradiation of acridine at 1.3 mJ/pulse, the O[sub 2](a[sup 1][Delta][sub g]) quantum yield in polystyrene [[phi][sub [Delta

  17. Quantum yields for photochemical production of NO2 from organic nitrates at tropospherically relevant wavelengths.

    PubMed

    Higgins, Christina M; Evans, Louise A; Lloyd-Jones, Guy C; Shallcross, Dudley E; Tew, David P; Orr-Ewing, Andrew J

    2014-04-17

    Absorption cross-sections and quantum yields for NO2 production (ΦNO2) are reported for gaseous methyl, ethyl, n-propyl, and isopropyl nitrate at 294 K. Absorption cross-sections in the wavelength range of 240-320 nm agree well with prior determinations. NO2 quantum yields at photoexcitation wavelengths of 290, 295, and 315 nm are unity within experimental uncertainties for all of the alkyl nitrates studied and are independent of bath gas (N2) pressure for total sample pressures in the range of 250-700 Torr. When averaged over all wavelengths and sample pressures, values of ΦNO2 are 1.03 ± 0.05 (methyl nitrate), 0.98 ± 0.09 (ethyl nitrate), 1.01 ± 0.04 (n-propyl nitrate), and 1.00 ± 0.05 (isopropyl nitrate), with uncertainties corresponding to 1 standard deviation. Absorption cross-sections for ethyl nitrate, isopropyl nitrate, and two unsaturated dinitrate compounds, but-3-ene-1,2-diyl dinitrate and (Z)-but-2-ene-1,4-diyl dinitrate in acetonitrile solution, are compared to gas-phase values, and over the wavelength range of 260-315 nm, the gas-phase values are well-reproduced by dividing the liquid-phase cross-sections by 2.0, 1.6, 1.7, and 2.2, respectively. Reasonable estimates of the gas-phase absorption cross-sections for low-volatility organic nitrates can therefore be obtained by halving the values for acetonitrile solutions. The quantum yield for NO2 formation from photoexcitation of but-3-ene-1,2-diyl dinitrate at 290 nm is significantly lower than those for the alkyl (mono) nitrates: a best estimate of ΦNO2 ≤ 0.25 is obtained from the experimental measurements. PMID:24684215

  18. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles.

    PubMed

    Boyer, John-Christopher; van Veggel, Frank C J M

    2010-08-01

    In this communication we describe a technique for measuring the absolute quantum yields (QYs) of upconverting nanomaterials based on the use of a commercially available fluorimeter and an integrating sphere. Using this setup, we have successfully acquired luminescence efficiency data (pump laser, absorbed pump, and visible emitted intensities) for lanthanide-doped upconverting nanoparticles. QYs in the range of 0.005% to 0.3% were measured for several NaYF(4): 2% Er(3+), 20% Yb(3+) nanoparticles with particle sizes ranging from 10 to 100 nm while a QY of 3% was measured for a bulk sample. PMID:20820726

  19. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Wu, Zhu Lian; Gao, Ming Xuan; Wang, Ting Ting; Wan, Xiao Yan; Zheng, Lin Ling; Huang, Cheng Zhi

    2014-03-01

    A general quantitative pH sensor for environmental and intracellular applications was developed by the facile hydrothermal preparation of dicyandiamide (DCD) N-doped high quantum yield (QY) graphene quantum dots (GQDs) using citric acid (CA) as the carbon source. The obtained N-doped GQDs have excellent photoluminesence (PL) properties with a relatively high QY of 36.5%, suggesting that N-doped chemistry could promote the QY of carbon nanomaterials. The possible mechanism for the formation of the GQDs involves the CA self-assembling into a nanosheet structure through intermolecular H-bonding at the initial stage of the reaction, and then the pure graphene core with many function groups formed through the dehydration between the carboxyl and hydroxyl of the intermolecules under hydrothermal conditions. These N-doped GQDs have low toxicity, and are photostable and pH-sensitive between 1.81 to 8.96, giving a general pH sensor with a wide range of applications from real water to intracellular contents.A general quantitative pH sensor for environmental and intracellular applications was developed by the facile hydrothermal preparation of dicyandiamide (DCD) N-doped high quantum yield (QY) graphene quantum dots (GQDs) using citric acid (CA) as the carbon source. The obtained N-doped GQDs have excellent photoluminesence (PL) properties with a relatively high QY of 36.5%, suggesting that N-doped chemistry could promote the QY of carbon nanomaterials. The possible mechanism for the formation of the GQDs involves the CA self-assembling into a nanosheet structure through intermolecular H-bonding at the initial stage of the reaction, and then the pure graphene core with many function groups formed through the dehydration between the carboxyl and hydroxyl of the intermolecules under hydrothermal conditions. These N-doped GQDs have low toxicity, and are photostable and pH-sensitive between 1.81 to 8.96, giving a general pH sensor with a wide range of applications from real water

  20. Self-consistent calculations of optical properties of type I and type II quantum heterostructures

    NASA Astrophysics Data System (ADS)

    Shuvayev, Vladimir A.

    In this Thesis the self-consistent computational methods are applied to the study of the optical properties of semiconductor nanostructures with one- and two-dimensional quantum confinements. At first, the self-consistent Schrodinger-Poisson system of equations is applied to the cylindrical core-shell structure with type II band alignment without direct Coulomb interaction between carriers. The electron and hole states and confining potential are obtained from a numerical solution of this system. The photoluminescence kinetics is theoretically analyzed, with the nanostructure size dispersion taken into account. The results are applied to the radiative recombination in the system of ZnTe/ZnSe stacked quantum dots. A good agreement with both continuous wave and time-resolved experimental observations is found. It is shown that size distribution results in the photoluminescence decay that has essentially non-exponential behavior even at the tail of the decay where the carrier lifetime is almost the same due to slowly changing overlap of the electron and hole wavefunctions. Also, a model situation applicable to colloidal core-shell nanowires is investigated and discussed. With respect to the excitons in type I quantum wells, a new computationally efficient and flexible approach of calculating the characteristics of excitons, based on a self-consistent variational treatment of the electron-hole Coulomb interaction, is developed. In this approach, a system of self-consistent equations describing the motion of an electron-hole pair is derived. The motion in the growth direction of the quantum well is separated from the in-plane motion, but each of them occurs in modified potentials found self-consistently. This approach is applied to a shallow quantum well with the delta-potential profile, for which analytical expressions for the exciton binding energy and the ground state eigenfunctions are obtained, and to the quantum well with the square potential profile with several

  1. Diurnal changes of photosynthetic quantum yield in the intertidal macroalga Sargassum thunbergii under simulated tidal emersion conditions

    NASA Astrophysics Data System (ADS)

    Yu, Yong Qiang; Zhang, Quan Sheng; Tang, Yong Zheng; Li, Xue Meng; Liu, Hong Liang; Li, Li Xia

    2013-07-01

    In this study, a three-way factorial experimental design was used to investigate the diurnal changes of photosynthetic activity of the intertidal macroalga Sargassum thunbergii in response to temperature, tidal pattern and desiccation during a simulated diurnal light cycle. The maximum (Fv/Fm) and effective (ΦPSII) quantum yields of photosystem II (PSII) were estimated by chlorophyll fluorescence using a pulse amplitude modulated fluorometer. Results showed that this species exhibited sun-adapted characteristics, as evidenced by the daily variation of Fv/Fm and ΦPSII. Both yield values decreased with increasing irradiance towards noon and recovered rapidly in the afternoon suggesting a dynamic photoinhibition. The photosynthetic quantum yield of S. thunbergii thalli varied significantly with temperature, tidal pattern and desiccation. Thalli were more susceptible to light-induced damage at high temperature of 25 °C and showed complete recovery of photosynthetic activity only when exposed to 8 °C. In contrast with the mid-morning low tide period, although there was an initial increase in photosynthetic yield during emersion, thalli showed a greater degree of decline at the end of emersion and remained less able to recover when low tide occurred at mid-afternoon. Short-term air exposure of 2 h did not significantly influence the photosynthesis. However, when exposed to moderate conditions (4 h desiccation at 15 °C or 6 h desiccation at 8 °C), a significant inhibition of photosynthesis was followed by partial or complete recovery upon re-immersion in late afternoon. Only extreme conditions (4 h desiccation at 25 °C or 6 h desiccation at 15 °C or 25 °C) resulted in the complete inhibition, with little indication of recovery until the following morning, implying the occurrence of chronic PSII damage. Based on the magnitude of effect, desiccation was the predominant negative factor affecting the photosynthesis under the simulated daytime irradiance period. These

  2. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    NASA Astrophysics Data System (ADS)

    Allen, Roland; Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li

    2015-03-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-Methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al. We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C =C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Research Fund for the Doctoral Program of Higher Education of China; Fundamental Research Funds for the Central Universities; Robert A. Welch Foundation; National Natural Science Foundation of China.

  3. Photoisomerization dynamics of a rhodopsin-based molecule (potential molecular switch) with high quantum yields

    NASA Astrophysics Data System (ADS)

    Jiang, Chen-Wei; Zhang, Xiu-Xing; Fang, Ai-Ping; Li, Hong-Rong; Xie, Rui-Hua; Li, Fu-Li; Allen, Roland E.

    2015-02-01

    It is worthwhile to explore the detailed reaction dynamics of various candidates for molecular switches, in order to understand, e.g., the differences in quantum yields and switching times. Here we report density-functional-based simulations for the rhodopsin-based molecule 4-[4-methylbenzylidene]-5-p-tolyl-3,4-dihydro-2H-pyrrole (MDP), synthesized by Sampedro et al We find that the photoisomerization quantum yields are remarkably high: 82% for cis-to-trans, and 68% for trans-to-cis. The lifetimes of the S1 excited state in cis-MDP in our calculations are in the range of 900-1800 fs, with a mean value of 1270 fs, while the range of times required for full cis-to-trans isomerization are 1100-2000 fs, with a mean value of 1530 fs. In trans-MDP, the calculated S1 excited state lifetimes are 860-2140 fs, with a mean value of 1330 fs, and with the full trans-to-cis isomerization completed about 200 fs later. In both cases, the dominant reaction mechanism is rotation around the central C=C bond (connected to the pyrroline ring), and de-excitation occurs at an avoided crossing between the ground state and the lowest singlet state, near the midpoint of the rotational pathway. Perhaps remarkably, but apparently because of electrostatic repulsion, the direction of rotation is the same for both reactions.

  4. Determination of photoluminescence quantum yields of scattering media with an integrating sphere: direct and indirect illumination.

    PubMed

    Würth, Christian; Resch-Genger, Ute

    2015-06-01

    The ever-increasing use of fluorescent nanomaterials and micrometer-sized beads in the life and material sciences requires reliable procedures for the measurement of the key performance parameter fluorescence quantum yield (Φf) of scattering particle dispersions and reference systems to evaluate the performance of such measurements. This encouraged us to systematically study, both theoretically and experimentally, the optical determination of photoluminescent quantum yield as a function of the scattering and absorption properties of the sample and the illumination geometry with an integrating sphere method. The latter included measurements with a direct and an indirect illumination. As a representative and easy-to-prepare reference system, we used ethanolic dispersions of 250 nm sized silica particles and the dye rhodamine 101 and systematically varied the concentration of the dye and particles within the typical ranges of spectroscopic and (bio)analytical applications of fluorescent nanomaterials. Based on our measurements, we recommend indirect sample illumination geometry for the accurate measurement of Φf of samples with low or unknown absorption and high scattering coefficients such as dispersions of luminescent particles or fluorescent reporters in biological matrices. This finding is of utmost relevance for all (bio)analytical applications of fluorescent nanomaterials ranging from particle labels and probes over assay platforms to safety barcodes. PMID:25955619

  5. Photophysics of protoporphyrin ions in vacuo: Triplet-state lifetimes and quantum yields

    NASA Astrophysics Data System (ADS)

    Calvo, M. Reyes; Andersen, Jens Ulrik; Hvelplund, Preben; Nielsen, Steen Brøndsted; Pedersen, Ulrik V.; Rangama, Jimmy; Tomita, Shigeo; Forster, James S.

    2004-03-01

    Lifetimes of triplet-state molecules and triplet quantum yields are important parameters in photobiology as they determine the generation of singlet-oxygen upon irradiation with visible light. Here we report lifetimes of protoporphyrin IX (pp) in vacuo measured in an ion storage ring. We find that after 532 nm photon absorption, pp- (free base and negatively charged carboxylate) and pp+ (single protonation of ring nitrogen) have triplet-state lifetimes of 12 and 6 ms, respectively. After 415 or 390 nm absorption the lifetime of the anion is shorter (1.5 and 0.6 ms) as expected from the increase in temperature. Triplet quantum yields of pp- and pp+ are similar, 0.6-0.7, close to values reported for the free base and monocation in solution. The other channel, direct decay to the electronic ground state and subsequent dissociation of vibrationally excited ions, is much faster than triplet-singlet intersystem crossing. We measured lifetimes of 63 μs, 96 μs, and 0.3 ms after 390, 415, and 532 nm excitation, respectively. A fit of a statistical model to the pp- decay results in an Arrhenius activation energy of 0.5±0.2 eV for CO2 loss and a low preexponential factor (106-1010 s-1), indicative of an entropic barrier.

  6. Comparison of methods and achievable uncertainties for the relative and absolute measurement of photoluminescence quantum yields.

    PubMed

    Würth, Christian; Grabolle, Markus; Pauli, Jutta; Spieles, Monika; Resch-Genger, Ute

    2011-05-01

    The photoluminescence quantum yield (Φ(f)) that presents a direct measure for the efficiency of the conversion of absorbed photons into emitted photons is one of the spectroscopic key parameters of functional fluorophores. It determines the suitability of such materials for applications in, for example, (bio)analysis, biosensing, and fluorescence imaging as well as as active components in optical devices. The reborn interest in accurate Φ(f) measurements in conjunction with the controversial reliability of reported Φ(f) values of many common organic dyes encouraged us to compare two relative and one absolute fluorometric method for the determination of the fluorescence quantum yields of quinine sulfate dihydrate, coumarin 153, fluorescein, rhodamine 6G, and rhodamine 101. The relative methods include the use of a chain of Φ(f) transfer standards consisting of several "standard dye" versus "reference dye" pairs linked to a golden Φ(f) standard that covers the ultraviolet and visible spectral region, and the use of different excitation wavelengths for standard and sample, respectively. Based upon these measurements and the calibration of the instruments employed, complete uncertainty budgets for the resulting Φ(f) values are derived for each method, thereby providing evaluated standard operation procedures for Φ(f) measurements and, simultaneously, a set of assessed Φ(f) standards. PMID:21473570

  7. Solvent effect on the relative quantum yield and fluorescence quenching of 2DAM.

    PubMed

    Nagaraja, D; Melavanki, R M; Patil, N R; Kusanur, R A

    2014-09-15

    The relative quantum yield of diethyl 2-acetamido-2-((3-oxo-3H-benzo[f]chromen-1-yl)methyl)malonate [2DAM] is estimated using single point method with quinine sulfate as standard reference. The quantum yield varies between 0.1161 and 0.3181 depending on the nature of the solvent. The rates of radiative and non radiative decay constants are also calculated. The fluorescence quenching of [2DAM] by aniline is studied at room temperature, by steady state, in five different solvents namely acetonitrile (AN), 1,4 dioxane (DX), 1,2 dichloroethane (DCE), tetrahydrofuran (THF) and toluene (TOL), in order to explore various possible quenching mechanisms. The experimental results show a positive deviation in Stern Volmer plots for all solvents. Various parameters for the quenching process are determined by ground state complex, sphere of action static quenching model and finite sink approximation model. The magnitudes of these rate parameters indicate that positive deviation in the Stern Volmer (SV) plot is due to both static and dynamic processes. Further, finite sink approximation model is used to check whether these bimolecular reactions were diffusion limited or not. The values of distance parameter R' and diffusion co efficient D are determined and then compared with the values of encounter distance R and diffusion coefficient D calculated using Stokes-Einstein equation. PMID:24769383

  8. Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Yang, Jian Hai; Zeng, Hai Bo; Chen, Yong Mei; Yang, Sheng Chun; Wu, Chao; Zeng, Hao; Yoshihito, Osada; Zhang, Qiqing

    2016-07-01

    In this contribution, we have shown that the organic fluorophores, 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-3,7-dicarboxylic acid (TPDCA) and 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-7-carboxylic acid (TPCA), are the main ingredients and fluorescence origins of N,S-CDs via systematic analyses. It inspires us to deeply analyze and understand the fluorescence origins of carbon dots with high fluorescence quantum yields, which will expand their applications.In this contribution, we have shown that the organic fluorophores, 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-3,7-dicarboxylic acid (TPDCA) and 5-oxo-3,5-dihydro-2H-thiazolo [3,2-a] pyridine-7-carboxylic acid (TPCA), are the main ingredients and fluorescence origins of N,S-CDs via systematic analyses. It inspires us to deeply analyze and understand the fluorescence origins of carbon dots with high fluorescence quantum yields, which will expand their applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00451b

  9. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles

    NASA Astrophysics Data System (ADS)

    Boyer, John-Christopher; van Veggel, Frank C. J. M.

    2010-08-01

    In this communication we describe a technique for measuring the absolute quantum yields (QYs) of upconverting nanomaterials based on the use of a commercially available fluorimeter and an integrating sphere. Using this setup, we have successfully acquired luminescence efficiency data (pump laser, absorbed pump, and visible emitted intensities) for lanthanide-doped upconverting nanoparticles. QYs in the range of 0.005% to 0.3% were measured for several NaYF4: 2% Er3+, 20% Yb3+ nanoparticles with particle sizes ranging from 10 to 100 nm while a QY of 3% was measured for a bulk sample.In this communication we describe a technique for measuring the absolute quantum yields (QYs) of upconverting nanomaterials based on the use of a commercially available fluorimeter and an integrating sphere. Using this setup, we have successfully acquired luminescence efficiency data (pump laser, absorbed pump, and visible emitted intensities) for lanthanide-doped upconverting nanoparticles. QYs in the range of 0.005% to 0.3% were measured for several NaYF4: 2% Er3+, 20% Yb3+ nanoparticles with particle sizes ranging from 10 to 100 nm while a QY of 3% was measured for a bulk sample. Electronic supplementary information (ESI) available: Experimental details, powder XRDs and TEM micrographs of the samples. See DOI: 10.1039/c0nr00253d

  10. Montelukast photodegradation: elucidation of Ф-order kinetics, determination of quantum yields and application to actinometry.

    PubMed

    Maafi, Mounir; Maafi, Wassila

    2014-08-25

    A recently developed Ф-order semi-emperical integrated rate-law for photoreversible AB(2Ф) reactions has been successfully applied to investigate Montelukast sodium (Monte) photodegradation kinetics in ethanol. The model equations also served to propose a new stepwise kinetic elucidation method valid for any AB(2Ф) system and its application to the determination of Monte's forward (Ф(λ(irr))(A-->B)) and reverse (Ф(λ(irr))(B-->A)) quantum yields at various irradiation wavelengths. It has been found that Ф(λ(irr))(A-->B) undergoes a 15-fold increase with wavelength between 220 and 360 nm, with the spectral section 250-360 nm representing Monte effective photodegradation causative range. The reverse quantum yield values were generally between 12 and 54% lower than those recorded for Ф(λ(irr))(A-->B), with the trans-isomer (Monte) converting almost completely to its cis-counterpart at high irradiation wavelengths. Furthermore, the potential use of Monte as an actinometer has been investigated, and an actinometric method was proposed. This study demonstrated the usefulness of Monte for monochromatic light actinometry for the dynamic range 258-380 nm. PMID:24835854

  11. Solvent effect on the relative quantum yield and fluorescence quenching of a newly synthesized coumarin derivative.

    PubMed

    Nagaraja, D; Melavanki, R M; Patil, N R; Geethanjali, H S; Kusanur, R A

    2015-08-01

    We estimated the relative florescence quantum yield (Φ) of 8-methoxy-3-[1-(4,5-dicarbomethoxy-1,2,3-triazoloacetyl)]coumarin [8MDTC] using a single-point method with quinine sulfate in 0.1 M of sulfuric acid used as a standard reference. The fluorescence lifetimes, radiative and non-radiative decay rate constants are calculated. Relative quantum yields were found to be less in the non-polar solvents, indicating that the solute exhibits less fluorescence in a non-polar environment. The fluorescence quenching of [8MDTC] by aniline was studied at room temperature by examining the steady state in five different solvents in order to explore various possible quenching mechanisms. The experimental results show a positive deviation in Stern-Volmer plots in all solvents. Ground state complex and sphere of action static quenching models were used to interpret the results. Many quenching rate parameters were calculated using these models. The values of these parameters suggest that the sphere of action static quenching model agrees well with the experimental results. Further, a finite sink approximation model was used to check whether these bimolecular reactions were diffusion limited or not. The values of the distance parameter R' and the diffusion coefficient D were determined and are compared with the values of the encounter distance R and diffusion coefficient D calculated using the Stokes-Einstein equation. PMID:25214175

  12. Solvent effect on the relative quantum yield and fluorescence quenching of 2DAM

    NASA Astrophysics Data System (ADS)

    Nagaraja, D.; Melavanki, R. M.; Patil, N. R.; Kusanur, R. A.

    2014-09-01

    The relative quantum yield of diethyl 2-acetamido-2-((3-oxo-3H-benzo[f]chromen-1-yl)methyl) malonate [2DAM] is estimated using single point method with quinine sulfate as standard reference. The quantum yield varies between 0.1161 and 0.3181 depending on the nature of the solvent. The rates of radiative and non radiative decay constants are also calculated. The fluorescence quenching of [2DAM] by aniline is studied at room temperature, by steady state, in five different solvents namely acetonitrile (AN), 1,4 dioxane (DX), 1,2 dichloroethane (DCE), tetrahydrofuran (THF) and toluene (TOL), in order to explore various possible quenching mechanisms. The experimental results show a positive deviation in Stern Volmer plots for all solvents. Various parameters for the quenching process are determined by ground state complex, sphere of action static quenching model and finite sink approximation model. The magnitudes of these rate parameters indicate that positive deviation in the Stern Volmer (SV) plot is due to both static and dynamic processes. Further, finite sink approximation model is used to check whether these bimolecular reactions were diffusion limited or not. The values of distance parameter R‧ and diffusion co efficient D are determined and then compared with the values of encounter distance R and diffusion coefficient D calculated using Stokes-Einstein equation.

  13. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  14. Effective dynamics in Bianchi type II loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Montoya, Edison

    2012-05-01

    We numerically investigate the solutions to the effective equations of the Bianchi II model within the “improved” loop quantum cosmology dynamics. The matter source is a massless scalar field. We perform a systematic study of the space of solutions, and focus on the behavior of several geometrical observables. We show that the big bang singularity is replaced by a bounce and the pointlike singularities do not saturate the energy density bound. There are up to three directional bounces in the scale factors, one global bounce in the expansion, the shear presents up to four local maxima and can be zero at the bounce. This allows for solutions with density larger than the maximal density for the isotropic and Bianchi I cases. The asymptotic behavior is shown to behave like that of a Bianchi I model, and the effective solutions connect anisotropic solutions even when the shear is zero at the bounce. All known facts of Bianchi I are reproduced. In the “vacuum limit,” solutions are such that almost all the dynamics is due to the anisotropies. Since Bianchi II plays an important role in the Bianchi IX model and the Belinskii, Khalatnikov, Lifshitz conjecture, our results can provide an intuitive understanding of the behavior in the vicinity of general spacelike singularities, when loop-geometric corrections are present.

  15. Effect of PMMA impregnation on the fluorescence quantum yield of sol-gel glasses doped with quinine sulfate

    NASA Astrophysics Data System (ADS)

    Meneses-Nava, M. A.; Barbosa-García, O.; Díaz-Torres, L. A.; Chávez-Cerda, S.; Torres-Cisneros, M.; King, T. A.

    2001-08-01

    The fluorescence quantum yield of quinine sulfate in sol-gel and PMMA impregnated glasses is measured. The observed quantum yield improvement in the sol-gel matrix, compared to ethanol, is interpreted as a reduction of non-radiative relaxation channels by isolation of the molecules by the cage of the glass. PMMA impregnated sol-gel glasses show an extra improvement of the fluorescence yield, which is interpreted as a reduction of the free space and the rigid fixation of the molecules to the matrix.

  16. SU-E-T-191: First Principle Calculation of Quantum Yield in Photodynamic Therapy

    SciTech Connect

    Abolfath, R; Guo, F; Chen, Z; Nath, R

    2014-06-01

    Purpose: We present a first-principle method to calculate the spin transfer efficiency in oxygen induced by any photon fields especially in MeV energy range. The optical pumping is mediated through photosensitizers, e.g., porphyrin and/or ensemble of quantum dots. Methods: Under normal conditions, oxygen molecules are in the relatively non-reactive triplet state. In the presence of certain photosensitizer compounds such as porphyrins, electromagnetic radiation of specific wavelengths can excite oxygen to highly reactive singlet state. With selective uptake of photosensitizers by certain malignant cells, photon irradiation of phosensitized tumors can lead to selective killing of cancer cells. This is the basis of photodynamic therapy (PDT). Despite several attempts, PDT has not been clinically successful except in limited superficial cancers. Many parameters such as photon energy, conjugation with quantum dots etc. can be potentially combined with PDT in order to extend the role of PDT in cancer management. The key quantity for this optimization is the spin transfer efficiency in oxygen by any photon field. The first principle calculation model presented here, is an attempt to fill this need. We employ stochastic density matrix description of the quantum jumps and the rate equation methods in quantum optics based on Markov/Poisson processes and calculate time evolution of the population of the optically pumped singlet oxygen. Results: The results demonstrate the feasibility of our model in showing the dependence of the optical yield in generating spin-singlet oxygen on the experimental conditions. The adjustable variables can be tuned to maximize the population of the singlet oxygen hence the efficacy of the photodynamic therapy. Conclusion: The present model can be employed to fit and analyze the experimental data and possibly to assist researchers in optimizing the experimental conditions in photodynamic therapy.

  17. Effect of capsid proteins to ICG mass ratio on fluorescent quantum yield of virus-resembling optical nano-materials

    NASA Astrophysics Data System (ADS)

    Gupta, Sharad; Ico, Gerardo; Matsumura, Paul; Rao, A. L. N.; Vullev, Valentine; Anvari, Bahman

    2012-03-01

    We recently reported construction of a new type of optical nano-construct composed of genome-depleted plant infecting brome mosaic virus (BMV) doped with Indocyanine green (ICG), an FDA-approved chromophore. We refer to these constructs as optical viral ghosts (OVGs) since only the capsid protein (CP) subunits of BMV remain to encapsulate ICG. To utilize OVGs as effective nano-probes in fluorescence imaging applications, their fluorescence quantum yield needs to be maximized. In this study, we investigate the effect of altering the CP to ICG mass ratio on the fluorescent quantum yield of OVGs. Results of this study provide the basis for construction of OVGs with optimal amounts of CP and ICG to yield maximal fluorescence quantum yield.

  18. Foliar application of isopyrazam and epoxiconazole improves photosystem II efficiency, biomass and yield in winter wheat.

    PubMed

    Ajigboye, Olubukola O; Murchie, Erik; Ray, Rumiana V

    2014-09-01

    A range of fungicides including epoxiconazole, azoxystrobin and isopyrazam, were applied to winter wheat at GS 31/32 to determine their effect on photosystem II (PSII) efficiency, biomass and yield. Frequent, repeated measurements of chlorophyll fluorescence were carried on plants grown under different water regimes in controlled environment and in the field to establish the transiency of fluorescence changes in relation to fungicide application. Application of the succinate dehydrogenase inhibitor isopyrazam in a mixture with the triazole epoxiconazole increased PSII efficiency associated with a 28% increase in biomass in the controlled environment and 4% increase in grain yield in the field in the absence of disease pressure. Application of isopyrazam and epoxiconazole increased efficiency of PSII photochemistry (Fv'/Fm') as early as 4h following application associated with improved photosynthetic gas exchange and increased rates of electron transport. We reveal a strong, positive relationship between Fv'/Fm' and CO2 assimilation rate, stomatal conductance and transpiration rate in controlled environment and Fv'/Fm' detected just after anthesis on the flag leaf at GS 73 and grain yield in field. We conclude that application of a specific combination of fungicides with positive effects of plant physiology in the absence of disease pressure results in enhanced biomass and yield in winter wheat. Additionally, an accurate and frequent assessment of photosynthetic efficiency of winter wheat plants can be used to predict yield and biomass in the field. PMID:25175650

  19. Second Preliminary Report on X-ray Yields from OMEGA II Targets

    SciTech Connect

    Fournier, K B; May, M J; MacLaren, S A; Coverdale, C A; Davis, J F

    2006-08-28

    We present details about X-ray yields measured with LLNL and SNL diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields may be 35-40% too large. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the nearly sub-keV range. The PCD and HENWAY and DANTE numbers are compared. The time histories of the X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtering. There is a persistent disagreement between the H11 PCD and SNL PCD measured FWHM, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope, and which are not plotted here.

  20. Secondary Electron Yield and Groove Chamber Tests in PEP-II

    SciTech Connect

    Le Pimpec, F.; Kirby, R.E.; Markiewicz, Thomas W.; Pivi, MTF; Raubenheimer, Tor O.; Seeman, J.; Wang, L.; /SLAC

    2007-11-06

    Possible remedies for the electron cloud in positron damping ring (DR) of the International Linear Collider (ILC) includes thin-film coatings, surface conditioning, photon antechamber, clearing electrodes and chamber with grooves or slots [1]. We installed chambers in the PEP-II Low Energy Ring (LER) to monitor the secondary electron yield (SEY) of TiN, TiZrV (NEG) and technical accelerator materials under the effect of electron and photon conditioning in situ. We have also installed chambers with rectangular grooves in straight sections to test this possible mitigation technique. In this paper, we describe the ILC R&D ongoing effort at SLAC to reduce the electron cloud effect in the damping ring, the chambers installation in the PEP-II and latest results.

  1. Gold Doping of Silver Nanoclusters: A 26-Fold Enhancement in the Luminescence Quantum Yield.

    PubMed

    Soldan, Giada; Aljuhani, Maha A; Bootharaju, Megalamane S; AbdulHalim, Lina G; Parida, Manas R; Emwas, Abdul-Hamid; Mohammed, Omar F; Bakr, Osman M

    2016-05-01

    A high quantum yield (QY) of photoluminescence (PL) in nanomaterials is necessary for a wide range of applications. Unfortunately, the weak PL and moderate stability of atomically precise silver nanoclusters (NCs) suppress their utility. Herein, we accomplished a ≥26-fold PL QY enhancement of the Ag29 (BDT)12 (TPP)4 cluster (BDT: 1,3-benzenedithiol; TPP: triphenylphosphine) by doping with a discrete number of Au atoms, producing Ag29-x Aux (BDT)12 (TPP)4 , x=1-5. The Au-doped clusters exhibit an enhanced stability and an intense red emission around 660 nm. Single-crystal XRD, mass spectrometry, optical, and NMR spectroscopy shed light on the PL enhancement mechanism and the probable locations of the Au dopants within the cluster. PMID:27060602

  2. Surface structures for enhancement of quantum yield in broad spectrum emission nanocrystals

    DOEpatents

    Schreuder, Michael A.; McBride, James R.; Rosenthal, Sandra J.

    2014-07-22

    Disclosed are inorganic nanoparticles comprising a body comprising cadmium and/or zinc crystallized with selenium, sulfur, and/or tellurium; a multiplicity of phosphonic acid ligands comprising at least about 20% of the total surface ligand coverage; wherein the nanocrystal is capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the maximum absorbance wavelength of the first electromagnetic region is different from the maximum emission wavelength of the second electromagnetic region, thereby providing a Stokes shift of at least about 20 nm, wherein the second electromagnetic region comprises an at least about 100 nm wide band of wavelengths, and wherein the nanoparticle exhibits has a quantum yield of at least about 10%. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.

  3. Raman microscope and quantum yield studies on the primary photochemistry of A2-visual pigments.

    PubMed Central

    Barry, B; Mathies, R A; Pardoen, J A; Lugtenburg, J

    1987-01-01

    The 77-K resonance Raman vibrational spectrum of intact goldfish rod photoreceptors containing 3,4-dehydro (A2) retinal is dominated by scattering from the 9-cis component of the steady state at all excitation wavelengths. Intact goldfish photoreceptors were regenerated with an A1-retinal chromophore to determine whether this behavior is caused by the protein or the chromophore. The resulting Raman spectrum was typical of an A1-pigment exhibiting significant scattering from all three components of the steady state: rhodopsin, bathorhodopsin, and isorhodopsin. Furthermore, regeneration of bovine opsin with A2-retinal produces a characteristic "A2-Raman spectrum" that is dominated by scattering from the 9-cis pigment. We conclude that the differences between the Raman spectra of the A1-and A2-pigments are caused by some intrinsic difference in the photochemical properties of the retinal chromophores. To quantitate these observations, the 77-K adsorption spectra and the photochemical quantum yields (phi) of the native A2-goldfish and the regenerated A2-bovine pigments were measured. In the goldfish A2-pigment, the value of phi 4 (9-cis----trans) is 0.05; phi 3 (trans----9-cis) is 0.10; and phi 2 (trans----11-cis) is 0.35. By contrast, in the bovine A1-pigment, these quantum yields are 0.10, 0.053, and 0.50, respectively. The reduced value of phi 4 and the increased value of phi 3 in the goldfish pigment confirms that the 9-cis isomer is photochemically more stable in A2-pigments. PMID:3676440

  4. Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals.

    PubMed

    Senden, Tim; Rabouw, Freddy T; Meijerink, Andries

    2015-02-24

    Nanocrystals (NCs) doped with luminescent ions form an emerging class of materials. In contrast to excitonic transitions in semiconductor NCs, the optical transitions are localized and not affected by quantum confinement. The radiative decay rates of the dopant emission in NCs are nevertheless different from their bulk analogues due to photonic effects, and also the luminescence quantum yield (QY, important for applications) is affected. In the past, different theoretical models have been proposed to describe the photonic effects for dopant emission in NCs, with little experimental validation. In this work we investigate the photonic effects on the radiative decay rate of luminescent doped NCs using 4 nm LaPO4 NCs doped with Ce(3+) or Tb(3+) ions in different refractive index solvents and bulk crystals. We demonstrate that the measured influence of the refractive index on the radiative decay rate of the Ce(3+) emission, having near unity QY, is in excellent agreement with the theoretical nanocrystal-cavity model. Furthermore, we show how the nanocrystal-cavity model can be used to quantify the nonunity QY of Tb(3+)-doped LaPO4 NCs and demonstrate that, as a general rule, the QY is higher in media with higher refractive index. PMID:25584627

  5. Aeronomical determinations of the quantum yields of O (1S) and O (1D) from dissociative recombination of O2(+)

    NASA Technical Reports Server (NTRS)

    Yee, Jeng-Hwa; Abreu, Vincent J.; Colwell, William B.

    1989-01-01

    Data from the visible-airglow experiment on the Atmosphere Explorer-E satellite have been used to determine the quantum yields of O (1S) and O (1D) from the dissociative recombination of O2(+) based on a constant total recombination rate from each vibrational level. A range of values between 0.05 and 0.18 has been obtained for the quantum yield of O (1S) and shows a positive correlation with the extent of the vibrational excitation of O2(+). The quantum yield of O (1D) has been measured to be 0.9 + or - 0.2, with no apparent dependence on the vibrational distribution of O2(+).

  6. Quantum yield measurements of light-induced H₂ generation in a photosystem I-[FeFe]-H₂ase nanoconstruct.

    PubMed

    Applegate, Amanda M; Lubner, Carolyn E; Knörzer, Philipp; Happe, Thomas; Golbeck, John H

    2016-01-01

    The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSI(C13G)-1,8-octanedithiol-[FeFe]-H2ase(C97G) (PSI-H2ase) nanoconstruct. The theoretical quantum yield for the PSI-H2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI-H2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10-0.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7-10 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSI(C13G)-1,8-octanedithiol-PSIC13G (PSI-PSI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI-PSI conjugates as well as in producing PSI-H2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI-H2ase nanoconstructs from the unproductive PSI-PSI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI-H2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation. PMID:25527460

  7. Solution-based synthesis of high yield CZTS (Cu2ZnSnS4) spherical quantum dots

    NASA Astrophysics Data System (ADS)

    Rajesh, G.; Muthukumarasamy, N.; Subramanian, E. P.; Venkatraman, M. R.; Agilan, S.; Ragavendran, V.; Thambidurai, M.; Velumani, S.; Yi, Junsin; Velauthapillai, Dhayalan

    2015-01-01

    High yield CZTS quantum dots have been synthesized using simple precursors by chemical precipitation technique. Formation mechanism of CZTS spherical quantum dots also has been investigated. According to the mechanism, copper sulfide nuclei firstly forms, and serves as the starting point for the nucleation and growth of CZTS. X-ray diffraction pattern, X-ray photoelectron spectra (XPS) and Raman spectra reveals the formation of pure kesterite structure Cu2ZnSnS4 nanoparticles. HRTEM analysis reveals the formation of CZTS quantum dots with an average particle size of ∼8.3 nm. The elemental distribution of CZTS quantum dots studied using STEM elemental mapping reveals that Cu, Zn, Sn and S are present in the sample. The photoluminescence spectra of CZTS exhibit a broad red emission band at 657 nm. The optical band gap is shifted to the higher energy side and it shows the presence of quantum confinement effect.

  8. Absolute Photoluminescence Quantum Yields of IR-26 Dye, PbS, and PbSe Quantum Dots

    SciTech Connect

    Semonin, Octavi Escala; Johnson, Justin C; Luther, Joseph M; Midgett, Aaron G; Nozik, Arthur J; Beard, Matthew C

    2010-08-19

    In this study, we have directly measured the photoluminescence quantum yield (Φ{sub PL}) of IR-26 at a range of concentrations and the Φ{sub PL} of PbS and PbSe QDs for a range of sizes. We find that the Φ{sub PL} of IR-26 has a weak concentration dependence due to reabsorption, with a Φ{sub PL} of 0.048 ± 0.002% for low concentrations, lower than previous reports by a full order of magnitude. We also find that there is a dramatic size dependence for both PbS and PbSe QDs, with the smallest dots exhibiting a Φ{sub PL} in excess of 60%, while larger dots fall below 3%. A model, including nonradiative transition between electronic states and energy transfer to ligand vibrations, appears to explain this size dependence. These findings provide both a better characterization of photoluminescence for near-infrared emitters and some insight into how improved QDs can be developed.

  9. Final Report on X-ray Yields from OMEGA II Targets

    SciTech Connect

    Fournier, K B; May, M J; MacLaren, S A; Coverdale, C A; Davis, J F

    2007-06-20

    We present details about X-ray yields measured with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields are accurate to 10-15%. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the sub-keV range. The PCD and HENWAY and DANTE numbers are compared. The time histories of the moderately hard (h{nu} > 4 keV) X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtration. There is general agreement between the H11 PCD and SNL PCD measured FWHM except for two of the shorter-laser-pulse shots, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope. X-ray waveforms from target emission in two softer spectral bands are also shown; the X-ray emissions have increasing duration as the spectral content gets softer.

  10. Quantum yields and reaction times of photochromic diarylethenes: nonadiabatic ab initio molecular dynamics for normal- and inverse-type.

    PubMed

    Wiebeler, Christian; Schumacher, Stefan

    2014-09-11

    Photochromism is a light-induced molecular process that is likely to find its way into future optoelectronic devices. In further optimization of photochromic materials, light-induced conversion efficiencies as well as reaction times can usually only be determined once a new molecule was synthesized. Here we use nonadiabatic ab initio molecular dynamics to study the electrocyclic reaction of diarylethenes, comparing normal- and inverse-type systems. Our study highlights that reaction quantum yields can be successfully predicted in accord with experimental findings. In particular, we find that inverse-type diarylethenes show a significantly higher reaction quantum yield and cycloreversion on times typically as short as 100 fs. PMID:25140609

  11. Low-Pressure Photolysis of 2,3-Pentanedione in Air: Quantum Yields and Reaction Mechanism.

    PubMed

    Bouzidi, Hichem; Djehiche, Mokhtar; Gierczak, Tomasz; Morajkar, Pranay; Fittschen, Christa; Coddeville, Patrice; Tomas, Alexandre

    2015-12-24

    Dicarbonyls in the atmosphere mainly arise from secondary sources as reaction products in the degradation of a large number of volatile organic compounds (VOC). Because of their sensitivity to solar radiation, photodissociation of dicarbonyls can dominate the fate of these VOC and impact the atmospheric radical budget. The photolysis of 2,3-pentanedione (PTD) has been investigated for the first time as a function of pressure in a static reactor equipped with continuous wave cavity ring-down spectroscopy to measure the HO2 radical photostationary concentrations along with stable species. We showed that (i) Stern-Volmer plots are consistent with low OH-radical formation yields in RCO + O2 reactions, (ii) the decrease of the photodissociation rate due to pressure increase from 26 to 1000 mbar is of about 30%, (iii) similarly to other dicarbonyls, the Stern-Volmer analysis shows a curvature at the lower pressure investigated, which may be assigned to the existence of excited singlet and triplet PTD states, (iv) PTD photolysis at 66 mbar leads to CO2, CH2O and CO with yields of (1.16 ± 0.04), (0.33 ± 0.02) and (0.070 ± 0.005), respectively, with CH2O yield independent of pressure up to 132 mbar and CO yield in agreement with that obtained at atmospheric pressure by Bouzidi et al. (2014), and (v) the PTD photolysis mechanism remains unchanged between atmospheric pressure and 66 mbar. As a part of this work, the O2 broadening coefficient for the absorption line of HO2 radicals at 6638.21 cm(-1) has been determined (γO2 = 0.0289 cm(-1) atm(-1)). PMID:26608471

  12. Modeling of the redox state dynamics in photosystem II of Chlorella pyrenoidosa Chick cells and leaves of spinach and Arabidopsis thaliana from single flash-induced fluorescence quantum yield changes on the 100 ns-10 s time scale.

    PubMed

    Belyaeva, N E; Schmitt, F-J; Paschenko, V Z; Riznichenko, G Yu; Rubin, A B

    2015-08-01

    The time courses of the photosystem II (PSII) redox states were analyzed with a model scheme supposing a fraction of 11-25 % semiquinone (with reduced [Formula: see text]) RCs in the dark. Patterns of single flash-induced transient fluorescence yield (SFITFY) measured for leaves (spinach and Arabidopsis (A.) thaliana) and the thermophilic alga Chlorella (C.) pyrenoidosa Chick (Steffen et al. Biochemistry 44:3123-3132, 2005; Belyaeva et al. Photosynth Res 98:105-119, 2008, Plant Physiol Biochem 77:49-59, 2014) were fitted with the PSII model. The simulations show that at high-light conditions the flash generated triplet carotenoid (3)Car(t) population is the main NPQ regulator decaying in the time interval of 6-8 μs. So the SFITFY increase up to the maximum level [Formula: see text]/F 0 (at ~50 μs) depends mainly on the flash energy. Transient electron redistributions on the RC redox cofactors were displayed to explain the SFITFY measured by weak light pulses during the PSII relaxation by electron transfer (ET) steps and coupled proton transfer on both the donor and the acceptor side of the PSII. The contribution of non-radiative charge recombination was taken into account. Analytical expressions for the laser flash, the (3)Car(t) decay and the work of the water-oxidizing complex (WOC) were used to improve the modeled P680(+) reduction by YZ in the state S 1 of the WOC. All parameter values were compared between spinach, A. thaliana leaves and C. pyrenoidosa alga cells and at different laser flash energies. ET from [Formula: see text] slower in alga as compared to leaf samples was elucidated by the dynamics of [Formula: see text] fractions to fit SFITFY data. Low membrane energization after the 10 ns single turnover flash was modeled: the ∆Ψ(t) amplitude (20 mV) is found to be about 5-fold smaller than under the continuous light induction; the time-independent lumen pHL, stroma pHS are fitted close to dark estimates. Depending on the flash energy used at 1

  13. Aerogels from CdSe/CdS Nanorods with Ultra-long Exciton Lifetimes and High Fluorescence Quantum Yields.

    PubMed

    Sánchez-Paradinas, Sara; Dorfs, Dirk; Friebe, Sebastian; Freytag, Axel; Wolf, Andreas; Bigall, Nadja C

    2015-10-28

    Hydrogels are fabricated from CdSe/CdS seeded nanorod building blocks by the addition of hydrogen peroxide and converted to aerogels by supercritical drying. The aerogels show higher photoluminescence quantum yields and longer lifetimes than the hydrogels and the nanoparticle solutions. A model for this observation is derived. PMID:26332446

  14. ABSORBANCE, ABSORPTION COEFFICIENT, AND APPARENT QUANTUM YIELD: A COMMENT ON AMBIGUITY IN THE USE OF THESE OPTICAL CONCEPTS

    EPA Science Inventory

    Several important optical terms such as "absorbance" and "absorption coefficient" are frequently used ambiguously in the current peer-reviewed literature. Since they are important terms that are required to derive other quantities such as the "apparent quantum yield" of photoprod...

  15. PHYSIOLOGICAL LIMITATION OF PHYTOPLANKTON PHOTOSYNTHESIS IN THE EASTERN EQUATORIAL PACIFIC DETERMINED FROM VARIABILITY IN THE QUANTUM YIELD OF FLUORESCENCE

    EPA Science Inventory

    On a transect study in the eastern equatorial Pacific, from the high-nutrient, low-chlorophyll tropical waters to the oligotrophic subtropical waters, we determined the variability in the maximum change in the quantum yield of chlorophyll fluorescence by means of a fast repetitio...

  16. Laboratory Study of Nitrate Photolysis in Antarctic Snow: Quantum Yield and Isotope Effects

    NASA Astrophysics Data System (ADS)

    Meusinger, C.; Berhanu, T. A.; Erbland, J.; Jost, R.; Bhattacharya, S. K.; Savarino, J. P.; Johnson, M. S.

    2013-12-01

    Post-depositional processes alter the nitrate concentration and its isotopic composition in the top layers of snow at low snow accumulation sites, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. Photolysis of nitrate in the snowpack was shown to be the major nitrate loss mechanism from the snowpack. Here a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption by flushing the snow with pure N2 at 100 % humidity during irradiation with UV light from a Xenon lamp. A selection of UV filters allowed examination of the 200 and 300 nm absorption bands of nitrate and to emulate actinic fluxes similar to those in Dome C. Irradiated snow was sampled in 1 cm sections and analyzed for nitrate concentration and isotopic composition (δ15N, δ18O and Δ17O); the actinic flux was measured at similar sections in the snow. The quantum yield was observed to decrease from 0.44 to 0.05 within what corresponds to weeks of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate and one of trapped or buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NOx emissions may be increased significantly due to the observed quantum yield in this study influencing predicted boundary layer chemistry including ozone concentrations. An average photolytic isotopic fractionation of 15ɛ = -15×1.2 ‰ was found for the experiments without a wavelength filter. These results are ascribed to excitation of the 200 nm nitrate absorption band. Blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, showed a photolytic fractionation constant of 15ɛ = -47.9 × 6.8 ‰ which lies within the fractionation determined in the field

  17. High precision tracking and the measurement of B(Z yields b b )/B(Z yields hadrons) with the Mark II at the SLC

    SciTech Connect

    Schumm, B.A.

    1991-03-01

    During the 1990 run of the Mark II at the SLC, the precision tracking system achieved a preliminary impact parameter resolution of 35.8 {plus minus} 1.3 {mu}m for high momentum tracks, which is the quadrature sum of 25 {plus minus} 5 {mu}m of intrinsic resolution smearing dominated by misalignments and other geometrical effects. A method is proposed by which this system can be used to measure B(Z {yields} b{rvec b}/B(Z {yields} hadrons)) with minimal systematic error. 6 refs., 3 figs.

  18. Microstructural characterization of quantum dots with type-II band alignments

    NASA Astrophysics Data System (ADS)

    Sarney, W. L.; Little, J. W.; Svensson, S. P.

    2006-06-01

    We are investigating the structural, electrical, and infrared (IR) optical properties of a new material system comprising undoped self-assembled quantum dots having a type-II band alignment with the surrounding matrix. This materials system is fundamentally different from those using conventional type-I quantum dots that must be doped and that rely on intersubband transitions for IR photoresponse. Type-II quantum dots operate in the photovoltaic mode with IR photoresponse arising from electron-hole pair production involving three-dimensionally confined states in the dots and quantum well states in the matrix material. In this paper, we discuss the structural characterization of molecular beam epitaxy (MBE)-grown InSb quantum dots embedded in an In 0.53Ga 0.47As matrix lattice-matched to an InP substrate.

  19. White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis.

    PubMed

    Meiling, Till T; Cywiński, Piotr J; Bald, Ilko

    2016-01-01

    In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. PMID:27334409

  20. Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying

    NASA Astrophysics Data System (ADS)

    Joo, Jinmyoung; Defforge, Thomas; Loni, Armando; Kim, Dokyoung; Li, Z. Y.; Sailor, Michael J.; Gautier, Gael; Canham, Leigh T.

    2016-04-01

    The effect of supercritical drying (SCD) on the preparation of porous silicon (pSi) powders has been investigated in terms of photoluminescence (PL) efficiency. Since the pSi contains closely spaced and possibly interconnected Si nanocrystals (<5 nm), pore collapse and morphological changes within the nanocrystalline structure after common drying processes can affect PL efficiency. We report the highly beneficial effects of using SCD for preparation of photoluminescent pSi powders. Significantly higher surface areas and pore volumes have been realized by utilizing SCD (with CO2 solvent) instead of air-drying. Correspondingly, the pSi powders better retain the porous structure and the nano-sized silicon grains, thus minimizing the formation of non-radiative defects during liquid evaporation (air drying). The SCD process also minimizes capillary-stress induced contact of neighboring nanocrystals, resulting in lower exciton migration levels within the network. A significant enhancement of the PL quantum yield (>32% at room temperature) has been achieved, prompting the need for further detailed studies to establish the dominant causes of such an improvement.

  1. White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis

    NASA Astrophysics Data System (ADS)

    Meiling, Till T.; Cywiński, Piotr J.; Bald, Ilko

    2016-06-01

    In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst.

  2. Effects of inter-nanocrystal distance on luminescence quantum yield in ensembles of Si nanocrystals

    SciTech Connect

    Valenta, J. Greben, M.; Gutsch, S.; Hiller, D.; Zacharias, M.

    2014-12-15

    The absolute photoluminescence (PL) quantum yield (QY) of multilayers of Silicon nanocrystals (SiNCs) separated by SiO{sub 2} barriers were thoroughly studied as function of the barrier thickness, excitation wavelength, and temperature. By mastering the plasma-enhanced chemical vapor deposition growth, we produce a series of samples with the same size-distribution of SiNCs but variable interlayer barrier distance. These samples enable us to clearly demonstrate that the increase of barrier thickness from ∼1 to larger than 2 nm induces doubling of the PL QY value, which corresponds to the change of number of close neighbors in the hcp structure. The temperature dependence of PL QY suggests that the PL QY changes are due to a thermally activated transport of excitation into non-radiative centers in dark NCs or in the matrix. We estimate that dark NCs represent about 68% of the ensemble of NCs. The PL QY excitation spectra show no significant changes upon changing the barrier thickness and no clear carrier multiplication effects. The dominant effect is the gradual decrease of the PL QY with increasing excitation photon energy.

  3. White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis

    PubMed Central

    Meiling, Till T.; Cywiński, Piotr J.; Bald, Ilko

    2016-01-01

    In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (>1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. PMID:27334409

  4. Integrated semiconductor quantum dot scintillation detector: Ultimate limit for speed and light yield

    DOE PAGESBeta

    Oktyabrsky, Serge; Yakimov, Michael; Tokranov, Vadim; Murat, Pavel

    2016-03-30

    Here, a picosecond-range timing of charged particles and photons is a long-standing challenge for many high-energy physics, biophysics, medical and security applications. We present a design, technological pathway and challenges, and some properties important for realization of an ultrafast high-efficient room-temperature semiconductor scintillator based on self-assembled InAs quantum dots (QD) embedded in a GaAs matrix. Low QD density (<; 1015 cm-3), fast (~5 ps) electron capture, luminescence peak redshifted by 0.2-0.3 eV from GaAs absorption edge with fast decay time (0.5-1 ns) along with the efficient energy transfer in the GaAs matrix (4.2 eV/pair) allows for fabrication of a semiconductormore » scintillator with the unsurpassed performance parameters. The major technological challenge is fabrication of a large volume (> 1 cm3 ) of epitaxial QD medium. This requires multiple film separation and bonding, likely using separate epitaxial films as waveguides for improved light coupling. Compared to traditional inorganic scintillators, the semiconductor-QD based scintillators could have about 5x higher light yield and 20x faster decay time, opening a way to gamma detectors with the energy resolution better than 1% and sustaining counting rates MHz. Picosecond-scale timing requires segmented low-capacitance photodiodes integrated with the scintillator. For photons, the proposed detector inherently provides the depth-of-interaction information.« less

  5. Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging.

    PubMed

    Xu, Suying; Bai, Xilin; Ma, Jingwen; Xu, Minmin; Hu, Gaofei; James, Tony D; Wang, Leyu

    2016-08-01

    The use of fluorescence probes for biomedical imaging has attracted significant attention over recent years owing to their high resolution at cellular level. The probes are available in many formats including small particle size based imaging agents which are considered to be promising candidates, due to their excellent stabilities. Yet, concerns over the potential cytotoxicity effects of inorganic luminescent particles have led to questions about their suitability for imaging applications. Exploration of alternatives inspired us to use organic fluorophores with aggregation-induced emission (AIE), prepared by functionalizing the amine group on tetraphenylethene with 3,5-bis(trifluoromethyl)phenyl isocyanate. The as-synthesized novel AIE fluorophore (TPE-F) display enhanced quantum yield and longer lifetime as compared with its counterparts (4,4',4″,4‴-(ethene-1,1,2,2-tetrayl)tetraaniline, TPE-AM). Furthermore, the TPE-F was encapsulated into small-size organic nanoparticles (NPs; dynamic light scattering size, ∼10 nm) with polysuccinimide (PSI). The biocompatibility, excellent stability, bright fluorescence, and selective cell targeting of these NPs enable the as-prepared TPE-F NPs to be suitable for specific fluorescence cell imaging. PMID:27349933

  6. Modern Quantum Field Theory II - Proceeeings of the International Colloquium

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.

    1995-08-01

    The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory

  7. Quantum energy inequalities and local covariance II: categorical formulation

    NASA Astrophysics Data System (ADS)

    Fewster, Christopher J.

    2007-11-01

    We formulate quantum energy inequalities (QEIs) in the framework of locally covariant quantum field theory developed by Brunetti, Fredenhagen and Verch, which is based on notions taken from category theory. This leads to a new viewpoint on the QEIs, and also to the identification of a new structural property of locally covariant quantum field theory, which we call local physical equivalence. Covariant formulations of the numerical range and spectrum of locally covariant fields are given and investigated, and a new algebra of fields is identified, in which fields are treated independently of their realisation on particular spacetimes and manifestly covariant versions of the functional calculus may be formulated.

  8. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield.

    PubMed

    Purchase, R L; de Groot, H J M

    2015-06-01

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m(-2) d(-1) for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum-classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics. We

  9. On the use of the thermal lens effect for measuring absolute luminescence quantum yields of transition metal complexes

    NASA Astrophysics Data System (ADS)

    Degen, Joachim; Reinecke, Klaus; Schmidtke, Hans-Herbert

    1992-05-01

    The thermal lens effect or thermal blooming of a laser beam passing through an absorbing medium is used to determine the fraction of absorbed laser power which is converted into heat. By this photocaloric method absolute luminescence quantum yields Φ can be evaluated covering the full range of possible Φ values. A check with organic standards for which quantum yields of 1, 0.52 and 0 are reported, supplies values of 0.99, 0.52 and 0.04, respectively. The sample of compounds [Ru(bipy) 3]X 2, X  Cl, ClO 4, and bipy  bipyridine, were studied using different concentrations in water and methanol solution at room temperature. The results strongly depend on the counter ion: for the Cl -- and (ClO 4) --salts quantum yields of Φ = 0.31 and 0.79, respectively, are obtained, which may be explained by different polarization conditions. The yields are, on the other hand, independent from the solvent and from the concentration, which was considered ranging from 10 -4 to 2.5 × 10 -5 M. Thermal blooming was also observed from [Ru(bipy) 3]Cl 2 contained in KBr pellets, measuring at various temperatures.

  10. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  11. Red Drop in the Quantum Yield of Fluorescence of Sonicated Algae

    PubMed Central

    Das, M.; Rabinowitch, E.; Szalay, L.

    1968-01-01

    The change of the quantum yield of fluorescence, Φ, with the frequency of exciting light, was investigated in Chlorella, Anacystis, and Porphyridium suspensions, and in sonicates from these cells prepared under aerobic and anaerobic conditions. In case of Chlorella, sonicates were made in acid and in alkaline media (pH 4.65 and 7.80). In the alkaline medium, a drop of Φ towards the longer waves was found to begin at 1.466 × 104 cm-1 (682 nm) in sonicates, and in suspension. In the acid medium, the drop began at 1.471 × 104 cm-1 (680 nm), 1.418 × 104 cm-1 (705 nm), and 1.389 × 104 cm-1 (720 nm) in suspension, anaerobic sonicate, and aerobic sonicate, respectively. The results indicate that the cause of the change in the red drop is preferential destruction of a long-wave component of chlorophyll a (such as Chl a 693). The amount of this component remaining after sonication is larger in alkaline than in acid sonicates. With Anacystis and Porphyridium, only alkaline suspensions (pH 7.80) could be used for sonication, because in acid medium, the phycobilin-chlorophyll complex is rapidly broken and phycobilin extracted from the cell. In Anacystis, the red drop begins at 1.562 × 104 cm-1 (640 nm) and 1.538 × 104 cm-1 (650 nm) in suspension and sonicate, respectively; in Porphyridium, it starts at 1.550 × 104 cm-1 (645 nm) in both cases. These results suggest that sonication in alkaline medium (pH 7.80) destroys some Chl a 693 in Anacystis, but not in Porphyridium. PMID:5679392

  12. Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics.

    PubMed

    Rodríguez, V D; Tikhomirov, V K; Méndez-Ramos, J; del-Castillo, J; Görller-Walrand, C

    2009-03-01

    A measurement of quantum yield of up-conversion luminescence has been done for the Er(3+)-doped transparent oxyfluoride glass-ceramics 32(SiO,)9(AlO1.5)31.5(CdF2)18.5(PbF2)5.5(ZnF2): 3.5(ErF3) mol%, where most of Er3+ dopants partition in 8 nm diameter nano-crystals Er10Pb25F65. The yield was found by newly proposed method using the pump power dependence of the resonant luminescence. The result of the measurement points out that a theoretical maximum of 50% may be reached for the up-conversion luminescence yield in this material. This high yield is shown to be due to low phonon energy and short inter-dopant distances in the nano-crystals. PMID:19435083

  13. Laser flash photolysis of ozone - O/1D/ quantum yields in the fall-off region 297-325 nm

    NASA Technical Reports Server (NTRS)

    Brock, J. C.; Watson, R. T.

    1980-01-01

    The wavelength dependence of the quantum yield for O(1D) production from ozone photolysis has been determined between 297.5 nm and 325 nm in order to resolve serious discrepancies among previous studies. The results of this investigation are compared to earlier work by calculating atmospheric production rate constants for O(1D). It is found that for the purpose of calculating this rate constant, there is now good agreement among three studies at 298 K. Furthermore, it appears that previous data on the temperature dependence of the O(1D) quantum yield fall-off is adequate for determining the vertical profile of the O(1D) production rate constant. Several experimental difficulties associated with using NO2(asterisk) chemiluminescence to monitor O(1D) have been identified.

  14. Rigidifying Fluorescent Linkers by Metal-Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement

    SciTech Connect

    Wei, ZW; Gu, ZY; Arvapally, RK; Chen, YP; McDougald, RN; Ivy, JF; Yakovenko, AA; Feng, DW; Omary, MA; Zhou, HC

    2014-06-11

    We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal-organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 +/- 0.5%) under Ar, representing ca. 3600 cm(-1) blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.

  15. Rigidifying Fluorescent Linkers by Metal–Organic Framework Formation for Fluorescence Blue Shift and Quantum Yield Enhancement

    SciTech Connect

    Wei, Zhangwen; Gu, Zhi-Yuan; Arvapally, Ravi K.; Chen, Ying-Pin; Ivy, Joshua F.; Yakovenko, Andrey A.; Feng, Dawei; Omary, Mohammad A.; Zhou, Hong-Cai

    2014-06-11

    We demonstrate that rigidifying the structure of fluorescent linkers by structurally constraining them in metal–organic frameworks (MOFs) to control their conformation effectively tunes the fluorescence energy and enhances the quantum yield. Thus, a new tetraphenylethylene-based zirconium MOF exhibits a deep-blue fluorescent emission at 470 nm with a unity quantum yield (99.9 ± 0.5%) under Ar, representing ca. 3600 cm⁻¹ blue shift and doubled radiative decay efficiency vs the linker precursor. An anomalous increase in the fluorescence lifetime and relative intensity takes place upon heating the solid MOF from cryogenic to ambient temperatures. The origin of these unusual photoluminescence properties is attributed to twisted linker conformation, intramolecular hindrance, and framework rigidity.

  16. Short-Term Flooding Effects on Gas Exchange and Quantum Yield of Rabbiteye Blueberry (Vaccinium ashei Reade) 1

    PubMed Central

    Davies, Frederick S.; Flore, James A.

    1986-01-01

    Roots of 1.5-year-old `Woodard' rabbiteye blueberry plants (Vaccinium ashei Reade) were flooded in containers or maintained at container capacity over a 5-day period. Carbon assimilation, and stomatal and residual conductances were monitored on one fully expanded shoot/plant using an open flow gas analysis system. Quantum yield was calculated from light response curves. Carbon assimilation and quantum yield of flooded plants decreased to 64 and 41% of control values, respectively, after 1 day of flooding and continued decreasing to 38 and 27% after 4 days. Stomatal and residual conductances to CO2 also decreased after 1 day of flooding compared with those of unflooded plants with residual conductance severely limiting carbon assimilation after 4 days of flooding. Stomatal opening occurred in 75 to 90 minutes and rate of opening was unaffected by flooding. PMID:16664791

  17. Calculated quantum yield of photosynthesis of phytoplankton in the Marine Light-Mixed Layers (59 deg N, 21 deg W)

    NASA Technical Reports Server (NTRS)

    Carder, K. L.; Lee, Z. P.; Marra, John; Steward, R. G.; Perry, M. J.

    1995-01-01

    The quantum yield of photosynthesis (mol C/mol photons) was calculated at six depths for the waters of the Marine Light-Mixed Layer (MLML) cruise of May 1991. As there were photosynthetically available radiation (PAR) but no spectral irradiance measurements for the primary production incubations, three ways are presented here for the calculation of the absorbed photons (AP) by phytoplankton for the purpose of calculating phi. The first is based on a simple, nonspectral model; the second is based on a nonlinear regression using measured PAR values with depth; and the third is derived through remote sensing measurements. We show that the results of phi calculated using the nonlinear regreesion method and those using remote sensing are in good agreement with each other, and are consistent with the reported values of other studies. In deep waters, however, the simple nonspectral model may cause quantum yield values much higher than theoretically possible.

  18. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    NASA Astrophysics Data System (ADS)

    Meusinger, Carl; Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel; Johnson, Matthew S.

    2014-06-01

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude - apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix - constituting the largest uncertainty in models of snowpack NOx emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NOx emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ˜1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  19. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry.

    PubMed

    Meusinger, Carl; Berhanu, Tesfaye A; Erbland, Joseph; Savarino, Joel; Johnson, Matthew S

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude - apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix - constituting the largest uncertainty in models of snowpack NOx emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NOx emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study. PMID:24985636

  20. Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome

    PubMed Central

    Toh, K. C.; Stojković, Emina A.; van Stokkum, Ivo H. M.; Moffat, Keith; Kennis, John T. M.

    2010-01-01

    Phytochromes are red-light photoreceptor proteins that regulate a variety of responses and cellular processes in plants, bacteria, and fungi. The phytochrome light activation mechanism involves isomerization around the C15═C16 double bond of an open-chain tetrapyrrole chromophore, resulting in a flip of its D-ring. In an important new development, bacteriophytochrome (Bph) has been engineered for use as a fluorescent marker in mammalian tissues. Here we report that an unusual Bph, RpBphP3 from Rhodopseudomonas palustris, denoted P3, is fluorescent. This Bph modulates synthesis of light-harvesting complex in combination with a second Bph exhibiting classical photochemistry, RpBphP2, denoted P2. We identify the factors that determine the fluorescence and isomerization quantum yields through the application of ultrafast spectroscopy to wild-type and mutants of P2 and P3. The excited-state lifetime of the biliverdin chromophore in P3 was significantly longer at 330–500 ps than in P2 and other classical phytochromes and accompanied by a significantly reduced isomerization quantum yield. H/D exchange reduces the rate of decay from the excited state of biliverdin by a factor of 1.4 and increases the isomerization quantum yield. Comparison of the properties of the P2 and P3 variants shows that the quantum yields of fluorescence and isomerization are determined by excited-state deprotonation of biliverdin at the pyrrole rings, in competition with hydrogen-bond rupture between the D-ring and the apoprotein. This work provides a basis for structure-based conversion of Bph into an efficient near-IR fluorescent marker. PMID:20435909

  1. Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry

    SciTech Connect

    Meusinger, Carl; Johnson, Matthew S.; Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joel

    2014-06-28

    Post-depositional processes alter nitrate concentration and nitrate isotopic composition in the top layers of snow at sites with low snow accumulation rates, such as Dome C, Antarctica. Available nitrate ice core records can provide input for studying past atmospheres and climate if such processes are understood. It has been shown that photolysis of nitrate in the snowpack plays a major role in nitrate loss and that the photolysis products have a significant influence on the local troposphere as well as on other species in the snow. Reported quantum yields for the main reaction spans orders of magnitude – apparently a result of whether nitrate is located at the air-ice interface or in the ice matrix – constituting the largest uncertainty in models of snowpack NO{sub x} emissions. Here, a laboratory study is presented that uses snow from Dome C and minimizes effects of desorption and recombination by flushing the snow during irradiation with UV light. A selection of UV filters allowed examination of the effects of the 200 and 305 nm absorption bands of nitrate. Nitrate concentration and photon flux were measured in the snow. The quantum yield for loss of nitrate was observed to decrease from 0.44 to 0.003 within what corresponds to days of UV exposure in Antarctica. The superposition of photolysis in two photochemical domains of nitrate in snow is proposed: one of photolabile nitrate, and one of buried nitrate. The difference lies in the ability of reaction products to escape the snow crystal, versus undergoing secondary (recombination) chemistry. Modeled NO{sub x} emissions may increase significantly above measured values due to the observed quantum yield in this study. The apparent quantum yield in the 200 nm band was found to be ∼1%, much lower than reported for aqueous chemistry. A companion paper presents an analysis of the change in isotopic composition of snowpack nitrate based on the same samples as in this study.

  2. Isotropic loop quantum cosmology with matter. II. The Lorentzian constraint

    NASA Astrophysics Data System (ADS)

    Hinterleitner, Franz; Major, Seth

    2003-12-01

    The Lorentzian Hamiltonian constraint is solved for isotropic loop quantum cosmology coupled to a massless scalar field. As in the Euclidean case, the discreteness of quantum geometry removes the classical singularity from the quantum Friedmann models. In spite of the absence of the classical singularity, a modified DeWitt initial condition is incompatible with a late-time smooth behavior. Further, the smooth behavior is recovered only for positive or negatives times but not both. An important feature, which is shared with the Euclidean case, is a minimal initial energy of the order of the Planck energy required for the system to evolve dynamically. By forming wave packets of the matter field, an explicit evolution in terms of an internal time is obtained.

  3. Supercurrent in the quantum Hall regime, part II

    NASA Astrophysics Data System (ADS)

    Amet, Francois; Ke, Chung Ting; Borzenets, Ivan; Wang, Jiyingmei; Watanabe, Kenji; Taniguchi, Takashi; Deacon, Russel; Yamamoto, Michihisa; Bomze, Yuriy; Tarucha, Seigo; Finkelstein, Gleb

    A novel promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall effect. Despite this potential, signatures of superconductivity in the quantum Hall regime remain scarce, and a superconducting current through a Landau-quantized two-dimensional electron gas has so far eluded experimental observation. High-mobility graphene/BN heterostructures exhibit the quantum Hall effect at relatively low field and are therefore particularly suitable to study the fate of the Josephson effect in that regime. Here, we report the observation of a superconducting current through graphene at fields as high as 2 Tesla. In that regime, the normal-state resistance is quantized but pockets of superconductivity still persist at small current bias. We will describe their bias and temperature dependence. Magnetic field interference patterns in the supercurrent inform on possible mechanisms mediating this supercurrent.

  4. Type II InAs/GaAsSb quantum dots: Highly tunable exciton geometry and topology

    SciTech Connect

    Llorens, J. M.; Wewior, L.; Cardozo de Oliveira, E. R.; Alén, B.; Ulloa, J. M.; Utrilla, A. D.; Guzmán, A.; Hierro, A.

    2015-11-02

    External control over the electron and hole wavefunctions geometry and topology is investigated in a p-i-n diode embedding a dot-in-a-well InAs/GaAsSb quantum structure with type II band alignment. We find highly tunable exciton dipole moments and largely decoupled exciton recombination and ionization dynamics. We also predicted a bias regime where the hole wavefunction topology changes continuously from quantum dot-like to quantum ring-like as a function of the external bias. All these properties have great potential in advanced electro-optical applications and in the investigation of fundamental spin-orbit phenomena.

  5. Quantum yields and energy partitioning in the ultraviolet photodissociation of 1,2 dibromo-tetrafluoroethane (Halon-2402)

    NASA Astrophysics Data System (ADS)

    Zou, Peng; McGivern, W. Sean; Sorkhabi, Osman; Suits, Arthur G.; North, Simon W.

    2000-11-01

    The photodissociation of 1,2 dibromo-tetrafluoroethane (Halon-2402) has been investigated at 193 nm using photofragment translational spectroscopy with vacuum ultraviolet ionization and at 193, 233, and 266 nm using state-selected translational spectroscopy with resonance-enhanced multiphoton ionization. The product branching ratios, angular distributions, and translational energy distributions were measured at these wavelengths, providing insight into the ultraviolet photodissociation dynamics of CF2BrCF2Br. The total bromine atom quantum yields were found to be 1.9±0.1 at both 193 and 233 nm and 1.4±0.1 at 266 nm. The first C-Br bond dissociation energy was determined to be 69.3 kcal/mol from ab initio calculations. The second C-Br bond dissociation energy was determined to be 16±2 kcal/mol by modeling of the bromine quantum yield. In addition, variational Rice-Ramsperger-Kassel-Marcus theory was used to calculate the secondary dissociation rates for a range of dissociation energies above threshold. These results suggest that CF2CF2Br photofragments with sufficient internal energies will undergo secondary dissociation prior to collisional stabilization under atmospheric conditions. Based on the measured translational energy distributions and product branching ratios, a model is proposed to describe the wavelength-dependent bromine quantum yield and the implications of these results to atmospheric chemistry are discussed.

  6. Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions.

    PubMed

    Würth, Christian; Lochmann, Cornelia; Spieles, Monika; Pauli, Jutta; Hoffmann, Katrin; Schüttrigkeit, Tanja; Franzl, Thomas; Resch-Genger, Ute

    2010-07-01

    The commercial availability of stand-alone setups for the determination of absolute photoluminescence quantum yields (Phi(f)) in conjunction with the increasing use of integrating sphere accessories for spectrofluorometers is expected to have a considerable influence not only on the characterization of chromophore systems for use in optical and opto-electronic devices, but also on the determination of this key parameter for (bio)analytically relevant dyes and functional luminophores. Despite the huge potential of systems measuring absolute Phi(f) values and the renewed interest in dependable data, evaluated protocols for even the most elementary case, the determination of the fluorescence quantum yield of transparent dilute solutions of small organic dyes with integrating sphere methods, are still missing. This encouraged us to evaluate the performance and sources of uncertainty of a simple commercial integrating sphere setup with dilute solutions of two of the best characterized fluorescence quantum yield standards, quinine sulfate dihydrate and rhodamine 101, strongly differing in spectral overlap between absorption and emission. Special attention is dedicated to illustrate common pitfalls of this approach, thereby deriving simple procedures to minimize measurement uncertainties and improve the comparability of data for the broad community of users of fluorescence techniques. PMID:20615286

  7. Quantum dynamics of hydrogen atoms on graphene. II. Sticking

    SciTech Connect

    Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene

    2015-09-28

    Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.

  8. Extreme ultraviolet photoresists: Film quantum yields and LER of thin film resists

    NASA Astrophysics Data System (ADS)

    Higgins, Craig

    Extreme ultraviolet (EUV) is the leading candidate for a commercially viable solution for next generation lithography. The development of EUV chemically amplified photoresists and processes are critical to the future lithographic requirements of the microelectronics industry. To meet the necessary requirements for both integrated circuit (IC) specifications and cost, the resolution, line-edge roughness (LER) and sensitivity all need to be reduced. Unfortunately, a fundamental trade-off has been observed between these three crucial elements. We have predicted that the best way to obtain the required resolution, line-edge roughness and sensitivity (RLS) is to create more acid molecules per photon absorbed. This quantity is referred to as the film quantum yield (FQY). Utilizing increased photoacid generator (PAG) concentrations, the impact of FQY on the overall resist lithographic performance is characterized. However, despite significant improvements in RLS performance, LER continues to fall significantly short of industry requirements. Lithographic exposures have shown that LER increases significantly as film thickness decreases (< 50 nm) for 193 nm and EUV wavelengths. LER degradation is a significant problem for future technology nodes where film thicknesses of 50 nm or less will be necessary to help mitigate pattern collapse. Understanding the mechanistic cause of the thickness dependent LER degradation is therefore very critical for future needs of the lithographic community. Investigations highlight key concerns related to the image degradation of ultra-thin film photoresists (< 50 nm) with the aim of better understanding the correlation between resist LER, acid diffusion and glass transition temperature. Meeting the required LER will become increasingly difficult for future technology nodes due to thin film effects. Therefore, alternative processes and LER mitigation techniques are likely required for the implementation of EUV. Studies have demonstrated that

  9. Enhanced upconversion quantum yield near spherical gold nanoparticles - a comprehensive simulation based analysis.

    PubMed

    Fischer, Stefan; Kumar, Deepu; Hallermann, Florian; von Plessen, Gero; Goldschmidt, Jan Christoph

    2016-03-21

    Photon upconversion is promising for many applications. However, the potential of lanthanide doped upconverter materials is typically limited by low absorption coefficients and low upconversion quantum yields (UCQY) under practical irradiance of the excitation. Modifying the photonic environment can strongly enhance the spontaneous emission and therefore also the upconversion luminescence. Additionally, the non-linear nature of the upconversion processes can be exploited by an increased local optical field introduced by photonic or plasmonic structures. In combination, both processes may lead to a strong enhancement of the UCQY at simultaneously lower incident irradiances. Here, we use a comprehensive 3D computation-based approach to investigate how absorption, upconversion luminescence, and UCQY of an upconverter are altered in the vicinity of spherical gold nanoparticles (GNPs). We use Mie theory and electrodynamic theory to compute the properties of GNPs. The parameters obtained in these calculations were used as input parameters in a rate equation model of the upconverter β-NaYF4: 20% Er3+. We consider different diameters of the GNP and determine the behavior of the system as a function of the incident irradiance. Whether the UCQY is increased or actually decreased depends heavily on the position of the upconverter in respect to the GNP. Whereas the upconversion luminescence enhancement reaches a maximum around a distance of 35 nm to the surface of the GNP, we observe strong quenching of the UCQY for distances <40 nm and a UCQY maximum around 125 to 150 nm, in the case of a 300 nm diameter GNP. Hence, the upconverter material needs to be placed at different positions, depending on whether absorption, upconversion luminescence, or UCQY should be maximized. At the optimum position, we determine a maximum UCQY enhancement of 117% for a 300 nm diameter GNP at a low incident irradiance of 0.01 W/cm2. As the irradiance increases, the

  10. Biosolar cells: global artificial photosynthesis needs responsive matrices with quantum coherent kinetic control for high yield

    PubMed Central

    Purchase, R. L.; de Groot, H. J. M.

    2015-01-01

    This contribution discusses why we should consider developing artificial photosynthesis with the tandem approach followed by the Dutch BioSolar Cells consortium, a current operational paradigm for a global artificial photosynthesis project. We weigh the advantages and disadvantages of a tandem converter against other approaches, including biomass. Owing to the low density of solar energy per unit area, artificial photosynthetic systems must operate at high efficiency to minimize the land (or sea) area required. In particular, tandem converters are a much better option than biomass for densely populated countries and use two photons per electron extracted from water as the raw material into chemical conversion to hydrogen, or carbon-based fuel when CO2 is also used. For the average total light sum of 40 mol m−2 d−1 for The Netherlands, the upper limits are many tons of hydrogen or carbon-based fuel per hectare per year. A principal challenge is to forge materials for quantitative conversion of photons to chemical products within the physical limitation of an internal potential of ca 2.9 V. When going from electric charge in the tandem to hydrogen and back to electricity, only the energy equivalent to 1.23 V can be stored in the fuel and regained. A critical step is then to learn from nature how to use the remaining difference of ca 1.7 V effectively by triple use of one overpotential for preventing recombination, kinetic stabilization of catalytic intermediates and finally generating targeted heat for the release of oxygen. Probably the only way to achieve this is by using bioinspired responsive matrices that have quantum–classical pathways for a coherent conversion of photons to fuels, similar to what has been achieved by natural selection in evolution. In appendix A for the expert, we derive a propagator that describes how catalytic reactions can proceed coherently by a convergence of time scales of quantum electron dynamics and classical nuclear dynamics

  11. Wavelength and temperature-dependent apparent quantum yields for photochemical formation of hydrogen peroxide in seawater.

    PubMed

    Kieber, David J; Miller, Gary W; Neale, Patrick J; Mopper, Kenneth

    2014-04-01

    Wavelength and temperature-dependent apparent quantum yields (AQYs) were determined for the photochemical production of hydrogen peroxide using seawater obtained from coastal and oligotrophic stations in Antarctica, the Pacific Ocean at Station ALOHA, the Gulf of Mexico, and at several sites along the East Coast of the United States. For all samples, AQYs decreased exponentially with increasing wavelength at 25 °C, ranging from 4.6 × 10(-4) to 10.4 × 10(-4) at 290 nm to 0.17 × 10(-4) to 0.97 × 10(-4) at 400 nm. AQYs for different seawater samples were remarkably similar irrespective of expected differences in the composition and concentrations of metals and dissolved organic matter (DOM) and in prior light exposure histories; wavelength-dependent AQYs for individual seawater samples differed by less than a factor of two relative to respective mean AQYs. Temperature-dependent AQYs increased between 0 and 35 °C on average by a factor of 1.8 per 10 °C, consistent with a thermal reaction (e.g., superoxide dismutation) controlling H2O2 photochemical production rates in seawater. Taken together, these results suggest that the observed poleward decrease in H₂O₂ photochemical production rates is mainly due to corresponding poleward decreases in irradiance and temperature and not spatial variations in the composition and concentrations of DOM or metals. Hydrogen peroxide photoproduction AQYs and production rates were not constant and not independent of the photon exposure as has been implicitly assumed in many published studies. Therefore, care should be taken when comparing and interpreting published H₂O₂ AQY or photochemical production rate results. Modeled depth-integrated H₂O₂ photochemical production rates were in excellent agreement with measured rates obtained from in situ free-floating drifter experiments conducted during a Gulf of Maine cruise, with differences (ca. 10%) well within measurement and modeling uncertainties. Results from this study

  12. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor.

    PubMed

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-29

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using 'greener' chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50–75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 10(3) mA cm−2 and 17.7 mW cm−2 at 8 V; it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system. PMID:24192490

  13. Highly efficient near-infrared light-emitting diodes by using type-II CdTe/CdSe core/shell quantum dots as a phosphor

    NASA Astrophysics Data System (ADS)

    Shen, Huaibin; Zheng, Ying; Wang, Hongzhe; Xu, Weiwei; Qian, Lei; Yang, Yixing; Titov, Alexandre; Hyvonen, Jake; Li, Lin Song

    2013-11-01

    In this paper, we present an innovative method for the synthesis of CdTe/CdSe type-II core/shell structure quantum dots (QDs) using ‘greener’ chemicals. The PL of CdTe/CdSe type-II core/shell structure QDs ranges from 600 to 820 nm, and the as-synthesized core/shell structures show narrow size distributions and stable and high quantum yields (50-75%). Highly efficient near-infrared light-emitting diodes (LEDs) have been demonstrated by employing the CdTe/CdSe type-II core/shell QDs as emitters. The devices fabricated based on these type-II core/shell QDs show color-saturated near-infrared emission from the QD layers, a low turn-on voltage of 1.55 V, an external quantum efficiency (EQE) of 1.59%, and a current density and maximum radiant emittance of 2.1 × 103 mA cm-2 and 17.7 mW cm-2 at 8 V it is the first report to use type-II core/shell QDs as near-infrared emitters and these results may offer a practicable platform for the realization of near-infrared QD-based light-emitting diodes, night-vision-readable displays, and friend/foe identification system.

  14. Quantum diffusion with drift and the Einstein relation. II

    SciTech Connect

    De Roeck, Wojciech; Fröhlich, Jürg; Schnelli, Kevin

    2014-07-15

    This paper is a companion to Paper I [W. De Roeck, J. Fröhlich, and K. Schnelli, “Quantum diffusion with drift and the Einstein relation. I,” J. Math. Phys. 55, 075206 (2014)]. The purpose of this paper is to describe and prove a certain number of technical results used in Paper I, but not proven there. Both papers concern long-time properties (diffusion, drift) of the motion of a driven quantum particle coupled to an array of thermal reservoirs. The main technical results derived in the present paper are: (1) an asymptotic perturbation theory applicable for small driving force, and (2) the construction of time-dependent correlation functions of particle observables.

  15. Experimental Measurements of the Secondary Electron Yield in the Experimental Measurement of the Secondary Electron Yield in the PEP-II Particle Accelerator Beam Line

    SciTech Connect

    Pivi, M.T.F.; Collet, G.; King, F.; Kirby, R.E.; Markiewicz, T.; Raubenheimer, T.O.; Seeman, J.; Le Pimpec, F.; /PSI, Villigen

    2010-08-25

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders (LC) such as ILC and CLIC. To test a series of promising possible electron cloud mitigation techniques as surface coatings and grooves, in the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed several test vacuum chambers including (i) a special chamber to monitor the variation of the secondary electron yield of technical surface materials and coatings under the effect of ion, electron and photon conditioning in situ in the beam line; (ii) chambers with grooves in a straight magnetic-free section; and (iii) coated chambers in a dedicated newly installed 4-magnet chicane to study mitigations in a magnetic field region. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the LC damping ring, focusing on the first experimental area and on results of the reduction of the secondary electron yield due to in situ conditioning.

  16. AUTOMATED BIOCHEMICAL IDENTIFICATION OF BACTERIAL FISH PATHOGENS USING THE ABBOTT QUANTUM II

    EPA Science Inventory

    The Quantum II, originally designed by Abbott Diagnostics for automated rapid identification of members of Enterobacteriaceae, was adapted for the identification of bacterial fish pathogens. he instrument operates as a spectrophotometer at a wavelength of 492.600 nm. ample cartri...

  17. Quantum Bio-Informatics II From Quantum Information to Bio-Informatics

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori

    2009-02-01

    The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems

  18. Quantum phase transition from superparamagnetic to quantum superparamagnetic state in ultrasmall Cd(1-x)Cr(II)(x)Se quantum dots?

    PubMed

    Zheng, Weiwei; Kumar, Pushpendra; Washington, Aaron; Wang, Zhenxing; Dalal, Naresh S; Strouse, Geoffrey F; Singh, Kedar

    2012-02-01

    Despite a long history of success in formation of transition-metal-doped quantum dots (QDs), the origin of magnetism in diluted magnetic semiconductors (DMSs) is yet a controversial issue. Cr(II)-doped II-VI DMSs are half-metallic, resulting in high-temperature ferromagnetism. The magnetic properties reflect a strong p-d exchange interaction between the spin-up Cr(II) t(2g) level and the Se 4p. In this study, ultrasmall (~3.1 nm) Cr(II)-doped CdSe DMSQDs are shown to exhibit room-temperature ferromagnetism, as expected from theoretical arguments. Surprisingly, a low-temperature phase transition is observed at 20 K that is believed to reflect the onset of long-range ordering of the single-domain DMSQD. PMID:22074220

  19. Quantum Efficiency Characterization and Optimization of a Tungsten Transition-Edge Sensor for ALPS II

    NASA Astrophysics Data System (ADS)

    Bastidon, Noëmie; Horns, Dieter; Lindner, Axel

    2016-07-01

    The ALPS II experiment, Any Light Particle Search II at DESY in Hamburg, will look for sub-eV mass new fundamental bosons (e.g., axion-like particles, hidden photons, and other weakly interacting sub-eV particles) in the next years by means of a light-shining-through-wall setup. The ALPS II photosensor is a tungsten transition-edge sensor (W-TES) optimized for 1064 nm photons. This TES, operated at 80 mK, has already allowed single infrared photon detections as well as non-dispersive spectroscopy with very low background rates. The demonstrated quantum efficiency for such TES is up to 95 % (1064 nm) as has been already demonstrated by the US National Institute of Standards and Technology. A back-to-back measurement of the ALPS TES quantum efficiency using a calibrated charge-coupled device camera has lead to a first estimation of 30 %. Improvement methods are discussed.

  20. In cellulo Evaluation of Phototransformation Quantum Yields in Fluorescent Proteins Used As Markers for Single-Molecule Localization Microscopy

    PubMed Central

    Avilov, Sergiy; Berardozzi, Romain; Gunewardene, Mudalige S.; Adam, Virgile; Hess, Samuel T.; Bourgeois, Dominique

    2014-01-01

    Single-molecule localization microscopy of biological samples requires a precise knowledge of the employed fluorescent labels. Photoactivation, photoblinking and photobleaching of phototransformable fluorescent proteins influence the data acquisition and data processing strategies to be used in (Fluorescence) Photoactivation Localization Microscopy ((F)-PALM), notably for reliable molecular counting. As these parameters might depend on the local environment, they should be measured in cellulo in biologically relevant experimental conditions. Here, we measured phototransformation quantum yields for Dendra2 fused to actin in fixed mammalian cells in typical (F)-PALM experiments. To this aim, we developed a data processing strategy based on the clustering optimization procedure proposed by Lee et al (PNAS 109, 17436–17441, 2012). Using simulations, we estimated the range of experimental parameters (molecular density, molecular orientation, background level, laser power, frametime) adequate for an accurate determination of the phototransformation yields. Under illumination at 561 nm in PBS buffer at pH 7.4, the photobleaching yield of Dendra2 fused to actin was measured to be (2.5±0.4)×10−5, whereas the blinking-off yield and thermally-activated blinking-on rate were measured to be (2.3±0.2)×10−5 and 11.7±0.5 s−1, respectively. These phototransformation yields differed from those measured in poly-vinyl alcohol (PVA) and were strongly affected by addition of the antifading agent 1,4-diazabicyclo[2.2.2]octane (DABCO). In the presence of DABCO, the photobleaching yield was reduced 2-fold, the blinking-off yield was decreased more than 3-fold, and the blinking-on rate was increased 2-fold. Therefore, DABCO largely improved Dendra2 photostability in fixed mammalian cells. These findings are consistent with redox-based bleaching and blinking mechanisms under (F)-PALM experimental conditions. Finally, the green-to-red photoconversion quantum yield of Dendra2 was

  1. Quantum Computation and Quantum Information

    NASA Astrophysics Data System (ADS)

    Nielsen, Michael A.; Chuang, Isaac L.

    2010-12-01

    Part I. Fundamental Concepts: 1. Introduction and overview; 2. Introduction to quantum mechanics; 3. Introduction to computer science; Part II. Quantum Computation: 4. Quantum circuits; 5. The quantum Fourier transform and its application; 6. Quantum search algorithms; 7. Quantum computers: physical realization; Part III. Quantum Information: 8. Quantum noise and quantum operations; 9. Distance measures for quantum information; 10. Quantum error-correction; 11. Entropy and information; 12. Quantum information theory; Appendices; References; Index.

  2. Photolysis quantum yield measurements in the near-UV; a critical analysis of 1-(2-nitrophenyl)ethyl photochemistry.

    PubMed

    Corrie, John E T; Kaplan, Jack H; Forbush, Biff; Ogden, David C; Trentham, David R

    2016-05-11

    The photolysis quantum yield, Qp, of 1-(2-nitrophenyl)ethyl phosphate (caged Pi) measured in the near-UV (342 nm peak with 60 nm half-bandwidth) is 0.53 and is based on results reported in 1978 (Biochemistry, 17, 1929-1935). This article amplifies methodology for determining that Qp in view of different recent estimates. Some general principles together with other examples relating to measurement of Qp values are discussed together with their relevance to biological research. PMID:27050155

  3. Dynamics of uniform quantum gases, II: Magnetic susceptibility

    NASA Astrophysics Data System (ADS)

    Bosse, J.; Pathak, K. N.; Singh, G. S.

    2010-03-01

    A general expression for temperature-dependent magnetic susceptibility of quantum gases composed of particles possessing both charge and spin degrees of freedom has been obtained within the framework of the generalized random phase approximation. The conditions for the existence of dia-, para-, and ferro-magnetism have been analyzed in terms of a parameter involving single-particle charge and spin. The limit T→0 retrieves the expressions for the Landau and the Pauli susceptibilities for an electron gas. It is found for a Bose gas that on decreasing the temperature, it passes either through a diamagnetic incomplete Meissner-effect regime or through a paramagnetic-ferromagnetic large magnetization fluctuation regime before going to the Meissner phase at T=T.

  4. Exact path integral for 3D quantum gravity. II.

    NASA Astrophysics Data System (ADS)

    Honda, Masazumi; Iizuka, Norihiro; Tanaka, Akinori; Terashima, Seiji

    2016-03-01

    Continuing the work [Phys. Rev. Lett. 115, 161304 (2015)], we discuss various aspects of three-dimensional quantum gravity partition function in anti-de Sitter spacetime in the semiclassical limit. The partition function is holomorphic and is the one which we obtained by using the localization technique of Chern-Simons theory in Phys. Rev. Lett. 115, 161304 (2015). We obtain a good expression for it in the summation form over Virasoro characters for the vacuum and primaries. A key ingredient for that is an interpretation of boundary-localized fermion. We also check that the coefficients in the summation form over Virasoro characters of the partition function are positive integers and satisfy the Cardy formula. These give a physical interpretation that these coefficients represent the number of primary fields in the dual conformal field theory in the large k limit.

  5. Ground state of the holes localized in II-VI quantum dots with Gaussian potential profiles

    NASA Astrophysics Data System (ADS)

    Semina, M. A.; Golovatenko, A. A.; Rodina, A. V.

    2016-01-01

    We report on a theoretical study of the hole states in II-IV quantum dots of spherical and ellipsoidal shapes, described by smooth potential confinement profiles that can be modeled by Gaussian functions in all three dimensions. The universal dependencies of the hole energy, g factor, and localization length on the quantum dot barrier height, as well as the ratio of effective masses of the light and heavy holes are presented for the spherical quantum dots. The splitting of the fourfold degenerate ground state into two doublets is derived for anisotropic (oblate or prolate) quantum dots. Variational calculations are combined with numerical ones in the framework of the Luttinger Hamiltonian. Constructed trial functions are optimized by comparison with the numerical results. The effective hole g factor is found to be independent of the quantum dot size and barrier height and is approximated by a simple universal expression depending only on the effective mass parameters. The results can be used for interpreting and analyzing experimental spectra measured in various structures with quantum dots of different semiconductor materials.

  6. ``Simplest Molecule'' Clarifies Modern Physics II. Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Harter, William; Reimer, Tyle

    2015-05-01

    A ``simplest molecule'' consisting of CW- laser beam pairs helps to clarify relativity from poster board - I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and antimatter. Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: ``All colors go c.''

  7. "simplest Molecule" Clarifies Modern Physics II. Relativistic Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Reimer, T. C.; Harter, W. G.

    2014-06-01

    A "simplest molecule" consisting of CW-laser beam pairs helps to clarify relativity in Talk I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and anti-matter. *Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: "All colors go c."

  8. Study of concentration-dependent quantum yield of Rhodamine 6G by gold nanoparticles using thermal-lens technique

    NASA Astrophysics Data System (ADS)

    Kumar, B. Rajesh; Basheer, N. Shemeena; Kurian, Achamma; George, Sajan D.

    2014-06-01

    Tailoring optical properties of the dye molecules using metal nanoparticles is a burgeoning area of research. In this work, we report our results on the studies of how the absorption and emission behavior of Rhodamine 6G dye is tailored using gold nanoparticles. Furthermore, the influence of dye concentration on these properties for a given concentration of nanoparticles in the dye-nanoparticle mixture is investigated. In addition, the difference between the concentration-dependent fluorescence quantum yield of the dye molecules is measured in the absence and presence of nanoparticles using the dual-beam thermal-lens technique. Our absorption spectral studies show additional spectral features due to nanoparticle aggregation on interaction with cationic Rhodamine 6G dye. Dye concentration-dependent steady-state fluorescence studies in the presence of nanoparticles indicate a blue shift in peak fluorescence emission wavelength. The quantum yield value measured using thermal-lens technique exhibit a non-monotonic behavior with dye concentration with substantial quenching for lower dye concentrations. The results are interpreted in terms of dye-nanoparticle interaction and the formation of dye shell around the nanoparticle.

  9. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm.

    PubMed

    Rurack, Knut; Spieles, Monika

    2011-02-15

    The determination of the fluorescence quantum yields (QY, Φ(f)) of a series of fluorescent dyes that span the absorption/excitation and emission ranges of 520-900 and 600-1000 nm is reported. The dyes encompass commercially available rhodamine 101 (Rh-101, Φ(f) = 0.913), cresyl violet (0.578), oxazine 170 (0.579), oxazine 1 (0.141), cryptocyanine (0.012), HITCI (0.283), IR-125 (0.132), IR-140 (0.167), and four noncommercial cyanine dyes with specific spectroscopic features, all of them in dilute ethanol solution. The QYs have been measured relative to the National Institute of Standards and Technology's standard reference material (SRM) 936a (quinine sulfate, QS) on a traceably characterized fluorometer, employing a chain of transfer standard dyes that include coumarin 102 (Φ(f) = 0.764), coumarin 153 (0.544), and DCM (0.435) as links between QS and Rh-101. The QY of Rh-101 has also been verified in direct measurements against QS using two approaches that rely only on instrument correction. In addition, the effects of temperature and the presence of oxygen on the fluorescence quantum yield of Rh-101 have been assessed. PMID:21250654

  10. Zn(II)-Coordinated Quantum Dot-FRET Nanosensors for the Detection of Protein Kinase Activity

    PubMed Central

    Lim, Butaek; Park, Ji-In; Lee, Kyung Jin; Lee, Jin-Won; Kim, Tae-Wuk; Kim, Young-Pil

    2015-01-01

    We report a simple detection of protein kinase activity using Zn(II)-mediated fluorescent resonance energy transfer (FRET) between quantum dots (QDs) and dye-tethered peptides. With neither complex chemical ligands nor surface modification of QDs, Zn(II) was the only metal ion that enabled the phosphorylated peptides to be strongly attached on the carboxyl groups of the QD surface via metal coordination, thus leading to a significant FRET efficiency. As a result, protein kinase activity in intermixed solution was efficiently detected by QD-FRET via Zn(II) coordination, especially when the peptide substrate was combined with affinity-based purification. We also found that mono- and di-phosphorylation in the peptide substrate could be discriminated by the Zn(II)-mediated QD-FRET. Our approach is expected to find applications for studying physiological function and signal transduction with respect to protein kinase activity. PMID:26213934

  11. Enhanced fluorescence yields through cavity quantum-electrodynamic effects in microdroplets

    SciTech Connect

    Barnes, M.D.; Whitten, W.B.; Ramsey, J.M. )

    1994-07-01

    Measurements of the integrated fluorescence yield per molecule of Rhodamine 6G (R6G) in 4--16-[mu]m-diameter levitated microdroplets show a size dependence that is attributed to a net increase in the fluorescence decay rate for the smaller (4--5-[mu]m) droplets. The average fluorescence yield in 4-[mu]m droplets (for which we have previously observed emission-rate enhancement) is approximately a factor of 2 larger than the yield measured for larger droplets for which emission-rate enhancement does not occur. These results suggest that there is little emission-rate inhibition in this system, even though the fluorescence emission spectrum overlaps several cavity resonances. A mechanism based on spectral diffusion is postulated for the apparent absence of cavity-inhibited emission and is illustrated by Monte Carlo calculations using time-dependent line-shape functions.

  12. Ultrafast dynamics of type-II GaSb/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Komolibus, K.; Piwonski, T.; Gradkowski, K.; Reyner, C. J.; Liang, B.; Huyet, G.; Huffaker, D. L.; Houlihan, J.

    2015-01-01

    In this paper, room temperature two-colour pump-probe spectroscopy is employed to study ultrafast carrier dynamics in type-II GaSb/GaAs quantum dots. Our results demonstrate a strong dependency of carrier capture/escape processes on applied reverse bias voltage, probing wavelength and number of injected carriers. The extracted timescales as a function of both forward and reverse bias may provide important information for the design of efficient solar cells and quantum dot memories based on this material. The first few picoseconds of the dynamics reveal a complex behaviour with an interesting feature, which does not appear in devices based on type-I materials, and hence is linked to the unique carrier capture/escape processes possible in type-II structures.

  13. Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells

    SciTech Connect

    Wagener, M. C.; Botha, J. R.; Carrington, P. J.; Krier, A.

    2014-01-07

    In this study, the density of states associated with the localization of holes in GaSb/GaAs quantum rings are determined by the energy selective charging of the quantum ring distribution. The authors show, using conventional photocapacitance measurements, that the excess charge accumulated within the type-II nanostructures increases with increasing excitation energies for photon energies above 0.9 eV. Optical excitation between the localized hole states and the conduction band is therefore not limited to the Γ(k = 0) point, with pseudo-monochromatic light charging all states lying within the photon energy selected. The energy distribution of the quantum ring states could consequently be accurately related from the excitation dependence of the integrated photocapacitance. The resulting band of localized hole states is shown to be well described by a narrow distribution centered 407 meV above the GaAs valence band maximum.

  14. Microscopic Modeling of Intersubband Optical Processes in Type II Semiconductor Quantum Wells: Linear Absorption

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Kolokolov, Kanstantin I.; Ning, Cun-Zheng

    2003-01-01

    Linear absorption spectra arising from intersubband transitions in semiconductor quantum well heterostructures are analyzed using quantum kinetic theory by treating correlations to the first order within Hartree-Fock approximation. The resulting intersubband semiconductor Bloch equations take into account extrinsic dephasing contributions, carrier-longitudinal optical phonon interaction and carrier-interface roughness interaction which is considered with Ando s theory. As input for resonance lineshape calculation, a spurious-states-free 8-band kp Hamiltonian is used, in conjunction with the envelop function approximation, to compute self-consistently the energy subband structure of electrons in type II InAs/AlSb single quantum well structures. We demonstrate the interplay of nonparabolicity and many-body effects in the mid-infrared frequency range for such heterostructures.

  15. Relaxation and coherent oscillations in the spin dynamics of II-VI diluted magnetic quantum wells

    NASA Astrophysics Data System (ADS)

    Ungar, F.; Cygorek, M.; Tamborenea, P. I.; Axt, V. M.

    2015-10-01

    We study theoretically the ultrafast spin dynamics of II-VI diluted magnetic quantum wells in the presence of spin-orbit interaction. We extend a recent study where it was shown that the spin-orbit interaction and the exchange sd coupling in bulk and quantum wells can compete resulting in qualitatively new dynamics when they act simultaneously. We concentrate on Hg1-x-yMnxCdyTe quantum wells, which have a highly tunable Rashba spin-orbit coupling. Our calculations use a recently developed formalism which incorporates electronic correlations originating from the exchange sd-coupling. We find that the dependence of electronic spin oscillations on the excess energy changes qualitatively depending on whether or not the spin-orbit interaction dominates or is of comparable strength with the sd interaction.

  16. Time-dependent toroidal compactification proposals and the Bianchi type II model: Classical and quantum solutions

    NASA Astrophysics Data System (ADS)

    Socorro, J.; Toledo Sesma, L.

    2016-03-01

    In this work we construct an effective four-dimensional model by compactifying a ten-dimensional theory of gravity coupled with a real scalar dilaton field on a time-dependent torus without the contributions of fluxes as first approximation. This approach is applied to anisotropic cosmological Bianchi type II model for which we study the classical coupling of the anisotropic scale factors with the two real scalar moduli produced by the compactification process. Also, we present some solutions to the corresponding Wheeler-DeWitt (WDW) equation in the context of Standard Quantum Cosmology and we claim that these quantum solution are generic in the moduli scalar field for all Bianchi Class A models. Also we give the relation to these solutions for asymptotic behavior to large argument in the corresponding quantum solution in the gravitational variables and compare with Bohm's solutions, finding that this corresponds to the lowest-order WKB approximation.

  17. Excitonic transitions in highly efficient (GaIn)As/Ga(AsSb) type-II quantum-well structures

    SciTech Connect

    Gies, S.; Kruska, C.; Berger, C.; Hens, P.; Fuchs, C.; Rosemann, N. W.; Veletas, J.; Stolz, W.; Koch, S. W.; Heimbrodt, W.; Ruiz Perez, A.; Hader, J.; Moloney, J. V.

    2015-11-02

    The excitonic transitions of the type-II (GaIn)As/Ga(AsSb) gain medium of a “W”-laser structure are characterized experimentally by modulation spectroscopy and analyzed using microscopic quantum theory. On the basis of the very good agreement between the measured and calculated photoreflectivity, the type-I or type-II character of the observable excitonic transitions is identified. Whereas the energetically lowest three transitions exhibit type-II character, the subsequent energetically higher transitions possess type-I character with much stronger dipole moments. Despite the type-II character, the quantum-well structure exhibits a bright luminescence.

  18. Energy distribution and quantum yield for photoemission from air-contaminated gold surfaces under ultraviolet illumination close to the threshold

    NASA Astrophysics Data System (ADS)

    Hechenblaikner, Gerald; Ziegler, Tobias; Biswas, Indro; Seibel, Christoph; Schulze, Mathias; Brandt, Nico; Schöll, Achim; Bergner, Patrick; Reinert, Friedrich T.

    2012-06-01

    The kinetic energy distributions of photo-electrons emitted from gold surfaces under illumination by UV-light close to the threshold (photon energy in the order of the material work function) are measured and analyzed. Samples are prepared as chemically clean through Ar-ion sputtering and then exposed to atmosphere for variable durations before quantum yield measurements are performed after evacuation. During measurements, the bias voltage applied to the sample is varied and the resulting emission current measured. Taking the derivative of the current-voltage curve yields the energy distribution which is found to closely resemble the distribution of total energies derived by DuBridge for emission from a free electron gas. We investigate the dependence of distribution shape and width on electrode geometry and contaminant substances adsorbed from the atmosphere, in particular, to water and hydro-carbons. Emission efficiency increases initially during air exposure before diminishing to zero on a timescale of several hours, whilst subsequent annealing of the sample restores emissivity. A model fit function, in good quantitative agreement with the measured data, is introduced which accounts for the experiment-specific electrode geometry and an energy dependent transmission coefficient. The impact of large patch potential fields from contact potential drops between sample and sample holder is investigated. The total quantum yield is split into bulk and surface contributions which are tested for their sensitivity to light incidence angle and polarization. Our results are directly applicable to model parameters for the contact-free discharge system onboard the Laser Interferometer Space Antenna (LISA) Pathfinder spacecraft.

  19. Elevated carbon dioxide and ozone effects on peanut. II. Seed yield and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tropospheric O3 is an air pollutant that is toxic to plants, causing changes in leaf biochemistry and physiology that lead to reductions in growth and yield. In many O3-sensitive crops, the adverse effects of O3 are ameliorated by elevated CO2, although the extent of protection by elevated CO2 vari...

  20. Quantum Dot Channel (QDC) FETs with Wraparound II-VI Gate Insulators: Numerical Simulations

    NASA Astrophysics Data System (ADS)

    Jain, F.; Lingalugari, M.; Kondo, J.; Mirdha, P.; Suarez, E.; Chandy, J.; Heller, E.

    2016-08-01

    This paper presents simulations predicting the feasibility of 9-nm wraparound quantum dot channel (QDC) field-effect transistors (FETs). In particular, II-VI lattice-matched layers which reduce the density of interface states, serving as top (tunnel gate), side, and bottom gate insulators, have been simulated. Quantum simulations show FET operation with voltage swing of ~0.2 V. Incorporation of cladded quantum dots, such as SiO x -Si and GeO x -Ge, under the gate tunnel oxide results in electrical transport in one or more quantum dot layers which form a quantum dot superlattice (QDSL). Long-channel QDC FETs have experimental multistate drain current (I D)-gate voltage (V G) and drain current (I D)-drain voltage (V D) characteristics, which can be attributed to the manifestation of extremely narrow energy minibands formed in the QDSL. An approach for modeling the multistate I D-V G characteristics is reported. The multistate characteristics of QDC FETs permit design of compact two-bit multivalued logic circuits.

  1. Spectroscopy and dynamics of charge transfer excitons in type-II band aligned quantum confined heterostructures

    NASA Astrophysics Data System (ADS)

    Kushavah, Dushyant; Mohapatra, P. K.; Rustagi, K. C.; Bahadur, D.; Vasa, P.; Singh, B. P.

    2015-05-01

    We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ˜5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ˜597 to ˜746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ˜51 ns as compared to ˜6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.

  2. Spectroscopy and dynamics of charge transfer excitons in type-II band aligned quantum confined heterostructures

    SciTech Connect

    Kushavah, Dushyant; Mohapatra, P. K.; Vasa, P.; Singh, B. P.; Rustagi, K. C.; Bahadur, D.

    2015-05-15

    We illustrate effect of charge transfer (CT) in type-II quantum confined heterostructure by comparing CdSe quantum dots (QDs), CdSe/CdTe heterostructure quantum dots (HQDs) and CdSe/CdTe/CdSe quantum well-quantum dots (QWQDs) heterostructures. CdSe core QDs were synthesized using a kinetic growth method where QD size depends on reaction time. For shell coating we used modified version of successive ionic layer adsorption and reaction (SILAR). Size of different QDs ∼5 to 7 nm were measured by transmission electron microscopy (TEM). Strong red shift from ∼597 to ∼746 nm in photoluminescence (PL) spectra from QDs to QWQDs shows high tunability which is not possible with single constituent semiconductor QDs. PL spectra have been recorded at different temperatures (10K-300K). Room temperature time correlated single photon counting (TCSPC) measurements for QDs to QWQDs show three exponential radiative decay. The slowest component decay constant in QWQDs comes around eight fold to ∼51 ns as compared to ∼6.5 ns in HQD suggesting new opportunities to tailor the radiative carrier recombination rate of CT excitons.

  3. Polarization anisotropy of the emission from type-II quantum dots

    NASA Astrophysics Data System (ADS)

    Klenovský, P.; Hemzal, D.; Steindl, P.; Zíková, M.; Křápek, V.; Humlíček, J.

    2015-12-01

    We study the polarization response of the emission from type-II GaAsSb capped InAs quantum dots. The theoretical prediction based on the calculations of the overlap integrals of the single-particle states obtained in the k ⃗.p ⃗ framework is given. This is verified experimentally by polarization resolved photoluminescence measurements on samples with the type-II confinement. We show that the polarization anisotropy might be utilized to find the vertical position of the hole wave function and its orientation with respect to crystallographic axes of the sample. A proposition for usage in the information technology as a room temperature photonic gate operating at the communication wavelengths as well as a simple model to estimate the energy of fine-structure splitting for type-II GaAsSb capped InAs QDs are given.

  4. Iridium Cyclometalated Complexes in Host-Guest Chemistry: A Strategy for Maximizing Quantum Yield in Aqueous Media.

    PubMed

    Alrawashdeh, Lubna R; Cronin, Michael P; Woodward, Clifford E; Day, Anthony I; Wallace, Lynne

    2016-07-01

    The weaker emission typically seen for iridium(III) cyclometalated complexes in aqueous medium can be reversed via encapsulation in cucurbit[10]uril (Q[10]). The Q[10] cavity is shown to effectively maximize quantum yields for the complexes, compared to any other medium. This may provide significant advantages for a number of sensor applications. NMR studies show that the complexes are accommodated similarly within the host molecule, even with cationic substituents attached to the ppy ligands, indicating that the hydrophobic effect is the dominant driving force for binding. Cavity-encapsulated 1:1 host-guest species dominate the emission, but 1:2 species are also indicated, which also give some enhancement of intensity. Results demonstrate that the enhancement is due primarily to much lower rates of nonradiative decay but also suggest that the encapsulation can cause a change in character of the emitting state. PMID:27315543

  5. Developing a diagnostic model for estimating terrestrial vegetation gross primary productivity using the photosynthetic quantum yield and Earth Observation data.

    PubMed

    Ogutu, Booker O; Dash, Jadunandan; Dawson, Terence P

    2013-09-01

    This article develops a new carbon exchange diagnostic model [i.e. Southampton CARbon Flux (SCARF) model] for estimating daily gross primary productivity (GPP). The model exploits the maximum quantum yields of two key photosynthetic pathways (i.e. C3 and C4 ) to estimate the conversion of absorbed photosynthetically active radiation into GPP. Furthermore, this is the first model to use only the fraction of photosynthetically active radiation absorbed by photosynthetic elements of the canopy (i.e. FAPARps ) rather than total canopy, to predict GPP. The GPP predicted by the SCARF model was comparable to in situ GPP measurements (R(2)  > 0.7) in most of the evaluated biomes. Overall, the SCARF model predicted high GPP in regions dominated by forests and croplands, and low GPP in shrublands and dry-grasslands across USA and Europe. The spatial distribution of GPP from the SCARF model over Europe and conterminous USA was comparable to those from the MOD17 GPP product except in regions dominated by croplands. The SCARF model GPP predictions were positively correlated (R(2)  > 0.5) to climatic and biophysical input variables indicating its sensitivity to factors controlling vegetation productivity. The new model has three advantages, first, it prescribes only two quantum yield terms rather than species specific light use efficiency terms; second, it uses only the fraction of PAR absorbed by photosynthetic elements of the canopy (FAPARps ) hence capturing the actual PAR used in photosynthesis; and third, it does not need a detailed land cover map that is a major source of uncertainty in most remote sensing based GPP models. The Sentinel satellites planned for launch in 2014 by the European Space Agency have adequate spectral channels to derive FAPARps at relatively high spatial resolution (20 m). This provides a unique opportunity to produce global GPP operationally using the Southampton CARbon Flux (SCARF) model at high spatial resolution. PMID:23687009

  6. Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process.

    PubMed

    Chu, W

    2001-08-01

    The photodecay of herbicide 2,4-D in a hydrogen peroxide-aided photolysis process was studied and modeled. The decay rate of 2,4-D was known to be low in the natural environment, but rate improvement was achieved in an H2O2/UV system. The 2,4-D decay quantum yields under ultraviolet (UV) light at 253.7 nm increased from 4.86 x 10(-6) to 1.30 x 10(-4) as the ratio of [H2O2]/[2,4-D] increased from 0.05 to 12.5. Apparently, in the presence of UV light, the decay rate of 2,4-D could be greatly improved as the concentration of hydrogen peroxide increased. However, the efficiency of 2,4-D photodecay was retarded if the concentration of H2O2 was overdosed, because the excess hydrogen peroxide consumes the hydroxyl radicals (HO*) in the solution, resulting in a much weaker oxidant HO2*. The decay of 2,4-D was also pH dependent. A ranking of acid (highest), base (middle) and neutral (lowest) was observed owing to the property change of reactants and the shifting of dominant mechanisms among photolysis, photohydrolysis and chemical oxidation. Two mathematical models were proposed to predict the quantum yield for various [H2O2]/[2,4-D] ratios and initial pH levels, in which very good correlation was found for the ranges of regular application. PMID:11513426

  7. Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II

    NASA Astrophysics Data System (ADS)

    Kurashige, Yuki; Chan, Garnet Kin-Lic; Yanai, Takeshi

    2013-08-01

    It is a long-standing goal to understand the reaction mechanisms of catalytic metalloenzymes at an entangled many-electron level, but this is hampered by the exponential complexity of quantum mechanics. Here, by exploiting the special structure of physical quantum states and using the density matrix renormalization group, we compute near-exact many-electron wavefunctions of the Mn4CaO5 cluster of photosystem II, with more than 1 × 1018 quantum degrees of freedom. This is the first treatment of photosystem II beyond the single-electron picture of density functional theory. Our calculations support recent modifications to the structure determined by X-ray crystallography. We further identify multiple low-lying energy surfaces associated with the structural distortion seen using X-ray crystallography, highlighting multistate reactivity in the chemistry of the cluster. Direct determination of Mn spin-projections from our wavefunctions suggests that current candidates that have been recently distinguished using parameterized spin models should be reassessed. Through entanglement maps, we reveal rich information contained in the wavefunctions on bonding changes in the cycle.

  8. Analysis of ice-binding sites in fish type II antifreeze protein by quantum mechanics.

    PubMed Central

    Cheng, Yuhua; Yang, Zuoyin; Tan, Hongwei; Liu, Ruozhuang; Chen, Guangju; Jia, Zongchao

    2002-01-01

    Many organisms living in cold environments can survive subzero temperatures by producing antifreeze proteins (AFPs) or antifreeze glycoproteins. In this paper we investigate the ice-binding surface of type II AFP by quantum mechanical methods, which, to the best of our knowledge, represents the first time that molecular orbital computational approaches have been applied to AFPs. Molecular mechanical approaches, including molecular docking, energy minimization, and molecular dynamics simulation, were used to obtain optimal systems for subsequent quantum mechanical analysis. We selected 17 surface patches covering the entire surface of the type II AFP and evaluated the interaction energy between each of these patches and two different ice planes using semi-empirical quantum mechanical methods. We have demonstrated the weak orbital overlay phenomenon and the change of bond orders in ice. These results consistently indicate that a surface patch containing 19 residues (K37, L38, Y20, E22, Y21, I19, L57, T56, F53, M127, T128, F129, R17, C7, N6, P5, G10, Q1, and W11) is the most favorable ice-binding site for both a regular ice plane and an ice plane where water O atoms are randomly positioned. Furthermore, for the first time the computation results provide new insights into the weakening of the ice lattice upon AFP binding, which may well be a primary factor leading to AFP-induced ice growth inhibition. PMID:12324437

  9. Entangled quantum electronic wavefunctions of the Mn₄CaO₅ cluster in photosystem II.

    PubMed

    Kurashige, Yuki; Chan, Garnet Kin-Lic; Yanai, Takeshi

    2013-08-01

    It is a long-standing goal to understand the reaction mechanisms of catalytic metalloenzymes at an entangled many-electron level, but this is hampered by the exponential complexity of quantum mechanics. Here, by exploiting the special structure of physical quantum states and using the density matrix renormalization group, we compute near-exact many-electron wavefunctions of the Mn4CaO5 cluster of photosystem II, with more than 1 × 10(18) quantum degrees of freedom. This is the first treatment of photosystem II beyond the single-electron picture of density functional theory. Our calculations support recent modifications to the structure determined by X-ray crystallography. We further identify multiple low-lying energy surfaces associated with the structural distortion seen using X-ray crystallography, highlighting multistate reactivity in the chemistry of the cluster. Direct determination of Mn spin-projections from our wavefunctions suggests that current candidates that have been recently distinguished using parameterized spin models should be reassessed. Through entanglement maps, we reveal rich information contained in the wavefunctions on bonding changes in the cycle. PMID:23881496

  10. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    The optimality of irrigation strategies may be sought with respect to a number of criteria, including water requirements, crop yield, and profitability. To explore the suitability of different demand-based irrigation strategies, we link the probabilistic description of irrigation requirements under stochastic hydro-climatic conditions, provided in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 2011;34(2):263-71], to crop-yield and economic analyses. Water requirements, application efficiency, and investment costs of different irrigation methods, such as surface, sprinkler and drip irrigation systems, are described via a unified conceptual and theoretical approach, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. This allows us to analyze irrigation strategies with respect to sustainability, productivity, and economic return, using the same framework, and quantify them as a function of climate, crop, and soil parameters. We apply our results to corn ( Zea mays), a food staple and biofuel source, which is currently mainly irrigated through surface systems. As our analysis shows, micro-irrigation maximizes water productivity, but more traditional solutions may be more profitable at least in some contexts.

  11. Secondary Electron Yield Measurements and Groove Chambers Tests in the PEP-II Beam Line Straights Sections

    SciTech Connect

    Pivi, M.T.F.; King, F.; Kirby, R.E.; Markiewicz, T; Raubenheimer, T.O.; Seeman, J.; Wang, L.; /SLAC

    2008-07-03

    Beam instability caused by the electron cloud has been observed in positron and proton storage rings and it is expected to be a limiting factor in the performance of the positron Damping Ring (DR) of future Linear Colliders such as ILC and CLIC [1, 2]. In the Positron Low Energy Ring (LER) of the PEP-II accelerator, we have installed vacuum chambers with rectangular grooves in a straight magnetic-free section to test this promising possible electron cloud mitigation technique. We have also installed a special chamber to monitor the secondary electron yield of TiN and TiZrV (NEG) coating, Copper, Stainless Steel and Aluminum under the effect of electron and photon conditioning in situ in the beam line. In this paper, we describe the ongoing R&D effort to mitigate the electron cloud effect for the ILC damping ring, the latest results on in situ secondary electron yield conditioning and recent update on the groove tests in PEP-II.

  12. Aharonov-Bohm Beats in Excitonic Luminescence from Quantum Rings and Type-II Quantum Dots

    NASA Astrophysics Data System (ADS)

    Dias da Silva, Luis; Shahbazyan, Tigran

    2005-03-01

    We study the absorption spectrum of neutral magnetoexcitons confined in ring-like structures. Despite their neutral character, excitons exhibit strong modulation effects on the energy and oscillator strength in the presence of magnetic fields [1] that have been recently observed [2]. We calculate the absorption coefficient α for neutral excitons confined in circular ring geometries with radii Re for electrons and Rh for holes. A particularly interesting situation comes about when Re!=Rh and a net radial charge polarization arises. In this case, we consider an attractive Coulomb interaction proportional to (Re- Rh)-1 and the excitonic absorption peak shows oscillatory behavior as function of the applied magnetic field both in position and amplitude. Such oscillations strongly depend on the dipole moment P=e(Rh-Re) of the exciton and on the dielectric constant of the system. Such intensity changes could in principle be experimentally observed with single dot spectroscopy in quantum rings [3]. Supported by the NSF-IMC and NSF-RUI [1] A.O. Govorov et al. Phys. Rev. B 66 081309 (2002); A.O. Govorov et al. Physica E 13, 297 (2002). [2] E. Ribeiro et al. Phys Rev. Lett. 92 126402 (2004). [3] R.J. Warburton et al. Nature 405 (6789) 926 (2000).

  13. Searching for quantum gravity with high-energy atmospheric neutrinos and AMANDA-II

    NASA Astrophysics Data System (ADS)

    Kelley, John Lawrence

    2008-06-01

    The AMANDA-II detector, operating since 2000 in the deep ice at the geographic South Pole, has accumulated a large sample of atmospheric muon neutrinos in the 100 GeV to 10 TeV energy range. The zenith angle and energy distribution of these events can be used to search for various phenomenological signatures of quantum gravity in the neutrino sector, such as violation of Lorentz invariance (VLI) or quantum decoherence (QD). Analyzing a set of 5511 candidate neutrino events collected during 1387 days of livetime from 2000 to 2006, we find no evidence for such effects and set upper limits on VLI and QD parameters using a maximum likelihood method. Given the absence of new flavor-changing physics, we use the same methodology to determine the conventional atmospheric muon neutrino flux above 100 GeV.

  14. Trion X+ in vertically coupled type II quantum dots in threading magnetic field.

    PubMed

    Horta-Piñeres, Sindi; Escorcia-Salas, Gene Elizabeth; Mikhailov, Ilia D; Sierra-Ortega, José

    2012-01-01

    We analyze the energy spectrum of a positively charged exciton confined in a semiconductor heterostructure formed by two vertically coupled, axially symmetrical type II quantum dots located close to each other. The electron in the structure is mainly located inside the dots, while the holes generally move in the exterior region close to the symmetry axis. The solutions of the Schrödinger equation are obtained by a variational separation of variables in the adiabatic limit. Numerical results are shown for bonding and anti-bonding lowest-lying of the trion states corresponding to the different quantum dots morphologies, dimensions, separation between them, thicknesses of the wetting layers, and the magnetic field strength. PMID:23013605

  15. Mn(II/III) complexes as promising redox mediators in quantum-dot-sensitized solar cells.

    PubMed

    Haring, Andrew J; Pomatto, Michelle E; Thornton, Miranda R; Morris, Amanda J

    2014-09-10

    The advancement of quantum dot sensitized solar cell (QDSSC) technology depends on optimizing directional charge transfer between light absorbing quantum dots, TiO2, and a redox mediator. The nature of the redox mediator plays a pivotal role in determining the photocurrent and photovoltage from the solar cell. Kinetically, reduction of oxidized quantum dots by the redox mediator should be rapid and faster than the back electron transfer between TiO2 and oxidized quantum dots to maintain photocurrent. Thermodynamically, the reduction potential of the redox mediator should be sufficiently positive to provide high photovoltages. To satisfy both criteria and enhance power conversion efficiencies, we introduced charge transfer spin-crossover Mn(II/III) complexes as promising redox mediator alternatives in QDSSCs. High photovoltages ∼ 1 V were achieved by a series of Mn poly(pyrazolyl)borates, with reduction potentials ∼ 0.51 V vs Ag/AgCl. Back electron transfer (recombination) rates were slower than Co(bpy)3, where bpy = 2,2'-bipyridine, evidenced by electron lifetimes up to 4 orders of magnitude longer. This is indicative of a large barrier to electron transport imposed by spin-crossover in these complexes. Low solubility prevented the redox mediators from sustaining high photocurrent due to mass transport limits. However, with high fill factors (∼ 0.6) and photovoltages, they demonstrate competitive efficiencies with Co(bpy)3 redox mediator at the same concentration. More positive reduction potentials and slower recombination rates compared to current redox mediators establish the viability of Mn poly(pyrazolyl)borates as promising redox mediators. By capitalizing on these characteristics, efficient Mn(II/III)-based QDSSCs can be achieved with more soluble Mn-complexes. PMID:25137595

  16. Exciton storage in type-II quantum dots using the optical Aharonov-Bohm effect

    SciTech Connect

    Climente, Juan I.; Planelles, Josep

    2014-05-12

    We investigate the bright-to-dark exciton conversion efficiency in type-II quantum dots subject to a perpendicular magnetic field. To this end, we take the exciton storage protocol recently proposed by Simonin and co-workers [Phys. Rev. B 89, 075304 (2014)] and simulate its coherent dynamics. We confirm the storage is efficient in perfectly circular structures subject to weak external electric fields, where adiabatic evolution is dominant. In practice, however, the efficiency rapidly degrades with symmetry lowering. Besides, the use of excited states is likely unfeasible owing to the fast decay rates. We then propose an adaptation of the protocol which does not suffer from these limitations.

  17. Crystal-Phase Control by Solution-Solid-Solid Growth of II-VI Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2016-02-10

    A simple and potentially general means of eliminating the planar defects and phase alternations that typically accompany the growth of semiconductor nanowires by catalyzed methods is reported. Nearly phase-pure, defect-free wurtzite II-VI semiconductor quantum wires are grown from solid rather than liquid catalyst nanoparticles. The solid-catalyst nanoparticles are morphologically stable during growth, which minimizes the spontaneous fluctuations in nucleation barriers between zinc blende and wurtzite phases that are responsible for the defect formation and phase alternations. Growth of single-phase (in our cases the wurtzite phase) nanowires is thus favored. PMID:26731426

  18. Development of superconducting contacts for the CRESST II 66-channel superconducting quantum interference device readout system.

    PubMed

    Majorovits, B; Henry, S; Kraus, H

    2007-07-01

    The CRESST experiment is designed to search for weakly interacting massive particle dark matter with cryogenic detectors. CRESST II will use up to 33 CaWO(4) crystals with a total mass of approximately 10 kg. These many detectors require a readout system based on 66-channel superconducting quantum interference devices (SQUIDs). In this article we report on the development of a modular superconducting connector for the 66-channel SQUID readout circuit. We show that the technique developed reliably produces superconducting contacts. PMID:17672757

  19. Development of superconducting contacts for the CRESST II 66-channel superconducting quantum interference device readout system

    SciTech Connect

    Majorovits, B.; Henry, S.; Kraus, H.

    2007-07-15

    The CRESST experiment is designed to search for weakly interacting massive particle dark matter with cryogenic detectors. CRESST II will use up to 33 CaWO{sub 4} crystals with a total mass of {approx}10 kg. These many detectors require a readout system based on 66-channel superconducting quantum interference devices (SQUIDs). In this article we report on the development of a modular superconducting connector for the 66-channel SQUID readout circuit. We show that the technique developed reliably produces superconducting contacts.

  20. Optical Anisotropy in Type-II ZnTe/ZnSe Submonolayer Quantum Dots

    NASA Astrophysics Data System (ADS)

    Ji, Haojie; Dhomkar, Siddharth; Tamargo, Maria; Kuskovsky, Igor

    2014-03-01

    Type-II semiconductor quantum dots (QDs) characterized by spatial separation of charge carriers are good candidates for photovoltaics and photon manipulation applications. Implementation of practical devices requires detail understandings of the QD morphology, the mechanism of strain relief and defect formation. Here we report our study of polarization dependent photoluminescence (PL) in type-II ZnTe/ZnSe submonolayer QD superlattices, grown by migration-enhanced epitaxy. We show that the PL does not depend on the polarization state of excitation and exhibits strong linear polarization, indicating strong anisotropy in this material. We spectrally analyze the degree of linear polarization in samples grown with different Te fluxes, spacer thicknesses and number of periods. Based on our observations, we propose several reasons for the optical anisotropy, focusing on the anisotropic shape of the QDs and the anisotropy at the interfaces in the superlattices.

  1. A Novel Method For Predicting Carbon Monoxide Apparent Quantum Yield Spectra in Coastal Water Using Remote Sensing Reflectance Data

    NASA Astrophysics Data System (ADS)

    Reader, H. E.; Miller, W. L.

    2010-12-01

    Photochemical oxidation of chromophoric dissolved organic matter (CDOM) is the major source of carbon monoxide to the surface ocean. Bacterial consumption and air-sea exchange comprise the two known sinks for CO in marine systems. Though the two loss terms are relatively efficient, CO remains supersaturated with respect to the atmosphere in the surface ocean. Global oceanic estimates of CO photoproduction range from 30-84Tg CO/year (Zafiriou 2003, Fichot and Miller 2010). The variation in estimates is largely due to the difficulty in predicting the efficiency of photoproduction (i.e. Apparent Quantum Yield; AQY). Though the AQY for CO photoproduction appears to be relatively constant, there is indication that terrestrially derived sources, such as those found in estuarine environments, produce CO more efficiently than marine derived sources (Ziolkowski 2000). Since variation among sources is likely in the global ocean, accurate assignment of AQY to variable water types is required to accurately predict CO photoproduction. Deriving the correct apparent quantum yield from remotely sensed data would lead to better predictions of large scale CO photoproduction from optical data. Thirty-eight (38) AQY spectra for CO photoproduction were determined by monthly sampling during spring tides in three dark water locations on the coast of Georgia, USA, from November 2008 to September 2009. Sapelo Sound, a marine dominated system, receives little to no freshwater input over the year, while Altamaha Sound drains the largest watershed in the state of Georgia, and has largely variably freshwater input. Doboy Sound, situated between Sapelo Sound and Altamaha Sound, is largely marine dominated, though in periods of high flow on the Altamaha River, receives some fresh water overflow. The coast of Georgia is dominated by Spartina alterniflora salt marshes, and thus also has a strong non-point source of terrestrially derived carbon. CO apparent quantum yields were determined by

  2. Quantum wave packet study of nonadiabatic effects in O({sup 1}D) + H{sub 2} {yields} OH + H

    SciTech Connect

    Gray, S.K.; Petrongolo, C.; Drukker, K.; Schatz, G.C.

    1999-11-25

    The authors develop a wave packet approach to treating the electronically nonadiabatic reaction dynamics of O({sup 1}D) + H{sub 2} {yields} OH + H, allowing for the 1{sup 1}A{prime} and 2{sup 1}A{prime} potential energy surfaces and couplings, as well as the three internal nuclear coordinates. Two different systems of coupled potential energy surfaces are considered, a semiempirical diatomics-in-molecules (DIM) system due to Kuntz, Niefer, and Sloan, and a recently developed ab initio system due to Dobbyn and Knowles (DK). Nonadiabatic quantum results, with total angular momentum J = 0, are obtained and discussed. Several single surface calculations are carried out for comparison with the nonadiabatic results. Comparisons with trajectory surface hopping (TSH) calculations, and with approximate quantum calculations, are also included. The electrostatic coupling produces strong interactions between the 1{sup 1}A{prime} and 2{sup 1}A{prime} states at short range (where these states have a conical intersection) and weak but, interestingly, nonnegligible interactions between these states at longer range. The wave packet results show that if the initial state is chosen to be effectively the 1A{prime} state (for which insertion to form products occurs on the adiabatic surface), then there is very little difference between the adiabatic and coupled surface results. In either case the reaction probability is a relatively flat function of energy, except for resonant oscillations. However, the 2A{prime} reaction, dynamics (which involves a collinear transition state) is strongly perturbed by nonadiabatic effects in two distinct ways. At energies above the transition state barrier, the diabatic limit is dominant, and the 2A{prime} reaction probability is similar to that for 1A{double{underscore}prime}, which has no coupling with the other surfaces. At energies below the barrier, the authors find a significant component of the reaction probability from long range electronic

  3. Preparation and photophysical studies of [Ln(hfac)3DPEPO], Ln = Eu, Tb, Yb, Nd, Gd; interpretation of total photoluminescence quantum yields.

    PubMed

    Congiu, Martina; Alamiry, Mohamed; Moudam, Omar; Ciorba, Serena; Richardson, Patricia R; Maron, Laurent; Jones, Anita C; Richards, Bryce S; Robertson, Neil

    2013-10-01

    Synthesis and photophysical characterisation of [Ln(hfac)3DPEPO] complexes (with Ln = Eu, Tb, Yb, Nd, Gd) has been carried out to investigate the factors responsible for the variation in total photoluminescence quantum yield within this family of emissive lanthanide complexes. Electronic absorption and emission spectroscopy, in conjunction with DFT calculations of the excited state of the Eu complex, elucidate the role of each ligand in the sensitisation of the lanthanide through the antenna effect. The X-ray crystal structure of [Gd(hfac)3DPEPO] has been determined and shows an 8-coordinate environment around the Gd and a ten-membered chelate ring involving the DPEPO ligand. Total photoluminescence quantum yields were measured to be 6%, 1% and 2% for Ln = Tb, Nd and Yb, respectively, in comparison with around 80% for Ln = Eu. The lower quantum yield for Nd and Yb, compared with Eu, can be attributed to more efficient quenching of the excited Ln state by high-energy oscillations within the ligands, whereas the lower quantum yield for Tb is assigned to a combination of poor energy transfer from the ligand excited state to the Tb and longer radiative lifetime. PMID:23900430

  4. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence

    NASA Astrophysics Data System (ADS)

    Hou, Juan; Wang, Wei; Zhou, Tianyu; Wang, Bo; Li, Huiyu; Ding, Lan

    2016-05-01

    Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A possible formation mechanism has thus been proposed including dehydration, polymerization and carbonization. Furthermore, the N-CDs could serve as a facile and label-free probe for the detection of iron and fluorine ions with detection limits of 50 nmol L-1 and 75 nmol L-1, respectively.Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A

  5. The quantum interference effects in the SC II 4247 Å line of the second solar spectrum

    SciTech Connect

    Smitha, H. N.; Nagendra, K. N.; Stenflo, J. O.; Bianda, M.; Ramelli, R. E-mail: knn@iiap.res.in E-mail: mbianda@irsol.ch

    2014-10-10

    The Sc II 4247 Å line formed in the chromosphere is one of the lines well known, like the Na I D{sub 2} and Ba II D{sub 2}, for its prominent triple-peak structure in Q/I and the underlying quantum interference effects governing it. In this paper, we try to study the nature of this triple-peak structure using the theory of F-state interference including the effects of partial frequency redistribution (PRD) and radiative transfer (RT). We compare our results with the observations taken in a quiet region near the solar limb. In spite of accounting for PRD and RT effects, it has not been possible to reproduce the observed triple-peak structure in Q/I. While the two wing PRD peaks (on either side of central peak) and the near wing continuum can be reproduced, the central peak is completely suppressed by the enhanced depolarization resulting from the hyperfine structure splitting. This suppression remains for all the tested widely different one-dimensional model atmospheres or for any multi-component combinations of them. While multidimensional RT effects may improve the fit to the intensity profiles, they do not appear capable of explaining the enigmatic central Q/I peak. This leads us to suspect that some aspect of quantum physics is missing.

  6. How quantum entanglement in DNA synchronizes double-strand breakage by type II restriction endonucleases.

    PubMed

    Kurian, P; Dunston, G; Lindesay, J

    2016-02-21

    Macroscopic quantum effects in living systems have been studied widely in pursuit of fundamental explanations for biological energy transport and sensing. While it is known that type II endonucleases, the largest class of restriction enzymes, induce DNA double-strand breaks by attacking phosphodiester bonds, the mechanism by which simultaneous cutting is coordinated between the catalytic centers remains unclear. We propose a quantum mechanical model for collective electronic behavior in the DNA helix, where dipole-dipole oscillations are quantized through boundary conditions imposed by the enzyme. Zero-point modes of coherent oscillations would provide the energy required for double-strand breakage. Such quanta may be preserved in the presence of thermal noise by the enzyme's displacement of water surrounding the DNA recognition sequence. The enzyme thus serves as a decoherence shield. Palindromic mirror symmetry of the enzyme-DNA complex should conserve parity, because symmetric bond-breaking ceases when the symmetry of the complex is violated or when physiological parameters are perturbed from optima. Persistent correlations in DNA across longer spatial separations-a possible signature of quantum entanglement-may be explained by such a mechanism. PMID:26682627

  7. Optimization of optical excitation of upconversion nanoparticles for rapid microscopy and deeper tissue imaging with higher quantum yield.

    PubMed

    Zhan, Qiuqiang; He, Sailing; Qian, Jun; Cheng, Hao; Cai, Fuhong

    2013-01-01

    Relatively low quantum yield (QY), time-consuming scanning and strong absorption of light in tissue are some of the issues present in the development of upconversion nanoparticles (UCNPs) for biomedical applications. In this paper we systematically optimize several aspects of optical excitation of UCNPs to improve their applicability in bioimaging and biotherapy. A novel multi-photon evanescent wave (EW) excitation modality is proposed for UCNP-based microscopy. The scanning-free, ultrahigh contrast and high spatiotemporal resolution method could simultaneously track a few particles in a large area with a speed of ³⁺up to 350 frames per second. The HeLa cancer cell membrane imaging was successfully performed using NaYF₄: 20% Yb³⁺/2Er³⁺ targeting nanoparticles. Studies with different tissues were made to illustrate the impact of optical property parameters on the deep imaging ability of 920-nm band excitation. In the experiments a semiconductor laser with a 920 nm wavelength was used to excite UCNPs in tissue phantom at five depths. Our experimental and computational results have shown that in UCNP-based diffusion optical imaging with 920-nm laser excitation could lead to larger imaging depth range compared to traditional 974-nm excitation in a wide dynamic range of tissue species. As the QY is power density dependent, a pulsed laser is proposed to improve the QY of UCNPs. This proposal is promising in drastically increasing the imaging depth and efficiency of photodynamic therapy. PMID:23650478

  8. Controls of the quantum yield and saturation light of isoprene emission in different-aged aspen leaves.

    PubMed

    Niinemets, Ülo; Sun, Zhihong; Talts, Eero

    2015-12-01

    Leaf age alters the balance between the use of end-product of plastidic isoprenoid synthesis pathway, dimethylallyl diphosphate (DMADP), in prenyltransferase reactions leading to synthesis of pigments of photosynthetic machinery and in isoprene synthesis, but the implications of such changes on environmental responses of isoprene emission have not been studied. Because under light-limited conditions, isoprene emission rate is controlled by DMADP pool size (SDMADP ), shifts in the share of different processes are expected to particularly strongly alter the light dependency of isoprene emission. We examined light responses of isoprene emission in young fully expanded, mature and old non-senescent leaves of hybrid aspen (Populus tremula x P. tremuloides) and estimated in vivo SDMADP and isoprene synthase activity from post-illumination isoprene release. Isoprene emission capacity was 1.5-fold larger in mature than in young and old leaves. The initial quantum yield of isoprene emission (αI ) increased by 2.5-fold with increasing leaf age primarily as the result of increasing SDMADP . The saturating light intensity (QI90 ) decreased by 2.3-fold with increasing leaf age, and this mainly reflected limited light-dependent increase of SDMADP possibly due to feedback inhibition by DMADP. These major age-dependent changes in the shape of the light response need consideration in modelling canopy isoprene emission. PMID:26037962

  9. Low cost 3D-printing used in an undergraduate project: an integrating sphere for measurement of photoluminescence quantum yield

    NASA Astrophysics Data System (ADS)

    Tomes, John J.; Finlayson, Chris E.

    2016-09-01

    We report upon the exploitation of the latest 3D printing technologies to provide low-cost instrumentation solutions, for use in an undergraduate level final-year project. The project addresses prescient research issues in optoelectronics, which would otherwise be inaccessible to such undergraduate student projects. The experimental use of an integrating sphere in conjunction with a desktop spectrometer presents opportunities to use easily handled, low cost materials as a means to illustrate many areas of physics such as spectroscopy, lasers, optics, simple circuits, black body radiation and data gathering. Presented here is a 3rd year undergraduate physics project which developed a low cost (£25) method to manufacture an experimentally accurate integrating sphere by 3D printing. Details are given of both a homemade internal reflectance coating formulated from readily available materials, and a robust instrument calibration method using a tungsten bulb. The instrument is demonstrated to give accurate and reproducible experimental measurements of luminescence quantum yield of various semiconducting fluorophores, in excellent agreement with literature values.

  10. Photodissociation of methylnitrite in the vacuum ultraviolet. I. Identification and quantum yields of electronically excited NO products

    NASA Astrophysics Data System (ADS)

    Lahmani, F.; Lardeux, C.; Lavollée, M.; Solgadi, D.

    1980-08-01

    The fluorescence of the photofragments resulting from vacuum ultraviolet photodissociation of methyl nitrite (CH3ONO) in the gas phase has been studied using synchrotron radiation from Orsay Electron Storage Ring (ACO) as the source of excitation. In the spectral region between 1100 and 1600 Å where CH3ONO shows a diffuse absorption spectrum, the formation of NO in A 2Σ+ (v'=0,1,2), C 2Π and D 2Σ+ has been identified by time and energy-resolved spectra. The quantum yields of the photodissociation channels leading to the NO (A,C,D) states have been determined by comparison of the emission intensity with that of pure NO directly excited in A 2Σ+, C 2Π, v'=0, D 2Σ+, v'=0: φ (CH3ONO→NO A)=0.18±0.03 at λexc=1440 Å; φ (CH3ONO→NO C, v'=0)=0.07±0.02 at λexc=1380 Å; and φ (CH3ONO→NO D, v'=0)=0.05±0.02 at λexc=1200 Å.

  11. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence.

    PubMed

    Hou, Juan; Wang, Wei; Zhou, Tianyu; Wang, Bo; Li, Huiyu; Ding, Lan

    2016-06-01

    Heteroatom doped carbon dots (CDs) have received increasing attention due to their unique properties and related applications. However, previously reported CDs generally show strong emission only in the blue-light region, thus restricting their further applications. And the fundamental investigation on the preparation process is always neglected. Herein, we have developed a simple and solvent-free synthetic strategy to fabricate nitrogen-doped CDs (N-CDs) from citric acid and dicyandiamide. The as-prepared N-CDs exhibited a uniform size distribution, strong yellowish-green fluorescence emission and a high quantum yield of 73.2%. The products obtained at different formation stages were detailedly characterized by transmission electron microscopy, X-ray diffraction spectrometer, X-ray photoelectron spectroscopy and UV absorbance spectroscopy. A possible formation mechanism has thus been proposed including dehydration, polymerization and carbonization. Furthermore, the N-CDs could serve as a facile and label-free probe for the detection of iron and fluorine ions with detection limits of 50 nmol L(-1) and 75 nmol L(-1), respectively. PMID:27180833

  12. Analysis of the Mode-Specific Excited-State Energy Distribution and Wavelength-Dependent Photoreaction Quantum Yield in Rhodopsin

    PubMed Central

    Kim, Judy E.; Tauber, Michael J.; Mathies, Richard A.

    2003-01-01

    The photoreaction quantum yield of rhodopsin is wavelength dependent: φ(λ) is reduced by up to 5% at wavelengths to the red of 500 nm but is invariant (φ = 0.65 ± 0.01) between 450 and 500 nm (Kim et al., 2001). To understand this nonstatistical internal conversion process, these results are compared with predictions of a Landau-Zener model for dynamic curve crossing. The initial distribution of excess photon energy in the 28 Franck-Condon active vibrational modes of rhodopsin is defined by a fully thermalized sum-over-states vibronic calculation. This calculation reveals that absorption by high-frequency unreactive modes (e.g., C=C stretches) increases as the excitation wavelength is shifted from 570 to 450 nm whereas relatively less energy is deposited into reactive low-frequency modes. This result qualitatively explains the experimentally observed wavelength dependence of φ(λ) for rhodopsin and reveals the importance of delocalized, torsional modes in the reactive pathway. PMID:12668457

  13. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    PubMed

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model. PMID:25149653

  14. Measurement procedure for absolute broadband infrared up-conversion photoluminescent quantum yields: Correcting for absorption/re-emission

    SciTech Connect

    MacDougall, Sean K. W.; Ivaturi, Aruna; Marques-Hueso, Jose; Richards, Bryce S.

    2014-06-15

    The internal photoluminescent quantum yield (iPLQY) – defined as the ratio of emitted photons to those absorbed – is an important parameter in the evaluation and application of luminescent materials. The iPLQY is rarely reported due to the complexities in the calibration of such a measurement. Herein, an experimental method is proposed to correct for re-emission, which leads to an underestimation of the absorption under broadband excitation. Although traditionally the iPLQY is measured using monochromatic sources for linear materials, this advancement is necessary for nonlinear materials with wavelength dependent iPLQY, such as the application of up-conversion to solar energy harvesting. The method requires an additional measurement of the emission line shape that overlaps with the excitation and absorption spectra. Through scaling of the emission spectrum, at the long wavelength edge where an overlap of excitation does not occur, it is possible to better estimate the value of iPLQY. The method has been evaluated for a range of nonlinear material concentrations and under various irradiances to analyze the necessity and boundary conditions that favor the proposed method. Use of this refined method is important for a reliable measurement of iPLQY under a broad illumination source such as the Sun.

  15. Effect of morphology on spectral properties of magneto-trion X+ in vertically coupled type II quantum dots

    NASA Astrophysics Data System (ADS)

    Horta-Piñeres, Sindi; Elizabeth Escorcia-Salas, G.; Mikhailov, I. D.; Sierra-Ortega, J.

    2014-11-01

    The energy spectrum of a positively charged exciton confined in vertically coupled type II quantum dots with different morphologies in the presence of the external magnetic field is studied. The effect of the quantum dot morphology on the curves of the lowest energy levels as functions of the magnetic field is analyzed. It is shown that a strong correlation presented in this system generates the Aharonov-Bohm oscillations of the lower energy levels similar to those in wide quantum ring. The novel curves of the trion energies dependences on the external magnetic field for the disk-like, lens-like, and cone-like structures are presented.

  16. Kinetics and quantum yield of photoluminescence of EuFOD{sub 3} doped into a nanoporous glass with the help of supercritical CO{sub 2}

    SciTech Connect

    Bagratashvili, V N; Tsypina, S I; Chutko, E A; Gerasimova, V I; Gordienko, V M

    2008-08-31

    The kinetics of photoluminescence of a EuFOD{sub 3} metalloorganic compound doped into a nanoporous Vycor glass by the method of supercritical fluid impregnation is studied. The lifetime of luminescence of EuFOD{sub 3} molecules in pores excited by an excimer XeCl laser was 40 {mu}s, which is considerably smaller than this lifetime (150-890 {mu}s) in solutions. The quantum yield of luminescence of EuFOD{sub 3} was estimate as {approx}4x10{sup -4}. (laser applications and other topics in quantum electronics)

  17. Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells

    NASA Astrophysics Data System (ADS)

    Fischer, Stefan; Johnson, Noah J. J.; Pichaandi, Jothirmayanantham; Goldschmidt, Jan Christoph; van Veggel, Frank C. J. M.

    2015-11-01

    Colloidal upconverter nanocrystals (UCNCs) that convert near-infrared photons to higher energies are promising for applications ranging from life sciences to solar energy harvesting. However, practical applications of UCNCs are hindered by their low upconversion quantum yield (UCQY) and the high irradiances necessary to produce relevant upconversion luminescence. Achieving high UCQY under practically relevant irradiance remains a major challenge. The UCQY is severely limited due to non-radiative surface quenching processes. We present a rate equation model for migration of the excitation energy to show that surface quenching does not only affect the lanthanide ions directly at the surface but also many other lanthanide ions quite far away from the surface. The average migration path length is on the order of several nanometers and depends on the doping as well as the irradiance of the excitation. Using Er3+-doped β-NaYF4 UCNCs, we show that very isotropic and thick (˜10 nm) β-NaLuF4 inert shells dramatically reduce the surface-related quenching processes, resulting in much brighter upconversion luminescence at simultaneously considerably lower irradiances. For these UCNCs embedded in poly(methyl methacrylate), we determined an internal UCQY of 2.0% ± 0.2% using an irradiance of only 0.43 ± 0.03 W/cm2 at 1523 nm. Normalized to the irradiance, this UCQY is 120× higher than the highest values of comparable nanomaterials in the literature. Our findings demonstrate the important role of isotropic and thick shells in achieving high UCQY at low irradiances from UCNCs. Additionally, we measured the additional short-circuit current due to upconversion in silicon solar cell devices as a proof of concept and to support our findings determined using optical measurements.

  18. The enhancement of fluorescence quantum yields of anilino naphthalene sulfonic acids by inclusion of various cyclodextrins and cucurbit[7]uril

    NASA Astrophysics Data System (ADS)

    Sueishi, Yoshimi; Fujita, Tomonori; Nakatani, Shinichiro; Inazumi, Naoya; Osawa, Yoshihiro

    2013-10-01

    The association constants (K) for the inclusion complexation of four kinds of cyclodextrins (CDs (β- and γ-), 2,6-di-O-methylated β-CD, and 2,3,6-tri-O-methylated β-CD) and cucurbit[7]uril (CB[7]) with 1,8- and 2,6-anilinonaphthalene sulfonic acids (ANSs) were determined from fluorescence spectra enhanced by inclusion. Various CDs and CB[7] form stable 1:1 inclusion complexes with 1,8- and 2,6-ANSs: K = 80-11 700 M-1 for 2,6-ANS and 50-195 M-1 for 1,8-ANS. The high stability of the inclusion complexes of 2,6-ANS with CB[7] and 2,6-di-O-methylated β-CD is shown. Further, we determined the fluorescence quantum yields (Φ values) for the inclusion complexes of ANSs by using a fluorescence spectrophotometer equipped with a half-moon unit. The Φ values of 1,8- and 2,6-ANSs were largely enhanced by the inclusion of methylated β-CDs and did not correlate with the degree of stability (K) of the inclusion complexes. We characterized the structures of the inclusion complexes by 2D ROESY-NMR measurements. In addition, the microenvironmental polarity inside the hydrophobic CD and CB[7] cavities was evaluated using the fluorescence probe 2,6-ANS. Based on the emission mechanism and the aspect of inclusion in a hydrophobic cavity, we have suggested that the microenvironmental polarity and viscosity for the excited state of ANS plays an important role for the Φ values of inclusion complexes.

  19. Upconverting core-shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells

    SciTech Connect

    Fischer, Stefan; Goldschmidt, Jan Christoph; Johnson, Noah J. J.; Pichaandi, Jothirmayanantham; Veggel, Frank C. J. M. van

    2015-11-21

    Colloidal upconverter nanocrystals (UCNCs) that convert near-infrared photons to higher energies are promising for applications ranging from life sciences to solar energy harvesting. However, practical applications of UCNCs are hindered by their low upconversion quantum yield (UCQY) and the high irradiances necessary to produce relevant upconversion luminescence. Achieving high UCQY under practically relevant irradiance remains a major challenge. The UCQY is severely limited due to non-radiative surface quenching processes. We present a rate equation model for migration of the excitation energy to show that surface quenching does not only affect the lanthanide ions directly at the surface but also many other lanthanide ions quite far away from the surface. The average migration path length is on the order of several nanometers and depends on the doping as well as the irradiance of the excitation. Using Er{sup 3+}-doped β-NaYF{sub 4} UCNCs, we show that very isotropic and thick (∼10 nm) β-NaLuF{sub 4} inert shells dramatically reduce the surface-related quenching processes, resulting in much brighter upconversion luminescence at simultaneously considerably lower irradiances. For these UCNCs embedded in poly(methyl methacrylate), we determined an internal UCQY of 2.0% ± 0.2% using an irradiance of only 0.43 ± 0.03 W/cm{sup 2} at 1523 nm. Normalized to the irradiance, this UCQY is 120× higher than the highest values of comparable nanomaterials in the literature. Our findings demonstrate the important role of isotropic and thick shells in achieving high UCQY at low irradiances from UCNCs. Additionally, we measured the additional short-circuit current due to upconversion in silicon solar cell devices as a proof of concept and to support our findings determined using optical measurements.

  20. Theoretical studies of excitons in type II CdSe/CdTe quantum dots

    NASA Astrophysics Data System (ADS)

    Miloszewski, Jacek M.; Tomić, Stanko; Binks, David

    2014-06-01

    We present a method for calculating exciton and bi-exciton energies in type-II colloidal quantum dots. Our methodology is based on an 8-band k · p Hamiltonian of the zinc- blend structure, which incorporates the effects of spin-orbit interaction, strain between the core and the shell and piezoelectric potentials. Exciton states are found using the configuration interaction (CI) method that explicitly includes the effects of Coulomb interaction, as well as exchange and correlation between many-electron configurations. We pay particular attention to accurate modelling of the electrostatic interaction between quasiparticles. The model includes surface polarization and self-polarization effects due to the large difference in dielectric constants at the boundary of the QD.

  1. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II.

    PubMed

    Calhoun, Tessa R; Ginsberg, Naomi S; Schlau-Cohen, Gabriela S; Cheng, Yuan-Chung; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R

    2009-12-24

    The near-unity efficiency of energy transfer in photosynthesis makes photosynthetic light-harvesting complexes a promising avenue for developing new renewable energy technologies. Knowledge of the energy landscape of these complexes is essential in understanding their function, but its experimental determination has proven elusive. Here, the observation of quantum coherence using two-dimensional electronic spectroscopy is employed to directly measure the 14 lowest electronic energy levels in light-harvesting complex II (LHCII), the most abundant antenna complex in plants containing approximately 50% of the world's chlorophyll. We observe that the electronically excited states are relatively evenly distributed, highlighting an important design principle of photosynthetic complexes that explains the observed ultrafast intracomplex energy transfer in LHCII. PMID:20014871

  2. Optical anisotropy in type-II ZnTe/ZnSe submonolayer quantum dots

    NASA Astrophysics Data System (ADS)

    Ji, H.; Dhomkar, S.; Wu, R.; Shuvayev, V.; Deligiannakis, V.; Tamargo, M. C.; Ludwig, J.; Lu, Z.; Smirnov, D.; Wang, A.; Kuskovsky, I. L.

    2016-06-01

    Linearly polarized photoluminescence is observed for type-II ZnTe/ZnSe submonolayer quantum dots (QDs). The comparison of spectral dependence of the degree of linear polarization (DLP) among four samples indicates that the optical anisotropy is mostly related to the elongation of ZnTe QDs. Numerical calculations based on the occupation probabilities of holes in px and py orbitals are performed to estimate the lateral aspect ratio of the QDs, and it is shown that it varies between 1.1 and 1.4. The value of anisotropic exchange splitting for bright excitonic states is found to be ˜200 μeV from the measurement of the degree of circular polarization as a function of the magnetic field. The results also show that heavy-light hole mixing ratio is about 0.16.

  3. Analysis of the photosystem II by modelling the fluorescence yield transients during 10 seconds after a 10 ns pulse

    NASA Astrophysics Data System (ADS)

    Belyaeva, Natalya E.; Schmitt, Franz-Josef; Paschenko, Vladimir Z.; Riznichenko, Galina Yu.; Rubin, Andrew B.

    2014-10-01

    The dynamics of the photosystem II (PS II) redox states is imitated over nine orders of magnitude in time. Our simulations focus on the information of the chlorophyll a fluorescence induced by a 10 ns laser flash. The PS II model analyzes differences in the PS II reaction between leaves (A. Thaliana, spinach) and thermophilic Chlorella cells.

  4. Photovoltaic detector based on type II heterostructure with deep AlSb/InAsSb/AlSb quantum well in the active region for the midinfrared spectral range

    SciTech Connect

    Mikhailova, M. P. Andreev, I. A.; Moiseev, K. D.; Ivanov, E. V.; Konovalov, G. G.; Mikhailov, M. Yu.; Yakovlev, Yu. P.

    2011-02-15

    Photodetectors for the spectral range 2-4 {mu}m, based on an asymmetric type-II heterostructure p-InAs/AlSb/InAsSb/AlSb/(p, n)GaSb with a single deep quantum well (QW) or three deep QWs at the heterointerface, have been grown by metal-organic vapor phase epitaxy and analyzed. The transport, luminescent, photoelectric, current-voltage, and capacitance-voltage characteristics of these structures have been examined. A high-intensity positive and negative luminescence was observed in the spectral range 3-4 {mu}m at high temperatures (300-400 K). The photosensitivity spectra were in the range 1.2-3.6 {mu}m (T = 77 K). Large values of the quantum yield ({eta} = 0.6-0.7), responsivity (S{sub {lambda}} = 0.9-1.4 A W{sup -1}), and detectivity (D*{sub {lambda}} = 3.5 Multiplication-Sign 10{sup 11} to 10{sup 10} cm Hz{sup 1/2} W{sup -1}) were obtained at T = 77-200 K. The small capacitance of the structures (C = 7.5 pF at V = -1 V and T = 300 K) enabled an estimate of the response time of the photodetector at {tau} = 75 ps, which corresponds to a bandwidth of about 6 GHz. Photodetectors of this kind are promising for heterodyne detection of the emission of quantum-cascade lasers and IR spectroscopy.

  5. Time-resolved magnetophotoluminescence studies of magnetic polaron dynamics in type-II quantum dots

    NASA Astrophysics Data System (ADS)

    Barman, B.; Oszwałdowski, R.; Schweidenback, L.; Russ, A. H.; Pientka, J. M.; Tsai, Y.; Chou, W.-C.; Fan, W. C.; Murphy, J. R.; Cartwright, A. N.; Sellers, I. R.; Petukhov, A. G.; Žutić, I.; McCombe, B. D.; Petrou, A.

    2015-07-01

    We used continuous wave photoluminescence (cw-PL) and time-resolved photoluminescence (TR-PL) spectroscopy to compare the properties of magnetic polarons (MP) in two related spatially indirect II-VI epitaxially grown quantum dot systems. In the ZnTe /(Zn ,Mn )Se system the holes are confined in the nonmagnetic ZnTe quantum dots (QDs), and the electrons reside in the magnetic (Zn,Mn)Se matrix. On the other hand, in the (Zn ,Mn )Te /ZnSe system, the holes are confined in the magnetic (Zn,Mn)Te QDs, while the electrons remain in the surrounding nonmagnetic ZnSe matrix. The magnetic polaron formation energies EMP in both systems were measured from the temporal redshift of the band-edge emission. The magnetic polaron exhibits distinct characteristics depending on the location of the Mn ions. In the ZnTe /(Zn ,Mn )Se system the magnetic polaron shows conventional behavior with EMP decreasing with increasing temperature T and increasing magnetic field B . In contrast, EMP in the (Zn ,Mn )Te /ZnSe system has unconventional dependence on temperature T and magnetic field B ; EMP is weakly dependent on T as well as on B . We discuss a possible origin for such a striking difference in the MP properties in two closely related QD systems.

  6. Electronic and optical properties of single excitons and biexcitons in type-II quantum dot nanocrystals

    SciTech Connect

    Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com

    2014-05-21

    In this study, a detailed investigation of the electronic and optical properties (i.e., binding energies, absorption wavelength, overlap of the electron-hole wave functions, recombination oscillator strength, etc.) of an exciton and a biexciton in CdTe/CdSe core/shell type-II quantum dot heterostructures has been carried out in the frame of the single band effective mass approximation. In order to determine the electronic properties, we have self-consistently solved the Poisson-Schrödinger equations in the Hartree approximation. We have considered all probable Coulomb interaction effects on both energy levels and also on the corresponding wave functions for both single exciton and biexciton. In addition, we have taken into account the quantum mechanical exchange-correlation effects in the local density approximation between same kinds of particles for biexciton. Also, we have examined the effect of the ligands and dielectric mismatch on the electronic and optical properties. We have used a different approximation proposed by Sahin and Koc [Appl. Phys. Lett. 102, 183103 (2013)] for the recombination oscillator strength of the biexciton for bound and unbound cases. The results obtained have been presented comparatively as a function of the shell thicknesses and probable physical reasons in behind of the results have been discussed in a detail.

  7. Determination of Phosphorescence Quantum Yield of Singlet Oxygen O 2( 1Δ g) Photosensitized by Phenalenone in Air-Saturated Carbon Tetrachloride

    NASA Astrophysics Data System (ADS)

    Shimizu, Okiyasu; Watanabe, Jun; Imakubo, Keiichi; Naito, Shizuo

    1998-11-01

    The phosphorescence quantum yield Φ P (=einsteins emitted/einsteins absorbed by sensitizer) of singlet oxygen (1O2) was measured for an air-saturated CCl4 solution of phenalenone (PH) used as a photosensitizer, by means of a photon-counting technique based on the use of a near-IR-sensitive photomultiplier. Employment of steady-state excitation allowed for the determination of the absolute quantum yield of Φ P=(1.38±0.05)×10-3 in CCl4. The result was obtained by direct comparison of the areas under the corrected emission spectra of 1O2 and of quinine bisulfate (QBS) in 1N H2SO4 as a luminescence standard.

  8. Accurate quantum yields by laser gain vs absorption spectroscopy - Investigation of Br/Br(asterisk) channels in photofragmentation of Br2 and IBr

    NASA Technical Reports Server (NTRS)

    Haugen, H. K.; Weitz, E.; Leone, S. R.

    1985-01-01

    Various techniques have been used to study photodissociation dynamics of the halogens and interhalogens. The quantum yields obtained by these techniques differ widely. The present investigation is concerned with a qualitatively new approach for obtaining highly accurate quantum yields for electronically excited states. This approach makes it possible to obtain an accuracy of 1 percent to 3 percent. It is shown that measurement of the initial transient gain/absorption vs the final absorption in a single time-resolved signal is a very accurate technique in the study of absolute branching fractions in photodissociation. The new technique is found to be insensitive to pulse and probe laser characteristics, molecular absorption cross sections, and absolute precursor density.

  9. Enhanced carrier multiplication in engineered quasi-type-II quantum dots.

    PubMed

    Cirloganu, Claudiu M; Padilha, Lazaro A; Lin, Qianglu; Makarov, Nikolay S; Velizhanin, Kirill A; Luo, Hongmei; Robel, Istvan; Pietryga, Jeffrey M; Klimov, Victor I

    2014-01-01

    One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core. PMID:24938462

  10. Enhanced carrier multiplication in engineered quasi-type-II quantum dots

    PubMed Central

    Cirloganu, Claudiu M.; Padilha, Lazaro A.; Lin, Qianglu; Makarov, Nikolay S.; Velizhanin, Kirill A.; Luo, Hongmei; Robel, Istvan; Pietryga, Jeffrey M.; Klimov, Victor I.

    2014-01-01

    One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core. PMID:24938462

  11. Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields.

    PubMed

    Wei, Song; Yang, Yanchun; Kang, Xiaojiao; Wang, Lan; Huang, Lijian; Pan, Daocheng

    2016-05-26

    All inorganic CsPbX3 (X = Cl, Br, I) perovskite nanocrystals (PNCs) with 50-85% photoluminescence quantum yields and tunable emission in the range of 440-682 nm have been successfully synthesized at room temperature in open air. This facile strategy enables us to prepare gram-scale CsPbBr3 NCs with a PLQY approaching 80%. PMID:27180872

  12. Observation of room temperature optical absorption in InP/GaAs type-II ultrathin quantum wells and quantum dots

    SciTech Connect

    Singh, S. D. Porwal, S.; Mondal, Puspen; Srivastava, A. K.; Mukherjee, C.; Dixit, V. K.; Sharma, T. K.; Oak, S. M.

    2014-06-14

    Room temperature optical absorption process is observed in ultrathin quantum wells (QWs) and quantum dots (QDs) of InP/GaAs type-II band alignment system using surface photovoltage spectroscopy technique, where no measurable photoluminescence signal is available. Clear signature of absorption edge in the sub band gap region of GaAs barrier layer is observed for the ultrathin QWs and QDs, which red shifts with the amount of deposited InP material. Movement of photogenerated holes towards the sample surface is proposed to be the main mechanism for the generation of surface photovoltage in type-II ultrathin QWs and QDs. QDs of smaller size are found to be free from the dislocations as confirmed by the high resolution transmission electron microscopy images.

  13. Observation of Optical Signature of the Aharonov-Bohm Phase in Type-II Quantum Dots

    NASA Astrophysics Data System (ADS)

    Kuskovsky, Igor; MacDonald, W.; Tamargo, M. C.; Govorov, A. O.; Wei, X.; Tadic, M.; Peeters, F. M.

    2006-03-01

    Recent theoretical studies^1,2 on the optical response of type-II excitons in the magnetic field have shown that the excitons will acquire the Aharonov-Bohm (AB) phase as the electrical dipole, formed due to carrier separation, interacts with the field, resulting in the field dependent exciton energy and the emission intensity. Experimentally, the former has been reported^3; however, the behavior of the intensity is still not fully understood. We present results of magneto-photoluminescence studies on type-II ZnTe/ZnSe quantum dots (QDs) formed in Zn-Se-Te multilayer systems^4; this ensures that electron move within the x-y plane. The observed strong oscillations in the intensity is explained in terms of the AB effect^1,2,5 due to the electron motion around a stack of QDs, when the hole is strongly localized in one them. This is in qualitative agreement with the theoretical predictions^2. 1. Kalameitsev, et al., JETP Lett. 68, 669 (1998); Govorov, et al., PRB R66, 081309 (2002); Janssens, et al., PRB 67, 235325 (2003). 2. Janssens, et al., PRB 69, 235320 (2004). 3. Ribeiro, et al., PRL 92, 126402 (2004). 4. Gu, et al.., PRB 71 045340 (2005). 5. Dias da Silva, et al., PRB 70, 155318 (2004).

  14. Photoluminescence quantum efficiency of various ternary II VI semiconductor solid solutions

    NASA Astrophysics Data System (ADS)

    Westphäling, R.; Bauer, S.; Klingshirn, C.; Reznitstsky, A.; Verbin, S.

    1998-02-01

    As a result of the spatial localization of excitons in II-VI mixed crystals the external luminescence quantum efficiency η lum is expected to be remarkably higher than in the corresponding binary compounds. To investigate this assumption we built a new experimental setup with a miniature integrating sphere fitted into a cryostat. At low temperatures in the binary systems CdS and CdSe we always found η lum ⩽ 25% in the main luminescence bands (arising from bound excitons (D 0X, A 0X) and donor—acceptor pair recombination). For the free-exciton luminescence η lum was more than two orders of magnitude less. In contrast, CdS 1- xSe x mixed crystals show η lum up to 70% in the luminescence from localized states, indicating that the nonradiative recombination is strongly suppressed for localized excitons. Other II-VI alloys (ZnSe 1- xTe x Zn 1- xCd xS and Zn 1- xCd xSe) show partly considerably lower values for η lum. The temperature dependence of η lum gives information about various activation processes to nonradiative recombination channels.

  15. Exciton-Phonon Interaction Effects in II-Vi Compound Semiconductor Quantum Wells

    NASA Astrophysics Data System (ADS)

    Pelekanos, Nikolaos Themelis

    1992-01-01

    In this thesis, we report on two specific examples of exciton-LO phonon Frohlich interaction effects, namely, hot carrier relaxation and temperature dependent exciton linewidth broadening. These phenomena are considered in the context of quasi-two dimensional excitons in strongly polar II-VI semiconductor quantum wells. Hot-exciton luminescence phenomena are investigated in a single quantum well of ZnTe/MnTe where tunneling through thin MnTe barrier layers suppresses the formation of thermalized luminescence. For near resonant photoexcitation, the secondary emission spectrum is modulated by distinct LO-phonon peaks, which, for sufficiently high order of scattering ( >=4), behave like hot luminescence (HPL) as opposed to resonant Raman scattering. This is confirmed by time-resolved spectroscopy as well as by steady-state characteristics such as linewidth broadening and lack of polarization memory. Several novel observations are made: (1) The LO-phonon intermediated energy relaxation involves Coulomb-correlated pairs, i.e. hot excitons, as opposed to independently-relaxing free electrons and holes. (2) The additional weak disorder originating from QW thickness fluctuations plays a major role in the details of the HPL spectra. The major contribution to the ground state exciton linewidth at room temperature originates from LO phonon -intermediated exciton scattering to higher exciton states. A measure of the effect is given by the parameter Gamma_{LO} which increases with the polarity of the material and is independent of dimensionality provided that the LO phonon energy is greater than the exciton binding energy. Measurements of Gamma_{LO} are performed in two quantum well systems: CdTe/MnTe and (Zn,Cd)Se/ZnSe. In the latter system, a strong reduction of Gamma _{LO} is observed as the quantum well width becomes comparable to the three-dimensional exciton Bohr radius. This is explained in terms of a model where quasi-2D confinement effects increase the exciton binding

  16. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots

    PubMed Central

    Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.

    2015-01-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10−2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications. PMID:26621073

  17. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.

    2015-12-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (~10-2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.

  18. High yield and ultrafast sources of electrically triggered entangled-photon pairs based on strain-tunable quantum dots.

    PubMed

    Zhang, Jiaxiang; Wildmann, Johannes S; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G

    2015-01-01

    Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10(-2)). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications. PMID:26621073

  19. Use of water-soluble PbS quantum dots as fluorescent probe in sensing copper(II)

    NASA Astrophysics Data System (ADS)

    Li, Ting; Wang, Nanxi; Chen, Lijia; Deng, Dawei; Gu, Yueqing

    2010-11-01

    In this paper, we report a new facile method for the synthesis of water-soluble PbS quantum dots (QDs), using dihydrolipoic acid (DHLA) as a stabilizer. The prepared QDs were characterized by optical techniques and high-resolution transmission electron microscopy (TEM). Next, these water-soluble luminescent PbS QDs were further used to detect copper (II). The obtained experimental results show that the fluorescence of the PbS QDs could be markedly quenched by Cu(II) whereas approximate concentrations of other physiologically relevant cations, such as Zn(II), Ca(II), Mg(II), Mn(II), Na(I) and K(I) etc., almost did not interfere with the fluorescence quenching progress of copper ions. Based on this, a simple and rapid method for Cu(II) determination was developed. Under optimal conditions, the response was linearly proportional to the copper(II) concentration in the range of 1 to 11.5x10-8 mol•L-1, with a correlation coefficient of 0.995. Hence, aqueous DHLA-stabilized PbS QDs may be a promising fluorescent probe in sensing copper(II) selectively.

  20. Title: Development of Single photon Quantum Optical Experiments using Type-I and Type-II Spontaneous Parametric Down Conversion

    NASA Astrophysics Data System (ADS)

    Laugharn, Andrew; Maleki, Seyfollah

    We constructed a quantum optical apparatus to control and detect single photons. We generated these photons via Type-I and Type-II spontaneous parametric down conversion by pumping a GaN laser (405nm) incident on a BBO crystal. We detected the two down converted photons (810nm), denoted signal and idler, in coincidence so as to measure and control single photons. We implemented a coincidence counting unite onto an Altera DE2 board and used LabView for data acquisition. We used these photon pairs to demonstrate quantum entanglement and indistinguishability using multiple optical experiments.

  1. Theory of self-resonance after inflation. II. Quantum mechanics and particle-antiparticle asymmetry

    NASA Astrophysics Data System (ADS)

    Hertzberg, Mark P.; Karouby, Johanna; Spitzer, William G.; Becerra, Juana C.; Li, Lanqing

    2014-12-01

    We further develop a theory of self-resonance after inflation in a large class of models involving multiple scalar fields. We concentrate on inflaton potentials that carry an internal symmetry, but also analyze weak breaking of this symmetry. This is the second part of a two-part series of papers. Here in Part 2 we develop an understanding of the resonance structure from the underlying many-particle quantum mechanics. We begin with a small-amplitude analysis, which obtains the central resonant wave numbers, and relate it to perturbative processes. We show that the dominant resonance structure is determined by (i) the nonrelativistic scattering of many quantum particles and (ii) the application of Bose-Einstein statistics to the adiabatic and isocurvature modes, as introduced in Part 1 [M. P. Hertzberg et al., Phys. Rev. D 90, 123528 (2014)]. Other resonance structures are understood in terms of annihilations and decays. We set up Bunch-Davies vacuum initial conditions during inflation and track the evolution of modes including Hubble expansion. In the case of a complex inflaton carrying an internal U(1) symmetry, we show that when the isocurvature instability is active, the inflaton fragments into separate regions of ϕ -particles and anti-ϕ -particles. We then introduce a weak breaking of the U(1) symmetry; this can lead to baryogenesis, as shown by some of us recently [M. P. Hertzberg and J. Karouby, Phys. Lett. B 737, 34 (2014); Phys. Rev. D 89, 063523 (2014)]. Then using our results, we compute corrections to the particle-antiparticle asymmetry from this preheating era.

  2. Exciton Kinetics in Strained II-Vi Semiconductor Multiple Quantum Wells.

    NASA Astrophysics Data System (ADS)

    Hefetz, Yaron

    1987-09-01

    Two groups of wide gap II-VI semiconductor superlattices based on ZnSe/Zn(,1-x)Mn(,x)Se and CdTe/ZnTe were investigated using CW and time-resolved photoluminescence, excitation, reflectance, and photomodulated reflectance spectroscopy at various temperatures and under an external magnetic field. All these lattice mismatch strained layer structures were grown by MBE technique and exhibit strong excitonic photoluminescence at low temperatures. By studying the dynamics of the exciton recombination processes, the role of strain, quantum confinement and localization effects were revealed. In the CdTe/ZnTc system where the lattice mismatch is (DELTA)a/a (TURNEQ) 6% the inhomogeneously broadened ((TURN)40 mev) luminescence line is governed by excitonic localization in well width fluctuations. Exchange interactions of the carriers with the Mn('++) ions in the dilute magnetic semiconductor Zn(,1-x)Mn(,x)Se in thin film and the barrier of the MQW structures influence their optical behavior in an exernal magnetic field. "Giant" Zeeman splittings of up to (TURN)10 mev/Tesla were measured in samples with moderate Mn concentration (x = .23). Antiferromagnetic interaction reduces these splittings in samples with higher Mn concentrations. In observing the time evolution of the carrier in Zn(,1-x)Mn(,x)Se MQW we found that the capture time of these carriers into the well is on the order of 1 psec but the last stages of thermalization, exciton formations and localization is (TURN)70 ps. The fast capture of electrons and holes into the quantum wells bypass the energy transfer into the Mn internal transition that is responsible to the efficient "yellow" luminescence in ZnMnSe mixed crystals.

  3. Mild hydrothermal synthesis, crystal structure, photoluminescence properties and emission quantum yield of a new zirconium germanate with garnet-type structure

    SciTech Connect

    Ferdov, Stanislav; Ferreira, Rute A.S.; Lin Zhi; Wu Zhengying

    2012-06-15

    The mild hydrothermal synthesis, crystal structure, photoluminescence properties and emission quantum yield of a new sodium zirconium germanate are reported. This material and the method for its preparation represent for the first time a germanium garnet-type material synthesized at autogenous pressure and temperature at 230 Degree-Sign C. The crystal structure was determined by starting from the crystallographic parameters of a common garnet structure and it represents not only a new chemical combination of atoms but also combination of oxidation states in garnet structure. The framework consists of interconnected corner sharing GeO{sub 4} tetrahedra and ZrO{sub 6} octahedra which form small cavities that accommodate charge compensation Na{sup +} cations. In the course of synthesis the structure can be functionalized by in situ doping with different percentage of Eu{sup 3+} ions. This structural flexibility is used to explore the photoluminescent behavior of the active centers embedded in garnet-type host. The materials display the Eu{sup 3+5}D{sub 0}{yields}{sup 7}F{sub 0-4} transitions under excitation via intra-{sup 4}f{sub 6} excitation levels and through the O{sup 2-}{yields}Eu{sup 3+} ligand-to-metal charge transfer. A maximum {sup 5}D{sub 0} quantum efficiency and emission quantum yield values (ca. 0.28 and 0.04{+-}0.01, respectively) were found for the low Eu{sup 3+}-containing sample, suggesting the presence of concentration quenching effects at higher Eu{sup 3+}-content (5%). - Graphical abstract: Na{sub 3}Zr{sub 1.8}Ge{sub 3}O{sub 10}(OH){sub 2} prepared at mild hydrothermal conditions. Highlights: Black-Right-Pointing-Pointer New zirconogermanate with garnet-type structure. Black-Right-Pointing-Pointer Hydrothermal synthesis. Black-Right-Pointing-Pointer Crystal structure. Black-Right-Pointing-Pointer Photoluminescent properties.

  4. Dynamics of ligand exchange mechanism at Cu(II) in water: An ab initio quantum mechanical charge field molecular dynamics study with extended quantum mechanical region

    SciTech Connect

    Moin, Syed Tarique; Hofer, Thomas S.; Weiss, Alexander K. H.; Rode, Bernd M.

    2013-07-07

    Ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) were successfully applied to Cu(II) embedded in water to elucidate structure and to understand dynamics of ligand exchange mechanism. From the simulation studies, it was found that using an extended large quantum mechanical region including two shells of hydration is required for a better description of the dynamics of exchanging water molecules. The structural features characterized by radial distribution function, angular distribution function and other analytical parameters were consistent with experimental data. The major outcome of this study was the dynamics of exchange mechanism and reactions in the first hydration shell that could not be studied so far. The dynamical data such as mean residence time of the first shell water molecules and other relevant data from the simulations are close to the results determined experimentally. Another major characteristic of hydrated Cu(II) is the Jahn-Teller distortion which was also successfully reproduced, leading to the final conclusion that the dominating aqua complex is a 6-coordinated species. The ab initio QMCF-MD formalism proved again its capabilities of unraveling even ambiguous properties of hydrated species that are far difficult to explore by any conventional quantum mechanics/molecular mechanics (QM/MM) approach or experiment.

  5. The optical depth of the 158 micrometer (C-12 II) line: Detection of the F=1 yields 0 (C-13 III) hyperfine-structure component

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Townes, C. H.; Poglitsch, A.; Madden, S. C.; Jackson, J. M.; Herrmann, F.; Genzel, R.; Geis, N.

    1991-01-01

    The first detection of the F = 1 yields 0 hyperfine component of the 158 micrometer (C-13 II) fine structure line in the interstellar medium is reported. A twelve point intensity map was obtained of the (C-13 II) distribution over the inner 190 inch (right ascension) by 190 inch (declination) regions of the Orion nebula using an imaging Fabry-Perot interferometer. The (C-12 II)/(C-13 II) line intensity ratio varied significantly over the region mapped. It is highest (86 plus or minus 9) in the core of the Orion H II region and significantly lower (62 plus or minus 7) in the outer regions of the map, reflecting higher optical depth in the (C-12 II) line here. It is suggested that this enhanced optical depth is the result of limb brightening of the optically thin (C-13 II) line at the edges of the bowl-shaped H II region blister. If the C-12/C-13 abundance ratio is 43, the (C-12 II) line in the inner regions of the Orion nebula, has a low optical depth: tau sub 12 approximately = 0.75 plus or minus 0.25. The optical depth together with the large brightness temperature of the (C-12 II) line (approximately 160 K) requires that the excitation temperature of the P-2 sub 3/2 level be approximately 310 K, in very good agreement with the previous analysis of the physical conditions of the Orion interface region based on fine structure line intensity ratios and photodissociation region models. If the C-12/C-13 abundance ratio is 67, the line optical depth is somewhat larger (tau sub 12 approximately = 1.85), and the transition excitation temperature is somewhat smaller (approximately 190 K) than that predicted by these models. The present results therefore support values approximately = 43 for the C-12/C-13 abundance ratio in the Orion nebula.

  6. Multi-band Bloch equations and gain spectra of highly excited II-VI semiconductor quantum wells

    SciTech Connect

    Girndt, A.; Jahnke, F.; Knorr, A.; Koch, S.W.; Chow, W.W.

    1997-04-21

    Quasi-equilibrium excitation dependent optical probe spectra of II-VI semiconductor quantum wells at room temperature are investigated within the framework of multi-band semiconductor Bloch equations. The calculations include correlation effects beyond the Hartree-Fock level which describe dephasing, interband Coulomb correlations and band-gap renormalization in second Born approximation. In addition to the carrier-Coulomb interaction, the influence of carrier-phonon scattering and inhomogeneous broadening is considered. The explicit calculation of single particle properties like band structure and dipole matrix elements using k {center_dot} p theory makes it possible to investigate various II-VI material combinations. Numerical results are presented for CdZnSe/ZnSe and CdZnSe/MnZnSSe semiconductor quantum-well systems.

  7. Near-Unity Quantum Yields of Biexciton Emission from CdSe=CdS Nanocrystals Measured Using Single-Particle Spectroscopy

    SciTech Connect

    Park, Young-Shin; Malko, Anton V.; Vela, Javier; Chen, Yongfen; Ghosh, Yagnaseni; Garcia-Santamaria, Florencio; Hollingsworth, Jennifer A.; Klimov, Victor I.; Htoon, Han

    2011-05-03

    Biexciton photoluminescence (PL) quantum yields (Q2X) of individual CdSe/CdS core-shell nanocrystal quantum dots with various shell thicknesses are derived from independent PL saturation and two-photon correlation measurements. We observe a near-unity Q{sub 2X} for some nanocrystals with an ultrathick 19-monolayer shell. High Q2X’s are, however, not universal and vary widely among nominally identical nanocrystals indicating a significant dependence of Q2X upon subtle structural differences. Interestingly, our measurements indicate that high Q2X’s are not required to achieve complete suppression of PL intensity fluctuations in individual nanocrystals.

  8. Time dependent quantum dynamics study of the Ne+H{sub 2}{sup +}(v=0-4){yields}NeH{sup +}+H proton transfer reaction

    SciTech Connect

    Mayneris, Jordi; Gonzalez, Miguel

    2008-05-21

    The Ne+H{sub 2}{sup +}{yields}NeH{sup +}+H proton transfer reaction was studied using the time dependent real wave packet quantum dynamics method at the helicity decoupling level, considering the H{sub 2}{sup +} molecular ion in the (v=0-4, j=0) vibrorotational states and a wide collision energy interval. The calculated reaction probabilities and reaction cross sections were in a rather good agreement with reanalyzed previous exact quantum dynamics results, where a much smaller collision energy interval was considered. Also, a quite good agreement with experimental data was found. These results suggested the adequacy of the approach used here to describe this and related systems.

  9. Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors

    SciTech Connect

    Giard, E. Ribet-Mohamed, I.; Jaeck, J.; Viale, T.; Haïdar, R.; Taalat, R.; Delmas, M.; Rodriguez, J.-B.; Christol, P.; Steveler, E.; Bardou, N.; Boulard, F.

    2014-07-28

    We present in this paper a comparison between different type-II InAs/GaSb superlattice (T2SL) photodiodes and focal plane array (FPA) in the mid-wavelength infrared domain to understand which phenomenon drives the performances of the T2SL structure in terms of quantum efficiency (QE). Our measurements on test photodiodes suggest low minority carrier diffusion length in the “InAs-rich” design, which penalizes carriers' collection in this structure for low bias voltage and front side illumination. This analysis is completed by a comparison of the experimental data with a fully analytic model, which allows to infer a hole diffusion length shorter than 100 nm. In addition, measurements on a FPA with backside illumination are finally presented. Results show an average QE in the 3–4.7 μm window equal to 42% for U{sub bias} = −0.1 V, 77 K operating temperature and no anti-reflection coating. These measurements, completed by modulation transfer function and noise measurements, reveal that the InAs-rich design, despite a low hole diffusion length, is promising for high performance infrared imaging applications.

  10. Magnetoluminescence from trion and biexciton in type-II quantum dot.

    PubMed

    Okuyama, Rin; Eto, Mikio; Hyuga, Hiroyuki

    2011-01-01

    We theoretically investigate optical Aharonov-Bohm (AB) effects on trion and biexciton in the type-II semiconductor quantum dots, in which holes are localized near the center of the dot, and electrons are confined in a ring structure formed around the dot. Many-particle states are calculated numerically by the exact diagonalization method. Two electrons in trion and biexciton are strongly correlated to each other, forming a Wigner molecule. Since the relative motion of electrons are frozen, the Wigner molecule behaves as a composite particle whose mass and charges are twice those of an electron. As a result, the period of AB oscillation for trion and biexciton becomes h/2e as a function of magnetic flux penetrating the ring. We find that the magnetoluminescence spectra from trion and biexciton change discontinuously as the magnetic flux increases by h/2e.PACS: 71.35.Ji, 73.21.-b, 73.21.La, 78.67.Hc. PMID:21711894

  11. Electronic and optical properties of exciton, trions and biexciton in II-VI parabolic quantum dot

    NASA Astrophysics Data System (ADS)

    Sujanah, P.; John Peter, A.; Woo Lee, Chang

    2015-08-01

    Binding energies of exciton, trions and biexciton and their interband optical transition energies are studied in a CdTe/ZnTe quantum dot nanostructure taking into consideration the geometrical confinement effect. The radial spread of the wavefunctions, binding energies, optical transition energies, oscillator strength, radiative life time and the absorption coefficients of exciton, positively and negatively charged excitons and biexciton are carried out. It is found that the ratio of the radiative life time of exciton with the trions and biexciton enhances with the reduction of geometrical confinement. The results show that (i) the binding energies of exciton, positive and negative trions and the biexciton have strong influence on the reduction of geometrical confinement effect, (ii) the binding energy is found to decrease from the binding energies of exciton to positive trion through biexciton and negative trion binding energies, (iii) the oscillator strength of trions is found to be lesser than exciton and the biexciton and (iv) the electronic and optical properties of exciton, trions and the biexciton are considerably dependent on the spatial confinement, incident photon energy and the radiative life time. The obtained results are in good agreement with the other existing literature.

  12. Dynamics of the matrix in DMS Type-II quantum dot systems

    NASA Astrophysics Data System (ADS)

    Brown, Collin R.; Whiteside, Vince R.; Sellers, Ian R.; Petrou, Athos; Chou, W.-C.

    Magnetic field, temperature, and polarization dependent continuous wave photoluminescence spectroscopy (PL) is used to study two related Type-II quantum dots (QDs). These techniques were used to study how the location of magnetic impurities affects the formation of magnetic polarons in these two (related) systems. The ZnMnTe/ZnSe system has Mn impurities located within the QDs, with (ideally) no Mn in the surrounding ZnSe matrix. The ZnTe/ZnMnSe QDs have Mn impurities grown within the matrix, which ideally is excluded from the QDs. For both these systems, the holes are confined within the dots, while the electrons are located in the surrounding matrix. The location of the Mn and its coupling with the spin of the corresponding carrier leads to distinct characteristics for each system. Due to difficulties growing these systems, some diffusion of Mn during the growth of these samples is suspected, leading to a percentage of magnetic impurities unintentionally located in the non-magnetic region for both samples. The emission from the matrix in particular was studied to determine the effect/composition of Mn in this region and its contribution to the characteristics of the QDs. This work is supported by NSF DMR-1305770.

  13. Quantum efficiency investigations of type-II InAs/GaSb midwave infrared superlattice photodetectors

    NASA Astrophysics Data System (ADS)

    Giard, E.; Ribet-Mohamed, I.; Jaeck, J.; Viale, T.; Haïdar, R.; Taalat, R.; Delmas, M.; Rodriguez, J.-B.; Steveler, E.; Bardou, N.; Boulard, F.; Christol, P.

    2014-07-01

    We present in this paper a comparison between different type-II InAs/GaSb superlattice (T2SL) photodiodes and focal plane array (FPA) in the mid-wavelength infrared domain to understand which phenomenon drives the performances of the T2SL structure in terms of quantum efficiency (QE). Our measurements on test photodiodes suggest low minority carrier diffusion length in the "InAs-rich" design, which penalizes carriers' collection in this structure for low bias voltage and front side illumination. This analysis is completed by a comparison of the experimental data with a fully analytic model, which allows to infer a hole diffusion length shorter than 100 nm. In addition, measurements on a FPA with backside illumination are finally presented. Results show an average QE in the 3-4.7 μm window equal to 42% for Ubias = -0.1 V, 77 K operating temperature and no anti-reflection coating. These measurements, completed by modulation transfer function and noise measurements, reveal that the InAs-rich design, despite a low hole diffusion length, is promising for high performance infrared imaging applications.

  14. Simulations of structure II H2 and D2 clathrates: potentials incorporating quantum corrections.

    PubMed

    Alavi, Saman; Klug, D D; Ripmeester, J A

    2008-02-14

    Molecular dynamics simulations are used to study the stability of structure II H(2) and D(2) clathrates with different large and small guest occupancies at 160 and 250 K and 2.0 kbars. Simulations are performed with the recently proposed anisotropic site-site potentials of Wang for H2 and D2 [J. Quant. Spectrosc. Radiat. Transf. 76, 23 (2003)] which are parameterized to account for quantum corrections of order variant Planck's over 2pi(2) in the second virial coefficient. Occupancies of 0-2 in the small cages and 2-5 in the large cages are considered. Thermodynamic integration is used to determine the most stable guest occupancy at each temperature. Since lattice free energy and configurational energy differences are small for a number of different combinations of cage occupancies, one must expect that in bulk samples various combinations will indeed be observed. Special attention is given to the differences between H(2) and D(2) guests and implications on the hydrogen storage capacity of the clathrates are discussed. PMID:18282055

  15. Simulations of structure II H2 and D2 clathrates: Potentials incorporating quantum corrections

    NASA Astrophysics Data System (ADS)

    Alavi, Saman; Klug, D. D.; Ripmeester, J. A.

    2008-02-01

    Molecular dynamics simulations are used to study the stability of structure II H2 and D2 clathrates with different large and small guest occupancies at 160 and 250K and 2.0kbars. Simulations are performed with the recently proposed anisotropic site-site potentials of Wang for H2 and D2 [J. Quant. Spectrosc. Radiat. Transf. 76, 23 (2003)] which are parameterized to account for quantum corrections of order ℏ2 in the second virial coefficient. Occupancies of 0-2 in the small cages and 2-5 in the large cages are considered. Thermodynamic integration is used to determine the most stable guest occupancy at each temperature. Since lattice free energy and configurational energy differences are small for a number of different combinations of cage occupancies, one must expect that in bulk samples various combinations will indeed be observed. Special attention is given to the differences between H2 and D2 guests and implications on the hydrogen storage capacity of the clathrates are discussed.

  16. I.I. Rabi Prize Talk: Exploring New Frontiers of Quantum Optical Science

    NASA Astrophysics Data System (ADS)

    Lukin, Mikhail

    2009-05-01

    In this talk we will discuss recent developments involving a new scientific interface between quantum optics and atomic physics, many body physics, nanoscience and quantum information science. Specific examples include quantum manipulation of individual spins and photons using impurities in diamond and control of light-matter interactions using sub-wavelength localization of optical fields. Novel applications of these techniques ranging from implementation of ideas from quantum information science to nanoscale magnetic sensing will be discussed.

  17. High detectivity short-wavelength II-VI quantum cascade detector

    SciTech Connect

    Ravikumar, Arvind P. Gmachl, Claire F.; Garcia, Thor A.; Tamargo, Maria C.; Jesus, Joel De

    2014-08-11

    We report on the experimental demonstration of a ZnCdSe/ZnCdMgSe-based short-wavelength photovoltaic Quantum Cascade Detector (QCD). The QCD operates in two spectral bands centered around 2.6 μm and 3.6 μm. Calibrated blackbody measurements yield a peak responsivity of 0.1 mA/W or 2400 V/W at 80 K, and a corresponding 300 K background radiation limited infrared performance detectivity (BLIP) of ∼2.5 × 10{sup 10 }cm √Hz/W. Comparison of background illuminated and dark current-voltage measurements demonstrates a BLIP temperature of 200 K. The device differential resistance-area product, decreases from about 10{sup 6} Ω cm{sup 2} at 80 K to about 8000 Ω cm{sup 2} at 300 K, indicative of the ultra-low Johnson noise in the detectors.

  18. Optical properties of multi-layer type II InP/GaAs quantum dots studied by surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Ivanov, Ts.; Donchev, V.; Germanova, K.; Gomes, P. F.; Iikawa, F.; Brasil, M. J. S. P.; Cotta, M. A.

    2011-09-01

    We present a low-temperature (73 K) study of the optical properties of multi-layer type II InP/GaAs self-assembled quantum dots by means of surface photovoltage (SPV) spectroscopy, taking advantage of its high sensitivity and contactless nature. The samples contain 10 periods of InP quantum dot planes separated by 5 nm GaAs spacers. The SPV amplitude spectra reveal two major broad peaks, situated at low and high energies, respectively. These features are analyzed taking into account the type II character of the structure, the quantum coupling effects, the spectral behavior of the SPV phase, and the photoluminescence spectra. As a result they have been attributed to optical transitions in the quantum dots and the wetting layers, respectively. The main mechanism for carrier separation in the SPV generation process is clarified via the analysis of the SPV phase spectra. The influence of the substrate absorption on the SPV spectra is discussed in details.

  19. The Qubit as Key to Quantum Physics Part II: Physical Realizations and Applications

    ERIC Educational Resources Information Center

    Dür, Wolfgang; Heusler, Stefan

    2016-01-01

    Using the simplest possible quantum system--the qubit--the fundamental concepts of quantum physics can be introduced. This highlights the common features of many different physical systems, and provides a unifying framework when teaching quantum physics at the high school or introductory level. In a previous "TPT" article and in a…

  20. Q-Machine Plasmas Yielding New Experimental Methodologies of Sheared-Flow and Nano-Quantum Physics

    SciTech Connect

    Hatakeyama, Rikizo; Kaneko, Toshiro

    2008-10-15

    The traditional Q machine has been modified in accordance with the evolution of experimental methodologies ranging from modern plasma physics to extreme nanoscience. A special emphasis is placed on physics of sheared-flow related electron-temperature-gradient modes and nano-quantum physics or electronics based on fullerene and carbon nanotubes.

  1. A water-soluble ESIPT fluorescent probe with high quantum yield and red emission for ratiometric detection of inorganic and organic palladium.

    PubMed

    Gao, Tang; Xu, Pengfei; Liu, Meihui; Bi, Anyao; Hu, Pengzhi; Ye, Bin; Wang, Wei; Zeng, Wenbin

    2015-05-01

    A novel fluorescent probe with a high quantum yield (0.41), large Stokes shifts (255 nm), and red emission (635 nm) was designed to detect all typical oxidation states of palladium species (0, +2, +4) by palladium-mediated terminal propargyl ethers cleavage reaction in water solution without any organic media. The probe showed a high selectivity and excellent sensitivity for palladium species, with a detection as low as 57 nM (6.2 μg L(-1)). PMID:25757156

  2. Cl{sub 2}O photochemistry: Ultraviolet/vis absorption spectrum temperature dependence and O({sup 3}P) quantum yield at 193 and 248 nm

    SciTech Connect

    Papanastasiou, Dimitrios K.; Feierabend, Karl J.; Burkholder, James B.

    2011-05-28

    The photochemistry of Cl{sub 2}O (dichlorine monoxide) was studied using measurements of its UV/vis absorption spectrum temperature dependence and the O({sup 3}P) atom quantum yield, {Phi}{sub Cl{sub 2}O}{sup O}({lambda}), in its photolysis at 193 and 248 nm. The Cl{sub 2}O UV/vis absorption spectrum was measured over the temperature range 201-296 K between 200 and 500 nm using diode array spectroscopy. Cl{sub 2}O absorption cross sections, {sigma}{sub Cl{sub 2}O}({lambda},T), at temperatures <296 K were determined relative to its well established room temperature values. A wavelength and temperature dependent parameterization of the Cl{sub 2}O spectrum using the sum of six Gaussian functions, which empirically represent transitions from the ground {sup 1}A{sub 1} electronic state to excited states, is presented. The Gaussian functions are found to correlate well with published theoretically calculated vertical excitation energies. O({sup 3}P) quantum yields in the photolysis of Cl{sub 2}O at 193 and 248 nm were measured using pulsed laser photolysis combined with atomic resonance fluorescence detection of O({sup 3}P) atoms. O({sup 3}P) quantum yields were measured to be 0.85 {+-} 0.15 for 193 nm photolysis at 296 K and 0.20 {+-} 0.03 at 248 nm, which was also found to be independent of temperature (220-352 K) and pressure (17 and 28 Torr, N{sub 2}). The quoted uncertainties are at the 2{sigma} (95% confidence) level and include estimated systematic errors. ClO radical temporal profiles obtained following the photolysis of Cl{sub 2}O at 248 nm, as reported previously in Feierabend et al.[J. Phys. Chem. A 114, 12052, (2010)], were interpreted to establish a <5% upper-limit for the O + Cl{sub 2} photodissociation channel, which indicates that O({sup 3}P) is primarily formed in the three-body, O + 2Cl, photodissociation channel at 248 nm. The analysis also indirectly provided a Cl atom quantum yield of 1.2 {+-} 0.1 at 248 nm. The results from this work are compared

  3. Aerogels: Aerogels from CdSe/CdS Nanorods with Ultra-long Exciton Lifetimes and High Fluorescence Quantum Yields (Adv. Mater. 40/2015).

    PubMed

    Sánchez-Paradinas, Sara; Dorfs, Dirk; Friebe, Sebastian; Freytag, Axel; Wolf, Andreas; Bigall, Nadja C

    2015-10-28

    The fabrication of gels from semiconductor nanoparticles by means of a controlled and optimized destabilization process is investigated by N. C. Bigall and co-workers on page 6152. Aerogels with high photoluminescence quantum yield and ultra-long radiative lifetimes are fabricated from CdSe/CdS seeded nanorods. It is shown that excited electrons can be delocalized within the aerogel monolith while, at the same time, holes stay confined in the CdSe cores. This type of assembly of nanoparticles shows novel properties in comparison to those of the nanoparticle building blocks and of the bulk material. PMID:26487019

  4. Short-Term Responses in Maximum Quantum Yield of PSII (Fv/Fm) to ex situ Temperature Treatment of Populations of Bryophytes Originating from Different Sites in Hokkaido, Northern Japan

    PubMed Central

    Jägerbrand, Annika K.; Kudo, Gaku

    2016-01-01

    There is limited knowledge available on the thermal acclimation processes for bryophytes, especially when considering variation between populations or sites. This study investigated whether short-term ex situ thermal acclimation of different populations showed patterns of site dependency and whether the maximum quantum yield of PSII (Fv/Fm) could be used as an indicator of adaptation or temperature stress in two bryophyte species: Pleurozium schreberi (Willd. ex Brid.) Mitt. and Racomitrium lanuginosum (Hedw.) Brid. We sought to test the hypothesis that differences in the ability to acclimate to short-term temperature treatment would be revealed as differences in photosystem II maximum yield (Fv/Fm). Thermal treatments were applied to samples from 12 and 11 populations during 12 or 13 days in growth chambers and comprised: (1) 10/5 °C; (2) 20/10 °C; (3) 25/15 °C; (4) 30/20 °C (12 hours day/night temperature). In Pleurozium schreberi, there were no significant site-dependent differences before or after the experiment, while site dependencies were clearly shown in Racomitrium lanuginosum throughout the study. Fv/Fm in Pleurozium schreberi decreased at the highest and lowest temperature treatments, which can be interpreted as a stress response, but no similar trends were shown by Racomitrium lanuginosum. PMID:27135242

  5. Short-Term Responses in Maximum Quantum Yield of PSII (Fv/Fm) to ex situ Temperature Treatment of Populations of Bryophytes Originating from Different Sites in Hokkaido, Northern Japan.

    PubMed

    Jägerbrand, Annika K; Kudo, Gaku

    2016-01-01

    There is limited knowledge available on the thermal acclimation processes for bryophytes, especially when considering variation between populations or sites. This study investigated whether short-term ex situ thermal acclimation of different populations showed patterns of site dependency and whether the maximum quantum yield of PSII (Fv/Fm) could be used as an indicator of adaptation or temperature stress in two bryophyte species: Pleurozium schreberi (Willd. ex Brid.) Mitt. and Racomitrium lanuginosum (Hedw.) Brid. We sought to test the hypothesis that differences in the ability to acclimate to short-term temperature treatment would be revealed as differences in photosystem II maximum yield (Fv/Fm). Thermal treatments were applied to samples from 12 and 11 populations during 12 or 13 days in growth chambers and comprised: (1) 10/5 °C; (2) 20/10 °C; (3) 25/15 °C; (4) 30/20 °C (12 hours day/night temperature). In Pleurozium schreberi, there were no significant site-dependent differences before or after the experiment, while site dependencies were clearly shown in Racomitrium lanuginosum throughout the study. Fv/Fm in Pleurozium schreberi decreased at the highest and lowest temperature treatments, which can be interpreted as a stress response, but no similar trends were shown by Racomitrium lanuginosum. PMID:27135242

  6. Extended Cahill-Glauber formalism for finite-dimensional spaces. II. Applications in quantum tomography and quantum teleportation

    SciTech Connect

    Marchiolli, Marcelo A.; Ruzzi, Maurizio; Galetti, Diogenes

    2005-10-15

    By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.

  7. Yield responses of crops to changes in environment and management practices: Model sensitivity analysis. II. Rice, wheat, and potato

    NASA Astrophysics Data System (ADS)

    Terjung, W. H.; Hayes, J. T.; O'Rourke, P. A.; Todhunter, P. E.

    1984-12-01

    This paper is a continuation of our prior examination of yield responses of maize (Terjung et al., 1984b). The analysis of the response of the model YIELD to changes in a variety of basic environmental and decision-making inputs was continued for paddy rice, winter wheat, and early potato. As before, temperature, solar radiation, and relative humidity regimes were analyzed during a growing season along with different water application strategies, irrigation frequencies, soil types, and wind regimes. Among the results, yield decreased on the average by 4.9% (rice) and 6.0% (wheat) per 1‡ (C) increase in air temperature. A 1% change in solar radiation resulted in an average of 1% (wheat) and 0.4% (rice) change in yield. Analogous changes in relative humidity caused yield changes of about 0.8% and nothing for wheat and rice, respectively. For all crops, the relationship between irrigation frequency and yield increase was near-linear for large irrigation intervals. This linearity vanished under high frequency waterings. With respect to irrigation amounts, 1 mm/ha of applied water was related, on the average, to 75 (potato), 19 (grain corn), 8 (rice), and 6 kg/ha (wheat) of harvestable yield.

  8. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm

    SciTech Connect

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K.; Burkholder, James B.

    2012-10-28

    Oxalyl chloride, (ClCO){sub 2}, has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO){sub 2} and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV/vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001)], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, {Phi}({lambda}), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO){sub 2} has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl){sub 2}+ hv{yields} ClCO*+ Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO*{yields} Cl + CO (3a), {yields} ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M {yields} Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO){sub 2}. {Phi}(193 nm) was found to be 2.07 {+-} 0.37 independent of bath gas pressure (25.8-105.7 Torr, N{sub 2}), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO){sub 2} is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 {+-} 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 {+-} 0.26 independent of bath gas pressure (15-70 Torr, N{sub 2}). {Phi}(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N{sub 2}). The low

  9. Do genotypic differences in thermotolerance plasticity correspond with water-induced differences in yield and photosynthetic stability for field-grown upland cotton?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine if cultivar differences in thermotolerance plasticity of photosystem II promote yield or photosynthetic stability when variability in both parameters is water-induced, the temperature response of maximum quantum yield of photosystem II (Fv/Fm) was evaluated for two cotton cultivars (FM ...

  10. High efficient luminescence in type-II GaAsSb-capped InAs quantum dots upon annealing

    NASA Astrophysics Data System (ADS)

    Ulloa, J. M.; Llorens, J. M.; Alén, B.; Reyes, D. F.; Sales, D. L.; González, D.; Hierro, A.

    2012-12-01

    The photoluminescence efficiency of GaAsSb-capped InAs/GaAs type II quantum dots (QDs) can be greatly enhanced by rapid thermal annealing while preserving long radiative lifetimes which are ˜20 times larger than in standard GaAs-capped InAs/GaAs QDs. Despite the reduced electron-hole wavefunction overlap, the type-II samples are more efficient than the type-I counterparts in terms of luminescence, showing a great potential for device applications. Strain-driven In-Ga intermixing during annealing is found to modify the QD shape and composition, while As-Sb exchange is inhibited, allowing to keep the type-II structure. Sb is only redistributed within the capping layer giving rise to a more homogeneous composition.

  11. Determination of the Strong Phase in D{sup 0}{yields}K{sup +}{pi}{sup -} Using Quantum-Correlated Measurements

    SciTech Connect

    Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Duboscq, J. E.; Ehrlich, R.; Fields, L.; Gibbons, L.; Gray, R.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hertz, D.; Jones, C. D.; Kandaswamy, J.; Kreinick, D. L.; Kuznetsov, V. E.; Mahlke-Krueger, H.; Mohapatra, D.; Onyisi, P. U. E.; Patterson, J. R.

    2008-06-06

    We exploit the quantum coherence between pair-produced D{sup 0} and D{sup 0} in {psi}(3770) decays to study charm mixing, which is characterized by the parameters x and y, and to make a first determination of the relative strong phase {delta} between D{sup 0}{yields}K{sup +}{pi}{sup -} and D{sup 0}{yields}K{sup +}{pi}{sup -}. Using 281 pb{sup -1} of e{sup +}e{sup -} collision data collected with the CLEO-c detector at E{sub cm}=3.77 GeV, as well as branching fraction input and time-integrated measurements of R{sub M}{identical_to}(x{sup 2}+y{sup 2})/2 and R{sub WS}{identical_to}{gamma}(D{sup 0}{yields}K{sup +}{pi}{sup -})/{gamma}(D{sup 0}{yields}K{sup +}{pi}{sup -}) from other experiments, we find cos{delta}=1.03{sub -0.17}{sup +0.31}{+-}0.06, where the uncertainties are statistical and systematic, respectively. By further including other mixing parameter measurements, we obtain an alternate measurement of cos{delta}=1.10{+-}0.35{+-}0.07, as well as xsin{delta}=(4.4{sub -1.8}{sup +2.7}{+-}2.9)x10{sup -3} and {delta}=(22{sub -12-11}{sup +11+9}) deg.

  12. Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes

    PubMed Central

    2015-01-01

    Charge transfer processes with semiconductor quantum dots (QDs) have generated much interest for potential utility in energy conversion. Such configurations are generally nonbiological; however, recent studies have shown that a redox-active ruthenium(II)–phenanthroline complex (Ru2+-phen) is particularly efficient at quenching the photoluminescence (PL) of QDs, and this mechanism demonstrates good potential for application as a generalized biosensing detection modality since it is aqueous compatible. Multiple possibilities for charge transfer and/or energy transfer mechanisms exist within this type of assembly, and there is currently a limited understanding of the underlying photophysical processes in such biocomposite systems where nanomaterials are directly interfaced with biomolecules such as proteins. Here, we utilize redox reactions, steady-state absorption, PL spectroscopy, time-resolved PL spectroscopy, and femtosecond transient absorption spectroscopy (FSTA) to investigate PL quenching in biological assemblies of CdSe/ZnS QDs formed with peptide-linked Ru2+-phen. The results reveal that QD quenching requires the Ru2+ oxidation state and is not consistent with Förster resonance energy transfer, strongly supporting a charge transfer mechanism. Further, two colors of CdSe/ZnS core/shell QDs with similar macroscopic optical properties were found to have very different rates of charge transfer quenching, by Ru2+-phen with the key difference between them appearing to be the thickness of their ZnS outer shell. The effect of shell thickness was found to be larger than the effect of increasing distance between the QD and Ru2+-phen when using peptides of increasing persistence length. FSTA and time-resolved upconversion PL results further show that exciton quenching is a rather slow process consistent with other QD conjugate materials that undergo hole transfer. An improved understanding of the QD–Ru2+-phen system can allow for the design of more sophisticated

  13. Study of GaAsSb/GaAs type-II quantum well with top InAs quantum dot layer using complementary spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    Hsu, Hung-Pin; Wu, Jiun-De; Lin, Yan-Jih; Huang, Ying-Sheng; Lin, You-Ru; Lin, Hao-Hsiung

    2015-09-01

    The optical characterization of GaAsSb/GaAs type-II quantum wells (QWs) with top InAs quantum dot (QD) layer composite structures was carried out using the complementary surface photovoltage (SPV) and photoluminescence (PL) spectroscopies. The obtained SPV and PL spectra revealed that the features originated from InAs QDs, modulated potential wells in GaAsSb QWs, the wetting layer (WL) as well as the GaAs cap layer/barrier at room temperature. The optical transition from the modulated potential wells in GaAsSb QWs in the composite structures showed a redshift when the spacer layer was narrowed from 10 to 5 nm. This is attributed to the lower modulated potential minimum in GaAsSb QWs caused by the strain exerted by InAs QDs in the composite structures with the narrower spacer layer. The power-dependent PL measurement showed that the luminescences from the GaAsSb/GaAs heterostructure blue-shifted with increasing excitation power owing to the type-II band alignment. These results demonstrated that SPV and PL are useful techniques for the nondestructive optical characterization of GaAsSb QWs with top InAs QD composite structures.

  14. Improving Students' Understanding of Quantum Measurement. II. Development of Research-Based Learning Tools

    ERIC Educational Resources Information Center

    Zhu, Guangtian; Singh, Chandralekha

    2012-01-01

    We describe the development and implementation of research-based learning tools such as the Quantum Interactive Learning Tutorials and peer-instruction tools to reduce students' common difficulties with issues related to measurement in quantum mechanics. A preliminary evaluation shows that these learning tools are effective in improving students'…

  15. Structural, spectroscopic and quantum chemical studies of acetyl hydrazone oxime and its palladium(II) and platinum(II) complexes

    NASA Astrophysics Data System (ADS)

    Kaya, Yunus; Icsel, Ceyda; Yilmaz, Veysel T.; Buyukgungor, Orhan

    2015-09-01

    Acetyl hydrazone oxime, [(1E,2E)-2-(hydroxyimino)-1-phenylethylidene]acetohydrazone (hipeahH2) and its palladium(II) and platinum(II) complexes, [M(hipeahH)2] (M = PdII and PtII), have been synthesized and characterized by elemental analysis, UV-vis IR, NMR and LC-MS techniques. X-ray diffraction analysis of [Pd(hipeahH)2] shows that the two hipeahH2 ligands are not equal; one of the ligands loses the hydrazone proton, while the other one loses the oxime proton, resulting in a different coordination behavior to form five- and six-membered chelate rings. The molecular geometries from X-ray experiments in the ground state were compared using the density functional theory (DFT) with the B3LYP method combined with the 6-311++G(d,p) basis set for the ligand and the LanL2DZ basis set for the complexes. Comprehensive theoretical and experimental structural studies on the molecule have been carried out by FT-IR, NMR and UV-vis spectrometry. In addition, the isomer studies of ligand and its complexes were made by DFT.

  16. Recent development of SWIR focal plane array with InGaAs/GaAsSb type-II quantum wells

    NASA Astrophysics Data System (ADS)

    Inada, Hiroshi; Machinaga, Kenichi; Balasekaran, Sundararajan; Miura, Kouhei; Kawahara, Takahiko; Migita, Masaki; Akita, Katsushi; Iguchi, Yasuhiro

    2016-05-01

    HgCdTe (MCT) is predominantly used for infrared imaging applications even in SWIR region. However, MCT is expensive and contains environmentally hazardous substances. Therefore, its application has been restricted mainly military and scientific use and was not spread to commercial use. InGaAs/GaAsSb type-II quantum well structures are considered as an attractive material for realizing low dark current PDs owing to lattice-matching to InP substrate. Moreover, III-V compound material systems are suitable for commercial use. In this report, we describe successful operation of focal plane array (FPA) with InGaAs/GaAsSb quantum wells and mention improvement of optical characteristics. Planar type pin-PDs with 250-pairs InGaAs(5nm)/GaAsSb(5nm) quantum well absorption layer were fabricated. The p-n junction was formed in the absorption layer by the selective diffusion of zinc. Electrical and optical characteristics of FPA or pin-PDs were investigated. Dark current of 1μA/cm2 at 210K, which showed good uniformity and led to good S/N ratio in SWIR region, was obtained. Further, we could successfully reduce of stray light in the cavity of FPA with epoxy resin. As a result, the clear image was taken with 320x256 format and 7% contrast improvement was achieved. Reliability test of 10,000 heat cycles was carried out. No degradations were found in FPA characteristics of the epoxy coated sample. This result means FPA using InGaAs/GaAsSb type-II quantum wells is a promising candidate for commercial applications.

  17. Temperature and irradiance impacts on the growth, pigmentation and photosystem II quantum yield of Haemotococcus pluvialis (Chlorophyceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microalga Haematococcus pluvialis Flotow has been the subject of a number of studies concerned with maximizing astaxanthin production for use in animal feeds and for human consumption. Several of these studies have specifically attempted to ascertain the optimal temperature and irradiance combi...

  18. Temperature and Irradiance Impacts on the Growth, Pigmentation and Photosystem II Quantum Yields of Haematococcus pluvialis (Chlorophyceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microalga Haematococcus pluvialis Flotow has been the subject of a number of studies concerned with maximizing astaxanthin production for use in animal feeds and for human consumption. Several of these studies have specifically attempted to ascertain the optimal temperature and irradiance combi...

  19. A methacrylate-based polymeric imidazole ligand yields quantum dots with low cytotoxicity and low nonspecific binding

    PubMed Central

    Johnson, Colin M.; Pate, Kayla M.; Shen, Yi; Viswanath, Anand; Tan, Rui; Benicewicz, Brian C.; Moss, Melissa A.; Greytak, Andrew B.

    2016-01-01

    This paper assesses the biocompatibility for fluorescence imaging of colloidal nanocrystal quantum dots (QDs) coated with a recently-developed multiply-binding methacrylate-based polymeric imidazole ligand. The QD samples were purified prior to ligand exchange via a highly repeatable gel permeation chromatography (GPC) method. A multi-well plate based protocol was used to characterize nonspecific binding and toxicity of the QDs toward human endothelial cells. Nonspecific binding in 1% fetal bovine serum was negligible compared to anionically-stabilized QD controls, and no significant toxicity was detected on 24 h exposure. The nonspecific binding results were confirmed by fluorescence microscopy. This study is the first evaluation of biocompatibility in QDs initially purified by GPC and represents a scalable approach to comparison among nanocrystal-based bioimaging scaffolds. PMID:26247382

  20. The Qubit as Key to Quantum Physics Part II: Physical Realizations and Applications

    NASA Astrophysics Data System (ADS)

    Dür, Wolfgang; Heusler, Stefan

    2016-03-01

    Using the simplest possible quantum system—the qubit—the fundamental concepts of quantum physics can be introduced. This highlights the common features of many different physical systems, and provides a unifying framework when teaching quantum physics at the high school or introductory level. In a previous TPT article and in a separate paper posted online, we introduced catchy visualizations of the qubit based on the Bloch sphere or just the unit circle (see also Refs. 3-8 for other approaches highlighting the importance of the qubit). These visualizations open the way to understand basic ideas of quantum physics even without knowledge of the underlying mathematical formalism. In addition, simple mathematics can be introduced to describe the qubit as an abstract object and basic unit of quantum information. This generalizes the digital bit as a basic unit of classical information. The proposed visualizations can be used even at the high school level, while the mathematical explanations are of importance when teaching quantum physics at the undergraduate university level. This approach provides a unified framework to introduce common features of all quantum systems, such as the stochastic behavior and state change of a superposition state under measurement.

  1. Internal (His)6-tagging delivers a fully functional hetero-oligomeric class II chaperonin in high yield

    PubMed Central

    Paul, Danielle M.; Beuron, Fabienne; Sessions, Richard B.; Brancaccio, Andrea; Bigotti, Maria Giulia

    2016-01-01

    Group II chaperonins are ATP-ases indispensable for the folding of many proteins that play a crucial role in Archaea and Eukarya. They display a conserved two-ringed assembly enclosing an internal chamber where newly translated or misfolded polypeptides can fold to their native structure. They are mainly hexadecamers, with each eight-membered ring composed of one or two (in Archaea) or eight (in Eukarya) different subunits. A major recurring problem within group II chaperonin research, especially with the hetero-oligomeric forms, is to establish an efficient recombinant system for the expression of large amounts of wild-type as well as mutated variants. Herein we show how we can produce, in E. coli cells, unprecedented amounts of correctly assembled and active αβ-thermosome, the class II chaperonin from Thermoplasma acidophilum, by introducing a (His)6-tag within a loop in the α subunit of the complex. The specific location was identified via a rational approach and proved not to disturb the structure of the chaperonin, as demonstrated by size-exclusion chromatography, native gel electrophoresis and electron microscopy. Likewise, the tagged protein showed an ATP-ase activity and an ability to refold substrates identical to the wild type. This tagging strategy might be employed for the overexpression of other recombinant chaperonins. PMID:26856373

  2. GaAs-based triangular barrier photodiodes with embedded type-II GaSb quantum dots

    NASA Astrophysics Data System (ADS)

    Vitushinskiy, Pavel; Ohmori, Masato; Kuroda, Tomohiro; Noda, Takeshi; Kawazu, Takuya; Sakaki, Hiroyuki

    2016-05-01

    We fabricate GaAs-based triangular barrier photodiodes (TBPs), in which type-II GaSb quantum dots (QDs) are embedded in the vertex part of their triangular barriers. Their current–voltage characteristics and photo-responses are studied at low temperatures to show that GaSb QDs enhance the number and lifetime of photo-generated holes that are trapped by QDs in the barrier, resulting in the increase in the electron current around positively charged QDs. An extremely high responsivity of 109 A/W is achieved.

  3. Oxalyl chloride, ClC(O)C(O)Cl: UV/vis spectrum and Cl atom photolysis quantum yields at 193, 248, and 351 nm

    NASA Astrophysics Data System (ADS)

    Ghosh, Buddhadeb; Papanastasiou, Dimitrios K.; Burkholder, James B.

    2012-10-01

    Oxalyl chloride, (ClCO)2, has been used as a Cl atom photolytic precursor in numerous laboratory kinetic and photochemical studies. In this study, the UV/vis absorption spectrum of (ClCO)2 and the Cl atom quantum yields in its photolysis at 193, 248, and 351 nm are reported. The UV/vis spectrum was measured between 200 and 450 nm at 296 K using diode array spectroscopy in conjunction with an absolute cross section obtained at 213.9 nm. Our results are in agreement with the spectrum reported by Baklanov and Krasnoperov [J. Phys. Chem. A 105, 97-103 (2001), 10.1021/jp0019456], which was obtained at 11 discrete wavelengths between 193.3 and 390 nm. Cl atom quantum yields, Φ(λ), were measured using pulsed laser photolysis coupled with time resolved atomic resonance fluorescence detection of Cl. The UV photolysis of (ClCO)2 has been shown in previous studies to occur via an impulsive three-body dissociation mechanism, (COCl)2 + hv → ClCO* + Cl + CO (2), where the excited ClCO radical, ClCO*, either dissociates or stabilizes ClCO* → Cl + CO (3a), → ClCO (3b). ClCO is thermally unstable at the temperatures (253-298 K) and total pressures (13-128 Torr) used in our experiments ClCO + M → Cl + CO + M (4) leading to the formation of a secondary Cl atom that was resolvable in the Cl atom temporal profiles obtained in the 248 and 351 nm photolysis of (ClCO)2. Φ(193 nm) was found to be 2.07 ± 0.37 independent of bath gas pressure (25.8-105.7 Torr, N2), i.e., the branching ratio for channel 2a or the direct formation of 2Cl + 2CO in the photolysis of (ClCO)2 is >0.95. At 248 nm, the branching ratio for channel 2a was determined to be 0.79 ± 0.15, while the total Cl atom yield, i.e., following the completion of reaction (4), was found to be 1.98 ± 0.26 independent of bath gas pressure (15-70 Torr, N2). Φ(351 nm) was found to be pressure dependent between 7.8 and 122.4 Torr (He, N2). The low-pressure limit of the total Cl atom quantum yield, Φ0(351 nm), was 2.05

  4. Simulation of cemented granular materials. II. Micromechanical description and strength mobilization at the onset of macroscopic yielding.

    PubMed

    Estrada, Nicolas; Lizcano, Arcesio; Taboada, Alfredo

    2010-07-01

    This is the second of two papers investigating the mechanical response of cemented granular materials by means of contact dynamics simulations. In this paper, a two-dimensional polydisperse sample with high void ratio is sheared in a load-controlled simple shear numerical device until the stress state of the sample reaches the yield stress. We first study the stress transmission properties of the granular material in terms of the fabric of different subsets of contacts characterized by the magnitude of their normal forces. This analysis highlights the existence of a peculiar force carrying structure in the cemented material, which is reminiscent of the bimodal stress transmission reported for cohesionless granular media. Then, the evolution of contact forces and torques is investigated trying to identify the micromechanical conditions that trigger macroscopic yielding. It is shown that global failure can be associated to the apparition of a group of particles whose contacts fulfill at least one of the local rupture conditions. In particular, these particles form a large region that percolates through the sample at the moment of failure, evidencing the relationship between macroscopic yielding and the emergence of large-scale correlations in the system. PMID:20866608

  5. A Time-Dependent Quantum Dynamics Study of the H2 + CH3 yields H + CH4 Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We present a time-dependent wave-packet propagation calculation for the H2 + CH3 yields H + CH4 reaction in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probability for different initial rotational-vibrational states are presented in this study. The cumulative reaction probability (CRP) is obtained by summing over initial-state-selected reaction probability. The energy-shift approximation to account for the contribution of degrees of freedom missing in the 6D calculation is employed to obtain an approximate full-dimensional CRP. Thermal rate constant is compared with different experiment results.

  6. Measuring solid-state quantum yields: The conversion of a frequency-doubled Nd:YAG diode laser pointer module into a viable light source.

    PubMed

    Daglen, Bevin C; Harris, John D; Dax, Clifford D; Tyler, David R

    2007-07-01

    This article outlines the difficulties associated with measuring quantum yields for solid-state samples using a high-pressure mercury arc lamp as the irradiation source. Details are given for the conversion of an inexpensive frequency-doubled neodymium-doped yttrium aluminum garnet (Nd:YAG) diode laser pointer module into a viable irradiation source. The modified Nd:YAG laser was incorporated into a computer-controlled system, which allowed for the simultaneous irradiation and spectroscopic monitoring of the sample. The data obtained with the Nd:YAG diode laser system show far less scatter than data obtained with a high-pressure Hg arc lamp, and consequently the degradation rates obtained with the laser system could be calculated with far greater accuracy. PMID:17672778

  7. Perturbation of planarity as the possible mechanism of solvent-dependent variations of fluorescence quantum yield in 2-aryl-3-hydroxychromones

    NASA Astrophysics Data System (ADS)

    Klymchenko, Andrey S.; Pivovarenko, Vasyl G.; Demchenko, Alexander P.

    2003-03-01

    In order to understand the unexpectedly low quantum yields of 3-hydroxyflavones (3-HFs) in certain solvents, such as acetonitrile or ethyl acetate, the comparative study of solvent-dependent properties of parent 3-HF, 2-furyl-3-hydroxychromone and 2-benzofuryl-3-hydroxychromone derivatives have been performed. The results suggest that the formation of intermolecular hydrogen bond of 3-hydroxy group with the solvent favors non-planar conformations of phenyl group with respect to chromone system. This steric hindrance is not observed in the case of furan- and benzofuran-substituted 3-hydroxychromones (3-HCs). These results suggesting a new strategy for dramatic improvement of fluorescence properties of 3-HCs as two-wavelength ratiometric fluorescence probes.

  8. Improved photoluminescence quantum yield and stability of CdSe-TOP, CdSe-ODA-TOPO, CdSe/CdS and CdSe/EP nanocomposites

    NASA Astrophysics Data System (ADS)

    Wei, Shutian; Zhu, Zhilin; Wang, Zhixiao; Wei, Gugangfen; Wang, Pingjian; Li, Hai; Hua, Zhen; Lin, Zhonghai

    2016-07-01

    Size-controllable monodisperse CdSe nanocrystals with different organic capping were prepared based on the hot-injection method. The effective separation of nucleation and growth was achieved by rapidly mixing two highly reactive precursors. As a contrast, we prepared CdSe/CdS nanocrystals (NCs) successfully based on the selective ion layer adsorption and reaction (SILAR) technique. This inorganic capping obtained higher photoluminescence quantum yield (PLQY) of 59.3% compared with organic capping of 40.8%. Furthermore, the CdSe-epoxy resin (EP) composites were prepared by adopting a flexible ex situ method, and showed excellent stability in the ambient environment for one year. So the composites with both high PLQY of nanocrystals and excellent stability are very promising to device application.

  9. The nature and role of quantized transition states in the accurate quantum dynamics of the reaction O + H2 yields OH + H

    NASA Technical Reports Server (NTRS)

    Chatfield, David C.; Friedman, Ronald S.; Lynch, Gillian C.; Truhlar, Donald G.; Schwenke, David W.

    1993-01-01

    Accurate quantum mechanical dynamics calculations are reported for the reaction probabilities of O(3P) + H2 yields OH + H with zero total angular momentum on a single potential energy surface. The results show that the reactive flux is gated by quantized transition states up to the highest energy studied, which corresponds to a total energy of 1.90 eV. The quantized transition states are assigned and compared to vibrationally adiabatic barrier maxima; their widths and transmission coefficients are determined; and they are classified as variational, supernumerary of the first kind, and supernumerary of the second kind. Their effects on state-selected and state-to-state reactivity are discussed in detail.

  10. Structural and physicochemical aspects of silica encapsulated ZnO quantum dots with high quantum yield and their natural uptake in HeLa cells.

    PubMed

    Depan, D; Misra, R D K

    2014-09-01

    Photoluminescent semiconductor quantum dots (QDs) are of significant interest for bioimaging and fluorescence labeling. In this regard, we describe here the design of high sensitivity and high specificity non-toxic ZnO QDs (∼5 nm) with long-term stability of up to 12 months. The embedding of ZnO QDs on silica nanospheres led to significant increase in photoluminescence intensity rendering them highly bright QD-based probes. The QDs were characterized in vitro with respect to cancer cells (HeLa) and evaluated in terms of viability, fluorescence and cytoskeletal organization. The immobilization of ZnO QDs on silica nanospheres promoted the internalization and enhanced fluorescence emission of HeLa cells. The fluorescence emission from QDs was stable for 3 days, indicating excellent stability toward photobleaching. Cytoskeletal reorganization was observed after internalization of QDs such that the ZnO QDS on silica nanospheres resulted in broadening of the actin cytoskeleton. The study underscores that ZnO QDs immobilized on Si nanospheres are promising for tracking cancer cells in cell therapy. PMID:24115677

  11. Simulation of n-qubit quantum systems. II. Separability and entanglement

    NASA Astrophysics Data System (ADS)

    Radtke, T.; Fritzsche, S.

    2006-07-01

    Studies on the entanglement of n-qubit quantum systems have attracted a lot of interest during recent years. Despite the central role of entanglement in quantum information theory, however, there are still a number of open problems in the theoretical characterization of entangled systems that make symbolic and numerical simulation on n-qubit quantum registers indispensable for present-day research. To facilitate the investigation of the separability and entanglement properties of n-qubit quantum registers, here we present a revised version of the FEYNMAN program in the framework of the computer algebra system MAPLE. In addition to all previous capabilities of this MAPLE code for defining and manipulating quantum registers, the program now provides various tools which are necessary for the qualitative and quantitative analysis of entanglement in n-qubit quantum registers. A simple access, in particular, is given to several algebraic separability criteria as well as a number of entanglement measures and related quantities. As in the previous version, symbolic and numeric computations are equally supported. Program summaryTitle of program:FEYNMAN Catalogue identifier:ADWE_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE_v2_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed: All computers with a license of the computer algebra system MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] Operating systems under which the program has been tested: Linux, MS Windows XP Programming language used:MAPLE 10 Typical time and memory requirements:Most commands acting on quantum registers with five or less qubits take ⩽10 seconds of processor time (on a Pentium 4 with ⩾2 GHz or equivalent) and 5-20 MB of memory. However, storage and time requirements critically depend on the number of qubits, n, in the quantum registers due to the exponential

  12. The quantum yield of CO2 fixation is reduced for several minutes after prior exposure to darkness. Exploration of the underlying causes.

    PubMed

    Kirschbaum, M U F; Oja, V; Laisk, A

    2005-01-01

    Previous work has shown that the apparent quantum yield of CO2 fixation can be reduced for up to several minutes after prior exposure to darkness. In the work reported here, we investigated this phenomenon more fully and have deduced information about the underlying processes. This was done mainly by concurrent measurements of O2 and CO2 exchange in an oxygen-free atmosphere. Measurements of O2 evolution indicated that photochemical efficiency was not lost through dark adaptation, and that O2 evolution could proceed immediately at high rates provided that there were reducible pools of photosynthetic intermediates. Part of the delay in reaching the full quantum yield of CO2 fixation could be attributed to the need to build up pools of photosynthetic intermediates to high enough levels to support steady rates of CO2 fixation. There was no evidence that Rubisco inactivation contributed towards delayed CO2 uptake (under measurement conditions of low light). However, we obtained evidence that an enzyme in the reaction path between triose phosphates and RuBP must become completely inactivated in the dark. As a consequence, in dark-adapted leaves, a large amount of triose phosphates were exported from the chloroplast over the first minute of light rather than being converted to RuBP for CO2 fixation. That pattern was not observed if the pre-incubation light level was increased to just 3-5 micromol quanta m(-2) s(-1). The findings from this work underscore that there are fundamental differences in enzyme activation between complete darkness and even a very low light level of only 3-5 micromol quanta m(-2) s(-1) which predispose leaves to different gas exchange patterns once leaves are transferred to higher light levels. PMID:15666215

  13. Quantum damped oscillator II: Bateman's Hamiltonian vs. 2D parabolic potential barrier

    SciTech Connect

    Chruscinski, Dariusz . E-mail: darch@phys.uni.torun.pl

    2006-04-15

    We show that quantum Bateman's system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.

  14. The road to matrix mechanics: II. Ladenburg’s quantum interpretation of optical dispersion

    NASA Astrophysics Data System (ADS)

    Crivellari, Lucio

    2016-09-01

    This paper reviews Ladenburg’s development of the phenomenological theory of radiative transitions between the stationary states of an atom put forward by Einstein in 1917. The historical background as well as the far reaching outcomes of his work are considered and discussed; among them the Kramers–Heisenberg quantum dispersion theory that paved the way to Heisenberg’s formulation of matrix mechanics and the quantum-mechanical calculation of the spectral line profiles.

  15. Study on the Ultrahigh Quantum Yield of Fluorescent P,O-g-C3 N4 Nanodots and its Application in Cell Imaging.

    PubMed

    Rong, Mingcong; Cai, Zhixiong; Xie, Lei; Lin, Chunshui; Song, Xinhong; Luo, Feng; Wang, Yiru; Chen, Xi

    2016-06-27

    Graphitic carbon nitride nanodots (g-C3 N4 nanodots), as a new kind of heavy-metal-free quantum dots, have attracted considerable attention because of their unique physical and chemical properties. Although various methods to obtain g-C3 N4 nanodots have been reported, it is still a challenge to synthesize g-C3 N4 nanodots with ultrahigh fluorescence quantum yield (QY). In this study, highly fluorescent phosphorus/oxygen-doped graphitic carbon nitride (P,O-g-C3 N4 ) nanodots were prepared by chemical oxidation and hydrothermal etching of bulk P-g-C3 N4 derived from the pyrolysis of phytic acid and melamine. The as-prepared P,O-g-C3 N4 nanodots showed strong blue fluorescence and a relatively high QY of up to 90.2 %, which can be ascribed to intrinsic phosphorus/oxygen-containing groups, and surface-oxidation-related fluorescence enhancement. In addition, the P,O-g-C3 N4 nanodots were explored for cell imaging with excellent stability and biocompatibility, which suggest that they have great potential in biological applications. PMID:27249019

  16. Quantum entanglement in manganese(II) hexakisimidazole nitrate: on electronic structure imaging - A polarized neutron diffraction and DFT study

    NASA Astrophysics Data System (ADS)

    Wallace, Warren A.

    2016-04-01

    Quantum entanglement has been visualized for the first time, in view of the spin density distribution and electronic structure for manganese in manganese(II)hexakisimidazole nitrate. Using polarized neutron diffraction and density functional theory modelling we have found for the complex, which crystallizes in the R3¯ spacegroup, a = b = 12.4898(3) Å, c = 14.5526(4) Å, α = γ = 90°, β = 120°, Z = 3, that spatially antisymmetric and spatially symmetric shaped regions of negative spin density, in the spin density map for manganese, are a result of quantum entanglement of the high spin d5 configuration due to dative imidazole- manganese π- donation and σ-bonding interactions respectively. We have found leakage of the entangled states for manganese observed as regions of positive spin density with spherical (3.758(2) μB) and non-spherical (1.242(3) μB) contributions. Our results, which are supportive of Einstein's theory of general relativity, provide evidence for the existence of a black hole spin density distribution at the origin of an electronic structure and also address the paradoxical views of entanglement and quantum mechanics. We have also found the complex, which is an insulator, to be suitable for spintronic studies.

  17. Spontaneous generation of phase waves and solitons in stimulated Raman scattering. II. Quantum statistics of Raman-soliton generation

    NASA Astrophysics Data System (ADS)

    Englund, John C.; Bowden, Charles M.

    1992-07-01

    The formalism of Englund and Bowden [Phys. Rev. A 42, 2870 (1990)] is used to conduct a detailed investigation into the statistics of spontaneously generated Raman solitons and their origin in phase waves. Two approaches are adopted. In one, a Monte Carlo simulation of the stochastic differential equations describing stimulated Raman scattering is carried out, with quantum noise entering through the Stokes vacuum. The other involves determining analytically the field statistics in the quantum-initiation regime, finding the corresponding phase-wave statistics, and determining numerically the class of phase waves that appear in the nonlinear regime as solitons. Computations involving quasi-Gaussian and rectangular pump-pulse profiles consistently indicate soliton yields of roughly 10% and 4%, respectively; differences in the distributions of soliton delay times and peak intensities are also indicated. The Monte Carlo method is adapted to the experimental parameter values of MacPherson et al. [Phys. Rev. A 40, 6745 (1989)], and gives yields and distribution in good accord with the experiment.

  18. Uncooled SWIR InGaAs/GaAsSb type-II quantum well focal plane array

    NASA Astrophysics Data System (ADS)

    Inada, H.; Miura, K.; Mori, H.; Nagai, Y.; Iguchi, Y.; Kawamura, Y.

    2010-04-01

    Low dark current photodiodes (PDs) in the short wavelength infrared (SWIR) upto 2.5μm region, are expected for many applications. HgCdTe (MCT) is predominantly used for infrared imaging applications. However, because of high dark current, MCT device requires a refrigerator such as stirling cooler, which increases power consumption, size and cost of the sensing system. Recently, InGaAs/GaAsSb type II quantum well structures were considered as attractive material system for realizing low dark current PDs owing to lattice-matching to InP substrate. Planar type PIN-PDs were successfully fabricated. The absorption layer with 250 pair-InGaAs(5nm)/GaAsSb(5nm) quantum well structures was grown on S-doped (100) InP substrates by solid source molecular beam epitaxy method. InP and InGaAs were used for cap layer and buffer layer, respectively. The p-n junctions were formed in the absorption layer by the selective diffusion of zinc. Diameter of light-receiving region was 140μm. Low dark current was obtained by improving GaAsSb crystalline quality. Dark current density was 0.92mA/cm2 which was smaller than that of a conventional MCT. Based on the same process as the discrete device, a 320x256 planar type focal plane array was also fabricated. Each PD has 15μm diameter and 30μm pitch and it was bonded to read-out IC by using indium bump flip chip process. Finally, we have successfully demonstrated the 320 x256 SWIR image at room temperature. This result means that planer type PD array with the type II InGaAs/GaAsSb quantum well structure is a promising candidate for uncooled applications.

  19. EVOLUTION, NUCLEOSYNTHESIS, AND YIELDS OF LOW-MASS ASYMPTOTIC GIANT BRANCH STARS AT DIFFERENT METALLICITIES. II. THE FRUITY DATABASE

    SciTech Connect

    Cristallo, S.; Dominguez, I.; Abia, C.; Piersanti, L.; Straniero, O.; Gallino, R.; Di Rico, G.; Quintini, M.; Bisterzo, S.

    2011-12-01

    By using updated stellar low-mass stars models, we systematically investigate the nucleosynthesis processes occurring in asymptotic giant branch (AGB) stars. In this paper, we present a database dedicated to the nucleosynthesis of AGB stars: FRANEC Repository of Updated Isotopic Tables and Yields (FRUITY). An interactive Web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up (TDU) episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 {<=}M/M{sub Sun} {<=} 3.0 and metallicities 1 Multiplication-Sign 10{sup -3} {<=} Z {<=} 2 Multiplication-Sign 10{sup -2}, is discussed. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parameterization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the TDU efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find good agreement with observations.

  20. Superior triacylglycerol (TAG) accumulation in starchless mutants of Scenedesmus obliquus: (II) evaluation of TAG yield and productivity in controlled photobioreactors

    PubMed Central

    2014-01-01

    Background Many microalgae accumulate carbohydrates simultaneously with triacylglycerol (TAG) upon nitrogen starvation, and these products compete for photosynthetic products and metabolites from the central carbon metabolism. As shown for starchless mutants of the non-oleaginous model alga Chlamydomonas reinhardtii, reduced carbohydrate synthesis can enhance TAG production. However, these mutants still have a lower TAG productivity than wild-type oleaginous microalgae. Recently, several starchless mutants of the oleaginous microalga Scenedesmus obliquus were obtained which showed improved TAG content and productivity. Results The most promising mutant, slm1, is compared in detail to wild-type S. obliquus in controlled photobioreactors. In the slm1 mutant, the maximum TAG content increased to 57 ± 0.2% of dry weight versus 45 ± 1% in the wild type. In the wild type, TAG and starch were accumulated simultaneously during initial nitrogen starvation, and starch was subsequently degraded and likely converted into TAG. The starchless mutant did not produce starch and the liberated photosynthetic capacity was directed towards TAG synthesis. This increased the maximum yield of TAG on light by 51%, from 0.144 ± 0.004 in the wild type to 0.217 ± 0.011 g TAG/mol photon in the slm1 mutant. No differences in photosynthetic efficiency between the slm1 mutant and the wild type were observed, indicating that the mutation specifically altered carbon partitioning while leaving the photosynthetic capacity unaffected. Conclusions The yield of TAG on light can be improved by 51% by using the slm1 starchless mutant of S. obliquus, and a similar improvement seems realistic for the areal productivity in outdoor cultivation. The photosynthetic performance is not negatively affected in the slm1 and the main difference with the wild type is an improved carbon partitioning towards TAG. PMID:24883102

  1. Photoinhibition of Photosystems I and II Using Chlorophyll Fluorescence Measurements

    ERIC Educational Resources Information Center

    Quiles, Maria Jose

    2005-01-01

    In this study the photoinhibition of photosystems (PS) I and II caused by exposure to high intensity light in oat ("Avena sativa," var Prevision) is measured by the emission of chlorophyll fluorescence in intact leaves adapted to darkness. The maximal quantum yield of PS II was lower in plants grown under high light intensity than in plants grown…

  2. Interband cascade light emitting devices based on type-II quantum wells

    SciTech Connect

    Yang, Rui Q.; Lin, C.H.; Murry, S.J.

    1997-06-01

    The authors discuss physical processes in the newly developed type-II interband cascade light emitting devices, and review their recent progress in the demonstration of the first type-II interband cascade lasers and the observation of interband cascade electroluminescence up to room temperature in a broad mid-infrared wavelength region (extended to 9 {mu}m).

  3. Actinometry in monochromatic flash photolysis: the extinction coefficient of triplet benzophenone and quantum yield of triplet zinc tetraphenyl porphyrin

    SciTech Connect

    Hurley, J.K.; Sinai, N.; Linschitz, H.

    1982-11-15

    The extinction coefficient epsilon/sub T/, of triplet benzophenone in benzene has been directly determined by absolute measurements of absorbed energy and triplet absorbance, ..delta..D/sup 0//sub T/, under demonstrably linear conditions where incident excitation energy, E/sub 0/, and ground state absorbance, A/sub 0/, are both extrapolated to zero. The result, 7220 +- 320 M/sup -1/ cm/sup -1/ at 530 nm, validates and corrects many measurements of triplet and radical extinctions and yields, using the energy-transfer method. As E/sub 0/ and A/sub 0/ both decrease, ..delta..D/sup 0//sub T/ becomes proportional to their product. In this situation, the ratio R = (1/A/sub 0/) (d..delta..D/sup 0//sub T//dE/sub 0/) = (epsilon/sub T/ /sup -/ epsilon/sub G/)phi/sub T/. Measurements of R, referred to benzophenone, give (epsilon/sub T/ - epsilon/sub G/)phi/sub T/ for any substance, without necessity for absolute energy calibration. Both absolute and relative laser flash measurements on zinc tetraphenyl porphyrin (epsilon/sub T/ - epsilon/sub G/ at 470 nm = 7.3 x 10/sup 4/ M/sup -1/ cm/sup -1/) give phi/sub T/ = 0.83 +- 0.04. 6 figures, 2 tables.

  4. Deploying quantum light sources on nanosatellites II: lessons and perspectives on CubeSat spacecraft

    NASA Astrophysics Data System (ADS)

    Bedington, R.; Truong-Cao, E.; Tan, Y. C.; Cheng, C.; Durak, K.; Grieve, J.; Larsen, J.; Oi, D.; Ling, A.

    2015-10-01

    To enable space-based quantum key distribution proposals the Centre for Quantum Technologies is developing a source of entangled photons ruggedized to survive deployment in space and greatly miniaturised so that it conforms to the strict form factor and power requirements of a 1U CubeSat. The Small Photon Entangling Quantum System is an integrated instrument where the pump, photon pair source and detectors are combined within a single optical tray and electronics package that is no larger than 10 cm x 10 cm x 3 cm. This footprint enables the instrument to be placed onboard nanosatellites or the CubeLab structure aboard the International Space Station. We will discuss the challenges and future prospects of CubeSat-based missions.

  5. Probing the core-shell-shell structure of CdSe/CdTe/CdS type II quantum dots for solar cell applications

    NASA Astrophysics Data System (ADS)

    Lewis, E. A.; Page, R. C.; Binks, D. J.; Pennycook, T. J.; O'Brien, P.; Haigh, S. J.

    2014-06-01

    A greater understanding of multiple exciton generation in heterostructured colloidal quantum dots can be achieved through detailed modelling, and used to optimise their design for solar cell applications. However, such modelling requires an accurate knowledge of the physical structure of the quantum dots. Here we report the use of high angle annular dark field (HAADF) scanning transmission electron microscope (STEM) imaging to study the size and shape of CdSe/CdTe/CdS type II quantum dots at each of the three stages of their synthesis.

  6. Photoactivation of the manganese catalyst of O2 evolution. II A two-quantum mechanism.

    NASA Technical Reports Server (NTRS)

    Radmer, R.; Cheniae, G. M.

    1971-01-01

    A kinetic analysis is presented of the data obtained in previously described kinetic experiments relating to the photoactivation of the Mn complex required for photosynthetic O2 evolution. The results obtained from the computer simulation of the derived kinetic model compare favorably with the experimentally derived values. They also suggest that photoactivation can be rationalized in terms of a two-quantum process.

  7. Long-range superexchange interaction in copper(II)-dimers: A quantum mechanical calculation

    NASA Astrophysics Data System (ADS)

    Erasmus, C.; Haase, W.

    1994-11-01

    Self consistent field-Møller-Plesset (SCF-MP) calculations have been performed to reproduce the experimentally observable exchange interaction J as a function of long distances in Cu-dimers. Four models with different extended bridging ligands were chosen to cover a Cu(II)Cu(II) separation of ca. 7.0-11.0 Å. The calculated J values fit the limiting function of R.E. Coffman and G.R. Buettner ( J. Phys. Chem.18, 2387 (1979)] very well. Nevertheless the tendency of the J values was discussed rather than their absolute values. The reasons for the relatively strong measured exchange interaction of 2 J = -140 cm -1 for H = -2 J12S1S2 for the same terephthalato-bridged Cu(II)Cu(II) dimers with a CuCu separation of 11.25 Å were discussed.

  8. Predawn and high intensity application of supplemental blue light decreases the quantum yield of PSII and enhances the amount of phenolic acids, flavonoids, and pigments in Lactuca sativa

    PubMed Central

    Ouzounis, Theoharis; Razi Parjikolaei, Behnaz; Fretté, Xavier; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    To evaluate the effect of blue light intensity and timing, two cultivars of lettuce [Lactuca sativa cv. “Batavia” (green) and cv. “Lollo Rossa” (red)] were grown in a greenhouse compartment in late winter under natural light and supplemental high pressure sodium (SON-T) lamps yielding 90 (±10) μmol m−2 s−1 for up to 20 h, but never between 17:00 and 21:00. The temperature in the greenhouse compartments was 22/11°C day/night, respectively. The five light-emitting diode (LED) light treatments were Control (no blue addition), 1B 06-08 (Blue light at 45 μmol m−2 s−1 from 06:00 to 08:00), 1B 21-08 (Blue light at 45 μmol m−2 s−1 from 21:00 to 08:00), 2B 17-19 (Blue at 80 μmol m−2 s−1 from 17:00 to 19:00), and 1B 17-19 (Blue at 45 μmol m−2 s−1 from 17:00 to 19:00). Total fresh and dry weight was not affected with additional blue light; however, plants treated with additional blue light were more compact. The stomatal conductance in the green lettuce cultivar was higher for all treatments with blue light compared to the Control. Photosynthetic yields measured with chlorophyll fluorescence showed different response between the cultivars; in red lettuce, the quantum yield of PSII decreased and the yield of non-photochemical quenching increased with increasing blue light, whereas in green lettuce no difference was observed. Quantification of secondary metabolites showed that all four treatments with additional blue light had higher amount of pigments, phenolic acids, and flavonoids compared to the Control. The effect was more prominent in red lettuce, highlighting that the results vary among treatments and compounds. Our results indicate that not only high light level triggers photoprotective heat dissipation in the plant, but also the specific spectral composition of the light itself at low intensities. However, these plant responses to light are cultivar dependent. PMID:25767473

  9. Four-dimensional quantum study on exothermic complex-forming reactions: Cl{sup -}+CH{sub 3}Br{yields}ClCH{sub 3}+Br{sup -}

    SciTech Connect

    Hennig, Carsten; Schmatz, Stefan

    2005-06-15

    The exothermic gas-phase bimolecular nucleophilic substitution (S{sub N}2) reaction Cl{sup -}+CH{sub 3}Br ({upsilon}{sub 1}{sup '},{upsilon}{sub 2}{sup '},{upsilon}{sub 3}{sup '}){yields}ClCH{sub 3} ({upsilon}{sub 1},{upsilon}{sub 2},{upsilon}{sub 3})+Br{sup -} and the corresponding endothermic reverse reaction have been studied by time-independent quantum scattering calculations in hyperspherical coordinates on a coupled-cluster potential-energy surface. The dimensionality-reduced model takes four degrees of freedom into account [Cl-C and C-Br stretching modes (quantum numbers {upsilon}{sub 3}{sup '} and {upsilon}{sub 3}); totally symmetric modes of the methyl group, i.e., C-H stretching ({upsilon}{sub 1}{sup '} and {upsilon}{sub 1}) and umbrella bending vibrations ({upsilon}{sub 2}{sup '} and {upsilon}{sub 2})]. Diagonalization of the Hamiltonian was performed employing the Lanczos algorithm with a variation of partial reorthogonalization. A narrow grid in the total energy was employed so that long-living resonance states could be resolved and extracted. While excitation of the reactant umbrella bending mode already leads to a considerable enhancement of the reaction probability, its combination with vibrational excitation of the broken C-Br bond, (0, 1, 1), results in a strong synergic effect that can be rationalized by the similarity with the classical transitional normal mode. Exciting the C-H stretch has a non-negligible effect on the reaction probability, while for larger translational energies this mode follows the expected spectatorlike behavior. Combination of C-Br stretch and symmetric C-H, (1,0,1), stretch does not show a cooperative effect. Contrary to the spectator mode concept, energy originally stored in the C-H stretching mode is by no means conserved, but almost completely released in other modes of the reaction products. Products are most likely formed in states with a high degree of excitation in the new C-Cl bond, while the internal modes of

  10. Dynamics of cover, UV-protective pigments, and quantum yield in biological soil crust communities of an undisturbed Mojave Desert shrubland

    USGS Publications Warehouse

    Belnap, J.; Phillips, S.L.; Smith, S.D.

    2007-01-01

    Biological soil crusts are an integral part of dryland ecosystems. We monitored the cover of lichens and mosses, cyanobacterial biomass, concentrations of UV-protective pigments in both free-living and lichenized cyanobacteria, and quantum yield in the soil lichen species Collema in an undisturbed Mojave Desert shrubland. During our sampling time, the site received historically high and low levels of precipitation, whereas temperatures were close to normal. Lichen cover, dominated by Collema tenax and C. coccophorum, and moss cover, dominated by Syntrichia caninervis, responded to both increases and decreases in precipitation. This finding for Collema spp. at a hot Mojave Desert site is in contrast to a similar study conducted at a cool desert site on the Colorado Plateau in SE Utah, USA, where Collema spp. cover dropped in response to elevated temperatures, but did not respond to changes in rainfall. The concentrations of UV-protective pigments in free-living cyanobacteria at the Mojave Desert site were also strongly and positively related to rainfall received between sampling times (R2 values ranged from 0.78 to 0.99). However, pigment levels in the lichenized cyanobacteria showed little correlation with rainfall. Quantum yield in Collema spp. was closely correlated with rainfall. Climate models in this region predict a 3.5-4.0 ??C rise in temperature and a 15-20% decline in winter precipitation by 2099. Based on our data, this rise in temperature is unlikely to have a strong effect on the dominant species of the soil crusts. However, the predicted drop in precipitation will likely lead to a decrease in soil lichen and moss cover, and high stress or mortality in soil cyanobacteria as levels of UV-protective pigments decline. In addition, surface-disturbing activities (e.g., recreation, military activities, fire) are rapidly increasing in the Mojave Desert, and these disturbances quickly remove soil lichens and mosses. These stresses combined are likely to lead to

  11. Towards many-dimensional real-time quantum theory for heavy-particle dynamics. II. Beyond semiclassics by quantum smoothing of the singularity in quantum-classical correspondence

    NASA Astrophysics Data System (ADS)

    Trepanier, M.; Zhang, Daimeng; Mukhanov, Oleg; Anlage, Steven M.

    2013-10-01

    We have prepared meta-atoms based on radio-frequency superconducting quantum-interference devices (rf SQUIDs) and examined their tunability with dc magnetic field, rf current, and temperature. rf SQUIDs are superconducting split-ring resonators in which the usual capacitance is supplemented with a Josephson junction, which introduces strong nonlinearity in the rf properties. We find excellent agreement between the data and a model that regards the Josephson junction as the resistively and capacitively shunted junction. A magnetic field tunability of 80THz/G at 12 GHz is observed, a total tunability of 56% is achieved, and a unique electromagnetically induced transparency feature at intermediate excitation powers is demonstrated for the first time. An rf SQUID metamaterial is shown to have qualitatively the same behavior as a single rf SQUID with regard to dc flux and temperature tuning.

  12. Vibration-translation energy transfer in anharmonic diatomic molecules. II - The vibrational quantum-number dependence

    NASA Technical Reports Server (NTRS)

    Mckenzie, R. L.

    1976-01-01

    A semiclassical model of the inelastic collision between a vibrationally excited anharmonic oscillator and a structureless atom is used to predict the variation of thermally averaged vibrational-translational rate coefficients with temperature and initial-state quantum number. Multiple oscillator states are included in a numerical solution for collinear encounters. The results are compared with CO-He experimental values for both ground and excited initial states using several simplified forms of the interaction potential. The numerical model is also used as a basis for evaluating several less complete, but analytic, models. Two computationally simple analytic approximations are found that successfully reproduce the numerical rate coefficients for a wide range of molecular properties and collision partners. Their limitations are identified, and the relative rates of multiple-quantum transitions from excited states are evaluated for several molecular types.

  13. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    NASA Astrophysics Data System (ADS)

    Zamstein, Noa; Tannor, David J.

    2012-12-01

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)], 10.1063/1.4739845. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], 10.1063/1.459170, and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  14. Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation

    SciTech Connect

    Zamstein, Noa; Tannor, David J.

    2012-12-14

    We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.

  15. Quantum fluctuations in mesoscopic systems: II, Summary of previous research: Progress report, 1990--1991

    SciTech Connect

    Not Available

    1991-01-01

    This summarizes results from the current DOE funding period (9/88--9/91). Analytical results are presented on the subject of the universal conductance fluctuations in mesoscopic conductors, in particular the connection with low temperature 1/F noise magnitudes in disordered systems. Novel correlations in laser speckle patterns are discussed. And other results on the quantum transport in mesoscopic electronic systems are described. (GHH)

  16. Quantum fluctuations in mesoscopic systems: II, Summary of previous research: Progress report, 1990--1991

    SciTech Connect

    Not Available

    1991-12-31

    This summarizes results from the current DOE funding period (9/88--9/91). Analytical results are presented on the subject of the universal conductance fluctuations in mesoscopic conductors, in particular the connection with low temperature 1/F noise magnitudes in disordered systems. Novel correlations in laser speckle patterns are discussed. And other results on the quantum transport in mesoscopic electronic systems are described. (GHH)

  17. A topos foundation for theories of physics: II. Daseinisation and the liberation of quantum theory

    NASA Astrophysics Data System (ADS)

    Döring, A.; Isham, C. J.

    2008-05-01

    This paper is the second in a series whose goal is to develop a fundamentally new way of constructing theories of physics. The motivation comes from a desire to address certain deep issues that arise when contemplating quantum theories of space and time. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics arises when the topos is the category of sets. Other types of theory employ a different topos. In this paper, we study in depth the topos representation of the propositional language, PL(S ), for the case of quantum theory. In doing so, we make a direct link with, and clarify, the earlier work on applying topos theory to quantum physics. The key step is a process we term "daseinisation" by which a projection operator is mapped to a subobject of the spectral presheaf—the topos quantum analog of a classical state space. In the second part of the paper, we change gear with the introduction of the more sophisticated local language L(S ). From this point forward, throughout the rest of the series of papers, our attention will be devoted almost entirely to this language. In the present paper, we use L(S ) to study "truth objects" in the topos. These are objects in the topos that play the role of states: a necessary development as the spectral presheaf has no global elements, and hence, there are no micro-states in the sense of classical physics. Truth objects therefore play a crucial role in our formalism.

  18. Influence of dielectric environment on exciton and bi-exciton properties in colloidal, type II quantum dots

    NASA Astrophysics Data System (ADS)

    Miloszewski, Jacek M.; Walsh, Thomas; Tomić, Stanko

    2015-05-01

    We present theoretical calculations of type II CdSe/CdTe quantum dots systems. We use an 8-band k.p Hamiltonian that includes spin-orbit interaction, strain, and first order piezoelectric effects. Exciton and bi-exciton states are found using the configuration interaction (CI) method that explicitly includes the effects of the Coulomb interaction, as well as exchange and correlation effects between many-electron configurations. We study convergence of the CI Hamiltonian with respect to the number of single particle states used in creation of the Hamiltonian. We show that there is a very strong correlation between the dielectric constant of the environment and exciton and bi-exciton energies.

  19. New formalism for two-photon quantum optics. I - Quadrature phases and squeezed states. II - Mathematical foundation and compact notation

    NASA Technical Reports Server (NTRS)

    Caves, C. M.; Schumaker, B. L.

    1985-01-01

    A new formalism for analyzing two-photon devices, such as parametric amplifiers and phase-conjugate mirrors, is proposed in part I, focusing on the properties and the significance of the quadrature-phase amplitudes and two-mode squeezed states. Time-stationary quasi-probability noise is also detailed for the case of Gaussian noise, and uncertainty principles for the quadrature-phase amplitudes are outlined, as well as some important properties of the two-mode states. Part II establishes a mathematical foundation for the formalism, with introduction of a vector notation for compact representation of two-mode properties. Fundamental unitary operators and special quantum states are also examined with an emphasis on the two-mode squeezed states. The results are applied to a previously studied degenerate limit (epsilon = 0).

  20. Using fluorine-containing amphiphilic random copolymers to manipulate the quantum yields of aggregation-induced emission fluorophores in aqueous solutions and the use of these polymers for fluorescent bioimaging

    PubMed Central

    Lu, Hongguang; Su, Fengyu; Mei, Qian; Tian, Yanqing; Tian, Wenjing; Johnson, Roger H.; Meldrum, Deirdre R.

    2012-01-01

    Two new series of aggregation-induced emission (AIE) fluorophore-containing amphiphilic copolymers possessing the segments of a monomeric AIE fluorophore, N-(2-hydroxypropyl)methacrylamide (HPMA), [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MATMA), and/or 2,2,2-trifluoroethyl methacrylate (TFEMA) were synthesized. Photophysical properties were investigated using UV-Vis absorbance and fluorescence spectrofluorometry. The increases of molar fractions of the hydrophobic AIE fluorophores and/or the trifluoroethyl moieties result in the higher quantum yields of the AIE fluorophores in the polymers. Using 1-mol% of AIE fluorophores with the tuning of molar fractions of TFEMA, 40% quantum yield was achieved, whereas only less than 10% quantum yield was obtained for the polymers without the TFEMA segments. The quantum yield difference indicates the importance of the fluorine segments for getting high quantum yields of the AIE fluorophores. These polymers were explored for fluorescent bioimaging using human brain glioblastoma U87MG and human esophagus premalignant CP-A cell lines. All the polymers are cell permeable and located in the cellular cytoplasma area. Cellular uptake was demonstrated to be through endocytosis, which is time and energy dependent. The polymers are non-cytotoxic to the two cell lines. Because the polymers contain 19F segments, we studied the spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) of these polymers. T1 and T2 are the two important parameters for the evaluations of the capacity of these polymers for further applications in 19F magnetic resonance imaging (19F MRI). Structure influence on T1 and T2, especially for T2, was observed. These new multifunctional materials are the first series of fluorinated polymers with AIE fluorophores for bioapplications. PMID:23397360

  1. Estimating chlorophyll content and photochemical yield of photosystem II (ΦPSII) using solar-induced chlorophyll fluorescence measurements at different growing stages of attached leaves

    PubMed Central

    Tubuxin, Bayaer; Rahimzadeh-Bajgiran, Parinaz; Ginnan, Yusaku; Hosoi, Fumiki; Omasa, Kenji

    2015-01-01

    This paper illustrates the possibility of measuring chlorophyll (Chl) content and Chl fluorescence parameters by the solar-induced Chl fluorescence (SIF) method using the Fraunhofer line depth (FLD) principle, and compares the results with the standard measurement methods. A high-spectral resolution HR2000+ and an ordinary USB4000 spectrometer were used to measure leaf reflectance under solar and artificial light, respectively, to estimate Chl fluorescence. Using leaves of Capsicum annuum cv. ‘Sven’ (paprika), the relationships between the Chl content and the steady-state Chl fluorescence near oxygen absorption bands of O2B (686nm) and O2A (760nm), measured under artificial and solar light at different growing stages of leaves, were evaluated. The Chl fluorescence yields of ΦF 686nm/ΦF 760nm ratios obtained from both methods correlated well with the Chl content (steady-state solar light: R2 = 0.73; artificial light: R2 = 0.94). The SIF method was less accurate for Chl content estimation when Chl content was high. The steady-state solar-induced Chl fluorescence yield ratio correlated very well with the artificial-light-induced one (R2 = 0.84). A new methodology is then presented to estimate photochemical yield of photosystem II (ΦPSII) from the SIF measurements, which was verified against the standard Chl fluorescence measurement method (pulse-amplitude modulated method). The high coefficient of determination (R2 = 0.74) between the ΦPSII of the two methods shows that photosynthesis process parameters can be successfully estimated using the presented methodology. PMID:26071530

  2. One-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots with ultra-high fluorescence quantum yields.

    PubMed

    Zhang, Yongqiang; Liu, Xingyuan; Fan, Yi; Guo, Xiaoyang; Zhou, Lei; Lv, Ying; Lin, Jie

    2016-08-18

    A one-step microwave synthesis of N-doped hydroxyl-functionalized carbon dots (CDs) with ultra-high fluorescence quantum yields (QYs) of 99% is reported. These ultra-high QY CDs were synthesized using citric acid and amino compound-containing hydroxyls like ethanolamine and tris(hydroxylmethyl)aminomethane. Amino and carboxyl moieties can form amides through dehydration condensation reactions, and these amides act as bridges between carboxyl and hydroxyl groups, and modify hydroxyl groups on the surface of the CDs. The entire reaction can be carried out within 5 min. When the molar ratio of reactants is 1 : 1, the hydroxyl and graphitic nitrogen content is the highest, and the synergy leads to a high ratio between the radiative transition rate and nonradiative transition rate as well as a high QY. The developed pathway to N-doped hydroxyl-functionalized CDs can provide unambiguous and remarkable insights into the design of highly luminescent functionalized carbon dots, and expedite the applications of CDs. PMID:27500530

  3. Luminescence, lifetime, and quantum yield studies of redispersible Eu3+-doped GdPO4 crystalline nanoneedles: Core-shell and concentration effects

    NASA Astrophysics Data System (ADS)

    Yaiphaba, N.; Ningthoujam, R. S.; Singh, N. Shanta; Vatsa, R. K.; Singh, N. Rajmuhon; Dhara, Sangita; Misra, N. L.; Tewari, R.

    2010-02-01

    Crystalline nanoneedles of Eu3+-doped GdPO4 and Eu3+-doped GdPO4 covered with GdPO4 shell (core shell) have been prepared at relatively low temperature of 150 °C in ethylene glycol medium. From luminescence study, asymmetric ratio of Eu3+ emission at 612 nm (electric dipole transition) to 592 nm (magnetic dipole transition) is found to be less than one. Maximum luminescence was observed from the nanoparticles with Eu3+ concentration of 5 at. %. For a fixed concentration of Eu3+ doping, there is an improvement in emission intensity for core-shell nanoparticles compared to that for core. This has been attributed to effective removal of surface inhomogeneities around Eu3+ ions present on the surface of core as well as the passivation of inevitable surface states, defects or capping ligand (ethylene glycol) of core nanoparticles by bonding to the shell. Lifetime for D50 level of Eu3+ was found to increase three times for core-shell nanoparticles compared to that for core confirming the more Eu3+ ions with symmetry environment in core shell. For 5 at. % Eu3+-doped GdPO4, quantum yield of 19% is obtained. These nanoparticles are redispersible in water, ethanol, or chloroform and thus will be useful in biological labeling. The dispersed particles are incorporated in polymer-based films that will be useful in display devices.

  4. Eccentric loading of fluorogen with aggregation-induced emission in PLGA matrix increases nanoparticle fluorescence quantum yield for targeted cellular imaging.

    PubMed

    Geng, Junlong; Li, Kai; Qin, Wei; Ma, Lin; Gurzadyan, Gagik G; Tang, Ben Zhong; Liu, Bin

    2013-06-10

    A simple strategy is developed to prepare eccentrically or homogeneously loaded nanoparticles (NPs) using poly (DL-lactide-co-glycolide) (PLGA) as the encapsulation matrix in the presence of different amounts of polyvinyl alcohol (PVA) as the emulsifier. Using 2,3-bis(4-(phenyl(4-(1,2,2-triphenylvinyl)-phenyl)amino)-phenyl)-fumaronitrile (TPETPAFN), a fluorogen with aggregation-induced emission (AIE) characteristics, as an example, the eccentrically loaded PLGA NPs show increased fluorescence quantum yields (QYs) as compared to the homogeneously loaded ones. Field emission transmission electron microscopy and fluorescence lifetime measurements reveal that the higher QY of the eccentrically loaded NPs is due to the more compact aggregation of AIE fluorogens that restricts intramolecular rotations of phenyl rings, which is able to more effectively block the non-radiative decay pathways. The eccentrically loaded NPs show far red/near infrared emission with a high fluorescence QY of 34% in aqueous media. In addition, by using poly([lactide-co-glycolide]-b-folate [ethylene glycol]) (PLGA-PEG-folate) as the co-encapsulation matrix, the obtained NPs are born with surface folic acid groups, which are successfully applied for targeted cellular imaging with good photostability and low cytotoxicity. Moreover, the developed strategy is also demonstrated for inorganic-component eccentrically or homogeneously loaded PLGA NPs, which facilitates the synthesis of polymer NPs with controlled internal architectures. PMID:23404950

  5. Host-Guest Chemistry between Perylene Diimide (PDI) Derivatives and 18-Crown-6: Enhancement in Luminescence Quantum Yield and Electrical Conductivity.

    PubMed

    Lasitha, P; Prasad, Edamana

    2016-07-18

    Perylene diimide (PDI) derivatives exhibit a high propensity for aggregation, which causes the aggregation-induced quenching of emission from the system. Host-guest chemistry is one of the best-known methods for preventing aggregation through the encapsulation of guest molecules. Herein we report the use of 18-crown-6 (18-C-6) as a host system to disaggregate suitably substituted PDI derivatives in methanol. 18-C-6 formed complexes with amino-substituted PDIs in methanol, which led to disaggregation and enhanced emission from the systems. Furthermore, the embedding of the PDI⋅18-C-6 complexes in poly(vinyl alcohol) (PVA) films generated remarkably high emission quantum yields (60-70 %) from the PDI derivatives. More importantly, the host-guest systems were tested for their ability to conduct electricity in PVA films. The electrical conductivities of the self-assembled systems in PVA were measured by electrochemical impedance spectroscopy (EIS) and the highest conductivity observed was 2.42×10(-5)  S cm(-1) . PMID:27319975

  6. A Facile and Low-Cost Method to Enhance the Internal Quantum Yield and External Light-Extraction Efficiency for Flexible Light-Emitting Carbon-Dot Films

    PubMed Central

    Jiang, Z. C.; Lin, T. N.; Lin, H. T.; Talite, M. J.; Tzeng, T. T.; Hsu, C. L.; Chiu, K. P.; Lin, C. A. J.; Shen, J. L.; Yuan, C. T.

    2016-01-01

    Solution-processed, non-toxic carbon dots (CDs) have attracted much attention due to their unique photoluminescence (PL) properties. They are promising emissive layers for flexible light-emitting devices. To this end, the CDs in pristine aqueous solutions need to be transferred to form solid-state thin films without sacrificing their original PL characteristics. Unfortunately, solid-state PL quenching induced by extra non-radiative (NR) energy transfer among CDs would significantly hinder their practical applications in optoelectronics. Here, a facile, low-cost and effective method has been utilized to fabricate high-performance CD/polymer light-emitting flexible films with submicron-structured patterns. The patterned polymers can serve as a solid matrix to disperse and passivate CDs, thus achieving high internal quantum yields of 61%. In addition, they can act as an out-coupler to mitigate the waveguide-mode losses, approximately doubling the external light-extraction efficiency. Such CD/polymer composites also exhibit good photo-stability, and thus can be used as eco-friendly, low-cost phosphors for solid-state lighting. PMID:26822337

  7. Synthesis and characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) functionalized Gd2O3:Eu3+ red phosphor with enhanced quantum yield

    NASA Astrophysics Data System (ADS)

    Jain, Akhil; Hirata, G. A.; Farías, M. H.; Castillón, F. F.

    2016-02-01

    We report the surface modification of nanocrystalline Gd2O3:Eu3+ phosphor by (3-Aminopropyl)trimethoxysilane (APTMS). The nanoparticles were first coated with silica using the Stöber process, and then annealed at 650 °C for 2 h. Afterwards, APTMS was functionalized onto the silica layer to obtain Gd2O3:Eu3+ nanoparticles bearing amine groups on the surface. The effect of silica coating, and the subsequent annealing process on the crystallization of the nanophosphor were analyzed by x-ray diffraction (XRD). High-resolution transmission electron microscopy (HR-TEM) confirmed the presence of a silica layer of ∼45 nm thickness. X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of silica and the amine groups. Photoluminescence (PL) analysis demonstrated an increased emission after functionalization of nanoparticles. Absolute quantum yield (QY) measurements revealed an 18% enhancement in QY in functionalized nanoparticles compared with unmodified nanoparticles, which is of great importance for their biomedical applications.

  8. Control of interchain contacts, solid-state fluorescence quantum yield, and charge transport of cationic conjugated polyelectrolytes by choice of anion.

    PubMed

    Yang, Renqiang; Garcia, Andres; Korystov, Dmitry; Mikhailovsky, Alexander; Bazan, Guillermo C; Nguyen, Thuc-Quyen

    2006-12-27

    Simple procedures are provided for exchanging charge-compensating ions in conjugated polyelectrolytes by progressive dilution of the original species and for determining the degree of ion exchange by using X-ray photoelectron spectroscopy. By using these methods, the bromide ions in poly[(9,9-bis(6'-N,N,N-trimethylammoniumbromide)hexyl)fluorene-co-alt-4,7-(2,1,3-benzothiadiazole)]were exchanged with BF4-, CF3SO3-, PF6-, BPh4-, and B(3,5-(CF3)2C6H3)4- (BArF4-). Absorption, photoluminescence (PL), and PL quantum yields (Phi) were measured in different solvents and in solid films cast from methanol. Examination of the resulting trends, together with the spectral bandshapes in different solvents, suggests that increasing the counteranion (CA) size decreases interchain contacts and aggregation and leads to a substantial increase of Phi in the bulk. Size analysis of polymers containing Br- and BArF4- in water by dynamic light scattering techniques indicates suppression of aggregation by BArF4-. Nanoscale current-voltage measurements of films using conducting atomic force microscopy show that hole mobilities and, more significantly, charge injection barriers are CA dependent. These results show that it is possible to significantly modify the optoelectronic properties of conjugated polyelectrolytes by choosing different counterions. A parent conjugated backbone can thus be fine-tuned for specific applications. PMID:17177402

  9. Revisiting the laser dye Styryl-13 as a reference near-infrared fluorophore: implications for the photoluminescence quantum yields of semiconducting single-walled carbon nanotubes.

    PubMed

    Stürzl, Ninette; Lebedkin, Sergei; Kappes, Manfred M

    2009-09-24

    The near-infrared (NIR) polymethine dye Styryl-13 emitting at approximately 925 nm has recently been suggested as a reference fluorophore for determining the quantum yield (QY) of the NIR photoluminescence of dispersed single-walled carbon nanotubes (SWNTs). Ju et al. reported the QY for SWNTs to be as high as 20% on the basis of 11% QY for Styryl-13 in methanol (Science 2009, 323, 1319). We directly compared the fluorescence of Styryl-13 and Styryl-20 (emitting at approximately 945 nm) with that of the standard fluorophore Rhodamine 6G using a spectrometer with a broad visible-NIR detection range. QYs of 2.0 (4.5) and 0.52 (0.80)% were determined for Styryl-13 and Styryl-20 in methanol (propylene carbonate), respectively. Correspondingly, the above-mentioned photoluminescence efficiency of SWNTs appears to be strongly overestimated. We also discuss singlet oxygen as an alternative NIR reference. A total QY of 1.4% was measured for the emission of singlet oxygen at 1275 nm, as photosensitized by C70 fullerene in air-saturated carbon tetrachloride. PMID:19757846

  10. Revisiting the Laser Dye Styryl-13 As a Reference Near-Infrared Fluorophore: Implications for the Photoluminescence Quantum Yields of Semiconducting Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Stürzl, Ninette; Lebedkin, Sergei; Kappes, Manfred M.

    2009-08-01

    The near-infrared (NIR) polymethine dye Styryl-13 emitting at ˜925 nm has recently been suggested as a reference fluorophore for determining the quantum yield (QY) of the NIR photoluminescence of dispersed single-walled carbon nanotubes (SWNTs). Ju et al. reported the QY for SWNTs to be as high as 20% on the basis of 11% QY for Styryl-13 in methanol (Science 2009, 323, 1319). We directly compared the fluorescence of Styryl-13 and Styryl-20 (emitting at ˜945 nm) with that of the standard fluorophore Rhodamine 6G using a spectrometer with a broad visible-NIR detection range. QYs of 2.0 (4.5) and 0.52 (0.80)% were determined for Styryl-13 and Styryl-20 in methanol (propylene carbonate), respectively. Correspondingly, the above-mentioned photoluminescence efficiency of SWNTs appears to be strongly overestimated. We also discuss singlet oxygen as an alternative NIR reference. A total QY of 1.4% was measured for the emission of singlet oxygen at 1275 nm, as photosensitized by C70 fullerene in air-saturated carbon tetrachloride.

  11. Measurement of Quantum Yield and Upconversion Brightness in Red, Blue and Green on NIR Excited M2O2S:Yb/Er/Ho/Tm Phosphors

    NASA Astrophysics Data System (ADS)

    Beeks, Ivan; Kumar, Ajith G.; Sardar, Dhiraj K.

    2015-03-01

    A series of broadly color tunable upconversion phosphors were synthesized from M2O2S (M=Y,Gd,La) using a flux fusion method. We investigate their upconversion properties as a function of the dopant concentrations and excitation power density. The phosphor compositions were determined for their upconversion characteristics under 800, 980 and 1550 nm excitations. By measuring the quantum yield and luminous brightness, we investigate their potential applications in biomedical imaging as well as NIR display applications. Results are compared with the well-known upconversion phosphor NaYF4:Yb/Er/Ho/Tm and found that the M2O2S phosphor systems are more efficient compared to NaYF4. By adopting various synthesis protocols, we were able to examine M2O2S in the size range of 10 nm to 10 μm. This research is supported by the National Science Foundation Partnerships for Research and Education in Materials (NSF-PREM) Grant N0-DMR-0934218.

  12. Synthesis and characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) functionalized Gd2O3:Eu(3+) red phosphor with enhanced quantum yield.

    PubMed

    Jain, Akhil; Hirata, G A; Farías, M H; Castillón, F F

    2016-02-12

    We report the surface modification of nanocrystalline Gd2O3:Eu(3+) phosphor by (3-Aminopropyl)trimethoxysilane (APTMS). The nanoparticles were first coated with silica using the Stöber process, and then annealed at 650 °C for 2 h. Afterwards, APTMS was functionalized onto the silica layer to obtain Gd2O3:Eu(3+) nanoparticles bearing amine groups on the surface. The effect of silica coating, and the subsequent annealing process on the crystallization of the nanophosphor were analyzed by x-ray diffraction (XRD). High-resolution transmission electron microscopy (HR-TEM) confirmed the presence of a silica layer of ∼45 nm thickness. X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of silica and the amine groups. Photoluminescence (PL) analysis demonstrated an increased emission after functionalization of nanoparticles. Absolute quantum yield (QY) measurements revealed an 18% enhancement in QY in functionalized nanoparticles compared with unmodified nanoparticles, which is of great importance for their biomedical applications. PMID:26684579

  13. A Brown Mesoporous TiO2-x /MCF Composite with an Extremely High Quantum Yield of Solar Energy Photocatalysis for H2 Evolution.

    PubMed

    Xing, Mingyang; Zhang, Jinlong; Qiu, Bocheng; Tian, Baozhu; Anpo, Masakazu; Che, Michel

    2015-04-24

    A brown mesoporous TiO2-x /MCF composite with a high fluorine dopant concentration (8.01 at%) is synthesized by a vacuum activation method. It exhibits an excellent solar absorption and a record-breaking quantum yield (Φ = 46%) and a high photon-hydrogen energy conversion efficiency (η = 34%,) for solar photocatalytic H2 production, which are all higher than that of the black hydrogen-doped TiO2 (Φ = 35%, η = 24%). The MCFs serve to improve the adsorption of F atoms onto the TiO2 /MCF composite surface, which after the formation of oxygen vacancies by vacuum activation, facilitate the abundant substitution of these vacancies with F atoms. The decrease of recombination sites induced by high-concentration F doping and the synergistic effect between lattice Ti(3+)-F and surface Ti(3+)-F are responsible for the enhanced lifetime of electrons, the observed excellent absorption of solar light, and the photocatalytic production of H2 for these catalysts. The as-prepared F-doped composite is an ideal solar light-driven photocatalyst with great potential for applications ranging from the remediation of environmental pollution to the harnessing of solar energy for H2 production. PMID:25511009

  14. Optimizing infrared to near infrared upconversion quantum yield of β-NaYF4:Er3+ in fluoropolymer matrix for photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Ivaturi, Aruna; MacDougall, Sean K. W.; Martín-Rodríguez, Rosa; Quintanilla, Marta; Marques-Hueso, Jose; Krämer, Karl W.; Meijerink, Andries; Richards, Bryce S.

    2013-07-01

    The present study reports for the first time the optimization of the infrared (1523 nm) to near-infrared (980 nm) upconversion quantum yield (UC-QY) of hexagonal trivalent erbium doped sodium yttrium fluoride (β-NaYF4:Er3+) in a perfluorocyclobutane (PFCB) host matrix under monochromatic excitation. Maximum internal and external UC-QYs of 8.4% ± 0.8% and 6.5% ± 0.7%, respectively, have been achieved for 1523 nm excitation of 970 ± 43 Wm-2 for an optimum Er3+ concentration of 25 mol% and a phosphor concentration of 84.9 w/w% in the matrix. These results correspond to normalized internal and external efficiencies of 0.86 ± 0.12 cm2 W-1 and 0.67 ± 0.10 cm2 W-1, respectively. These are the highest values ever reported for β-NaYF4:Er3+ under monochromatic excitation. The special characteristics of both the UC phosphor β-NaYF4:Er3+ and the PFCB matrix give rise to this outstanding property. Detailed power and time dependent luminescence measurements reveal energy transfer upconversion as the dominant UC mechanism.

  15. Delaying the oocyte maturation trigger by one day leads to a higher metaphase II oocyte yield in IVF/ICSI: a randomised controlled trial

    PubMed Central

    2014-01-01

    Background The negative impact of rising progesterone levels on pregnancy rates is well known, but data on mature oocyte yield are conflicting. We examined whether delaying the oocyte maturation trigger in IVF/ICSI affected the number of mature oocytes and investigated the potential influence of serum progesterone levels in this process. Methods Between January 31, 2011, and December 31, 2011, 262 consecutive patients were monitored using ultrasound plus hormonal evaluation. Those with > =3 follicles with a mean diameter of > =18 mm were divided into 2 groups depending on their serum progesterone levels. In cases with a progesterone level < = 1 ng/ml, which was observed in 59 patients, 30-50% of their total number of follicles (only counting those larger than 10 mm) were at least 18 mm in diameter. These patients were randomised into 2 groups: in one group, final oocyte maturation was triggered the same day; for the other, maturation was triggered 24 hours later. Seventy-two patients with progesterone levels > 1 ng/ml were randomised in the same manner, irrespective of the percentage of larger follicles (> = 18 mm). The number of metaphase II oocytes was our primary outcome variable. Because some patients were included more than once, correction for duplicate patients was performed. Results In the study arm with low progesterone (<= 1 ng/ml), the mean number of metaphase II oocytes (+/-SD) was 10.29 (+/-6.35) in the group with delayed administration of the oocyte maturation trigger versus 7.64 (+/-3.26) in the control group. After adjusting for age, the mean difference was 2.41 (95% CI: 0.22-4.61; p = 0.031). In the study arm with elevated progesterone (>1 ng/ml), the mean numbers of metaphase II oocytes (+/-SD) were 11.81 (+/-9.91) and 12.03 (+/-7.09) for the delayed and control groups, respectively. After adjusting for PCOS (polycystic ovary syndrome) and female pathology, the mean difference was -0.44 (95% CI: -3.65-2.78; p

  16. Lasing action and extraordinary reduction in long radiative lifetime of type-II GaSb/GaAs quantum dots using circular photonic crystal nanocavity

    SciTech Connect

    Hsu, Kung-Shu; Chang, Shu-Wei; Hung, Wei-Chun; Chang, Chih-Chi; Lin, Wei-Hsun; Lin, Shih-Yen; Shih, Min-Hsiung; Lee, Po-Tsung; Chang, Yia-Chung

    2015-08-31

    We demonstrated the lasing action and remarkable reduction in long radiative lifetimes of type-II GaSb/GaAs quantum dots using a circular photonic-crystal nano-cavity with high Purcell factors. The associated enhancement in carrier recombination was surprisingly high and could even surpass type-I counterparts in similar conditions. These phenomena reveal that the type-II sample exhibited extremely low nonradiative recombination so that weak radiative transitions were more dominant than expected. The results indicate that type-II nanostructures may be advantageous for applications which require controllable radiative transitions but low nonradiative depletions.

  17. Distribution of genes associated with yield potential and water-saving in Chinese Zone II wheat detected by developed functional markers.

    PubMed

    Gao, Zhenxian; Shi, Zhanliang; Zhang, Aimin; Guo, Jinkao

    2015-03-01

    Functional markers (FMs) developed from sequence polymorphisms are present in allelic variants of a functional gene at a locus and are directly associated with phenotypic variations. In this study, FM linked to Rht-B1, Rht-D1, TaCwi-A1, TaSus2-2B, TaGW2-6A and Dreb-B1 genes conferring to yield potential and water-saving were selected to analyse the distribution in 102 wheat varieties, most of which were authorized in the past decade and adapted to grow in Zone II of China. First, the semidwarfing genes Rht-B1b and Rht-D1b (mutant alleles) conferring to grain yield were analysed. The frequencies of favourable alleles Rht-B1b and Rht-D1b were 32.4 and 58.8%, respectively. Comparing with the previous report, the frequency of Rht-B1b among cultivars in this study is similar to the frequency among cultivars released in the 1990s, while the frequency of Rht-D1b is slightly lower than the previous report 63.9%. Twelve (11.8%) cultivars neither contained Rht-B1b nor Rht-D1b, while only Yumai 66 contained both semidwarfing genes. Linyuan8 and Xinong 928 are heterozygous at RhtB1 locus and Zhengmai 9023 is heterozygous at both RhtB1 and Rht-D1 loci. Second, the TaCwi-A1, TaSus2-2B and TaGW2-6A genes considered as candidate genes related to grain weight were detected. We found that the frequencies of the favourable alleles were 76.5, 56.9 and 69.6%, respectively. Among the 102 wheat varieties, 30 contained all the three favourable genes, 45 contained two of the three favourable genes and 27 contained only one. There are eight wheat varieties (7.8%) in hybrid state at the TaCWI-A1 locus. Third, the designed FM linked to water-saving gene Dreb-B1 were validated on 102 wheat varieties. The results showed that the haplotypes of 47 wheat varieties at the Dreb-B1 locus were same as that of Opata 85, and 55 wheat varieties showed the signal expected for W7984 (Opata 85 and W7984 are parents of the ITMI mapping population). This information will be useful for the wheat breeding

  18. Radical quantum yields from formaldehyde photolysis in the 30,400-32,890 cm(-1) (304-329 nm) spectral region: detection of radical photoproducts using pulsed laser photolysis-pulsed laser induced fluorescence.

    PubMed

    Tatum Ernest, Cheryl; Bauer, Dieter; Hynes, Anthony J

    2012-07-01

    The relative quantum yield for the production of radical products, H + HCO, from the UV photolysis of formaldehyde (HCHO) has been measured using a pulsed laser photolysis–pulsed laser induced fluorescence (PLP–PLIF) technique across the 30,400–32,890 cm(–1) (304–329 nm) spectral region of the Ã(1)A2–X̃(1)A1 electronic transition. The photolysis laser had a bandwidth of 0.09 cm(–1), which is slightly broader than the Doppler width of a rotational line of formaldehyde at 300 K (0.07 cm(–1)), and the yield spectrum shows detailed rotational structure. The H and HCO photofragments were monitored using LIF of the OH radical as a spectroscopic marker. The OH radicals were produced by rapid reaction of the H and HCO photofragments with NO2. This technique produced an “action” spectrum that at any photolysis wavelength is the product of the H + HCO radical quantum yield and HCHO absorption cross section at the photolysis wavelength and is a relative measurement. Using the HCHO absorption cross section previously obtained in this laboratory, the relative quantum yield was determined two different ways. One produced band specific yields, and the other produced yields averaged over each 100 cm(–1). Yields were normalized to a value of 0.69 at 31,750 cm(–1) based on the current recommendation of Sander et al. (Sander, S. P.; Abbatt, J.; Barker, J. R.; Burkholder, J. B.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K.; et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17; Jet Propulsion Laboratory: Pasadena, CA, USA, 2011). The resulting radical quantum yields agree well with previous experimental studies and the current JPL recommendation but show greater wavelength dependent structure. A significant decrease in the quantum yield was observed for the 5(0)(1) + 1(0)(1)4(0)(1) combination band centered at 31,125 cm(–1). This band has a low absorption cross section and

  19. Exploration of possible quantum gravity effects with neutrinos II: Lorentz violation in neutrino propagation

    NASA Astrophysics Data System (ADS)

    Sakharov, Alexander; Ellis, John; Harries, Nicholas; Meregaglia, Anselmo; Rubbia, André

    2009-06-01

    It has been suggested that the interactions of energetic particles with the foamy structure of space-time thought to be generated by quantum-gravitational (QG) effects might violate Lorentz invariance, so that they do not propagate at a universal speed of light. We consider the limits that may be set on a linear or quadratic violation of Lorentz invariance in the propagation of energetic neutrinos, v/c = [1 ± (E/MvQG1)] or [1 ± (E/MvQG2)2], using data from supernova explosions and the OPERA long-baseline neutrino experiment.

  20. Atomic layer epitaxy of II-VI quantum wells and superlattices

    NASA Astrophysics Data System (ADS)

    Faschinger, W.

    1993-01-01

    Atomic Layer Epitaxy (ALE) under ultra high vacuum conditions is a variation of MBE which makes use of a self-regulating growth process, leading to digital growth in steps of monolayers or even fractions of monolayers. We report on fundamental aspects of the ALE growth of tellurides and selenides, and give three examples on the physics of ALE-grown structures: (a) Phonon confinement in CdTe/ZnTe superlattices (b) "Spin Sheet" superlattices of cubic MnTe with CdTe and (c) Luminescence tuning in ultra-thin CdSe quantum wells embedded in ZnSe.

  1. Non-Markovian dynamics of quantum systems. II. Decay rate, capture, and pure states

    SciTech Connect

    Palchikov, Yu.V.; Antonenko, N.V.; Kanokov, Z.; Adamian, G.G.; Scheid, W.

    2005-01-01

    On the basis of a master equation for the reduced density matrix of open quantum systems, we study the influence of time-dependent friction and diffusion coefficients on the decay rate from a potential well and the capture probability into a potential well. Taking into account the mixed diffusion coefficient D{sub qp}, the quasistationary decay rates are compared with the analytically derived Kramers-type formulas for different temperatures and frictions. The diffusion coefficients supplying the purity of states are derived for a non-Markovian dynamics.

  2. Time-dependent treatment of scattering. II - Novel integral equation approach to quantum wave packets

    NASA Technical Reports Server (NTRS)

    Sharafeddin, Omar A.; Judson, Richard S.; Kouri, Donald J.; Hoffman, David K.

    1990-01-01

    The novel wave-packet propagation scheme presented is based on the time-dependent form of the Lippman-Schwinger integral equation and does not require extensive matrix inversions, thereby facilitating application to systems in which some degrees of freedom express the potential in a basis expansion. The matrix to be inverted is a function of the kinetic energy operator, and is accordingly diagonal in a Bessel function basis set. Transition amplitudes for various orbital angular momentum quantum numbers are obtainable via either Fourier transform of the amplitude density from the time to the energy domain, or the direct analysis of the scattered wave packet.

  3. Acid-free sol-gel fabrication of glass thin films embedded with II-VI colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Jani, Hemang; Duan, Lingze

    2015-01-01

    II-VI colloidal quantum dots (QDs) are ideal for optical sensors thanks to their high fluorescent brightness and good size uniformity. However, embedding colloidal QDs into a glass matrix with the standard sol-gel process leads to the QDs being damaged by the acid catalyst. Here, we report an acid-free sol-gel technique, which proves to be both simple and effective in fabricating silica glass thin films embedded with commercial II-VI colloidal QDs. Octadecylamine ligands are used as a bifunctional aid to not only stabilize the QDs in solution, but also assist the formation of the SiO2 gel. We demonstrate that high-quality QD-embedded glass thin films can be developed with this technique, and our fluorescent tests indicate that, except for a small blueshift in the emission spectrum, the QDs are very well preserved through the sol-gel process. This method offers a fast and low-cost path towards thin-film QD sensors with good mechanical and thermal stabilities, which are desirable for applications involving highly focused laser beams, such as ultrafast nanophotonics.

  4. Raman and photoluminescence properties of type II GaSb/GaAs quantum dots on (001) Ge substrate

    NASA Astrophysics Data System (ADS)

    Zon; Poempool, Thanavorn; Kiravittaya, Suwit; Nuntawong, Noppadon; Sopitpan, Suwat; Thainoi, Supachok; Kanjanachuchai, Songphol; Ratanathammaphan, Somchai; Panyakeow, Somsak

    2016-07-01

    We investigate structural Raman and photoluminescence properties of type II GaSb/GaAs quantum dots (QDs) grown on (001) Ge substrate by molecular beam epitaxy. Array of self-assembled GaSb QDs having an areal density of ˜1.66 × 1010 dots/cm2 is obtained by a growth at relatively low substrate temperature (450 °C) on a GaAs surface segmented into anti-phase domains (APDs). Most of QDs form in one APD area. However, a few QDs can be observed at the APD boundaries. Raman spectroscopy is used to probe the strain in GaAs layer. Slight redshift of both LO and TO GaAs peaks are observed when GaSb QDs are buried into GaAs matrix. Optical properties of capped QDs are characterized by photoluminescence measurement at low temperatures (20 K and 30 K). Emission peaks of GaSb/GaAs QDs are found in the range of 1.0-1.3 eV at both temperatures. Slight redshift is observed when the laser excitation power is increased at 20 K while blueshift of QD peak is observed at 30 K. We attribute this abnormal behavior to the contribution of overlapped GaSb wetting layer peak in the PL emission as well as the feature of type II band structure. [Figure not available: see fulltext.

  5. PS II model based analysis of transient fluorescence yield measured on whole leaves of Arabidopsis thaliana after excitation with light flashes of different energies.

    PubMed

    Belyaeva, N E; Schmitt, F-J; Paschenko, V Z; Riznichenko, G Yu; Rubin, A B; Renger, G

    2011-02-01

    Our recently presented PS II model (Belyaeva et al., 2008) was improved in order to permit a consistent simulation of Single Flash Induced Transient Fluorescence Yield (SFITFY) traces that were earlier measured by Steffen et al. (2005) on whole leaves of Arabidopsis (A.) thaliana at four different energies of the actinic flash. As the essential modification, the shape of the actinic flash was explicitly taken into account assuming that an exponentially decaying rate simulates the time dependent excitation of PS II by the 10 ns actinic flash. The maximum amplitude of this excitation exceeds that of the measuring light by 9 orders of magnitude. A very good fit of the SFITFY data was achieved in the time domain from 100 ns to 10s for all actinic flash energies (the maximum energy of 7.5 × 10¹⁶ photons/(cm²flash) is set to 100%, the relative energies of weaker actinic flashes were of ∼8%, 4%, ∼1%). Our model allows the calculation and visualization of the transient PS II redox state populations ranging from the dark adapted state, via excitation energy and electron transfer steps induced by pulse excitation, followed by final relaxation into the stationary state eventually attained under the measuring light. It turned out that the rate constants of electron transfer steps are invariant to intensity of the actinic laser flash. In marked contrast, an increase of the actinic flash energy by more than two orders of magnitude from 5.4×10¹⁴ photons/(cm²flash) to 7.5×10¹⁶ photons/(cm²flash), leads to an increase of the extent of fluorescence quenching due to carotenoid triplet (³Car) formation by a factor of 14 and of the recombination reaction between reduced primary pheophytin (Phe(-)) and P680(+) by a factor of 3 while the heat dissipation in the antenna complex remains virtually constant. The modified PS II model offers new opportunities to compare electron transfer and dissipative parameters for different species (e.g. for the green algae and the

  6. Coherent chemical kinetics as quantum walks. II. Radical-pair reactions in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Chia, A.; Górecka, A.; Kurzyński, P.; Paterek, T.; Kaszlikowski, D.

    2016-03-01

    We apply the quantum-walk approach proposed in the preceding paper [A. Chia et al., preceding paper, Phys. Rev. E 93, 032407 (2016), 10.1103/PhysRevE.93.032407] to a radical-pair reaction where realistic estimates for the intermediate transition rates are available. The well-known average hitting time from quantum walks can be adopted as a measure of how quickly the reaction occurs and we calculate this for varying degrees of dephasing in the radical pair. The time for the radical pair to react to a product is found to be independent of the amount of dephasing introduced, even in the limit of no dephasing where the transient population dynamics exhibits strong coherent oscillations. This can be seen to arise from the existence of a rate-limiting step in the reaction and we argue that in such examples, a purely classical model based on rate equations can be used for estimating the time scale of the reaction but not necessarily its population dynamics.

  7. Coherent states, quantum gravity, and the Born- Oppenheimer approximation. II. Compact Lie groups

    NASA Astrophysics Data System (ADS)

    Stottmeister, Alexander; Thiemann, Thomas

    2016-07-01

    In this article, the second of three, we discuss and develop the basis of a Weyl quantisation for compact Lie groups aiming at loop quantum gravity-type models. This Weyl quantisation may serve as the main mathematical tool to implement the program of space adiabatic perturbation theory in such models. As we already argued in our first article, space adiabatic perturbation theory offers an ideal framework to overcome the obstacles that hinder the direct implementation of the conventional Born-Oppenheimer approach in the canonical formulation of loop quantum gravity. Additionally, we conjecture the existence of a new form of the Segal-Bargmann-Hall "coherent state" transform for compact Lie groups G, which we prove for G = U(1)n and support by numerical evidence for G = SU(2). The reason for conjoining this conjecture with the main topic of this article originates in the observation that the coherent state transform can be used as a basic building block of a coherent state quantisation (Berezin quantisation) for compact Lie groups G. But, as Weyl and Berezin quantisation for ℝ2d are intimately related by heat kernel evolution, it is natural to ask whether a similar connection exists for compact Lie groups as well. Moreover, since the formulation of space adiabatic perturbation theory requires a (deformation) quantisation as minimal input, we analyse the question to what extent the coherent state quantisation, defined by the Segal-Bargmann-Hall transform, can serve as basis of the former.

  8. Quantum Calculation of Inelastic CO Collisions with H. II. Pure Rotational Quenching of High Rotational Levels

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Song, L.; Yang, B. H.; Groenenboom, G. C.; van der Avoird, A.; Balakrishnan, N.; Forrey, R. C.; Stancil, P. C.

    2015-09-01

    Carbon monoxide is a simple molecule present in many astrophysical environments, and collisional excitation rate coefficients due to the dominant collision partners are necessary to accurately predict spectral line intensities and extract astrophysical parameters. We report new quantum scattering calculations for rotational deexcitation transitions of CO induced by H using the three-dimensional potential energy surface (PES) of Song et al. State-to-state cross sections for collision energies from 10-5 to 15,000 cm-1 and rate coefficients for temperatures ranging from 1 to 3000 K are obtained for CO (v = 0, j) deexcitation from j=1-45 to all lower j‧ levels, where j is the rotational quantum number. Close-coupling and coupled-states calculations were performed in full-dimension for j=1-5, 10, 15, 20, 25, 30, 35, 40, and 45 while scaling approaches were used to estimate rate coefficients for all other intermediate rotational states. The current rate coefficients are compared with previous scattering results using earlier PESs. Astrophysical applications of the current results are briefly discussed.

  9. Quantum ellipsometry

    NASA Astrophysics Data System (ADS)

    Toussaint, Kimani Christopher, Jr.

    Ellipsometry is a technique in which the polarization of light is used to determine the optical properties of a material (sample) and infer information such as the thickness of a thin film. Traditional ellipsometric measurements are limited in their accuracy because of the use of an external reference sample for calibration, and because of the quantum noise inherent in the source that becomes important at low light levels. A new technique called quantum ellipsometry is investigated, and is shown to circumvent these limitations by using a non-classical source of light, namely, twin photons generated by the process of spontaneous parametric downconversion (SPDC), in conjunction with a novel polarization interferometer and coincidence-counting detection scheme. Quantum ellipsometry comes in two forms: correlated-photon and entangled-photon ellipsometry. Both ellipsometric techniques yield estimated of the sample reflectance/transmittance with accuracy greater than conventional ellipsometry. Specifically, when the quantum efficiencies of the detectors used are above a certain threshold the signal-to-noise ratio of the measured ellipsometric parameters is larger for quantum ellipsometry than for conventional ellipsometry. This is because the photon pairs generated by SPDC have a fully correlated joint photon counting distribution. Furthermore, both correlated-photon and entangled-photon ellipsometry have the added advantage that they do not require calibration by an external reference sample, which is another limitation on the accuracy for most conventional ellipsometry. Quantum ellipsometry exploits the property of photon number correlation and polarization entanglement. The entanglement property, inherent in entangled-photon ellipsometry, is shown to allow for the movement of the optical elements that precede the sample to the sample-free optical channel in the setup. A theoretical and experimental investigation of quantum ellipsometry was conducted. Both correlated

  10. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov

  11. Quantum transport in neutron-irradiated modulation-doped heterojunctions. II. Thermal neutrons

    SciTech Connect

    Jin, W.; Zhou, J.; Huang, Y.; Cai, L.

    1988-12-15

    We have investigated the characteristics of the low-temperature quantum transport Al/sub x/Ga/sub 1-//sub x/As/GaAs modulation-doped heterojunctions irradiated by thermal neutrons of about 0.025 eV energy. Time-dependent effects related to nuclear radiation such as ..beta../sup -/ decay and ..gamma.. radiation are discussed in detail. The concentration and the mobility of the two-dimensional electron gas (2D EG) under low magnetic fields, the Hall plateau broadening, and the Shubnikov--de Haas (SdH) oscillation enhancement under strong magnetic fields all increase immediately after the irradiation, and then relax for long times. Above all, parallel conduction without illumination is first observed by us with a higher flux of thermal neutrons.

  12. Adiabatically implementing quantum gates

    SciTech Connect

    Sun, Jie; Lu, Songfeng Liu, Fang

    2014-06-14

    We show that, through the approach of quantum adiabatic evolution, all of the usual quantum gates can be implemented efficiently, yielding running time of order O(1). This may be considered as a useful alternative to the standard quantum computing approach, which involves quantum gates transforming quantum states during the computing process.

  13. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield.

    PubMed

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C; Goldys, Ewa M

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8 keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79 ± 0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result we estimate the singlet oxygen dose generated from CeF3-verteporfin conjugates for a therapeutic dose of 60 Gy of ionizing radiation at energies of 6 MeV and 30 keV to be (1.2 ± 0.7) × 10(8) and (2.0 ± 0.1) × 10(9) singlet oxygen molecules per cell, respectively. These are comparable with cytotoxic doses of 5 × 10(7)-2 × 10(9) singlet oxygen molecules per cell reported in the literature for photodynamic therapy using light activation. We confirmed that the CeF3-VP conjugates enhanced cell killing with 6 MeV radiation. This work confirms the feasibility of using X- or γ- ray activated nanoparticle-photosensitizer conjugates, either to supplement the radiation treatment of cancer, or as an independent treatment modality. PMID:26818819

  14. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    PubMed Central

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8 keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79 ± 0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result we estimate the singlet oxygen dose generated from CeF3-verteporfin conjugates for a therapeutic dose of 60 Gy of ionizing radiation at energies of 6 MeV and 30 keV to be (1.2 ± 0.7) × 108 and (2.0 ± 0.1) × 109 singlet oxygen molecules per cell, respectively. These are comparable with cytotoxic doses of 5 × 107–2 × 109 singlet oxygen molecules per cell reported in the literature for photodynamic therapy using light activation. We confirmed that the CeF3-VP conjugates enhanced cell killing with 6 MeV radiation. This work confirms the feasibility of using X- or γ- ray activated nanoparticle-photosensitizer conjugates, either to supplement the radiation treatment of cancer, or as an independent treatment modality. PMID:26818819

  15. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield

    NASA Astrophysics Data System (ADS)

    Clement, Sandhya; Deng, Wei; Camilleri, Elizabeth; Wilson, Brian C.; Goldys, Ewa M.

    2016-01-01

    Singlet oxygen is a primary cytotoxic agent in photodynamic therapy. We show that CeF3 nanoparticles, pure as well as conjugated through electrostatic interaction with the photosensitizer verteporfin, are able to generate singlet oxygen as a result of UV light and 8 keV X-ray irradiation. The X-ray stimulated singlet oxygen quantum yield was determined to be 0.79 ± 0.05 for the conjugate with 31 verteporfin molecules per CeF3 nanoparticle, the highest conjugation level used. From this result we estimate the singlet oxygen dose generated from CeF3-verteporfin conjugates for a therapeutic dose of 60 Gy of ionizing radiation at energies of 6 MeV and 30 keV to be (1.2 ± 0.7) × 108 and (2.0 ± 0.1) × 109 singlet oxygen molecules per cell, respectively. These are comparable with cytotoxic doses of 5 × 107-2 × 109 singlet oxygen molecules per cell reported in the literature for photodynamic therapy using light activation. We confirmed that the CeF3-VP conjugates enhanced cell killing with 6 MeV radiation. This work confirms the feasibility of using X- or γ- ray activated nanoparticle-photosensitizer conjugates, either to supplement the radiation treatment of cancer, or as an independent treatment modality.

  16. UV-Light-Induced Improvement of Fluorescence Quantum Yield of DNA-Templated Gold Nanoclusters: Application to Ratiometric Fluorescent Sensing of Nucleic Acids.

    PubMed

    Li, Zong-Yu; Wu, Yun-Tse; Tseng, Wei-Lung

    2015-10-28

    The use of DNA as a template has been demonstrated as an effective method for synthesizing different-sized silver nanoclusters. Although DNA-templated silver nanoclusters show outstanding performance as fluorescent probes for chemical sensing and cellular imaging, the synthesis of DNA-stabilized gold nanoclusters (AuNCs) with high fluorescence intensity remains a challenge. Here a facile, reproducible, scalable, NaBH4-free, UV-light-assisted method was developed to prepare AuNCs using repeats of 30 adenosine nucleotides (A30). The maximal fluorescence of A30-stabilized AuNCs appeared at 475 nm with moderate quantum yield, two fluorescence lifetimes, and a small amount of Au(+) on the surface of the Au core. Results of size-exclusion chromatography revealed that A30-stabilized AuNCs were more compact than A30. A series of control experiments showed that UV light played a dual role in the reduction of gold-ion precursors and the decomposition of citrate ions. A30 also acted as a stabilizer to prevent the aggregation of AuNCs. In addition, single-stranded DNA (ssDNA) consisting of an AuNC-nucleation sequence and a hybridization sequence was utilized to develop a AuNC-based ratiometric fluorescent probe in the presence of the double-strand-chelating dye SYBR Green I (SG). Under conditions of single-wavelength excitation, the combination of AuNC/SG-bearing ssDNA and perfectly matched DNA emitted fluorescence at 475 and 525 nm, respectively. The formed AuNC/SG-bearing ssDNA enabled the sensitive, selective, and ratiometric detection of specific nucleic acid targets. Finally, the AuNC-based ratiometric probes were successfully applied to determine specific nucleic acid targets in human serum. PMID:26443919

  17. Ultraviolet photochemistry of buta-1,3- and buta-1,2-dienes: Laser spectroscopic absolute hydrogen atom quantum yield and translational energy distribution measurements

    SciTech Connect

    Hanf, A.; Volpp, H.-R.; Sharma, P.; Mittal, J. P.; Vatsa, R. K.

    2010-07-14

    Using pulsed H-atom Lyman-{alpha} laser-induced fluorescence spectroscopy along with a photolytic calibration approach, absolute H-atom product quantum yields of {phi}{sub H-b13d}=(0.32{+-}0.04) and {phi}{sub H-b12d}=(0.36{+-}0.04) were measured under collision-free conditions for the 193 nm gas-phase laser flash photolysis of buta-1,3- and buta-1,2-diene at room temperature, which demonstrate that nascent H-atom formation is of comparable importance for both parent molecules. Comparison of the available energy fraction, f{sub T-b13d}=(0.22{+-}0.03) and f{sub T-b12d}=(0.13{+-}0.01), released as H+C{sub 4}H{sub 5} product translational energy with results of impulsive and statistical energy partitioning modeling calculations indicates that for both, buta-1,3- and buta-1,2-diene, H-atom formation is preceded by internal conversion to the respective electronic ground state (S{sub 0}) potential energy surfaces. In addition, values of {sigma}{sub b-1,3-d-L{alpha}=}(3.5{+-}0.2)x10{sup -17} cm{sup 2} and {sigma}{sub b-1,2-d-L{alpha}=}(4.4{+-}0.2)x10{sup -17} cm{sup 2} for the previously unknown Lyman-{alpha} (121.6 nm) radiation photoabsorption cross sections of buta-1,3- and buta-1,2-diene in the gas-phase were determined.

  18. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits.

    PubMed

    Wang, Ruijun; Sprengel, Stephan; Muneeb, Muhammad; Boehm, Gerhard; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2015-10-01

    The heterogeneous integration of InP-based type-II quantum well photodiodes on silicon photonic integrated circuits for the 2 µm wavelength range is presented. A responsivity of 1.2 A/W at a wavelength of 2.32 µm and 0.6 A/W at 2.4 µm wavelength is demonstrated. The photodiodes have a dark current of 12 nA at -0.5 V at room temperature. The absorbing active region of the integrated photodiodes consists of six periods of a "W"-shaped quantum well, also allowing for laser integration on the same platform. PMID:26480194

  19. Time dependent quantum dynamics study of the O{sup +}+H{sub 2}(v=0,j=0){yields}OH{sup +}+H ion-molecule reaction and isotopic variants (D{sub 2},HD)

    SciTech Connect

    Martinez, Rodrigo; Sierra, Jose Daniel; Gray, Stephen K.; Gonzalez, Miguel

    2006-10-28

    The time dependent real wave packet method using the helicity decoupling approximation was used to calculate the cross section evolution with collision energy (excitation function) of the O{sup +}+H{sub 2}(v=0,j=0){yields}OH{sup +}+H reaction and its isotopic variants with D{sub 2} and HD, using the best available ab initio analytical potential energy surface. The comparison of the calculated excitation functions with exact quantum results and experimental data showed that the present quantum dynamics approach is a very useful tool for the study of the selected and related systems, in a quite wide collision energy interval (approximately 0.0-1.1 eV), involving a much lower computational cost than the quantum exact methods and without a significant loss of accuracy in the cross sections.

  20. Control of physical and optical properties of II-VI quantum dots

    NASA Astrophysics Data System (ADS)

    Sooklal, Kelly Sonja

    This thesis primarily concentrates on two semiconductors, CdS and ZnS, both of which have been widely used in the fabrication of electrical devices. Nanoparticles of CdS and ZnS have both been prepared using a variety of synthetic methods. These "quantum confined" particles exhibit a wide range of size dependent properties which can be modified by either altering their size and/or surface chemistry. In one set of experiments, it was found that the location of Mn 2+ profoundly affects the photophysics of ZnS nanoclusters. Mn 2+ substituted for Zn2+ in the ZnS lattice produced orange emission with lifetimes that were intermediate between those found for micron clusters and smaller nanoclusters. The addition of Mn2+ to the outside of the preformed ZnS nanoclusters showed near-band gap emission in the ultraviolet with even shorter lifetimes. We have also used these Mn2+ doped nanoclusters to fabricate electroluminescent devices. In another set of experiments, the effects of different ions on the photophysics of ZnS nanoclusters was investigated. Depending on the cation, we have been able to produce ZnS nanoclusters that emit in the blue, green, yellow and orange regions of the visible spectrum by incorporating Cu2+, Pb2+ and Mn2+. Quantum dots of CdS have also been prepared using several different stabilizing agents. CdS nanoparticles that have been synthesized using dendrimers as hosts exhibit striking optical and electronic features. Intense blue-green emission is observed when the CdS-dendrimer nanocomposites are formed in methanol and/or acidified methanol solutions. Bright yellow emission is observed when the semiconductor-dendrimer nanocomposites are prepared in water and/or basic methanol solutions. One additional experiment was performed using capping groups to modify the photophysics of CdS. Nanometer-sized CdS were prepared using a series of 4-substituted thiophenols as capping agents. The 4-substituents included both electron-donating and electron

  1. Localized and bound excitons in type-II ZnMnSe/ZnSSe quantum wells.

    PubMed

    Chernenko, A V; Brichkin, A S

    2014-10-22

    Photoluminescence of ZnMnSe/ZnSSe multiple quantum wells under a bandgap continuous wave and fs-pulsed excitations is measured in magnetic fields up to 10 T in Faraday geometry at temperatures within the range of 1.6-20 K. The measurements reveal two dominant lines in the spectra and LO-phonon replicas of the lower-energy line. The photoluminescence and time-resolved studies show dramatically different behaviour of the lines. Analysis of their properties reveals that they correspond to recombination of indirect localized excitons and indirect acceptor-bound excitons (A0X). Crossing of exciton and A0X lines because of the difference in magnitudes of their Zeeman shifts is observed. Analysis of LO-phonon replicas of photoluminescence lines provides additional evidence for strong carrier localization bound to A0X. A model of phonon-assisted recombination of indirect acceptor-bound excitons is proposed. The fitting of photoluminescence lines with this model gives the Huang-Rhys factor S≃0.25 for A0X and the hole localization size ah≃30 Å. Contrary to expectations the exciton magnetic polaron effect is hardly observed in these structures. PMID:25273841

  2. Astronomical constraints on quantum theories of cold dark matter - II. Supermassive black holes and luminous matter

    NASA Astrophysics Data System (ADS)

    Spivey, S. C.; Musielak, Z. E.; Fry, J. L.

    2015-04-01

    Our previous model of quantum cold dark matter (QCDM) is expanded to include the influence of supermassive black holes located at centres of different galaxies and galactic luminous (baryonic) matter distributions. The inclusion of a black hole to the galactic potential is shown to produce a more concentrated halo with a cuspier core. The addition of a small-scale galactic luminous matter distribution also concentrates the halo, while a large-scale distribution diffuses it; nevertheless, in either case the smooth core of the halo is preserved. Effects caused by including a non-linear scattering term are investigated by solving the Gross-Pitaevskii equation. The obtained results demonstrate that the scattering term produces a rounder and more diffuse density profile. Moreover, adding a sufficiently large black hole in combination with this term results in an even cuspier profile than the black hole alone. As a result of all these additions, our extended QCDM model can be applied to a much larger range of dark matter halo shapes and sizes.

  3. Plane wave holonomies in quantum gravity. II. A sine wave solution

    NASA Astrophysics Data System (ADS)

    Neville, Donald E.

    2015-08-01

    This paper constructs an approximate sinusoidal wave packet solution to the equations of canonical gravity. The theory uses holonomy-flux variables with support on a lattice (LHF =lattice-holonomy flux ). There is an SU(2) holonomy on each edge of the LHF simplex, and the goal is to study the behavior of these holonomies under the influence of a passing gravitational wave. The equations are solved in a small sine approximation: holonomies are expanded in powers of sines and terms beyond sin2 are dropped; also, fields vary slowly from vertex to vertex. The wave is unidirectional and linearly polarized. The Hilbert space is spanned by a set of coherent states tailored to the symmetry of the plane wave case. Fixing the spatial diffeomorphisms is equivalent to fixing the spatial interval between vertices of the loop quantum gravity lattice. This spacing can be chosen such that the eigenvalues of the triad operators are large, as required in the small sine limit, even though the holonomies are not large. Appendices compute the energy of the wave, estimate the lifetime of the coherent state packet, discuss circular polarization and coarse-graining, and determine the behavior of the spinors used in the U(N) SHO realization of LQG.

  4. On Pure Quasi-Quantum Quadratic Operators of 𝕄2(ℂ) II

    NASA Astrophysics Data System (ADS)

    Mukhamedov, Farrukh

    2015-11-01

    In this paper we study quasi quantum quadratic operators (QQO) acting on the algebra of 2×2 matrices 𝕄2(ℂ). We consider two kinds of quasi QQO the corresponding quadratic operator maps from the unit circle into the sphere and from the sphere into the unit circle, respectively. In our early paper we have defined a q-purity of quasi QQO. This notion is equivalent to the invariance of the unit sphere in ℝ3. But to check this condition, in general, is tricky. Therefore, it would be better to find weaker conditions to check the q-purity. One of the main results of this paper is to provide a criterion of q-purity of quasi QQO in terms of the unit circles. Moreover, we are able to classify all possible kinds of quadratic operators which can produce q-pure quasi QQO. We think that such result will allow one to check whether a given mapping is a pure channel or not. This finding suggests us to study such a class of nonpositive mappings. Correspondingly, the complement of this class will be of potential interest for physicist since this set contains all completely positive mappings.

  5. Electrically controlled fluorescence quenching of quantum dots on monolayer Molybdenum Disulfide - Part II

    NASA Astrophysics Data System (ADS)

    Klots, Andrey; Prasai, Dhiraj; Newaz, A. K. M.; Niezgoda, Scott; Orfield, Noah; Rosenthal, Sandra; Jennings, Kane; Bolotin, Kirill

    2015-03-01

    In the second part of this talk, we investigate the mechanisms that enable energy exchange between semiconductor quantum dots (QDs) and two-dimensional (2D) materials. First, we study possible contributions due to multiple mechanisms such as charge transfer, metallic screening, mechanical strain, and Forster resonant energy transfer (FRET). By implementing different 2D materials (graphene, MoS2, hexagonal boron nitride), varying their thickness and QD emission wavelengths we demonstrate that QD fluorescence quenching is dominated by FRET. Next, we study the dependence of the FRET rate on electrostatic doping of 2D materials, focusing on the case of monolayer MoS2. We develop a simple model, which shows that that moderate (<10%) changes in MoS2 absorption induced by gating lead to much larger (~ 50%) modulation of QD photoluminescence intensity. Finally, we demonstrate that FRET can be used as an efficient spectroscopic tool that probes states in 2D materials that are not accessible via conventional absorption spectroscopy.

  6. Type-II InP quantum dots in wide-bandgap InGaP host for intermediate-band solar cells

    NASA Astrophysics Data System (ADS)

    Tayagaki, Takeshi; Sugaya, Takeyoshi

    2016-04-01

    We demonstrate type-II quantum dots (QDs) with long carrier lifetimes in a wide-bandgap host as a promising candidate for intermediate-band solar cells. Type-II InP QDs are fabricated in a wide-bandgap InGaP host using molecular beam epitaxy. Time-resolved photoluminescence measurements reveal an extremely long carrier lifetime (i.e., greater than 30 ns). In addition, from temperature-dependent PL spectra, we find that the type-II InP QDs form a negligible valence band offset and conduction band offset of ΔEc ≈ 0.35 eV in the InGaP host. Such a type-II confinement potential for InP/InGaP QDs has a significant advantage for realizing efficient two-step photon absorption and suppressed carrier capture in QDs via Auger relaxation.

  7. Metallic nanoparticles and their medicinal potential. Part II: aluminosilicates, nanobiomagnets, quantum dots and cochleates.

    PubMed

    Loomba, Leena; Scarabelli, Tiziano

    2013-09-01

    Metallic miniaturization techniques have taken metals to nanoscale size where they can display fascinating properties and their potential applications in medicine. In recent years, metal nanoparticles such as aluminium, silicon, iron, cadmium, selenium, indium and calcium, which find their presence in aluminosilicates, nanobiomagnets, quantum dots (Q-dots) and cochleates, have caught attention of medical industries. The increasing impact of metallic nanoparticles in life sciences has significantly advanced the production techniques for these nanoparticles. In this Review, the various methods for the synthesis of nanoparticles are outlined, followed by their physicochemical properties, some recent applications in wound healing, diagnostic imaging, biosensing, assay labeling, antimicrobial activity, cancer therapy and drug delivery are listed, and finally their toxicological impacts are revised. The first half of this article describes the medicinal uses of two noble nanoparticles - gold and silver. This Review provides further information on the ability of aluminum, silicon, iron, selenium, indium, calcium and zinc to be used as nanoparticles in biomedical sciences. Aluminosilicates find their utility in wound healing and antibacterial growth. Iron-oxide nanoparticles enhance the properties of MRI contrast agents and are also used as biomagnets. Cadmium, selenium, tellurium and indium form the core nanostructures of tiny Q-dots used in cellular assay labeling, high-resolution cell imaging and biosensing. Cochleates have the bivalent nano ions calcium, magnesium or zinc imbedded in their structures and are considered to be highly effective agents for drug and gene delivery. The aluminosilicates, nanobiomagnets, Q-dots and cochleates are discussed in the light of their properties, synthesis and utility. PMID:24024515

  8. Conditions for Directional Charge Transfer in CdSe Quantum Dots Functionalized by Ru(II) Polypyridine Complexes.

    PubMed

    Kilina, Svetlana; Cui, Peng; Fischer, Sean A; Tretiak, Sergei

    2014-10-16

    Thermodynamic conditions governing the charge transfer direction in CdSe quantum dots (QD) functionalized by either Ru(II)-trisbipyridine or black dye are studied using density functional theory (DFT) and time-dependent DFT (TDDFT). Compared to the energy offsets of the isolated QD and the dye, QD-dye interactions strongly stabilize dye orbitals with respect to the QD states, while the surface chemistry of the QD has a minor effect on the energy offsets. In all considered QD/dye composites, the dyes always introduce unoccupied states close to the edge of the conduction band and control the electron transfer. Negatively charged ligands and less polar solvents significantly destabilize the dye's occupied orbitals shifting them toward the very edge of the valence band, thus, providing favorite conditions for the hole transfer. Overall, variations in the dye's ligands and solvent polarity can progressively adjust the electronic structure of QD/dye composites to modify conditions for the directed charge transfer. PMID:26278611

  9. Interfacial strain effect on type-I and type-II core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Gheshlaghi, Negar; Pisheh, Hadi Sedaghat; Karim, M. Rezaul; Malkoc, Derya; Ünlü, Hilmi

    2016-09-01

    A comparative experimental and theoretical study on the calculation of capped core diameter in ZnSe/ZnS, CdSe/Cd(Zn)S type-I and ZnSe/CdS type-II core/shell nanocrystals is presented. The lattice mismatch induced interface strain between core and shell was calculated from continuum elastic theory and applied in effective mass approximation method to obtain the corresponding capped core diameter. The calculated results were compared with diameter of bare cores (CdSe and ZnSe) from transmission electron microscopy images to obtain the amount of the stretched or squeezed core after deposition of tensile or compressive shells. The result of the study showed that the core is squeezed in ZnSe/ZnS and CdSe/Cd(Zn)S after compressive shell and stretched in ZnSe/CdS after tensile shell deposition. The stretched and squeezed amount of the capped core found to be in proportion with lattice mismatch amount in the core/shell structure.

  10. Quantum chemical topology study of the water-platinum(II) interaction.

    PubMed

    Bergès, Jacqueline; Fourré, Isabelle; Pilmé, Julien; Kozelka, Jiri

    2013-02-01

    The "inverse hydration" of neutral complexes of Pt(II) by an axial water molecule, whose one OH-bond is oriented toward Pt, has been the subject of recent works, theoretical as well as experimental. To study the influence of the ligands on this non-conventional H-bond, we extend here our previous energy calculations, using the second-order Moeller-Plesset perturbation theory (MP2) method together with the Dolg-Pélissier pseudopotential for platinum, to various neutral complexes including the well-known chemotherapeutic agent "cisplatin". The stabilization energy, depending on the nature and the configuration of platinum ligands, is dominated by the same important dispersive component, for all the investigated complexes. For a further characterization of this particular H-bond, we used the atoms in molecules theory (AIM) and the topological analysis of the electron localization function (ELF). The charge transfer occurring from the complex to the water molecule and the Laplacian of the density at the bond critical point between water and Pt are identified as interesting AIM descriptors of this non-conventional H-bond. Beyond this AIM analysis, we show that the polarization of the ELF bonding O-H basin involved in the non-conventional H-bond is enhanced during the approach of the water molecule to the Pt complexes. When the water medium, treated in an implicit solvation model, is taken into account, the interaction energies become independent on the nature and configuration of platinum ligands. However, the topological descriptors remain qualitatively unchanged. PMID:23347164

  11. Switching-on quantum size effects in silicon nanocrystals.

    PubMed

    Sun, Wei; Qian, Chenxi; Wang, Liwei; Wei, Muan; Mastronardi, Melanie L; Casillas, Gilberto; Breu, Josef; Ozin, Geoffrey A

    2015-01-27

    The size-dependence of the absolute luminescence quantum yield of size-separated silicon nanocrystals reveals a "volcano" behavior, which switches on around 5 nm, peaks at near 3.7-3.9 nm, and decreases thereafter. These three regions respectively define: i) the transition from bulk to strongly quantum confined emissive silicon, ii) increasing confinement enhancing radiative recombination, and iii) increasing contributions favoring non-radiative recombination. PMID:25472530

  12. Comparative photoluminescence properties of type-I and type-II CdTe/CdS core/shell quantum dots

    NASA Astrophysics Data System (ADS)

    Thuy, Ung Thi Dieu; Tu, Le Anh; Loan, Nguyen Thu; Chi, Tran Thi Kim; Liem, Nguyen Quang

    2016-03-01

    High quality type-I and type-II CdTe/CdS quantum dots (QDs) were designed and synthesized in water at 90 °C using the same 3.0-nm CdTe core QDs with different CdS shell thicknesses. Time-resolved and temperature-dependent photoluminescence techniques were used to study comparatively their optical properties, showing strong luminescence peaking at 550 nm with the short decay time of 20 ns for type-I CdTe/CdS QDs; and strong luminescence in the near-infrared region of 700-830 nm with very long decay time of 190 ns for the type-II ones. In addition, exciton-acoustic phonon interaction is much stronger in type-I QDs compared to that in type-II ones that is rationally due to the stronger confinement effect.

  13. Integrated miniature fluorescent probe to leverage the sensing potential of ZnO quantum dots for the detection of copper (II) ions.

    PubMed

    Ng, Sing Muk; Wong, Derrick Sing Nguong; Phung, Jane Hui Chiun; Chin, Suk Fun; Chua, Hong Siang

    2013-11-15

    Quantum dots are fluorescent semiconductor nanoparticles that can be utilised for sensing applications. This paper evaluates the ability to leverage their analytical potential using an integrated fluorescent sensing probe that is portable, cost effective and simple to handle. ZnO quantum dots were prepared using the simple sol-gel hydrolysis method at ambient conditions and found to be significantly and specifically quenched by copper (II) ions. This ZnO quantum dots system has been incorporated into an in-house developed miniature fluorescent probe for the detection of copper (II) ions in aqueous medium. The probe was developed using a low power handheld black light as excitation source and three photo-detectors as sensor. The sensing chamber placed between the light source and detectors was made of 4-sided clear quartz windows. The chamber was housed within a dark compartment to avoid stray light interference. The probe was operated using a microcontroller (Arduino Uno Revision 3) that has been programmed with the analytical response and the working algorithm of the electronics. The probe was sourced with a 12 V rechargeable battery pack and the analytical readouts were given directly using a LCD display panel. Analytical optimisations of the ZnO quantum dots system and the probe have been performed and further described. The probe was found to have a linear response range up to 0.45 mM (R(2)=0.9930) towards copper (II) ion with a limit of detection of 7.68×10(-7) M. The probe has high repeatable and reliable performance. PMID:24148438

  14. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. II. Empirical

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Liang, Cui

    2007-01-01

    The quantum finance pricing formulas for coupon bond options and swaptions derived by Baaquie [Phys. Rev. E 75, 016703 (2006)] are reviewed. We empirically study the swaption market and propose an efficient computational procedure for analyzing the data. Empirical results of the swaption price, volatility, and swaption correlation are compared with the predictions of quantum finance. The quantum finance model generates the market swaption price to over 90% accuracy.

  15. Photolysis of CH{sub 3}CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH{sub 3} and HCO radicals and H atoms

    SciTech Connect

    Morajkar, Pranay; Schoemaecker, Coralie; Fittschen, Christa; Bossolasco, Adriana

    2014-06-07

    Radical quantum yields have been measured following the 248 nm photolysis of acetaldehyde, CH{sub 3}CHO. HCO radical and H atom yields have been quantified by time resolved continuous wave Cavity Ring Down Spectroscopy in the near infrared following their conversion to HO{sub 2} radicals by reaction with O{sub 2}. The CH{sub 3} radical yield has been determined using the same technique following their conversion into CH{sub 3}O{sub 2}. Absolute yields have been deduced for HCO radicals and H atoms through fitting of time resolved HO{sub 2} profiles, obtained under various O{sub 2} concentrations, to a complex model, while the CH{sub 3} yield has been determined relative to the CH{sub 3} yield from 248 nm photolysis of CH{sub 3}I. Time resolved HO{sub 2} profiles under very low O{sub 2} concentrations suggest that another unknown HO{sub 2} forming reaction path exists in this reaction system besides the conversion of HCO radicals and H atoms by reaction with O{sub 2}. HO{sub 2} profiles can be well reproduced under a large range of experimental conditions with the following quantum yields: CH{sub 3}CHO + hν{sub 248nm} → CH{sub 3}CHO{sup *}, CH{sub 3}CHO{sup *} → CH{sub 3} + HCO ϕ{sub 1a} = 0.125 ± 0.03, CH{sub 3}CHO{sup *} → CH{sub 3} + H + CO ϕ{sub 1e} = 0.205 ± 0.04, CH{sub 3}CHO{sup *}→{sup o{sub 2}}CH{sub 3}CO + HO{sub 2} ϕ{sub 1f} = 0.07 ± 0.01. The CH{sub 3}O{sub 2} quantum yield has been determined in separate experiments as ϕ{sub CH{sub 3}} = 0.33 ± 0.03 and is in excellent agreement with the CH{sub 3} yields derived from the HO{sub 2} measurements considering that the triple fragmentation (R1e) is an important reaction path in the 248 nm photolysis of CH{sub 3}CHO. From arithmetic considerations taking into account the HO{sub 2} and CH{sub 3} measurements we deduce a remaining quantum yield for the molecular pathway: CH{sub 3}CHO{sup *} → CH{sub 4} + CO ϕ{sub 1b} = 0.6. All experiments can be

  16. Evolution of exciton states near the percolation threshold in two-phase systems with II-VI semiconductor quantum dots

    SciTech Connect

    Bondar, N. V. Brodyn, M. S.

    2010-07-15

    From studies of two-phase systems (borosilicate matrices containing ZnSe or CdS quantum dots), it was found that the systems exhibit a specific feature associated with the percolation phase transition of charge carriers (excitons). The transition manifests itself as radical changes in the optical spectra of both ZnSe and CdS quantum dot systems and by fluctuations of the emission band intensities near the percolation threshold. These effects are due to microscopic fluctuations of the density of quantum dots. The average spacing between quantum dots is calculated taking into account their finite dimensions and the volume fraction occupied by the quantum dots at the percolation threshold. It is shown that clustering of quantum dots occurs via tunneling of charge carriers between the dots. A physical mechanism responsible for the percolation threshold for charge carriers is suggested. In the mechanism, the permittivity mismatch of the materials of the matrix and quantum dots plays an important role in delocalization of charge carriers (excitons): due to the mismatch, 'a dielectric trap' is formed at the external surface of the interface between the matrix and a quantum dot and, thus, surface exciton states are formed there. The critical concentrations of quantum dots are determined, such that the spatial overlapping of such surface states provides the percolation transition in both systems.

  17. Vortex-antivortex pair in a Bose-Einstein condensate. Type-II quantum lattice gas as a nonlinear φ4 theory of a complex field

    NASA Astrophysics Data System (ADS)

    Yepez, J.; Vahala, G.; Vahala, L.

    2009-04-01

    Presented is a type-II quantum algorithm for superfluid dynamics, used to numerically predict solutions of the GP equation for a complex scalar field (spinless bosons) in φ4 theory. The GP equation is a long wavelength effective field theory of a microscopic quantum lattice gas with nonlinear state reduction. The quantum lattice gas algorithm for modeling the dynamics of the one-body BEC state in 3+1 dimensions is presented. To demonstrate the method's strength as a computational physics tool, a difficult situation of filamentary singularities is simulated, the dynamics of solitary vortex-antivortex pairs, which are a basic building block of morphologies of quantum turbulence.

  18. Quantum Discord as a Resource in Quantum Communication

    NASA Astrophysics Data System (ADS)

    Madhok, Vaibhav; Datta, Animesh

    2013-01-01

    As quantum technologies move from the issues of principle to those of practice, it is important to understand the limitations on attaining tangible quantum advantages. In the realm of quantum communication, quantum discord captures the damaging effects of a decoherent environment. This is a consequence of quantum discord quantifying the advantage of quantum coherence in quantum communication. This establishes quantum discord as a resource for quantum communication processes. We discuss this progress, which derives a quantitative relation between the yield of the fully quantum Slepian-Wolf (FQSW) protocol in the presence of noise and the quantum discord of the state involved. The significance of quantum discord in noisy versions of teleportation, super-dense coding, entanglement distillation and quantum state merging are discussed. These results lead to open questions regarding the tradeoff between quantum entanglement and discord in choosing the optimal quantum states for attaining palpable quantum advantages in noisy quantum protocols.

  19. Quantum Discord as a Resource in Quantum Communication

    NASA Astrophysics Data System (ADS)

    Madhok, Vaibhav; Datta, Animesh

    2012-06-01

    As quantum technologies move from the issues of principle to those of practice, it is important to understand the limitations on attaining tangible quantum advantages. In the realm of quantum communication, quantum discord captures the damaging effects of a decoherent environment. This is a consequence of quantum discord quantifying the advantage of quantum coherence in quantum communication. This establishes quantum discord as a resource for quantum communication processes. We discuss this progress, which derives a quantitative relation between the yield of the fully quantum Slepian-Wolf (FQSW) protocol in the presence of noise and the quantum discord of the state involved. The significance of quantum discord in noisy versions of teleportation, super-dense coding, entanglement distillation and quantum state merging are discussed. These results lead to open questions regarding the tradeoff between quantum entanglement and discord in choosing the optimal quantum states for attaining palpable quantum advantages in noisy quantum protocols.

  20. Near-UV phosphorescent emitters: N-heterocyclic platinum(ii) tetracarbene complexes.

    PubMed

    Unger, Yvonne; Zeller, Alexander; Taige, Maria A; Strassner, Thomas

    2009-06-28

    Although examples of nickel(ii), palladium(ii) and platinum(ii) N-heterocyclic tetracarbene complexes are known in the literature, particularly platinum(ii) tetracarbene complexes are rare. We developed a new synthetic route via biscarbene acetate complexes, which make homoleptic as well as heteroleptic platinum(ii) tetracarbene complexes accessible. The reported photoluminescence data show that these complexes have good quantum yields and photostability and are a promising class of emitters for PhOLEDs. Characterization of the compounds includes a solid-state structure of the homoleptic complex bis(1,1'-diisopropyl-3,3'-methylenediimidazoline-2,2'-diylidene)platinum(ii) dibromide. PMID:19513490

  1. Interacting quantum fragments-rooted preorganized-interacting fragments attributed relative molecular stability of the Be(II) complexes of nitrilotriacetic acid and nitrilotri-3-propionic acid.

    PubMed

    Cukrowski, Ignacy; Mangondo, Paidamwoyo

    2016-06-01

    A method designed to investigate, on a fundamental level, the origin of relative stability of molecular systems using Be(II) complexes with nitrilotriacetic acid (NTA) and nitrilotri-3-propionic acid (NTPA) is described. It makes use of the primary and molecular fragment energy terms as defined in the IQA/F (Interacting Quantum Atoms/Fragments) framework. An extensive classical-type investigation, focused on single descriptors (bond length, density at critical point, the size of metal ion or coordination ring, interaction energy between Be(II) and a donor atom, etc.) showed that it is not possible to explain the experimental trend. The proposed methodology is fundamentally different in that it accounts for the total energy contributions coming from all atoms of selected molecular fragments, and monitors changes in defined energy terms (e.g., fragment deformation, inter- and intra-fragment interaction) on complex formation. By decomposing combined energy terms we identified the origin of relative stability of Be(II) (NTA) and Be(II) (NTPA) complexes. We found that the sum of coordination bonds' strength, as measured by interaction energies between Be(II) ion and donor atoms, favours Be(II) (NTA) but the binding energy of Be(II) ion to the entire ligand correlates well with experimental trend. Surprisingly, the origin of Be(II) (NTPA) being more stable is due to less severe repulsive interactions with the backbone of NTPA (C and H-atoms). This general purpose protocol can be employed not only to investigate the origin of relative stability of any molecular system (e.g., metal complexes) but, in principle, can be used as a predictive tool for, e.g., explaining reaction mechanism. © 2016 Wiley Periodicals, Inc. PMID:26993356

  2. Excitons in coupled type-II double quantum wells under electric and magnetic fields: InAs/AlSb/GaSb

    SciTech Connect

    Lyo, S. K.; Pan, W.

    2015-11-21

    We calculate the wave functions and the energy levels of an exciton in double quantum wells under electric (F) and magnetic (B) fields along the growth axis. The result is employed to study the energy levels, the binding energy, and the boundary on the F–B plane of the phase between the indirect exciton ground state and the semiconductor ground state for several typical structures of the type-II quasi-two-dimensional quantum wells such as InAs/AlSb/GaSb. The inter-well inter-band radiative transition rates are calculated for exciton creation and recombination. We find that the rates are modulated over several orders of magnitude by the electric and magnetic fields.

  3. Enhanced quantum yield of yellow photoluminescence of Dy{sup 3+} ions in nonlinear optical Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals formed in glass

    SciTech Connect

    Maruyama, N.; Honma, T.; Komatsu, T.

    2009-02-15

    Transparent crystallized glasses consisting of nonlinear optical Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals (diameter: {approx}100 nm) are prepared through the crystallization of 40BaO-20TiO{sub 2}-40SiO{sub 2}-0.5Dy{sub 2}O{sub 3} glass (in the molar ratio), and photoluminescence quantum yields of Dy{sup 3+} ions in the visible region are evaluated directly by using a photoluminescence spectrometer with an integrating sphere. The incorporation of Dy{sup 3+} ions into Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals is confirmed from the X-ray diffraction analyses. The total quantum yields of the emissions at the bands of {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 15/2} (blue: 484 nm), {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 13/2} (yellow: 575 nm), and {sup 4}F{sub 9/2}{yields}{sup 6}H{sub 11/2} (red: 669 nm) in the crystallized glasses are {approx}15%, being about four times larger compared with the precursor glass. It is found that the intensity of yellow (575 nm) emissions and the branching ratio of the yellow (575 nm)/blue (484 nm) intensity ratio increase largely due to the crystallization. It is suggested from Judd-Ofelt analyses that the site symmetry of Dy{sup 3+} ions in the crystallized glasses is largely distorted, giving a large increase in the yellow emissions. It is proposed that Dy{sup 3+} ions substitute Ba{sup 2+} sites in Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals. - Grapical abstract: This figure shows the photoluminescence spectra of Dy{sup 3+} ions in the range of 450-700 nm obtained in the quantum field measurements for the precursor BTS and crystallized (at 770 and 790 deg. C, for 30 min) glasses. The wavelength of the excitation light was 352 nm. By incorporating into Ba{sub 2}TiSi{sub 2}O{sub 8} nanocrystals, the emission intensity of the yellow band of Dy{sup 3+} ions is largely enhanced. This would give an impact in the science and technology of photoluminescence materials.

  4. Flash-induced blocking of the high-affinity manganese-binding site in photosystem II by iron cations: dependence on the dark interval between flashes and binary oscillations of fluorescence yield.

    PubMed

    Semin, Boris K; Seibert, Michael

    2006-12-21

    Incubation of Fe(II) cations with Mn-depleted PSII membranes (PSII(-Mn)) under weak continuous light is accompanied by blocking of the high-affinity, Mn-binding (HAZ) site with ferric cations (Semin, B.K. et al. Biochemistry 2002, 41, 5854-5864). In this study we investigated the blocking yield under single-turnover flash conditions. The flash-probe fluorescence method was used to estimate the blocking efficiency. We found that the yield of blocking increases with flash number and reaches 50% after 7 flashes. When the dark interval between the flashes (Delta t) was varied, we found that the percentage of blocking decreases at Delta t < 100 ms (t 1/2, 4-10 ms). No inhibition of the blocking yield was found at longer time intervals (as with photoactivation). This result shows the necessity of a dark rearrangement during the blocking process (the dual-site hypothesis described in the text) and indicates the formation of a binuclear iron center. During the blocking experiments, we found a binary oscillation of the Fmax elicited during a train of flashes. The oscillations were observed only in the presence of Fe(II) cations or other electron donors (including Mn(II)) but not in the presence of Ca2+. Chelators had no effect on the oscillations. Our results indicate that the oscillations are due to processes on the acceptor side of PSII and to the appearance of "acceptor X" after odd flashes. Acceptor X is reduced by QA- at very high rate (<2 ms), is not sensitive to DCMU, and is rather stable in the dark (t l/2 approximately 2 min). These properties are similar to those of nonheme Fe(III) (Fe(III)NHI). When Fe(II)NHI was oxidized with ferricyanide (Fe(CN)6), the fluorescence decay kinetics and yield of fluorescence were identical to those observed when the sample was exposed to 1 flash prior to the fluorescence measurement. We suggest that acceptor X is Fe(III)NHI, oxidized by the semiquinone form of QB-. This is similar to the mechanism of "reduction-induced oxidation

  5. Hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot structure with enhanced photoluminescence

    SciTech Connect

    Ji, Hai-Ming; Liang, Baolai Simmonds, Paul J.; Juang, Bor-Chau; Yang, Tao; Young, Robert J.; Huffaker, Diana L.

    2015-03-09

    We investigate the photoluminescence (PL) properties of a hybrid type-I InAs/GaAs and type-II GaSb/GaAs quantum dot (QD) structure grown in a GaAs matrix by molecular beam epitaxy. This hybrid QD structure exhibits more intense PL with a broader spectral range, compared with control samples that contain only InAs or GaSb QDs. This enhanced PL performance is attributed to additional electron and hole injection from the type-I InAs QDs into the adjacent type-II GaSb QDs. We confirm this mechanism using time-resolved and power-dependent PL. These hybrid QD structures show potential for high efficiency QD solar cell applications.

  6. Step-like increase of quantum yield of 1.5 μm Er-related emission in SiO{sub 2} doped with Si nanocrystals

    SciTech Connect

    Saeed, S.; Jong, E. M. L. D. de; Gregorkiewicz, T.

    2015-02-14

    We investigate the excitation dependence of the efficiency of the Si nanocrystals-mediated photoluminescence from Er{sup 3+} ions embedded in a SiO{sub 2} matrix. We show that the quantum yield of this emission increases in a step-like manner with excitation energy. The subsequent thresholds of this characteristic dependence are approximately given by the sum of the Si nanocrystals bandgap energy and multiples of 0.8 eV, corresponding to the energy of the first excited state of Er{sup 3+} ions. By comparing differently prepared materials, we explicitly demonstrate that the actual values of the threshold energies and the rate of the observed increase of the external quantum yield depend on sample characteristics—the size, the optical activity and the concentration of Si nanocrystals as well Er{sup 3+} ions to Si nanocrystals concentration ratio. In that way, detailed insights into the efficient excitation of Er{sup 3+} ions are obtained. In particular, the essential role of the hot-carrier-mediated Er excitation route is established, with a possible application perspective for highly efficient future-generation photovoltaics.

  7. Practical characterization of quantum devices without tomography.

    PubMed

    da Silva, Marcus P; Landon-Cardinal, Olivier; Poulin, David

    2011-11-18

    Quantum tomography is the main method used to assess the quality of quantum information processing devices. However, the amount of resources needed for quantum tomography is exponential in the device size. Part of the problem is that tomography generates much more information than is usually sought. Taking a more targeted approach, we develop schemes that enable (i) estimating the fidelity of an experiment to a theoretical ideal description, (ii) learning which description within a reduced subset best matches the experimental data. Both these approaches yield a significant reduction in resources compared to tomography. In particular, we demonstrate that fidelity can be estimated from a number of simple experiments that is independent of the system size, removing an important roadblock for the experimental study of larger quantum information processing units. PMID:22181862

  8. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with picolines.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Malináková, Katerina; Kozerski, Lech; Szłyk, Edward

    2009-03-01

    (1)H, (13)C and (15)N NMR studies of gold(III), palladium(II) and platinum(II) chloride complexes with picolines, [Au(PIC)Cl(3)], trans-[Pd(PIC)(2)Cl(2)], trans/cis-[Pt(PIC)(2)Cl(2)] and [Pt(PIC)(4)]Cl(2), were performed. After complexation, the (1)H and (13)C signals were shifted to higher frequency, whereas the (15)N ones to lower (by ca 80-110 ppm), with respect to the free ligands. The (15)N shielding phenomenon was enhanced in the series [Au(PIC)Cl(3)] < trans-[Pd(PIC)(2)Cl(2)] < cis-[Pt(PIC)(2)Cl(2)] < trans-[Pt(PIC)(2)Cl(2)]; it increased following the Pd(II) --> Pt(II) replacement, but decreased upon the trans --> cis-transition. Experimental (1)H, (13)C and (15)N NMR chemical shifts were compared to those quantum-chemically calculated by B3LYP/LanL2DZ + 6-31G**//B3LYP/LanL2DZ + 6-31G*. PMID:19097135

  9. PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns-10 s on dark-adapted Chlorella pyrenoidosa cells.

    PubMed

    Belyaeva, N E; Schmitt, F-J; Steffen, R; Paschenko, V Z; Riznichenko, G Yu; Chemeris, Yu K; Renger, G; Rubin, A B

    2008-01-01

    The set up described in Steffen et al. (Biochemistry 40:173-180, 2001) was used to monitor in the time domain from 100 ns to 10 s single turnover flash-induced transients of the normalized fluorescence yield (SFITFY) on dark-adapted cells of the thermophilic algae Chlorella pyrenoidosa Chick. Perfect data fit was achieved within the framework of a previously proposed model for the PS II reaction pattern (Lebedeva et al., Biophysics 47:968-980, 2002; Belyaeva et al., Biophysics 51:860-872, 2006) after its modification by taking into account nonradiative decay processes including nonphotochemical quenching due to time-dependent populations of P680(+*) and (3)Car. On the basis of data reported in the literature, a consistent set of rate constants was obtained for electron transfer at the donor and acceptor sides of PS II, pH in lumen and stroma, the initial redox state of plastoquinone pool and the rate of plastoquinone oxidation. The evaluation of the rate constant values of dissipative processes due to quenching by carotenoid triplets in antennae and P680(+*)Q(A)(-*) recombination as well as the initial state populations after excitation with a single laser flash are close to that outlined in (Steffen et al., Biochemistry 44:3123-3133, 2005a). The simulations based on the model of the PS II reaction pattern provide information on the time courses of population probabilities of different PS II states. We analyzed the maximum (F(m)(STF)) and minimum (F(0)) of the normalized FL yield dependence on the rate of the recombination processes (radiative and dissipative nonradiative) and of P680(+*) reduction. The developed PS II model provides a basis for theoretical comparative analyses of time-dependent fluorescence signals, observed at different photosynthetic samples under various conditions (e.g. presence of herbicides, other stress conditions, excitation with actinic pulses of different intensity, and duration). PMID:18937044

  10. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  11. Continuous wave vertical cavity surface emitting lasers at 2.5 μm with InP-based type-II quantum wells

    SciTech Connect

    Sprengel, S.; Andrejew, A.; Federer, F.; Veerabathran, G. K.; Boehm, G.; Amann, M.-C.

    2015-04-13

    A concept for electrically pumped vertical cavity surface emitting lasers (VCSEL) for emission wavelength beyond 2 μm is presented. This concept integrates type-II quantum wells into InP-based VCSELs with a buried tunnel junction as current aperture. The W-shaped quantum wells are based on the type-II band alignment between GaInAs and GaAsSb. The structure includes an epitaxial GaInAs/InP and an amorphous AlF{sub 3}/ZnS distributed Bragg reflector as bottom and top (outcoupling) mirror, respectively. Continuous-wave operation up to 10 °C at a wavelength of 2.49 μm and a peak output power of 400 μW at −18 °C has been achieved. Single-mode emission with a side-mode suppression ratio of 30 dB for mesa diameters up to 14 μm is presented. The long emission wavelength and current tunability over a wavelength range of more than 5 nm combined with its single-mode operation makes this device ideally suited for spectroscopy applications.

  12. Quantum Transport near the Charge Neutrality Point in Inverted Type-II InAs/GaSb Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Pan, W.; Klem, J. F.; Kim, J. K.; Thalakulam, M.; Cich, M. J.; Lyo, S. K.

    2013-03-01

    We present here our recent quantum transport results around the charge neutrality point (CNP) in a type-II InAs/GaSb field-effect transistor. At zero magnetic field, a conductance minimum close to 4e2 / h develops at the CNP and it follows semi-logarithmic temperature dependence. In quantized magnetic (B) fields and at low temperatures, well developed integer quantum Hall states are observed in the electron as well as hole regimes. Electron transport shows noisy behavior around the CNP at extremely high B fields. When the diagonal conductivity σxx is plotted against the Hall conductivity σxy, a conductivity circle law is discovered, suggesting a chaotic quantum transport behavior. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. The role of additives in moderating the influence of Fe(III) and Cu(II) on the radiochemical yield of [⁶⁸Ga(DOTATATE)].

    PubMed

    Oehlke, Elisabeth; Lengkeek, Nigel A; Le, Van So; Pellegrini, Paul A; Greguric, Ivan; Weiner, Ron

    2016-01-01

    [(68)Ga(DOTATATE)] has demonstrated its clinical usefulness. Both Fe(3+) and Cu(2+), potential contaminants in Gallium-68 generator eluent, substantially reduce the radiochemical (RC) yield of [(68)Ga(DOTATATE)] if the metal/ligand ratio of 1:1 is exceeded. A variety of compounds were examined for their potential ability to reduce this effect. Most had no effect on RC yield. However, addition of phosphate diminished the influence of Fe(3+) by likely forming an insoluble iron salt. Addition of ascorbic acid reduced Cu(2+) and Fe(3+) to Cu(+) and Fe(2+) respectively, both of which have limited impact on RC yields. At low ligand amounts (5 nmol DOTATATE), the addition of 30 nmol phosphate (0.19 mM) increased the tolerance of Fe(3+) from 4 nmol to 10 nmol (0.06 mM), while the addition of ascorbic acid allowed high RC yields (>95%) in the presence of 40 nmol Fe(3+) (0.25 mM) and 100 nmol Cu(2+) (0.63 mM). The effect of ascorbic acid was highly pH-dependant, and gave optimal results at pH 3. PMID:26405839

  14. Reduced fertility in high-yielding dairy cows: are the oocyte and embryo in danger? Part II. Mechanisms linking nutrition and reduced oocyte and embryo quality in high-yielding dairy cows.

    PubMed

    Leroy, J L M R; Van Soom, A; Opsomer, G; Goovaerts, I G F; Bols, P E J

    2008-10-01

    Dairy cow fertility has been declining during since the mid-80s and this has given rise to numerous scientific studies in which important parts of the pathogenesis are elucidated. Reduced oocyte and embryo quality are acknowledged as major factors in the widely described low conception rates and in the high prevalence of early embryonic mortality. Apart from the importance of the negative energy balance (NEB) and the associated endocrine and metabolic consequences, there is a growing attention towards the effect of the milk yield promoting diets which are rich in energy and protein. Starch-rich diets can improve the energy status and thus the ovarian activity in the early postpartum period but the oocyte and embryo quality can suffer from such insulinogenic diets. Supplementation of dietary fat has a similar dual effect with a beneficial stimulation of the ovarian steroid production while the oocyte and the embryo display an altered energy metabolism and excessive lipid accumulation. High-protein diets can elevate the ammonia and urea concentrations in the blood, leading to changed intrafollicular, oviductal and uterine environments. Oocytes and embryos are highly sensitive to such changes in their microenvironment, possibly leading to a disturbed maturation, fertilization or early cleavage. Several nutrition-linked mechanisms, through which oocyte and/or embryo quality can be affected in modern dairy cows, well after the period of NEB, are proposed and comprehensively reviewed in the present report. PMID:18384498

  15. Properties of Type-II ZnTe/ZnSe Submonolayer Quantum Dots Studied via Excitonic Aharonov- Bohm Effect and Polarized Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Haojie

    In this thesis I develop understanding of the fundamental physical and material properties of type-II ZnTe/ZnSe submonolayer quantum dots (QDs), grown via combination of molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE). I use magneto-photoluminescence, including excitonic Aharonov-Bohm (AB) effect and polarized optical spectroscopy as the primary tools in this work. I present previous studies as well as the background of optical and magneto-optical processes in semiconductor nanostructures and introduce the experimental methods in Chapters 1 - 3. In Chapter 4 I focus on the excitonic AB effect in the type-II QDs. I develop a lateral tightly-bound exciton model for ZnTe/ZnSe type-II QDs, using analytical methods and numerical calculations. This explained the magneto-PL observation and allowed for establishing the size and density of the QDs in each sample based on the results of PL and magneto-PL measurements. For samples with larger QDs, I observe behaviors that fall between properties of quantum-dot and quantum-well-like systems due to increased QD densities and their type-II nature. Finally, the decoherence mechanisms of the AB excitons are investigated via the temperature dependent studies of the magneto-PL. It is determined that the AB exciton decoherence is due to transport-like (acoustic phonon) scattering of the electrons moving in the ZnSe barriers, but with substantially smaller magnitude of electron-phonon coupling constant due to relatively strong electron-hole coupling within these type-II QDs. In Chapter 5 I discuss the results of circularly polarized magneto-PL measurements. A model with ultra-long spin-flip time of holes confined to submonolayer QDs is proposed. The g-factor of type-II excitons was extracted from the Zeeman splitting and the g-factor of electrons was obtained by fitting the temperature dependence of the degree of circular polarization (DCP), from which g-factor of holes confined within ZnTe QDs was found. It is shown

  16. Dannie Heineman Prize for Mathematical Physics Prize Lecture: Correlation Functions in Integrable Models II: The Role of Quantum Affine Symmetry

    NASA Astrophysics Data System (ADS)

    Jimbo, Michio

    2013-03-01

    Since the beginning of 1980s, hidden infinite dimensional symmetries have emerged as the origin of integrability: first in soliton theory and then in conformal field theory. Quest for symmetries in quantum integrable models has led to the discovery of quantum groups. On one hand this opened up rapid mathematical developments in representation theory, combinatorics and other fields. On the other hand it has advanced understanding of correlation functions of lattice models, leading to multiple integral formulas in integrable spin chains. We shall review these developments which continue up to the present time.

  17. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    SciTech Connect

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Wildeman, Jurjen; Sfeir, Matthew Y.; Peteanu, Linda A.; Wen, Jin; Ma, Jing

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changes and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.

  18. A de Novo mutation in the coding sequence for neurophysin-II (Pro{sup 24} {yields} Leu) is associated with onset and transmission of autosomal dominant neurohypophyseal diabetes insipidus

    SciTech Connect

    Repaske, D.R.; Browning, J.E.

    1994-08-01

    The molecular basis of autosomal dominant neurohypophyseal diabetes insipidus, a hereditary deficiency of vasopressin, was determined by nucleotide sequence analysis of the arginine vasopressin-neurophysin-II gene. A C{yields}T mutation at nucleotide 1761 was detected in one allele of this gene in each affected individual in three generations of one family. This mutant gene encodes a normal arginine vasopressin peptide, but predicts a substitution of leucine for proline at amino acid 24 of neurophysin-II, the arginine vasopressin carrier protein. This mutation was not detected in 50 control individuals, thus demonstrating that it is not a common silent genetic polymorphism. The disease arose in the second generation of the studied family, and the chromosome 20 carrying this new mutation was identified by polymorphic CA microsatellite haplotype analysis. The first affected individual inherited this chromosome segment from her mother, who had neither the disease nor this mutation in her somatic cell DNA. Third generation individuals who subsequently inherited this mutation were affected. These data demonstrate that this amino acid substitution in neurophysin-II causes this disease. Two possibilities to explain the mechanism by which clinical deficiency of arginine vasopressin develops even in the presence of one normal arginine vasopressin-neurophysin-II allele are discussed. 40 refs., 4 figs., 2 tabs.

  19. Rapid detection of mutations by conformation sensitive gel electrophoresis: Application to the identification of three new mutations in the type II procollagen gene and a fourth family with the Arg{sub 519}{yields}Cys base substitution

    SciTech Connect

    Williams, C.J.; Rock, M.; McCarron, S.

    1994-09-01

    Conformation sensitive gel electrophoresis (CSGE) detects differences as small as a single base mismatch in DNA heteroduplexes of polymerase chain reaction (PCR) products. The altered migration of heteroduplexes versus homoduplexes is resolved in a polyacrylamide-based gel electrophoresis system. The technique was used here to detect conformational changes in the type II procollagen gene (COL2A1) in patients with growth plate defects. PCR products which displayed heteroduplex species were directly sequenced and all revealed either base substitutions or base deletions. Three of the base substitutions resulted in the identification of new mutations. These include a Gly{sub 691}{yields}Arg substitution in a proband with hypochondrogenesis, a Gly{sub 975}{yields}Ser base substitution in a family with late-onset spondyloepiphyseal dysplasia (SEDT) and precocious osteoarthritis (POA), and a Gly{sub 988}{yields}Arg mutation in another patient with hypochondrogenesis. A fourth substitution was found to be the fourth example of an Arg{sub 519}{yields}Cys point mutation in a family with SEDT and POA. All mutations were confirmed by restriction site analysis. These results illustrate the utility of the CSGE method for the rapid detection of mutations in PCR products without the need for special equipment, primers or sample preparation.

  20. Strong confinement effects in CdTe/MnTe quantum wells: A new strained layer binary II VI heterostructure

    NASA Astrophysics Data System (ADS)

    Fu, Q.; Pelekanos, N.; Nurmikko, A. V.; Durbin, S.; Han, J.; Sungki, O.; Menke, D.; Kobayashi, M.; Gunshor, R. L.

    1990-04-01

    A range of optical studies have been carried out on a series of single quantum wells of CdTe/MnTe. The structures appear to be nearly pseudomorphic and show evidence for robust electron-hole confinement. Exciton states have been characterized in terms of lifetime and coupling to optical phonons.

  1. Effect of arsenic on the optical properties of GaSb-based type II quantum wells with quaternary GaInAsSb layers

    SciTech Connect

    Janiak, F. Motyka, M.; Sęk, G.; Dyksik, M.; Ryczko, K.; Misiewicz, J.; Weih, R.; Höfling, S.; Kamp, M.; Patriarche, G.

    2013-12-14

    Optical properties of molecular beam epitaxially grown type II “W” shaped GaSb/AlSb/InAs/GaIn(As)Sb/InAs/AlSb/GaSb quantum wells (QWs) designed for the active region of interband cascade lasers have been investigated. Temperature dependence of Fourier-transformed photoluminescence and photoreflectance was employed to probe the effects of addition of arsenic into the original ternary valence band well of GaInSb. It is revealed that adding arsenic provides an additional degree of freedom in terms of band alignment and strain tailoring and allows enhancing the oscillator strength of the active type II transition. On the other hand, however, arsenic incorporation apparently also affects the structural and optical material quality via generating carrier trapping states at the interfaces, which can deteriorate the radiative efficiency. These have been evidenced in several spectroscopic features and are also confirmed by cross-sectional transmission electron microscopy images. While arsenic incorporation into type II QWs is a powerful heterostructure engineering tool for optoelectronic devices, a compromise has to be found between ideal band structure properties and high quality morphological properties.

  2. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window.

    PubMed

    Li, Chunyan; Zhang, Yejun; Wang, Mao; Zhang, Yan; Chen, Guangcun; Li, Lun; Wu, Dongmin; Wang, Qiangbin

    2014-01-01

    Improving the tissue penetration depth and spatial resolution of fluorescence-based optical nanoprobes remains a grand challenge for their practical applications in in vivo imaging, due to the scattering and absorption and endogenous autofluorescence of living tissues. Here, we present that Ag2S quantum dots (QDs), containing no toxic ions, exhibiting long circulation time and high stability, act as a new kind of fluorescent probes in the second near-infrared window (NIR-II, 1000-1350 nm) which enable in vivo monitoring of lymphatic drainage and vascular networks with deep tissue penetration and high spatial and temporal resolution. In addition, NIR-II fluorescence imaging with Ag2S QDs provide ultrahigh spatial resolution (~40 μm) that permits us to track angiogenesis mediated by a tiny tumor (2-3 mm in diameter) in vivo. Our results indicate that Ag2S QDs are promising NIR-II fluorescent nanoprobes that could be useful in surgical treatments such as sentinel lymph node (SLN) dissection as well in assessment of blood supply in tissues and organs and screening of anti-angiogenic drugs. PMID:24135267

  3. Hydrothermal synthesis of high-quality type-II CdTe/CdSe core/shell quantum dots with dark red emission.

    PubMed

    Liu, Ning; Yang, Ping

    2014-08-01

    A hydrothermal method was used to synthesize type-II CdTe/CdSe core/shell quantum dots (QDs) using the thilglycolic acid (TGA) capped CdTe QDs as cores, which show a number of advantages. Because of the spatial separation of carriers the low excited states of CdTe/CdSe QDs, they exhibit many novel properties that are fundamentally different from the type-I QDs. On the other hand, our experiment results show that the wave function of the hole of the exciton in the CdTe core extends well into the CdSe shell. The results also reveal that a thick shell can confine the electrons inside the particles and thereby improve the PL efficiency and prolong the lifetime of the core/shell QDs. We use the UV-vis absorption and fluorescence spectrum measurements on growing particles in detail. We found that the fluorescence of the CdTe/CdSe QDs was strongly dependent on the thick of the shell and size of the core as well as the unique type-II heterostructure, which make the type-II core/shell QDs more suitable in photovoltaic or photoconduction applications. PMID:25936008

  4. Optical properties of charged semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Jha, Praket P.

    The effect of n-type doping on the luminescence properties of II-VI quantum dots is studied. The addition of two shells of CdS on CdSe quantum dots prevents the creation of surface traps and makes the system stable under reducing environment. The injection of electrons into films of quantum dots leads to lower photoluminescence (PL) efficiency, with the extent of quenching dependent on both the number and the quantum states of the spectator charges in the nanocrystal. It is found that a 1Pe electron is an eightfold better PL quencher than the 1Se electron. Reduced threshold for stimulated emission is also observed in doped CdSe/CdS films. Time resolved photoluminescence measurements are used to extract the recombination rates of a charged exciton, called trion. It is observed that the negative trion has a radiative rate ˜2.2 +/- 0.4x faster than a neutral exciton, while its non-radiative recombination rate is slower than the biexciton non-radiative recombination rate by a factor of 7.5 +/- 1.7. The knowledge of the recombination rates of the trion enables us to calculate the quantum yield of a negative trion to be ˜10% for the nanocrystals investigated in our work. This is larger than the off state quantum yield from a single quantum dot photoluminescence trajectory and eliminates the formation of negative trion as the possible reason for the PL blinking of single quantum dots. Single quantum dot electrochemistry has also been achieved. It is shown that by varying the Fermi level of the system electrons can be reversibly injected into and extracted out of single CdSe/CdS and CdSe/ZnS nanoparticles to modulate the photoluminescence.

  5. Relative quantum yield for the production of O-atom and S-atom from the photodissociation of OCS in the vacuum UV

    NASA Technical Reports Server (NTRS)

    Klemm, R. B.; Glicker, S.; Stief, L. J.

    1975-01-01

    The relative efficiencies for two dissociative channels in the vacuum UV photolysis of carbonyl sulphide have been determined using the flash photolysis-resonance fluorescence technique to measure initial yields of atomic oxygen and atomic sulphur. At wavelengths above 105 nm, the dissociation of OCS to form atomic sulphur exceeded that for the formation of atomic oxygen to such an extent that only an upper limit could be placed on the minor process. In addition, the flash photo-excitation of carbonyl sulphide produced a long-lived spontaneous emission in the UV and vacuum UV that might be due to molecular fluorescence from OCS.

  6. Approaches to Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele

    2009-03-01

    Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and

  7. Expression of a higher plant psbA gene in Synechocystis 6803 yields a functional hybrid photosystem II reaction center complex.

    PubMed Central

    Nixon, P J; Rögner, M; Diner, B A

    1991-01-01

    The psbA gene codes for the D1 polypeptide of the photosystem II reaction center complex and is found in all photosynthetic organisms that carry out oxygenic photosynthesis. Here we describe the construction and characterization of a strain of the cyanobacterium Synechocystis sp PCC 6803 in which the three endogenous psbA genes are replaced by a single psbA gene from the chloroplast genome of the higher plant Poa annua. The resulting chimeric strain, KWPAS, grows photoautotrophically with a doubling time of 26 hours compared with 20 hours for wild-type Synechocystis 6803. The mutant oxidizes water to oxygen at light-saturated rates comparable with wild type, despite differences in 15% of the primary structure of D1 between these species. RNA gel blot analysis indicates the presence in KWPAS of a psbA transcript of approximately 1.25 kilobases, consistent with the chloroplast promoter also acting as a promoter in Synechocystis. By using antibodies specific for the carboxyl-terminal extension of the D1 polypeptide of higher plants, we showed that the D1 polypeptide synthesized by KWPAS is post-translationally modified at the carboxyl terminus, probably through processing. A detailed biophysical analysis of the chimeric photosystem II complex indicated that the rates of forward electron transfer are similar to wild type. The rates of charge recombination between the donor and acceptor sides of the reaction center are, however, accelerated by as much as a factor of nine (QA- to S2) and are the most likely explanation for the lower rate of photoautotrophic growth in the mutant. We conclude that the psbA gene from a higher plant can be expressed in cyanobacteria and its product processed and assembled into a functional chimeric photosystem II reaction center. PMID:1840918

  8. Time-dependent quantum wave packet study of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction on a new ab initio potential energy surface for the ground electronic state (1{sup 2}A Prime )

    SciTech Connect

    Hu Mei; Liu Xinguo; Tan Ruishan; Li Hongzheng; Xu Wenwu

    2013-05-07

    A new global potential energy surface for the ground electronic state (1{sup 2}A Prime ) of the Ar+H{sub 2}{sup +}{yields}ArH{sup +}+H reaction has been constructed by multi-reference configuration interaction method with Davidson correction and a basis set of aug-cc-pVQZ. Using 6080 ab initio single-point energies of all the regions for the dynamics, a many-body expansion function form has been used to fit these points. The quantum reactive scattering dynamics calculations taking into account the Coriolis coupling (CC) were carried out on the new potential energy surface over a range of collision energies (0.03-1.0 eV). The reaction probabilities and integral cross sections for the title reaction were calculated. The significance of including the CC quantum scattering calculation has been revealed by the comparison between the CC and the centrifugal sudden approximation calculation. The calculated cross section is in agreement with the experimental result at collision energy 1.0 eV.

  9. "Ligands-with-Benefits": Naphthalene-Substituted Schiff Bases Yielding New Ni(II) Metal Clusters with Ferromagnetic and Emissive Properties and Undergoing Exciting Transformations.

    PubMed

    Perlepe, Panagiota S; Cunha-Silva, Luís; Gagnon, Kevin J; Teat, Simon J; Lampropoulos, Christos; Escuer, Albert; Stamatatos, Theocharis C

    2016-02-01

    The initial employment of the fluorescent bridging ligand N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2) in metal cluster chemistry has led to new Ni12 (1) and Ni5 (2) clusters with wheel-like and molecular-chain topologies, respectively. The doubly-deprotonated nacb(2-) ligands were found to adopt four different coordination modes within 1 and 2. The nature of the ligand has also allowed unexpected organic transformations to occur and ferromagnetic and emission behaviors to emerge. The combined work demonstrates the ability of some "ligands-with-benefits" to yield beautiful structures with exciting topologies and interesting physicochemical properties. PMID:26788587

  10. The effects of side-chain-induced disorder on the emission spectra and quantum yields of oligothiophene nano-aggregates. A combined experimental and MD-TDDFT study

    DOE PAGESBeta

    Hong, Jiyun; Jeon, SuKyung; Kim, Janice J.; Devi, Diane; Chacon-Madrid, Kelly; Lee, Wynee; Koo, Seung Moh; Wildeman, Jurjen; Sfeir, Matthew Y.; Peteanu, Linda A.; et al

    2014-07-24

    Oligomeric thiophenes are commonly-used components in organic electronics and solar cells. These molecules stack and/or aggregate readily under the processing conditions used to form thin films for these applications, significantly altering their optical and charge-transport properties. To determine how these effects depend on the substitution pattern of the thiophene main chains, nano-aggregates of three sexi-thiophene (6T) oligomers having different alkyl substitution patterns were formed using solvent poisoning techniques and studied using steady-state and time-resolved emission spectroscopy. The results indicate the substantial role played by the side-chain substituents in determining the emissive properties of these species. Both the measured spectral changesmore » and their dependence on substitution are well modeled by combined quantum chemistry and molecular dynamics simulations. The simulations connect the side-chain-induced disorder, which determines the favorable chain packing configurations within the aggregates, with their measured electronic spectra.« less

  11. Study of {Lambda}-{Lambda} oscillation in quantum coherent {Lambda}{Lambda} by using J/{psi}{yields}{Lambda}{Lambda} decay

    SciTech Connect

    Kang Xianwei; Li Haibo; Lu Gongru

    2010-03-01

    We discuss the possibility of searching for the {Lambda}-{Lambda} oscillations for coherent {Lambda}{Lambda} production in the J/{psi}{yields}{Lambda}{Lambda} decay process. The sensitivity of measurement of {Lambda}-{Lambda} oscillation in the external field at BES-III experiment is considered. These considerations indicate an alternative way to probe the {Delta}B=2 amplitude in addition to neutron oscillation experiments. Both coherent and time-dependent information can be used to extract the {Lambda}-{Lambda} oscillation parameter. With one year's luminosity at BES-III, we can set an upper limit of {delta}m{sub {Lambda}{Lambda}<}10{sup -15} MeV at 90% confidence level, corresponding to about 10{sup -6} s of {Lambda}-{Lambda} oscillation time.

  12. Quantum-chemical calculations of the metallofullerene yields in the X@C{sub 74}, L@C{sub 74}, and Z@C{sub 82} series

    SciTech Connect

    Uhlík, Filip; Slanina, Zdeněk; Nagase, Shigeru

    2015-01-22

    The contribution reports computations for Al@C{sub 82}, Sc@C{sub 82}, Y@C{sub 82} and La@C{sub 82} based on encapsulation into the IPR (isolated pentagon rule) C{sub 2ν} C{sub 82} cage and also on Mg@C{sub 74}, Ca@C{sub 74}, Sr@C{sub 74} and Ba@C{sub 74} based on encapsulation into the only C{sub 74} IPR cage as well as for three selected lanthanoids La@C{sub 74}, Yb@C{sub 74}, and Lu@C{sub 74}. Their structural and energetic characteristics are used for evaluations of the relative production yields, using the encapsulation Gibbs-energy and saturated metal pressures. It is shown that the results can be well related to the ionization potentials of the free metal atoms.

  13. Quantum-chemical calculations of the metallofullerene yields in the X @ C74, L @ C74, and Z @ C82 series

    NASA Astrophysics Data System (ADS)

    Uhlík, Filip; Slanina, Zdeněk; Nagase, Shigeru

    2015-01-01

    The contribution reports computations for Al @ C82, Sc @ C82, Y @ C82 and La @ C82 based on encapsulation into the IPR (isolated pentagon rule) C2ν C82 cage and also on Mg @ C74, Ca @ C74, Sr @ C74 and Ba @ C74 based on encapsulation into the only C74 IPR cage as well as for three selected lanthanoids La @ C74, Yb @ C74, and Lu @ C74. Their structural and energetic characteristics are used for evaluations of the relative production yields, using the encapsulation Gibbs-energy and saturated metal pressures. It is shown that the results can be well related to the ionization potentials of the free metal atoms.

  14. Quantum chemical calculations and experimental investigations on 2-aminobenzoic acid-cyclodiphosph(V)azane derivative and its homo-binuclear Cu(II) complex

    NASA Astrophysics Data System (ADS)

    El-Gogary, Tarek M.; Alaghaz, Abdel-Nasser M. A.; Ammar, Reda A. A.

    2012-03-01

    A novel 2-aminobenzoic acid-cyclodiphosph(V)azane ligand H4L and its homo-binuclear Cu(II) complex of the type [Cu2L(H2O)2].2.5 H2O in which L is 1,3-di(-o-pyridyl)-2,4-(dioxo)-2',4'-bis-(2-iminobenzoic acid) cyclodiphosph(V)azane, were synthesized and characterized by different physical techniques. Infrared spectra of the complex indicate deprotonation and coordination of the imine NH and carboxyl COOH groups. It also confirms that nitrogen atom of the pyridine ring contribute to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square-planar geometry for the Cu(II) complex. The elemental analyses and thermogravimetric results have justified the [Cu2L(H2O)2]·2.5H2O composition of the complex. Quantum chemical calculations were utilized to explore the electronic structure and stability of the H4L as well as the binuclear Cu(II) complex. Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of H4L and its binuclear Cu(II) complex. Different tautomers and geometrical isomers of the ligand were optimized at the ab initio DFT level. Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which show good agreement with measured electronic spectra.

  15. Comment II on 'Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers'

    SciTech Connect

    Du Jianzhong; Qin Sujuan; Wen Qiaoyan; Zhu Fuchen

    2006-07-15

    In a recent paper [S. Bagherinezhad and V. Karimipour, Phys. Rev. A 67, 044302 (2003)], a quantum secret sharing protocol based on reusable GHZ states was proposed. However, in this comment, it is shown that this protocol is insecure because a cheater can gain all the secret bits before sharing, while introducing one data bit error at most in the whole communication, which makes the cheater avoid the detection by the communication parities.

  16. Determination of a quantum efficiency of A^II B^VI compounds on the basis of photoacoustic spectra

    NASA Astrophysics Data System (ADS)

    Maliński, M.; Bychto, L.; Zakrzewski, J.

    2005-10-01

    The method of determination of the quantum efficiency η of irradiative relaxation processes in semiconductors is introduced and discussed. The correlation of the amplitude photoacoustic spectra in the high absorption region with the annealing process is used to estimate the values of η. The values of η, both for as grown and annealed crystals were determined and have been discussed. The results are presented for microphone and piezoelectric detection methods.

  17. Velocity autocorrelation by quantum simulations for direct parameter-free computations of the neutron cross sections. II. Liquid deuterium

    NASA Astrophysics Data System (ADS)

    Guarini, E.; Neumann, M.; Bafile, U.; Celli, M.; Colognesi, D.; Bellissima, S.; Farhi, E.; Calzavara, Y.

    2016-06-01

    Very recently we showed that quantum centroid molecular dynamics (CMD) simulations of the velocity autocorrelation function provide, through the Gaussian approximation (GA), an appropriate representation of the single-molecule dynamic structure factor of liquid H2, as witnessed by a straightforward absolute-scale agreement between calculated and experimental values of the total neutron cross section (TCS) at thermal and epithermal incident energies. Also, a proper quantum evaluation of the self-dynamics was found to guarantee, via the simple Sköld model, a suitable account of the distinct (intermolecular) contributions that influence the neutron TCS of para-H2 for low-energy neutrons (below 10 meV). The very different role of coherent nuclear scattering in D2 makes the neutron response from this liquid much more extensively determined by the collective dynamics, even above the cold neutron range. Here we show that the Sköld approximation maintains its effectiveness in producing the correct cross section values also in the deuterium case. This confirms that the true key point for reliable computational estimates of the neutron TCS of the hydrogen liquids is, together with a good knowledge of the static structure factor, the modeling of the self part, which must take into due account quantum delocalization effects on the translational single-molecule dynamics. We demonstrate that both CMD and ring polymer molecular dynamics (RPMD) simulations provide similar results for the velocity autocorrelation function of liquid D2 and, consequently, for the neutron double differential cross section and its integrals. This second investigation completes and reinforces the validity of the proposed quantum method for the prediction of the scattering law of these cryogenic liquids, so important for cold neutron production and related condensed matter research.

  18. Dynamical magnetic and nuclear polarization in complex spin systems: semi-magnetic II-VI quantum dots

    NASA Astrophysics Data System (ADS)

    Abolfath, Ramin M.; Trojnar, Anna; Roostaei, Bahman; Brabec, Thomas; Hawrylak, Pawel

    2013-06-01

    Dynamical magnetic and nuclear polarization in complex spin systems is discussed on the example of transfer of spin from exciton to the central spin of magnetic impurity in a quantum dot in the presence of a finite number of nuclear spins. The exciton is described in terms of electron and heavy-hole spins interacting via exchange interaction with magnetic impurity, via hyperfine interaction with a finite number of nuclear spins and via dipole interaction with photons. The time evolution of the exciton, magnetic impurity and nuclear spins is calculated exactly between quantum jumps corresponding to exciton radiative recombination. The collapse of the wavefunction and the refilling of the quantum dot with a new spin-polarized exciton is shown to lead to the build up of magnetization of the magnetic impurity as well as nuclear spin polarization. The competition between electron spin transfer to magnetic impurity and to nuclear spins simultaneous with the creation of dark excitons is elucidated. The technique presented here opens up the possibility of studying optically induced dynamical magnetic and nuclear polarization in complex spin systems.

  19. Determination of the D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -} coherence factors and average strong-phase differences using quantum-correlated measurements

    SciTech Connect

    Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Mitchell, R. E.; Shepherd, M. R.; Besson, D.; Pedlar, T. K.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Kubota, Y.; Klein, T.; Poling, R.; Scott, A. W.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.

    2009-08-01

    The first measurements of the coherence factors (R{sub K{pi}}{sub {pi}{sup 0}} and R{sub K3{pi}}) and the average strong-phase differences ({delta}{sub D}{sup K{pi}}{sup {pi}{sup 0}} and {delta}{sub D}{sup K3{pi}}) for D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0} and D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -} are presented. These parameters can be used to improve the determination of the unitarity triangle angle {gamma} in B{sup -}{yields}DK{sup -} decays, where D is a D{sup 0} or D{sup 0} meson decaying to the same final state. The measurements are made using quantum-correlated, fully reconstructed D{sup 0}D{sup 0} pairs produced in e{sup +}e{sup -} collisions at the {psi}(3770) resonance. The measured values are: R{sub K{pi}}{sub {pi}{sup 0}}=0.84{+-}0.07, {delta}{sub D}{sup K{pi}}{sup {pi}{sup 0}}=(227{sub -17}{sup +14}) deg., R{sub K3{pi}}=0.33{sub -0.23}{sup +0.20}, and {delta}{sub D}{sup K3{pi}}=(114{sub -23}{sup +26}) deg. These results indicate significant coherence in the decay D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup 0}, whereas lower coherence is observed in the decay D{sup 0}{yields}K{sup -}{pi}{sup +}{pi}{sup +}{pi}{sup -}. The analysis also results in a small improvement in the knowledge of other D-meson parameters, in particular, the strong-phase difference for D{sup 0}{yields}K{sup -}{pi}{sup +}, {delta}{sub D}{sup K{pi}}, and the mixing parameter y.

  20. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.

    PubMed

    Wang, Ruijun; Sprengel, Stephan; Boehm, Gerhard; Muneeb, Muhammad; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2016-09-01

    Heterogeneously integrated InP-based type-II quantum well Fabry-Perot lasers on a silicon waveguide circuit emitting in the 2.3 µm wavelength range are demonstrated. The devices consist of a "W"-shaped InGaAs/GaAsSb multi-quantum-well gain section, III-V/silicon spot size converters and two silicon Bragg grating reflectors to form the laser cavity. In continuous-wave (CW) operation, we obtain a threshold current density of 2.7 kA/cm2 and output power of 1.3 mW at 5 °C for 2.35 μm lasers. The lasers emit over 3.7 mW of peak power with a threshold current density of 1.6 kA/cm2 in pulsed regime at room temperature. This demonstration of heterogeneously integrated lasers indicates that the material system and heterogeneous integration method are promising to realize fully integrated III-V/silicon photonics spectroscopic sensors in the 2 µm wavelength range. PMID:27607711

  1. GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates

    SciTech Connect

    KLEM,JOHN F.; SPAHN,OLGA B.; KURTZ,STEVEN R.; FRITZ,IAN J.; CHOQUETTE,KENT D.

    2000-03-15

    The authors have investigated the properties of GaAsSb/InGaAs type-II bilayer quantum well structures grown by molecule beam epitaxy for use in long-wavelength lasers on GaAs substrates. Structures with layer, strains and thicknesses designed to be thermodynamically stable against dislocation formation exhibit room-temperature photoluminescence at wavelengths as long as 1.43 {mu}m. The photoluminescence emission wavelength is significantly affected by growth temperature and the sequence of layer growth (InGaAs/GaAsSb vs GaAsSb/InGaAs), suggesting that Sb and/or In segregation results in non-ideal interfaces under certain growth conditions. At low injection currents, double heterostructure lasers with GaAsSb/InGaAs bilayer quantum well active regions display electroluminescence at wavelengths comparable to those obtained in photoluminescence, but at higher currents the electroluminescence shifts to shorter wavelengths. Lasers have been obtained with threshold current densities as low as 120 A/cm{sup 2} at 1.17 {mu}m, and 2.1 kA/cm{sup 2} at 1.21 {mu}m.

  2. Quantum Dots

    NASA Astrophysics Data System (ADS)

    Tartakovskii, Alexander

    2012-07-01

    Part I. Nanostructure Design and Structural Properties of Epitaxially Grown Quantum Dots and Nanowires: 1. Growth of III/V semiconductor quantum dots C. Schneider, S. Hofling and A. Forchel; 2. Single semiconductor quantum dots in nanowires: growth, optics, and devices M. E. Reimer, N. Akopian, M. Barkelid, G. Bulgarini, R. Heeres, M. Hocevar, B. J. Witek, E. Bakkers and V. Zwiller; 3. Atomic scale analysis of self-assembled quantum dots by cross-sectional scanning tunneling microscopy and atom probe tomography J. G. Keizer and P. M. Koenraad; Part II. Manipulation of Individual Quantum States in Quantum Dots Using Optical Techniques: 4. Studies of the hole spin in self-assembled quantum dots using optical techniques B. D. Gerardot and R. J. Warburton; 5. Resonance fluorescence from a single quantum dot A. N. Vamivakas, C. Matthiesen, Y. Zhao, C.-Y. Lu and M. Atature; 6. Coherent control of quantum dot excitons using ultra-fast optical techniques A. J. Ramsay and A. M. Fox; 7. Optical probing of holes in quantum dot molecules: structure, symmetry, and spin M. F. Doty and J. I. Climente; Part III. Optical Properties of Quantum Dots in Photonic Cavities and Plasmon-Coupled Dots: 8. Deterministic light-matter coupling using single quantum dots P. Senellart; 9. Quantum dots in photonic crystal cavities A. Faraon, D. Englund, I. Fushman, A. Majumdar and J. Vukovic; 10. Photon statistics in quantum dot micropillar emission M. Asmann and M. Bayer; 11. Nanoplasmonics with colloidal quantum dots V. Temnov and U. Woggon; Part IV. Quantum Dot Nano-Laboratory: Magnetic Ions and Nuclear Spins in a Dot: 12. Dynamics and optical control of an individual Mn spin in a quantum dot L. Besombes, C. Le Gall, H. Boukari and H. Mariette; 13. Optical spectroscopy of InAs/GaAs quantum dots doped with a single Mn atom O. Krebs and A. Lemaitre; 14. Nuclear spin effects in quantum dot optics B. Urbaszek, B. Eble, T. Amand and X. Marie; Part V. Electron Transport in Quantum Dots Fabricated by

  3. Counterflow quantum turbulence of He-II in a square channel: Numerical analysis with nonuniform flows of the normal fluid

    NASA Astrophysics Data System (ADS)

    Yui, Satoshi; Tsubota, Makoto

    2015-05-01

    We perform a numerical analysis of counterflow quantum turbulence of superfluid 4He with nonuniform flows by using the vortex filament model. In recent visualization experiments nonuniform laminar flows of the normal fluid, namely, Hagen-Poiseuille flow and tail-flattened flow, have been observed. Tail-flattened flow is a laminar flow in which the outer part of the Hagen-Poiseuille flow becomes flat. In our simulation, the velocity field of the normal fluid is prescribed to be two nonuniform profiles. This work addresses a square channel to obtain important physics not revealed in the preceding numerical works. In the studies of the two profiles we analyze the statistics of the physical quantities. Under Hagen-Poiseuille flow, inhomogeneous quantum turbulence appears as a statistically steady state. The vortex tangle shows a characteristic space-time oscillation. Under tail-flattened flow, the nature of the quantum turbulence depends strongly on that flatness. Vortex line density increases significantly as the profile becomes flatter, being saturated above a certain flatness. The inhomogeneity is significantly reduced in comparison to the case of Hagen-Poiseuille flow. Investigating the behavior of quantized vortices reveals that tail-flattened flow is an intermediate state between Hagen-Poiseuille flow and uniform flow. In both profiles we obtain a characteristic inhomogeneity in the physical quantities, which suggests that a boundary layer of superfluid appears near a solid boundary. The vortex tangle produces a velocity field opposite to the applied superfluid flow, and, consequently, the superfluid flow becomes smaller than the applied one.

  4. Reply to 'Comment II on 'Quantum secret sharing based on reusable Greenberger-Horne-Zeilinger states as secure carriers''

    SciTech Connect

    Karimipour, V.

    2006-07-15

    In the preceding Comment [Jian-Zhong Du, Su-Juan Qin, Qiao-Yan Wen, and Fu-Chen Zhu, Phys. Rev. A 74, 016301 (2006)], it has been shown that in a quantum secret sharing protocol proposed in [S. Bagherinezhad and V. Karimipour, Phys. Rev. A 67, 044302 (2003)], one of the receivers can cheat by splitting the entanglement of the carrier and intercepting the secret, without being detected. In this reply we show that a simple modification of the protocol prevents the receivers from this kind of cheating.

  5. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000. Part II. Engineering, technology development and application aspects

    NASA Astrophysics Data System (ADS)

    Costamagna, Paola; Srinivasan, Supramaniam

    The technology of proton exchange membrane fuel cells (PEMFCs) has now reached the test-phase, and engineering development and optimization are vital in order to achieve to the next step of the evolution, i.e. the realization of commercial units. This paper highlights the most important technological progresses in the areas of (i) water and thermal management, (ii) scale-up from single cells to cell stacks, (iii) bipolar plates and flow fields, and (iv) fuel processing. Modeling is another aspect of the technological development, since modeling studies have significantly contributed to the understanding of the physico-chemical phenomena occurring in a fuel cell, and also have provided a valuable tool for the optimization of structure, geometry and operating conditions of fuel cells and stacks. The 'quantum jumps' in this field are reviewed, starting from the studies at the electrode level up to the stack and system size, with particular emphasis on (i) the 'cluster-network' model of perfluorosulfonic membranes, and the percolative dependence of the membrane proton conductivity on its water content, (ii) the models of charge and mass transport coupled to electrochemical reaction in the electrodes, and (iii) the models of water transport trough the membrane, which have been usefully applied for the optimization of water management of PEMFCs. The evolution of PEMFC applications is discussed as well, starting from the NASA's Gemini Space Flights to the latest developments of fuel cell vehicles, including the evolutions in the areas of portable power sources and residential and building applications.

  6. Electron states in semiconductor quantum dots

    SciTech Connect

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  7. Electric control of inverted gap and hybridization gap in type-II InAs/GaSb quantum wells

    NASA Astrophysics Data System (ADS)

    Hu, Lun-Hui; Liu, Chao-Xing; Xu, Dong-Hui; Zhang, Fu-Chun; Zhou, Yi

    2016-07-01

    The quantum spin Hall effect has been predicted theoretically and observed experimentally in InAs/GaSb quantum wells as a result of inverted band structures, for which electron bands in InAs layers are below heavy-hole bands in GaSb layers in energy. The hybridization between electron bands and heavy-hole bands leads to a hybridization gap away from k =0 . A recent puzzling observation in experiments is that when the system is tuned to more inverted regime by a gate voltage (a larger inverted gap at k =0 ), the hybridization gap decreases. Motivated by this experiment, we explore the dependence of the hybridization gap as a function of external electric fields based on the eight-band Kane model. We identify two regimes when varying the electric fields: (1) Both inverted and hybridization gaps increase and (2) the inverted gap increases while the hybridization gap decreases. Based on the effective model, we find that light-hole bands in GaSb layers play an important role in determining the hybridization gap. In addition, a large external electric field can induce a strong Rashba splitting and also influence the hybridization gap.

  8. Excited-state quantum phase transitions in systems with two degrees of freedom: II. Finite-size effects

    SciTech Connect

    Stránský, Pavel; Macek, Michal; Leviatan, Amiram; Cejnar, Pavel

    2015-05-15

    This article extends our previous analysis Stránský et al. (2014) of Excited-State Quantum Phase Transitions (ESQPTs) in systems of dimension two. We focus on the oscillatory component of the quantum state density in connection with ESQPT structures accompanying a first-order ground-state transition. It is shown that a separable (integrable) system can develop rather strong finite-size precursors of ESQPT expressed as singularities in the oscillatory component of the state density. The singularities originate in effectively 1-dimensional dynamics and in some cases appear in multiple replicas with increasing excitation energy. Using a specific model example, we demonstrate that these precursors are rather resistant to proliferation of chaotic dynamics. - Highlights: • Oscillatory components of state density and spectral flow studied near ESQPTs. • Enhanced finite-size precursors of ESQPT caused by fully/partly separable dynamics. • These precursors appear due to criticality of a subsystem with lower dimension. • Separability-induced finite-size effects disappear in case of fully chaotic dynamics.

  9. Effect of annealing in the Sb and In distribution of type II GaAsSb-capped InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Reyes, D. F.; Ulloa, J. M.; Guzman, A.; Hierro, A.; Sales, D. L.; Beanland, R.; Sanchez, A. M.; González, D.

    2015-11-01

    Type II emission optoelectronic devices using GaAsSb strain reduction layers (SRL) over InAs quantum dots (QDs) have aroused great interest. Recent studies have demonstrated an extraordinary increase in photoluminescence (PL) intensity maintaining type II emission after a rapid thermal anneal (RTA), but with an undesirable blueshift. In this work, we have characterized the effect of RTA on InAs/GaAs QDs embedded in a SRL of GaAsSb by transmission electron microscopy (TEM) and finite element simulations. We find that annealing alters both the distribution of Sb in the SRL as well as the exchange of cations (In and Ga) between the QDs and the SRL. First, annealing causes modifications in the capping layer, reducing its thickness but maintaining the maximum Sb content and improving its homogeneity. In addition, the formation of Sb-rich clusters with loop dislocations is noticed, which seems not to be an impediment for an increased PL intensity. Second, RTA produces flatter QDs with larger base diameter and induces a more homogeneous QD height distribution. The Sb is accumulated over the QDs and the RTA enlarges the Sb-rich region, but the Sb contents are very similar. This fact leaves the type II alignment without major changes. Atomic-scale strain analysis of the nanostructures reveal a strong intermixing of In/Ga between the QDs and the capping layer, which is the main responsible mechanism of the PL blueshift. The improvement of the crystalline quality of the capping layer together with higher homogeneity QD sizes could be the origin of the enhancement of the PL emission.

  10. MODELING THE QUANTUM INTERFERENCE SIGNATURES OF THE Ba II D{sub 2} 4554 A LINE IN THE SECOND SOLAR SPECTRUM

    SciTech Connect

    Smitha, H. N.; Nagendra, K. N.; Sampoorna, M.; Stenflo, J. O. E-mail: knn@iiap.res.in E-mail: stenflo@astro.phys.ethz.ch

    2013-05-10

    Quantum interference effects play a vital role in shaping the linear polarization profiles of solar spectral lines. The Ba II D{sub 2} line at 4554 A is a prominent example, where the F-state interference effects due to the odd isotopes produce polarization profiles, which are very different from those of the even isotopes that have no F-state interference. It is therefore necessary to account for the contributions from the different isotopes to understand the observed linear polarization profiles of this line. Here we do radiative transfer modeling with partial frequency redistribution (PRD) of such observations while accounting for the interference effects and isotope composition. The Ba II D{sub 2} polarization profile is found to be strongly governed by the PRD mechanism. We show how a full PRD treatment succeeds in reproducing the observations, while complete frequency redistribution alone fails to produce polarization profiles that have any resemblance to the observed ones. However, we also find that the line center polarization is sensitive to the temperature structure of the model atmosphere. To obtain a good fit to the line center peak of the observed Stokes Q/I profile, a small modification of the FALX model atmosphere is needed, by lowering the temperature in the line-forming layers. Because of the pronounced temperature sensitivity of the Ba II D{sub 2} line it may not be a suitable tool for Hanle magnetic-field diagnostics of the solar chromosphere, because there is currently no straightforward way to separate the temperature and magnetic-field effects from each other.

  11. Spectroscopic and quantum chemical study of the structure of a new paramagnetic dimeric palladium(II,III) complex with creatine

    NASA Astrophysics Data System (ADS)

    Mitewa, Mariana; Enchev, Venelin; Bakalova, Tatyana

    2002-05-01

    The structure and coordination mode of the newly synthesized dimeric paramagnetic Pd(II,III) complex are studied using magneto-chemical, EPR and IR spectroscopic methods. In order to perform reliable assignment of the IR bands, the structure and IR spectrum of the free creatine were calculated using ab initio method. For calculation of the configuration of its deprotonated and doubly deprotonated forms the semiempirical AM1 method was used.

  12. An Acoustic Charge Transport Imager for High Definition Television Applications: Reliability Modeling and Parametric Yield Prediction of GaAs Multiple Quantum Well Avalanche Photodiodes. Degree awarded Oct. 1997

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu

    1994-01-01

    Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.

  13. Verteporfin, photofrin II, and merocyanine 540 as PDT photosensitizers against melanoma cells

    SciTech Connect

    Nowak-Sliwinska, Patrycja; Karocki, Andrzej; Elas, Martyna; Pawlak, Anna; Stochel, Grazyna . E-mail: stochel@chemia.uj.edu.pl; Urbanska, Krystyna . E-mail: urbanska@awe.uj.edu.pl

    2006-10-20

    The efficiency of photodynamic effect (PDE) for Photofrin II (PfII), Verteporfin, and Merocyanine 540 (MC540) was compared against neoplastic cells. Triplet state lifetimes and singlet molecular oxygen quantum yields were correlated with biological effect. PfII triplet lifetime was two times longer than that of Verteporfin, however, its singlet molecular oxygen quantum yield was two times lower in comparison with Verteporfin. High singlet molecular oxygen quantum yield of Verteporfin resulted in high biological efficacy. To achieve 50% mortality of cells four times lower light dose and five times lower concentration of Verteporfin were applied in comparison with PfII. The same level of cell damage was reached using 10 times higher light dose and two times higher concentration of MC540 in comparison with PfII. Our results confirm that singlet molecular oxygen based mechanism, prevalent for Verteporfin and PfII, was highly effective against melanoma cells. Verteporfin can be used at small doses with high cellular damage efficiency.

  14. Quantum Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2007-09-01

    Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.

  15. Quantum Cryptography II: How to re-use a one-time pad safely even if P=NP.

    PubMed

    Bennett, Charles H; Brassard, Gilles; Breidbart, Seth

    2014-01-01

    When elementary quantum systems, such as polarized photons, are used to transmit digital information, the uncertainty principle gives rise to novel cryptographic phenomena unachievable with traditional transmission media, e.g. a communications channel on which it is impossible in principle to eavesdrop without a high probability of being detected. With such a channel, a one-time pad can safely be reused many times as long as no eavesdrop is detected, and, planning ahead, part of the capacity of these uncompromised transmissions can be used to send fresh random bits with which to replace the one-time pad when an eavesdrop finally is detected. Unlike other schemes for stretching a one-time pad, this scheme does not depend on complexity-theoretic assumptions such as the difficulty of factoring. PMID:25400534

  16. Modeling Spitzer Observations of VV Ser. II. An Extended Quantum-heated Nebula and a Disk Shadow

    NASA Astrophysics Data System (ADS)

    Pontoppidan, Klaus M.; Dullemond, Cornelis P.; Blake, Geoffrey A.; Evans, Neal J., II; Geers, Vincent C.; Harvey, Paul M.; Spiesman, William

    2007-02-01

    We present mid-infrared Spitzer IRAC and MIPS images of the UX Orionis star VV Ser and the surrounding cloud. The 5.6-70 μm images show bright, localized, and nebulous emission extended over 4' centered on VV Ser. This nebulosity is due to transiently heated grains excited by UV photons emitted by VV Ser. Imprinted on the nebulosity is a wedge-shaped dark band, centered on the star. We interpret this as the shadow cast by the inner regions of a near-edge-on disk, allowing the PAHs to be excited only outside of this shadow. We extend an axisymmetric radiative transfer model of the VV Ser disk described in a companion paper to include quantum-heated PAH molecules and very small grains (VSGs) in the thermal cooling approximation. The presence of a disk shadow strongly constrains the inclination as well as the position angle of the disk. The nebulosity at 5.6-8.0 μm and the 2175 Å absorption feature seen in an archival spectrum from the IUE can be fit using only PAHs, consistent with the main carrier of the 2175 Å feature being due to the graphite-like structure of the PAHs. The PAH component is found to be relatively smoothly distributed in the cloud, while the population of VSGs emitting at 20-70 μm is strongly concentrated ~50'' to the southeast of VV Ser. Depending on the adopted PAH opacity, the abundance of PAHs in the surrounding cloud is constrained to 5%+/-2% of the total dust mass. Although relatively rare, quantum-heated nebulosities surrounding single, well-defined stars are well-suited for gaining unique insights into the physics of very small particles in molecular clouds.

  17. Quantum phase slip noise

    NASA Astrophysics Data System (ADS)

    Semenov, Andrew G.; Zaikin, Andrei D.

    2016-07-01

    Quantum phase slips (QPSs) generate voltage fluctuations in superconducting nanowires. Employing the Keldysh technique and making use of the phase-charge duality arguments, we develop a theory of QPS-induced voltage noise in such nanowires. We demonstrate that quantum tunneling of the magnetic flux quanta across the wire yields quantum shot noise which obeys Poisson statistics and is characterized by a power-law dependence of its spectrum SΩ on the external bias. In long wires, SΩ decreases with increasing frequency Ω and vanishes beyond a threshold value of Ω at T →0 . The quantum coherent nature of QPS noise yields nonmonotonous dependence of SΩ on T at small Ω .

  18. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    2006-11-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  19. Quantum Chaos

    NASA Astrophysics Data System (ADS)

    Casati, Giulio; Chirikov, Boris

    1995-04-01

    Preface; Acknowledgments; Introduction: 1. The legacy of chaos in quantum mechanics G. Casati and B. V. Chirikov; Part I. Classical Chaos and Quantum Localization: 2. Stochastic behaviour of a quantum pendulum under a periodic perturbation G. Casati, B. V. Chirikov, F. M. Izrailev and J. Ford; 3. Quantum dynamics of a nonintegrable system D. R. Grempel, R. E. Prange and S. E. Fishman; 4. Excitation of molecular rotation by periodic microwave pulses. A testing ground for Anderson localization R. Blümel, S. Fishman and U. Smilansky; 5. Localization of diffusive excitation in multi-level systems D. K. Shepelyansky; 6. Classical and quantum chaos for a kicked top F. Haake, M. Kus and R. Scharf; 7. Self-similarity in quantum dynamics L. E. Reichl and L. Haoming; 8. Time irreversibility of classically chaotic quantum dynamics K. Ikeda; 9. Effect of noise on time-dependent quantum chaos E. Ott, T. M. Antonsen Jr and J. D. Hanson; 10. Dynamical localization, dissipation and noise R. F. Graham; 11. Maximum entropy models and quantum transmission in disordered systems J.-L. Pichard and M. Sanquer; 12. Solid state 'atoms' in intense oscillating fields M. S. Sherwin; Part II. Atoms in Strong Fields: 13. Localization of classically chaotic diffusion for hydrogen atoms in microwave fields J. E. Bayfield, G. Casati, I. Guarneri and D. W. Sokol; 14. Inhibition of quantum transport due to 'scars' of unstable periodic orbits R. V. Jensen, M. M. Sanders, M. Saraceno and B. Sundaram; 15. Rubidium Rydberg atoms in strong fields G. Benson, G. Raithel and H. Walther; 16. Diamagnetic Rydberg atom: confrontation of calculated and observed spectra C.-H. Iu, G. R. Welch, M. M. Kash, D. Kleppner, D. Delande and J. C. Gay; 17. Semiclassical approximation for the quantum states of a hydrogen atom in a magnetic field near the ionization limit M. Y. Kuchiev and O. P. Sushkov; 18. The semiclassical helium atom D. Wintgen, K. Richter and G. Tanner; 19. Stretched helium: a model for quantum chaos

  20. Electronic spectroscopy of the BTilde ( 0 , 0 , 0 ) ← XTilde ( 0 , 0 , 0 ) transition of DCO and lifetimes and relative quantum yields of the BTilde ( 0 , 0 , 0 ) state

    NASA Astrophysics Data System (ADS)

    Rowling, Steven J.; Reid, Scott A.; Nauta, Klaas; Kable, Scott H.

    2011-11-01

    We have measured the laser induced fluorescence excitation spectrum of the origin of the DCO B˜(2A')←X˜(2A') transition under a variety of experimental conditions, ranging from cooled to 7 K in a supersonic jet, to nascent in the photolysis of D 2CO. By analysing successively more complex spectra we have derived rotational, centrifugal distortion, and spin-rotation coupling constants that provided the best fit to the experimental frequencies. Fluorescence lifetimes were measured for 35 rotationally-resolved excited states, which provided relative quantum yields for these states. Unlike HCO, the lifetimes showed only a weak dependence on N and K a, evincing a weaker coupling between the A˜ and B˜ states in DCO than HCO. Intensity ratios for pairs of transitions with the same lower state were used to extract the transition moment angle, θ = 44.6 ± 2.5° and the axis switching angle, ϕ = 3.1 ± 0.5° for the B˜-X˜ transition. Both angles are consistent with the expected change upon deuteration of HCO.

  1. Photocatalytic activity of transition-metal-ion-doped coordination polymer (CP): photoresponse region extension and quantum yields enhancement via doping of transition metal ions into the framework of CPs.

    PubMed

    Xu, Xin-Xin; Cui, Zhong-Ping; Gao, Xin; Liu, Xiao-Xia

    2014-06-21

    To improve photocatalytic activity of a coordination polymer (CP) in the visible light region, five different transition metal ions (Fe(3+), Cr(3+), Ru(3+), Co(2+) and Ni(2+)) were introduced into its framework through an ion-exchange process. Among all the resulting transition metal ion doped coordination polymers (TMI/CPs), the one doped with Fe(3+) took on the most excellent photocatalytic activity and the highest quantum yields in the visible light region, decomposing 94% Rhodamine B (RhB) in 8 hours. It can be attributed to the doping of Fe(3+), which reduced the band gap (Eg) of the original CP, facilitating photocatalysis of the obtained polymer. Compared with the coordination polymer with Fe(3+) as a dopant, products doped with other metal ions presented weaker photocatalytic activities in the visible light region, while under the irradiation of ultraviolet light, they showed favorable photocatalytic properties. The results suggest that to dope transition metal ions into the framework of CPs would be an ideal option for enhancing the photocatalytic activity of coordination polymers. PMID:24781645

  2. Calix receptor edifice; scrupulous turn off fluorescent sensor for Fe(III), Co(II) and Cu(II).

    PubMed

    Bhatt, Keyur D; Gupte, Hrishikesh S; Makwana, Bharat A; Vyas, Disha J; Maity, Debdeep; Jain, Vinod K

    2012-11-01

    Novel Supramolecular fluorescence receptor derived from calix-system i.e. calix[4]resorcinarene bearing dansylchloride as fluorophore was designed and synthesized. The compound was purified by column chromatography and characterized by elemental analysis, NMR and Mass spectroscopy. Tetradansylated calix[4] resorcinarene (TDCR) shows a boat conformation with C(2)v symmetry. The complexation behaviour of metal cations [Ag(I), Cd(II), Co(II), Fe(III), Hg(II), Cu(II), Pb(II), Zn(II), U(VI) (1 × 10(-4) M)] with tetra dansylated calix[4]resorcinarene (1 × 10(-6) M) was studied by spectophotometry and spectrofluorometry. Red shift in the absorption spectra led us to conclude that there is strong complexation Fe(III), Co(II) and Cu(II) with TDCR. These metal cations also produce quenching with red shifts in the emission spectra. The maximum quenching in emission intensity was observed in the case of Fe(III) and its binding constant was also found to be significantly higher than that of Co(II) and Cu(II). Quantum yield of metal complexes of Fe(III) was found to be lower in comparison with Co(II) and Cu(II) complexes. Stern Volmer analysis indicates that the mechanism of fluorescence quenching is either purely dynamic, or purely static. PMID:22739703

  3. Investigations of quantum efficiency in type-II InAs/GaSb very long wavelength infrared superlattice detectors

    NASA Astrophysics Data System (ADS)

    Li, Xiaochao; Jiang, Dongwei; Zhang, Yong; Liu, Gang; Wang, Dongbo; Yu, Qingjiang; Zhao, Liancheng

    2016-04-01

    In this paper, we have investigated the quantum efficiency (QE) of InAs/GaSb T2SL very long wavelength Infrared (VLWIR) photodetectors with 50% cutoff of 12.7 μm. Due to the small depletion width and similar absorption coefficient in the T2SL material system, the minority-carrier diffusion length was determined as the key element to improve the QE of VLWIR T2SL photodetectors. The minority-carrier diffusion length was estimated by a comparison of the experimental data with the Hovel model. Our result suggest that the short hole diffusion length (Lh ∼ 520 nm) and the large its ratio to the width of this region (xn/Lh) are considered against the photo-excited carrier collection in the T2SL photodetectors. In addition, the influence of surface recombination velocity (Sh) on the QE of the T2SL photodetectors is also studied. The change of QE with Sh is not so significant due to the relatively low absorption coefficient and short hole diffusion length in our photodetector.

  4. Quantum field theory for the three-body constrained lattice Bose gas. II. Application to the many-body problem

    SciTech Connect

    Diehl, S.; Daley, A. J.; Zoller, P.; Baranov, M.

    2010-08-01

    We analyze the ground-state phase diagram of attractive lattice bosons, which are stabilized by a three-body onsite hardcore constraint. A salient feature of this model is an Ising-type transition from a conventional atomic superfluid to a dimer superfluid with vanishing atomic condensate. The study builds on an exact mapping of the constrained model to a theory of coupled bosons with polynomial interactions, proposed in a related paper [S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064509 (2010).]. In this framework, we focus by analytical means on aspects of the phase diagram which are intimately connected to interactions, and are thus not accessible in a mean-field plus spin-wave approach. First, we determine shifts in the mean-field phase border, which are most pronounced in the low-density regime. Second, the investigation of the strong coupling limit reveals the existence of a 'continuous supersolid', which emerges as a consequence of enhanced symmetries in this regime. We discuss its experimental signatures. Third, we show that the Ising-type phase transition, driven first order via the competition of long-wavelength modes at generic fillings, terminates into a true Ising quantum critical point in the vicinity of half filling.

  5. Quantum field theory for the three-body constrained lattice Bose gas. II. Application to the many-body problem

    NASA Astrophysics Data System (ADS)

    Diehl, S.; Baranov, M.; Daley, A. J.; Zoller, P.

    2010-08-01

    We analyze the ground-state phase diagram of attractive lattice bosons, which are stabilized by a three-body onsite hardcore constraint. A salient feature of this model is an Ising-type transition from a conventional atomic superfluid to a dimer superfluid with vanishing atomic condensate. The study builds on an exact mapping of the constrained model to a theory of coupled bosons with polynomial interactions, proposed in a related paper [S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064509 (2010).10.1103/PhysRevB.82.064509]. In this framework, we focus by analytical means on aspects of the phase diagram which are intimately connected to interactions, and are thus not accessible in a mean-field plus spin-wave approach. First, we determine shifts in the mean-field phase border, which are most pronounced in the low-density regime. Second, the investigation of the strong coupling limit reveals the existence of a “continuous supersolid,” which emerges as a consequence of enhanced symmetries in this regime. We discuss its experimental signatures. Third, we show that the Ising-type phase transition, driven first order via the competition of long-wavelength modes at generic fillings, terminates into a true Ising quantum critical point in the vicinity of half filling.

  6. Structural properties and spatial ordering in multilayered ZnMgTe/ZnSe type-II quantum dot structures

    SciTech Connect

    Manna, U.; Noyan, I. C.; Neumark, G. F.; Zhang, Q.; Moug, R.; Salakhutdinov, I. F.; Dunn, K. A.; Novak, S. W.; Tamargo, M. C.; Kuskovsky, I. L.

    2012-02-01

    We report the structural properties and spatial ordering of multilayer ZnMgTe quantum dots (QDs) embedded in ZnSe, where sub-monolayer quantities of Mg were introduced periodically during growth in order to reduce the valence band offset of ZnTe QDs. The periodicity, period dispersion, individual layer thickness, and the composition of the multilayer structures were determined by comparing the experimental high resolution x-ray diffraction (HRXRD) spectra to simulated ones for the allowed (004) and quasi-forbidden (002) reflections in combination with transmission electron microscopy (TEM) results. Secondary ion mass spectroscopy (SIMS) profiles confirmed the incorporation of Mg inside the QD layers, and the HRXRD analysis revealed that there is approximately 32% Mg in the ZnMgTe QDs. The presence of Mg contributes to higher scattering intensity of the HRXRD, leading to the observation of higher order superlattice peaks in both the (004) and (002) reflections. The distribution of scattered intensity in the reciprocal space map (RSM) shows that the diffuse scattered intensity is elongated along the q{sub x} axis, indicating a vertical correlation of the dots, which is found to be less defined for the sample with larger periodicity. The diffuse scattered intensity is also found to be weakly correlated along the q{sub z} direction indicating a weak lateral correlation of the dots.

  7. Applications of single-walled carbon nanotubes and type-II quantum dots in photovoltaics and passive mode-locking saturable absorbers

    NASA Astrophysics Data System (ADS)

    Tang, Jau; Wang, Yong-Gang; Cheng, Shin-Min; Yu, Pyng; Huang, Kuo-Yen; Yuan, Chi-Tsu

    2012-10-01

    Using single-molecule confocal imaging techniques combined with time-correlated single-photon counting we investigated the electron transfer (ET) rates to the single-walled carbon nanotubes from various types of semiconductor hetero-nanocrystals of type-I or type-II band alignment. We observed significantly larger ET rate for type-II ZnSe/CdS dot-in-rod nanostructures as compared to type-I spherical CdSe/ZnS core/shell quantum-dots, and to CdSe/CdS dot-in-rod structures. We demonstrated that such rapid ET dynamics can compete with both Auger and radiative recombination processes, leading to potentially more effective photovoltaic operation. In another work, we used aligned single-walled carbon nanotubes as saturable absorbers for ps laser pulse generation. Using the vertical evaporation technique we fabricated saturable absorbers by transferring the water-soluble single wall carbon nanotubes onto a hydrophilic quartz substrate. The fast recovery times of the absorber were measured to be 136 fs and 790 fs. The modulation depth of the absorber was about 1.5%. Passive mode-locked Nd: GdVO4 laser using such an absorber was demonstrated. The continuous wave mode-locked pulses with the pulse duration of 12.4 ps and the repetition of 120 MHz were achieved. The maximum average output power of the mode-locked laser is 2.4 W at the pump power of 13 W. Such a kind of absorbers has potential to be put into practical use.

  8. Comparative Study on the Efficiency of the Photodynamic Inactivation of Candida albicans Using CdTe Quantum Dots, Zn(II) Porphyrin and Their Conjugates as Photosensitizers.

    PubMed

    Viana, Osnir S; Ribeiro, Martha S; Rodas, Andréa C D; Rebouças, Júlio S; Fontes, Adriana; Santos, Beate S

    2015-01-01

    The application of fluorescent II-VI semiconductor quantum dots (QDs) as active photosensitizers in photodymanic inactivation (PDI) is still being evaluated. In the present study, we prepared 3 nm size CdTe QDs coated with mercaptosuccinic acid and conjugated them electrostatically with Zn(II) meso-tetrakis (N-ethyl-2-pyridinium-2-yl) porphyrin (ZnTE-2-PyP or ZnP), thus producing QDs-ZnP conjugates. We evaluated the capability of the systems, bare QDs and conjugates, to produce reactive oxygen species (ROS) and applied them in photodynamic inactivation in cultures of Candida albicans by irradiating the QDs and testing the hypothesis of a possible combined contribution of the PDI action. Tests of in vitro cytotoxicity and phototoxicity in fibroblasts were also performed in the presence and absence of light irradiation. The overall results showed an efficient ROS production for all tested systems and a low cytotoxicity (cell viability >90%) in the absence of radiation. Fibroblasts incubated with the QDs-ZnP and subjected to irradiation showed a higher cytotoxicity (cell viability <90%) depending on QD concentration compared to the bare groups. The PDI effects of bare CdTe QD on Candida albicans demonstrated a lower reduction of the cell viability (~1 log10) compared to bare ZnP which showed a high microbicidal activity (~3 log10) when photoactivated. The QD-ZnP conjugates also showed reduced photodynamic activity against C. albicans compared to bare ZnP and we suggest that the conjugation with QDs prevents the transmembrane cellular uptake of the ZnP molecules, reducing their photoactivity. PMID:25993419

  9. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline.

    PubMed

    Pazderski, Leszek; Tousek, Jaromír; Sitkowski, Jerzy; Kozerski, Lech; Szłyk, Edward

    2007-12-01

    1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena). The influence of deviations from planarity, concerning either MN2Cl2 chromophores or azine ring systems, revealed by the known X-ray structures of [Pd(bquin)Cl2] and [Pt(bquin)Cl2], is discussed in respect to 1H NMR spectra. 15N coordination shifts (Delta15Ncoord=delta15Ncomplex-delta15Nligand) of ca. 78-100 ppm (to lower frequency) are attributed mainly to the decrease of the absolute value of paramagnetic contribution in the relevant 15N shielding constants, this phenomenon being noticeably dependent on the type of a platinide metal and coordination sphere geometry. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) replacement but decreased by ca. 15 ppm following trans-->cis transition. Experimental 1H, 13C, 15N NMR chemical shifts are compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in CHCl3 or DMF solution. PMID:18044805

  10. Dynamics of exciton recombination in strong magnetic fields in ultrathin GaAs/AlAs quantum wells with indirect band gap and type-II band alignment

    NASA Astrophysics Data System (ADS)

    Shamirzaev, T. S.; Debus, J.; Yakovlev, D. R.; Glazov, M. M.; Ivchenko, E. L.; Bayer, M.

    2016-07-01

    The exciton recombination dynamics is studied experimentally and theoretically in two-monolayer-thick GaAs/AlAs quantum wells characterized by an indirect band gap and a type-II band alignment. At cryogenic temperatures, the lifetimes of the excitons that are indirect both in real and k space are in the millisecond range. The exciton recombination time and the photoluminescence (PL) intensity are strongly dependent on strength and orientation of an applied magnetic field. In contrast to the very weak influence of an in-plane field, at 2 K temperature a field applied parallel to the growth axis drastically slows down the recombination and reduces the PL intensity. With increasing temperature the magnetic field effects on PL intensity and decay time are vanishing. The experimental data are well described by a model for the exciton dynamics that takes into account the magnetic-field-induced redistribution of the indirect excitons between their bright and dark states. It allows us to evaluate the lower bound of the heavy-hole longitudinal g factor of 2.5, the radiative recombination time for the bright excitons of 0.34 ms, and the nonradiative recombination time of the bright and dark excitons of 8.5 ms.

  11. A highly selective and simple fluorescent sensor for mercury (II) ion detection based on cysteamine-capped CdTe quantum dots synthesized by the reflux method.

    PubMed

    Ding, Xiaojie; Qu, Lingbo; Yang, Ran; Zhou, Yuchen; Li, Jianjun

    2015-06-01

    Cysteamine (CA)-capped CdTe quantum dots (QDs) (CA-CdTe QDs) were prepared by the reflux method and utilized as an efficient nano-sized fluorescent sensor to detect mercury (II) ions (Hg(2+) ). Under optimum conditions, the fluorescence quenching effect of CA-CdTe QDs was linear at Hg(2+) concentrations in the range of 6.0-450 nmol/L. The detection limit was calculated to be 4.0 nmol/L according to the 3σ IUPAC criteria. The influence of 10-fold Pb(2+) , Cu(2+) and Ag(+) on the determination of Hg(2+) was < 7% (superior to other reports based on crude QDs). Furthermore, the detection sensitivity and selectivity were much improved relative to a sensor based on the CA-CdTe QDs probe, which was prepared using a one-pot synthetic method. This CA-CdTe QDs sensor system represents a new feasibility to improve the detection performance of a QDs sensor by changing the synthesis method. PMID:25263990

  12. Trapping of muscle relaxant methocarbamol degradation product by complexation with copper(II) ion: spectroscopic and quantum chemical studies.

    PubMed

    Mansour, Ahmed M; Shehab, Ola R

    2014-07-15

    Structural properties of methocarbamol (Mcm) were extensively studied both experimentally and theoretically using FT IR, (1)H NMR, UV-Vis., geometry optimization, Mulliken charge, and molecular electrostatic potential. Stability arises from hyper-conjugative interactions, charge delocalization and H-bonding was analyzed using natural bond orbital (NBO) analysis. Mcm was decomposed in ethanol/water mixture at 80°C to guaifenesin [(RS)-3-(2-methoxyphenoxy)propane-1,2-diol] and carbamate ion [NH2COO(-)], where the degradation mechanism was explained by trapping the carbamate ion via the complexation with copper(II) ion. The structure of the isolated complex ([Cu(NH2COO)2(H2O)]⋅4H2O) was elucidated by spectral, thermal, and magnetic tools. Electronic spectra were discussed by TD-DFT and the descriptions of frontier molecular orbitals and the relocations of the electron density were determined. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using both the B3LYP and B3PW91 functional. PMID:24674917

  13. Trapping of muscle relaxant methocarbamol degradation product by complexation with copper(II) ion: Spectroscopic and quantum chemical studies

    NASA Astrophysics Data System (ADS)

    Mansour, Ahmed M.; Shehab, Ola R.

    2014-07-01

    Structural properties of methocarbamol (Mcm) were extensively studied both experimentally and theoretically using FT IR, 1H NMR, UV-Vis., geometry optimization, Mulliken charge, and molecular electrostatic potential. Stability arises from hyper-conjugative interactions, charge delocalization and H-bonding was analyzed using natural bond orbital (NBO) analysis. Mcm was decomposed in ethanol/water mixture at 80 °C to guaifenesin [(RS)-3-(2-methoxyphenoxy)propane-1,2-diol] and carbamate ion [NH2COO-], where the degradation mechanism was explained by trapping the carbamate ion via the complexation with copper(II) ion. The structure of the isolated complex ([Cu(NH2COO)2(H2O)]ṡ4H2O) was elucidated by spectral, thermal, and magnetic tools. Electronic spectra were discussed by TD-DFT and the descriptions of frontier molecular orbitals and the relocations of the electron density were determined. Calculated g-tensor values showed best agreement with experimental values from EPR when carried out using both the B3LYP and B3PW91 functional.

  14. Direct water-phase synthesis of lead sulfide quantum dots encapsulated by β-lactoglobulin for in vivo second near infrared window imaging with reduced toxicity.

    PubMed

    Chen, Jun; Kong, Yifei; Wang, Wei; Fang, Hongwei; Wo, Yan; Zhou, Dejian; Wu, Ziying; Li, Yunxia; Chen, Shiyi

    2016-03-14

    Compared to conventional fluorescence imaging in the visible (400-700 nm) and NIR-I regions (700-900 nm), optical fluorescence imaging in the second near infrared window (NIR-II, 1000-1400 nm) offers reduced photon scattering, deeper tissue penetration and lower auto-fluorescence. Despite excellent imaging capabilities, current NIR-II probes have not yet reached their full potential due to weak quantum yield, low water solubility and suboptimal biocompatibility. To address these problems, we report herein a new NIR-II fluorescent PbS quantum dots (QDs) that are fabricated in water using β-lactoglobulin (LG) as a biological template. The LG-PbS QDs exhibit satisfactory dispersibility, relatively high quantum yield and favorable biocompatibility, and therefore are suitable for high-resolution in vivo imaging applications. PMID:26888668

  15. A new Salen-type azo-azomethine ligand and its Ni(II), Cu(II) and Zn(II) complexes: Synthesis, spectral characterization, crystal structure and photoluminescence studies.

    PubMed

    Ozkan, Gozde; Kose, Muhammet; Zengin, Huseyin; McKee, Vickie; Kurtoglu, Mukerrem

    2015-11-01

    A novel Salen-type azo-azomethine ligand H2agen, 2,2'-{ethane-1,2-diylbis[nitrilomethylylidene]}bis{4-[ethylphenyldiazenyl]phenol}, formed by the 1:2M condensation of ethane-1,2-diamine with 5-[(4-ethylphenyl)diazenyl]-2-hydroxybenzaldehyde and its nickel(II), copper(II), and zinc(II) complexes were synthesized and characterized by the spectroscopic and analytical methods. The UV-vis spectra of the ligand were investigated in three organic solvents (DMSO, DMF and CHCl3). The ligand shows two absorption bands assigned to π-π(∗) and n-π(∗) transitions in the solvents used. Cu(II), and Ni(II) are tetra-coordinate binding to two phenolic oxygens and two imine nitrogens in approximate square planar geometry. Zn(II) also coordinates using the same sites like other metals but gave tetragonal configuration. Molecular structure of the Cu(II) complex [Cu(agen)] was determined by single crystal X-ray diffraction study. The X-ray data revealed that crystallographic imposed symmetry was absent for the complex molecule. In the structure, the Cu(II) ion is coordinated to two phenolate oxygen atoms and two imine nitrogen atoms of the azo-azomethine ligand with approximate square planar geometry. The ligand H2agen and its metal complexes exhibit strong blue emissions with irradiation. Fluorescence quantum yields and excited-state lifetimes for the ligand and its complexes were obtained. The H2agen ligand had a 35% quantum yield and a 3.27 ns excited-state lifetime. Complexation with metal ions caused reductions in intensities and quantum yields. PMID:26123514

  16. Thermal baths as quantum resources: more friends than foes?

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Shahmoon, Ephraim; Zwick, Analia

    2015-12-01

    In this article we argue that thermal reservoirs (baths) are potentially useful resources in processes involving atoms interacting with quantized electromagnetic fields and their applications to quantum technologies. One may try to suppress the bath effects by means of dynamical control, but such control does not always yield the desired results. We wish instead to take advantage of bath effects, that do not obliterate ‘quantumness’ in the system-bath compound. To this end, three possible approaches have been pursued by us. (i) Control of a quantum system faster than the correlation time of the bath to which it couples: such control allows us to reveal quasi-reversible/coherent dynamical phenomena of quantum open systems, manifest by the quantum Zeno or anti-Zeno effects (QZE or AZE, respectively). Dynamical control methods based on the QZE are aimed not only at protecting the quantumness of the system, but also diagnosing the bath spectra or transferring quantum information via noisy media. By contrast, AZE-based control is useful for fast cooling of thermalized quantum systems. (ii) Engineering the coupling of quantum systems to selected bath modes: this approach, based on field-atom coupling control in cavities, waveguides and photonic band structures, allows one to drastically enhance the strength and range of atom-atom coupling through the mediation of the selected bath modes. More dramatically, it allows us to achieve bath-induced entanglement that may appear paradoxical if one takes the conventional view that coupling to baths destroys quantumness. (iii) Engineering baths with appropriate non-flat spectra: this approach is a prerequisite for the construction of the simplest and most efficient quantum heat machines (engines and refrigerators). We may thus conclude that often thermal baths are ‘more friends than foes’ in quantum technologies.

  17. Phase Coherent Photorefractive Effect in II-VI Semiconductor Quantum Wells and its Application for Optical Coherence Imaging

    NASA Astrophysics Data System (ADS)

    Kabir, Amin

    The phase coherent photorefractive (PCP) effect in different ZnSe quantum well structures and its dependence on various extrinsic and intrinsic parameters have been investigated using 90 fs laser pulse in a two-beam four-wave-mixing (FWM) configuration. At low excitation intensities the signal is dominated by the PCP effect (which is attributed to a long living electron grating formed in the QW due to coherent QW excitons) and pulse overlap (PO) effect while at high excitation intensities it is governed by chi(3) FWM processes and the PO effect. With increasing excitation intensity the signal dip at pulse overlap (tau ≈ 0 ) which is characteristic for the destructive interference between the PO and PCP effect shifts to positive delay times tau > 0. The higher PCP diffraction efficiency value of ˜1.5 x10-3 in QW B (Zn0.92Mg0.08Se/ZnSe) as compared to the value of ˜3.5 x 10-4 in QW A (Zn0.94Mg 0.06Se/ZnSe) at 55 K is attributed to an increased Mg concentration in the barrier of QW B leading to a higher captured equilibrium electron density ne. Repetition rate dependent measurements on QW B show a drop of the diffraction efficiency for repetition times larger than 1.25 mus which is attributed to the reduction of the electron grating amplitude due to thermally activated electron tunneling. FWM experiments on two 10 nm ZnSe QWs with different barrier thicknesses of 20 (QW1) and 50 nm (QW2) between the QW and substrate show a redshift of the exciton line and an increased exciton dephasing rate due to increasing E-field induced tilt of the QW structure indicating an increased density of captured electrons ne. At temperatures below 35 K and laser excitation close to the exciton energy the creation of trions significantly compensates the formation of the spatially modulated electron density grating. At lower excitation energies increasing space-charge-fields significantly tilt the QW which reduces the trion binding energy leading to an enhanced thermal ionization of

  18. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  19. A theoretical study of the mechanism of oxygen binding by model anthraquinones. Part II. Quantum-mechanical studies of the energetics of oxygen binding to model anthraquinones.

    PubMed

    Jeziorek, D; Dyl, D; Liwo, A; Woźnicki, W; Tempczyk, A; Borowski, E

    1993-06-01

    Anthracycline derivatives, which constitute an important class of antitumor drugs, exhibit undesirable cardiotoxicity owing to their mediation in the process of oxygen reduction to the superoxide anion radical. Earlier work showed that this mediation could be facilitated by the formation of complexes with the 1 delta g oxygen molecule prior to reduction. In this paper, we investigate the energetics of the possible peroxides formed by a series of model anthraquinones: 1,4-dihydroxyl- (quinizarin), 1,8-dihydroxyl-, 1-hydroxy-8-methoxy-, 1,8-dimethoxy-, 1,4,5-trimethoxy- and 1,4-dihydroxy-5-methoxy-9,10-anthracenedione, as well as of daunorubicin and demethoxydaunorubicin, by semi-empirical quantum-mechanical MNDO and PM3 methods, and limited STO-3G ab initio calculations. It was found that the oxygen-binding site is determined by three factors: the high electron density and high HOMO coefficients on the carbon atoms to which oxygen binds, the minimum loss of conjugation within the anthraquinone moiety on oxygen binding and the minimum number of bonds to other heavy atoms of the oxygen-binding carbons (the steric effect). For different molecules, the energy of the most stable oxygen complex is the greatest for compounds with the lowest ionization potential. On the basis of this and our earlier studies, it was concluded that the anthracycline derivatives with reduced ability to bind oxygen and, therefore, reduced cardiotoxicity, should possess a high symmetry of II-electron density distribution, a high ionization potential and have all of the oxygen-binding sites condensed to other rings or substituted by bulky groups. PMID:8517915

  20. Biomimetic mono- and dinuclear Ni(I) and Ni(II) complexes studied by X-ray absorption and emission spectroscopy and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Schuth, N.; Gehring, H.; Horn, B.; Holze, P.; Kositzki, R.; Schrapers, P.; Limberg, C.; Haumann, M.

    2016-05-01

    Five biomimetic mono- or dinuclear nickel complexes featuring Ni(I) or Ni(II) sites were studied by X-ray absorption and emission spectroscopy and DFT calculations. Ni K-edge XANES spectra and Kβ main and satellite emission lines were collected on powder samples. The pre-edge absorption transitions (core-to-valence excitation) and Kβ2,5 emission transitions (valence-to-core decay) were calculated using DFT (TPSSh/TZVP) on crystal structures. This yielded theoretical ctv and vtc spectra in near-quantitative agreement with the experiment, showing the adequacy of the DFT approach for electronic structure description, emphasizing the sensitivity of the XAS/XES spectra for ligation/redox changes at nickel, and revealing the configuration of unoccupied and occupied valence levels, as well as the spin-coupling modes in the dinuclear complexes. XAS/XES-DFT is valuable for molecular and electronic structure analysis of synthetic complexes and of nickel centers in H2 or COx converting metalloenzymes.

  1. Quantum groups, non-commutative differential geometry and applications

    SciTech Connect

    Schupp, P

    1993-12-09

    The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ``quantum geometric`` construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of {Delta}(U). It provides invariant maps A {yields} U and thereby bicovariant vector fields, casimirs and metrics. This construction allows the translation of undeformed matrix expressions into their less obvious quantum algebraic counter parts. We study this in detail for quasitriangular Hopf algebras, giving the determinant and orthogonality relation for the ``reflection`` matrix. Part II considers the additional structures of differential forms and finitely generated quantum Lie algebras -- it is devoted to the construction of the Cartan calculus, based on an undeformed Cartan identity.

  2. Micellar Effects on Photoinduced Electron Transfer in Aqueous Solutions Revisited: Dramatic Enhancement of Cage Escape Yields in Surfactant Ru(II) Diimine Complex/[Ru(NH3)6](2+) Systems.

    PubMed

    Adams, Rebecca E; Schmehl, Russell H

    2016-08-30

    The effect of cationic micelle incorporation on light induced electron transfer, charge separation and back electron transfer between an aqueous electron donor, [Ru(NH3)6](2+), and a series of Ru(II) diimine complex chromophores/acceptors, is presented. The chromophores have the general formula [(bpy)2Ru(LL)](2+) (LL = bpy; 4-R-4'-methyl-2,2'-bpy, R = pentyl (MC5), terdecyl (MC13), heptadecyl (MC17); 4,4'-di(heptadecyl)-2,2'-bpy (DC17)). Of the five chromophores, the MC13, MC17, and DC17 complexes associate with the added micelle forming surfactant, cetyltrimethylammonium bromide (CTAB). Quenching of the luminescence of the bpy and MC5 complexes by [Ru(NH3)6](2+) is unaffected by addition of surfactant, while rate constants for quenching of the MC13 and MC17 complexes are decreased. Cage escape yields following photoinduced electron transfer to generate [(bpy)2Ru(LL)](+) and [Ru(NH3)6](3+) are approximately 0.1 for all the water-soluble chromophores (excluding DC17) in the absence of added CTAB. In the presence of surfactant, the cage escape yields dramatically increase for the MC13 (0.4) and MC17 (0.6) complexes, while remaining unchanged for [Ru(bpy)3](2+) and the MC5 complex. Back electron transfer of the solvent separated ions is also strongly influenced by the presence of surfactant. For the MC13 and MC17 complexes, back electron transfer rate constants decrease by factors of 270 and 190, respectively. The MC5 complex exhibits two component back electron transfer, with the fast component having a rate constant close to that in the absence of surfactant and a slow component nearly 200 times smaller. Results are interpreted in terms of the partitioning of the 2+ and 1+ forms of the chromophores between aqueous and micellar phases. The extended lifetimes of the radical ions may prove useful in coupling the strong reductants formed to kinetically facile catalysts for reduction of water to hydrogen. PMID:27486891

  3. An environment-dependent semi-empirical tight binding model suitable for electron transport in bulk metals, metal alloys, metallic interfaces, and metallic nanostructures. II. Application—Effect of quantum confinement and homogeneous strain on Cu conductance

    SciTech Connect

    Hegde, Ganesh Povolotskyi, Michael; Kubis, Tillmann; Charles, James; Klimeck, Gerhard

    2014-03-28

    The Semi-Empirical tight binding model developed in Part I Hegde et al. [J. Appl. Phys. 115, 123703 (2014)] is applied to metal transport problems of current relevance in Part II. A systematic study of the effect of quantum confinement, transport orientation, and homogeneous strain on electronic transport properties of Cu is carried out. It is found that quantum confinement from bulk to nanowire boundary conditions leads to significant anisotropy in conductance of Cu along different transport orientations. Compressive homogeneous strain is found to reduce resistivity by increasing the density of conducting modes in Cu. The [110] transport orientation in Cu nanowires is found to be the most favorable for mitigating conductivity degradation since it shows least reduction in conductance with confinement and responds most favorably to compressive strain.

  4. 7 CFR 1437.102 - Yield determinations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... adjusted on an administrative county-wide basis for: (i) Yield variations due to different farming practices in the administrative county such as irrigated, non-irrigated, and organic practices; and (ii... missing crop years actual yield. (h) If producers add land in the farming operation and do not...

  5. 7 CFR 1437.102 - Yield determinations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... adjusted on an administrative county-wide basis for: (i) Yield variations due to different farming practices in the administrative county such as irrigated, non-irrigated, and organic practices; and (ii... missing crop years actual yield. (h) If producers add land in the farming operation and do not...

  6. 7 CFR 1437.102 - Yield determinations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... adjusted on an administrative county-wide basis for: (i) Yield variations due to different farming practices in the administrative county such as irrigated, non-irrigated, and organic practices; and (ii... missing crop years actual yield. (h) If producers add land in the farming operation and do not...

  7. Quantum focusing conjecture

    NASA Astrophysics Data System (ADS)

    Bousso, Raphael; Fisher, Zachary; Leichenauer, Stefan; Wall, Aron C.

    2016-03-01

    We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface σ that need not lie on a horizon, we define a finite generalized entropy Sgen as the area of σ in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to σ , the rate of change of Sgen per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N . This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.

  8. Raising yield potential in wheat: increasing photosynthesis capacity and efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing wheat yields to help to ensure food security is a major challenge. Meeting this challenge requires a quantum improvement in the yield potential of wheat. Past increases in yield potential have largely resulted from improvements in harvest index not through increased biomass. Further large...

  9. A quantum protective mechanism in photosynthesis

    NASA Astrophysics Data System (ADS)

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-03-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life.

  10. A quantum protective mechanism in photosynthesis

    PubMed Central

    Marais, Adriana; Sinayskiy, Ilya; Petruccione, Francesco; van Grondelle, Rienk

    2015-01-01

    Since the emergence of oxygenic photosynthesis, living systems have developed protective mechanisms against reactive oxygen species. During charge separation in photosynthetic reaction centres, triplet states can react with molecular oxygen generating destructive singlet oxygen. The triplet product yield in bacteria is observed to be reduced by weak magnetic fields. Reaction centres from plants' photosystem II share many features with bacterial reaction centres, including a high-spin iron whose function has remained obscure. To explain observations that the magnetic field effect is reduced by the iron, we propose that its fast-relaxing spin plays a protective role in photosynthesis by generating an effective magnetic field. We consider a simple model of the system, derive an analytical expression for the effective magnetic field and analyse the resulting triplet yield reduction. The protective mechanism is robust for realistic parameter ranges, constituting a clear example of a quantum effect playing a macroscopic role vital for life. PMID:25732807

  11. Evolution of excitonic states in two-phase systems with quantum dots of II-VI semiconductors near the percolation threshold

    NASA Astrophysics Data System (ADS)

    Bondar, N. V.; Brodyn, M. S.

    2010-03-01

    In two-phase disordered media composed of borosilicate glass with ZnSe or CdS quantum dots, the formation of a phase percolation transition of carriers for near-threshold concentrations that are manifested in optical spectra has been observed. Microscopic fluctuations of the quantum-dot density near the percolation threshold were found that resembled the phenomenon of critical opalescence, where similar fluctuations of the density of a pure substance appear near to a phase transition. It is proposed that the dielectric mismatch between a matrix and ZnSe or CdS quantum dots plays a significant role in the carrier (exciton) delocalization, resulting in the appearance of a “dielectric Coulomb trap” beyond the QD border and the formation of surface states of excitons. The spatial overlapping of excitonic states at the critical density of quantum dots results in a tunneling of carriers and the formation of a phase percolation transition in such media.

  12. A non-doped phosphorescent organic light-emitting device with above 31% external quantum efficiency.

    PubMed

    Wang, Qi; Oswald, Iain W H; Yang, Xiaolong; Zhou, Guijiang; Jia, Huiping; Qiao, Qiquan; Chen, Yonghua; Hoshikawa-Halbert, Jason; Gnade, Bruce E

    2014-12-23

    The demonstrated square-planar Pt(II)-complex has reduced triplet-triplet quenching and therefore a near unity quantum yield in the neat thin film. A non-doped phosphorescent organic light-emitting diode (PhOLED) based on this emitter achieves (31.1 ± 0.1)% external quantum efficiency without any out-coupling, which shows that a non-doped PhOLED can be comparable in efficiency to the best doped devices with very complicated device structures. PMID:25219957

  13. Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing. II. Applications to atomic magnetometry and Hardy's paradox

    SciTech Connect

    Tsang, Mankei

    2010-01-15

    The time-symmetric quantum smoothing theory [Tsang, Phys. Rev. Lett. 102, 250403 (2009); Phys. Rev. A 80, 033840 (2009)] is extended to account for discrete jumps in the classical random process to be estimated, discrete variables in the quantum system, such as spin, angular momentum, and photon number, and Poisson measurements, such as photon counting. The extended theory is used to model atomic magnetometers and study Hardy's paradox in phase space.

  14. Spectroscopy of CdTe/MnTe single quantum wells: A strained-layer II-VI heterostructure with strong electronic confinement

    NASA Astrophysics Data System (ADS)

    Pelekanos, N.; Fu, Q.; Ding, J.; Wałecki, W.; Nurmikko, A. V.; Durbin, S. M.; Han, J.; Kobayashi, M.; Gunshor, R. L.

    1990-05-01

    A range of optical studies has been carried out on a series of single quantum wells of CdTe/MnTe. The structures appear to be nearly pseudomorphic and show evidence for very effective electron-hole confinement. For thin quantum-well layers, efficient low-temperature photoluminescence up to yellow-green photon energies has been obtained. Coupling of excitons to longitudinal-optical phonons has also been measured.

  15. Predawn respiration rates during flowering are highly predictive of yield response in Gossypium hirsutum when yield variability is water-induced.

    PubMed

    Snider, John L; Chastain, Daryl R; Meeks, Calvin D; Collins, Guy D; Sorensen, Ronald B; Byrd, Seth A; Perry, Calvin D

    2015-07-01

    Respiratory carbon evolution by leaves under abiotic stress is implicated as a major limitation to crop productivity; however, respiration rates of fully expanded leaves are positively associated with plant growth rates. Given the substantial sensitivity of plant growth to drought, it was hypothesized that predawn respiration rates (RPD) would be (1) more sensitive to drought than photosynthetic processes and (2) highly predictive of water-induced yield variability in Gossypium hirsutum. Two studies (at Tifton and Camilla Georgia) addressed these hypotheses. At Tifton, drought was imposed beginning at the onset of flowering (first flower) and continuing for three weeks (peak bloom) followed by a recovery period, and predawn water potential (ΨPD), RPD, net photosynthesis (AN) and maximum quantum yield of photosystem II (Fv/Fm) were measured throughout the study period. At Camilla, plants were exposed to five different irrigation regimes throughout the growing season, and average ΨPD and RPD were determined between first flower and peak bloom for all treatments. For both sites, fiber yield was assessed at crop maturity. The relationships between ΨPD, RPD and yield were assessed via non-linear regression. It was concluded for field-grown G. hirsutum that (1) RPD is exceptionally sensitive to progressive drought (more so than AN or Fv/Fm) and (2) average RPD from first flower to peak bloom is highly predictive of water-induced yield variability. PMID:26125121

  16. Relativity and Quantum Mechanics

    SciTech Connect

    Braendas, Erkki J.

    2007-12-26

    The old dilemma of quantum mechanics versus the theory of relativity is reconsidered via a first principles relativistically invariant theory. By analytic extension of quantum mechanics into the complex plane one may (i) include dynamical features such as time- and length-scales and (ii) examine the possibility and flexibility of so-called general Jordan block formations. The present viewpoint asks for a new perspective on the age-old problem of quantum mechanics versus the theory of relativity. To bring these ideas together, we will establish the relation with the Klein-Gordon-Dirac relativistic theory and confirm some dynamical features of both the special and the general relativity theory.

  17. Investigation of the photophysical and photochemical properties of peripherally tetra-substituted water-soluble zwitterionic and cationic zinc(ii) phthalocyanines.

    PubMed

    Çolak, Senem; Durmuş, Mahmut; Yıldız, Salih Zeki

    2016-06-21

    In this study, 4-{4-[N-((3-dimethylamino)propyl)amide]phenoxy}phthalonitrile () and its zinc(ii) phthalocyanine derivative () were synthesized for the first time. 4-(N-((3-Dimethylamino)propyl)amide)phenoxy substituted zinc(ii) phthalocyanine () was converted to its water-soluble sulfobetaine (), betaine () and N-oxide () containing zwitterionic and quaternized cationic () derivatives. All newly synthesized compounds () were characterized by the combination of UV-vis, FT-IR, (1)H NMR, mass spectroscopy techniques and elemental analysis. The photophysical (fluorescence quantum yields and lifetimes) and photochemical (singlet oxygen quantum yields) properties were investigated in DMSO for all the synthesized zinc(ii) phthalocyanines () and in both DMSO and aqueous solutions for zwitterionic and cationic phthalocyanines () for the specification of their capability as photosensitizers in photodynamic therapy (PDT). The binding behavior of water soluble phthalocyanines () to the bovine serum albumin protein was also examined for the determination of their transportation ability in the blood stream. PMID:27253970

  18. Quantum plasmonic sensing

    DOE PAGESBeta

    Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.

    2015-11-04

    Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that withmore » a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.« less

  19. Quantum plasmonic sensing

    SciTech Connect

    Fan, Wenjiang; Lawrie, Benjamin J.; Pooser, Raphael C.

    2015-11-04

    Surface plasmon resonance (SPR) sensors can reach the quantum noise limit of the optical readout field in various configurations. We demonstrate that two-mode intensity squeezed states produce a further enhancement in sensitivity compared with a classical optical readout when the quantum noise is used to transduce an SPR sensor signal in the Kretschmann configuration. The quantum noise reduction between the twin beams when incident at an angle away from the plasmonic resonance, combined with quantum noise resulting from quantum anticorrelations when on resonance, results in an effective SPR-mediated modulation that yields a measured sensitivity 5 dB better than that with a classical optical readout in this configuration. Furthermore, the theoretical potential of this technique points to resolving particle concentrations with more accuracy than is possible via classical approaches to optical transduction.

  20. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. II. Structural features.

    PubMed

    Sesé, Luis M; Bailey, Lorna E

    2007-04-28

    The structural features of the quantum hard-sphere system in the region of the fluid-face-centered-cubic-solid transition, for reduced number densities 0.45quantum fluid (instantaneous, continuous linear response and centroids). These parameters cover the pair radial correlation functions, the configurational structure factors, the order parameters Q4 and Q6, and the radii of gyration of the path-integral necklaces. Also, the fluid static structure factors have been computed by solving appropriate Ornstein-Zernike equations. A number of significant regularities in the above parameters involving both sides of the crystallization line are reported, and a comparison with results for Lennard-Jones quantum systems that can be found in the literature is made. On the other hand, the main amplitudes of the quantum fluid structure factors follow a complex behavior along the crystallization line, which points to difficulties in identifying a neat rule, similar to that of Hansen-Verlet for classical fluids, for these quantum amplitudes. To complete this study a further analysis of the instantaneous and centroid triplet correlations in the vicinities of the fluid-face-centered-cubic-solid phase transition of hard spheres has been performed, and some interesting differences between the classical and quantum melting-freezing transition are observed. PMID:17477616