Science.gov

Sample records for ii voltage sensor

  1. Voltage sensor and dielectric material

    DOEpatents

    Yakymyshyn, Christopher Paul; Yakymyshyn, Pamela Jane; Brubaker, Michael Allen

    2006-10-17

    A voltage sensor is described that consists of an arrangement of impedance elements. The sensor is optimized to provide an output ratio that is substantially immune to changes in voltage, temperature variations or aging. Also disclosed is a material with a large and stable dielectric constant. The dielectric constant can be tailored to vary with position or direction in the material.

  2. Voltage Sensors Monitor Harmful Static

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A tiny sensor, small enough to be worn on clothing, now monitors voltage changes near sensitive instruments after being created to alert Agency workers to dangerous static buildup near fuel operations and avionics. San Diego s Quasar Federal Systems received a Small Business Innovation Research (SBIR) contract from Kennedy Space Center to develop its remote voltage sensor (RVS), a dime-sized electrometer designed to measure triboelectric changes in the environment. One of the unique qualities of the RVS is that it can detect static at greater distances than previous devices, measuring voltage changes from a few centimeters to a few meters away, due to its much-improved sensitivity.

  3. Electro-Optical High-Voltage Sensors

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan; Johnston, Alan R.

    1992-01-01

    Electro-optical sensors for measuring high voltages developed for use in automatically controlled power-distribution systems. Sensors connected to optoelectronic interrogating equipment by optical fibers. Because sensitive material and optical fibers are all dielectric, no problem in electrically isolating interrogating circuitry from high voltage, and no need for voltage dividers. Sensor signals transmitted along fibers immune to electromagnetic noise at radio and lower frequencies.

  4. Non-contact current and voltage sensor

    DOEpatents

    Carpenter, Gary D; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C; Schappert, Michael A

    2014-03-25

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing that contains the current and voltage sensors, which may be a ferrite cylinder with a hall effect sensor disposed in a gap along the circumference to measure current, or alternative a winding provided through the cylinder along its axis and a capacitive plate or wire disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  5. Mapping the interaction site for the tarantula toxin hainantoxin-IV (β-TRTX-Hn2a) in the voltage sensor module of domain II of voltage-gated sodium channels.

    PubMed

    Cai, Tianfu; Luo, Ji; Meng, Er; Ding, Jiuping; Liang, Songping; Wang, Sheng; Liu, Zhonghua

    2015-06-01

    Peptide toxins often have pharmacological applications and are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a group of potential VGSC inhibitors have been reported from tarantula venoms, little is known about the mechanism of their interaction with VGSCs. In this study, we showed that hainantoxin-IV (β-TRTX-Hn2a, HNTX-IV in brief), a 35-residue peptide from Ornithoctonus hainana venom, preferentially inhibited rNav1.2, rNav1.3 and hNav1.7 compared with rNav1.4 and hNav1.5. hNav1.7 was the most sensitive to HNTX-IV (IC50∼21nM). In contrast to many other tarantula toxins that affect VGSCs, HNTX-IV at subsaturating concentrations did not alter activation and inactivation kinetics in the physiological range of voltages, while very large depolarization above +70mV could partially activate toxin-bound hNav1.7 channel, indicating that HNTX-IV acts as a gating modifier rather than a pore blocker. Site-directed mutagenesis indicated that the toxin bound to site 4, which was located on the extracellular S3-S4 linker of hNav1.7 domain II. Mutants E753Q, D816N and E818Q of hNav1.7 decreased toxin affinity for hNav1.7 by 2.0-, 3.3- and 130-fold, respectively. In silico docking indicated that a three-toed claw substructure formed by residues with close contacts in the interface between HNTX-IV and hNav1.7 domain II stabilized the toxin-channel complex, impeding movement of the domain II voltage sensor and inhibiting hNav1.7 activation. Our data provide structural details for structure-based drug design and a useful template for the design of highly selective inhibitors of a specific subtype of VGSCs. PMID:25218973

  6. Experimental demonstration of an anode voltage sensor for high voltage IGBT over-voltage protection

    NASA Astrophysics Data System (ADS)

    Caramel, C.; Flores, D.; Hidalgo, S.; Legal, J.; Austin, P.; Imbernon, E.; Rebollo, J.; Sánchez, J. L.

    2010-11-01

    This paper deals with the design and fabrication of a monolithically integrated over-voltage sensor together with high voltage IGBTs. This solution will be of interest in harsh environment applications such as power modules for traction. First, the anode voltage sensor concept is introduced and an initial experimental validation on 600 V insulated gate bipolar transistor (IGBT) devices is provided. Then, guidelines for the design of a 3.3 kV IGBT including the proposed anode voltage sensor are pointed out together with its process fabrication. Finally, experimental results on fabricated 3.3 kV IGBTs are presented and compared with simulated expected behaviour.

  7. Electro-optical voltage sensor head

    DOEpatents

    Woods, G.K.

    1998-03-24

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 6 figs.

  8. Electro-optical voltage sensor head

    DOEpatents

    Woods, Gregory K.

    1998-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  9. Biodiversity of voltage sensor domain proteins.

    PubMed

    Okamura, Yasushi

    2007-06-01

    The six-transmembrane type voltage-gated ion channels play an essential role in neuronal excitability, muscle contraction, and secretion. The voltage sensor domain (VSD) is the key element of voltage-gated ion channels for sensing transmembrane potential, and has been studied at the levels of both biophysics and protein structure. Two recently identified proteins containing VSD without a pore domain showed unexpected biological roles: regulation of phosphatase activity and proton permeation. These proteins not only provide novel platforms to understand mechanisms of voltage sensing and ion permeation but also highlight previously unappreciated roles of membrane potential in non-neuronal cells. PMID:17347852

  10. Voltage Sensor in Voltage-gated ion channels

    NASA Astrophysics Data System (ADS)

    Bezanilla, Francisco

    2006-03-01

    Voltage-gated ion channels are intrinsic membrane proteins that play a fundamental role in the generation and propagation of the nerve impulse. Their salient characteristic is that the probability of the ion channel of being open depends steeply on the voltage across the membrane where those channels are inserted. Thus, in a membrane containing many channels, the ionic conductance is controlled by the membrane potential. The voltage exerts its control on the channel by reorienting intrinsic charges in the protein, generally arginine or lysine residues located in the 4th transmembrane segment of the channel protein, a region that has been called the voltage sensor. Upon changing the membrane potential, the charged groups reorient in the field generating a transient current (gating current). The properties of the gating current may be studied with a small number of channels to infer the operation of the sensor at the single molecule level by noise analysis or with a large number of channels to infer the details of the energy landscape the sensor traverses in opening the pore. This information is global in nature and cannot pinpoint the exact origin of the charge movement that generates the gating current. The movement of physical charges in the protein has been inferred with site-directed mutagenesis of the charged residues to histidine that allows the study of proton accessibility. The actual movement has been studied with fluorescence spectroscopy, fluorescence resonance energy transfer. The combined information of site-directed mutagenesis, gating currents, fluorescence studies and emerging crystal structures have started to delineate a physical representation of the conformational changes responsible for voltage sensing that lead to the opening of the conduction pore in voltage-gated ion channels.

  11. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  12. Electro-optic voltage sensor head

    DOEpatents

    Crawford, Thomas M.; Davidson, James R.; Woods, Gregory K.

    1999-01-01

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers.

  13. Electro-optic voltage sensor head

    DOEpatents

    Crawford, T.M.; Davidson, J.R.; Woods, G.K.

    1999-08-17

    The invention is an electro-optic voltage sensor head designed for integration with existing types of high voltage transmission and distribution apparatus. The sensor head contains a transducer, which comprises a transducing material in which the Pockels electro-optic effect is observed. In the practice of the invention at least one beam of electromagnetic radiation is routed into the transducing material of the transducer in the sensor head. The beam undergoes an electro-optic effect in the sensor head when the transducing material is subjected to an E-field. The electro-optic effect is observed as a differential phase a shift, also called differential phase modulation, of the beam components in orthogonal planes of the electromagnetic radiation. In the preferred embodiment the beam is routed through the transducer along an initial axis and then reflected by a retro-reflector back substantially parallel to the initial axis, making a double pass through the transducer for increased measurement sensitivity. The preferred embodiment of the sensor head also includes a polarization state rotator and at least one beam splitter for orienting the beam along major and minor axes and for splitting the beam components into two signals which are independent converse amplitude-modulated signals carrying E-field magnitude and hence voltage information from the sensor head by way of optic fibers. 6 figs.

  14. Electric fingerprint of voltage sensor domains.

    PubMed

    Souza, Caio S; Amaral, Cristiano; Treptow, Werner

    2014-12-01

    A dynamic transmembrane voltage field has been suggested as an intrinsic element in voltage sensor (VS) domains. Here, the dynamic field contribution to the VS energetics was analyzed via electrostatic calculations applied to a number of atomistic structures made available recently. We find that the field is largely static along with the molecular motions of the domain, and more importantly, it is minimally modified across VS variants. This finding implies that sensor domains transfer approximately the same amount of gating charges when moving the electrically charged S4 helix between fixed microscopic configurations. Remarkably, the result means that the observed operational diversity of the domain, including the extension, rate, and voltage dependence of the S4 motion, as dictated by the free energy landscape theory, must be rationalized in terms of dominant variations of its chemical free energy. PMID:25422443

  15. Electric fingerprint of voltage sensor domains

    PubMed Central

    Souza, Caio S.; Amaral, Cristiano; Treptow, Werner

    2014-01-01

    A dynamic transmembrane voltage field has been suggested as an intrinsic element in voltage sensor (VS) domains. Here, the dynamic field contribution to the VS energetics was analyzed via electrostatic calculations applied to a number of atomistic structures made available recently. We find that the field is largely static along with the molecular motions of the domain, and more importantly, it is minimally modified across VS variants. This finding implies that sensor domains transfer approximately the same amount of gating charges when moving the electrically charged S4 helix between fixed microscopic configurations. Remarkably, the result means that the observed operational diversity of the domain, including the extension, rate, and voltage dependence of the S4 motion, as dictated by the free energy landscape theory, must be rationalized in terms of dominant variations of its chemical free energy. PMID:25422443

  16. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2002-01-01

    A small sized electro-optic voltage sensor capable of accurate measurement of high levels of voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation into the sensor. A polarization beam displacer serves as a filter to separate the input beam into two beams with orthogonal linear polarizations. The beam displacer is oriented in such a way as to rotate the linearly polarized beams such that they enter a Pockels crystal having at a preferred angle of 45 degrees. The beam displacer is therefore capable of causing a linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels electro-optic effect induces a differential phase shift on the major and minor axes of the input beam as it travels through the Pockels crystal, which causes the input beam to be elliptically polarized. A reflecting prism redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization representing the major and minor axes. The system may include a detector for converting the output beams into electrical signals, and a signal processor for determining the voltage based on an analysis of the output beams. The output beams are amplitude modulated by the frequency of the electric field and the amplitude of the output beams is proportional to the magnitude of the electric field, which is related to the voltage being measured.

  17. Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents

    PubMed Central

    Moreau, Adrien; Gosselin-Badaroudine, Pascal; Boutjdir, Mohamed; Chahine, Mohamed

    2015-01-01

    Voltage gated sodium channels (Nav) are transmembrane proteins responsible for action potential initiation. Mutations mainly located in the voltage sensor domain (VSD) of Nav1.5, the cardiac sodium channel, have been associated with the development of arrhythmias combined with dilated cardiomyopathy. Gating pore currents have been observed with three unrelated mutations associated with similar clinical phenotypes. However, gating pores have never been associated with mutations outside the first domain of Nav1.5. The aim of this study was to explore the possibility that gating pore currents might be caused by the Nav1.5 R225P and R814W mutations (R3, S4 in DI and DII, respectively), which are associated with rhythm disturbances and dilated cardiomyopathy. Nav1.5 WT and mutant channels were transiently expressed in tsA201 cells. The biophysical properties of the alpha pore currents and the presence of gating pore currents were investigated using the patch-clamp technique. We confirmed the previously reported gain of function of the alpha pores of the mutant channels, which mainly consisted of increased window currents mostly caused by shifts in the voltage dependence of activation. We also observed gating pore currents associated with the R225P and R814W mutations. This novel permeation pathway was open under depolarized conditions and remained temporarily open at hyperpolarized potentials after depolarization periods. Gating pore currents could represent a molecular basis for the development of uncommon electrical abnormalities and changes in cardiac morphology. We propose that this biophysical defect be routinely evaluated in the case of Nav1.5 mutations on the VSD. PMID:26733869

  18. Intermediate state trapping of a voltage sensor

    PubMed Central

    Lacroix, Jérôme J.; Pless, Stephan A.; Maragliano, Luca; Campos, Fabiana V.; Galpin, Jason D.; Ahern, Christopher A.; Roux, Benoît

    2012-01-01

    Voltage sensor domains (VSDs) regulate ion channels and enzymes by undergoing conformational changes depending on membrane electrical signals. The molecular mechanisms underlying the VSD transitions are not fully understood. Here, we show that some mutations of I241 in the S1 segment of the Shaker Kv channel positively shift the voltage dependence of the VSD movement and alter the functional coupling between VSD and pore domains. Among the I241 mutants, I241W immobilized the VSD movement during activation and deactivation, approximately halfway between the resting and active states, and drastically shifted the voltage activation of the ionic conductance. This phenotype, which is consistent with a stabilization of an intermediate VSD conformation by the I241W mutation, was diminished by the charge-conserving R2K mutation but not by the charge-neutralizing R2Q mutation. Interestingly, most of these effects were reproduced by the F244W mutation located one helical turn above I241. Electrophysiology recordings using nonnatural indole derivatives ruled out the involvement of cation-Π interactions for the effects of the Trp inserted at positions I241 and F244 on the channel’s conductance, but showed that the indole nitrogen was important for the I241W phenotype. Insight into the molecular mechanisms responsible for the stabilization of the intermediate state were investigated by creating in silico the mutations I241W, I241W/R2K, and F244W in intermediate conformations obtained from a computational VSD transition pathway determined using the string method. The experimental results and computational analysis suggest that the phenotype of I241W may originate in the formation of a hydrogen bond between the indole nitrogen atom and the backbone carbonyl of R2. This work provides new information on intermediate states in voltage-gated ion channels with an approach that produces minimum chemical perturbation. PMID:23183699

  19. Research and Experiments on a Unipolar Capacitive Voltage Sensor

    PubMed Central

    Zhou, Qiang; He, Wei; Li, Songnong; Hou, Xingzhe

    2015-01-01

    Voltage sensors are an important part of the electric system. In service, traditional voltage sensors need to directly contact a high-voltage charged body. Sensors involve a large volume, complex insulation structures, and high design costs. Typically an iron core structure is adopted. As a result, ferromagnetic resonance can occur easily during practical application. Moreover, owing to the multilevel capacitor divider, the sensor cannot reflect the changes of measured voltage in time. Based on the electric field coupling principle, this paper designs a new voltage sensor; the unipolar structure design solves many problems of traditional voltage sensors like the great insulation design difficulty and high costs caused by grounding electrodes. A differential signal input structure is adopted for the detection circuit, which effectively restrains the influence of the common-mode interference signal. Through sensor modeling, simulation and calculations, the structural design of the sensor electrode was optimized, miniaturization of the sensor was realized, the voltage division ratio of the sensor was enhanced, and the phase difference of sensor measurement was weakened. The voltage sensor is applied to a single-phase voltage class line of 10 kV for testing. According to the test results, the designed sensor is able to meet the requirements of accurate and real-time measurement for voltage of the charged conductor as well as to provide a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system. Therefore, it can satisfy the development demands of the smart power grid. PMID:26307992

  20. Research and Experiments on a Unipolar Capacitive Voltage Sensor.

    PubMed

    Zhou, Qiang; He, Wei; Li, Songnong; Hou, Xingzhe

    2015-01-01

    Voltage sensors are an important part of the electric system. In service, traditional voltage sensors need to directly contact a high-voltage charged body. Sensors involve a large volume, complex insulation structures, and high design costs. Typically an iron core structure is adopted. As a result, ferromagnetic resonance can occur easily during practical application. Moreover, owing to the multilevel capacitor divider, the sensor cannot reflect the changes of measured voltage in time. Based on the electric field coupling principle, this paper designs a new voltage sensor; the unipolar structure design solves many problems of traditional voltage sensors like the great insulation design difficulty and high costs caused by grounding electrodes. A differential signal input structure is adopted for the detection circuit, which effectively restrains the influence of the common-mode interference signal. Through sensor modeling, simulation and calculations, the structural design of the sensor electrode was optimized, miniaturization of the sensor was realized, the voltage division ratio of the sensor was enhanced, and the phase difference of sensor measurement was weakened. The voltage sensor is applied to a single-phase voltage class line of 10 kV for testing. According to the test results, the designed sensor is able to meet the requirements of accurate and real-time measurement for voltage of the charged conductor as well as to provide a new method for electricity larceny prevention and on-line monitoring of the power grid in an electric system. Therefore, it can satisfy the development demands of the smart power grid. PMID:26307992

  1. A Gating Charge Transfer Center in Voltage Sensors

    SciTech Connect

    Tao, X.; Lee, A; Limapichat, W; Dougherty, D; MacKinnon, R

    2010-01-01

    Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switchlike response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings, and x-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic 'cap' and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations, the voltage sensor can be stabilized in different conformations, which enables a dissection of voltage sensor movements and their relation to ion channel opening.

  2. A Gating Charge Transfer Center in Voltage Sensors

    PubMed Central

    Tao, Xiao; Lee, Alice; Limapichat, Walrati; Dougherty, Dennis A.; MacKinnon, Roderick

    2010-01-01

    Voltage sensors regulate the conformations of voltage-dependent ion channels and enzymes. Their nearly switch-like response as a function of membrane voltage comes from the movement of positively charged amino acids, arginine or lysine, across the membrane field. We used mutations with natural and unnatural amino acids, electrophysiological recordings and X-ray crystallography to identify a charge transfer center in voltage sensors that facilitates this movement. This center consists of a rigid cyclic ‘cap’ and two negatively charged amino acids to interact with a positive charge. Specific mutations induce a preference for lysine relative to arginine. By placing lysine at specific locations the voltage sensor can be stabilized in different conformations, thus enabling a dissection of voltage sensor movements and their relationship to ion channel opening. PMID:20360102

  3. Gating-Pore Currents Demonstrate Selective and Specific Modulation of Individual Sodium Channel Voltage-Sensors by Biological Toxins

    PubMed Central

    Xiao, Yucheng; Blumenthal, Kenneth

    2014-01-01

    Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI–DIV) to monitor the activity of individual voltage-sensors and to investigate the molecular determinants of sodium channel pharmacology. The tarantula toxin huwentoxin-IV (HWTX-IV), which inhibits sodium channel current, exclusively enhanced inward gating-pore currents through the DII voltage-sensor. By contrast, the tarantula toxin ProTx-II, which also inhibits sodium channel currents, altered the gating-pore currents in multiple voltage-sensors in a complex manner. Thus, whereas HWTX-IV inhibits central-pore currents by selectively trapping the DII voltage-sensor in the resting configuration, ProTx-II seems to inhibit central-pore currents by differentially altering the configuration of multiple voltage-sensors. The sea anemone toxin anthopleurin B, which impairs open-channel inactivation, exclusively enhanced inward gating-pore currents through the DIV voltage-sensor. This indicates that trapping the DIV voltage-sensor in the resting configuration selectively impairs open-channel inactivation. Furthermore, these data indicate that although activation of all four voltage-sensors is not required for central-pore current generation, activation of the DII voltage-sensor is crucial. Overall, our data demonstrate that gating-pore currents can determine the mechanism of action for sodium channel gating modifiers with high precision. We propose this approach could be adapted to identify the molecular mechanisms of action for gating modifiers of various voltage-gated ion channels. PMID:24898004

  4. Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins.

    PubMed

    Xiao, Yucheng; Blumenthal, Kenneth; Cummins, Theodore R

    2014-08-01

    Voltage-gated sodium channels are critical determinants of nerve and muscle excitability. Although numerous toxins and small molecules target sodium channels, identifying the mechanisms of action is challenging. Here we used gating-pore currents selectively generated in each of the voltage-sensors from the four α-subunit domains (DI-DIV) to monitor the activity of individual voltage-sensors and to investigate the molecular determinants of sodium channel pharmacology. The tarantula toxin huwentoxin-IV (HWTX-IV), which inhibits sodium channel current, exclusively enhanced inward gating-pore currents through the DII voltage-sensor. By contrast, the tarantula toxin ProTx-II, which also inhibits sodium channel currents, altered the gating-pore currents in multiple voltage-sensors in a complex manner. Thus, whereas HWTX-IV inhibits central-pore currents by selectively trapping the DII voltage-sensor in the resting configuration, ProTx-II seems to inhibit central-pore currents by differentially altering the configuration of multiple voltage-sensors. The sea anemone toxin anthopleurin B, which impairs open-channel inactivation, exclusively enhanced inward gating-pore currents through the DIV voltage-sensor. This indicates that trapping the DIV voltage-sensor in the resting configuration selectively impairs open-channel inactivation. Furthermore, these data indicate that although activation of all four voltage-sensors is not required for central-pore current generation, activation of the DII voltage-sensor is crucial. Overall, our data demonstrate that gating-pore currents can determine the mechanism of action for sodium channel gating modifiers with high precision. We propose this approach could be adapted to identify the molecular mechanisms of action for gating modifiers of various voltage-gated ion channels. PMID:24898004

  5. Electro-optic voltage sensor with Multiple Beam Splitting

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.; Crawford, Thomas M.; Davidson, James R.

    2000-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  6. Electro-optic voltage sensor with beam splitting

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.; Davidson, James R.; Crawford, Thomas M.

    2002-01-01

    The invention is a miniature electro-optic voltage sensor system capable of accurate operation at high voltages without use of the dedicated voltage dividing hardware typically found in the prior art. The invention achieves voltage measurement without significant error contributions from neighboring conductors or environmental perturbations. The invention employs a transmitter, a sensor, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor. Within the sensor the beam undergoes the Pockels electro-optic effect. The electro-optic effect produces a modulation of the beam's polarization, which is in turn converted to a pair of independent conversely-amplitude-modulated signals, from which the voltage of the E-field is determined by the signal processor. The use of converse AM signals enables the signal processor to better distinguish signal from noise. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  7. Electrooptic polymer voltage sensor and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Gottsche, Allan (Inventor); Perry, Joseph W. (Inventor)

    1993-01-01

    An optical voltage sensor utilizing an electrooptic polymer is disclosed for application to electric power distribution systems. The sensor, which can be manufactured at low cost in accordance with a disclosed method, measures voltages across a greater range than prior art sensors. The electrooptic polymer, which replaces the optical crystal used in prior art sensors, is sandwiched directly between two high voltage electrodes. Voltage is measured by fiber optical means, and no voltage division is required. The sample of electrooptic polymer is fabricated in a special mold and later mounted in a sensor housing. Alternatively, mold and sensor housing may be identical. The sensor housing is made out of a machinable polymeric material and is equipped with two opposing optical windows. The optical windows are mounted in the bottom of machined holes in the wall of the mold. These holes provide for mounting of the polarizing optical components and for mounting of the fiber optic connectors. One connecting fiber is equipped with a light emitting diode as a light source. Another connecting fiber is equipped with a photodiode as a detector.

  8. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Woods, Gregory K.; Renak, Todd W.

    1999-01-01

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam's polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured.

  9. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Woods, G.K.; Renak, T.W.

    1999-04-06

    A miniature electro-optic voltage sensor system capable of accurate operation at high voltages is disclosed. The system employs a transmitter, a sensor disposed adjacent to but out of direct electrical contact with a conductor on which the voltage is to be measured, a detector, and a signal processor. The transmitter produces a beam of electromagnetic radiation which is routed into the sensor where the beam undergoes the Pockels electro-optic effect. The electro-optic effect causes phase shifting in the beam, which is in turn converted to a pair of independent beams, from which the voltage of a system based on its E-field is determined when the two beams are normalized by the signal processor. The sensor converts the beam by splitting the beam in accordance with the axes of the beam`s polarization state (an ellipse whose ellipticity varies between -1 and +1 in proportion to voltage) into at least two AM signals. These AM signals are fed into a signal processor and processed to determine the voltage between a ground conductor and the conductor on which voltage is being measured. 18 figs.

  10. Ion Channel Voltage Sensors: Structure, Function, and Pathophysiology

    PubMed Central

    Catterall, William A.

    2010-01-01

    Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in NaV1.4 channels is the primary pathophysiological mechanism in Hypokalemic Periodic Paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ionchannel drugs that act on voltage sensors rather than blocking the pore. PMID:20869590

  11. Ion channel voltage sensors: structure, function, and pathophysiology.

    PubMed

    Catterall, William A

    2010-09-23

    Voltage-gated ion channels generate electrical signals in species from bacteria to man. Their voltage-sensing modules are responsible for initiation of action potentials and graded membrane potential changes in response to synaptic input and other physiological stimuli. Extensive structure-function studies, structure determination, and molecular modeling are now converging on a sliding-helix mechanism for electromechanical coupling in which outward movement of gating charges in the S4 transmembrane segments catalyzed by sequential formation of ion pairs pulls the S4-S5 linker, bends the S6 segment, and opens the pore. Impairment of voltage-sensor function by mutations in Na+ channels contributes to several ion channelopathies, and gating pore current conducted by mutant voltage sensors in Na(V)1.4 channels is the primary pathophysiological mechanism in hypokalemic periodic paralysis. The emerging structural model for voltage sensor function opens the way to development of a new generation of ion-channel drugs that act on voltage sensors rather than blocking the pore. PMID:20869590

  12. Functional heterogeneity of the four voltage sensors of a human L-type calcium channel

    PubMed Central

    Pantazis, Antonios; Savalli, Nicoletta; Sigg, Daniel; Neely, Alan; Olcese, Riccardo

    2014-01-01

    Excitation-evoked Ca2+ influx is the fastest and most ubiquitous chemical trigger for cellular processes, including neurotransmitter release, muscle contraction, and gene expression. The voltage dependence and timing of Ca2+ entry are thought to be functions of voltage-gated calcium (CaV) channels composed of a central pore regulated by four nonidentical voltage-sensing domains (VSDs I–IV). Currently, the individual voltage dependence and the contribution to pore opening of each VSD remain largely unknown. Using an optical approach (voltage-clamp fluorometry) to track the movement of the individual voltage sensors, we discovered that the four VSDs of CaV1.2 channels undergo voltage-evoked conformational rearrangements, each exhibiting distinct voltage- and time-dependent properties over a wide range of potentials and kinetics. The voltage dependence and fast kinetic components in the activation of VSDs II and III were compatible with the ionic current properties, suggesting that these voltage sensors are involved in CaV1.2 activation. This view is supported by an obligatory model, in which activation of VSDs II and III is necessary to open the pore. When these data were interpreted in view of an allosteric model, where pore opening is intrinsically independent but biased by VSD activation, VSDs II and III were each found to supply ∼50 meV (∼2 kT), amounting to ∼85% of the total energy, toward stabilizing the open state, with a smaller contribution from VSD I (∼16 meV). VSD IV did not appear to participate in channel opening. PMID:25489110

  13. Phosphatidic acid modulation of Kv channel voltage sensor function.

    PubMed

    Hite, Richard K; Butterwick, Joel A; MacKinnon, Roderick

    2014-01-01

    Membrane phospholipids can function as potent regulators of ion channel function. This study uncovers and investigates the effect of phosphatidic acid on Kv channel gating. Using the method of reconstitution into planar lipid bilayers, in which protein and lipid components are defined and controlled, we characterize two effects of phosphatidic acid. The first is a non-specific electrostatic influence on activation mediated by electric charge density on the extracellular and intracellular membrane surfaces. The second is specific to the presence of a primary phosphate group, acts only through the intracellular membrane leaflet and depends on the presence of a particular arginine residue in the voltage sensor. Intracellular phosphatidic acid accounts for a nearly 50 mV shift in the midpoint of the activation curve in a direction consistent with stabilization of the voltage sensor's closed conformation. These findings support a novel mechanism of voltage sensor regulation by the signaling lipid phosphatidic acid. PMID:25285449

  14. Time varying voltage combustion control and diagnostics sensor

    DOEpatents

    Chorpening, Benjamin T.; Thornton, Jimmy D.; Huckaby, E. David; Fincham, William

    2011-04-19

    A time-varying voltage is applied to an electrode, or a pair of electrodes, of a sensor installed in a fuel nozzle disposed adjacent the combustion zone of a continuous combustion system, such as of the gas turbine engine type. The time-varying voltage induces a time-varying current in the flame which is measured and used to determine flame capacitance using AC electrical circuit analysis. Flame capacitance is used to accurately determine the position of the flame from the sensor and the fuel/air ratio. The fuel and/or air flow rate (s) is/are then adjusted to provide reduced flame instability problems such as flashback, combustion dynamics and lean blowout, as well as reduced emissions. The time-varying voltage may be an alternating voltage and the time-varying current may be an alternating current.

  15. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  16. Temperature Induced Voltage Offset Drifts in Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Lukco, Dorothy; Nguyen, Vu; Savrun, Ender

    2012-01-01

    We report the reduction of transient drifts in the zero pressure offset voltage in silicon carbide (SiC) pressure sensors when operating at 600 C. The previously observed maximum drift of +/- 10 mV of the reference offset voltage at 600 C was reduced to within +/- 5 mV. The offset voltage drifts and bridge resistance changes over time at test temperature are explained in terms of the microstructure and phase changes occurring within the contact metallization, as analyzed by Auger electron spectroscopy and field emission scanning electron microscopy. The results have helped to identify the upper temperature reliable operational limit of this particular metallization scheme to be 605 C.

  17. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions.

    PubMed

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B; Baker, Bradley J

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different "Nabi1" constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  18. Developing Fast Fluorescent Protein Voltage Sensors by Optimizing FRET Interactions

    PubMed Central

    Sung, Uhna; Sepehri-Rad, Masoud; Piao, Hong Hua; Jin, Lei; Hughes, Thomas; Cohen, Lawrence B.; Baker, Bradley J.

    2015-01-01

    FRET (Förster Resonance Energy Transfer)-based protein voltage sensors can be useful for monitoring neuronal activity in vivo because the ratio of signals between the donor and acceptor pair reduces common sources of noise such as heart beat artifacts. We improved the performance of FRET based genetically encoded Fluorescent Protein (FP) voltage sensors by optimizing the location of donor and acceptor FPs flanking the voltage sensitive domain of the Ciona intestinalis voltage sensitive phosphatase. First, we created 39 different “Nabi1” constructs by positioning the donor FP, UKG, at 8 different locations downstream of the voltage-sensing domain and the acceptor FP, mKO, at 6 positions upstream. Several of these combinations resulted in large voltage dependent signals and relatively fast kinetics. Nabi1 probes responded with signal size up to 11% ΔF/F for a 100 mV depolarization and fast response time constants both for signal activation (~2 ms) and signal decay (~3 ms). We improved expression in neuronal cells by replacing the mKO and UKG FRET pair with Clover (donor FP) and mRuby2 (acceptor FP) to create Nabi2 probes. Nabi2 probes also had large signals and relatively fast time constants in HEK293 cells. In primary neuronal culture, a Nabi2 probe was able to differentiate individual action potentials at 45 Hz. PMID:26587834

  19. Optical fiber voltage sensors for broad temperature ranges

    NASA Astrophysics Data System (ADS)

    Rose, A. H.; Day, G. W.

    1992-12-01

    We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.

  20. Optical fiber voltage sensors for broad temperature ranges

    NASA Technical Reports Server (NTRS)

    Rose, A. H.; Day, G. W.

    1992-01-01

    We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.

  1. Structural interactions of a voltage sensor toxin with lipid membranes

    PubMed Central

    Mihailescu, Mihaela; Krepkiy, Dmitriy; Milescu, Mirela; Gawrisch, Klaus; Swartz, Kenton J.; White, Stephen

    2014-01-01

    Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor. PMID:25453087

  2. Structural interactions of a voltage sensor toxin with lipid membranes.

    PubMed

    Mihailescu, Mihaela; Krepkiy, Dmitriy; Milescu, Mirela; Gawrisch, Klaus; Swartz, Kenton J; White, Stephen

    2014-12-16

    Protein toxins from tarantula venom alter the activity of diverse ion channel proteins, including voltage, stretch, and ligand-activated cation channels. Although tarantula toxins have been shown to partition into membranes, and the membrane is thought to play an important role in their activity, the structural interactions between these toxins and lipid membranes are poorly understood. Here, we use solid-state NMR and neutron diffraction to investigate the interactions between a voltage sensor toxin (VSTx1) and lipid membranes, with the goal of localizing the toxin in the membrane and determining its influence on membrane structure. Our results demonstrate that VSTx1 localizes to the headgroup region of lipid membranes and produces a thinning of the bilayer. The toxin orients such that many basic residues are in the aqueous phase, all three Trp residues adopt interfacial positions, and several hydrophobic residues are within the membrane interior. One remarkable feature of this preferred orientation is that the surface of the toxin that mediates binding to voltage sensors is ideally positioned within the lipid bilayer to favor complex formation between the toxin and the voltage sensor. PMID:25453087

  3. Low voltage pentacene OTFT integration for smart sensor control circuits

    NASA Astrophysics Data System (ADS)

    Kumar, Prashanth S.; Rai, Pratyush; Mathur, Gyanesh N.; Varadan, Vijay K.

    2010-04-01

    The past decade has witnessed remarkable progress in Organic electronics and Organic sensor technology on flexible substrates. Temperature and strain sensors for wireless active health monitoring systems have been tested and demonstrated. These sensors need control circuits to condition and transmit the measurand to the data acquisition system. The control circuits have to be incorporated on to the same substrate as the sensing element. So far, Pentacene based Organic Thin-Film Transistors (OTFTs) have been the most promising candidates for integrated circuit applications. To this end, optimization of the OTFT fabrication process is needed to obtain reliable and reproducible transistor performance in terms of mobility, threshold voltage, drive currents, minimal supply voltage and minimal leakage currents. The objective here is to minimize the leakage losses and the voltage required to drive this circuitry while maintaining process compatibility. The choice of dielectric material has been proven to be a key factor influencing all the desirable characteristics stated above. This paper investigates the feasibility of using a High K/Low K, Tantalum Pentoxide/Poly (4-vinyl phenol) (PVP) hybrid dielectric in Pentacene-based OTFTs to lower the operating voltages. Inverters and simple logic gates like 2-input NAND are simulated with these OTFTs. The results indicate that these OTFTs can indeed be used to build large scale integrated circuits with reproducibility.

  4. Voltage-Biased Magnetic Sensors Based on Tuned Varistors

    NASA Astrophysics Data System (ADS)

    Pandey, R. K.; Stapleton, William. A.; Sutanto, Ivan; Shamsuzzoha, M.

    2015-04-01

    In this paper, we explore the possibility of finding practical applications when the nonlinear current-voltage ( I- V) characteristics of a varistor are modified by the application of external magnetic fields. With this goal in mind, varistors based on a pseudobrookite oxide semiconductor have been studied. Pseudobrookite (PsB) is a wide bandgap n-type semiconductor with the bandgap of 2.77 eV. It is also weakly ferromagnetic. The "voltage-dependent resistor" (VDR) mode of the magnetically-tuned pseudobrookite varistors offers an opportunity to advance magnetic sensor technology. The resistive and magnetoresistive parameters of PsB VDRs exhibit good responses to applied magnetic fields and they can therefore be the basis for the fabrication of simple yet practical magnetic sensors. These sensors can cover the range of magnetic fields between 0 and 4500 Oe with good accuracy, and could possibly be considered as a substitute for Hall Effect-based sensors for many applications. Also, due to their simple structure, they would be rugged and not susceptible to abuses. They may also be suitable for applications in hazardous environments such as high temperatures and atmospheres having the presence of radiation, such as neutrons, protons, etc. It is also possible that these novel sensors could be suitable for geological applications such as in well logging in search of energy sources.

  5. Phosphatidic acid modulation of Kv channel voltage sensor function

    PubMed Central

    Hite, Richard K; Butterwick, Joel A; MacKinnon, Roderick

    2014-01-01

    Membrane phospholipids can function as potent regulators of ion channel function. This study uncovers and investigates the effect of phosphatidic acid on Kv channel gating. Using the method of reconstitution into planar lipid bilayers, in which protein and lipid components are defined and controlled, we characterize two effects of phosphatidic acid. The first is a non-specific electrostatic influence on activation mediated by electric charge density on the extracellular and intracellular membrane surfaces. The second is specific to the presence of a primary phosphate group, acts only through the intracellular membrane leaflet and depends on the presence of a particular arginine residue in the voltage sensor. Intracellular phosphatidic acid accounts for a nearly 50 mV shift in the midpoint of the activation curve in a direction consistent with stabilization of the voltage sensor's closed conformation. These findings support a novel mechanism of voltage sensor regulation by the signaling lipid phosphatidic acid. DOI: http://dx.doi.org/10.7554/eLife.04366.001 PMID:25285449

  6. Design and Simulation Test of an Open D-Dot Voltage Sensor.

    PubMed

    Bai, Yunjie; Wang, Jingang; Wei, Gang; Yang, Yongming

    2015-01-01

    Nowadays, sensor development focuses on miniaturization and non-contact measurement. According to the D-dot principle, a D-dot voltage sensor with a new structure was designed based on the differential D-dot sensor with a symmetrical structure, called an asymmetric open D-dot voltage sensor. It is easier to install. The electric field distribution of the sensor was analyzed through Ansoft Maxwell and an open D-dot voltage sensor was designed. This open D-voltage sensor is characteristic of accessible insulating strength and small electric field distortion. The steady and transient performance test under 10 kV-voltage reported satisfying performances of the designed open D-dot voltage sensor. It conforms to requirements for a smart grid measuring sensor in intelligence, miniaturization and facilitation. PMID:26393590

  7. Design and Simulation Test of an Open D-Dot Voltage Sensor

    PubMed Central

    Bai, Yunjie; Wang, Jingang; Wei, Gang; Yang, Yongming

    2015-01-01

    Nowadays, sensor development focuses on miniaturization and non-contact measurement. According to the D-dot principle, a D-dot voltage sensor with a new structure was designed based on the differential D-dot sensor with a symmetrical structure, called an asymmetric open D-dot voltage sensor. It is easier to install. The electric field distribution of the sensor was analyzed through Ansoft Maxwell and an open D-dot voltage sensor was designed. This open D-voltage sensor is characteristic of accessible insulating strength and small electric field distortion. The steady and transient performance test under 10 kV-voltage reported satisfying performances of the designed open D-dot voltage sensor. It conforms to requirements for a smart grid measuring sensor in intelligence, miniaturization and facilitation. PMID:26393590

  8. Two Separate Interfaces between the Voltage Sensor and Pore Are Required for the Function of Voltage-Dependent K+ Channels

    PubMed Central

    MacKinnon, Roderick

    2009-01-01

    Voltage-dependent K+ (Kv) channels gate open in response to the membrane voltage. To further our understanding of how cell membrane voltage regulates the opening of a Kv channel, we have studied the protein interfaces that attach the voltage-sensor domains to the pore. In the crystal structure, three physical interfaces exist. Only two of these consist of amino acids that are co-evolved across the interface between voltage sensor and pore according to statistical coupling analysis of 360 Kv channel sequences. A first co-evolved interface is formed by the S4-S5 linkers (one from each of four voltage sensors), which form a cuff surrounding the S6-lined pore opening at the intracellular surface. The crystal structure and published mutational studies support the hypothesis that the S4-S5 linkers convert voltage-sensor motions directly into gate opening and closing. A second co-evolved interface forms a small contact surface between S1 of the voltage sensor and the pore helix near the extracellular surface. We demonstrate through mutagenesis that this interface is necessary for the function and/or structure of two different Kv channels. This second interface is well positioned to act as a second anchor point between the voltage sensor and the pore, thus allowing efficient transmission of conformational changes to the pore's gate. PMID:19260762

  9. Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor

    PubMed Central

    Wang, Jinti; Yarov-Yarovoy, Vladimir; Kahn, Roy; Gordon, Dalia; Gurevitz, Michael; Scheuer, Todd; Catterall, William A.

    2011-01-01

    The α-scorpions toxins bind to the resting state of Na+ channels and inhibit fast inactivation by interaction with a receptor site formed by domains I and IV. Mutants T1560A, F1610A, and E1613A in domain IV had lower affinities for Leiurus quinquestriatus hebraeus toxin II (LqhII), and mutant E1613R had ∼73-fold lower affinity. Toxin dissociation was accelerated by depolarization and increased by these mutations, whereas association rates at negative membrane potentials were not changed. These results indicate that Thr1560 in the S1-S2 loop, Phe1610 in the S3 segment, and Glu1613 in the S3-S4 loop in domain IV participate in toxin binding. T393A in the SS2-S6 loop in domain I also had lower affinity for LqhII, indicating that this extracellular loop may form a secondary component of the receptor site. Analysis with the Rosetta-Membrane algorithm resulted in a model of LqhII binding to the voltage sensor in a resting state, in which amino acid residues in an extracellular cleft formed by the S1-S2 and S3-S4 loops in domain IV interact with two faces of the wedge-shaped LqhII molecule. The conserved gating charges in the S4 segment are in an inward position and form ion pairs with negatively charged amino acid residues in the S2 and S3 segments of the voltage sensor. This model defines the structure of the resting state of a voltage sensor of Na+ channels and reveals its mode of interaction with a gating modifier toxin. PMID:21876146

  10. Electro-optic voltage sensor for sensing voltage in an E-field

    DOEpatents

    Davidson, James R.; Crawford, Thomas M.; Seifert, Gary D.

    2002-03-26

    A miniature electro-optic voltage sensor and system capable of accurate operation at high voltages has a sensor body disposed in an E-field. The body receives a source beam of electromagnetic radiation. A polarization beam displacer separates the source light beam into two beams with orthogonal linear polarizations. A wave plate rotates the linear polarization to rotated polarization. A transducer utilizes Pockels electro-optic effect and induces a differential phase shift on the major and minor axes of the rotated polarization in response to the E-field. A prism redirects the beam back through the transducer, wave plate, and polarization beam displacer. The prism also converts the rotated polarization to circular or elliptical polarization. The wave plate rotates the major and minor axes of the circular or elliptical polarization to linear polarization. The polarization beam displacer separates the beam into two beams of orthogonal linear polarization representing the major and minor axes. The system may have a transmitter for producing the beam of electro-magnetic radiation; a detector for converting the two beams into electrical signals; and a signal processor for determining the voltage.

  11. Development of Isolated Travel Sensor for High-voltage Switchgear

    NASA Astrophysics Data System (ADS)

    Shiratsuki, Akihide; Mori, Tomohito; Kohyama, Haruhiko; Nakajima, Hajime; Nakashima, Toshiro; Oka, Toru; Sumi, Kazuhiko

    Because a contact travel can show a trend of operating condition of high voltage switchgears, it is utilized as an important parameter for not only monitoring or diagnostic system but also intelligent controls such as controlled switching systems to eliminate harmful switching transients. Potential meters or encoders are usually applied for this purpose, but it requires modification of moving parts that is not acceptable in some types of switchgears especially for retrofit work in fields. This paper describes a development of a compact and isolated type travel sensor, which can be easily installed in switchgear cabinets, and evaluation test results using prototype mounted in actual switchgear.

  12. Voltage-Current Characteristics of Plasma Pressure Sensor

    NASA Astrophysics Data System (ADS)

    Matlis, Eric; Corke, Thomas; Marshall, Curtis; Gogineni, Sivaram; University of Notre Dame Team; Spectral Energies Team

    2012-11-01

    A pressure sensor based on the use of plasma as the sensing element is being developed. This is an AC-driven, continuous-wave plasma which is encapsulated between two metallic bare electrodes with a small air gap on the order of 0.03 mm. The sensor uses a non-equilibrium discharge at less than 20 Watts of power. This devices features an amplitude modulated carrier to measure both mean and dynamic pressure. The frequency response is limited only by the carrier frequency which can be as high as 1 MHz. Glow-to-Arc transition is controlled with the use of a capacitive and resistive circuit in series with the discharge. A pressure chamber is used to document the plasma power characteristics as the ambient pressure is controlled from atmospheric to 100 psi. Plasma power is controlled so as to maintain the plasma in the normal and abnormal glow regimes. The phase angle between voltage and current is recorded as a function of pressure. This analysis will aid in the development of a feedback control and calibration of the pressure sensor. NavAir SBIR.

  13. Voltage sensor ring in a native structure of a membrane-embedded potassium channel

    PubMed Central

    Shi, Liang; Zheng, Hongjin; Zheng, Hui; Borkowski, Brian A.; Shi, Dan; Gonen, Tamir; Jiang, Qiu-Xing

    2013-01-01

    Voltage-gated ion channels support electrochemical activity in cells and are largely responsible for information flow throughout the nervous systems. The voltage sensor domains in these channels sense changes in transmembrane potential and control ion flux across membranes. The X-ray structures of a few voltage-gated ion channels in detergents have been determined and have revealed clear structural variations among their respective voltage sensor domains. More recent studies demonstrated that lipids around a voltage-gated channel could directly alter its conformational state in membrane. Because of these disparities, the structural basis for voltage sensing in native membranes remains elusive. Here, through electron-crystallographic analysis of membrane-embedded proteins, we present the detailed view of a voltage-gated potassium channel in its inactivated state. Contrary to all known structures of voltage-gated ion channels in detergents, our data revealed a unique conformation in which the four voltage sensor domains of a voltage-gated potassium channel from Aeropyrum pernix (KvAP) form a ring structure that completely surrounds the pore domain of the channel. Such a structure is named the voltage sensor ring. Our biochemical and electrophysiological studies support that the voltage sensor ring represents a physiological conformation. These data together suggest that lipids exert strong effects on the channel structure and that these effects may be changed upon membrane disruption. Our results have wide implications for lipid–protein interactions in general and for the mechanism of voltage sensing in particular. PMID:23401554

  14. Voltage-dependent K+ channel gating and voltage sensor toxin sensitivity depend on the mechanical state of the lipid membrane

    PubMed Central

    Schmidt, Daniel; MacKinnon, Roderick

    2008-01-01

    Voltage-dependent K+ (Kv) channels underlie action potentials through gating conformational changes that are driven by membrane voltage. In this study of the paddle chimera Kv channel, we demonstrate that the rate of channel opening, the voltage dependence of the open probability, and the maximum achievable open probability depend on the lipid membrane environment. The activity of the voltage sensor toxin VsTx1, which interferes with voltage-dependent gating by partitioning into the membrane and binding to the channel, also depends on the membrane. Membrane environmental factors that influence channel function are divisible into two general categories: lipid compositional and mechanical state. The mechanical state can have a surprisingly large effect on the function of a voltage-dependent K+ channel, including its pharmacological interaction with voltage sensor toxins. The dependence of VSTx1 activity on the mechanical state of the membrane leads us to hypothesize that voltage sensor toxins exert their effect by perturbing the interaction forces that exist between the channel and the membrane. PMID:19050073

  15. Phosphatase activity of the voltage-sensing phosphatase, VSP, shows graded dependence on the extent of activation of the voltage sensor.

    PubMed

    Sakata, Souhei; Okamura, Yasushi

    2014-03-01

    The voltage-sensing phosphatase (VSP) consists of a voltage sensor and a cytoplasmic phosphatase region, and the movement of the voltage sensor is coupled to the phosphatase activity. However, its coupling mechanisms still remain unclear. One possible scenario is that the phosphatase is activated only when the voltage sensor is in a fully activated state. Alternatively, the enzymatic activity of single VSP proteins could be graded in distinct activated states of the voltage sensor, and partial activation of the voltage sensor could lead to partial activation of the phosphatase. To distinguish between these two possibilities, we studied a voltage sensor mutant of zebrafish VSP, where the voltage sensor moves in two steps as evidenced by analyses of charge movements of the voltage sensor and voltage clamp fluorometry. Measurements of the phosphatase activity toward phosphatidylinositol 4,5-bisphosphate revealed that both steps of voltage sensor activation are coupled to the tuning of phosphatase activities, consistent with the idea that the phosphatase activity is graded by the magnitude of the movement of the voltage sensor. PMID:24277865

  16. Non-contact current and voltage sensor having detachable housing incorporating multiple ferrite cylinder portions

    DOEpatents

    Carpenter, Gary D.; El-Essawy, Wael; Ferreira, Alexandre Peixoto; Keller, Thomas Walter; Rubio, Juan C.; Schappert, Michael A.

    2016-04-26

    A detachable current and voltage sensor provides an isolated and convenient device to measure current passing through a conductor such as an AC branch circuit wire, as well as providing an indication of an electrostatic potential on the wire, which can be used to indicate the phase of the voltage on the wire, and optionally a magnitude of the voltage. The device includes a housing formed from two portions that mechanically close around the wire and that contain the current and voltage sensors. The current sensor is a ferrite cylinder formed from at least three portions that form the cylinder when the sensor is closed around the wire with a hall effect sensor disposed in a gap between two of the ferrite portions along the circumference to measure current. A capacitive plate or wire is disposed adjacent to, or within, the ferrite cylinder to provide the indication of the voltage.

  17. Field Test of Fiber-Optic Voltage and Current Sensors Applied to Gas Insulated Substation

    NASA Astrophysics Data System (ADS)

    Kuroda, Y.; Abe, Y.; Kuwahara, H.; Yoshinaga, K.

    1986-08-01

    The fiber-optic voltage and current sensors applied for 84kV three phase type gas insulated substation (GIS) were tested in order to see the advantages of these sensors practically in adverse field condition. The application technologies and field endurance test results of the sensors are described in this paper.

  18. Voltage-Dependent Gating in a “Voltage Sensor-Less” Ion Channel

    PubMed Central

    Kurata, Harley T.; Rapedius, Markus; Kleinman, Marc J.; Baukrowitz, Thomas .; Nichols, Colin G.

    2010-01-01

    The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a “ligand-gated” K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels. PMID:20208975

  19. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line.

    PubMed

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-01-01

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid. PMID:26729119

  20. Study and Experiment on Non-Contact Voltage Sensor Suitable for Three-Phase Transmission Line

    PubMed Central

    Zhou, Qiang; He, Wei; Xiao, Dongping; Li, Songnong; Zhou, Kongjun

    2015-01-01

    A voltage transformer, as voltage signal detection equipment, plays an important role in a power system. Presently, more and more electric power systems are adopting potential transformer and capacitance voltage transformers. Transformers are often large in volume and heavyweight, their insulation design is difficult, and an iron core or multi-grade capacitance voltage division structure is generally adopted. As a result, the detection accuracy of transformer is reduced, a huge phase difference exists between detection signal and voltage signal to be measured, and the detection signal cannot accurately and timely reflect the change of conductor voltage signal to be measured. By aiming at the current problems of electric transformation, based on electrostatic induction principle, this paper designed a non-contact voltage sensor and gained detection signal of the sensor through electrostatic coupling for the electric field generated by electric charges of the conductor to be measured. The insulation structure design of the sensor is simple and its volume is small; phase difference of sensor measurement is effectively reduced through optimization design of the electrode; and voltage division ratio and measurement accuracy are increased. The voltage sensor was tested on the experimental platform of simulating three-phase transmission line. According to the result, the designed non-contact voltage sensor can realize accurate and real-time measurement for the conductor voltage. It can be applied to online monitoring for the voltage of three-phase transmission line or three-phase distribution network line, which is in accordance with the development direction of the smart grid. PMID:26729119

  1. Direct Interaction between the Voltage Sensors Produces Cooperative Sustained Deactivation in Voltage-gated H+ Channel Dimers.

    PubMed

    Okuda, Hiroko; Yonezawa, Yasushige; Takano, Yu; Okamura, Yasushi; Fujiwara, Yuichiro

    2016-03-11

    The voltage-gated H(+) channel (Hv) is a voltage sensor domain-like protein consisting of four transmembrane segments (S1-S4). The native Hv structure is a homodimer, with the two channel subunits functioning cooperatively. Here we show that the two voltage sensor S4 helices within the dimer directly cooperate via a π-stacking interaction between Trp residues at the middle of each segment. Scanning mutagenesis showed that Trp situated around the original position provides the slow gating kinetics characteristic of the dimer's cooperativity. Analyses of the Trp mutation on the dimeric and monomeric channel backgrounds and analyses with tandem channel constructs suggested that the two Trp residues within the dimer are functionally coupled during Hv deactivation but are less so during activation. Molecular dynamics simulation also showed direct π-stacking of the two Trp residues. These results provide new insight into the cooperative function of voltage-gated channels, where adjacent voltage sensor helices make direct physical contact and work as a single unit according to the gating process. PMID:26755722

  2. Hybrid fiber optic voltage sensor for remote monitoring of electrical submersible pump motors

    NASA Astrophysics Data System (ADS)

    Dziuda, L.; Niewczas, Pawel; Fusiek, G.; McDonald, James R.

    2005-06-01

    We report on the design and experimental evaluation of the hybrid fiber Bragg grating (FBG) piezoelectric voltage sensor developed specifically for remote monitoring of electrical submersible pump (ESP) motors. Unlike a previously reported transducer based on a single piezoelectric element, the voltage rating of the presented device could be as low as 500 V due to the use of a multilayer piezoelectric stack as the primary voltage-to-strain transducer. This enables the use of such sensors across a wider range of ESP applications, which often have subkilovolt voltage ratings. In addition to the design details, we present details of the full characterization of the device, including the hysteresis and temperature-dependence characteristics and discuss ways of eliminating or reducing these effects. We also demonstrate that the sensor can be used to simultaneously measure voltage and temperature.

  3. A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom

    NASA Astrophysics Data System (ADS)

    Lee, Seok-Yong; MacKinnon, Roderick

    2004-07-01

    Venomous animals produce small protein toxins that inhibit ion channels with high affinity. In several well-studied cases the inhibitory proteins are water-soluble and bind at a channel's aqueous-exposed extracellular surface. Here we show that a voltage-sensor toxin (VSTX1) from the Chilean Rose Tarantula (Grammostola spatulata) reaches its target by partitioning into the lipid membrane. Lipid membrane partitioning serves two purposes: to localize the toxin in the membrane where the voltage sensor resides and to exploit the free energy of partitioning to achieve apparent high-affinity inhibition. VSTX1, small hydrophobic poisons and anaesthetic molecules reveal a common theme of voltage sensor inhibition through lipid membrane access. The apparent requirement for such access is consistent with the recent proposal that the sensor in voltage-dependent K+ channels is located at the membrane-protein interface.

  4. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a

    NASA Astrophysics Data System (ADS)

    Bende, Niraj S.; Dziemborowicz, Sławomir; Mobli, Mehdi; Herzig, Volker; Gilchrist, John; Wagner, Jordan; Nicholson, Graham M.; King, Glenn F.; Bosmans, Frank

    2014-07-01

    β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1-S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, a concept that will be valuable for the design of insect-selective insecticides.

  5. A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a

    PubMed Central

    Bende, Niraj S; Dziemborowicz, Slawomir; Mobli, Mehdi; Herzig, Volker; Gilchrist, John; Wagner, Jordan; Nicholson, Graham M; King, Glenn F; Bosmans, Frank

    2014-01-01

    β-Diguetoxin-Dc1a (Dc1a) is a toxin from the desert bush spider Diguetia canities that incapacitates insects at concentrations that are non-toxic to mammals. Dc1a promotes opening of German cockroach voltage-gated sodium (Nav) channels (BgNav1), whereas human Nav channels are insensitive. Here, by transplanting commonly targeted S3b-S4 paddle motifs within BgNav1 voltage sensors into Kv2.1, we find that Dc1a interacts with the domain II voltage sensor. In contrast, Dc1a has little effect on sodium currents mediated by PaNav1 channels from the American cockroach even though their domain II paddle motifs are identical. When exploring regions responsible for PaNav1 resistance to Dc1a, we identified two residues within the BgNav1 domain II S1–S2 loop that when mutated to their PaNav1 counterparts drastically reduce toxin susceptibility. Overall, our results reveal a distinct region within insect Nav channels that helps determine Dc1a sensitivity, aconcept that will be valuable for the design of insect-selective insecticides. PMID:25014760

  6. Results of the 2015 testbeam of a 180 nm AMS High-Voltage CMOS sensor prototype

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Bilbao de Mendizabal, J.; Casse, G.; Chen, H.; Chen, K.; Di Bello, F. A.; Ferrere, D.; Golling, T.; Gonzalez-Sevilla, S.; Iacobucci, G.; Lanni, F.; Liu, H.; Meloni, F.; Meng, L.; Miucci, A.; Muenstermann, D.; Nessi, M.; Perić, I.; Rimoldi, M.; Ristic, B.; Barrero Pinto, M. Vicente; Vossebeld, J.; Weber, M.; Wu, W.; Xu, L.

    2016-07-01

    Active pixel sensors based on the High-Voltage CMOS technology are being investigated as a viable option for the future pixel tracker of the ATLAS experiment at the High-Luminosity LHC. This paper reports on the testbeam measurements performed at the H8 beamline of the CERN Super Proton Synchrotron on a High-Voltage CMOS sensor prototype produced in 180 nm AMS technology. Results in terms of tracking efficiency and timing performance, for different threshold and bias conditions, are shown.

  7. Normal-zone detection in tokamak superconducting magnets with Co- wound voltage sensors

    SciTech Connect

    Martovetsky, N.N.; Chaplin, M.R.

    1995-06-08

    This paper discusses advantages and disadvantages of different locations of co-wound voltage sensors for quench detection in tokamak magnets with a cable-in-conduit conductor. The voltage sensor locations are analyzed and estimates of the anticipated noise vs. dB/dt are derived for transverse, parallel, and self fields. The LLNL Noise Rejection Experiment, also described here, is designed to verify theoretical expectations on a copper cable exposed to these fields that will simulate the tokamak field environment.

  8. Multiple pore conformations driven by asynchronous movements of voltage sensors in a eukaryotic sodium channel

    PubMed Central

    Goldschen-Ohm, Marcel P.; Capes, Deborah L.; Oelstrom, Kevin M.; Chanda, Baron

    2013-01-01

    Voltage-dependent Na+ channels are crucial for electrical signalling in excitable cells. Membrane depolarization initiates asynchronous movements in four non-identical voltage-sensing domains of the Na+ channel. It remains unclear to what extent this structural asymmetry influences pore gating as compared with outwardly rectifying K+ channels, where channel opening results from a final concerted transition of symmetric pore gates. Here we combine single channel recordings, cysteine accessibility and voltage clamp fluorimetry to probe the relationships between voltage sensors and pore conformations in an inactivation deficient Nav1.4 channel. We observe three distinct conductance levels such that DI-III voltage sensor activation is kinetically correlated with formation of a fully open pore, whereas DIV voltage sensor movement underlies formation of a distinct subconducting pore conformation preceding inactivation in wild-type channels. Our experiments reveal that pore gating in sodium channels involves multiple transitions driven by asynchronous movements of voltage sensors. These findings shed new light on the mechanism of coupling between activation and fast inactivation in voltage-gated sodium channels. PMID:23322038

  9. TAMDAR Sensor Validation in 2003 AIRS II

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.; Murray, John J.; Anderson, Mark V.; Mulally, Daniel J.; Jensen, Kristopher R.; Grainger, Cedric A.; Delene, David J.

    2005-01-01

    This study entails an assessment of TAMDAR in situ temperature, relative humidity and winds sensor data from seven flights of the UND Citation II. These data are undergoing rigorous assessment to determine their viability to significantly augment domestic Meteorological Data Communications Reporting System (MDCRS) and the international Aircraft Meteorological Data Reporting (AMDAR) system observational databases to improve the performance of regional and global numerical weather prediction models. NASA Langley Research Center participated in the Second Alliance Icing Research Study from November 17 to December 17, 2003. TAMDAR data taken during this period is compared with validation data from the UND Citation. The data indicate acceptable performance of the TAMDAR sensor when compared to measurements from the UND Citation research instruments.

  10. Breakdown voltage reduction by field emission in multi-walled carbon nanotubes based ionization gas sensor

    SciTech Connect

    Saheed, M. Shuaib M.; Muti Mohamed, Norani; Arif Burhanudin, Zainal

    2014-03-24

    Ionization gas sensors using vertically aligned multi-wall carbon nanotubes (MWCNT) are demonstrated. The sharp tips of the nanotubes generate large non-uniform electric fields at relatively low applied voltage. The enhancement of the electric field results in field emission of electrons that dominates the breakdown mechanism in gas sensor with gap spacing below 14 μm. More than 90% reduction in breakdown voltage is observed for sensors with MWCNT and 7 μm gap spacing. Transition of breakdown mechanism, dominated by avalanche electrons to field emission electrons, as decreasing gap spacing is also observed and discussed.

  11. Contributions of Counter-Charge in a Potassium Channel Voltage-Sensor Domain

    PubMed Central

    Pless, Stephan A.; Galpin, Jason D.; Niciforovic, Ana P.; Ahern, Christopher A.

    2016-01-01

    Voltage-sensor domains couple membrane potential to conformational changes in voltage-gated ion channels and phosphatases. Highly co-evolved acidic and aromatic side-chains assist the transfer of cationic side-chains across the transmembrane electric field during voltage-sensing. We investigated the functional contribution of negative electrostatic potentials from these residues to channel gating and voltage-sensing with unnatural amino acid mutagenesis, electrophysiology, voltage-clamp fluorometry and ab initio calculations. The data show that neutralization of two conserved acidic side-chains in transmembrane segments S2 and S3, Glu293 and Asp316 in Shaker potassium channels, have little functional effect on conductance-voltage relationships, although Glu293 appears to catalyze S4 movement. Our results suggest that neither Glu293 nor Asp316 engages in electrostatic state-dependent charge-charge interactions with S4, likely because they occupy, and possibly help create, a water-filled vestibule. PMID:21785425

  12. Interactions between voltage sensor and pore domains in a hERG K+ channel model from molecular simulations and the effects of a voltage sensor mutation.

    PubMed

    Colenso, Charlotte K; Sessions, Richard B; Zhang, Yi H; Hancox, Jules C; Dempsey, Christopher E

    2013-06-24

    The hERG K(+) channel is important for establishing normal electrical activity in the human heart. The channel's unique gating response to membrane potential changes indicates specific interactions between voltage sensor and pore domains that are poorly understood. In the absence of a crystal structure we constructed a homology model of the full hERG membrane domain and performed 0.5 μs molecular dynamics (MD) simulations in a hydrated membrane. The simulations identify potential interactions involving residues at the extracellular surface of S1 in the voltage sensor and at the N-terminal end of the pore helix in the hERG model. In addition, a diffuse interface involving hydrophobic residues on S4 (voltage sensor) and pore domain S5 of an adjacent subunit was stable during 0.5 μs of simulation. To assess the ability of the model to give insight into the effects of channel mutation we simulated a hERG mutant that contains a Leu to Pro substitution in the voltage sensor S4 helical segment (hERG L532P). Consistent with the retention of gated K(+) conductance, the L532P mutation was accommodated in the S4 helix with little disruption of helical structure. The mutation reduced the extent of interaction across the S4-S5 interface, suggesting a structural basis for the greatly enhanced deactivation rate in hERG L532P. The study indicates that pairwise comparison of wild-type and mutated channel models is a useful approach to interpreting functional data where uncertainty in model structures exist. PMID:23672495

  13. KCNE1 divides the voltage sensor movement in KCNQ1/KCNE1 channels into two steps

    NASA Astrophysics Data System (ADS)

    Barro-Soria, Rene; Rebolledo, Santiago; Liin, Sara I.; Perez, Marta E.; Sampson, Kevin J.; Kass, Robert S.; Larsson, H. Peter

    2014-04-01

    The functional properties of KCNQ1 channels are highly dependent on associated KCNE-β subunits. Mutations in KCNQ1 or KCNE subunits can cause congenital channelopathies, such as deafness, cardiac arrhythmias and epilepsy. The mechanism by which KCNE1-β subunits slow the kinetics of KCNQ1 channels is a matter of current controversy. Here we show that KCNQ1/KCNE1 channel activation occurs in two steps: first, mutually independent voltage sensor movements in the four KCNQ1 subunits generate the main gating charge movement and underlie the initial delay in the activation time course of KCNQ1/KCNE1 currents. Second, a slower and concerted conformational change of all four voltage sensors and the gate, which opens the KCNQ1/KCNE1 channel. Our data show that KCNE1 divides the voltage sensor movement into two steps with widely different voltage dependences and kinetics. The two voltage sensor steps in KCNQ1/KCNE1 channels can be pharmacologically isolated and further separated by a disease-causing mutation.

  14. Voltage dependence of Hodgkin-Huxley rate functions for a multistage K+ channel voltage sensor within a membrane

    NASA Astrophysics Data System (ADS)

    Vaccaro, S. R.

    2014-11-01

    The activation of a K+channel sensor in two sequential stages during a voltage clamp may be described as the translocation of a Brownian particle in an energy landscape with two large barriers between states. A solution of the Smoluchowski equation for a square-well approximation to the potential function of the S4 voltage sensor satisfies a master equation and has two frequencies that may be determined from the forward and backward rate functions. When the higher-frequency terms have small amplitude, the solution reduces to the relaxation of a rate equation, where the derived two-state rate functions are dependent on the relative magnitude of the forward rates (α and γ ) and the backward rates (β and δ ) for each stage. In particular, the voltage dependence of the Hodgkin-Huxley rate functions for a K+channel may be derived by assuming that the rate functions of the first stage are large relative to those of the second stage—α ≫γ and β ≫δ . For a Shaker IR K+ channel, the first forward and backward transitions are rate limiting (α <γ and δ ≪β ), and for an activation process with either two or three stages, the derived two-state rate functions also have a voltage dependence that is of a similar form to that determined for the squid axon. The potential variation generated by the interaction between a two-stage K+ ion channel and a noninactivating Na+ ion channel is determined by the master equation for K+channel activation and the ionic current equation when the Na+channel activation time is small, and if β ≪δ and α ≪γ , the system may exhibit a small amplitude oscillation between spikes, or mixed-mode oscillation, in which the slow closed state modulates the K+ ion channel conductance in the membrane.

  15. Fiber optic voltage sensor for 420 kV electric power systems

    NASA Astrophysics Data System (ADS)

    Bohnert, Klaus M.; Kostovic, Jadran; Pequignot, P.

    2000-11-01

    We present an optical fiber voltage sensor for 420 kV electric power lines. The sensor exploits the converse piezoelectric effect of quartz and measures the voltage by a line integration of the electric field. The alternating voltage is partitioned to a series of four cylinder-shaped quartz crystals, which are embedded in polyurethane resin within a 3.2-m long insulator tube of fiber reinforced epoxy. The alternating piezoelectric deformations of the crystals are sensed by a common elliptical-core dual-mode fiber, which is wound onto the circumferential crystal surfaces. The fiber is interrogated using low coherence interferometry. We determine the dielectric design of the sensor from a numerical analysis of the electric field distribution within and in the vicinity of the sensor. We experimentally verify the dielectric reliability under ac overvoltages up to 520 kV root mean square and lightning and switching impulse voltages up to 1425 and 1050 kV, respectively. Further, we investigate the sensor performance including accuracy, dynamic range, bandwidth, and temperature dependence.

  16. KCNE3 acts by promoting voltage sensor activation in KCNQ1

    PubMed Central

    Barro-Soria, Rene; Perez, Marta E.; Larsson, H. Peter

    2015-01-01

    KCNE β-subunits assemble with and modulate the properties of voltage-gated K+ channels. In the colon, stomach, and kidney, KCNE3 coassembles with the α-subunit KCNQ1 to form K+ channels important for K+ and Cl− secretion that appear to be voltage-independent. How KCNE3 subunits turn voltage-gated KCNQ1 channels into apparent voltage-independent KCNQ1/KCNE3 channels is not completely understood. Different mechanisms have been proposed to explain the effect of KCNE3 on KCNQ1 channels. Here, we use voltage clamp fluorometry to determine how KCNE3 affects the voltage sensor S4 and the gate of KCNQ1. We find that S4 moves in KCNQ1/KCNE3 channels, and that inward S4 movement closes the channel gate. However, KCNE3 shifts the voltage dependence of S4 movement to extreme hyperpolarized potentials, such that in the physiological voltage range, the channel is constitutively conducting. By separating S4 movement and gate opening, either by a mutation or PIP2 depletion, we show that KCNE3 directly affects the S4 movement in KCNQ1. Two negatively charged residues of KCNE3 (D54 and D55) are found essential for the effect of KCNE3 on KCNQ1 channels, mainly exerting their effects by an electrostatic interaction with R228 in S4. Our results suggest that KCNE3 primarily affects the voltage-sensing domain and only indirectly affects the gate. PMID:26668384

  17. Planar LTCC transformers for high voltage flyback converters: Part II.

    SciTech Connect

    Schofield, Daryl; Schare, Joshua M., Ph.D.; Slama, George; Abel, David

    2009-02-01

    This paper is a continuation of the work presented in SAND2007-2591 'Planar LTCC Transformers for High Voltage Flyback Converters'. The designs in that SAND report were all based on a ferrite tape/dielectric paste system originally developed by NASCENTechnoloy, Inc, who collaborated in the design and manufacturing of the planar LTCC flyback converters. The output/volume requirements were targeted to DoD application for hard target/mini fuzing at around 1500 V for reasonable primary peak currents. High voltages could be obtained but with considerable higher current. Work had begun on higher voltage systems and is where this report begins. Limits in material properties and processing capabilities show that the state-of-the-art has limited our practical output voltage from such a small part volume. In other words, the technology is currently limited within the allowable funding and interest.

  18. Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier.

    PubMed

    Peretz, Asher; Pell, Liat; Gofman, Yana; Haitin, Yoni; Shamgar, Liora; Patrich, Eti; Kornilov, Polina; Gourgy-Hacohen, Orit; Ben-Tal, Nir; Attali, Bernard

    2010-08-31

    The pore and gate regions of voltage-gated cation channels have been often targeted with drugs acting as channel modulators. In contrast, the voltage-sensing domain (VSD) was practically not exploited for therapeutic purposes, although it is the target of various toxins. We recently designed unique diphenylamine carboxylates that are powerful Kv7.2 voltage-gated K(+) channel openers or blockers. Here we show that a unique Kv7.2 channel opener, NH29, acts as a nontoxin gating modifier. NH29 increases Kv7.2 currents, thereby producing a hyperpolarizing shift of the activation curve and slowing both activation and deactivation kinetics. In neurons, the opener depresses evoked spike discharges. NH29 dampens hippocampal glutamate and GABA release, thereby inhibiting excitatory and inhibitory postsynaptic currents. Mutagenesis and modeling data suggest that in Kv7.2, NH29 docks to the external groove formed by the interface of helices S1, S2, and S4 in a way that stabilizes the interaction between two conserved charged residues in S2 and S4, known to interact electrostatically, in the open state of Kv channels. Results indicate that NH29 may operate via a voltage-sensor trapping mechanism similar to that suggested for scorpion and sea-anemone toxins. Reflecting the promiscuous nature of the VSD, NH29 is also a potent blocker of TRPV1 channels, a feature similar to that of tarantula toxins. Our data provide a structural framework for designing unique gating-modifiers targeted to the VSD of voltage-gated cation channels and used for the treatment of hyperexcitability disorders. PMID:20713704

  19. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOEpatents

    Wood, Charles B.

    1992-01-01

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities.

  20. Fiber-optic voltage sensor with cladded fiber and evanescent wave variation detection

    DOEpatents

    Wood, C.B.

    1992-12-15

    A fiber optic voltage sensor is described which includes a source of light, a reference fiber for receiving a known percentage of the light and an electrostrictive element having terminals across which is applied, a voltage to be measured. The electrostrictive element is responsive to the applied voltage to assume an altered physical state. A measuring fiber also receives a known percentage of light from the light source and is secured about the electrostrictive element. The measuring fiber is provided with a cladding and exhibits an evanescent wave in the cladding. The measuring fiber has a known length which is altered when the electrostrictive element assumes its altered physical state. A differential sensor is provided which senses the intensity of light in both the reference fiber and the measuring fiber and provides an output indicative of the difference between the intensities. 3 figs.

  1. Temperature characteristics of Pockels electro-optic voltage sensor with double crystal compensation

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Liu, Tong; Yang, Qing; Han, Rui; Sun, Shangpeng

    2016-05-01

    Voltage sensors based on the Pockels electro-optic effect in LiNbO3 crystals have been applied to practical engineering measurements because of their passive nature, wide operating bands, and low transmission loss. However, the temperature of the measurement environment can greatly affect the dynamic responses of these sensors because the natural birefringence of a single LiNbO3 crystal voltage sensor (SVS) is related to its temperature. To improve the stability of this sensor over a wide temperature range, a double crystal compensation method is introduced in this paper to compensate for the natural birefringence of the SVS. A double LiNbO3 crystal voltage sensor (DVS) was fabricated, and its working point drift characteristics and amplitude-frequency response were investigated over the temperature range from 0°C to 50°C. The effects of two intrinsic parameters of the LiNbO3 crystal were also investigated. Comparison between an existing SVS and the proposed DVS showed that the DVS resisted environmental temperature fluctuations more strongly.

  2. Manufacturing challenges of optical current and voltage sensors for utility applications

    SciTech Connect

    Yakymyshyn, C.P.; Brubaker, M.A.; Johnston, P.M.; Reinbold, C.

    1997-12-01

    Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

  3. ''SensArray'' voltage sensor analysis in an inductively coupled plasma

    SciTech Connect

    Titus, M. J.; Hsu, C. C.; Graves, D. B.

    2010-01-15

    A commercially manufactured PlasmaVolt sensor wafer was studied in an inductively coupled plasma reactor in an effort to validate sensor measurements. A pure Ar plasma at various powers (25-420 W), for a range of pressures (10-80 mT), and bias voltages (0-250 V) was utilized. A numerical sheath simulation was simultaneously developed in order to interpret experimental results. It was found that PlasmaVolt sensor measurements are proportional to the rf-current through the sheath. Under conditions such that the sheath impedance is dominantly capacitive, sensor measurements follow a scaling law derived from the inhomogeneous sheath model of Lieberman and Lichtenberg, [Principles of Plasma Discharges and Materials Processing (Wiley, New York, 2005)]. Under these conditions, sensor measurements are proportional to the square root of the plasma density at the plasma-sheath interface, the one-fourth root of the electron temperature, and the one-fourth root of the rf bias voltage. When the sheath impedance becomes increasingly resistive, the sensor measurements deviate from the scaling law and tend to be directly proportional to the plasma density. The measurements and numerical sheath simulation demonstrate the scaling behavior as a function of changing sheath impedance for various plasma conditions.

  4. Observation of pressure stimulated voltages in rocks using an electric potential sensor

    SciTech Connect

    Aydin, A.; Prance, R. J.; Prance, H.; Harland, C. J.

    2009-09-21

    Recent interest in the electrical activity in rock and the use of electric field transients as candidates for earthquake precursors has led to studies of pressure stimulated currents in laboratory samples. In this paper, an electric field sensor is used to measure directly the voltages associated with these currents. Stress was applied as uniaxial compression to marble and granite at an approximately constant rate. In contrast with the small pressure stimulated currents previously measured, large voltage signals are reported. Polarity reversal of the signal was observed immediately before fracture for the marble, in agreement with previous pressure stimulated current studies.

  5. Voltage-Sensor Transitions of the Inward-Rectifying K+ Channel KAT1 Indicate a Latching Mechanism Biased by Hydration within the Voltage Sensor1[W][OPEN

    PubMed Central

    Lefoulon, Cécile; Karnik, Rucha; Honsbein, Annegret; Gutla, Paul Vijay; Grefen, Christopher; Riedelsberger, Janin; Poblete, Tomás; Dreyer, Ingo; Gonzalez, Wendy; Blatt, Michael R.

    2014-01-01

    The Kv-like (potassium voltage-dependent) K+ channels at the plasma membrane, including the inward-rectifying KAT1 K+ channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K+ homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K+ channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel. PMID:25185120

  6. Voltage-sensor transitions of the inward-rectifying K+ channel KAT1 indicate a latching mechanism biased by hydration within the voltage sensor.

    PubMed

    Lefoulon, Cécile; Karnik, Rucha; Honsbein, Annegret; Gutla, Paul Vijay; Grefen, Christopher; Riedelsberger, Janin; Poblete, Tomás; Dreyer, Ingo; Gonzalez, Wendy; Blatt, Michael R

    2014-10-01

    The Kv-like (potassium voltage-dependent) K(+) channels at the plasma membrane, including the inward-rectifying KAT1 K(+) channel of Arabidopsis (Arabidopsis thaliana), are important targets for manipulating K(+) homeostasis in plants. Gating modification, especially, has been identified as a promising means by which to engineer plants with improved characteristics in mineral and water use. Understanding plant K(+) channel gating poses several challenges, despite many similarities to that of mammalian Kv and Shaker channel models. We have used site-directed mutagenesis to explore residues that are thought to form two electrostatic countercharge centers on either side of a conserved phenylalanine (Phe) residue within the S2 and S3 α-helices of the voltage sensor domain (VSD) of Kv channels. Consistent with molecular dynamic simulations of KAT1, we show that the voltage dependence of the channel gate is highly sensitive to manipulations affecting these residues. Mutations of the central Phe residue favored the closed KAT1 channel, whereas mutations affecting the countercharge centers favored the open channel. Modeling of the macroscopic current kinetics also highlighted a substantial difference between the two sets of mutations. We interpret these findings in the context of the effects on hydration of amino acid residues within the VSD and with an inherent bias of the VSD, when hydrated around a central Phe residue, to the closed state of the channel. PMID:25185120

  7. Practical hybrid fiber optic current sensor on a high-voltage power line

    NASA Astrophysics Data System (ADS)

    Zheng, Zhe; Chen, Zhan; Liu, Feng; Lu, Xin; Guo, Yanhui; Zheng, Shengxuan

    2000-10-01

    In this paper, the disadvantages of the traditional Current Transformer (CT) on high voltage power line are described. A new method to measure the high-voltage current is studied. A Practical Hybrid Fiber Optic Sensor for High-Voltage Current is developed and the result of the experiment and the errors are analyzed. This design consists of two parts. One is in the air attached with the high voltage power line and the other one is on the ground. In the upper part, a Rogowaski Loop is used to transform the current signal into voltage one, then a V/F converter is applied to change this voltage signal into frequency. After processed, the resulted frequency signal is fed to the LED, which turns the electrical signal into light one. Then, the light signal is lead along the optic fiber down to the ground. Here, the optic fiber is used for insulation purpose. On the ground the light signal is converted back into electrical signal with a photoelectric cell. After amplified and regulated, the electrical signal is fed to a F/V converter, which changes the frequency signal back into the original current signal.

  8. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor.

    PubMed

    St-Pierre, François; Marshall, Jesse D; Yang, Ying; Gong, Yiyang; Schnitzer, Mark J; Lin, Michael Z

    2014-06-01

    Accurate optical reporting of electrical activity in genetically defined neuronal populations is a long-standing goal in neuroscience. We developed Accelerated Sensor of Action Potentials 1 (ASAP1), a voltage sensor design in which a circularly permuted green fluorescent protein is inserted in an extracellular loop of a voltage-sensing domain, rendering fluorescence responsive to membrane potential. ASAP1 demonstrated on and off kinetics of ∼ 2 ms, reliably detected single action potentials and subthreshold potential changes, and tracked trains of action potential waveforms up to 200 Hz in single trials. With a favorable combination of brightness, dynamic range and speed, ASAP1 enables continuous monitoring of membrane potential in neurons at kilohertz frame rates using standard epifluorescence microscopy. PMID:24755780

  9. A Bragg grating tunable filter based on temperature control system to demodulate a voltage sensor

    NASA Astrophysics Data System (ADS)

    Ribeiro, Bessie A.; Werneck, Marcelo M.; de Nazaré, Fabio B. V.; Gonçalves, Marceli N.

    2015-09-01

    This work presents an innovative automated Fiber Bragg Grating (FBG) based tunable optical filter (TOF) controlled by temperature to be used in temperature compensating schemes in FBG sensing set-ups. Mechanical and electronic aspects are discussed, and the implemented FBG-TOF viability and reliability in sensing systems are showed. The system was employed to demodulate a high voltage AC signal applied to a FBG-PZT sensor, showing good linearity and sensitivity.

  10. Co-wound voltage sensor R&D for TPX magnets

    SciTech Connect

    Chaplin, M.R.; Martovetsky, N.N.; Zbasnik, J.

    1995-09-29

    The Tokamak Physics Experiment (TPX) will be the first tokamak to use superconducting cable-in-conduit-conductors (CICC) in all Poloidal Field (PF) & Toroidal Field (TF) magnets. Conventional quench detection, the measurement of small resistive normal-zone voltages (<1 V) in the magnets will be complicated by the presence of large inductive voltages (>4 kV). In the quench detection design for TPX, we have considered several different locations for internal co-wound voltage sensors in the cable cross-section as the primary mechanism to cancel this inductive noise. The Noise Rejection Experiment (NRE) at LLNL and the Noise Injection Experiment (NIE) at MIT have been designed to evaluate which internal locations will produce the best inductive-noise cancellation, and provide us with experimental data to calibrate analysis codes. The details of the experiments and resulting data are presented.

  11. MoS2 oxygen sensor with gate voltage stress induced performance enhancement

    NASA Astrophysics Data System (ADS)

    Tong, Yu; Lin, Zhenhua; Thong, John T. L.; Chan, Daniel S. H.; Zhu, Chunxiang

    2015-09-01

    Two-dimensional (2D) materials have recently attracted wide attention and rapidly established themselves in various applications. In particular, 2D materials are regarded as promising building blocks for gas sensors due to their high surface-to-volume ratio, ease in miniaturization, and flexibility in enabling wearable electronics. Compared with other 2D materials, MoS2 is particularly intriguing because it has been widely researched and exhibits semiconducting behavior. Here, we have fabricated MoS2 resistor based O2 sensors with a back gate configuration on a 285 nm SiO2/Si substrate. The effects of applying back gate voltage stress on O2 sensing performance have been systematically investigated. With a positive gate voltage stress, the sensor response improves and the response is improved to 29.2% at O2 partial pressure of 9.9 × 10-5 millibars with a +40 V back-gate bias compared to 21.2% at O2 partial pressure of 1.4 × 10-4 millibars without back-gate bias; while under a negative gate voltage stress of -40 V, a fast and full recovery can be achieved at room temperature. In addition, a method in determining O2 partial pressure with a detectability as low as 6.7 × 10-7 millibars at a constant vacuum pressure is presented and its potential as a vacuum gauge is briefly discussed.

  12. Low voltage charge-balanced capacitance-voltage conversion circuit for one-side-electrode-type fluid-based inclination sensor

    NASA Astrophysics Data System (ADS)

    Manaf, Asrulnizam Bin Abd; Matsumoto, Yoshinori

    2009-01-01

    A low voltage detection circuit for a capacitance sensor is important for connection to a low voltage digital circuit interface. We studied two different charge-balanced capacitance-voltage ( C- V) conversion circuits configurations; the operational amplifier and the inverter amplifier. Both capacitance detection circuits were designed using 0.35 μm CMOS circuitry technology. Both amplifiers used in the detection circuits were not affected by offset voltage. The current consumption for capacitance detection circuit was reduced from 250 μA at V dd 3.3 V to 38 μA at V dd 1.3 V by switching from an operational amplifier to an inverter amplifier. These circuits were packaged with one-side-electrode-type fluid-based inclination sensors on ceramic substrates. The size of the sensor is ∅ 4.0 mm × 1.0 mm and pure propylene carbonate was used as electrolyte. Changes in temperature did not affect the output voltage of the sensor between -10 °C and 50 °C. This results show that the inverter amplifier used in the detection circuit was not affected by offset voltage and the output voltage V m is depends only on capacitor ratio. The capacitance detection circuit using the inverter amplifier shows a high-sensitivity of about 7 mV/deg over the operational amplifier at V dd 1.3 V. The response time, resolution and minimum moving angle of sensor were 0.7 s, 0.86° and 0.4°, respectively, at V dd 1.3 V for the inverter amplifier type of capacitance detection circuit.

  13. Structural Dynamics of an Isolated-Voltage Sensor Domain in Lipid Bilayer

    PubMed Central

    Chakrapani, Sudha; Cuello, Luis G.; Cortes, Marien D.; Perozo, Eduardo

    2009-01-01

    Summary A strong interplay between the voltage-sensor domain (VSD) and the pore domain (PD) underlies voltage-gated channel functions. In a few voltage-sensitive proteins, the VSD has been shown to function without a canonical PD, although its structure and oligomeric state remain unknown. Here using EPR spectroscopy we show that the isolated-VSD of KvAP can remain monomeric in reconstituted bilayer and retain a transmembrane conformation. We find that water-filled crevices extend deep into the membrane around S3, a scaffold conducive to transport of proton/cations is intrinsic to the VSD. Differences in solvent accessibility in comparison to the full-length KvAP, allowed us to define an interacting footprint of the PD on the VSD. This interaction is centered around S1 and S2 and shows a rotation of 70–100° relative to Kv1.2-Kv2.1 chimera. Sequence-conservation patterns in Kv channels, Hv channels and voltage-sensitive phosphatases reveal several near-universal features suggesting a common molecular architecture for all VSDs. PMID:18334215

  14. EVA Glove Sensor Feasbility II Abstract

    NASA Technical Reports Server (NTRS)

    Melone, Kate

    2014-01-01

    The main objectives for the glove project include taking various measurements from human subjects during and after they perform different tasks in the glove box, acquiring data from these tests and determining the accuracy of these results, interpreting and analyzing this data, and using the data to better understand how hand injuries are caused during EVAs.1 Some of these measurements include force readings, temperature readings, and micro-circulatory blood flow.1 The three glove conditions tested were ungloved (a comfort glove was worn to house the sensors), Series 4000, and Phase VI. The general approach/procedure for the glove sensor feasibility project is as follows: 1. Prepare test subject for testing. This includes attaching numerous sensors (approximately 50) to the test subject, wiring, and weaving the sensors and wires in the glove which helps to keep everything together. This also includes recording baseline moisture data using the Vapometer and MoistSense. 2. Pressurizing the glove box. Once the glove box is pressurized to the desired pressure (4.3 psid), testing can begin. 3. Testing. The test subject will perform a series of tests, some of which include pinching a load cell, making a fist, pushing down on a force plate, and picking up metal pegs, rotating them 90 degrees, and placing them back in the peg board. 4. Post glove box testing data collection. After the data is collected from inside the glove box, the Vapometer and MoistSense device will be used to collect moisture data from the subject's hand. 5. Survey. At the conclusion of testing, he/she will complete a survey that asks questions pertaining to comfort/discomfort levels of the glove, glove sizing, as well as offering any additional feedback.

  15. MoS{sub 2} oxygen sensor with gate voltage stress induced performance enhancement

    SciTech Connect

    Tong, Yu; Lin, Zhenhua; Thong, John T. L.; Chan, Daniel S. H.; Zhu, Chunxiang

    2015-09-21

    Two-dimensional (2D) materials have recently attracted wide attention and rapidly established themselves in various applications. In particular, 2D materials are regarded as promising building blocks for gas sensors due to their high surface-to-volume ratio, ease in miniaturization, and flexibility in enabling wearable electronics. Compared with other 2D materials, MoS{sub 2} is particularly intriguing because it has been widely researched and exhibits semiconducting behavior. Here, we have fabricated MoS{sub 2} resistor based O{sub 2} sensors with a back gate configuration on a 285 nm SiO{sub 2}/Si substrate. The effects of applying back gate voltage stress on O{sub 2} sensing performance have been systematically investigated. With a positive gate voltage stress, the sensor response improves and the response is improved to 29.2% at O{sub 2} partial pressure of 9.9 × 10{sup −5} millibars with a +40 V back-gate bias compared to 21.2% at O{sub 2} partial pressure of 1.4 × 10{sup −4} millibars without back-gate bias; while under a negative gate voltage stress of −40 V, a fast and full recovery can be achieved at room temperature. In addition, a method in determining O{sub 2} partial pressure with a detectability as low as 6.7 × 10{sup −7} millibars at a constant vacuum pressure is presented and its potential as a vacuum gauge is briefly discussed.

  16. Solution structure and phospholipid interactions of the isolated voltage-sensor domain from KvAP

    PubMed Central

    Butterwick, Joel A.; MacKinnon, Roderick

    2010-01-01

    Voltage-sensor domains (VSDs) are specialized transmembrane segments that confer voltage sensitivity to many proteins such as ion channels and enzymes. The activities of these domains are highly dependent on both the chemical and physical properties of the surrounding membrane environment. To learn about VSD-lipid interactions, we used nuclear magnetic resonance (NMR) spectroscopy to determine the structure and phospholipid interface of the VSD from the voltage-dependent K+ channel KvAP. The solution structure of the KvAP VSD solubilized within phospholipid micelles is similar to a previously determined crystal structure solubilized by a non-ionic detergent and complexed with an antibody fragment. Two differences observed include a previously unidentified short amphipathic α-helix that precedes the first transmembrane helix and a subtle rigid body repositioning of the S3-S4 voltage-sensor paddle. Using 15N relaxation experiments, we show that most of the VSD, including the pronounced kink in S3 and the S3-S4 paddle, is relatively rigid on the ps–ns time scale. In contrast, the kink in S3 is mobile on the μs–ms time scale and may act as a hinge in the movement of the paddle during channel gating. We characterized the VSD-phospholipid micelle interactions using nuclear Overhauser effect spectroscopy and show that the micelle uniformly coats the KvAP VSD and approximates the chemical environment of a phospholipid bilayer. Using paramagnetically labeled phospholipids, we show that bilayer-forming lipids interact with the S3 and S4 helices more strongly than with S1 and S2. PMID:20851706

  17. Direct Evidence of Conformational Changes Associated with Voltage Gating in a Voltage Sensor Protein by Time-Resolved X-ray/Neutron Interferometry

    PubMed Central

    2015-01-01

    The voltage sensor domain (VSD) of voltage-gated cation (e.g., Na+, K+) channels central to neurological signal transmission can function as a distinct module. When linked to an otherwise voltage-insensitive, ion-selective membrane pore, the VSD imparts voltage sensitivity to the channel. Proteins homologous with the VSD have recently been found to function themselves as voltage-gated proton channels or to impart voltage sensitivity to enzymes. Determining the conformational changes associated with voltage gating in the VSD itself in the absence of a pore domain thereby gains importance. We report the direct measurement of changes in the scattering-length density (SLD) profile of the VSD protein, vectorially oriented within a reconstituted phospholipid bilayer membrane, as a function of the transmembrane electric potential by time-resolved X-ray and neutron interferometry. The changes in the experimental SLD profiles for both polarizing and depolarizing potentials with respect to zero potential were found to extend over the entire length of the isolated VSD’s profile structure. The characteristics of the changes observed were in qualitative agreement with molecular dynamics simulations of a related membrane system, suggesting an initial interpretation of these changes in terms of the VSD’s atomic-level 3-D structure. PMID:24697545

  18. Sequential formation of ion pairs during activation of a sodium channel voltage sensor

    PubMed Central

    DeCaen, Paul G.; Yarov-Yarovoy, Vladimir; Sharp, Elizabeth M.; Scheuer, Todd; Catterall, William A.

    2009-01-01

    Electrical signaling in biology depends upon a unique electromechanical transduction process mediated by the S4 segments of voltage-gated ion channels. These transmembrane segments are driven outward by the force of the electric field on positively charged amino acid residues termed “gating charges,” which are positioned at three-residue intervals in the S4 transmembrane segment, and this movement is coupled to opening of the pore. Here, we use the disulfide-locking method to demonstrate sequential ion pair formation between the fourth gating charge in the S4 segment (R4) and two acidic residues in the S2 segment during activation. R4 interacts first with E70 at the intracellular end of the S2 segment and then with D60 near the extracellular end. Analysis with the Rosetta Membrane method reveals the 3-D structures of the gating pore as these ion pairs are formed sequentially to catalyze the S4 transmembrane movement required for voltage-dependent activation. Our results directly demonstrate sequential ion pair formation that is an essential feature of the sliding helix model of voltage sensor function but is not compatible with the other widely discussed gating models. PMID:20007787

  19. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation.

    PubMed

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik

    2016-01-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions - a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd(2+) bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K(+) coordination, a hallmark for C-type inactivation. An engineered Cd(2+) bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891

  20. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    NASA Astrophysics Data System (ADS)

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I.; Lindahl, Erik; Elinder, Fredrik

    2016-06-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel.

  1. Reciprocal voltage sensor-to-pore coupling leads to potassium channel C-type inactivation

    PubMed Central

    Conti, Luca; Renhorn, Jakob; Gabrielsson, Anders; Turesson, Fredrik; Liin, Sara I; Lindahl, Erik; Elinder, Fredrik

    2016-01-01

    Voltage-gated potassium channels open at depolarized membrane voltages. A prolonged depolarization causes a rearrangement of the selectivity filter which terminates the conduction of ions – a process called slow or C-type inactivation. How structural rearrangements in the voltage-sensor domain (VSD) cause alteration in the selectivity filter, and vice versa, are not fully understood. We show that pulling the pore domain of the Shaker potassium channel towards the VSD by a Cd2+ bridge accelerates C-type inactivation. Molecular dynamics simulations show that such pulling widens the selectivity filter and disrupts the K+ coordination, a hallmark for C-type inactivation. An engineered Cd2+ bridge within the VSD also affect C-type inactivation. Conversely, a pore domain mutation affects VSD gating-charge movement. Finally, C-type inactivation is caused by the concerted action of distant amino acid residues in the pore domain. All together, these data suggest a reciprocal communication between the pore domain and the VSD in the extracellular portion of the channel. PMID:27278891

  2. Design, Experiments and Simulation of Voltage Transformers on the Basis of a Differential Input D-dot Sensor

    PubMed Central

    Wang, Jingang; Gao, Can; Yang, Jie

    2014-01-01

    Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid. PMID:25036333

  3. Design, experiments and simulation of voltage transformers on the basis of a differential input D-dot sensor.

    PubMed

    Wang, Jingang; Gao, Can; Yang, Jie

    2014-01-01

    Currently available traditional electromagnetic voltage sensors fail to meet the measurement requirements of the smart grid, because of low accuracy in the static and dynamic ranges and the occurrence of ferromagnetic resonance attributed to overvoltage and output short circuit. This work develops a new non-contact high-bandwidth voltage measurement system for power equipment. This system aims at the miniaturization and non-contact measurement of the smart grid. After traditional D-dot voltage probe analysis, an improved method is proposed. For the sensor to work in a self-integrating pattern, the differential input pattern is adopted for circuit design, and grounding is removed. To prove the structure design, circuit component parameters, and insulation characteristics, Ansoft Maxwell software is used for the simulation. Moreover, the new probe was tested on a 10 kV high-voltage test platform for steady-state error and transient behavior. Experimental results ascertain that the root mean square values of measured voltage are precise and that the phase error is small. The D-dot voltage sensor not only meets the requirement of high accuracy but also exhibits satisfactory transient response. This sensor can meet the intelligence, miniaturization, and convenience requirements of the smart grid. PMID:25036333

  4. Sensors, Volume 3, Part II, Chemical and Biochemical Sensors Part II

    NASA Astrophysics Data System (ADS)

    Göpel, Wolfgang; Jones, T. A.; Kleitz, Michel; Lundström, Ingemar; Seiyama, Tetsuro

    1997-06-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This is the second of two volumes focusing on chemical and biochemical sensors. It includes a detailed description of biosensors which often make use of transducer properties of the basic sensors and usually have additional biological components. This volume provides a unique overview of the applications, the possibilities and limitations of sensors in comparison with conventional instrumentation in analytical chemistry. Specific facettes of applications are presented by specialists from different fields including environmental, biotechnological, medical, or chemical process control. This book is an indispensable reference work for both specialits and newcomers, researchers and developers.

  5. The structure of the lipid-embedded potassium channel voltage sensor determined by double-electron–electron resonance spectroscopy

    PubMed Central

    Vamvouka, Magdalini; Cieslak, John; Van Eps, Ned; Hubbell, Wayne; Gross, Adrian

    2008-01-01

    A four-pulse electron paramagnetic resonance experiment was used to measure long-range inter-subunit distances in reconstituted KvAP, a voltage-dependent potassium (Kv) channel. The measurements have allowed us to reach the following five conclusions about the native structure of the voltage sensor of KvAP. First, the S1 helix of the voltage sensor engages in a helix packing interaction with the pore domain. Second, the crystallographically observed antiparallel helix-turn-helix motif of the voltage-sensing paddle is retained in the membrane-embedded voltage sensor. Third, the paddle is oriented in such a way as to expose one face to the pore domain and the opposite face to the membrane. Fourth, the paddle and the pore domain appear to be separated by a gap that is sufficiently wide for lipids to penetrate between the two domains. Fifth, the critical voltage-sensing arginine residues on the paddle appear to be lipid exposed. These results demonstrate the importance of the membrane for the native structure of Kv channels, suggest that lipids are an integral part of their native structure, and place the voltage-sensing machinery into a complex lipid environment near the pore domain. PMID:18287283

  6. Effect of buffer layer on the voltage responsivity of the pyroelectric thermal sensors prepared with PZT ceramics

    NASA Astrophysics Data System (ADS)

    Lee, Moon-Ho; Hwang, Ha R.; Bae, Seong-Ho

    1997-08-01

    The pyroelectric thermal detectors were prepared with lead zirconate titanate (PZT) ceramics, where a signal electrode had a structure of Au/metallic buffer/(PZT ceramic). The effect of buffer layer on the voltage responsivity was investigated with a response to step signal, taken by dynamic pyroelectric measurement. Pyroelectric ceramic wafer was prepared by mixed oxide technique. Au layer (thickness: 50 nm) and metallic buffers (thickness: 0 - 20 nm) of Cr, NiCr (80/20), and Ti were prepared by dc magnetron sputtering. In order to improve the light absorptivity, an Au-black was coated on Au signal electrode by thermal evaporation. At steady state, the output voltage (Vo) was decreased with increasing chopping frequency in the range of 1 - 100 Hz. A sensor without buffer showed the severe time-drift and instability in the output signal. However, the sensors with buffer layer showed the stable outputs. For step radiations, rising time (tp), peak voltage (Vp), and initial slope (k) of the output voltage were dependent upon the thickness and materials of buffer layer. The mechanical and electrical contacts between Au electrode and PZT ceramics were improved by inserting the metallic buffer layer. Considering the characteristics of the output voltage, the optimum thickness of buffer layer was about 15 - 20 nm, and the sensors with Ti buffer of 15 - 20 nm in thickness showed the good detectivity. Therefore, the stability and reliability of the thermal sensors could be improved by use of appropriate buffer layer.

  7. The Shaker K+ Channel S4 Voltage Sensor Translates 10 Å during Gating

    PubMed Central

    Posson, David J.; Selvin, Paul R.

    2008-01-01

    Summary Voltage driven activation of Kv channels results from conformational changes of four voltage sensor domains (VSDs) that surround the K+ selective pore domain. How the VSD helices rearrange during gating is an area of active research. Luminescence Resonance Energy Transfer (LRET) is a powerful spectroscopic ruler uniquely suitable for addressing the conformational trajectory of these helices. Using a new geometric analysis of numerous LRET measurements, we were able for the first time to estimate LRET probe positions relative to existing structural models. The experimental movement of helix S4 does not support a large 15–20 Å transmembrane ‘paddle-type’ movement or a near-zero Å vertical ‘transporter-type’ model. Rather, our measurements demonstrate a moderate S4 displacement of 10 ± 5 Å, with a vertical component of 5 ± 2 Å. The S3 segment moves 2 ± 1 Å in the opposite direction and is therefore not moving as an S3–S4 rigid body. PMID:18614032

  8. Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2016-06-01

    In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate

  9. Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array

    PubMed Central

    Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo

    2016-01-01

    Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array. PMID:26907279

  10. Cable Crosstalk Suppression with Two-Wire Voltage Feedback Method for Resistive Sensor Array.

    PubMed

    Wu, Jianfeng; He, Shangshang; Li, Jianqing; Song, Aiguo

    2016-01-01

    Using a long, flexible test cable connected with a one-wire voltage feedback circuit, a resistive tactile sensor in a shared row-column fashion exhibited flexibility in robotic operations but suffered from crosstalk caused by the connected cable due to its wire resistances and its contacted resistances. Firstly, we designed a new non-scanned driving-electrode (VF-NSDE) circuit using two wires for every row line and every column line to reduce the crosstalk caused by the connected cables in the circuit. Then, an equivalent resistance expression of the element being tested (EBT) for the two-wire VF-NSDE circuit was analytically derived. Following this, the one-wire VF-NSDE circuit and the two-wire VF-NSDE circuit were evaluated by simulation experiments. Finally, positive features of the proposed method were verified with the experiments of a two-wire VF-NSDE prototype circuit. The experiment results show that the two-wire VF-NSDE circuit can greatly reduce the crosstalk error caused by the cables in the 2-D networked resistive sensor array. PMID:26907279

  11. FTIR and RRS Study of the Archaerhodopsin-3 Optogenetic Neural Silencer and Transmembrane Voltage Sensor

    NASA Astrophysics Data System (ADS)

    Saint Clair, Erica; Ogren, John; Mamaev, Sergey; Kralj, Joel; Rothschild, Kenneth

    2012-02-01

    Archaerhodopsin-3 (AR3) is a light driven proton pump from H Sodemense with a 74% sequence homology to the more extensively studied bacteriorhodopsin (BR) from H Salinarum. Recent studies show that the wild type (WT) AR3 functions as a high-performance, genetically targetable optical silencer of neuronal activity and the mutant D95N functions as a transmembrane fluorescence voltage sensor. In order to understand the molecular similarities and differences between AR3 and BR, we compared light-activated structural changes using resonance Raman spectroscopy (RRS) and Fourier transform infrared (FTIR) difference spectroscopy. RRS pH titration and H/D exchange of WT AR3 showed that the retinylidene chromophore structure and Schiff base hydrogen bond strengths are almost identical to BR. RRS of the mutant D95N revealed a mixture of an N-like and O-like species at a pH greater than 7, unlike WT AR3. Low-temperature and rapid-scan time-resolved FTIR difference spectroscopy of WT AR3 revealed conformational changes during formation of the K, M and N intermediates similar but not identical to BR. Positive/negative bands in the region above 3600 cm-1, which have been assigned to changes in weakly hydrogen bonded internal water molecules, differed substantially between AR3 and BR. These results indicate molecular differences between the AR3 and BR proton pumps which may underlie the ability of AR3 to function as a neurophotonic switch and sensor.

  12. Molecular basis of the inhibition of the fast inactivation of voltage-gated sodium channel Nav1.5 by tarantula toxin Jingzhaotoxin-II.

    PubMed

    Huang, Ying; Zhou, Xi; Tang, Cheng; Zhang, Yunxiao; Tao, Huai; Chen, Ping; Liu, Zhonghua

    2015-06-01

    Jingzhaotoxin-II (JZTX-II) is a 32-residue peptide from the Chinese tarantula Chilobrachys jingzhao venom, and preferentially inhibits the fast inactivation of the voltage-gated sodium channels (VGSCs) in rat cardiac myocytes. In the present study, we elucidated the action mechanism of JZTX-II inhibiting hNav1.5, a VGSC subtype mainly distributed in human cardiac myocytes. Among the four VGSC subtypes tested, hNav1.5 was the most sensitive to JZTX-II (EC50=125±4nM). Although JZTX-II had little or no effect on steady-state inactivation of the residual currents conducted by hNav1.5, it caused a 10mV hyperpolarized shift of activation. Moreover, JZTX-II increased the recovery rate of hNav1.5 channels, which should lead to a shorter transition from the inactivation to closed state. JZTX-II dissociated from toxin-channel complex via extreme depolarization and subsequently rebound to the channel upon repolarization. Mutagenesis analyses showed that the domain IV (DIV) voltage-sensor domain (VSD) was critical for JZTX-II binding to hNav1.5 and some mutations located in S1-S2 and S3-S4 extracellular loops of hNav1.5 DIV additively reduced the toxin sensitivity of hNav1.5. Our data identified the mechanism underlying JZTX-II inhibiting hNav1.5, similar to scorpion α-toxins, involving binding to neurotoxin receptor site 3. PMID:25817910

  13. Inhibition of a neuronal voltage-dependent chloride channel by the type II pyrethroid, deltamethrin.

    PubMed

    Forshaw, P J; Lister, T; Ray, D E

    1993-02-01

    Following the previous finding that the Type II pyrethroid, deltamethrin, increased membrane resistance in peripheral nerve and muscle in a chloride-dependent manner, the action of deltamethrin on neuronal voltage-dependent chloride channels was assessed using inside-out patches from NIE-115 neuroblastoma cells. These were bathed in symmetrical solutions, containing 149 mM chloride and the membrane potential stepped from 0 mV to voltages ranging from +/- 10 to 80 mV for 2 or 5 sec. Active patches contained large conductance channels (343 +/- 11 pS, n = 8), which inactivated relatively slowly during the voltage step and could be resolved into a number of substates. The channels were confirmed as being chloride specific on the basis of substitution experiments with isethionate and pharmacological blockade by 9-anthracene carboxylic acid (9-ACA). Within 20 min of adding deltamethrin (2 microM) to the bath solution, open channel probability (Po) fell from 0.50 +/- 0.06 to 0.24 +/- 0.04 (n = 11) a highly significant result. Glycerinformal solvent alone (0.1% v/v) caused a non-significant rise to 0.65 +/- 0.09 (n = 4). The decreased open channel probability after deltamethrin was due to an increased incidence of both the closed channel state and low conductance substates. In addition, deltamethrin frequently caused flickering between substrates similar to that seen after 9-ACA. Deltamethrin did not change single channel conductance, current-voltage relationship or time-dependent channel inactivation, but decreased open channel probability over the complete range of membrane voltage tested.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8383811

  14. A High Resolution On-Chip Delay Sensor with Low Supply-Voltage Sensitivity for High-Performance Electronic Systems

    PubMed Central

    Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong

    2015-01-01

    An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration. PMID:25688590

  15. Interaction of Tarantula Venom Peptide ProTx-II with Lipid Membranes Is a Prerequisite for Its Inhibition of Human Voltage-gated Sodium Channel NaV1.7.

    PubMed

    Henriques, Sónia Troeira; Deplazes, Evelyne; Lawrence, Nicole; Cheneval, Olivier; Chaousis, Stephanie; Inserra, Marco; Thongyoo, Panumart; King, Glenn F; Mark, Alan E; Vetter, Irina; Craik, David J; Schroeder, Christina I

    2016-08-12

    ProTx-II is a disulfide-rich peptide toxin from tarantula venom able to inhibit the human voltage-gated sodium channel 1.7 (hNaV1.7), a channel reported to be involved in nociception, and thus it might have potential as a pain therapeutic. ProTx-II acts by binding to the membrane-embedded voltage sensor domain of hNaV1.7, but the precise peptide channel-binding site and the importance of membrane binding on the inhibitory activity of ProTx-II remain unknown. In this study, we examined the structure and membrane-binding properties of ProTx-II and several analogues using NMR spectroscopy, surface plasmon resonance, fluorescence spectroscopy, and molecular dynamics simulations. Our results show a direct correlation between ProTx-II membrane binding affinity and its potency as an hNaV1.7 channel inhibitor. The data support a model whereby a hydrophobic patch on the ProTx-II surface anchors the molecule at the cell surface in a position that optimizes interaction of the peptide with the binding site on the voltage sensor domain. This is the first study to demonstrate that binding of ProTx-II to the lipid membrane is directly linked to its potency as an hNaV1.7 channel inhibitor. PMID:27311819

  16. Molecular template for a voltage sensor in a novel K+ channel. I. Identification and functional characterization of KvLm, a voltage-gated K+ channel from Listeria monocytogenes.

    PubMed

    Santos, Jose S; Lundby, Alicia; Zazueta, Cecilia; Montal, Mauricio

    2006-09-01

    The fundamental principles underlying voltage sensing, a hallmark feature of electrically excitable cells, are still enigmatic and the subject of intense scrutiny and controversy. Here we show that a novel prokaryotic voltage-gated K(+) (Kv) channel from Listeria monocytogenes (KvLm) embodies a rudimentary, yet robust, sensor sufficient to endow it with voltage-dependent features comparable to those of eukaryotic Kv channels. The most conspicuous feature of the KvLm sequence is the nature of the sensor components: the motif is recognizable; it appears, however, to contain only three out of eight charged residues known to be conserved in eukaryotic Kv channels and accepted to be deterministic for folding and sensing. Despite the atypical sensor sequence, flux assays of KvLm reconstituted in liposomes disclosed a channel pore that is highly selective for K(+) and is blocked by conventional Kv channel blockers. Single-channel currents recorded in symmetric K(+) solutions from patches of enlarged Escherichia coli (spheroplasts) expressing KvLm showed that channel open probability sharply increases with depolarization, a hallmark feature of Kv channels. The identification of a voltage sensor module in KvLm with a voltage dependence comparable to that of other eukaryotic Kv channels yet encoded by a sequence that departs significantly from the consensus sequence of a eukaryotic voltage sensor establishes a molecular blueprint of a minimal sequence for a voltage sensor. PMID:16908725

  17. Gap Voltage Feed Forward Board for PEP II Low Level RF System

    SciTech Connect

    Ross, William; Claus, Richard; Sapozhnikov, Leonid; /SLAC

    2011-08-31

    This paper describes the Gap Voltage Feed-Forward VXI module used in the PEP-II Low Level RF System. This module produces adaptively generated inphase (I) and quadrature (Q) reference signals for a single RF station based on measurements of periodic (1-turn) beam induced cavity transients caused by the presence of an ion clearing gap. In addition the module receives a fiber optically transmitted, bandlimited 'kic' signal from the longitudinal feedback system which is used to phase modulate the RF drive. This allows the RF system to act as a 'subwoofer' for the longitudinal feedback system for low order coupled-bunch instabilities driven by the fundamental mode of the accelerating cavities. The module includes hardware for remote measurement and adjustment of the 'kick' transfer function.

  18. Design of a New Built-in UHF Multi-Frequency Antenna Sensor for Partial Discharge Detection in High-Voltage Switchgears.

    PubMed

    Zhang, Xiaoxing; Cheng, Zheng; Gui, Yingang

    2016-01-01

    In this study a new built-in ultrahigh frequency (UHF) antenna sensor was designed and applied in a high-voltage switchgear for partial discharge (PD) detection. The casing of the switchgear was initially used as the ground plane of the antenna sensor, which integrated the sensor into the high-voltage switchgear. The Koch snowflake patch was adopted as the radiation patch of the antenna to overcome the disadvantages of common microstrip antennas, and the feed position and the dielectric layer thickness were simulated in detail. Simulation results show that the antenna sensor possessed four resonant points with good impedance matching from 300 MHz to 1000 MHz, and it also presented good multi-frequency performance in the entire working frequency band. PD detection experiments were conducted in the high-voltage switchgear, and the fabricated antenna sensor was effectively built into the high-voltage switchgear. In order to reflect the advantages of the built-in antenna sensor, another external UHF antenna sensor was used as a comparison to simultaneously detect PD. Experimental results demonstrated that the built-in antenna sensor possessed high detection sensitivity and strong anti-interference capacity, which ensured the practicability of the design. In addition, it had more high-voltage switchgear PD detection advantages than the external sensor. PMID:27472331

  19. Hexokinase II Detachment from Mitochondria Triggers Apoptosis through the Permeability Transition Pore Independent of Voltage-Dependent Anion Channels

    PubMed Central

    Chiara, Federica; Castellaro, Diego; Marin, Oriano; Petronilli, Valeria; Brusilow, William S.; Juhaszova, Magdalena; Sollott, Steven J.; Forte, Michael; Bernardi, Paolo; Rasola, Andrea

    2008-01-01

    Type II hexokinase is overexpressed in most neoplastic cells, and it mainly localizes on the outer mitochondrial membrane. Hexokinase II dissociation from mitochondria triggers apoptosis. The prevailing model postulates that hexokinase II release from its mitochondrial interactor, the voltage-dependent anion channel, prompts outer mitochondrial membrane permeabilization and the ensuing release of apoptogenic proteins, and that these events are inhibited by growth factor signalling. Here we show that a hexokinase II N-terminal peptide selectively detaches hexokinase II from mitochondria and activates apoptosis. These events are abrogated by inhibiting two established permeability transition pore modulators, the adenine nucleotide translocator or cyclophilin D, or in cyclophilin D knock-out cells. Conversely, insulin stimulation or genetic ablation of the voltage-dependent anion channel do not affect cell death induction by the hexokinase II peptide. Therefore, hexokinase II detachment from mitochondria transduces a permeability transition pore opening signal that results in cell death and does not require the voltage-dependent anion channel. These findings have profound implications for our understanding of the pathways of outer mitochondrial membrane permeabilization and their inactivation in tumors. PMID:18350175

  20. Enhanced low current, voltage, and power dissipation measurements via Arduino Uno microcontroller with modified commercially available sensors

    NASA Astrophysics Data System (ADS)

    Tanner, Meghan; Eckel, Ryan; Senevirathne, Indrajith

    The versatility, simplicity, and robustness of Arduino microcontroller architecture have won a huge following with increasingly serious engineering and physical science applications. Arduino microcontroller environment coupled with commercially available sensors have been used to systematically measure, record, and analyze low currents, low voltages and corresponding dissipated power for assessing secondary physical properties in a diverse array of engineering systems. Setup was assembled via breadboard, wire, and simple soldering with an Arduino Uno with ATmega328P microcontroller connected to a PC. The microcontroller was programmed with Arduino Software while the bootloader was used to upload the code. Commercial Hall effect current sensor modules ACS712 and INA169 current shunt monitor was used to measure corresponding low to ultra-low currents and voltages. Stable measurement data was obtained via sensors and compared with corresponding oscilloscope measurements to assess reliability and uncertainty. Sensor breakout boards were modified to enhance the sensitivity of the measurements and to expand the applicability. Discussion of these measurements will focus on capabilities, capacities and limitations of the systems with examples of possible applications. Lock Haven Nanotechnology Program.

  1. Direct Evidence that Scorpion α-Toxins (Site-3) Modulate Sodium Channel Inactivation by Hindrance of Voltage-Sensor Movements

    PubMed Central

    Ma, Zhongming; Kong, Jun; Gordon, Dalia; Gurevitz, Michael; Kallen, Roland G.

    2013-01-01

    The position of the voltage-sensing transmembrane segment, S4, in voltage-gated ion channels as a function of voltage remains incompletely elucidated. Site-3 toxins bind primarily to the extracellular loops connecting transmembrane helical segments S1-S2 and S3-S4 in Domain 4 (D4) and S5-S6 in Domain 1 (D1) and slow fast-inactivation of voltage-gated sodium channels. As S4 of the human skeletal muscle voltage-gated sodium channel, hNav1.4, moves in response to depolarization from the resting to the inactivated state, two D4S4 reporters (R2C and R3C, Arg1451Cys and Arg1454Cys, respectively) move from internal to external positions as deduced by reactivity to internally or externally applied sulfhydryl group reagents, methane thiosulfonates (MTS). The changes in reporter reactivity, when cycling rapidly between hyperpolarized and depolarized voltages, enabled determination of the positions of the D4 voltage-sensor and of its rate of movement. Scorpion α-toxin binding impedes D4S4 segment movement during inactivation since the modification rates of R3C in hNav1.4 with methanethiosulfonate (CH3SO2SCH2CH2R, where R = -N(CH3)3+ trimethylammonium, MTSET) and benzophenone-4-carboxamidocysteine methanethiosulfonate (BPMTS) were slowed ~10-fold in toxin-modified channels. Based upon the different size, hydrophobicity and charge of the two reagents it is unlikely that the change in reactivity is due to direct or indirect blockage of access of this site to reagent in the presence of toxin (Tx), but rather is the result of inability of this segment to move outward to the normal extent and at the normal rate in the toxin-modified channel. Measurements of availability of R3C to internally applied reagent show decreased access (slower rates of thiol reaction) providing further evidence for encumbered D4S4 movement in the presence of toxins consistent with the assignment of at least part of the toxin binding site to the region of D4S4 region of the voltage-sensor module. PMID

  2. A shared mechanism for lipid- and β-subunit-coordinated stabilization of the activated K+ channel voltage sensor

    PubMed Central

    Choi, Eun; Abbott, Geoffrey W.

    2010-01-01

    The low-dielectric plasma membrane provides an energy barrier hindering transmembrane movement of charged particles. The positively charged, voltage-sensing fourth transmembrane domain (S4) of voltage-gated ion channels must surmount this energy barrier to initiate channel activation, typically necessitating both membrane depolarization and interaction with membrane lipid phospho-head groups (MLPHGs). In contrast, and despite containing S4, the KCNQ1 K+ channel α subunit exhibits predominantly constitutive activation when in complexes with transmembrane β subunits, MinK-related peptide (MiRP) 1 (KCNE2) or MiRP2 (KCNE3). Here, using a 2-electrode voltage clamp and scanning mutagenesis of channels heterologously expressed in Xenopus laevis oocytes, we discovered that 2 of the 8 MiRP2 extracellular domain acidic residues (D54 and D55) are important for KCNQ1-MiRP2 constitutive activation. Double-mutant thermodynamic cycle analysis revealed energetic coupling of D54 and D55 to R237 in KCNQ1 S4 but not to 10 other native or introduced polar residues in KCNQ1 S4 and surrounding linkers. MiRP2-D54 and KCNQ1-R237 also similarly dictated susceptibility to the inhibitory effects of MLPHG hydrolysis, whereas other closely situated polar residues did not. Thus, by providing negative charge near the plasma membrane extracellular face, MiRP2 uses a lipomimetic mechanism to constitutively stabilize the activated KCNQ1 voltage sensor.—Choi, E., Abbott, G. W. A shared mechanism for lipid- and β-subunit-coordinated stabilization of the activated K+ channel voltage sensor. PMID:20040519

  3. Low-voltage 96 dB snapshot CMOS image sensor with 4.5 nW power dissipation per pixel.

    PubMed

    Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander

    2012-01-01

    Modern "smart" CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage "smart" image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel. PMID:23112588

  4. Low-Voltage 96 dB Snapshot CMOS Image Sensor with 4.5 nW Power Dissipation per Pixel

    PubMed Central

    Spivak, Arthur; Teman, Adam; Belenky, Alexander; Yadid-Pecht, Orly; Fish, Alexander

    2012-01-01

    Modern “smart” CMOS sensors have penetrated into various applications, such as surveillance systems, bio-medical applications, digital cameras, cellular phones and many others. Reducing the power of these sensors continuously challenges designers. In this paper, a low power global shutter CMOS image sensor with Wide Dynamic Range (WDR) ability is presented. This sensor features several power reduction techniques, including a dual voltage supply, a selective power down, transistors with different threshold voltages, a non-rationed logic, and a low voltage static memory. A combination of all these approaches has enabled the design of the low voltage “smart” image sensor, which is capable of reaching a remarkable dynamic range, while consuming very low power. The proposed power-saving solutions have allowed the maintenance of the standard architecture of the sensor, reducing both the time and the cost of the design. In order to maintain the image quality, a relation between the sensor performance and power has been analyzed and a mathematical model, describing the sensor Signal to Noise Ratio (SNR) and Dynamic Range (DR) as a function of the power supplies, is proposed. The described sensor was implemented in a 0.18 um CMOS process and successfully tested in the laboratory. An SNR of 48 dB and DR of 96 dB were achieved with a power dissipation of 4.5 nW per pixel. PMID:23112588

  5. A shared mechanism for lipid- and beta-subunit-coordinated stabilization of the activated K+ channel voltage sensor.

    PubMed

    Choi, Eun; Abbott, Geoffrey W

    2010-05-01

    The low-dielectric plasma membrane provides an energy barrier hindering transmembrane movement of charged particles. The positively charged, voltage-sensing fourth transmembrane domain (S4) of voltage-gated ion channels must surmount this energy barrier to initiate channel activation, typically necessitating both membrane depolarization and interaction with membrane lipid phospho-head groups (MLPHGs). In contrast, and despite containing S4, the KCNQ1 K(+) channel alpha subunit exhibits predominantly constitutive activation when in complexes with transmembrane beta subunits, MinK-related peptide (MiRP) 1 (KCNE2) or MiRP2 (KCNE3). Here, using a 2-electrode voltage clamp and scanning mutagenesis of channels heterologously expressed in Xenopus laevis oocytes, we discovered that 2 of the 8 MiRP2 extracellular domain acidic residues (D54 and D55) are important for KCNQ1-MiRP2 constitutive activation. Double-mutant thermodynamic cycle analysis revealed energetic coupling of D54 and D55 to R237 in KCNQ1 S4 but not to 10 other native or introduced polar residues in KCNQ1 S4 and surrounding linkers. MiRP2-D54 and KCNQ1-R237 also similarly dictated susceptibility to the inhibitory effects of MLPHG hydrolysis, whereas other closely situated polar residues did not. Thus, by providing negative charge near the plasma membrane extracellular face, MiRP2 uses a lipomimetic mechanism to constitutively stabilize the activated KCNQ1 voltage sensor. PMID:20040519

  6. The piezoelectronic stress transduction switch for very large-scale integration, low voltage sensor computation, and radio frequency applications

    NASA Astrophysics Data System (ADS)

    Magdǎu, I.-B.; Liu, X.-H.; Kuroda, M. A.; Shaw, T. M.; Crain, J.; Solomon, P. M.; Newns, D. M.; Martyna, G. J.

    2015-08-01

    The piezoelectronic transduction switch is a device with potential as a post-CMOS transistor due to its predicted multi-GHz, low voltage performance on the VLSI-scale. However, the operating principle of the switch has wider applicability. We use theory and simulation to optimize the device across a wide range of length scales and application spaces and to understand the physics underlying its behavior. We show that the four-terminal VLSI-scale switch can operate at a line voltage of 115 mV while as a low voltage-large area device, ≈200 mV operation at clock speeds of ≈2 GHz can be achieved with a desirable 104 On/Off ratio—ideal for on-board computing in sensors. At yet larger scales, the device is predicted to operate as a fast (≈250 ps) radio frequency (RF) switch exhibiting high cyclability, low On resistance and low Off capacitance, resulting in a robust switch with a RF figure of merit of ≈4 fs. These performance benchmarks cannot be approached with CMOS which has reached fundamental limits. In detail, a combination of finite element modeling and ab initio calculations enables prediction of switching voltages for a given design. A multivariate search method then establishes a set of physics-based design rules, discovering the key factors for each application. The results demonstrate that the piezoelectronic transduction switch can offer fast, low power applications spanning several domains of the information technology infrastructure.

  7. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    PubMed Central

    Leyton-Mange, Jordan S.; Mills, Robert W.; Macri, Vincenzo S.; Jang, Min Young; Butte, Faraz N.; Ellinor, Patrick T.; Milan, David J.

    2014-01-01

    Summary In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity. PMID:24527390

  8. Rapid cellular phenotyping of human pluripotent stem cell-derived cardiomyocytes using a genetically encoded fluorescent voltage sensor.

    PubMed

    Leyton-Mange, Jordan S; Mills, Robert W; Macri, Vincenzo S; Jang, Min Young; Butte, Faraz N; Ellinor, Patrick T; Milan, David J

    2014-02-11

    In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity. PMID:24527390

  9. Review on partial discharge detection techniques related to high voltage power equipment using different sensors

    NASA Astrophysics Data System (ADS)

    Yaacob, M. M.; Alsaedi, M. A.; Rashed, J. R.; Dakhil, A. M.; Atyah, S. F.

    2014-12-01

    When operating an equipment or a power system at the high voltage, problems associated with partial discharge (PD) can be tracked down to electromagnetic emission, acoustic emission or chemical reactions such as the formation of ozone and nitrous oxide gases. The high voltage equipment and high voltage installation owners have come to terms with the need for conditions monitoring the process of PD in the equipments such as power transformers, gas insulated substations (GIS), and cable installations. This paper reviews the available PD detection methods (involving high voltage equipment) such as electrical detection, chemical detection, acoustic detection, and optical detection. Advantages and disadvantages of each method have been explored and compared. The review suggests that optical detection techniques provide many advantages in the consideration of accuracy and suitability for the applications when compared to other techniques.

  10. Review on partial discharge detection techniques related to high voltage power equipment using different sensors

    NASA Astrophysics Data System (ADS)

    Yaacob, M. M.; Alsaedi, M. A.; Rashed, J. R.; Dakhil, A. M.; Atyah, S. F.

    2014-09-01

    When operating an equipment or a power system at the high voltage, problems associated with partial discharge (PD) can be tracked down to electromagnetic emission, acoustic emission or chemical reactions such as the formation of ozone and nitrous oxide gases. The high voltage equipment and high voltage installation owners have come to terms with the need for conditions monitoring the process of PD in the equipments such as power transformers, gas insulated substations (GIS), and cable installations. This paper reviews the available PD detection methods (involving high voltage equipment) such as electrical detection, chemical detection, acoustic detection, and optical detection. Advantages and disadvantages of each method have been explored and compared. The review suggests that optical detection techniques provide many advantages in the consideration of accuracy and suitability for the applications when compared to other techniques.

  11. A 433-MHz Rail-to-Rail Voltage Amplifier with Carrier Sensing Function for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takashi; Mikami, Shinji; Lee, Hyeokjong; Kawaguchi, Hiroshi; Ohta, Chikara; Yoshimoto, Masahiko

    In this paper we propose a novel functional amplifier suitable for low-power wireless receivers in a wireless sensor network. This amplifier can change input threshold level as carrier sensing level, since it has a minimum input amplitude to be amplified. A simple rail-to-rail output is suitable for a subsequent digital interface. The target frequency is 433MHz, and the maximum voltage gain is 11dB. The standby power is 39.5nW, and the active power is 352µW. The chip area is 82 × 24µm2.

  12. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    NASA Astrophysics Data System (ADS)

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-05-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V‑1 sec‑1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity.

  13. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications

    PubMed Central

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm2 V−1 sec−1, and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  14. Fabrication of Ultra-Thin Printed Organic TFT CMOS Logic Circuits Optimized for Low-Voltage Wearable Sensor Applications.

    PubMed

    Takeda, Yasunori; Hayasaka, Kazuma; Shiwaku, Rei; Yokosawa, Koji; Shiba, Takeo; Mamada, Masashi; Kumaki, Daisuke; Fukuda, Kenjiro; Tokito, Shizuo

    2016-01-01

    Ultrathin electronic circuits that can be manufactured by using conventional printing technologies are key elements necessary to realize wearable health sensors and next-generation flexible electronic devices. Due to their low level of power consumption, complementary (CMOS) circuits using both types of semiconductors can be easily employed in wireless devices. Here, we describe ultrathin CMOS logic circuits, for which not only the source/drain electrodes but also the semiconductor layers were printed. Both p-type and n-type organic thin film transistor devices were employed in a D-flip flop circuit in the newly developed stacked structure and exhibited excellent electrical characteristics, including good carrier mobilities of 0.34 and 0.21 cm(2) V(-1) sec(-1), and threshold voltages of nearly 0 V with low operating voltages. These printed organic CMOS D-flip flop circuits exhibit operating frequencies of 75 Hz and demonstrate great potential for flexible and printed electronics technology, particularly for wearable sensor applications with wireless connectivity. PMID:27157914

  15. Plasmonic/Nonlinear Optical Material Core/Shell Nanorods as Nanoscale Plasmon Modulators and Optical Voltage Sensors.

    PubMed

    Yin, Anxiang; He, Qiyuan; Lin, Zhaoyang; Luo, Liang; Liu, Yuan; Yang, Sen; Wu, Hao; Ding, Mengning; Huang, Yu; Duan, Xiangfeng

    2016-01-11

    Herein, we report the design and synthesis of plasmonic/non-linear optical (NLO) material core/shell nanostructures that can allow dynamic manipulation of light signals using an external electrical field and enable a new generation of nanoscale optical voltage sensors. We show that gold nanorods (Au NRs) can be synthesized with tunable plasmonic properties and function as the nucleation seeds for continued growth of a shell of NLO materials (such as polyaniline, PANI) with variable thickness. The formation of a PANI nanoshell allows dynamic modulation of the dielectric environment of the plasmonic Au NRs, and therefore the plasmonic resonance characteristics, by an external electrical field. The finite element simulation confirms that such modulation is originated from the field-induced modulation of the dielectric constant of the NLO shell. This approach is general, and the coating of the Au NRs with other NLO materials (such as barium titanate, BTO) is found to produce a similar effect. These findings can not only open a new pathway to active modulation of plasmonic resonance at the sub-wavelength scale but also enable the creation of a new generation of nanoscale optical voltage sensors (NOVS). PMID:26783058

  16. Ultra-low power sensor for autonomous non-invasive voltage measurement in IoT solutions for energy efficiency

    NASA Astrophysics Data System (ADS)

    Villani, Clemente; Balsamo, Domenico; Brunelli, Davide; Benini, Luca

    2015-05-01

    Monitoring current and voltage waveforms is fundamental to assess the power consumption of a system and to improve its energy efficiency. In this paper we present a smart meter for power consumption which does not need any electrical contact with the load or its conductors, and which can measure both current and voltage. Power metering becomes easier and safer and it is also self-sustainable because an energy harvesting module based on inductive coupling powers the entire device from the output of the current sensor. A low cost 32-bit wireless CPU architecture is used for data filtering and processing, while a wireless transceiver sends data via the IEEE 802.15.4 standard. We describe in detail the innovative contact-less voltage measurement system, which is based on capacitive coupling and on an algorithm that exploits two pre-processing channels. The system self-calibrates to perform precise measurements regardless the cable type. Experimental results demonstrate accuracy in comparison with commercial high-cost instruments, showing negligible deviations.

  17. A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief

    PubMed Central

    Lee, Jun-Ho; Park, Chul-Kyu; Chen, Gang; Han, Qingjian; Xie, Rou-Gang; Liu, Tong; Ji, Ru-Rong; Lee, Seok-Yong

    2014-01-01

    Summary Voltage-gated sodium (NaV) channels control the upstroke of the action potentials in excitable cells. Multiple studies have shown distinct roles of NaV channel subtypes in human physiology and diseases, but subtype-specific therapeutics are lacking and the current efforts have been limited to small molecules. Here we present a monoclonal antibody that targets the voltage-sensor paddle of NaV1.7, the subtype critical for pain sensation. This antibody not only inhibits NaV1.7 with high selectivity but also effectively suppresses inflammatory and neuropathic pain in mice. Interestingly, the antibody inhibits acute and chronic itch, despite well-documented differences in pain and itch modulation. Using this antibody, we discovered that NaV1.7 plays a key role in spinal cord nociceptive and pruriceptive synaptic transmission. Our studies reveal that NaV1.7 is a target for itch management and the antibody has therapeutic potential for suppressing pain and itch. Our antibody strategy may have broad applications for voltage-gated cation channels. PMID:24856969

  18. Low-voltage analog front-end processor design for ISFET-based sensor and H+ sensing applications

    NASA Astrophysics Data System (ADS)

    Chung, Wen-Yaw; Yang, Chung-Huang; Peng, Kang-Chu; Yeh, M. H.

    2003-04-01

    This paper presents a modular-based low-voltage analog-front-end processor design in a 0.5mm double-poly double-metal CMOS technology for Ion Sensitive Field Effect Transistor (ISFET)-based sensor and H+ sensing applications. To meet the potentiometric response of the ISFET that is proportional to various H+ concentrations, the constant-voltage and constant current (CVCS) testing configuration has been used. Low-voltage design skills such as bulk-driven input pair, folded-cascode amplifier, bootstrap switch control circuits have been designed and integrated for 1.5V supply and nearly rail-to-rail analog to digital signal processing. Core modules consist of an 8-bit two-step analog-digital converter and bulk-driven pre-amplifiers have been developed in this research. The experimental results show that the proposed circuitry has an acceptable linearity to 0.1 pH-H+ sensing conversions with the buffer solution in the range of pH2 to pH12. The processor has a potential usage in battery-operated and portable healthcare devices and environmental monitoring applications.

  19. Light-induced voltage changes associated with electron and proton transfer in photosystem II core complexes reconstituted in phospholipid monolayers.

    PubMed Central

    Höök, F; Brzezinski, P

    1994-01-01

    We have measured light-induced voltage changes (electrogenic events) in photosystem II (PSII) core complexes oriented in phospholipid monolayers. These events are compared to those measured in the functionally and structurally closely related reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides. In both systems we observed a rapid (< 100 ns) light-induced increase in voltage associated with charge separation. In PSII reaction centers it was followed by a decrease (decay) of approximately 14% of the charge-separation voltage and a time constant of approximately 500 microseconds. In bacterial reaction centers this decay was approximately 9% of the charge-separation voltage, and the time constant was approximately 200 microseconds. The decay was presumably associated with a structural change. In bacterial reaction centers, in the presence of excess water-soluble cytochrome c2+, it was followed by a slower increase of approximately 30% of the charge-separation voltage, associated with electron transfer from the cytochrome to the oxidized donor, P+. In PSII reaction centers, after the decay the voltage remained on the same level for > or = 0.5 s. In PSII reaction centers the electron transfer Q-AQB-->QA Q-B contributed with an electrogenicity of < or = 5% of that of the charge separation. In bacterial reaction centers this electrogenicity was < or = 2% of the charge-separation electrogenicity. Proton transfer to Q2-B in PSII reaction centers contributed with approximately 5% of the charge-separation voltage, which is approximately a factor of three smaller than that observed in bacterial reaction centers. PMID:8075340

  20. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane

    NASA Astrophysics Data System (ADS)

    Rajapaksha, Suneth P.; Pal, Nibedita; Zheng, Desheng; Lu, H. Peter

    2015-11-01

    We have applied a combined fluorescence microscopy and single-ion-channel electric current recording approach, correlating with molecular dynamics (MD) simulations, to study the mechanism of voltage-sensor domain translocation across a lipid bilayer. We use the colicin Ia ion channel as a model system, and our experimental and simulation results show the following: (1) The open-close activity of an activated colicin Ia is not necessarily sensitive to the amplitude of the applied cross-membrane voltage when the cross-membrane voltage is around the resting potential of excitable membranes; and (2) there is a significant probability that the activation of colicin Ia occurs by forming a transient and fluctuating water pore of ˜15 Å diameter in the lipid bilayer membrane. The location of the water-pore formation is nonrandom and highly specific, right at the insertion site of colicin Ia charged residues in the lipid bilayer membrane, and the formation is intrinsically associated with the polypeptide conformational fluctuations and solvation dynamics. Our results suggest an interesting mechanistic pathway for voltage-sensitive ion channel activation, and specifically for translocation of charged polypeptide chains across the lipid membrane under a transmembrane electric field: the charged polypeptide domain facilitates the formation of hydrophilic water pore in the membrane and diffuses through the hydrophilic pathway across the membrane; i.e., the charged polypeptide chain can cross a lipid membrane without entering into the hydrophobic core of the lipid membrane but entirely through the aqueous and hydrophilic environment to achieve a cross-membrane translocation. This mechanism sheds light on the intensive and fundamental debate on how a hydrophilic and charged peptide domain diffuses across the biologically inaccessible high-energy barrier of the hydrophobic core of a lipid bilayer: The peptide domain does not need to cross the hydrophobic core to move across a

  1. Topmetal-II-: a direct charge sensor for high energy physics and imaging applications

    NASA Astrophysics Data System (ADS)

    Gao, C.; Huang, G.; Sun, X.

    2016-01-01

    Topmetal-II-, a direct charge sensor, was manufactured in an XFAB 350 nm CMOS process. The Topmetal-II- sensor features a 72 × 72 pixel array with an 83 μm pixel pitch which collects and measures charge directly from the surrounding media. We introduce the implementation of the circuitry in the sensor including an analogue readout channel and a column based digital readout channel. The analogue readout channel allows the access to the full waveform from each pixel through a time-shared multiplexing. The digital readout channel records hits identified by an individually settable threshold in each pixel. Some simulation and preliminary test results are also discussed.

  2. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  3. NS1643 Interacts around L529 of hERG to Alter Voltage Sensor Movement on the Path to Activation

    PubMed Central

    Guo, Jiqing; Cheng, Yen May; Lees-Miller, James P.; Perissinotti, Laura L.; Claydon, Tom W.; Hull, Christina M.; Thouta, Samrat; Roach, Daniel E.; Durdagi, Serdar; Noskov, Sergei Y.; Duff, Henry J.

    2015-01-01

    Activators of hERG1 such as NS1643 are being developed for congenital/acquired long QT syndrome. Previous studies identify the neighborhood of L529 around the voltage-sensor as a putative interacting site for NS1643. With NS1643, the V1/2 of activation of L529I (−34 ± 4 mV) is similar to wild-type (WT) (−37 ± 3 mV; P > 0.05). WT and L529I showed no difference in the slope factor in the absence of NS1643 (8 ± 0 vs. 9 ± 0) but showed a difference in the presence of NS1643 (9 ± 0.3 vs. 22 ± 1; P < 0.01). Voltage-clamp-fluorimetry studies also indicated that in L529I, NS1643 reduces the voltage-sensitivity of S4 movement. To further assess mechanism of NS1643 action, mutations were made in this neighborhood. NS1643 shifts the V1/2 of activation of both K525C and K525C/L529I to hyperpolarized potentials (−131 ± 4 mV for K525C and −120 ± 21 mV for K525C/L529I). Both K525C and K525C/K529I had similar slope factors in the absence of NS1643 (18 ± 2 vs. 34 ± 5, respectively) but with NS1643, the slope factor of K525C/L529I increased from 34 ± 5 to 71 ± 10 (P < 0.01) whereas for K525C the slope factor did not change (18 ± 2 at baseline and 16 ± 2 for NS1643). At baseline, K525R had a slope factor similar to WT (9 vs. 8) but in the presence of NS1643, the slope factor of K525R was increased to 24 ± 4 vs. 9 ± 0 mV for WT (P < 0.01). Molecular modeling indicates that L529I induces a kink in the S4 voltage-sensor helix, altering a salt-bridge involving K525. Moreover, docking studies indicate that NS1643 binds to the kinked structure induced by the mutation with a higher affinity. Combining biophysical, computational, and electrophysiological evidence, a mechanistic principle governing the action of some activators of hERG1 channels is proposed. PMID:25809253

  4. Monte Carlo Simulations of Microchannel Plate Detectors II: Pulsed Voltage Results

    SciTech Connect

    Kruschwitz, Craig A.; Wu, Ming; Rochau, Greg A.

    2011-02-11

    This paper is part of a continuing study of straight-channel microchannel plate (MCP)–based x-ray detectors. Such detectors are a useful diagnostic tool for two-dimensional, time-resolved imaging and time-resolved x-ray spectroscopy. To interpret the data from such detectors, it is critical to develop a better understanding of the behavior of MCPs biased with subnanosecond voltage pulses. The subject of this paper is a Monte Carlo computer code that simulates the electron cascade in a MCP channel under an arbitrary pulsed voltage, particularly those pulses with widths comparable to the transit time of the electron cascade in the MCP under DC voltage bias. We use this code to study the gain as a function of time (also called the gate profile or optical gate) for various voltage pulse shapes, including pulses measured along the MCP. In addition, experimental data of MCP behavior in pulsed mode are obtained with a short-pulse UV laser. Comparisons between the simulations and experimental data show excellent agreement for both the gate profile and the peak relative sensitivity along the MCP strips. We report that the dependence of relative gain on peak voltage increases in sensitivity in pulsed mode when the width of the high-voltage waveform is smaller than the transit time of cascading electrons in the MCP.

  5. Pyroelectric PVDF sensor modeling of the temporal voltage response to arbitrarily modulated radiation.

    PubMed

    Capineri, L; Masotti, L; Mazzoni, M

    2000-01-01

    Our design of transducer arrays for custom pyroelectric sensors is mainly devoted to IR laser beam characterization and control. It benefits from some of the properties of PVDF film such as low cost, low weight, mechanical flexibility, chemical stability (inert), and compatibility of thick film interconnection technologies on metallized films. By using the temporal characteristics of the source intensity and starting from a standard equivalent one-dimensional model of a multilayer thick-film transducer in the frequency domain, we developed a computer model of the PVDF sensor that determines the temporal response to arbitrarily modulated radiation. The validation of the model accuracy has been carried out with a simulation procedure performed on a PVDF sensor designed for accurate beam alignment of low power laser beams. In this case, an iterative algorithm also was developed to estimate some thermal and physical properties of the front absorbing and the metallization layers that are generally barely known. We present a fitting procedure to determine these properties by using the temporal pyroelectric response to a square wave modulated laser diode that provides a reliable reference signal. PMID:18238686

  6. Fiber Bragg grating sensor for fault detection in high voltage overhead transmission lines

    NASA Astrophysics Data System (ADS)

    Moghadas, Amin

    2011-12-01

    A fiber optic based sensor capable of fault detection in both radial and network overhead transmission power line systems is investigated. Bragg wavelength shift is used to measure the fault current and detect fault in power systems. Magnetic fields generated by currents in the overhead transmission lines cause a strain in magnetostrictive material which is then detected by fiber Bragg grating (FBG) sensors. The Fiber Bragg interrogator senses the reflected FBG signals, and the Bragg wavelength shift is calculated and the signals are processed. A broadband light source in the control room scans the shift in the reflected signals. Any surge in the magnetic field relates to an increased fault current at a certain location. Also, fault location can be precisely defined with an artificial neural network (ANN) algorithm. This algorithm can be easily coordinated with other protective devices. It is shown that the faults in the overhead transmission line cause a detectable wavelength shift on the reflected signal of FBG sensors and can be used to detect and classify different kind of faults. The proposed method has been extensively tested by simulation and results confirm that the proposed scheme is able to detect different kinds of fault in both radial and network system.

  7. Imaging Membrane Potential with Two Types of Genetically Encoded Fluorescent Voltage Sensors.

    PubMed

    Lee, Sungmoo; Piao, Hong Hua; Sepheri-Rad, Masoud; Jung, Arong; Sung, Uhna; Song, Yoon-Kyu; Baker, Bradley J

    2016-01-01

    Genetically encoded voltage indicators (GEVIs) have improved to the point where they are beginning to be useful for in vivo recordings. While the ultimate goal is to image neuronal activity in vivo, one must be able to image activity of a single cell to ensure successful in vivo preparations. This procedure will describe how to image membrane potential in a single cell to provide a foundation to eventually image in vivo. Here we describe methods for imaging GEVIs consisting of a voltage-sensing domain fused to either a single fluorescent protein (FP) or two fluorescent proteins capable of Förster resonance energy transfer (FRET) in vitro. Using an image splitter enables the projection of images created by two different wavelengths onto the same charge-coupled device (CCD) camera simultaneously. The image splitter positions a second filter cube in the light path. This second filter cube consists of a dichroic and two emission filters to separate the donor and acceptor fluorescent wavelengths depending on the FPs of the GEVI. This setup enables the simultaneous recording of both the acceptor and donor fluorescent partners while the membrane potential is manipulated via whole cell patch clamp configuration. When using a GEVI consisting of a single FP, the second filter cube can be removed allowing the mirrors in the image splitter to project a single image onto the CCD camera. PMID:26890551

  8. Purification and Structural Study of the Voltage-Sensor Domain of the Human KCNQ1 Potassium Ion Channel

    PubMed Central

    2015-01-01

    KCNQ1 (also known as KV7.1 or KVLQT1) is a voltage-gated potassium channel modulated by members of the KCNE protein family. Among multiple functions, KCNQ1 plays a critical role in the cardiac action potential. This channel is also subject to inherited mutations that cause certain cardiac arrhythmias and deafness. In this study, we report the overexpression, purification, and preliminary structural characterization of the voltage-sensor domain (VSD) of human KCNQ1 (Q1-VSD). Q1-VSD was expressed in Escherichia coli and purified into lyso-palmitoylphosphatidylglycerol micelles, conditions under which this tetraspan membrane protein yields excellent nuclear magnetic resonance (NMR) spectra. NMR studies reveal that Q1-VSD shares a common overall topology with other channel VSDs, with an S0 helix followed by transmembrane helices S1–S4. The exact sequential locations of the helical spans do, however, show significant variations from those of the homologous segments of previously characterized VSDs. The S4 segment of Q1-VSD was seen to be α-helical (with no 310 component) and underwent rapid backbone amide H–D exchange over most of its length. These results lay the foundation for more advanced structural studies and can be used to generate testable hypotheses for future structure–function experiments. PMID:24606221

  9. OMPS Limb Sensor II: Novel Operations to Fix Data Artifacts

    NASA Astrophysics Data System (ADS)

    Soo, D.; Leitch, J. W.; Brownsberger, K.; Huang, P.; Draper, D. S.; Jaross, G. R.; Knewtson, R.; Lipscy, S.; Rusling, D.; Stutheit, C.

    2014-12-01

    The OMPS Limb sensor flying on the NPP-Suomi mission measures vertically-resolved limb spectral radiance profiles to derive a high spatial resolution ozone profile. The sensor uses both UV and visible light dispersed by a prism and imaged onto a single CCD to make profile measurements of the Earth limb radiance. The measurement challenges include a wide dynamic range in both spectral and spatial directions and demanding stray light requirements, especially for the UV wavelengths. On NPP, the sensor uses two optical gains (bright and dim limb spectral images) and two integration times (Long and Short) to handle the dynamic range of the limb signal. The sensor also contains precisely-positioned spectral filters at the focal plane to control stray light. The multiple image approach creates noise in retrieved profiles at the bright-dim crossover points. The filters are challenging both in fabrication and in alignment. The proposed operational change for the JPSS2 OMPS Limb sensor eliminates the multiple image approach and reduces stray light levels through use of different images for different wavelength channels. Through use of a stepped integration time scheme and on-board image consolidation, the spectral radiance measurements are improved and more pixels are available for downlink within the allotted data rate. We present the operational concept, results of ground testing using the Limb sensor engineering unit and estimates of expected on-orbit performance.

  10. Biological basis for space-variant sensor design II: implications for VLSI sensor design

    NASA Astrophysics Data System (ADS)

    Rojer, Alan S.; Schwartz, Eric L.

    1991-03-01

    We analyze the characteristics of a synthetic sensor comparable with respect to field width and resolution to the primate visual system. We estimate that 150 pixels are sufficient using a logarithmic sensor geometry and demonstrate that this calculation is consistent with known characteristics of biological vision e. g. the number of fibers in the optic nerve. To obtain the field width and resolution of the primate eye with a uniform sensor requires between iOiO'' times the number of pixels estimated for the comparable log sensor. Another interesting observation is that the field width and resolution of a conventional 512x512 sensor can be obtained with around 5000 pixels using the log geometry. We conclude with consideration of the prospects for achieving human-like performance with contemporary VLSI technology and briefly discuss progress on space-variant VLSI sensor design.

  11. Two-photon scanning microscopy of in vivo sensory responses of cortical neurons genetically encoded with a fluorescent voltage sensor in rat

    PubMed Central

    Ahrens, Kurt F.; Heider, Barbara; Lee, Hanson; Isacoff, Ehud Y.; Siegel, Ralph M.

    2012-01-01

    A fluorescent voltage sensor protein “Flare” was created from a Kv1.4 potassium channel with YFP situated to report voltage-induced conformational changes in vivo. The RNA virus Sindbis introduced Flare into neurons in the binocular region of visual cortex in rat. Injection sites were selected based on intrinsic optical imaging. Expression of Flare occurred in the cell bodies and dendritic processes. Neurons imaged in vivo using two-photon scanning microscopy typically revealed the soma best, discernable against the background labeling of the neuropil. Somatic fluorescence changes were correlated with flashed visual stimuli; however, averaging was essential to observe these changes. This study demonstrates that the genetic modification of single neurons to express a fluorescent voltage sensor can be used to assess neuronal activity in vivo. PMID:22461770

  12. Autonomous Transmembrane Segment S4 of the Voltage Sensor Domain Partitions into the Lipid Membrane

    PubMed Central

    Tiriveedhi, Venkataswarup; Miller, Melissa; Butko, Peter; Li, Min

    2012-01-01

    The S4 transmembrane segment in voltage-gated ion channels, a highly basic α helix, responds to changes in membrane potential and induces channel opening. Earlier work by others indicates that the S4 segment interacts with lipids in plasma membrane, but its mechanism is unclear. Working with synthetic tryptophan-labeled S4 peptides, we characterized binding of autonomous S4 to lipid membranes. The binding free energy (5.2 ± 0.2 kcal/mol) of the peptide-lipid interaction was estimated from the apparent dissociation constants, determined from the changes in anisotropy of tryptophan fluorescence induced by addition of lipid vesicles with 30 mol% phosphatidylglycerol. The results are in good agreement with the prediction based on the Wimley-White hydrophobicity scale for interfacial (IF) binding of an alpha-helical peptide to the lipid bilayer (6.98 kcal/mol). High salt inhibited the interaction, thus indicating that the peptide/membrane interaction has both electrostatic and non-electrostatic components. Furthermore, the synthetic S4 corresponding to the Shaker potassium channel was found to spontaneously penetrate into the negatively charged lipid membrane to a depth of about 9 Å. Our results revealed important biophysical parameters that influence the interaction of S4 with the membrane: they include fluidity, surface charge, and surface pressure of the membrane, and the α helicity and regular spacing of basic amino-acid residues in the S4 sequence. PMID:22465069

  13. An Improved Targeted cAMP Sensor to Study the Regulation of Adenylyl Cyclase 8 by Ca2+ Entry through Voltage-Gated Channels

    PubMed Central

    Everett, Katy L.; Cooper, Dermot M. F.

    2013-01-01

    Here we describe an improved sensor with reduced pH sensitivity tethered to adenylyl cyclase (AC) 8. The sensor was used to study cAMP dynamics in the AC8 microdomain of MIN6 cells, a pancreatic β-cell line. In these cells, AC8 was activated by Ca2+ entry through L-type voltage-gated channels following depolarisation. This activation could be reconstituted in HEK293 cells co-expressing AC8 and either the α1C or α1D subunit of L-type voltage-gated Ca2+ channels. The development of this improved sensor opens the door to the study of cAMP microdomains in excitable cells that have previously been challenging due to the sensitivity of fluorescent proteins to pH changes. PMID:24086669

  14. Comparison of Cu-II 781 nm lasers using high-voltage hollow-cathode and hollow-anode-cathode discharges

    SciTech Connect

    Peard, K.A.; Tobin, R.C. . Dept. of Physics); Donko, Z.; Rozsa, K. ); Szalai, L. )

    1994-09-01

    Voltage-current characteristics and the Cu-II 780.8 nm laser performances are described for a novel segmented hollow cathode and for three- and four-slot hollow-anode cathode (HAC) tubes. Each of these operate at a higher voltage and with higher slope resistance than a conventional hollow cathode and produce improved laser performance. The best laser performance is obtained with the segmented tube. The application of a longitudinal magnetic field raises the discharge voltage and enhances the laser performance for the segmented tube and raises the voltage for the four-slot HAC tube. The magnetic field lowers the voltage and reduces the laser performance with the three-slot HAC tube. The voltage effects are attributed to the deflection of the fast electrons by the magnetic field and represent experimental evidence for the oscillation of electrons in a hollow-cathode discharge.

  15. Sensitive electrochemical sensor using a graphene-polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II).

    PubMed

    Ruecha, Nipapan; Rodthongkum, Nadnudda; Cate, David M; Volckens, John; Chailapakul, Orawon; Henry, Charles S

    2015-05-18

    This work describes the development of an electrochemical sensor for simultaneous detection of Zn(II), Cd(II), and Pb(II) using a graphene-polyaniline (G/PANI) nanocomposite electrode prepared by reverse-phase polymerization in the presence of polyvinylpyrrolidone (PVP). Two substrate materials (plastic film and filter paper) and two nanocomposite deposition methods (drop-casting and electrospraying) were investigated. Square-wave anodic stripping voltammetry currents were higher for plastic vs. paper substrates. Performance of the G/PANI nanocomposites was characterized by scanning electron microscopy (SEM) and cyclic voltammetry. The G/PANI-modified electrode exhibited high electrochemical conductivity, producing a three-fold increase in anodic peak current (vs. the unmodified electrode). The G/PANI-modified electrode also showed evidence of increased surface area under SEM. Square-wave anodic stripping voltammetry was used to measure Zn(II), Cd(II), and Pb(II) in the presence of Bi(III). A linear working range of 1-300 μg L(-1) was established between anodic current and metal ion concentration with detection limits (S/N=3) of 1.0 μg L(-1) for Zn(II), and 0.1 μg L(-1) for both Cd(II) and Pb(II). The G/PANI-modified electrode allowed selective determination of the target metals in the presence of common metal interferences including Mn(II), Cu(II), Fe(III), Fe(II), Co(III), and Ni(II). Repeat assays on the same device demonstrated good reproducibility (%RSD<11) over 10 serial runs. Finally, this system was utilized for determining Zn(II), Cd(II), and Pb(II) in human serum using the standard addition method. PMID:25910444

  16. Biomimetic smart sensors for autonomous robotic behavior II: vestibular processing

    NASA Astrophysics Data System (ADS)

    Xue, Shuwan; Deligeorges, Socrates; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Limited autonomous behaviors are fast becoming a critical capability in the field of robotics as robotic applications are used in more complicated and interactive environments. As additional sensory capabilities are added to robotic platforms, sensor fusion to enhance and facilitate autonomous behavior becomes increasingly important. Using biology as a model, the equivalent of a vestibular system needs to be created in order to orient the system within its environment and allow multi-modal sensor fusion. In mammals, the vestibular system plays a central role in physiological homeostasis and sensory information integration (Fuller et al, Neuroscience 129 (2004) 461-471). At the level of the Superior Colliculus in the brain, there is multimodal sensory integration across visual, auditory, somatosensory, and vestibular inputs (Wallace et al, J Neurophysiol 80 (1998) 1006-1010), with the vestibular component contributing a strong reference frame gating input. Using a simple model for the deep layers of the Superior Colliculus, an off-the-shelf 3-axis solid state gyroscope and accelerometer was used as the equivalent representation of the vestibular system. The acceleration and rotational measurements are used to determine the relationship between a local reference frame of a robotic platform (an iRobot Packbot®) and the inertial reference frame (the outside world), with the simulated vestibular input tightly coupled with the acoustic and optical inputs. Field testing of the robotic platform using acoustics to cue optical sensors coupled through a biomimetic vestibular model for "slew to cue" gunfire detection have shown great promise.

  17. Mechanism of Electromechanical Coupling in Voltage-Gated Potassium Channels

    PubMed Central

    Blunck, Rikard; Batulan, Zarah

    2012-01-01

    Voltage-gated ion channels play a central role in the generation of action potentials in the nervous system. They are selective for one type of ion – sodium, calcium, or potassium. Voltage-gated ion channels are composed of a central pore that allows ions to pass through the membrane and four peripheral voltage sensing domains that respond to changes in the membrane potential. Upon depolarization, voltage sensors in voltage-gated potassium channels (Kv) undergo conformational changes driven by positive charges in the S4 segment and aided by pairwise electrostatic interactions with the surrounding voltage sensor. Structure-function relations of Kv channels have been investigated in detail, and the resulting models on the movement of the voltage sensors now converge to a consensus; the S4 segment undergoes a combined movement of rotation, tilt, and vertical displacement in order to bring 3–4e+ each through the electric field focused in this region. Nevertheless, the mechanism by which the voltage sensor movement leads to pore opening, the electromechanical coupling, is still not fully understood. Thus, recently, electromechanical coupling in different Kv channels has been investigated with a multitude of techniques including electrophysiology, 3D crystal structures, fluorescence spectroscopy, and molecular dynamics simulations. Evidently, the S4–S5 linker, the covalent link between the voltage sensor and pore, plays a crucial role. The linker transfers the energy from the voltage sensor movement to the pore domain via an interaction with the S6 C-termini, which are pulled open during gating. In addition, other contact regions have been proposed. This review aims to provide (i) an in-depth comparison of the molecular mechanisms of electromechanical coupling in different Kv channels; (ii) insight as to how the voltage sensor and pore domain influence one another; and (iii) theoretical predictions on the movement of the cytosolic face of the Kv channels during

  18. Application of HFCT and UHF Sensors in On-Line Partial Discharge Measurements for Insulation Diagnosis of High Voltage Equipment

    PubMed Central

    Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel

    2015-01-01

    Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment. PMID:25815452

  19. Application of HFCT and UHF sensors in on-line partial discharge measurements for insulation diagnosis of high voltage equipment.

    PubMed

    Álvarez, Fernando; Garnacho, Fernando; Ortego, Javier; Sánchez-Urán, Miguel Ángel

    2015-01-01

    Partial discharge (PD) measurements provide valuable information for assessing the condition of high voltage (HV) insulation systems, contributing to their quality assurance. Different PD measuring techniques have been developed in the last years specially designed to perform on-line measurements. Non-conventional PD methods operating in high frequency bands are usually used when this type of tests are carried out. In PD measurements the signal acquisition, the subsequent signal processing and the capability to obtain an accurate diagnosis are conditioned by the selection of a suitable detection technique and by the implementation of effective signal processing tools. This paper proposes an optimized electromagnetic detection method based on the combined use of wideband PD sensors for measurements performed in the HF and UHF frequency ranges, together with the implementation of powerful processing tools. The effectiveness of the measuring techniques proposed is demonstrated through an example, where several PD sources are measured simultaneously in a HV installation consisting of a cable system connected by a plug-in terminal to a gas insulated substation (GIS) compartment. PMID:25815452

  20. Evaluation of a Trainer for Sensor Operators on Gunship II Aircraft.

    ERIC Educational Resources Information Center

    Cream, Bertram W.

    This report describes the design, development, and evaluation of a training device intended to enable ground-based practice of equipment operation and target-tracking skills that are required by the Forward-Looking Infrared (FLIR) and Low Light Level TV (LLLTV) sensor operators assigned to Gunship II aircraft. This trainer makes use of a…

  1. Combinatorial screening of potentiometric Pb(II) sensors from polysulfoaminoanthraquinone solid ionophore.

    PubMed

    Huang, Mei-Rong; Ding, Yong-Bo; Li, Xin-Gui

    2014-03-10

    A potentiometric Pb(II)-selective sensor was fabricated by a combinatorial screening of electrically conducting polysulfoaminoanthraquinone (PSA) nanoparticles as a solid ionophore, ion exchangers (oleic acid (OA) and NaTPB), plasticizers in a polyvinyl chloride (PVC) matrix, membrane thickness, inner filling ion species, and concentration. The membrane sensor with the composition of PSA/PVC/DOP (dioctyl phthalate)/OA (1.0:33:61:5.0) exhibited the best performance, including a slope of 29.3 mV decade(-1) in the concentration range 10(-6.3)-10(-1.6) M, detection limit of 1.6 × 10(-7) M, response time of 16 s, lifetime of five months, and good response reversibility. The proposed sensor has demonstrated good selectivity for Pb(II) over other monovalent, divalent and trivalent interfering ions, and could be used in a pH range of 3.62-5.22. The Pb(II) sensor has been successfully applied for the determination of Pb(II) concentration in real-world samples and also as an indicator electrode for potentiometric titration of lead ions. PMID:24512280

  2. The α2δ-1 subunit remodels CaV1.2 voltage sensors and allows Ca2+ influx at physiological membrane potentials.

    PubMed

    Savalli, Nicoletta; Pantazis, Antonios; Sigg, Daniel; Weiss, James N; Neely, Alan; Olcese, Riccardo

    2016-08-01

    Excitation-evoked calcium influx across cellular membranes is strictly controlled by voltage-gated calcium channels (CaV), which possess four distinct voltage-sensing domains (VSDs) that direct the opening of a central pore. The energetic interactions between the VSDs and the pore are critical for tuning the channel's voltage dependence. The accessory α2δ-1 subunit is known to facilitate CaV1.2 voltage-dependent activation, but the underlying mechanism is unknown. In this study, using voltage clamp fluorometry, we track the activation of the four individual VSDs in a human L-type CaV1.2 channel consisting of α1C and β3 subunits. We find that, without α2δ-1, the channel complex displays a right-shifted voltage dependence such that currents mainly develop at nonphysiological membrane potentials because of very weak VSD-pore interactions. The presence of α2δ-1 facilitates channel activation by increasing the voltage sensitivity (i.e., the effective charge) of VSDs I-III. Moreover, the α2δ-1 subunit also makes VSDs I-III more efficient at opening the channel by increasing the coupling energy between VSDs II and III and the pore, thus allowing Ca influx within the range of physiological membrane potentials. PMID:27481713

  3. Highly selective and stable florescent sensor for Cd(II) based on poly (azomethine-urethane).

    PubMed

    Kaya, İsmet; Kamacı, Musa

    2013-01-01

    In this study a kind of poly(azomethine-urethane); (E)-4-((2 hydroxyphenylimino) methyl)-2-methoxyphenyl 6-acetamidohexylcarbamate (HDI-co-3-DHB-2-AP) was prepared as in the literature and employed as a new fluorescent probe for detection of Cd(II) concentration. The photoluminescence (PL) measurements were carried out in the presence of several kinds of heavy metals. HDI-co-3-DHB-2-AP gave a linearly and highly stable response against Cd(II) as decreasing a new emission peak at 562 nm. Possible interferences of other ions were found too low. Detection limit of the sensor was found as 8.86 × 10(-4) mol L(-1). Resultantly, HDI-co-3- DHB-2-AP could be effectively used as an optical Cd(II) sensor. PMID:22941725

  4. Design and construction of the 3.2 MeV high voltage column for DARHT II

    SciTech Connect

    Peters, C., Elliott, B.; Yu, S.; Eylon, S.; Henestroza, E.

    2000-08-20

    A 3.2 MeV injector has been designed and built for the DARHT II Project at Los Alamos Lab. The installation of the complete injector system is nearing completion at this time. The requirements for the injector are to produce a 3.2 MeV, 2000-ampere electron pulse with a flattop width of at least 2-microseconds and emittance of less than 0.15 pi cm-rad normalized. A large high voltage column has been built and installed. The column is vertically oriented, is 4.4 meters long, 1.2 meters in diameter, and weighs 5700 kilograms. A novel method of construction has been employed which utilizes bonded Mycalex insulating rings. This paper will describe the design, construction, and testing completed during construction. Mechanical aspects of the design will be emphasized.

  5. Brown Adipose Tissue Response Dynamics: In Vivo Insights with the Voltage Sensor 18F-Fluorobenzyl Triphenyl Phosphonium

    PubMed Central

    Madar, Igal; Naor, Elinor; Holt, Daniel; Ravert, Hayden; Dannals, Robert; Wahl, Richard

    2015-01-01

    Brown adipose tissue (BAT) thermogenesis is an emerging target for prevention and treatment of obesity. Mitochondria are the heat generators of BAT. Yet, there is no noninvasive means to image the temporal dynamics of the mitochondrial activity in BAT in vivo. Here, we report a technology for quantitative monitoring of principal kinetic components of BAT adaptive thermogenesis in the living animal, using the PET imaging voltage sensor 18F-fluorobenzyltriphenylphosphonium (18F-FBnTP). 18F-FBnTP targets the mitochondrial membrane potential (ΔΨm)—the voltage analog of heat produced by mitochondria. Dynamic 18F-FBnTP PET imaging of rat’s BAT was acquired just before and during localized skin cooling or systemic pharmacologic stimulation, with and without administration of propranolol. At ambient temperature, 18F-FBnTP demonstrated rapid uptake and prolonged steady-state retention in BAT. Conversely, cold-induced mitochondrial uncoupling resulted in an immediate washout of 18F-FBnTP from BAT, which was blocked by propranolol. Specific variables of BAT evoked activity were identified and quantified, including response latency, magnitude and kinetics. Cold stimulation resulted in partial washout of 18F-FBnTP (39.1%±14.4% of basal activity). The bulk of 18F-FBnTP washout response occurred within the first minutes of the cold stimulation, while colonic temperature remained nearly intact. Drop of colonic temperature to shivering zone did not have an additive effect. The ß3-adrenergic agonist CL-316,243 elicited 18F-FBnTP washout from BAT of kinetics similar to those caused by cold stimulation. Thus, monitoring ΔΨm in vivo using 18F-FBnTP PET provides insights into the kinetic physiology of BAT. 18F-FBnTP PET depicts BAT as a highly sensitive and rapidly responsive organ, emitting heat in short burst during the first minutes of stimulation, and preceding change in core temperature. 18F-FBnTP PET provides a novel set of quantitative metrics highly important for

  6. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  7. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor

    PubMed Central

    Ghitani, Nima; Bayguinov, Peter O.; Ma, Yihe

    2014-01-01

    Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits. PMID:25411462

  8. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor.

    PubMed

    Ghitani, Nima; Bayguinov, Peter O; Ma, Yihe; Jackson, Meyer B

    2015-02-15

    Genetically encoded voltage sensors expand the optogenetics toolkit into the important realm of electrical recording, enabling researchers to study the dynamic activity of complex neural circuits in real time. However, these probes have thus far performed poorly when tested in intact neural circuits. Hybrid voltage sensors (hVOS) enable the imaging of voltage by harnessing the resonant energy transfer that occurs between a genetically encoded component, a membrane-tethered fluorescent protein that serves as a donor, and a small charged molecule, dipicrylamine, which serves as an acceptor. hVOS generates optical signals as a result of voltage-induced changes in donor-acceptor distance. We expressed the hVOS probe in mouse brain by in utero electroporation and in transgenic mice with a neuronal promoter. Under conditions favoring sparse labeling we could visualize single-labeled neurons. hVOS imaging reported electrically evoked fluorescence changes from individual neurons in slices from entorhinal cortex, somatosensory cortex, and hippocampus. These fluorescence signals tracked action potentials in individual neurons in a single trial with excellent temporal fidelity, producing changes that exceeded background noise by as much as 16-fold. Subthreshold synaptic potentials were detected in single trials in multiple distinct cells simultaneously. We followed signal propagation between different cells within one field of view and between dendrites and somata of the same cell. hVOS imaging thus provides a tool for high-resolution recording of electrical activity from genetically targeted cells in intact neuronal circuits. PMID:25411462

  9. Voltage-Dependent Regulation of Complex II Energized Mitochondrial Oxygen Flux

    PubMed Central

    Bai, Fan; Fink, Brian D.; Yu, Liping; Sivitz, William I.

    2016-01-01

    Oxygen consumption by isolated mitochondria is generally measured during state 4 respiration (no ATP production) or state 3 (maximal ATP production at high ADP availability). However, mitochondria in vivo do not function at either extreme. Here we used ADP recycling methodology to assess muscle mitochondrial function over intermediate clamped ADP concentrations. In so doing, we uncovered a previously unrecognized biphasic respiratory pattern wherein O2 flux on the complex II substrate, succinate, initially increased and peaked over low clamped ADP concentrations then decreased markedly at higher clamped concentrations. Mechanistic studies revealed no evidence that the observed changes in O2 flux were due to altered opening or function of the mitochondrial permeability transition pore or to changes in reactive oxygen. Based on metabolite and functional metabolic data, we propose a multifactorial mechanism that consists of coordinate changes that follow from reduced membrane potential (as the ADP concentration in increased). These changes include altered directional electron flow, altered NADH/NAD+ redox cycling, metabolite exit, and OAA inhibition of succinate dehydrogenase. In summary, we report a previously unrecognized pattern for complex II energized O2 flux. Moreover, our findings suggest that the ADP recycling approach might be more widely adapted for mitochondrial studies. PMID:27153112

  10. Voltage-Dependent Regulation of Complex II Energized Mitochondrial Oxygen Flux.

    PubMed

    Bai, Fan; Fink, Brian D; Yu, Liping; Sivitz, William I

    2016-01-01

    Oxygen consumption by isolated mitochondria is generally measured during state 4 respiration (no ATP production) or state 3 (maximal ATP production at high ADP availability). However, mitochondria in vivo do not function at either extreme. Here we used ADP recycling methodology to assess muscle mitochondrial function over intermediate clamped ADP concentrations. In so doing, we uncovered a previously unrecognized biphasic respiratory pattern wherein O2 flux on the complex II substrate, succinate, initially increased and peaked over low clamped ADP concentrations then decreased markedly at higher clamped concentrations. Mechanistic studies revealed no evidence that the observed changes in O2 flux were due to altered opening or function of the mitochondrial permeability transition pore or to changes in reactive oxygen. Based on metabolite and functional metabolic data, we propose a multifactorial mechanism that consists of coordinate changes that follow from reduced membrane potential (as the ADP concentration in increased). These changes include altered directional electron flow, altered NADH/NAD+ redox cycling, metabolite exit, and OAA inhibition of succinate dehydrogenase. In summary, we report a previously unrecognized pattern for complex II energized O2 flux. Moreover, our findings suggest that the ADP recycling approach might be more widely adapted for mitochondrial studies. PMID:27153112

  11. Time-dependent Ginzburg-Landau simulations of the voltage-current characteristic of type-II superconductors with pinning

    NASA Astrophysics Data System (ADS)

    Winiecki, Thomas

    2003-03-01

    In a type-II superconductor, dissipation is associated with the motion of the vortex lattice. This dissipation is reduced by the presence of defects which pin the vortex lattice up to a critical current density. In many applications such as superconducting magnets, one is interested in optimizing the vortex pinning to achieve the maximum critical current. The dynamics of vortices in type-II superconductors may be simulated by directly solving the time-dependent Ginzburg-Landau (TGDL) equations. We propose a new finite-difference algorithm for solving the TDGL equations coupled to appropriate Maxwell equations which is fast enough to allow the study of fully three dimensional problems. As an example, we model current flow in a superconductor subject to a magnetic field. Pinning sites are introduced by adding localized potentials terms to the TDGL equation which deplete the supercurrent density locally. We show that the breakdown of superconductivity is associated with the appearance of channelled vortex flow. We also study the dependence of the critical current on the pinning distribution and find for random distributions a maximum critical current equal to 2% of the depairing current at a pinning density three times larger than the vortex line density, whereas for a regular triangular pinning arrays the critical current is greater than 7% of the depairing current when the pinning density matches the vortex line density. These results suggest that additional pinning mechanisms such as magnetic defects are required to explain the large critical currents observed in some experiments. Further work is needed to include magnetic defects into the TDGL model. Time-dependent Ginzburg-Landau simulations of the voltage-current characteristic of type-II superconductors with pinning, T. Winiecki and C. S. Adams, Phys. Rev. B, 65, 104517 (2002). A fast Semi-Implicit Finite-Difference Method for the TDGL Equations, T. Winiecki and C. S. Adams, J. Comput. Phys. 179, 127-139 (2002).

  12. THE VOLTAGE DEPENDENCE OF GATING CURRENTS OF THE NEURONAL CAV3.3 CHANNEL IS DETERMINED BY THE GATING BRAKE IN THE I-II LOOP

    PubMed Central

    Karmažínová, Mária; Baumgart, Joel; Perez-Reyes, Edward; Lacinová, L'ubica

    2012-01-01

    Low-voltage activated CaV3 Ca2+ channels have an activation threshold around −60 mV, which is lower than the activation threshold of other voltage-dependent calcium channels (VDCC). The kinetics of their activation at membrane voltages just above the activation threshold is much slower than the activation kinetics of other VDCCs. It was demonstrated recently that the intracellular loop connecting repeats I and II of all three CaV3 channels contains a so-called “gating brake.” Disruption of this brake yields channels that activate at even more hyperpolarized potentials with significantly accelerated kinetics. We have compared gating of a wild type CaV3.3 channel and a mutated ID12 channel, in which the putative gating brake at the proximal part of the I-II loop was removed. Voltage dependence of the gating current activation was shifted by 34.6 mV towards more hyperpolarized potentials in ID12 channel. Kinetics of the on-charge activation was significantly accelerated, while kinetics of the off-charge was not altered. We conclude that the putative gating brake in I-II loop hinders not only the opening of the conducting pore but also the activating movement of voltage sensing S4 segments, stabilizing the channel in its closed state. PMID:21340458

  13. Preparation of Power Distribution System for High Penetration of Renewable Energy Part I. Dynamic Voltage Restorer for Voltage Regulation Pat II. Distribution Circuit Modeling and Validation

    NASA Astrophysics Data System (ADS)

    Khoshkbar Sadigh, Arash

    Part I: Dynamic Voltage Restorer In the present power grids, voltage sags are recognized as a serious threat and a frequently occurring power-quality problem and have costly consequence such as sensitive loads tripping and production loss. Consequently, the demand for high power quality and voltage stability becomes a pressing issue. Dynamic voltage restorer (DVR), as a custom power device, is more effective and direct solutions for "restoring" the quality of voltage at its load-side terminals when the quality of voltage at its source-side terminals is disturbed. In the first part of this thesis, a DVR configuration with no need of bulky dc link capacitor or energy storage is proposed. This fact causes to reduce the size of the DVR and increase the reliability of the circuit. In addition, the proposed DVR topology is based on high-frequency isolation transformer resulting in the size reduction of transformer. The proposed DVR circuit, which is suitable for both low- and medium-voltage applications, is based on dc-ac converters connected in series to split the main dc link between the inputs of dc-ac converters. This feature makes it possible to use modular dc-ac converters and utilize low-voltage components in these converters whenever it is required to use DVR in medium-voltage application. The proposed configuration is tested under different conditions of load power factor and grid voltage harmonic. It has been shown that proposed DVR can compensate the voltage sag effectively and protect the sensitive loads. Following the proposition of the DVR topology, a fundamental voltage amplitude detection method which is applicable in both single/three-phase systems for DVR applications is proposed. The advantages of proposed method include application in distorted power grid with no need of any low-pass filter, precise and reliable detection, simple computation and implementation without using a phased locked loop and lookup table. The proposed method has been verified

  14. In situ formation of p-n junction: a novel principle for photoelectrochemical sensor and its application for mercury(II) ion detection.

    PubMed

    Wang, Guang-Li; Liu, Kang-Li; Dong, Yu-Ming; Li, Zai-Jun; Zhang, Chi

    2014-05-27

    The discovery and development of photoelectrochemical sensors with novel principles are of great significance to realize sensitive and low-cost detection. In this paper, a new photoelectrochemial sensor based on the in situ formation of p-n junction was designed and used for the accurate determination of mercury(II) ions. Cysteine-capped ZnS quantum dots (QDs) was assembled on the surface of indium tin oxide (ITO) electrode based on the electrostatic interaction between Poly(diallyldimethylammonium chloride) (PDDA) and Cys-capped ZnS QDs. The in situ formation of HgS, a p-type semiconductor, on the surface of ZnS facilitated the charge carrier transport and promoted electron-hole separation, triggered an obviously enhanced anodic photocurrent of Cys-capped ZnS QDs. The formation of p-n junction was confirmed by P-N conductive type discriminator measurements and current-voltage (I-V) curves. The photoelectrochemical method was used for the sensing of trace mercuric (II) ions with a linear concentration of 0.01 to 10.0 µM and a detection limit of 4.6×10(-9)mol/L. It is expected that the present study can serve as a foundation to the application of p-n heterojunction to photoelectrochemical sensors and it might be easily extended to more exciting sensing systems by photoelectrochemistry. PMID:24832992

  15. Belle-II VXD radiation monitoring and beam abort with sCVD diamond sensors

    NASA Astrophysics Data System (ADS)

    Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, T.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, Lorenzo; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-07-01

    The Belle-II VerteX Detector (VXD) has been designed to improve the performances with respect to Belle and to cope with an unprecedented luminosity of 8 ×1035cm-2s-1 achievable by the SuperKEKB. Special care is needed to monitor both the radiation dose accumulated throughout the life of the experiment and the instantaneous radiation rate, in order to be able to promptly react to sudden spikes for the purpose of protecting the detectors. A radiation monitoring and beam abort system based on single-crystal diamond sensors is now under an active development for the VXD. The sensors will be placed in several key positions in the vicinity of the interaction region. The severe space limitations require a challenging remote readout of the sensors.

  16. Regional distribution of ionic currents and membrane voltage responses of type II hair cells in the vestibular neuroepithelium.

    PubMed

    Weng, T; Correia, M J

    1999-11-01

    Basolateral ionic currents and membrane voltage responses were studied in pigeon vestibular type II hair cells using a thin slice through either the semicircular canal (SCC) crista or utricular macular epithelium. Whole cell tight-seal patch-clamp recording techniques were used. Current-clamp and voltage-clamp studies were carried out on the same cell. One hundred ten cells were studied in the peripheral (Zone I) and central (Zone III) zones of the SCC crista, and 162 cells were studied in the striolar (S Zone) and extrastriolar (ES Zone) zones of the utricular macula. One of the major findings of this paper is that hair cells with fast activation kinetics of their outward currents are found primarily in one region of the SCC crista and utricular macula, whereas hair cells with slow activation kinetics are found in a different region. In Zone I of the crista, 95% of the cells have fast activation kinetics ("fast" cells) and in Zone III of the crista, 86% of the cells have slow activation kinetics ("slow" cells). In the utricular macula slice, 100% of the cells from the S Zone are slow cells, whereas 86% of the cells from the ES Zones are fast cells. Oscillation frequency (f) and quality factor (Q) of the damped oscillations of the membrane potential during extrinsic current injections were studied in hair cells in the different regions. The slow cells in Zone III and in the S Zone have a statistically significantly lower f, as a function of the amplitude of injected current, when compared with the fast cells in Zone I and the ES Zone. Although Q varied over a small range and was <2.6 for all cells tested, there was a statistically significant difference between Q for the membrane oscillations of the slow cells and fast cells in response to a range of current injections. PMID:10561418

  17. Effect of Embedded Pd Microstructures on the Flat-Band-Voltage Operation of Room Temperature ZnO-Based Liquid Petroleum Gas Sensors

    PubMed Central

    Ali, Ghusoon M.; Thompson, Cody V.; Jasim, Ali K.; Abdulbaqi, Isam M.; Moore, James C.

    2013-01-01

    Three methods were used to fabricate ZnO-based room temperature liquid petroleum gas (LPG) sensors having interdigitated metal-semiconductor-metal (MSM) structures. Specifically, devices with Pd Schottky contacts were fabricated with: (1) un-doped ZnO active layers; (2) Pd-doped ZnO active layers; and (3) un-doped ZnO layers on top of Pd microstructure arrays. All ZnO films were grown on p-type Si(111) substrates by the sol-gel method. For devices incorporating a microstructure array, Pd islands were first grown on the substrate by thermal evaporation using a 100 μm mesh shadow mask. We have estimated the sensitivity of the sensors for applied voltage from –5 to 5 V in air ambient, as well as with exposure to LPG in concentrations from 500 to 3,500 ppm at room temperature (300 K). The current-voltage characteristics were studied and parameters such as leakage current, barrier height, reach-through voltage, and flat-band voltage were extracted. We include contributions due to the barrier height dependence on the electric field and tunneling through the barrier for the studied MSM devices. The Pd-enhanced devices demonstrated a maximum gas response at flat-band voltages. The study also revealed that active layers consisting of Pd microstructure embedded ZnO films resulted in devices exhibiting greater gas-response as compared to those using Pd-doped ZnO thin films or un-doped active layers.

  18. Precocene II, a Trichothecene Production Inhibitor, Binds to Voltage-Dependent Anion Channel and Increases the Superoxide Level in Mitochondria of Fusarium graminearum

    PubMed Central

    Furukawa, Tomohiro; Sakamoto, Naoko; Suzuki, Michio; Kimura, Makoto; Nagasawa, Hiromichi; Sakuda, Shohei

    2015-01-01

    Precocene II, a constituent of essential oils, shows antijuvenile hormone activity in insects and inhibits trichothecene production in fungi. We investigated the molecular mechanism by which precocene II inhibits trichothecene production in Fusarium graminearum, the main causal agent of Fusarium head blight and trichothecene contamination in grains. Voltage-dependent anion channel (VDAC), a mitochondrial outer membrane protein, was identified as the precocene II-binding protein by an affinity magnetic bead method. Precocene II increased the superoxide level in mitochondria as well as the amount of oxidized mitochondrial proteins. Ascorbic acid, glutathione, and α-tocopherol promoted trichothecene production by the fungus. These antioxidants compensated for the inhibitory activity of precocene II on trichothecene production. These results suggest that the binding of precocene II to VDAC may cause high superoxide levels in mitochondria, which leads to stopping of trichothecene production. PMID:26248339

  19. Precocene II, a Trichothecene Production Inhibitor, Binds to Voltage-Dependent Anion Channel and Increases the Superoxide Level in Mitochondria of Fusarium graminearum.

    PubMed

    Furukawa, Tomohiro; Sakamoto, Naoko; Suzuki, Michio; Kimura, Makoto; Nagasawa, Hiromichi; Sakuda, Shohei

    2015-01-01

    Precocene II, a constituent of essential oils, shows antijuvenile hormone activity in insects and inhibits trichothecene production in fungi. We investigated the molecular mechanism by which precocene II inhibits trichothecene production in Fusarium graminearum, the main causal agent of Fusarium head blight and trichothecene contamination in grains. Voltage-dependent anion channel (VDAC), a mitochondrial outer membrane protein, was identified as the precocene II-binding protein by an affinity magnetic bead method. Precocene II increased the superoxide level in mitochondria as well as the amount of oxidized mitochondrial proteins. Ascorbic acid, glutathione, and α-tocopherol promoted trichothecene production by the fungus. These antioxidants compensated for the inhibitory activity of precocene II on trichothecene production. These results suggest that the binding of precocene II to VDAC may cause high superoxide levels in mitochondria, which leads to stopping of trichothecene production. PMID:26248339

  20. Quantum Efficiency Characterization and Optimization of a Tungsten Transition-Edge Sensor for ALPS II

    NASA Astrophysics Data System (ADS)

    Bastidon, Noëmie; Horns, Dieter; Lindner, Axel

    2016-07-01

    The ALPS II experiment, Any Light Particle Search II at DESY in Hamburg, will look for sub-eV mass new fundamental bosons (e.g., axion-like particles, hidden photons, and other weakly interacting sub-eV particles) in the next years by means of a light-shining-through-wall setup. The ALPS II photosensor is a tungsten transition-edge sensor (W-TES) optimized for 1064 nm photons. This TES, operated at 80 mK, has already allowed single infrared photon detections as well as non-dispersive spectroscopy with very low background rates. The demonstrated quantum efficiency for such TES is up to 95 % (1064 nm) as has been already demonstrated by the US National Institute of Standards and Technology. A back-to-back measurement of the ALPS TES quantum efficiency using a calibrated charge-coupled device camera has lead to a first estimation of 30 %. Improvement methods are discussed.

  1. The Chimera II Real-Time Operating System for advanced sensor-based control applications

    NASA Technical Reports Server (NTRS)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1992-01-01

    Attention is given to the Chimera II Real-Time Operating System, which has been developed for advanced sensor-based control applications. The Chimera II provides a high-performance real-time kernel and a variety of IPC features. The hardware platform required to run Chimera II consists of commercially available hardware, and allows custom hardware to be easily integrated. The design allows it to be used with almost any type of VMEbus-based processors and devices. It allows radially differing hardware to be programmed using a common system, thus providing a first and necessary step towards the standardization of reconfigurable systems that results in a reduction of development time and cost.

  2. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor

    PubMed Central

    Gong, Yiyang; Huang, Cheng; Li, Jin Zhong; Grewe, Benjamin F.; Zhang, Yanping; Eismann, Stephan; Schnitzer, Mark J.

    2016-01-01

    Genetically encoded voltage indicators (GEVIs) are a promising technology for fluorescence readout of millisecond-scale neuronal dynamics. Previous GEVIs had insufficient signaling speed and dynamic range to resolve action potentials in live animals. We coupled fast voltage-sensing domains from a rhodopsin protein to bright fluorophores through resonance energy transfer. The resulting GEVIs are sufficiently bright and fast to report neuronal action potentials and membrane voltage dynamics in awake mice and flies, resolving fast spike trains with 0.2-millisecond timing precision at spike detection error rates orders of magnitude better than previous GEVIs. In vivo imaging revealed sensory-evoked responses, including somatic spiking, dendritic dynamics, and intracellular voltage propagation. These results empower in vivo optical studies of neuronal electrophysiology and coding and motivate further advancements in high-speed microscopy. PMID:26586188

  3. Passive Chemiresistor Sensor Based on Iron (II) Phthalocyanine Thin Films for Monitoring of Nitrogen Dioxide

    NASA Astrophysics Data System (ADS)

    Shu, John Hungjen

    In this dissertation, an alternate, new approach was investigated to produce a nonreversible, passive, iron (II) phthalocyanine (FePc) thin film sensor that does not require continuous power for operation. The sensor was manufactured using standard microelectronics fabrication procedures, with emphasis on low cost and sensor consistency. The sensor substrate consists of a gold interdigitated electrode pattern deposited on an oxidized silicon or quartz wafer. The FePc thin film is then vacuum sublimed over the interdigitated electrodes to form the finalized sensor. Different thicknesses and morphologies of FePc thin films were fabricated. Once sensor fabrication was accomplished, the general response, temperature dependence, concentration dependence, specificity, and longevity of FePc thin film sensors were investigated. To evaluate general sensor reponse, sensors were exposed to 100 ppm nitrogen dioxide in nitrogen, with a flow rate of 0.25 liters per minute (L/min), at the temperatures of -46, 20, and 71 °C. For each case, the resistance of the sensor decreased exponentially as a function of exposure duration and reached saturation within 25 minutes. The resistance decrease was measured to be four, three, and two orders of magnitude for the exposure temperatures of -46, 20, and 71 .C respectively. In these experiments, sub-zero temperature detection of nitrogen dioxide with FePc thin films was reported for the first time. It was found that the response at -46 °C was greater than at 20 or 71 °C. To evaluate temperature dependence, sensors were thermal cycled in the range of -50 to 80 °C, first under ultra-high purity nitrogen gas at 0.25 L/min, and then under 100 ppm nitrogen dioxide gas at 0.25 L/min. Intrinsic FePc film conductivity was measured by thermal cycling sensors under nitrogen gas. Extrinsic FePc film conductivity was measured by thermal cycling sensors under nitrogen dioxide gas. Results from these tests indicated that the temperature dependence of

  4. Multiparametric optimization of a new high-sensitive and disposable mercury (II) electrochemical sensor.

    PubMed

    Armas, M A; María-Hormigos, R; Cantalapiedra, A; Gismera, M J; Sevilla, M T; Procopio, J R

    2016-01-21

    An electrochemical sensor for mercury (II) determination was developed by modifying the surface of a commercial screen-printed carbon electrode (SPCE) with a polystyrene sulfonate-NiO-carbon nanopowder composite material. Mercury measurements were performed by differential pulse anodic stripping voltammetry (DPASV). Sensor composition and measurement conditions were optimized using a multivariate experiment design. A screening experiment by using a Plackett-Burman design was first performed in order to determine the main contributing factors to the electrochemical response. The most important factors were employed to establish the interactions between different experimental variables and get the best conditions for mercury determination. For this purpose, a five level central composite design and a response surface methodology were used. The optimized method using the developed NiO-PSS-SPCE sensor presents a very low limit of detection of 0.021 μg L(-1) and a linear response over two concentration ranges with two different slopes, from 0.05 to 2.0 μg L(-1) and between 2.0 and 75 μg L(-1). The sensor was successfully applied to mercury determination in water samples. PMID:26724765

  5. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    NASA Astrophysics Data System (ADS)

    An, Mangmang; Chen, Chufeng; Gao, Chaosong; Han, Mikyung; Ji, Rong; Li, Xiaoting; Mei, Yuan; Sun, Quan; Sun, Xiangming; Wang, Kai; Xiao, Le; Yang, Ping; Zhou, Wei

    2016-02-01

    We report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a < 15e- analog noise and a 200e- minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.

  6. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo.

    PubMed

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-01-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully. PMID:25640000

  7. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    PubMed Central

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-01-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully. PMID:25640000

  8. A ruthenium(II) complex as turn-on Cu(II) luminescent sensor based on oxidative cyclization mechanism and its application in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Yunfei; Liu, Zonglun; Yang, Kui; Zhang, Yi; Xu, Yongqian; Li, Hongjuan; Wang, Chaoxia; Lu, Aiping; Sun, Shiguo

    2015-02-01

    Copper ions play a vital role in a variety of fundamental physiological processes not only in human beings and plants, but also for extensive insects and microorganisms. In this paper, a novel water-soluble ruthenium(II) complex as a turn-on copper(II) ions luminescent sensor based on o-(phenylazo)aniline was designed and synthesized. The azo group would undergo a specific oxidative cyclization reaction with copper(II) ions and turn into high luminescent benzotriazole, triggering significant luminescent increasements which were linear to the concentrations of copper(II) ions. The sensor distinguished by its high sensitivity (over 80-fold luminescent switch-on response), good selectivity (the changes of the emission intensity in the presence of other metal ions or amino acids were negligible) and low detection limit (4.42 nM) in water. Moreover, the copper(II) luminescent sensor exhibited good photostability under light irradiation. Furthermore, the applicability of the proposed sensor in biological samples assay was also studied and imaged copper(II) ions in living pea aphids successfully.

  9. Design of a microfluidic sensor for high-sensitivity Copper (II) sensing applications

    NASA Astrophysics Data System (ADS)

    Gibson, Ceri; Byrne, Patrick; Gray, David; MacCraith, Brian D.; Paull, Brett; Tyrrell, Eadaoin

    2003-03-01

    An all-plastic micro-sensor system for remote measurement of copper (II) ions in the aqueous environment has been developed. The sensing structure was designed for ease of milling and fabricated in poly (methyl methacrylate) (PMMA) using a hot-embossing technique. Issues of sealing the structure were studied extensively and an efficient protocol has been established. The detection system comprises a compact photo-multiplier tube and integrated photon counting system. This method has advantages of low sample volume, (creating a minimal volume of waste), low exposure to contaminants due to the closed system, no moving parts and employs a robust polymer material which is resistant to the environment of intended use. The sensor operates on the principle of flow injection analysis and has been tested using a chemiluminescence (FIA-CL) reaction arising from the complexation of copper with 1,10-phenanthroline and subsequent oxidation by hydrogen peroxide.

  10. CHIMERA II - A real-time multiprocessing environment for sensor-based robot control

    NASA Technical Reports Server (NTRS)

    Stewart, David B.; Schmitz, Donald E.; Khosla, Pradeep K.

    1989-01-01

    A multiprocessing environment for a wide variety of sensor-based robot system, providing the flexibility, performance, and UNIX-compatible interface needed for fast development of real-time code is addressed. The requirements imposed on the design of a programming environment for sensor-based robotic control is outlined. The details of the current hardware configuration are presented, along with the details of the CHIMERA II software. Emphasis is placed on the kernel, low-level interboard communication, user interface, extended file system, user-definable and dynamically selectable real-time schedulers, remote process synchronization, and generalized interprocess communication. A possible implementation of a hierarchical control model, the NASA/NBS standard reference model for telerobot control system is demonstrated.

  11. Construction and test of the first Belle II SVD ladder implementing the origami chip-on-sensor design

    NASA Astrophysics Data System (ADS)

    Irmler, C.; Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Forti, F.; Friedl, M.; Frühwirth, R.; Hara, K.; Higuchi, T.; Horiguchi, T.; Ishikawa, A.; Jeon, H. B.; Joo, C.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rao, K. K.; Rashevskaia, I.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.

    2016-01-01

    The Belle II Silicon Vertex Detector comprises four layers of double-sided silicon strip detectors (DSSDs), consisting of ladders with two to five sensors each. All sensors are individually read out by APV25 chips with the Origami chip-on-sensor concept for the central DSSDs of the ladders. The chips sit on flexible circuits that are glued on the top of the sensors. This concept allows a low material budget and an efficient cooling of the chips by a single pipe per ladder. We present the construction of the first SVD ladders and results from precision measurements and electrical tests.

  12. MPV-II: an enhanced vector man-portable EMI sensor for UXO identification

    NASA Astrophysics Data System (ADS)

    Fernández, Juan Pablo; Barrowes, Benjamin; Bijamov, Alex; Grzegorczyk, Tomasz; Lhomme, Nicolas; O'Neill, Kevin; Shamatava, Irma; Shubitidze, Fridon

    2011-06-01

    The Man-Portable Vector (MPV) electromagnetic induction sensor has proved its worth and flexibility as a tool for identification and discrimination of unexploded ordnance (UXO). TheMPV allows remediation work in treed and rough terrains where other instruments cannot be deployed; it can work in survey mode and in a static mode for close interrogation of anomalies. By measuring the three components of the secondary field at five different locations, the MPV provides diverse time-domain data of high quality. TheMPV is currently being upgraded, streamlined, and enhanced to make it more practical and serviceable. The new sensor, dubbedMPV-II, has a smaller head and lighter components for better portability. The original laser positioning system has been replaced with one that uses the transmitter coil as a beacon. The receivers have been placed in a configuration that permits experimental computation of field gradients. In this work, after introducing the new sensor, we present the results of several identification/discrimination experiments using data provided by the MPV-II and digested using a fast and accurate new implementation of the dipole model. The model performs a nonlinear search for the location of a responding target, at each step carrying out a simultaneous linear least-squares inversion for the principal polarizabilities at all time gates and for the orientation of the target. We find that the MPV-II can identify standard-issue UXO, even in cases where there are two targets in its field of view, and can discriminate them from clutter.

  13. BK channel activation by tungstate requires the β1 subunit extracellular loop residues essential to modulate voltage sensor function and channel gating.

    PubMed

    Fernández-Mariño, Ana I; Valverde, Miguel A; Fernández-Fernández, José M

    2014-07-01

    Tungstate, a compound with antidiabetic, antiobesity, and antihypertensive properties, activates the large-conductance voltage- and Ca(2+)-dependent K(+) (BK) channel containing either β1 or β4 subunits. The BK activation by tungstate is Mg(2+)-dependent and promotes arterial vasodilation, but only in precontracted mouse arteries expressing β1. In this study, we further explored how the β1 subunit participates in tungstate activation of BK channels. Activation of heterologously expressed human BKαβ1 channels in inside-out patches is fully dependent on the Mg(2+) sensitivity of the BK α channel subunit even at high (10 μM) cytosolic Ca(2+) concentration. Alanine mutagenesis of β1 extracellular residues Y74 or S104, which destabilize the active voltage sensor, greatly decreased the tungstate-induced left-shift of the BKαβ1 G-V curves in either the absence or presence of physiologically relevant cytosolic Ca(2+) levels (10 μM). The weakened tungstate activation of the BKαβ1Y74A and BKαβ1S104A mutant channels was not related to decreased Mg(2+) sensitivity. These results, together with previously published reports, support the idea that the putative binding site for tungstate-mediated BK channel activation is located in the pore-forming α channel subunit, around the Mg(2+) binding site. The role of β1 in tungstate-induced channel activation seems to rely on its interaction with the BK α subunit to modulate channel activity. Loop residues that are essential for the regulation of voltage sensor activation and gating of the BK channel are also relevant for BK activation by tungstate. PMID:24158430

  14. Preparation of a novel pH optical sensor using orange (II) based on agarose membrane as support.

    PubMed

    Heydari, Rouhollah; Hosseini, Mohammad; Amraei, Ahmadreza; Mohammadzadeh, Ali

    2016-04-01

    A novel and cost effective optical pH sensor was prepared using covalent immobilization of orange (II) indicator on the agarose membrane as solid support. The fabricated optical sensor was fixed into a sample holder of a spectrophotometer instrument for pH monitoring. Variables affecting sensor performance including pH of dye bonding to agarose membrane and dye concentration were optimized. The sensor responds to the pH changes in the range of 3.0-10.0 with a response time of 2.0 min and appropriate reproducibility (RSD ≤ 0.9%). No significant variation was observed on sensor response after increasing the ionic strength in the range of 0.0-0.5M of sodium chloride. Determination of pH using the proposed optical sensor is quick, simple, inexpensive, selective and sensitive in the pH range of 3.0-10.0. PMID:26838857

  15. Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations.

    PubMed

    Sokolov, Stanislav; Scheuer, Todd; Catterall, William A

    2010-08-01

    Hypokalemic periodic paralysis and normokalemic periodic paralysis are caused by mutations of the gating charge-carrying arginine residues in skeletal muscle Na(V)1.4 channels, which induce gating pore current through the mutant voltage sensor domains. Inward sodium currents through the gating pore of mutant R666G are only approximately 1% of central pore current, but substitution of guanidine for sodium in the extracellular solution increases their size by 13- +/- 2-fold. Ethylguanidine is permeant through the R666G gating pore at physiological membrane potentials but blocks the gating pore at hyperpolarized potentials. Guanidine is also highly permeant through the proton-selective gating pore formed by the mutant R666H. Gating pore current conducted by the R666G mutant is blocked by divalent cations such as Ba(2+) and Zn(2+) in a voltage-dependent manner. The affinity for voltage-dependent block of gating pore current by Ba(2+) and Zn(2+) is increased at more negative holding potentials. The apparent dissociation constant (K(d)) values for Zn(2+) block for test pulses to -160 mV are 650 +/- 150 microM, 360 +/- 70 microM, and 95.6 +/- 11 microM at holding potentials of 0 mV, -80 mV, and -120 mV, respectively. Gating pore current is blocked by trivalent cations, but in a nearly voltage-independent manner, with an apparent K(d) for Gd(3+) of 238 +/- 14 microM at -80 mV. To test whether these periodic paralyses might be treated by blocking gating pore current, we screened several aromatic and aliphatic guanidine derivatives and found that 1-(2,4-xylyl)guanidinium can block gating pore current in the millimolar concentration range without affecting normal Na(V)1.4 channel function. Together, our results demonstrate unique permeability of guanidine through Na(V)1.4 gating pores, define voltage-dependent and voltage-independent block by divalent and trivalent cations, respectively, and provide initial support for the concept that guanidine-based gating pore blockers

  16. Tropospheric Airborne Meteorological Data Reporting (TAMDAR) Icing Sensor Performance During the 2003 Alliance Icing Research Study (AIRS II)

    NASA Technical Reports Server (NTRS)

    Murray, John J.; Schaffner, Philip R.; Minnis, Patrick; Nguyen, Louis; Delnore, Victor E.; Daniels, Taumi S.; Grainger, C. A.; Delene, D.; Wolff, C. A.

    2004-01-01

    The Tropospheric Airborne Meteorological Data Reporting (TAMDAR) sensor was deployed onboard the University of North Dakota Citation II aircraft in the Alliance Icing Research Study (AIRS II) from Nov 19 through December 14, 2003. TAMDAR is designed to measure and report winds, temperature, humidity, turbulence and icing from regional commercial aircraft (Daniels et. al., 2004). TAMDAR icing sensor performance is compared to a) in situ validation data from the Citation II sensor suite, b) Current Icing Potential products developed by the National Center for Atmospheric Research (NCAR) and available operationally on the NOAA Aviation Weather Center s Aviation Digital Data Server (ADDS) and c) NASA Advanced Satellite Aviation-weather Products (ASAP) cloud microphysical products.

  17. Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

    SciTech Connect

    Chad Smutzer

    2010-01-31

    Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order to reach a

  18. Origin of dc voltage in type II superconducting flux pumps: field, field rate of change, and current density dependence of resistivity

    NASA Astrophysics Data System (ADS)

    Geng, J.; Matsuda, K.; Fu, L.; Fagnard, J.-F.; Zhang, H.; Zhang, X.; Shen, B.; Dong, Q.; Baghdadi, M.; Coombs, T. A.

    2016-03-01

    Superconducting flux pumps are the kind of devices which can generate direct current into superconducting circuit using external magnetic field. The key point is how to induce a dc voltage across the superconducting load by ac fields. Giaever (1966 IEEE Spectr. 3 117) pointed out flux motion in superconductors will induce a dc voltage, and demonstrated a rectifier model which depended on breaking superconductivity. van de Klundert et al (1981 Cryogenics 21 195, 267) in their review(s) described various configurations for flux pumps all of which relied on inducing the normal state in at least part of the superconductor. In this letter, following their work, we reveal that a variation in the resistivity of type II superconductors is sufficient to induce a dc voltage in flux pumps and it is not necessary to break superconductivity. This variation in resistivity is due to the fact that flux flow is influenced by current density, field intensity, and field rate of change. We propose a general circuit analogy for travelling wave flux pumps, and provide a mathematical analysis to explain the dc voltage. Several existing superconducting flux pumps which rely on the use of a travelling magnetic wave can be explained using the analysis enclosed. This work can also throw light on the design and optimization of flux pumps.

  19. Two-Photon Compatibility and Single-Voxel, Single-Trial Detection of Subthreshold Neuronal Activity by a Two-Component Optical Voltage Sensor

    PubMed Central

    Fink, Ann E.; Bender, Kevin J.; Trussell, Laurence O.; Otis, Thomas S.; DiGregorio, David A.

    2012-01-01

    Minimally invasive measurements of neuronal activity are essential for understanding how signal processing is performed by neuronal networks. While optical strategies for making such measurements hold great promise, optical sensors generally lack the speed and sensitivity necessary to record neuronal activity on a single-trial, single-neuron basis. Here we present additional biophysical characterization and practical improvements of a two-component optical voltage sensor (2cVoS), comprised of the neuronal tracer dye, DiO, and dipicrylamine (DiO/DPA). Using laser spot illumination we demonstrate that membrane potential-dependent fluorescence changes can be obtained in a wide variety of cell types within brain slices. We show a correlation between membrane labeling and the sensitivity of the magnitude of fluorescence signal, such that neurons with the brightest membrane labeling yield the largest ΔF/F values per action potential (AP; ∼40%). By substituting a blue-shifted donor for DiO we confirm that DiO/DPA works, at least in part, via a Förster resonance energy transfer (FRET) mechanism. We also describe a straightforward iontophoretic method for labeling multiple neurons with DiO and show that DiO/DPA is compatible with two-photon (2P) imaging. Finally, exploiting the high sensitivity of DiO/DPA, we demonstrate AP-induced fluorescence transients (fAPs) recorded from single spines of hippocampal pyramidal neurons and single-trial measurements of subthreshold synaptic inputs to granule cell dendrites. Our findings suggest that the 2cVoS, DiO/DPA, enables optical measurements of trial-to-trial voltage fluctuations with very high spatial and temporal resolution, properties well suited for monitoring electrical signals from multiple neurons within intact neuronal networks. PMID:22870221

  20. Synthesis of semiconducting polymer microparticles as solid ionophore with abundant complexing sites for long-life Pb(II) sensors.

    PubMed

    Huang, Mei-Rong; Ding, Yong-Bo; Li, Xin-Gui; Liu, YingJun; Xi, Kai; Gao, Chen-Long; Kumar, R Vasant

    2014-12-24

    Intrinsically electrically semiconducting microparticles of semiladder poly(m-phenylenediamine-co-2-hydroxy-5-sulfonic aniline) structures containing abundant functional groups, like -NH-, -N=, -NH2, -OH, -SO3H as complexation sites, were efficiently synthesized by chemical oxidative copolymerization of m-phenylenediamine and 2-hydroxy-5-sulfonic aniline. The obtained copolymers were found to be nonporous spherical microparticles that were able to achieve greater π-conjugated structure, smaller particle aggregate size, and stronger interaction with Pb(II) ions than poly(m-phenylenediamine) containing only -NH-, -N=, and -NH2. A potentiometric Pb(II) sensor was fabricated on the basis of the copolymer microparticles as a crucial solid ionophore component within plasticized PVC. The sensor exhibited a Nernstian response to Pb(II) ions over a wide concentration range, together with a fast response, a wide pH range capability, a long lifetime of up to 5 months, and good selectivity over a wide variety of other ions and redox species. The process for synthesizing the microparticles and fabricating the Pb(II)-sensor can be facilely scaled-up for use in the straightforward long-term online monitoring of Pb(II) ions in heavily polluted wastewaters. This study develops an understanding of the facile synthesis of conducting microparticles bearing many functional groups and their structures governing the potentiometric susceptibility toward interaction between Pb(II) ions and the microparticles for fabricating robust long-lived Pb(II)-sensor, signifying the potential suitability of such novel materials for inexpensive sensitive detection of Pb(II) ions. PMID:25403150

  1. A low cost matching motion estimation sensor based on the NIOS II microprocessor.

    PubMed

    González, Diego; Botella, Guillermo; Meyer-Baese, Uwe; García, Carlos; Sanz, Concepción; Prieto-Matías, Manuel; Tirado, Francisco

    2012-01-01

    This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying a C to Hardware (C2H) acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system. PMID:23201989

  2. A Low Cost Matching Motion Estimation Sensor Based on the NIOS II Microprocessor

    PubMed Central

    González, Diego; Botella, Guillermo; Meyer-Baese, Uwe; García, Carlos; Sanz, Concepción; Prieto-Matías, Manuel; Tirado, Francisco

    2012-01-01

    This work presents the implementation of a matching-based motion estimation sensor on a Field Programmable Gate Array (FPGA) and NIOS II microprocessor applying a C to Hardware (C2H) acceleration paradigm. The design, which involves several matching algorithms, is mapped using Very Large Scale Integration (VLSI) technology. These algorithms, as well as the hardware implementation, are presented here together with an extensive analysis of the resources needed and the throughput obtained. The developed low-cost system is practical for real-time throughput and reduced power consumption and is useful in robotic applications, such as tracking, navigation using an unmanned vehicle, or as part of a more complex system. PMID:23201989

  3. Porphyrin-functionalized porous polysulfone membrane towards an optical sensor membrane for sorption and detection of cadmium(II).

    PubMed

    Zhao, Lizhi; Li, Min; Liu, Manman; Zhang, Yuecong; Wu, Chenglin; Zhang, Yuzhong

    2016-01-15

    In this study, an optical sensor membrane was prepared for sorption and detection of cadmium(II) (Cd(II)) in aqueous solution. A polyanion, poly(sodium 4-styrenesulfonate) (PNaSS), was grafted onto the chloromethylated polysulfone (CMPSF) microporous membrane via surface-initiated ATRP. 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin p-toluenesulfonate (TMPyP) was immobilized onto the PNaSS-grafted polysulfone (PSF-PNaSS) membrane through electrostatic interaction. The TMPyP-functionalized membrane exhibited an enhanced sorption for, and distinct color and spectral response to cadmium(II) (Cd(II)) in aqueous solution. Larger immobilization capacity of TMPyP on the membrane led to stronger sorption for Cd(II), and smaller one made the optical sensor have a faster (in minutes) and more sensitive response to the ion. The detection limit study indicated that the functional membrane with proper amount of TMPyP (<0.5 mg/g) could still have color and spectral response to Cd(II) solutions at an extreme low concentration (10(-4) mg/L). The optical sensor membrane exhibited good stability and reusability which made it efficient for various sorptive removal and detection applications. PMID:26368797

  4. Sol-gel based optical sensor for determination of Fe (II): A novel probe for iron speciation

    NASA Astrophysics Data System (ADS)

    Samadi-Maybodi, Abdolraouf; Rezaei, Vida; Rastegarzadeh, Saadat

    2015-02-01

    A highly selective optical sensor for Fe (II) ions was developed based on entrapment of a sensitive reagent, 2,4,6-tri(2-pyridyl)-s-triazine (TPTZ), in a silica sol-gel thin film coated on a glass substrate. The thin films fabricated based on tetraethoxysilane (TEOS) as precursor, sol-gel pH ∼ 3, water:alkoxyde ratio of 4:1 and TPTZ concentration of 0.112 mol L-1. The influence of sol-gel parameters on sensing behavior of the fabricated sensor was also investigated. The fabricated sensor can be used for determination of Fe (II) ion with an outstanding high selectivity over a dynamic range of 5-115 ng mL-1 and a detection limit of 1.68 ng mL-1. It also showed reproducible results with relative standard deviation of 3.5% and 1.27% for 10 and 90 ng mL-1 of Fe (II), respectively, along with a fast response time of ∼120 s. Total iron also was determined after reduction of Fe (III) to Fe (II) using ascorbic acid as reducing agent. Then, the concentration of Fe (III) was calculated by subtracting the concentration of Fe (II) from the total iron concentration. Interference studies showed a good selectivity for Fe (II) with trapping TPTZ into sol-gel matrix and appropriately adjusting the structure of doped sol-gel. The sensor was compared with other sensors and was applied to determine iron in different water samples with good results.

  5. Capturing distinct KCNQ2 channel resting states by metal ion bridges in the voltage-sensor domain

    PubMed Central

    Gourgy-Hacohen, Orit; Kornilov, Polina; Pittel, Ilya; Peretz, Asher

    2014-01-01

    Although crystal structures of various voltage-gated K+ (Kv) and Na+ channels have provided substantial information on the activated conformation of the voltage-sensing domain (VSD), the topology of the VSD in its resting conformation remains highly debated. Numerous studies have investigated the VSD resting state in the Kv Shaker channel; however, few studies have explored this issue in other Kv channels. Here, we investigated the VSD resting state of KCNQ2, a K+ channel subunit belonging to the KCNQ (Kv7) subfamily of Kv channels. KCNQ2 can coassemble with the KCNQ3 subunit to mediate the IM current that regulates neuronal excitability. In humans, mutations in KCNQ2 are associated with benign neonatal forms of epilepsy or with severe epileptic encephalopathy. We introduced cysteine mutations into the S4 transmembrane segment of the KCNQ2 VSD and determined that external application of Cd2+ profoundly reduced the current amplitude of S4 cysteine mutants S195C, R198C, and R201C. Based on reactivity with the externally accessible endogenous cysteine C106 in S1, we infer that each of the above S4 cysteine mutants forms Cd2+ bridges to stabilize a channel closed state. Disulfide bonds and metal bridges constrain the S4 residues S195, R198, and R201 near C106 in S1 in the resting state, and experiments using concatenated tetrameric constructs indicate that this occurs within the same VSD. KCNQ2 structural models suggest that three distinct resting channel states have been captured by the formation of different S4–S1 Cd2+ bridges. Collectively, this work reveals that residue C106 in S1 can be very close to several N-terminal S4 residues for stabilizing different KCNQ2 resting conformations. PMID:25385787

  6. A Medium-Voltage Motor Drive with a Modular Multilevel PWM Inverter Part II. Startup Method and Performance

    NASA Astrophysics Data System (ADS)

    Nishimura, Kazutoshi; Hagiwara, Makoto; Akagi, Hirofumi

    This paper presents a medium-voltage motor drive with a modular multilevel PWM inverter, and focuses on a startup method and its performance. It is formed by six modular arms, each of which consists of a cascaded stack of multiple bidirectional chopper-cells. The frequency of the dominant ac-voltage fluctuation is equal to the motor (inverter) frequency. These fluctuations occur in the dc capacitor of each chopper-cell, and the magnitude of the fluctuation is inversely proportional to the motor frequency. Because of the increased voltage fluctuation in low-frequency regions, the so-called “volt-per-hertz control” cannot be applied in motor starting. The startup method proposed in this paper is suitable for a motor drive with the modular multilevel PWM inverter. It enables the motor to produce a startup torque loaded on the motor at an initial amplitude and a fixed frequency of the inverter while taking into account constraints on the motor current and the ac-voltage fluctuation. The validity of the startup method as well as the startup performance is confirmed by experiment and simulation.

  7. Visual sensor for the detection of trace Cu(II) ions using an immunochromatographic strip.

    PubMed

    Xing, Changrui; Feng, Min; Hao, Changlong; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-01-01

    A rapid and simple immunochromatography method based on a gold nanoparticle-labeled monoclonal antibody was developed for the on-site detection of copper (Cu) in water samples. This monoclonal antibody, obtained by a cell fusion technique, recognized the Cu-ethylenediamine-N,N,N',N'-tetraacetic acid (EDTA) complex, but not metal-free EDTA, with high sensitivity and specificity. In optimized conditions, the visual limit of detection for qualitative detection of Cu(II) ions was 10 ng/mL and the LOD for semi-quantitative detection decreased to 0.45 ng/mL with the help of a scanning reader system. The detection process was achieved within 10 min with no cross-reactivity from other heavy metal ions. The recovery of the test samples ranged from 98% to 109%. To our knowledge, this antibody-based test strip for Cu(II) ions has not been previously reported. Based on the above results, this strip sensor could be used as an alternative tool for screening heavy metal pollution in the environment. PMID:23461614

  8. Progress in voltage and current mode on-chip analog-to-digital converters for CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Panicacci, Roger; Pain, Bedabrata; Zhou, Zhimin; Nakamura, Junichi; Fossum, Eric R.

    1996-03-01

    Two 8 bit successive approximation analog-to-digital converter (ADC) designs and a 12 bit current mode incremental sigma delta ((Sigma) -(Delta) ) ADC have been designed, fabricated, and tested. The successive approximation test chip designs are compatible with active pixel sensor (APS) column parallel architectures with a 20.4 micrometers pitch in a 1.2 micrometers n-well CMOS process and a 40 micrometers pitch in a 2 micrometers n-well CMOS process. The successive approximation designs consume as little as 49 (mu) W at a 500 KHz conversion rate meeting the low power requirements inherent in column parallel architectures. The current mode incremental (Sigma) -(Delta) ADC test chip is designed to be multiplexed among 8 columns in a semi-column parallel current mode APS architecture. The higher accuracy ADC consumes 800 (mu) W at a 5 KHz conversion rate.

  9. Studies examining the relationship between the chemical structure of protoxin II and its activity on voltage gated sodium channels.

    PubMed

    Park, Jae H; Carlin, Kevin P; Wu, Gang; Ilyin, Victor I; Musza, Laszlo L; Blake, Paul R; Kyle, Donald J

    2014-08-14

    The aqueous solution structure of protoxin II (ProTx II) indicated that the toxin comprises a well-defined inhibitor cystine knot (ICK) backbone region and a flexible C-terminal tail region, similar to previously described NaSpTx III tarantula toxins. In the present study we sought to explore the structure-activity relationship of the two regions of the ProTx II molecule. As a first step, chimeric toxins of ProTx II and PaTx I were synthesized and their biological activities on Nav1.7 and Nav1.2 channels were investigated. Other tail region modifications to this chimera explored the effects of tail length and tertiary structure on sodium channel activity. In addition, the activity of various C-terminal modifications of the native ProTx II was assayed and resulted in the identification of protoxin II-NHCH3, a molecule with greater potency against Nav1.7 channels (IC50=42 pM) than the original ProTx II. PMID:25026046

  10. Sol-Gel derived Sb-doped SnO II/SiO II nano-composite thin films for gas sensors

    NASA Astrophysics Data System (ADS)

    Gu, Zhengtian; Liang, Peihui; Zhang, Weiqing

    2006-05-01

    Sb-doped SnO II/SiO II nano-composite thin films prepared by sol-gel dip-coating method have been studied. By using X-ray diffraction (XRD), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectroscopy, detailed investigation on the structure and morphology of the films has shown the crystalline grain size of Sb-doped SnO II/SiO II thin films is about 34nm, with larger specific surface area and duty porosity, which is fit for gas-sensing materials. The adulteration of SiO II particles leads to the condensation of Sn-OH and the strengthening of gel network, and improve the adhesion of the films. In addition, the optical properties of the thin films were studied by UV-Vis spectra and p-polarized light reflectance angular spectrum. The results showthat the optical transmissivity of Sb-doped SnO II/SiO II thin films is higher, near 95% in visible spectrum range, the measured optical gap is found equal to 3.67eV, also the films take on smaller refractive index and extinction coefficient compared with those of the SnO II and Sb:SnO II films, which is compatible with the semiconductor substrate in the solar cell. Further, the gas-sensing test was made to three kinds of gas C 3H 8, C IIH 5OH and NH 3 in our novel high sensitive scheme for optical film sensors. The results indicate that Sb doping to SnO II films greatly improves the gas sensitivity to C IIH 5OH, and the gas sensitivity of Sb:SnO II/SiO II nano-composite thin films are higher than that of Sb:SnO II thin films. The detection sensitivity of this optical film sensor is available to 10 -1ppm provided that the resolution of reflectance ratio is 10 -2.

  11. Performance of a remote High Voltage power supply for the Phase II upgrade of the ATLAS Tile Calorimeter

    NASA Astrophysics Data System (ADS)

    Vazeille, F.

    2016-02-01

    The experience gained in the operation of the present High Voltage system of the Tile calorimeter in the ATLAS detector and the new HL-LHC constraints, in particular the increase of the radiation, lead to the proposal of changing the currently embedded regulation system to be a remote system in the counting room, by adding easily new functionalities. The system described in this note is using the same regulation scheme as the current one and distributes the individual High Voltage settings with 100 m long multi-conductor cables. The tests show that it reaches the same good performance in terms of regulation stability and noise, while allowing a permanent access to the electronics.

  12. Voltage-sensor conformation shapes the intra-membrane drug binding site that determines gambierol affinity in Kv channels.

    PubMed

    Kopljar, Ivan; Grottesi, Alessandro; de Block, Tessa; Rainier, Jon D; Tytgat, Jan; Labro, Alain J; Snyders, Dirk J

    2016-08-01

    Marine ladder-shaped polyether toxins are implicated in neurological symptoms of fish-borne food poisonings. The toxin gambierol, produced by the marine dinoflagellate Gambierdiscus toxicus, belongs to the group of ladder-shaped polyether toxins and inhibits Kv3.1 channels with nanomolar affinity through a mechanism of gating modification. Binding determinants for gambierol localize at the lipid-exposed interface of the pore forming S5 and S6 segments, suggesting that gambierol binds outside of the permeation pathway. To explore a possible involvement of the voltage-sensing domain (VSD), we made different chimeric channels between Kv3.1 and Kv2.1, exchanging distinct parts of the gating machinery. Our results showed that neither the electro-mechanical coupling nor the S1-S3a region of the VSD affect gambierol sensitivity. In contrast, the S3b-S4 part of the VSD (paddle motif) decreased gambierol sensitivity in Kv3.1 more than 100-fold. Structure determination by homology modeling indicated that the position of the S3b-S4 paddle and its primary structure defines the shape and∖or the accessibility of the binding site for gambierol, explaining the observed differences in gambierol affinity between the channel chimeras. Furthermore, these findings explain the observed difference in gambierol affinity for the closed and open channel configurations of Kv3.1, opening new possibilities for exploring the VSDs as selectivity determinants in drug design. PMID:26956727

  13. Monitoring pasture variability: optical OptRx(®) crop sensor versus Grassmaster II capacitance probe.

    PubMed

    Serrano, João M; Shahidian, Shakib; Marques da Silva, José Rafael

    2016-02-01

    Estimation of pasture productivity is an important step for the farmer in terms of planning animal stocking, organizing animal lots, and determining supplementary feeding needs throughout the year. The main objective of this work was to evaluate technologies which have potential for monitoring aspects related to spatial and temporal variability of pasture green and dry matter yield (respectively, GM and DM, in kg/ha) and support to decision making for the farmer. Two types of sensors were evaluated: an active optical sensor ("OptRx(®)," which measures the NDVI, "Normalized Difference Vegetation Index") and a capacitance probe ("GrassMaster II" which estimates plant mass). The results showed the potential of NDVI for monitoring the evolution of spatial and temporal patterns of vegetative growth of biodiverse pasture. Higher NDVI values were registered as pasture approached its greatest vegetative vigor, with a significant fall in the measured NDVI at the end of Spring, when the pasture began to dry due to the combination of higher temperatures and lower soil moisture content. This index was also effective for identifying different plant species (grasses/legumes) and variability in pasture yield. Furthermore, it was possible to develop calibration equations between the capacitance and the NDVI (R(2) = 0.757; p < 0.01), between capacitance and GM (R(2) = 0.799; p < 0.01), between capacitance and DM (R(2) =0.630; p < 0.01), between NDVI and GM (R(2) = 0.745; p < 0.01), and between capacitance and DM (R(2) = 0.524; p < 0.01). Finally, a direct relationship was obtained between NDVI and pasture moisture content (PMC, in %) and between capacitance and PMC (respectively, R(2) = 0.615; p < 0.01 and R(2) = 0.561; p < 0.01) in Alentejo dryland farming systems. PMID:26812951

  14. Calix receptor edifice; scrupulous turn off fluorescent sensor for Fe(III), Co(II) and Cu(II).

    PubMed

    Bhatt, Keyur D; Gupte, Hrishikesh S; Makwana, Bharat A; Vyas, Disha J; Maity, Debdeep; Jain, Vinod K

    2012-11-01

    Novel Supramolecular fluorescence receptor derived from calix-system i.e. calix[4]resorcinarene bearing dansylchloride as fluorophore was designed and synthesized. The compound was purified by column chromatography and characterized by elemental analysis, NMR and Mass spectroscopy. Tetradansylated calix[4] resorcinarene (TDCR) shows a boat conformation with C(2)v symmetry. The complexation behaviour of metal cations [Ag(I), Cd(II), Co(II), Fe(III), Hg(II), Cu(II), Pb(II), Zn(II), U(VI) (1 × 10(-4) M)] with tetra dansylated calix[4]resorcinarene (1 × 10(-6) M) was studied by spectophotometry and spectrofluorometry. Red shift in the absorption spectra led us to conclude that there is strong complexation Fe(III), Co(II) and Cu(II) with TDCR. These metal cations also produce quenching with red shifts in the emission spectra. The maximum quenching in emission intensity was observed in the case of Fe(III) and its binding constant was also found to be significantly higher than that of Co(II) and Cu(II). Quantum yield of metal complexes of Fe(III) was found to be lower in comparison with Co(II) and Cu(II) complexes. Stern Volmer analysis indicates that the mechanism of fluorescence quenching is either purely dynamic, or purely static. PMID:22739703

  15. Mapping the Interaction Site for a β-Scorpion Toxin in the Pore Module of Domain III of Voltage-gated Na+ Channels*

    PubMed Central

    Zhang, Joel Z.; Yarov-Yarovoy, Vladimir; Scheuer, Todd; Karbat, Izhar; Cohen, Lior; Gordon, Dalia; Gurevitz, Michael; Catterall, William A.

    2012-01-01

    Activation of voltage-gated sodium (Nav) channels initiates and propagates action potentials in electrically excitable cells. β-Scorpion toxins, including toxin IV from Centruroides suffusus suffusus (CssIV), enhance activation of NaV channels. CssIV stabilizes the voltage sensor in domain II in its activated state via a voltage-sensor trapping mechanism. Amino acid residues required for the action of CssIV have been identified in the S1-S2 and S3-S4 extracellular loops of domain II. The extracellular loops of domain III are also involved in toxin action, but individual amino acid residues have not been identified. We used site-directed mutagenesis and voltage clamp recording to investigate amino acid residues of domain III that are involved in CssIV action. In the IIISS2-S6 loop, five substitutions at four positions altered voltage-sensor trapping by CssIVE15A. Three substitutions (E1438A, D1445A, and D1445Y) markedly decreased voltage-sensor trapping, whereas the other two substitutions (N1436G and L1439A) increased voltage-sensor trapping. These bidirectional effects suggest that residues in IIISS2-S6 make both positive and negative interactions with CssIV. N1436G enhanced voltage-sensor trapping via increased binding affinity to the resting state, whereas L1439A increased voltage-sensor trapping efficacy. Based on these results, a three-dimensional model of the toxin-channel interaction was developed using the Rosetta modeling method. These data provide additional molecular insight into the voltage-sensor trapping mechanism of toxin action and define a three-point interaction site for β-scorpion toxins on NaV channels. Binding of α- and β-scorpion toxins to two distinct, pseudo-symmetrically organized receptor sites on NaV channels acts synergistically to modify channel gating and paralyze prey. PMID:22761417

  16. Thiacalix[4]arene-tetra-(quinoline-8- sulfonate): a Sensitive and Selective Fluorescent Sensor for Co (II).

    PubMed

    Modi, Krunal; Panchal, Urvi; Dey, Shuvankar; Patel, Chirag; Kongor, Anita; Pandya, Himanshu A; Jain, V K

    2016-09-01

    A novel fluorescent thiacalix[4]arene-tetra-(quinoline-8-sulfonate) (TCTQ8S) was synthesized by condensation of thiacalix[4]arene (TCA) and 8-quinoline sulfonyl chloride(8QSC). TCTQ8S was characterized by ESI-MS, (1)H-NMR and (13)C-NMR spectroscopic methods. TCTQ8S was found to be an efficient "turn-off" fluorescent sensor for the selective and sensitive recognition of Co(II) ions. The Job's plot measurement reveals a 1:1 stoichiometric ratio. The designed chemosensor exhibited high selectivity toward Co(II) ions vs. other tested metal ions, with a detection limit of up to 1.038 × 10(-9) M. The binding constant and quantum yield for the complex were also determined. Molecular docking studies have been successfully performed to support 1:1 binding of TCTQ8S with the Co(II) metal ion. TCTQ8S was evaluated for real sample analysis on water sample for the detection of Co(II). Graphical Abstract Thiacalix derivatized fluorescent sensor for the selective detection of Co(II). PMID:27392975

  17. Determination of copper(II) in the dairy product by an electrochemical sensor based on click chemistry.

    PubMed

    Qiu, Suyan; Xie, Lidan; Gao, Sen; Liu, Qida; Lin, Zhenyu; Qiu, Bin; Chen, Guonan

    2011-11-30

    Herein, a novel sensitive electrochemical sensor for copper(II) based on Cu(I) catalyzed alkyne-azide cycloaddition reaction (CuAAC) is described. The catalyst of Cu(I) species is derived from electrochemical reduction of Cu(II) through bulk electrolysis (BE) with coulometry technique. The propargyl-functionalized ferrocene (propargyl-functionalized Fc) is covalently coupled onto the electrode surface via CuAAC reaction and forms propargyl-functionalized Fc modified gold electrode, which allows a good and stable electrochemical signal. The change of current at peak (dI), detected by differential pulse voltammetry (DPV), exhibits a linear response to the logarithm of Cu(II) concentration in the range of 1.0×10(-14)-1.0×10(-9) mol L(-1). It is also found that the proposed sensor has a good selectivity for copper(II) assay even in the presence of other common metal ions. Additionally, the proposed method has been applied to determine copper(II) in the dairy product (yoghurt) with satisfactory results. PMID:22027119

  18. Sensing voltage across lipid membranes

    PubMed Central

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  19. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function*

    PubMed Central

    Kaur, Gurjot; Pinggera, Alexandra; Ortner, Nadine J.; Lieb, Andreas; Sinnegger-Brauns, Martina J.; Yarov-Yarovoy, Vladimir; Obermair, Gerald J.; Flucher, Bernhard E.; Striessnig, Jörg

    2015-01-01

    L-type voltage-gated Ca2+ channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I–IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca2+ levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca2+ channel function. PMID:26100638

  20. A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function.

    PubMed

    Kaur, Gurjot; Pinggera, Alexandra; Ortner, Nadine J; Lieb, Andreas; Sinnegger-Brauns, Martina J; Yarov-Yarovoy, Vladimir; Obermair, Gerald J; Flucher, Bernhard E; Striessnig, Jörg

    2015-08-21

    L-type voltage-gated Ca(2+) channels (LTCCs) regulate many physiological functions like muscle contraction, hormone secretion, gene expression, and neuronal excitability. Their activity is strictly controlled by various molecular mechanisms. The pore-forming α1-subunit comprises four repeated domains (I-IV), each connected via an intracellular linker. Here we identified a polybasic plasma membrane binding motif, consisting of four arginines, within the I-II linker of all LTCCs. The primary structure of this motif is similar to polybasic clusters known to interact with polyphosphoinositides identified in other ion channels. We used de novo molecular modeling to predict the conformation of this polybasic motif, immunofluorescence microscopy and live cell imaging to investigate the interaction with the plasma membrane, and electrophysiology to study its role for Cav1.2 channel function. According to our models, this polybasic motif of the I-II linker forms a straight α-helix, with the positive charges facing the lipid phosphates of the inner leaflet of the plasma membrane. Membrane binding of the I-II linker could be reversed after phospholipase C activation, causing polyphosphoinositide breakdown, and was accelerated by elevated intracellular Ca(2+) levels. This indicates the involvement of negatively charged phospholipids in the plasma membrane targeting of the linker. Neutralization of four arginine residues eliminated plasma membrane binding. Patch clamp recordings revealed facilitated opening of Cav1.2 channels containing these mutations, weaker inhibition by phospholipase C activation, and reduced expression of channels (as quantified by ON-gating charge) at the plasma membrane. Our data provide new evidence for a membrane binding motif within the I-II linker of LTCC α1-subunits essential for stabilizing normal Ca(2+) channel function. PMID:26100638

  1. Voltage regulator

    SciTech Connect

    Rossetti, N.

    1986-12-09

    This patent describes a prior art integrated circuit voltage regulator having an unregulated voltage input terminal and a regulated voltage output terminal, and further comprising: a first transistor having an emitter, a collector and a base, the first transistor having a first base-emitter voltage characteristic, the collector of the first transistor being connected through a first resistor to a current source. The current source is derived from the unregulated voltage, the emitter of the first transistor being connected through a second resistor to a reference voltage; and a second transistor having an emitter, a collector and a base, the second transistor having a second base-emitter voltage characteristic, the base of the second transistor being connected to the collector of the first transistor. The collector of the second transistor is connected to the current source, the emitter of the second transistor being connected to the reference voltage. The regulated output of the voltage regulator is provided at the collector of the second transistor and the regulated voltage output is a function of the first base-emitter voltage characteristic of the first transistor plus the quantity comprising the difference between the first base-emitter voltage characteristic of the first transistor and the second base-emitter voltage characteristic of the second transistor, times the ratio of the value of resistance of the first resistor and the value of resistance of the second resistor. The improvement described here comprises: a third transistor having a collector, an emitter and a base.

  2. Microwave-assisted synthesis of II-VI semiconductor micro-and nanoparticles towards sensor applications

    NASA Astrophysics Data System (ADS)

    Majithia, Ravish Yogesh

    Engineering particles at the nanoscale demands a high degree of control over process parameters during synthesis. For nanocrystal synthesis, solution-based techniques typically include application of external convective heat. This process often leads to slow heating and allows decomposition of reagents or products over time. Microwave-assisted heating provides faster, localized heating at the molecular level with near instantaneous control over reaction parameters. In this work, microwave-assisted heating has been applied for the synthesis of II-VI semiconductor nanocrystals namely, ZnO nanopods and CdX (X = Se, Te) quantum dots (QDs). Based on factors such as size, surface functionality and charge, optical properties of such nanomaterials can be tuned for application as sensors. ZnO is a direct bandgap semiconductor (3.37 eV) with a large exciton binding energy (60 meV) leading to photoluminescence (PL) at room temperature. A microwave-assisted hydrothermal approach allows the use of sub-5 nm ZnO zero-dimensional nanoparticles as seeds for generation of multi-legged quasi one-dimensional nanopods via heterogeneous nucleation. ZnO nanopods, having individual leg diameters of 13-15 nm and growing along the [0001] direction, can be synthesized in as little as 20 minutes. ZnO nanopods exhibit a broad defect-related PL spanning the visible range with a peak at ~615 nm. Optical sensing based on changes in intensity of the defect PL in response to external environment (e.g., humidity) is demonstrated in this work. Microwave-assisted synthesis was also used for organometallic synthesis of CdX(ZnS) (X = Se, Te) core(shell) QDs. Optical emission of these QDs can be altered based on their size and can be tailored to specific wavelengths. Further, QDs were incorporated in Enhanced Green-Fluorescent Protein -- Ultrabithorax (EGFP-Ubx) fusion protein for the generation of macroscale composite protein fibers via hierarchal self-assembly. Variations in EGFP- Ubx˙QD composite

  3. New duel fluorescent 'on-off' and colorimetric sensor for Copper(II): Copper(II) binds through N coordination and pi cation interaction to sensor

    NASA Astrophysics Data System (ADS)

    Kumar, Jutika; Bhattacharyya, Pradip K.; Das, Diganta Kumar

    2015-03-01

    Schiff base derived from naphthylamine and benzil (L) binds to two Cu2+ ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu2+ ion over the metal ions - Na+, K+, Ca2+ Mn2+, Co2+ Ni2+, Zn2+, Pb2+, Cd2+, Hg2+, Ag+, Hg2+ and Al3+ in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5 × 10-5 to 3 × 10-4 M and detection limit 10-5 M.

  4. New duel fluorescent "on-off" and colorimetric sensor for Copper(II): Copper(II) binds through N coordination and pi cation interaction to sensor.

    PubMed

    Kumar, Jutika; Bhattacharyya, Pradip K; Das, Diganta Kumar

    2015-03-01

    Schiff base derived from naphthylamine and benzil (L) binds to two Cu(2+) ions, one by coordination through N of the Schiff base and another by pi cation interaction through benzil rings. This bonding pattern determined by DFT calculation has been proved by matching electronic spectrum obtained from TDDFT calculation to the experimental one. L acts as "on-off" fluorescent and bare eye detectable colorimetric (purple color) sensor for Cu(2+) ion over the metal ions - Na(+), K(+), Ca(2+) Mn(2+), Co(2+) Ni(2+), Zn(2+), Pb(2+), Cd(2+), Hg(2+), Ag(+), Hg(2+) and Al(3+) in 1:1 v/v CH3CN:H2O. These metal ions do not interfere the fluorescent/colorimetric sensing. As fluorescent sensor the linear range of detection is 5×10(-5) to 3×10(-4)M and detection limit 10(-5)M. PMID:25479104

  5. Generation of high-voltage pulses with a subnanosecond leading edge in an open discharge. II. Switching mechanism

    NASA Astrophysics Data System (ADS)

    Bokhan, P. A.; Gugin, P. P.; Zakrevskii, D. E.; Lavrukhin, M. A.

    2015-10-01

    The mechanism of fast switching in open-discharge-based devices is clarified by analyzing the feature of the I-V characteristic of a quasi-stationary open discharge: at a voltage of 3-4 kV, the characteristic sharply rises, obeying the law j ~ U y with y > 10 ( j is the current density). Such a run of the curve is explained by the fact that at U > 3 kV helium atom excitation by fast helium atoms becomes the main reason for VUV radiation. Fast helium atoms result from the resonance charge exchange between He+ ions moving from the anode to the cathode. In the coaxial design and in the sandwich design consisting of two accelerating gaps in which electrons move toward each other, multiple oscillations of electrons take place. This favors the generation of fast atoms and, accordingly, resonance VUV photons. Switching times as short as 0.5 ns are achieved. The minimal switching time estimated from experimental data equals 100 ps.

  6. Ozone Observations by the Gas and Aerosol Measurement Sensor during SOLVE II

    NASA Technical Reports Server (NTRS)

    Pitts, M. C.; Thomason, L. W.; Zawodny, J. M.; Wenny, B. N.; Livingston, J. M.; Russell, P. B.; Yee, J.-H.; Swartz, W. H.; Shetter, R. E.

    2006-01-01

    The Gas and Aerosol Measurement Sensor (GAMS) was deployed aboard the NASA DC-8 aircraft during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). GAMS acquired line-of-sight (LOS) direct solar irradiance spectra during the sunlit portions of ten science flights of the DC-8 between 12 January and 4 February 2003. Differential line-of-sight (DLOS) optical depth spectra are produced from the GAMS raw solar irradiance spectra. Then, DLOS ozone number densities are retrieved from the GAMS spectra using a multiple linear regression spectral fitting technique. Both the DLOS optical depth spectra and retrieved ozone data are compared with coincident measurements from two other solar instruments aboard the DC-8 platform to demonstrate the robustness and stability of the GAMS data. The GAMS ozone measurements are then utilized to evaluate the quality of the Wulf band ozone cross sections, a critical component of the SAGE III aerosol, water vapor, and temperature/pressure retrievals. Results suggest the ozone cross section compilation of Shettle and Anderson currently used operationally in SAGE III data processing may be in error by as much as 10-20% in theWulf bands, and their lack of reported temperature dependence is a significant deficiency. A second, more recent, cross section database compiled for the SCIAMACHY satellite mission appears to be of much better quality in the Wulf bands, but still may have errors as large as 5% near the Wulf band absorption peaks, which is slightly larger than their stated uncertainty. Additional laboratory measurements of the Wulf band cross sections should be pursued to further reduce their uncertainty and better quantify their temperature dependence.

  7. Tripodal chelating ligand-based sensor for selective determination of Zn(II) in biological and environmental samples.

    PubMed

    Singh, Ashok Kumar; Mehtab, Sameena; Singh, Udai P; Aggarwal, Vaibhave

    2007-08-01

    Potassium hydrotris(N-tert-butyl-2-thioimidazolyl)borate [KTtt-Bu] and potassium hydrotris(3-tert-butyl-5-isopropyl-l-pyrazolyl)borate [KTpt-Bu,i-Pr] have been synthesized and evaluated as ionophores for preparation of a poly(vinyl chloride) (PVC) membrane sensor for Zn(II) ions. The effect of different plasticizers, viz. benzyl acetate (BA), dioctyl phthalate (DOP), dibutyl phthalate (DBP), tributyl phosphate (TBP), and o-nitrophenyl octyl ether (o-NPOE), and the anion excluders sodium tetraphenylborate (NaTPB), potassium tetrakis(p-chlorophenyl)borate (KTpClPB), and oleic acid (OA) were studied to improve the performance of the membrane sensor. The best performance was obtained from a sensor with a of [KTtt-Bu] membrane of composition (mg): [KTtt-Bu] (15), PVC (150), DBP (275), and NaTPB (4). This sensor had a Nernstian response (slope, 29.4+/-0.2 mV decade of activity) for Zn2+ ions over a wide concentration range (1.4x10(-7) to 1.0x10(-1) mol L(-1)) with a limit of detection of 9.5x10(-8) mol L(-1). It had a relatively fast response time (12 s) and could be used for 3 months without substantial change of the potential. The membrane sensor had very good selectivity for Zn2+ ions over a wide variety of other cations and could be used in a working pH range of 3.5-7.8. The sensor was also found to work satisfactorily in partially non-aqueous media and could be successfully used for estimation of zinc at trace levels in biological and environmental samples. PMID:17622519

  8. Penicillamine-modified sensor for the voltammetric determination of Cd(II) and Pb(II) ions in natural samples.

    PubMed

    Pérez-Ràfols, Clara; Serrano, Núria; Díaz-Cruz, José Manuel; Ariño, Cristina; Esteban, Miquel

    2015-11-01

    A new penicillamine-GCE was developed based on the immobilization of d-penicillamine on aryl diazonium salt monolayers anchored to the glassy carbon electrode (GCE) surface and it was applied for the first time to the simultaneous determination of Cd(II) and Pb(II) ions by stripping voltammetric techniques. The detection and quantification limits at levels of µg L(-1) suggest that the penicillamine-GCE could be fully suitable for the determination of the considered ions in natural samples. PMID:26452863

  9. Sensors and sensor systems for guidance and navigation II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992

    NASA Technical Reports Server (NTRS)

    Welch, Sharon S. (Editor)

    1992-01-01

    Topics discussed in this volume include aircraft guidance and navigation, optics for visual guidance of aircraft, spacecraft and missile guidance and navigation, lidar and ladar systems, microdevices, gyroscopes, cockpit displays, and automotive displays. Papers are presented on optical processing for range and attitude determination, aircraft collision avoidance using a statistical decision theory, a scanning laser aircraft surveillance system for carrier flight operations, star sensor simulation for astroinertial guidance and navigation, autonomous millimeter-wave radar guidance systems, and a 1.32-micron long-range solid state imaging ladar. Attention is also given to a microfabricated magnetometer using Young's modulus changes in magnetoelastic materials, an integrated microgyroscope, a pulsed diode ring laser gyroscope, self-scanned polysilicon active-matrix liquid-crystal displays, the history and development of coated contrast enhancement filters for cockpit displays, and the effect of the display configuration on the attentional sampling performance.

  10. High-voltage CMOS detectors

    NASA Astrophysics Data System (ADS)

    Ehrler, F.; Blanco, R.; Leys, R.; Perić, I.

    2016-07-01

    High-voltage CMOS (HVCMOS) pixel sensors are depleted active pixel sensors implemented in standard commercial CMOS processes. The sensor element is the n-well/p-substrate diode. The sensor electronics are entirely placed inside the n-well which is at the same time used as the charge collection electrode. High voltage is used to deplete the part of the substrate around the n-well. HVCMOS sensors allow implementation of complex in-pixel electronics. This, together with fast signal collection, allows a good time resolution, which is required for particle tracking in high energy physics. HVCMOS sensors will be used in Mu3e experiment at PSI and are considered as an option for both ATLAS and CLIC (CERN). Radiation tolerance and time walk compensation have been tested and results are presented.

  11. Isomerically Pure Tetramethylrhodamine Voltage Reporters.

    PubMed

    Deal, Parker E; Kulkarni, Rishikesh U; Al-Abdullatif, Sarah H; Miller, Evan W

    2016-07-27

    We present the design, synthesis, and application of a new family of fluorescent voltage indicators based on isomerically pure tetramethylrhodamines. These new Rhodamine Voltage Reporters, or RhoVRs, use photoinduced electron transfer (PeT) as a trigger for voltage sensing, display excitation and emission profiles in the green to orange region of the visible spectrum, demonstrate high sensitivity to membrane potential changes (up to 47% ΔF/F per 100 mV), and employ a tertiary amide derived from sarcosine, which aids in membrane localization and simultaneously simplifies the synthetic route to the voltage sensors. The most sensitive of the RhoVR dyes, RhoVR 1, features a methoxy-substituted diethylaniline donor and phenylenevinylene molecular wire at the 5'-position of the rhodamine aryl ring, exhibits the highest voltage sensitivity to date for red-shifted PeT-based voltage sensors, and is compatible with simultaneous imaging alongside green fluorescent protein-based indicators. The discoveries that sarcosine-based tertiary amides in the context of molecular-wire voltage indicators prevent dye internalization and 5'-substituted voltage indicators exhibit improved voltage sensitivity should be broadly applicable to other types of PeT-based voltage-sensitive fluorophores. PMID:27428174

  12. Room Temperature ppb Level Chlorine Gas Sensor Based on Copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine Films

    SciTech Connect

    Bedi, R. K.; Saini, Rajan; Mahajan, Aman

    2010-12-01

    Spin coating technique has been used to fabricate room temperature chlorine gas sensor based on copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine (CuPc(OBu){sub 8}) films. Gas sensor shows a response of 185% to few parts per billion level of Cl{sub 2} gas with response time of 9.5 minutes at room temperature. The interactions between sensor and analytes followed first order kinetics with rate constant 0.01{<=}k{<=}0.02. The chemiresistive sensor showed very good stability at room temperature over a long period of time.

  13. Room Temperature ppb Level Chlorine Gas Sensor Based on Copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine Films

    NASA Astrophysics Data System (ADS)

    Bedi, R. K.; Saini, Rajan; Mahajan, Aman

    2010-12-01

    Spin coating technique has been used to fabricate room temperature chlorine gas sensor based on copper (II) 1, 4, 8, 11, 15, 18, 22, 25-octabutoxy-29 H, 31 H-phthalocyanine (CuPc(OBu)8) films. Gas sensor shows a response of 185% to few parts per billion level of Cl2 gas with response time of 9.5 minutes at room temperature. The interactions between sensor and analytes followed first order kinetics with rate constant 0.01≤k≤0.02. The chemiresistive sensor showed very good stability at room temperature over a long period of time.

  14. Level Sensor for Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Simmons, N. E.; Schroff, R. A.

    1983-01-01

    Hot wire sensor combined with voltage-comparator circuit monitors liquid level in cryogenic-fluid storage tanks. Sensor circuit adaptable to different liquids and sensors. Constant-current source drives current through sensing probe and fixed resistor. Voltage comparator circuits interpret voltage drops to tell whether probe is immersed in liquid and is current in probe.

  15. A Sensitive Ratiometric Fluorescent Sensor for Zinc(II) with High Selectivity

    PubMed Central

    Lv, Yuanyuan; Cao, Mingda; Li, Jiakai; Wang, Junbo

    2013-01-01

    A new fluorescent Zn2+ chemosensor (P1) based on a functionalized porphyrin was synthesized and characterized. P1 displayed dramatic ratiometric variations in absorption and fluorescent emission spectra upon exposure to Zn2+ due to the formation of a 1:1 Zn2+/P1 complex. The sensor also exhibited high selectivity and sensitivity toward Zn2+ over other common metal ions in the physiological pH range with a detection limit of 1.8 μM. The sensor showed fast response times and excellent reproducibility, thus confirming its potential applicability as a fluorescent sensor for Zn2+ sensing. PMID:23467028

  16. Micro-unattended mobility system for grenade-launcher-deployed sensors (MUMS II)

    NASA Astrophysics Data System (ADS)

    Sword, Lee F.

    2000-07-01

    This paper describes the development of a robotic system that will provide limited mobility capability to ballistically deployed sensors for acquisition of intelligence from building interiors. The future of warfare is expected to shift from large-scale battles to smaller conflicts in increasingly urban environments. Success in such situations can be improved by providing the war fighter detailed information about the location, activities, and capabilities of the opponents. A limited mobility capability adds to the usefulness of grenade launcher deployed sensors in two important ways. First, it relaxes the targeting accuracy requirement allowing a higher probability of successful placement even at greater ranges. Second, it increases the covertness of the sensor by allowing precise placement in an unobtrusive location. Underlying technologies required to implement this approach include a method of attaching the sensor package to the wall and shock tolerant electronics.

  17. VOLTAGE REGULATOR

    DOEpatents

    Von Eschen, R.L.; Scheele, P.F.

    1962-04-24

    A transistorized voltage regulator which provides very close voitage regulation up to about 180 deg F is described. A diode in the positive line provides a constant voltage drop from the input to a regulating transistor emitter. An amplifier is coupled to the positive line through a resistor and is connected between a difference circuit and the regulating transistor base which is negative due to the difference in voltage drop across thc diode and the resistor so that a change in the regulator output causes the amplifier to increase or decrease the base voltage and current and incrcase or decrease the transistor impedance to return the regulator output to normal. (AEC)

  18. Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au-Ag-Au nanostructure for lead(II) ion detection

    NASA Astrophysics Data System (ADS)

    Kamaruddin, Nur Hasiba; Bakar, Ahmad Ashrif A.; Yaacob, Mohd Hanif; Mahdi, Mohd Adzir; Zan, Mohd Saiful Dzulkefly; Shaari, Sahbudin

    2016-01-01

    We demonstrate the enhancement of surface plasmon resonance (SPR) technique by implementing a multi-metallic layers of Au-Ag-Au nanostructure in the chitosan-graphene oxide (CS-GO) SPR sensor for lead(II) ion detection. The performance of the sensor is analyzed via SPR measurements, from which the sensitivity, signal-to-noise ratio and repeatability are determined. The nanostructure layers are characterized using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). We showed that the proposed structure has increased the shift in the SPR angle up to 3.5° within the range of 0.1-1 ppm due to the enhanced evanescent field at the sensing layer-analyte interface. This sensor also exhibits great repeatability which benefits from the stable multi-metallic nanostructure. The SNR value of 0.92 for 5 ppm lead(II) ion solution and reasonable linearity range up to that concentration shows that the tri-metallic CS-GO SPR sensor gives a good response towards the lead(II) ion solution. The CS-GO SPR sensor is also sensitive to at least a 10-5 change in the refractive index. The results prove that our proposed tri-metallic CS-GO SPR sensor demonstrates a strong performance and reliability for lead(II) ion detection in accordance with the standardized lead safety level for wastewater.

  19. Salicylyl Fluorene Derivatives as Fluorescent Sensors for Cu(II) Ions.

    PubMed

    Khaokeaw, Chenwit; Sukwattanasinitt, Mongkol; Rashatasakhon, Paitoon

    2016-03-01

    Two derivatives of fluorene containing salicylic acid groups are successfully synthesized by palladium-catalyzed coupling reactions and subsequent hydrolysis of salicylate esters. The compounds are characterized by various spectroscopic methods. In phosphate buffer (pH 8.0) solutions, these compounds are well soluble. They show maximum absorption wavelengths in the range of 304-330 nm and exhibit maximum emission wavelength around 420 and 430 nm with the quantum yields of 2.7 and 4.4 %, respectively. The compound with alkynyl salicylate groups (2) exhibits a selective fluorescence quenching towards Cu(II) and Fe(II) with a relatively similar sensitivity. The selectivity favoring Cu(II) over Fe(II) and other metal ions can be achieved upon the addition of 30 μM Triton X-100. The Cu(II) detection limit in solution phase is 1.47 ppb. The fluorescence signal recovery upon the addition of EDTA indicate a reversible complexation between 2 and Cu(II) ion. Fabrication of 2 on filter paper using a 50 μM solution in THF affords a naked-eye detection for Cu(II) and Fe(II) in aqueous media at picomole level. PMID:26753759

  20. A novel cobalt(II)-selective potentiometric sensor based on p-(4-n-butylphenylazo)calix[4]arene.

    PubMed

    Kumar, Pankaj; Shim, Yoon-Bo

    2009-01-15

    A new poly(vinyl chloride)-based membranes containing p-(4-n-butylphenylazo)calix[4]arene (I) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and dibutyl(butyl)phosphonate in the ratio 10:100:1:200 (I:DBBP:NaTPB:PVC) (w/w) was used to fabricate a new cobalt(II)-selective sensor. It exhibited a working concentration range of 9.2 x 10(-6) to 1.0 x 10(-1)M, with a Nernstian slope of 29.0+/-1.0 mV/decade of activity and the response time of 25s. This sensor shows the detection limit of 4.0 x 10(-6)M. Its potential response remains unaffected of pH in the range, 4.0-7.2, and the cell assembly can be used successfully in partially non-aqueous medium (up to 10%, v/v) without significant change in the slope of working concentration range. The sensor has a lifetime of about 3 months and exhibits excellent selectivity over a number of mono-, bi-, and tri-valent cations including alkali, alkaline earth metal, heavy and transition metal ions. It can be used as an indicator electrode for the end point determination in the potentiometric titration of cobalt ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of cobalt ion concentration in real samples. PMID:19064091

  1. Design optimization of pixel sensors using device simulations for the phase-II CMS tracker upgrade

    NASA Astrophysics Data System (ADS)

    Jain, G.; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichorn, T.; Fernandez, M.; Lalwani, K.; Messineo, A.; Palomo, F. R.; Peltola, T.; Printz, M.; Ranjan, K.; Villa, I.; Hidalgo, S.

    2016-07-01

    In order to address the problems caused by the harsh radiation environment during the high luminosity phase of the LHC (HL-LHC), all silicon tracking detectors (pixels and strips) in the CMS experiment will undergo an upgrade. And so to develop radiation hard pixel sensors, simulations have been performed using the 2D TCAD device simulator, SILVACO, to obtain design parameters. The effect of various design parameters like pixel size, pixel depth, implant width, metal overhang, p-stop concentration, p-stop depth and bulk doping density on the leakage current and critical electric field are studied for both non-irradiated as well as irradiated pixel sensors. These 2D simulation results of planar pixels are useful for providing insight into the behaviour of non-irradiated and irradiated silicon pixel sensors and further work on 3D simulation is underway.

  2. Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: II. Experimental validation

    NASA Astrophysics Data System (ADS)

    Voet, E.; Luyckx, G.; De Waele, W.; Degrieck, J.

    2010-10-01

    Embedded optical fibre sensors are considered in numerous applications for structural health monitoring purposes. Since the optical fibre and the host material in which it is embedded have different material properties, the strain in both materials will not be equal when external load is applied. Therefore, the strain transfer from the host material to the embedded sensor (optical fibre) was studied in more detail in the first part of the paper. This second part presents an experimental evaluation of the response of uni-axial fibre Bragg grating sensors embedded in small cross-ply composite laminates subjected to out-of-plane transverse loading. This loading case induces high birefringence effects in the core of the optical fibre. Using the numerically determined strain transfer coefficients (Luyckx et al 2010 Smart. Mater. Struct. 19 105017) together with multi-axial strain formulations, the authors were able to measure with reasonable accuracy the total strain field inside a carbon fibre reinforced plastic specimen.

  3. Preparation of electrochemical sensor for lead(II) based on molecularly imprinted film

    NASA Astrophysics Data System (ADS)

    Wang, Zhihua; Qin, Yaxin; Wang, Chu; Sun, Lijun; Lu, Xiaole; Lu, Xiaoquan

    2012-01-01

    A high selective voltammetric sensor for Pb2+ was introduced. The feasibility of utilizing strong interactions between Schiff bases and metal ion to prepare the molecularly imprinted polymers (MIPs) electrochemical sensor for Pb2+ in aqueous solutions was studied. Some parameters affecting sensor response were optimized and then a calibration curve was plotted. A dynamic linear range of 3.00 × 10-7 to 5.00 × 10-5 mol/L was obtained. The redox process of Pb2+ on the imprinted electrode is controlled by surface reaction. The stability and the life of imprinted membrane were improved by storing into diluted Pb2+ ion solution. The proposed method was applied to determination of Pb2+ in the Yellow River.

  4. RF current sensor

    DOEpatents

    Moore, James A.; Sparks, Dennis O.

    1998-11-10

    An RF sensor having a novel current sensing probe and a voltage sensing probe to measure voltage and current. The current sensor is disposed in a transmission line to link all of the flux generated by the flowing current in order to obtain an accurate measurement. The voltage sensor is a flat plate which operates as a capacitive plate to sense voltage on a center conductor of the transmission line, in which the measured voltage is obtained across a resistance leg of a R-C differentiator circuit formed by the characteristic impedance of a connecting transmission line and a capacitance of the plate, which is positioned proximal to the center conductor.

  5. Ultraviolet sensor as integrity monitor for enhanced flight vision system (EFVS) approaches to Cat II RVR conditions

    NASA Astrophysics Data System (ADS)

    McKinley, John B.; Pierson, Roger; Ertem, M. C.; Krone, Norris J., Jr.; Cramer, James A.

    2008-04-01

    Flight tests were conducted at Greenbrier Valley Airport (KLWB) and Easton Municipal Airport / Newnam Field (KESN) in a Cessna 402B aircraft using a head-up display (HUD) and a Norris Electro Optical Systems Corporation (NEOC) developmental ultraviolet (UV) sensor. These flights were sponsored by NEOC under a Federal Aviation Administration program, and the ultraviolet concepts, technology, system mechanization, and hardware for landing during low visibility landing conditions have been patented by NEOC. Imagery from the UV sensor, HUD guidance cues, and out-the-window videos were separately recorded at the engineering workstation for each approach. Inertial flight path data were also recorded. Various configurations of portable UV emitters were positioned along the runway edge and threshold. The UV imagery of the runway outline was displayed on the HUD along with guidance generated from the mission computer. Enhanced Flight Vision System (EFVS) approaches with the UV sensor were conducted from the initial approach fix to the ILS decision height in both VMC and IMC. Although the availability of low visibility conditions during the flight test period was limited, results from previous fog range testing concluded that UV EFVS has the performance capability to penetrate CAT II runway visual range obscuration. Furthermore, independent analysis has shown that existing runway light emit sufficient UV radiation without the need for augmentation other than lens replacement with UV transmissive quartz lenses. Consequently, UV sensors should qualify as conforming to FAA requirements for EFVS approaches. Combined with Synthetic Vision System (SVS), UV EFVS would function as both a precision landing aid, as well as an integrity monitor for the GPS and SVS database.

  6. Regulation of Voltage-Gated Ca2+ Currents by Ca2+/Calmodulin-dependent Protein Kinase II in Resting Sensory Neurons

    PubMed Central

    Kostic, Sandra; Pan, Bin; Guo, Yuan; Yu, Hongwei; Sapunar, Damir; Kwok, Wai-Meng; Hudmon, Andy; Wu, Hsiang-En; Hogan, Quinn H.

    2014-01-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca2+ channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca2+ currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats. The small molecule CaMKII inhibitor KN-93 (1.0μM) reduced depolarization-induced ICa by 16 – 30% in excess of the effects produced by the inactive homolog KN-92. The specificity of CaMKII inhibition on VGCC function was shown by efficacy of the selective CaMKII blocking peptide autocamtide-2-related inhibitory peptide in a membrane-permeable myristoylated form, which also reduced VGCC current in resting neurons. Loss of VGCC currents is primarily due to reduced N-type current, as application of mAIP selectively reduced N-type current by approximately 30%, and prior N-type current inhibition eliminated the effect of mAIP on VGCCs, while prior block of L-type channels did not reduce the effect of mAIP on total ICa. T-type currents were not affected by mAIP in resting DRG neurons. Transduction of sensory neurons in vivo by DRG injection of an adeno-associated virus expressing AIP also resulted in a loss of N-type currents. Together, these findings reveal a novel molecular adaptation whereby sensory neurons retain CaMKII support of VGCCs despite remaining quiescent. PMID:25064143

  7. Regulation of voltage-gated Ca(2+) currents by Ca(2+)/calmodulin-dependent protein kinase II in resting sensory neurons.

    PubMed

    Kostic, Sandra; Pan, Bin; Guo, Yuan; Yu, Hongwei; Sapunar, Damir; Kwok, Wai-Meng; Hudmon, Andy; Wu, Hsiang-En; Hogan, Quinn H

    2014-09-01

    Calcium/calmodulin-dependent protein kinase II (CaMKII) is recognized as a key element in encoding depolarization activity of excitable cells into facilitated voltage-gated Ca(2+) channel (VGCC) function. Less is known about the participation of CaMKII in regulating VGCCs in resting cells. We examined constitutive CaMKII control of Ca(2+) currents in peripheral sensory neurons acutely isolated from dorsal root ganglia (DRGs) of adult rats. The small molecule CaMKII inhibitor KN-93 (1.0μM) reduced depolarization-induced ICa by 16-30% in excess of the effects produced by the inactive homolog KN-92. The specificity of CaMKII inhibition on VGCC function was shown by the efficacy of the selective CaMKII blocking peptide autocamtide-2-related inhibitory peptide in a membrane-permeable myristoylated form, which also reduced VGCC current in resting neurons. Loss of VGCC currents is primarily due to reduced N-type current, as application of mAIP selectively reduced N-type current by approximately 30%, and prior N-type current inhibition eliminated the effect of mAIP on VGCCs, while prior block of L-type channels did not reduce the effect of mAIP on total ICa. T-type currents were not affected by mAIP in resting DRG neurons. Transduction of sensory neurons in vivo by DRG injection of an adeno-associated virus expressing AIP also resulted in a loss of N-type currents. Together, these findings reveal a novel molecular adaptation whereby sensory neurons retain CaMKII support of VGCCs despite remaining quiescent. PMID:25064143

  8. A novel voltammetric sensor based on poly(l-Citrulline)/SWCNTs composite film modified electrode for sensitive determination of picroside II.

    PubMed

    Wang, Wenjing; Wang, Lu; Zou, Lina; Li, Gaiping; Ye, Baoxian

    2016-04-01

    A novel voltammetric sensor was constructed by simple dripping single-walled carbon nanotubes (SWCNTs) on to the glass carbon electrode (GCE) firstly and electro-polymerizing L-Citrulline film subsequently. The resulting poly(L-Citrulline)/SWCNTs/GCE showed a significant voltammetric response to picroside II due to the synergistic effect of SWCNTs and poly(L-Citrulline) film. The first electroanalytical method of picroside II was proposed with detection linear range from 8.0 × 10(-8) to 5.0 × 10(-6) mol L(-1) and a detection limit of 3 × 10(-8) mol L(-1). The high sensitivity, selectivity and long-term stability made the sensor suitable for the determination of picroside II. Moreover, based on the systematically investigation and some kinetics parameters calculated in the experimentation, the reaction mechanism of picroside II at the poly(L-Citrulline)/SWCNTs modified GCE was obtained reliably. Lastly, the proposed sensor was used for the determination of picroside II in real sample with satisfactory results. This work promoted the potential applications of amino acid materials and SWCNTs in electro-chemical sensors. PMID:26838418

  9. A composite sensor array impedentiometric electronic tongue Part II. Discrimination of basic tastes.

    PubMed

    Pioggia, G; Di Francesco, F; Marchetti, A; Ferro, M; Leardi, R; Ahluwalia, A

    2007-05-15

    An impedentiometric electronic tongue based on the combination of a composite sensor array and chemometric techniques aimed at the discrimination of soluble compounds able to elicit different gustative perceptions is presented. A composite array consisting of chemo-sensitive layers based on carbon nanotubes or carbon black dispersed in polymeric matrices and doped polythiophenes was used. The electrical impedance of the sensor array was measured at a frequency of 150 Hz by means of an impedance meter. The experimental set-up was designed in order to allow the automatic selection of a test solution and dipping of the sensor array following a dedicated measurement protocol. Measurements were carried out on 15 different solutions eliciting 5 different tastes (sodium chloride, citric acid, glucose, glutamic acid and sodium dehydrocholate for salty, sour, sweet, umami and bitter, respectively) at 3 concentration levels comprising the human perceptive range. In order to avoid over-fitting, more than 100 repetitions for each sample were carried in a 4-month period. Principal component analysis (PCA) was used to detect and remove outliers. Classification was performed by linear discriminant analysis (LDA). A fairly good degree of discrimination was obtained. PMID:17169548

  10. High Sensitive Sensor Fabricated by Reduced Graphene Oxide/Polyvinyl Butyral Nanofibers for Detecting Cu (II) in Water

    PubMed Central

    Ding, Rui; Luo, Zhimin; Ma, Xiuling; Fan, Xiaoping; Xue, Liqun; Lin, Xiuzhu; Chen, Sheng

    2015-01-01

    Graphene oxide (GO)/polyvinyl butyral (PVB) nanofibers were prepared by a simple electrospinning technique with PVB as matrix and GO as a functional nanomaterial. GO/PVB nanofibers on glassy carbon electrode (GCE) were reduced through electrochemical method to form reduced graphene oxide (RGO)/PVB nanofibers. The morphology and structure of GO/PVB nanofiber were studied by scanning election microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR). RGO/PVB modified GCE was used for fabricating an electrochemical sensor for detecting Cu (II) in water. The analysis results showed that RGO/PVB modified GCE had good analytical results with the linear range of 0.06–2.2 μM, detection limit of 4.10 nM (S/N = 3), and the sensitivity of 103.51 μA·μM−1·cm−2. PMID:25694783