Science.gov

Sample records for ii-iii oxidation potential

  1. ARSENATE AND ARSENITE SORPTION AND ARSENITE OXIDATION BY IRON (II, III) HYDROXYCARBONATE GREEN RUST

    EPA Science Inventory

    Iron (II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron that is being used in permeable reactive barriers to remediate groundwater arsenic contamination. To optimize the design of iron barriers, it is important to evaluate the influence of geoch...

  2. Comparative cytotoxicity and genotoxicity of cobalt (II, III) oxide, iron (III) oxide, silicon dioxide, and aluminum oxide nanoparticles on human lymphocytes in vitro.

    PubMed

    Rajiv, S; Jerobin, J; Saranya, V; Nainawat, M; Sharma, A; Makwana, P; Gayathri, C; Bharath, L; Singh, M; Kumar, M; Mukherjee, A; Chandrasekaran, N

    2016-02-01

    Despite the extensive use of nanoparticles (NPs) in various fields, adequate knowledge of human health risk and potential toxicity is still lacking. The human lymphocytes play a major role in the immune system, and it can alter the antioxidant level when exposed to NPs. Identification of the hazardous NPs was done using in vitro toxicity tests and this study mainly focuses on the comparative in vitro cytotoxicity and genotoxicity of four different NPs including cobalt (II, III) oxide (Co3O4), iron (III) oxide (Fe2O3), silicon dioxide (SiO2), and aluminum oxide (Al2O3) on human lymphocytes. The Co3O4 NPs showed decrease in cellular viability and increase in cell membrane damage followed by Fe2O3, SiO2, and Al2O3 NPs in a dose-dependent manner after 24 h of exposure to human lymphocytes. The oxidative stress was evidenced in human lymphocytes by the induction of reactive oxygen species, lipid peroxidation, and depletion of catalase, reduced glutathione, and superoxide dismutase. The Al2O3 NPs showed the least DNA damage when compared with all the other NPs. Chromosomal aberration was observed at 100 µg/ml when exposed to Co3O4 NPs and Fe2O3 NPs. The alteration in the level of antioxidant caused DNA damage and chromosomal aberration in human lymphocytes. PMID:25829403

  3. Assessment of potential wood supply for intermediate scale thermoconversion facilities, Tasks I, II, III

    SciTech Connect

    Not Available

    1985-11-01

    The Department of Energy's Biomass Thermochemical Conversion Program has been concerned with the potential of wood biomass to contribute to the Nation's energy supply. One of the factors inhibiting the selection of wood biomass for energy by non-forest industries, especially by those requiring large quantities (500 to 2000 green tons per day), is concern with adequate fuel supply in terms of both a supply system and an adequate resource base. With respect to the latter, this report looks at the gross resource base as has been historically reported and also examines factors other than traditional product removals that could reduce to some degree the amount of resource that is available. The study also examined the conversion of a New England utility from coal to wood chips.

  4. Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na(2)S(2)O(8)/H(2)O(2)-Fe(II,III) two-stage oxidation process.

    PubMed

    Huang, Yi-Fong; Huang, Yao-Hui

    2009-03-15

    A two-stage oxidation (UV-Na(2)S(2)O(8)/H(2)O(2)-Fe(II,III)) process was applied to mineralize bisphenol A (BPA) at pH(i) (initial pH) 7. We take advantage of the high oxidation potential of sulfate radicals and use persulfate as the 1st-stage oxidant to oxidize BPA to less complex compounds (stoichiometric ratio: [S(2)O(8)(2-)](0)/[BPA](0)=1). Afterwards, the traditional photo-Fenton process was used to mineralize those compounds to CO(2). To the best of our knowledge, this is the first attempt to utilize the two processes in conjunction for the complete degradation of BPA. During the 2nd-stage reaction, other oxidants (H(2)O(2) and Iron alone) were also employed to observe the extent of enhancement of photo-Fenton. Further, qualitative identification of both hydroxyl and sulfate radicals was performed to evaluate their dominance under different conditions. The BPA degradation in this UV/persulfate process formulated a pseudo-first-order kinetic model well, with a rate constant of approximately 0.038 min(-1) (25 degrees C), 0.057 min(-1) (35 degrees C), and 0.087 min(-1) (50 degrees C), respectively. The much lower activation energy (DeltaE = 26 kJ mol(-1)) was further calculated to clarify that the thermal-effect of an illuminated system differs from single heat-assisted systems described in other research. Final total organic carbon (TOC) removal levels of BPA by the use of such two-stage oxidation processes were 25-34%, 25%, and 87-91% for additional Fe(II,III) activation, H(2)O(2) promotion, and Fe(II,III)/H(2)O(2) promotions, respectively. PMID:18635314

  5. Quantum chemistry of the oxygen evolution reaction on cobalt(ii,iii) oxide - implications for designing the optimal catalyst.

    PubMed

    Plaisance, Craig P; Reuter, Karsten; van Santen, Rutger A

    2016-07-01

    Density functional theory is used to examine the changes in electronic structure that occur during the oxygen evolution reaction (OER) catalyzed by active sites on three different surface terminations of Co3O4. These three active sites have reactive oxo species with differing degrees of coordination by Co cations - a μ(3)-oxo on the (311) surface, a μ(2)-oxo on the (110)-A surface, and an η-oxo on the (110)-B surface. The kinetically relevant step on all surfaces over a wide range of applied potentials is the nucleophilic addition of water to the oxo, which is responsible for formation of the O-O bond. The intrinsic reactivity of a site for this step is found to increase as the coordination of the oxo decreases with the μ(3)-oxo on the (311) surface being the least reactive and the η-oxo on the (110)-B surface being the most reactive. A detailed analysis of the electronic changes occurring during water addition on the three sites reveals that this trend is due to both a decrease in the attractive local Madelung potential on the oxo and a decrease in electron withdrawal from the oxo by Co neighbors. Applying a similar electronic structure analysis to the oxidation steps preceding water addition in the catalytic cycle shows that analogous electronic changes occur during this process, explaining a correlation observed between the oxidation potential of a site and its intrinsic reactivity for water addition. This concept is then used to specify criteria for the design of an optimal OER catalyst at a given applied potential. PMID:27108887

  6. Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase

    PubMed Central

    Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.

    2013-01-01

    Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588

  7. Zinc(II), iron(II/III) and ruthenium(II) complexes of o-phenylenediamine derivatives: oxidative dehydrogenation and photoluminescence.

    PubMed

    Chaudhuri, Satyabrata; Patra, Sarat Chandra; Saha, Pinaki; Saha Roy, Amit; Maity, Suvendu; Bera, Sachinath; Saha Sardar, Pinki; Ghosh, Sanjib; Weyhermüller, Thomas; Ghosh, Prasanta

    2013-11-14

    Reactions of benzoyl pyridine, o-phenylenediamine and anhydrous ZnX2 in methanol afford imine complexes [Zn(L1)X2] (X = Cl, 1; X = Br, 2) in good yields (L1 = (E)-N(1)-(phenyl(pyridin-2-yl)methylene)benzene-1,2-diamine). The reduction of 1 with NaBH4 affords (E)-N(1)-(phenyl(pyridine-2-yl)methylene)benzene-1,2-diamine (L2H). The reaction of L2H with [Ru(II)(PPh3)3Cl2] results in the oxidative dehydrogenation to L1 generating cis-[Ru(II)(L1)(PPh3)Cl2] (3). The reaction of L2H with salicylaldehyde affords (E)-2-(((2-((phenyl(pyridin-2-yl)methyl)amino)phenyl)imino)methyl)phenol (L3H2). The reaction of L3H2 with anhydrous FeCl3 in CH3OH affords cis-[Fe(III)(L3H(-))Cl2] (4). Reaction of L3H2 with [Ru(II)(PPh3)3Cl2] results in the oxidative dehydrogenation to diimine, L4H, affording trans-[Ru(II)(L4(-))(PPh3)2](+), which is isolated as trans-[Ru(II)(L4(-))(PPh3)2]PF6 (5(+)PF6(-)) (L4H = 2-((E)-(2-((E)-phenyl(pyridin-2-yl)methyleneamino)phenylimino)methyl)phenol). The reduction of L3H2 with NaBH4 produces 2-(((2-((phenyl(pyridin-2-yl)methyl)amino)phenyl)amino)methyl)phenol (L5H3). With iron(III) L5H3 undergoes oxidative dehydrogenation to L3H2 affording 4, while with [Ru(II)(PPh3)3Cl2], L5H3 undergoes 4e + 4H(+) transfer giving 5(+). A fluid solution of L3H2 at 298 K exhibits an emission band at 470 nm (λ(ex) = 330 nm, τ1 = 3.70 ns) and a weaker band at 525 nm (λ(ex) = 330, 390 nm, τ1 = 1.1 ns) at higher concentrations due to molecular aggregation, which are temperature dependent. 4 is brightly emissive (λ(ex) = 330 nm, λ(em) = 450 nm, Φ = 0.586, τ1 = 3.70 ns). Time resolved emission spectra (TRES) and lifetime measurements confirm that the lower energy absorption band of L3H2 at 390 nm, which is absent in complex 4, has a larger non-radiative rate constant (k(nr)). The redox innocent Al(III) adduct of L3H2 is fluorescent (λ(ex) = 330 nm, λ(em) = 450 nm, τ1 = 3.70 ns). On the contrary, the cis-[Fe(II)(L3H(-))Cl2](-) and cis-[Co(L3H(-))Cl2](-) analogues are non

  8. Elimination of Manganese(II,III) Oxidation in Pseudomonas putida GB-1 by a Double Knockout of Two Putative Multicopper Oxidase Genes

    PubMed Central

    McCarthy, James K.; Tebo, Bradley M.

    2013-01-01

    Bacterial manganese(II) oxidation impacts the redox cycling of Mn, other elements, and compounds in the environment; therefore, it is important to understand the mechanisms of and enzymes responsible for Mn(II) oxidation. In several Mn(II)-oxidizing organisms, the identified Mn(II) oxidase belongs to either the multicopper oxidase (MCO) or the heme peroxidase family of proteins. However, the identity of the oxidase in Pseudomonas putida GB-1 has long remained unknown. To identify the P. putida GB-1 oxidase, we searched its genome and found several homologues of known or suspected Mn(II) oxidase-encoding genes (mnxG, mofA, moxA, and mopA). To narrow this list, we assumed that the Mn(II) oxidase gene would be conserved among Mn(II)-oxidizing pseudomonads but not in nonoxidizers and performed a genome comparison to 11 Pseudomonas species. We further assumed that the oxidase gene would be regulated by MnxR, a transcription factor required for Mn(II) oxidation. Two loci met all these criteria: PputGB1_2447, which encodes an MCO homologous to MnxG, and PputGB1_2665, which encodes an MCO with very low homology to MofA. In-frame deletions of each locus resulted in strains that retained some ability to oxidize Mn(II) or Mn(III); loss of oxidation was attained only upon deletion of both genes. These results suggest that PputGB1_2447 and PputGB1_2665 encode two MCOs that are independently capable of oxidizing both Mn(II) and Mn(III). The purpose of this redundancy is unclear; however, differences in oxidation phenotype for the single mutants suggest specialization in function for the two enzymes. PMID:23124227

  9. Synthesis, characterization and application of iron (II, III) oxide (Fe3O4) magnetic nanoparticles in mimic of wound healing model

    NASA Astrophysics Data System (ADS)

    Konyala, Divya

    The research study focused on synthesis, characterization and applications of Fe3O4 core-shelled magnetic nanomaterials. This Fe3O4 magnetic nanomaterials will be prepared by using cost effective and convenient wet-chemistry method and will encapsulated using aqueous extracts of medicinal natural products. Three natural products namely Symplocos racemosa, Picrorhiza kurroa and Butea monosperma used to encapsulate Fe3O 4 MNMs due to their scope to reduce the risk of cancer, improves health, increase energy and enhance the immunity. These three medicinal natural products are synthesize by using water as a solvents to derive its active constituents, which will further used to functionalize the magnetic nanomaterials. The magnetic nanoparticles characterization studies performed using X-ray powder diffraction, Scanning electron microscope, Transmission electron microscope, Ultraviolet-visible spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR) and Magnetic property. Fe3O4 magnetic nanomaterials biological activity was tested on Gram-negative bacteria (Escherichia coli). The results pointed out that, due to the adequate coating of Fe 3O4 (Iron Oxide) core by the medicinal chemical constituents from the natural products, the absorption of Fe3O4 magnetic nanomaterials was not detected in the UV-VIS Spectroscopy. TEM images showed that Fe3O4 coated with natural product extract in core-shelled structure, and the size of the particle ranges from 6 nm to 10 nm. Fourier Transform Infrared spectroscopy (FT-IR) was performed to determine the nature of chemicals present in natural extracts and functionalized Fe3O 4 magnetic nanomaterials. The model of wound healing mimic and antibacterial activity performed on gram-negative (Escherichia coli), indicating steady increasing cell growth after adding Fe3O4 MNMs. It was also found that MNMs synthesized at high temperatures shows less wound healing activity, when compared to MNMs prepared at room temperature due to formation

  10. Mn(II/III) complexes as promising redox mediators in quantum-dot-sensitized solar cells.

    PubMed

    Haring, Andrew J; Pomatto, Michelle E; Thornton, Miranda R; Morris, Amanda J

    2014-09-10

    The advancement of quantum dot sensitized solar cell (QDSSC) technology depends on optimizing directional charge transfer between light absorbing quantum dots, TiO2, and a redox mediator. The nature of the redox mediator plays a pivotal role in determining the photocurrent and photovoltage from the solar cell. Kinetically, reduction of oxidized quantum dots by the redox mediator should be rapid and faster than the back electron transfer between TiO2 and oxidized quantum dots to maintain photocurrent. Thermodynamically, the reduction potential of the redox mediator should be sufficiently positive to provide high photovoltages. To satisfy both criteria and enhance power conversion efficiencies, we introduced charge transfer spin-crossover Mn(II/III) complexes as promising redox mediator alternatives in QDSSCs. High photovoltages ∼ 1 V were achieved by a series of Mn poly(pyrazolyl)borates, with reduction potentials ∼ 0.51 V vs Ag/AgCl. Back electron transfer (recombination) rates were slower than Co(bpy)3, where bpy = 2,2'-bipyridine, evidenced by electron lifetimes up to 4 orders of magnitude longer. This is indicative of a large barrier to electron transport imposed by spin-crossover in these complexes. Low solubility prevented the redox mediators from sustaining high photocurrent due to mass transport limits. However, with high fill factors (∼ 0.6) and photovoltages, they demonstrate competitive efficiencies with Co(bpy)3 redox mediator at the same concentration. More positive reduction potentials and slower recombination rates compared to current redox mediators establish the viability of Mn poly(pyrazolyl)borates as promising redox mediators. By capitalizing on these characteristics, efficient Mn(II/III)-based QDSSCs can be achieved with more soluble Mn-complexes. PMID:25137595

  11. 40 CFR Appendixes II-Iii to Part 264 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false II Appendixes II-III to Part 264 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Appendixes II-III...

  12. Intrinsic anion oxidation potentials.

    PubMed

    Johansson, Patrik

    2006-11-01

    Anions of lithium battery salts have been investigated by electronic structure calculations with the objective to find a computational measure to correlate with the observed (in)stability of nonaqueous lithium battery electrolytes vs oxidation often encountered in practice. Accurate prediction of intrinsic anion oxidation potentials is here made possible by computing the vertical free energy difference between anion and neutral radical (Delta Gv) and further strengthened by an empirical correction using only the anion volume as a parameter. The 6-311+G(2df,p) basis set, the VSXC functional, and the C-PCM SCRF algorithm were used. The Delta Gv calculations can be performed using any standard computational chemistry software. PMID:17078600

  13. Substructure Main Bridge, River Piers I, II, III & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Substructure - Main Bridge, River Piers I, II, III & IV - Huey P. Long Bridge, Spanning Mississippi River approximately midway between nine & twelve mile points upstream from & west of New Orleans, Jefferson, Jefferson Parish, LA

  14. Recent Advances of Cobalt(II/III) Redox Couples for Dye-Sensitized Solar Cell Applications.

    PubMed

    Giribabu, Lingamallu; Bolligarla, Ramababu; Panigrahi, Mallika

    2015-08-01

    In recent years dye-sensitized solar cells (DSSCs) have emerged as one of the alternatives for the global energy crisis. DSSCs have achieved a certified efficiency of >11% by using the I(-) /I3 (-) redox couple. In order to commercialize the technology almost all components of the device have to be improved. Among the various components of DSSCs, the redox couple that regenerates the oxidized sensitizer plays a crucial role in achieving high efficiency and durability of the cell. However, the I(-) /I3 (-) redox couple has certain limitations such as the absorption of triiodide up to 430 nm and the volatile nature of iodine, which also corrodes the silver-based current collectors. These limitations are obstructing the commercialization of this technology. For this reason, one has to identify alternative redox couples. In this regard, the Co(II/III) redox couple is found to be the best alternative to the existing I(-) /I3 (-) redox couple. Recently, DSSC test cell efficiency has risen up to 13% by using the cobalt redox couple. This review emphasizes the recent development of Co(II/III) redox couples for DSSC applications. PMID:26081939

  15. ARSENIC INTERACTION WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST: IMPLICATIONS FOR ARSENIC REMEDIATION

    EPA Science Inventory

    Zerovalent iron is being used in permeable reactive barriers (PRBs) to remediate groundwater arsenic contamination. Iron(II, III) hydroxycarbonate green rust is a major corrosion product of zerovalent iron under anaerobic conditions. The interaction between arsenic and this green...

  16. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex

    PubMed Central

    Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai

    2016-01-01

    Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats—while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. PMID:27193420

  17. Tetrahydrocannabinol induces brain mitochondrial respiratory chain dysfunction and increases oxidative stress: a potential mechanism involved in cannabis-related stroke.

    PubMed

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities V max (complexes I, III, and IV activities), V succ (complexes II, III, and IV activities), V tmpd (complex IV activity), together with mitochondrial coupling (V max/V 0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased V max (-71%; P < 0.0001), V succ (-65%; P < 0.0001), and V tmpd (-3.5%; P < 0.001). Mitochondrial coupling (V max/V 0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke. PMID:25654095

  18. Tetrahydrocannabinol Induces Brain Mitochondrial Respiratory Chain Dysfunction and Increases Oxidative Stress: A Potential Mechanism Involved in Cannabis-Related Stroke

    PubMed Central

    Wolff, Valérie; Schlagowski, Anna-Isabel; Rouyer, Olivier; Charles, Anne-Laure; Singh, François; Auger, Cyril; Schini-Kerth, Valérie; Marescaux, Christian; Raul, Jean-Sébastien; Zoll, Joffrey; Geny, Bernard

    2015-01-01

    Cannabis has potential therapeutic use but tetrahydrocannabinol (THC), its main psychoactive component, appears as a risk factor for ischemic stroke in young adults. We therefore evaluate the effects of THC on brain mitochondrial function and oxidative stress, key factors involved in stroke. Maximal oxidative capacities Vmax (complexes I, III, and IV activities), Vsucc (complexes II, III, and IV activities), Vtmpd (complex IV activity), together with mitochondrial coupling (Vmax/V0), were determined in control conditions and after exposure to THC in isolated mitochondria extracted from rat brain, using differential centrifugations. Oxidative stress was also assessed through hydrogen peroxide (H2O2) production, measured with Amplex Red. THC significantly decreased Vmax (−71%; P < 0.0001), Vsucc (−65%; P < 0.0001), and Vtmpd (−3.5%; P < 0.001). Mitochondrial coupling (Vmax/V0) was also significantly decreased after THC exposure (1.8±0.2 versus 6.3±0.7; P < 0.001). Furthermore, THC significantly enhanced H2O2 production by cerebral mitochondria (+171%; P < 0.05) and mitochondrial free radical leak was increased from 0.01±0.01 to 0.10±0.01% (P < 0.001). Thus, THC increases oxidative stress and induces cerebral mitochondrial dysfunction. This mechanism may be involved in young cannabis users who develop ischemic stroke since THC might increase patient's vulnerability to stroke. PMID:25654095

  19. Genetic improvement of U.S. soybean in Maturity Groups II, III, and IV

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean [Glycine max (L.) Merr.] improvement via plant breeding has been critical for the success of the crop. The objective of this study was to quantify genetic change in yield and other traits that occurred over the past 80 years of North American soybean breeding in maturity groups (MGs) II, III...

  20. CHEMICAL INTERACTIONS OF ARSENATE, ARSENITE, PHOSPHATE, AND SILICATE WITH IRON (II, III) HYDROXYCARBONATE GREEN RUST

    EPA Science Inventory

    Granular zerovalent iron has been proposed to be used as a medium in permeable reactive barriers (PRBs) to remove arsenic from contaminated groundwater. Iron(II, III) hydroxycarbonate green rust (carbonate green rust, or CGR) is a major corrosion product of zerovalent iron under ...

  1. CHEMICAL INTERACTIONS OF ARSENATE, ARSENITE, PHOSPHATE, AND SILICATE WITH IRON (II,III) HYDROXYCARBONATE GREEN RUST

    EPA Science Inventory

    Granular zerovalent iron has been proposed to be used as a medium in permeable reactive barriers (PRBs) to remove arsenic from contaminated groundwater. Iron(II, III) hydroxycarbonate green rust (carbonate green rust, or CGR) is a major corrosion product of zerovalent iron under ...

  2. High expression of Zinc-finger protein X-linked promotes tumor growth and predicts a poor outcome for stage II/III colorectal cancer patients

    PubMed Central

    Yan, Leilei; Zhu, Qingchao; Liu, Liguo; Xu, Bing; Liu, Sihong; Jin, Zhiming; Gao, Yuping

    2016-01-01

    Zinc-finger protein X-linked (ZFX) was recently identified as a novel oncoprotein in several human malignancies. In this study, we examined the correlation between ZFX expression and the clinical characteristics of stage II/III CRC patients, as well as the molecular mechanism by which ZFX apparently contributes to CRC tumor progression. Using immunohistochemistry, we detected expression of ZFX in CRC tissues collected from stage II/III patients and determined that its expression correlated with tumor differentiation and stage. Survival analysis indicated that patients with high ZFX expression had poorer overall and disease-free survival. ZFX knockdown in SW620 and SW480 CRC cells significantly inhibited cell proliferation and colony formation, enhanced apoptosis and induced cell cycle arrest. It also enhanced the sensitivity of CRC cells to 5-Fu. In a xenograft model, ZFX knockdown suppressed in vivo CRC tumor growth. Microarray analysis revealed the primary target of ZFX to be DUSP5. Whereas ZFX knockdown increased DUSP5 expression, DUSP5 knockdown rescued ZFX-mediated cell proliferation in ZFX knockdown cells. These findings demonstrate that ZFX promotes CRC progression by suppressing DUSP5 expression and suggest that ZFX is a novel prognostic biomarker and potentially useful therapeutic target in stage II/III CRC patients. PMID:26967242

  3. Potential role of bicarbonate during pyrite oxidation

    SciTech Connect

    Evangelou, V.P.; Holt, A.; Seta, A.K.

    1998-07-15

    The need to prevent the development of acid mine drainage (AMD) by oxidation of pyrite has triggered numerous investigations into the mechanisms of its oxidation. According to Frontier molecular orbital (FMO) theory, the surface-exposed sulfur atom of pyrite possesses an unshared electron pair which produces a slightly negatively charged pyrite surface that can attract cations such as Fe{sup 2+}. Because of surface electroneutrality and pH considerations, however, the pyrite surface Fe{sup 2+} coordinates OH. The authors proposed that this surface Fe{sup 2+} OH when in the presence of CO{sub 2} is converted to {minus}FeCO{sub 3} or {minus}FeHCO{sub 3}, depending on pH. In this study, using Fourier transform infrared spectroscopy (FT-IR) they demonstrated that such complexes form on the surface of pyrite and continue to persist even after a significant fraction of the surface Fe{sup 2+} was oxidized to Fe{sup 3+}. FT-IR spectra also showed the presence of two carbonyl absorption bands (1,682 and 1,653 cm{sup {minus}1}) on the surface of pyrite upon exposure to CO{sub 2} which suggested that pyrite surface carbon complexes existed in two different surface chemical environments, pointing out two potential mechanisms of pyrite surface-CO{sub 2} interactions. One potential mechanism involved formation of a pyrite surface-Fe(II)HCO{sub 3} complex, whereas a second potential mechanism involved formation of a pyrite surface-carboxylic acid group complex [{minus}Fe(II)SSCOOFe-(II)].

  4. Transparent Conducting Oxides as Potential Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Mason, Thomas

    2013-03-01

    Transparent conducting oxides (TCOs) in their less-doped semiconducting states have potential as thermoelectric oxides or TEOs. They are attractive as TEOs owing to: 1) their good thermochemical stability, 2) their n-type character (to complement existing p-type TEOs), and 3) their high electronic mobilities. The numerator of the TE figure of merit (Z), also known as the ``power factor'' (PF), is the product of the electronic conductivity and the square of the Seebeck coefficient. An experimental procedure named after its developer, ``Jonker'' analysis plots Seebeck coefficient vs. the natural logarithm of the electronic conductivity. Data for bulk ceramic specimens just prior to the onset of degeneracy tend to fall on a line of slope, k/e (k =Boltzmann constant, e =charge of the electron). From this line, the doping composition corresponding to the highest power factor can be determined and the PF optimized, based upon data from a few carefully chosen compositions. Subsequently, following a procedure originally derived by Ioffe, the zero-thermopower intercept of these Jonker lines can be directly related to the maximum achievable power factor for a given TEO. So-called ``Ioffe'' plots allow for meaningful comparisons between candidate TEO materials, and also indicate the minimum thermal conductivity required to achieve a target ZT value at the temperature of measurement. Results for TCO-based TEOs will be discussed for both simple and compound (including layered) materials. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences as part of an Energy Frontier Research Center under grant no. DE-SC0001059.

  5. Novel graphite salts of high oxidizing potential

    SciTech Connect

    McCarron, E.M. III

    1980-08-01

    The intercalation of graphite by the third-transition-series metal hexafluorides has yielded the graphite salts, C/sub 8//sup +/OsF/sub 6//sup -/, C/sub 8//sup +/IrF/sub 6//sup -/ and C/sub 12//sup 2 +/PtF/sub 6//sup 2 -/. The fluoroplatinate salt represents the highest electron withdrawal from the graphite network yet achieved. Analogues to the Os and Ir salts have been obtained both by fluorination of Group V pentaflouride intercalates, C/sub 8/MF/sub 5/ (M = As, Sb), and by the interaction of the dioxygenyl salts with graphite (8C + O/sub 2/MF/sub 6/ ..-->.. C/sub 8/MF/sub 6/ + O/sub 2/+). Non-intercalating binary fluorides have been observed to intercalate in the presence of a fluorine-rich environment (e.g., 8C + PF/sub 5/ + 1/2 F/sub 2/ ..-->.. C/sub 8/PF/sub 6/). GeF/sub 4/, which also does not spontaneously intercalate graphite, has been observed to interact with graphite in the presence of 2 atmospheres of fluorine overpressure to give the fluoroplatinate salt analogue, C/sub 12//sup 2 +/GeF/sub 6//sup 2 -/. This material is in equilibrium with the pentafluorogermanate at ordinary pressures and temperatures. C/sub 12//sup 2 +/GeF/sub 6//sup 2 -/ ..-->.. C/sub 12//sup +/GeF/sub 5//sup -/ + 1/2 F/sub 2/. C/sub 12/GeF/sub 6/ must have an oxidizing potential close to that of fluorine itself. The graphite fluorometallate salts are both electronic and ionic (F/sup -/) conductors. For the C/sub 8//sup +/MF/sub 6//sup -/ salts, a maximum electronic conductivity an order of magnitude greater than the parent graphite has been observed for stage two. The high oxidizing potential, coupled with the fluoride ion transport capability of the graphite salts, has been exploited in the construction of solid-state galvanic cells. These cells use the graphite fluorometallate salts as electrode materials in combination with a superionic fluoride-ion-conducting solid electrolyte.

  6. Voluntary exercise partially reverses neonatal alcohol-induced deficits in mPFC layer II/III dendritic morphology of male adolescent rats.

    PubMed

    Hamilton, G F; Criss, K J; Klintsova, A Y

    2015-08-01

    Developmental alcohol exposure in humans can produce a wide range of deficits collectively referred to as fetal alcohol spectrum disorders (FASD). FASD-related impairments in executive functioning later in life suggest long-term damage to the prefrontal cortex (PFC). In rodent neonates, moderate to high levels of alcohol exposure decreased frontal lobe brain size and altered medial PFC pyramidal neuron dendritic morphology. Previous research in our lab demonstrated that neonatal alcohol exposure decreased basilar dendritic complexity but did not affect spine density in Layer II/III pyramidal neurons in 26- to 30-day-old rats. The current study adds to the literature by evaluating the effect of neonatal alcohol exposure on mPFC Layer II/III basilar dendritic morphology in adolescent male rats. Additionally, it examines the potential for voluntary exercise to mitigate alcohol-induced deficits on mPFC dendritic complexity. An animal model of binge drinking during the third trimester of pregnancy was used. Rats were intubated with alcohol (alcohol-exposed, AE; 5.25 g kg(-1) day(-1)) on postnatal days (PD) 4-9; two control groups were included (suckle control and sham-intubated). Rats were anesthetized and perfused with heparinized saline solution on PD 42, and brains were processed for Golgi-Cox staining. Developmental alcohol exposure decreased spine density and dendritic complexity of basilar dendrites of Layer II/III neurons in the medial PFC (mPFC) compared to dendrites of control animals. Voluntary exercise increased spine density and dendritic length in AE animals resulting in elimination of the differences between AE and SH rats. Thus, voluntary exercise during early adolescence selectively rescued alcohol-induced morphological deficits in the mPFC. PMID:25967699

  7. Potential Modulation of Sirtuins by Oxidative Stress

    PubMed Central

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1–7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  8. Potential Modulation of Sirtuins by Oxidative Stress.

    PubMed

    Santos, Leonardo; Escande, Carlos; Denicola, Ana

    2016-01-01

    Sirtuins are a conserved family of NAD-dependent protein deacylases. Initially proposed as histone deacetylases, it is now known that they act on a variety of proteins including transcription factors and metabolic enzymes, having a key role in the regulation of cellular homeostasis. Seven isoforms are identified in mammals (SIRT1-7), all of them sharing a conserved catalytic core and showing differential subcellular localization and activities. Oxidative stress can affect the activity of sirtuins at different levels: expression, posttranslational modifications, protein-protein interactions, and NAD levels. Mild oxidative stress induces the expression of sirtuins as a compensatory mechanism, while harsh or prolonged oxidant conditions result in dysfunctional modified sirtuins more prone to degradation by the proteasome. Oxidative posttranslational modifications have been identified in vitro and in vivo, in particular cysteine oxidation and tyrosine nitration. In addition, oxidative stress can alter the interaction with other proteins, like SIRT1 with its protein inhibitor DBC1 resulting in a net increase of deacetylase activity. In the same way, manipulation of cellular NAD levels by pharmacological inhibition of other NAD-consuming enzymes results in activation of SIRT1 and protection against obesity-related pathologies. Nevertheless, further research is needed to establish the molecular mechanisms of redox regulation of sirtuins to further design adequate pharmacological interventions. PMID:26788256

  9. OXIDATION-REDUCTION POTENTIAL MEASUREMENTS OF IMPORTANT OXIDANTS IN DRINKING WATER

    EPA Science Inventory

    Oxidation-reduction (redox) reactions are important in drinking water treatment and distribution. Oxidation-reduction potential (ORP) measurements of water reflect the tendency of major constituents in the water to accept or lose electrons. Although ORP measurements are valuable...

  10. GLASSES CONTAINING IRON (II III) OXIDES FOR IMMOBILIZATION OF RADIOACTIVE TECHNETIUM

    SciTech Connect

    KRUGER AA; HEO J; XU K; CHOI JK; HRMA PR; UM W

    2011-11-07

    Technetium-99 (Tc-99) has posed serious environmental threats as US Department of Energy's high-level waste. This work reports the vitrification of Re, as surrogate for Tc-99, by iron-borosilicate and iron-phosphate glasses, respectively. Iron-phosphate glasses can dissolve Re as high as {approx} 1.2 wt. %, which can become candidate waste forms for Tc-99 disposal, while borosilicate glasses can retain less than 0.1 wt. % of Re due to high melting temperature and long melting duration. Vitrification of Re as Tc-99's mimic was investigated using iron-borosilicate and iron-phosphate glasses. The retention of Re in borosilicate glasses was less than 0.1 wt. % and more than 99 wt. % of Re were volatilized due to high melting temperature and long melting duration. Because the retention of Re in iron-phosphate glasses is as high as 1.2 wt. % and the volatilization is reduced down to {approx}50 wt. %, iron-phosphate glasses can be one of the glass waste form candidates for Tc (or Re) disposal. The investigations of chemical durability and leaching test of iron-phosphate glasses containing Re are now underway to test the performance of the waste form.

  11. Further Study of the Reaction of Fe2+ with CN−: Synthesis and Characterization of cis and trans [FeII,III(CN)4L2]n− Complexes

    PubMed Central

    Chiarella, Gina M.; Melgarejo, Doris Y.; Koch, Stephen A.

    2008-01-01

    The reaction of Fe2+ with CN−, which was first performed in 1704, has been used to synthesize a new series of basic [FeII,III(CN)4L2]n− complexes where L is a monodentate ligand.. Trans-Na2[FeII(CN)4(DMSO)2] and cis-[NEt4]2[FeII(CN)4(pyridine)2] are synthesized by the direct reaction of FeCl2 with 4 equiv of CN− in DMSO or pyridine. Air oxidation of the latter compound gives cis-[NEt4][FeIII(CN)4(pyridine)2]. The non-cyanide ligands in these complexes undergo facile ligand exchange reactions with solvent. Reaction of cis-[NEt4]2[FeIII(CN)4(pyridine)2] with CO at RT gives trans-[NEt4]2[FeII(CN)4(pyridine)(CO)]. PMID:16448089

  12. Effect of Pulse Duration on Polytetrafluoroethylene Shocked above the Crystalline Phase II-Iii Transition

    NASA Astrophysics Data System (ADS)

    Brown, E. N.; Gray, G. T.; Rae, P. J.; Trujillo, C. P.; Bourne, N. K.

    2007-12-01

    We present an experimental study of crystalline structure evolution of polytetrafluoroethylene (PTFE) due to pressure-induced phase transitions in a semi-crystalline polymer using soft-recovery, shock-loading techniques coupled with mechanical and chemical post-shock analysis. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition. Below the phase transition only subtle changes were observed in the crystallinity, microstructure, and mechanical response of PTFE. Shock loading of PTFE 7C above the phase II-III transition was seen to cause both an increase in crystallinity from 38% to ˜53% and a finer crystalline microstructure, and changed the yield and flow stress behavior. We particularly focus on the effect of pulse duration on the microstructure evolution.

  13. Shock Pulse Effects in PTFE Shocked Through the Crystalline Phase II--III Transition

    NASA Astrophysics Data System (ADS)

    Brown, Eric N.; Gray, George T., III; Rae, Philip J.; Bourne, Neil K.

    2008-03-01

    We present an experimental study of crystalline structure evolution of polytetrafluoroethylene (PTFE) due to pressure-induced phase transitions in a semi-crystalline polymer using soft-recovery, shock-loading techniques coupled with mechanical and chemical post-shock analysis. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition. Below the phase transition only subtle changes were observed in the crystallinity, microstructure, and mechanical response of PTFE. Shock loading of PTFE 7C above the phase II--III transition was seen to cause both an increase in crystallinity from 38% to ˜53% (by Differential Scanning Calorimetry, DSC) and a finer crystalline microstructure, and changed the yield and flow stress behavior. We particularly focus on the effect of pulse duration on the microstructure evolution.

  14. Effect of Pulse Duration on Polytetrafluoroethylene Shocked Above the Crystalline Phase II--III Transition

    NASA Astrophysics Data System (ADS)

    Brown, Eric N.; Gray, George T., III; Rae, Philip J.; Trujillo, Carl P.; Bourne, Neil K.

    2007-06-01

    We present an experimental study of crystalline structure evolution of polytetrafluoroethylene (PTFE) due to pressure-induced phase transitions in a semi-crystalline polymer using soft-recovery, shock-loading techniques coupled with mechanical and chemical post-shock analysis. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum-trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition. Below the phase transition only subtle changes were observed in the crystallinity, microstructure, and mechanical response of PTFE. Shock loading of PTFE 7C above the phase II--III transition was seen to cause both an increase in crystallinity from 38% to ˜53% (by Differential Scanning Calorimetry, DSC) and a finer crystalline microstructure, and changed the yield and flow stress behavior. We particularly focus on the effect of pulse duration on the microstructure evolution.

  15. A varying-stage adaptive phase II/III clinical trial design.

    PubMed

    Dong, Gaohong

    2014-04-15

    Currently, adaptive phase II/III clinical trials are typically carried out with a strict two-stage design. The first stage is a learning stage called phase II, and the second stage is a confirmatory stage called phase III. Following phase II analysis, inefficacious or harmful dose arms are dropped, then one or two promising dose arms are selected for the second stage. However, there are often situations in which researchers are in dilemma to make 'go or no-go' decision and/or to select 'best' dose arm(s), as data from the first stage may not provide sufficient information for their decision making. In this case, it is challenging to follow a strict two-stage plan. Therefore, we propose a varying-stage adaptive phase II/III clinical trial design, in which we consider whether there is a need to have an intermediate stage to obtain more data, so that a more informative decision could be made. Hence, the number of further investigational stages in our design is determined on the basis of data accumulated to the interim analysis. With respect to adaptations, we consider dropping dose arm(s), switching another plausible endpoint as the primary study endpoint, re-estimating sample size, and early stopping for futility. We use an adaptive combination test to perform final analyses. By applying closed testing procedure, we control family-wise type I error rate at the nominal level of α in the strong sense. We delineate other essential design considerations including the threshold parameters and the proportion of alpha allocated in the two-stage versus three-stage setting. PMID:24273128

  16. Extraction radiopolarography for determining the oxidation potentials of transplutonium elements

    SciTech Connect

    Kosyakov, V.N.; Yakovlev, N.G.; Vlasov, M.M.

    1987-03-01

    A method is described for determining the oxidation potentials for valency transitions in transplutonium elements (TPE), which is usable when the element is present in trace amounts. This is based on electrochemical oxidation or reduction of the TPE in combination with a solvent-extraction method of determining the concentration ratio for the oxidized and reduced forms. The method is applicable to determining the potential of almost any reversible reaction if the solvent-extraction parameters for the oxidized and reduced forms differ substantially, while the potential (with allowance for the extraction system) lies in a region accessible to electrochemical oxidation or reduction. Two forms of use are considered: with liquid extraction and with extraction chromatography. The method is demonstrated on the Bk(IV)/Bk(III) transition with di-2-ethylhexylphosphoric acid as extraction agent.

  17. A Straightforward Electrochemical Approach to Imine- and Amine-bisphenolate Metal Complexes with Facile Control Over Metal Oxidation State.

    PubMed

    Chapman, Michael R; Henkelis, Susan E; Kapur, Nikil; Nguyen, Bao N; Willans, Charlotte E

    2016-08-01

    Synthetic methods to prepare organometallic and coordination compounds such as Schiff-base complexes are diverse, with the route chosen being dependent upon many factors such as metal-ligand combination and metal oxidation state. In this work we have shown that electrochemical methodology can be employed to synthesize a variety of metal-salen/salan complexes which comprise diverse metal-ligand combinations and oxidation states. Broad application has been demonstrated through the preparation of 34 complexes under mild and ambient conditions. Unprecedented control over metal oxidation state (M(II/III/IV) where M=Fe, Mn) is presented by simple modification of reaction conditions. Along this route, a general protocol-switch is described which allows access to analytically pure Fe(II/III)-salen complexes. Tuning electrochemical potential, selective metalation of a Mn/Ni alloy is also presented which exclusively delivers Mn(II/IV)-salen complexes in high yield. PMID:27547645

  18. Particulate Matter Oxidative Potential from Waste Transfer Station Activity

    PubMed Central

    Godri, Krystal J.; Duggan, Sean T.; Fuller, Gary W.; Baker, Tim; Green, David; Kelly, Frank J.; Mudway, Ian S.

    2010-01-01

    Background Adverse cardiorespiratory health is associated with exposure to ambient particulate matter (PM). The highest PM concentrations in London occur in proximity to waste transfer stations (WTS), sites that experience high numbers of dust-laden, heavy-duty diesel vehicles transporting industrial and household waste. Objective Our goal was to quantify the contribution of WTS emissions to ambient PM mass concentrations and oxidative potential. Methods PM with a diameter < 10 μm (PM10) samples were collected daily close to a WTS. PM10 mass concentrations measurements were source apportioned to estimate local versus background sources. PM oxidative potential was assessed using the extent of antioxidant depletion from a respiratory tract lining fluid model. Total trace metal and bioavailable iron concentrations were measured to determine their contribution to PM oxidative potential. Results Elevated diurnal PM10 mass concentrations were observed on all days with WTS activity (Monday–Saturday). Variable PM oxidative potential, bioavailable iron, and total metal concentrations were observed on these days. The contribution of WTS emissions to PM at the sampling site, as predicted by microscale wind direction measurements, was correlated with ascorbate (r = 0.80; p = 0.030) and glutathione depletion (r = 0.76; p = 0.046). Increased PM oxidative potential was associated with aluminum, lead, and iron content. Conclusions PM arising from WTS activity has elevated trace metal concentrations and, as a consequence, increased oxidative potential. PM released by WTS activity should be considered a potential health risk to the nearby residential community. PMID:20368130

  19. Computational studies of polysiloxanes : oxidation potentials and decomposition reactions.

    SciTech Connect

    Assary, R. S.; Curtiss, L. A.; Redfern, P. C.; Zhang, Z.; Amine, K.

    2011-06-23

    Silicon-containing solvents have tremendous potential for application as electrolytes for electrical energy storage devices such as lithium-ion (air) batteries and supercapacitors. Quantum chemical methods were employed to investigate trends in oxidation potentials and decomposition reactions of a series of polysiloxanes. Various electron-donating and -withdrawing substituents can be used to tune the oxidation potential in shorter chain siloxanes but not in longer ones. Decomposition reactions of siloxanes in their oxidized states were investigated and compared against their carbon analogues. These studies suggest that the Si-O group provides added stability for siloxanes over their carbon analogues. Computational studies have also been performed for various disiloxanes and siloxanes with spacer groups to understand their thermochemical stability and oxidation potentials.

  20. 40 CFR 147.2650 - State-administered program-Class I, II, III, IV, and V wells.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL PROGRAMS Puerto Rico § 147.2650 State-administered program—Class I, II, III, IV, and V wells. The Underground Injection Control Program for all classes of wells in the Commonwealth of Puerto Rico, other than those on Indian lands, is the program administered by Puerto Rico's Environmental Quality Board...

  1. ROLE OF IRON (II, III) HYDROXYCARBONATE GREEN RUST IN ARSENIC REMEDIATION USING ZEROVALENT IRON IN COLUMN TESTS

    EPA Science Inventory

    We examined corrosion products of zerovalent iron (Peerless iron) that was used in three column tests for removing arsenic under dynamic flow conditions with and without added phosphate and silicate. Iron(II, III) hydroxycarbonate and magnetite were major iron corrosion products...

  2. Water ice phases II, III, and V - Plastic deformation and phase relationships

    NASA Technical Reports Server (NTRS)

    Durham, W. B.; Boro, C. O.; Kirby, S. H.; Stern, L. A.; Heard, H. C.

    1988-01-01

    The ordinary water phase I was transformed to the ice phases that are known to exist in the interiors of large ice moons, such as Ganymede and Callisto for the purpose of investigating plastic deformation behavior of these ices. Ices II, III, and V were prepared using an apparatus and techniques similar to those described by Durham et al. (1983) and subsequently deformed in a gas deformation apparatus, and their deformation data were obtained. It was found that ice II was the strongest of the high-pressure phases, with a strength that was comparable to that of ice I; ice III was very weak, with the flow rate 100 to 1000 times higher than that of ice II at the same levels of stress. It was also found that ices III and V can exist metastably within the ice II field and that they may be deformed plastically within much of the metastable region without reverting to ice II. It is suggested that the weakness of the ice III phase may have profoundly influenced the evolution and the present-day behavior of the icy moons.

  3. Soft recovery of polytetrafluoroethylene shocked through the crystalline phase II-III transition

    NASA Astrophysics Data System (ADS)

    Brown, E. N.; Trujillo, C. P.; Gray, G. T.; Rae, P. J.; Bourne, N. K.

    2007-01-01

    Polymers are increasingly being utilized as monolithic materials and composite matrices for structural applications historically reserved for metals. High strain-rate applications in aerospace, defense, and the automotive industries have lead to interest in the shock response of polytetrafluoroethylene (PTFE) and the ensuing changes in polymer structure due to shock prestraining. We present an experimental study of crystalline structure evolution due to pressure-induced phase transitions in a semicrystalline polymer using soft-recovery, shock loading techniques coupled with mechanical and chemical postshock analyses. Gas-launched, plate impact experiments have been performed on pedigreed PTFE 7C, mounted in momentum trapped, shock assemblies, with impact pressures above and below the phase II to phase III crystalline transition. Below the phase transition only subtle changes were observed in the crystallinity, microstructure, and mechanical response of PTFE. Shock loading of PTFE 7C above the phase II-III transition was seen to cause both an increase in crystallinity from 38% to ˜53% (by differential scanning calorimetry) and a finer crystalline microstructure, and changed the yield and flow stress behavior.

  4. ROTATION OF THE K3 II-III GIANT STAR {alpha} HYDRA

    SciTech Connect

    Gray, David F.

    2013-08-01

    Fundamental spectroscopic determination of projected rotation rates of slowly rotating stars is challenging because the rotational broadening of the spectral lines is often comparable to, or smaller than, the broadening from other sources, most notably macroturbulence. Fourier techniques have the advantage over direct profile matching when the observed profiles are complete, but when the profiles are severely blended, the Fourier analysis is compromised. A process of modeling partial profiles for determining the rotation rate for stars having blended spectral lines is investigated and applied to the evolved star {alpha} Hya (K3 II-III). Projected rotation higher than 5 km s{sup -1} can be definitively ruled out for this star. Not all lines are equally good, depending on the amount of blending and also depending on the strength of the line, as the balance between the thermal and non-thermal components changes. A modest ambiguity arises between macroturbulence and rotational broadening, but a careful look at the differences between the observations and the models allows one to measure the rotation with acceptable precision. The result for {alpha} Hya is v sin i = 2.6 {+-} 0.3 km s{sup -1}.

  5. RELATIONSHIPS BETWEEN OXIDATION-REDUCTION POTENTIAL, OXIDANT, AND PH IN DRINKING WATER

    EPA Science Inventory

    Oxidation and reduction (redox) reactions are very important in drinking water. Oxidation-reduction potential (ORP) measurements reflect the redox state of water. Redox measurements are not widely made by drinking water utilities in part because they are not well understood. The ...

  6. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  7. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  8. In-situ X-Ray Absorption Spectroscopy (XAS) Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction

    PubMed Central

    Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M.; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.

    2013-01-01

    In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs. RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs. RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the MnIII,IV oxide, rather than Mn3II,III,IIIO4, is the phase pertinent to the observed OER activity. PMID:23758050

  9. FKBP12 modulation of the binding of the skeletal ryanodine receptor onto the II-III loop of the dihydropyridine receptor.

    PubMed Central

    O'Reilly, Fiona M; Robert, Mylène; Jona, Istvan; Szegedi, Csaba; Albrieux, Mireille; Geib, Sandrine; De Waard, Michel; Villaz, Michel; Ronjat, Michel

    2002-01-01

    In skeletal muscle, excitation-contraction coupling involves a functional interaction between the ryanodine receptor (RyR) and the dihydropyridine receptor (DHPR). The domain corresponding to Thr(671)-Leu(690) of the II-III loop of the skeletal DHPR alpha(1)-subunit is able to regulate RyR properties and calcium release from sarcoplasmic reticulum, whereas the domain corresponding to Glu(724)-Pro(760) antagonizes this effect. Two peptides, covering these sequences (peptide A(Sk) and C(Sk), respectively) were immobilized on polystyrene beads. We demonstrate that peptide A(Sk) binds to the skeletal isoform of RyR (RyR1) whereas peptide C(Sk) does not. Using surface plasmon resonance detection, we show that 1) domain Thr(671)-Leu(690) is the only sequence of the II-III loop binding with RyR1 and 2) the interaction of peptide A(Sk) with RyR1 is not modulated by Ca(2+) (pCa 9-2) nor by Mg(2+) (up to 10 mM). In contrast, this interaction is strongly potentiated by the immunophilin FKBP12 (EC(50) = 10 nM) and inhibited by both rapamycin (IC(50) = 5 nM) and FK506. Peptide A(Sk) induces a 300% increase of the opening probability of the RyR1 incorporated in lipid bilayer. Removal of FKBP12 from RyR1 completely abolishes this effect of domain A(Sk) on RyR1 channel behavior. These results demonstrate a direct interaction of the RyR1 with the discrete domain of skeletal DHPR alpha(1)-subunit corresponding to Thr(671)-Leu(690) and show that the association of FKBP12 with RyR1 specifically modulates this interaction. PMID:11751303

  10. Unbiased estimation in seamless phase II/III trials with unequal treatment effect variances and hypothesis-driven selection rules.

    PubMed

    Robertson, David S; Prevost, A Toby; Bowden, Jack

    2016-09-30

    Seamless phase II/III clinical trials offer an efficient way to select an experimental treatment and perform confirmatory analysis within a single trial. However, combining the data from both stages in the final analysis can induce bias into the estimates of treatment effects. Methods for bias adjustment developed thus far have made restrictive assumptions about the design and selection rules followed. In order to address these shortcomings, we apply recent methodological advances to derive the uniformly minimum variance conditionally unbiased estimator for two-stage seamless phase II/III trials. Our framework allows for the precision of the treatment arm estimates to take arbitrary values, can be utilised for all treatments that are taken forward to phase III and is applicable when the decision to select or drop treatment arms is driven by a multiplicity-adjusted hypothesis testing procedure. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. PMID:27103068

  11. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles.

    PubMed

    Burello, Enrico; Worth, Andrew P

    2011-06-01

    In this paper we propose a theoretical model that predicts the oxidative stress potential of oxide nanoparticles by looking at the ability of these materials to perturb the intracellular redox state. The model uses reactivity descriptors to build the energy band structure of oxide nanoparticles, assuming a particle diameter larger than 20-30 nm and no surface states in the band gap, and predicts their ability to induce an oxidative stress by comparing the redox potentials of relevant intracellular reactions with the oxides' energy structure. Nanoparticles displaying band energy values comparable with redox potentials of antioxidants or radical formation reactions have the ability to cause an oxidative stress and a cytotoxic response in vitro. We discuss the model's predictions for six relevant oxide nanoparticles (TiO(2), CuO, ZnO, FeO, Fe(2)O(3), Fe(3)O(4)) with literature in vitro studies and calculate the energy structure for 64 additional oxide nanomaterials. Such a framework would guide the development of more rational and efficient screening strategies avoiding random or exhaustive testing of new nanomaterials. PMID:21609138

  12. Transition Metal Oxide Alloys as Potential Solar Energy Conversion Materials

    SciTech Connect

    Toroker, Maytal; Carter, Emily A.

    2013-02-21

    First-row transition metal oxides (TMOs) are inexpensive potentia alternative materials for solar energy conversion devices. However, some TMOs, such as manganese(II) oxide, have band gaps that are too large for efficiently absorbing solar energy. Other TMOs, such as iron(II) oxide, have conduction and valence band edges with the same orbital character that may lead to unfavorably high electron–hole recombination rates. Another limitation of iron(II) oxide is that the calculated valence band edge is not positioned well for oxidizing water. We predict that key properties, including band gaps, band edge positions, and possibly electron–hole recombination rates, may be improved by alloying TMOs that have different band alignments. A new metric, the band gap center offset, is introduced for simple screening of potential parent materials. The concept is illustrated by calculating the electronic structure of binary oxide alloys that contain manganese, nickel, iron, zinc, and/or magnesium, within density functional theory (DFT)+U and hybrid DFT theories. We conclude that alloys of iron(II) oxide are worth evaluating further as solar energy conversion materials.

  13. World Health Organization grade II-III astrocytomas consist of genetically distinct tumor lineages.

    PubMed

    Hattori, Natsuki; Hirose, Yuichi; Sasaki, Hikaru; Nakae, Shunsuke; Hayashi, Saeko; Ohba, Shigeo; Adachi, Kazuhide; Hayashi, Takuro; Nishiyama, Yuya; Hasegawa, Mitsuhiro; Abe, Masato

    2016-08-01

    Recent investigations revealed genetic analysis provides important information in management of gliomas, and we previously reported grade II-III gliomas could be classified into clinically relevant subgroups based on the DNA copy number aberrations (CNAs). To develop more precise genetic subgrouping, we investigated the correlation between CNAs and mutational status of the gene encoding isocitrate dehydrogenase (IDH) of those tumors. We analyzed the IDH status and CNAs of 174 adult supratentorial gliomas of astrocytic or oligodendroglial origin by PCR-based direct sequencing and comparative genomic hybridization, respectively. We analyzed the relationship between genetic subclassification and clinical features. We found the most frequent aberrations in IDH mutant tumors were the combined whole arm-loss of 1p and 19q (1p/19q codeletion) followed by gain on chromosome arm 7q (+7q). The gain of whole chromosome 7 (+7) and loss of 10q (-10q) were detected in IDH wild-type tumors. Kaplan-Meier estimates for progression-free survival showed that the tumors with mutant IDH, -1p/19q, or +7q (in the absence of +7p) survived longer than tumors with wild-type IDH, +7, or -10q. As tumors with +7 (IDH wild-type) showed a more aggressive clinical nature, they are probably not a subtype that developed from the slowly progressive tumors with +7q (IDH mutant). Thus, tumors with a gain on chromosome 7 (mostly astrocytic) comprise multiple lineages, and such differences in their biological nature should be taken into consideration during their clinical management. PMID:27196377

  14. Spectroscopic and quantum chemical study of the structure of a new paramagnetic dimeric palladium(II,III) complex with creatine

    NASA Astrophysics Data System (ADS)

    Mitewa, Mariana; Enchev, Venelin; Bakalova, Tatyana

    2002-05-01

    The structure and coordination mode of the newly synthesized dimeric paramagnetic Pd(II,III) complex are studied using magneto-chemical, EPR and IR spectroscopic methods. In order to perform reliable assignment of the IR bands, the structure and IR spectrum of the free creatine were calculated using ab initio method. For calculation of the configuration of its deprotonated and doubly deprotonated forms the semiempirical AM1 method was used.

  15. Current concepts in the pathophysiology of fibromyalgia: the potential role of oxidative stress and nitric oxide.

    PubMed

    Ozgocmen, Salih; Ozyurt, Huseyin; Sogut, Sadik; Akyol, Omer

    2006-05-01

    Fibromyalgia (FM) is a common chronic pain syndrome with an unknown etiology. Recent years added new information to our understanding of FM pathophysiology. Researches on genetics, biogenic amines, neurotransmitters, hypothalamic-pituitary-adrenal axis hormones, oxidative stress, and mechanisms of pain modulation, central sensitization, and autonomic functions in FM revealed various abnormalities indicating that multiple factors and mechanisms are involved in the pathogenesis of FM. Oxidative stress and nitric oxide may play an important role in FM pathophysiology, however it is still not clear whether oxidative stress abnormalities documented in FM are the cause or the effect. This should encourage further researches evaluating the potential role of oxidative stress and nitric oxide in the pathophysiology of FM and the efficacy of antioxidant treatments (omega-3 and -6 fatty acids, vitamins and others) in double blind and placebo controlled trials. These future researches will enhance our understanding of the complex pathophysiology of this disorder. PMID:16328420

  16. Predictive tests to evaluate oxidative potential of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Ghiazza, Mara; Carella, Emanuele; Oliaro-Bosso, Simonetta; Corazzari, Ingrid; Viola, Franca; Fenoglio, Ivana

    2013-04-01

    Oxidative stress constitutes one of the principal injury mechanisms through which particulate toxicants (asbestos, crystalline silica, hard metals) and engineered nanomaterials can induce adverse health effects. ROS may be generated indirectly by activated cells and/or directly at the surface of the material. The occurrence of these processes depends upon the type of material. Many authors have recently demonstrated that metal oxides and carbon-based nanoparticles may influence (increasing or decreasing) the generation of oxygen radicals in a cell environment. Metal oxide, such as iron oxides, crystalline silica, and titanium dioxide are able to generate free radicals via different mechanisms causing an imbalance within oxidant species. The increase of ROS species may lead to inflammatory responses and in some cases to the development of cancer. On the other hand carbon-based nanomaterials, such as fullerene, carbon nanotubes, carbon black as well as cerium dioxide are able to scavenge the free radicals generated acting as antioxidant. The high numbers of new-engineered nanomaterials, which are introduced in the market, are exponentially increasing. Therefore the definition of toxicological strategies is urgently needed. The development of acellular screening tests will make possible the reduction of the number of in vitro and in vivo tests to be performed. An integrated protocol that may be used to predict the oxidant/antioxidant potential of engineered nanoparticles will be here presented.

  17. Potential for microbial oxidation of ferrous iron in basaltic glass.

    PubMed

    Xiong, Mai Yia; Shelobolina, Evgenya S; Roden, Eric E

    2015-05-01

    Basaltic glass (BG) is an amorphous ferrous iron [Fe(II)]-containing material present in basaltic rocks, which are abundant on rocky planets such as Earth and Mars. Previous research has suggested that Fe(II) in BG can serve as an energy source for chemolithotrophic microbial metabolism, which has important ramifications for potential past and present microbial life on Mars. However, to date there has been no direct demonstration of microbially catalyzed oxidation of Fe(II) in BG. In this study, three different culture systems were used to investigate the potential for microbial oxidation of Fe(II) in BG, including (1) the chemolithoautotrophic Fe(II)-oxidizing, nitrate-reducing "Straub culture"; (2) the mixotrophic Fe(II)-oxidizing, nitrate-reducing organism Desulfitobacterium frappieri strain G2; and (3) indigenous microorganisms from a streambed Fe seep in Wisconsin. The BG employed consisted of clay and silt-sized particles of freshly quenched lava from the TEB flow in Kilauea, Hawaii. Soluble Fe(II) or chemically reduced NAu-2 smectite (RS) were employed as positive controls to verify Fe(II) oxidation activity in the culture systems. All three systems demonstrated oxidation of soluble Fe(II) and/or structural Fe(II) in RS, whereas no oxidation of Fe(II) in BG material was observed. The inability of the Straub culture to oxidize Fe(II) in BG was particularly surprising, as this culture can oxidize other insoluble Fe(II)-bearing minerals such as biotite, magnetite, and siderite. Although the reason for the resistance of the BG toward enzymatic oxidation remains unknown, it seems possible that the absence of distinct crystal faces or edge sites in the amorphous glass renders the material resistant to such attack. These findings have implications with regard to the idea that Fe(II)-Si-rich phases in basalt rocks could provide a basis for chemolithotrophic microbial life on Mars, specifically in neutral-pH environments where acid-promoted mineral dissolution and

  18. Redox Potentials, Laccase Oxidation, and Antilarval Activities of Substituted Phenols

    PubMed Central

    Prasain, Keshar; Nguyen, Thi D. T.; Gorman, Maureen J.; Barrigan, Lydia M.; Peng, Zeyu; Kanost, Michael R.; Syed, Lateef U.; Li, Jun; Zhu, Kun Yan; Hua, Duy H.

    2012-01-01

    Laccases are copper-containing oxidases that are involved in sclerotization of the cuticle of mosquitoes and other insects. Oxidation of exogenous compounds by insect laccases may have the potential to produce reactive species toxic to insects. We investigated two classes of substituted phenolic compounds, halogenated di- and trihydroxybenzenes and substituted di-tert-butylphenols, on redox potential, oxidation by laccase and effects on mosquito larval growth. An inverse correlation between the oxidation potentials and laccase activity of halogenated hydroxybenzenes was found. Substituted di-tert-butylphenols however were found to impact mosquito larval growth and survival. In particular, 2,4-di-tert-butyl-6-(3-methyl-2-butenyl)phenol (15) caused greater than 98% mortality of Anopheles gambiae larvae in a concentration of 180 nM, whereas 2-(3,5-di-tert-butyl-4-hydroxyphenyl)-2-methylpropanal oxime (13) and 6,8-di-tert-butyl-2,2-dimethyl-3,4-dihydro-2H-chromene (33) caused 93% and 92% mortalities in concentrations of 3.4 and 3.7 μM, respectively. Larvae treated with di-tert-butylphenolic compounds died just before pupation. PMID:22300888

  19. Oxidative stress and abdominal aortic aneurysm: potential treatment targets.

    PubMed

    Emeto, Theophilus I; Moxon, Joseph V; Au, Minnie; Golledge, Jonathan

    2016-03-01

    Abdominal aortic aneurysm (AAA) is a significant cause of mortality in older adults. A key mechanism implicated in AAA pathogenesis is inflammation and the associated production of reactive oxygen species (ROS) and oxidative stress. These have been suggested to promote degradation of the extracellular matrix (ECM) and vascular smooth muscle apoptosis. Experimental and human association studies suggest that ROS can be favourably modified to limit AAA formation and progression. In the present review, we discuss mechanisms potentially linking ROS to AAA pathogenesis and highlight potential treatment strategies targeting ROS. Currently, none of these strategies has been shown to be effective in clinical practice. PMID:26814202

  20. Maillard reaction, mitochondria and oxidative stress: potential role of antioxidants.

    PubMed

    Edeas, M; Attaf, D; Mailfert, A-S; Nasu, M; Joubet, R

    2010-06-01

    Glycation and oxidative stress are two important processes known to play a key role in complications of many disease processes. Oxidative stress, either via increasing reactive oxygen species (ROS), or by depleting the antioxidants may modulate the genesis of early glycated proteins in vivo. Maillard Reactions, occur in vivo as well as in vitro and are associated with the chronic complications of diabetes, aging and age-related diseases. Hyperglycaemia causes the autoxidation of glucose, glycation of proteins, and the activation of polyol metabolism. These changes facilitate the generation of reactive oxygen species and decrease the activity of antioxidant enzymes such as Cu,Zn-superoxide dismutase, resulting in a remarkable increase of oxidative stress. A large body of evidence indicates that mitochondria alteration is involved and plays a central role in various oxidative stress-related diseases. The damaged mitochondria produce more ROS (increase oxidative stress) and less ATP (cellular energy) than normal mitochondria. As they are damaged, they cannot burn or use glucose or lipid and cannot provide cell with ATP. Further, glucose, amino acids and lipid will not be correctly used and will accumulate outside the mitochondria; they will undergo more glycation (as observed in diabetes, obesity, HIV infection and lipodystrophia). The objective of this paper is to discuss how to stop the vicious circle established between oxidative stress, Maillard Reaction and mitochondria. The potential application of some antioxidants to reduce glycation phenomenon and to increase the antioxidant defence system by targeting mitochondria will be discussed. Food and pharmaceutical companies share the same challenge, they must act now, urgently and energetically. PMID:20031340

  1. Efficacy of Adjuvant 5-Fluorouracil Therapy for Patients with EMAST-Positive Stage II/III Colorectal Cancer

    PubMed Central

    Hamaya, Yasushi; Guarinos, Carla; Tseng-Rogenski, Stephanie S.; Iwaizumi, Moriya; Das, Ritabrata; Jover, Rodrigo; Castells, Antoni; Llor, Xavier; Andreu, Montserrat; Carethers, John M.

    2015-01-01

    Elevated Microsatellite Alterations at Selected Tetranucleotide repeats (EMAST) is a genetic signature found in up to 60% of colorectal cancers (CRCs) that is caused by somatic dysfunction of the DNA mismatch repair (MMR) protein hMSH3. We have previously shown in vitro that recognition of 5-fluorouracil (5-FU) within DNA and subsequent cytotoxicity was most effective when both hMutSα (hMSH2-hMSH6 heterodimer) and hMutSβ (hMSH2-hMSH3 heterodimer) MMR complexes were present, compared to hMutSα > hMutSβ alone. We tested if patients with EMAST CRCs (hMutSβ defective) had diminished response to adjuvant 5-FU chemotherapy, paralleling in vitro findings. We analyzed 230 patients with stage II/III sporadic colorectal cancers for which we had 5-FU treatment and survival data. Archival DNA was analyzed for EMAST (>2 of 5 markers mutated among UT5037, D8S321, D9S242, D20S82, D20S85 tetranucleotide loci). Kaplan-Meier survival curves were generated and multivariate analysis was used to determine contribution to risk. We identified 102 (44%) EMAST cancers. Ninety-four patients (41%) received adjuvant 5-FU chemotherapy, and median follow-up for all patients was 51 months. Patients with EMAST CRCs demonstrated improved survival with adjuvant 5FU to the same extent as patients with non-EMAST CRCs (P<0.05). We observed no difference in survival between patients with stage II/III EMAST and non-EMAST cancers (P = 0.36). There is improved survival for stage II/III CRC patients after adjuvant 5-FU-based chemotherapy regardless of EMAST status. The loss of contribution of hMSH3 for 5-FU cytotoxicity may not adversely affect patient outcome, contrasting patients whose tumors completely lack DNA MMR function (MSI-H). PMID:25996601

  2. Evidence of active tectonics on a Roman aqueduct system (II-III century A.D.) near Rome, Italy

    NASA Astrophysics Data System (ADS)

    Marra, Fabrizio; Montone, Paola; Pirro, Mario; Boschi, Enzo

    2004-04-01

    In this paper we describe evidence of strong tectonic deformation affecting two aqueducts of Roman age (II-III century A.D.). The channels are located approximately 20 km northeast of Rome along the ancient Via Tiburtina. Brittle and ductile deformation affects these two structures, including extensional joint systems, NE-oriented faults, and horizontal distortion. This deformation is consistent with right-lateral movement on major N-striking faults, and represents the first evidence that tectonic deformation took place in historical times in the vicinity of Rome, with local strike-slip movement superimposed on a regional extensional fault system.

  3. Flat-Band Potentials of Molecularly Thin Metal Oxide Nanosheets.

    PubMed

    Xu, Pengtao; Milstein, Tyler J; Mallouk, Thomas E

    2016-05-11

    Exfoliated nanosheets derived from Dion-Jacobson phase layer perovskites (TBAxH1-xA2B3O10, A = Sr, Ca, B = Nb, Ta) were grown layer-by-layer on fluorine-doped tin oxide and gold electrode surfaces. Electrochemical impedance spectra (EIS) of the five-layer nanosheet films in contact with aqueous electrolyte solutions were analyzed by the Mott-Schottky method to obtain flat-band potentials (VFB) of the oxide semiconductors as a function of pH. Despite capacitive contributions from the electrode-solution interface, reliable values could be obtained from capacitance measurements over a limited potential range near VFB. The measured values of VFB shifted -59 mV/pH over the pH range of 4-8 and were in close agreement with the empirical correlation between conduction band-edge potentials and optical band gaps proposed by Matsumoto ( J. Solid State Chem. 1996, 126 (2), 227-234 ). Density functional theory calculations showed that A-site substitution influenced band energies by modulating the strength of A-O bonding, and that subsitution of Ta for Nb on B-sites resulted in a negative shift of the conduction band-edge potential. PMID:27102083

  4. Iron oxide reduction in deep Baltic Sea sediments: the potential role of anaerobic oxidation of methane

    NASA Astrophysics Data System (ADS)

    Egger, Matthias; Slomp, Caroline P.; Dijkstra, Nikki; Sapart, Célia J.; Risgaard-Petersen, Nils; Kasten, Sabine; Riedinger, Natascha; Barker Jørgensen, Bo

    2015-04-01

    Methane is a powerful greenhouse gas and its emission from marine sediments to the atmosphere is largely controlled by anaerobic oxidation of methane (AOM). Traditionally, sulfate is considered to be the most important electron acceptor for AOM in marine sediments. However, recent studies have shown that AOM may also be coupled to the reduction of iron (Fe) oxides (Beal et al., 2009; Riedinger et al., 2014; Egger et al., 2014). In the Baltic Sea, the transition from the Ancylus freshwater phase to the Littorina brackish/marine phase (A/L-transition) ca. 9-7 ka ago (Zillén et al., 2008) resulted in the accumulation of methanogenic brackish/marine sediments overlying Fe-oxide rich lacustrine deposits. The downward diffusion of methane from the brackish/marine sediments into the lake sediments leads to an ideal diagenetic system to study a potential coupling between Fe oxide reduction and methane oxidation. Here, we use porewater and sediment geochemical data obtained at sites M0063 and M0065 during the IODP Baltic Sea Paleoenvironment Expedition 347 in 2013 to identify the potential mechanisms responsible for the apparent Fe oxide reduction in the non-sulfidic limnic sediments below the A/L transition. In this presentation, we will review the various explanations for the elevated ferrous Fe in the porewater in the lake sediments and we will specifically address the potential role of the reaction of methane with Fe-oxides. References: Beal E. J., House C. H. and Orphan V. J. (2009) Manganese- and iron-dependent marine methane oxidation. Science 325, 184-187. Egger M., Rasigraf O., Sapart C. J., Jilbert T., Jetten M. S. M., Röckmann T., van der Veen C., Banda N., Kartal B., Ettwig K. F. and Slomp C. P. (2014) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ. Sci. Technol. 49, 277-283. Riedinger N., Formolo M. J., Lyons T. W., Henkel S., Beck A. and Kasten S. (2014) An inorganic geochemical argument for coupled anaerobic oxidation of

  5. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    SciTech Connect

    Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  6. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    PubMed

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide. PMID:25362314

  7. Protein-bound acrolein: Potential markers for oxidative stress

    PubMed Central

    Uchida, Koji; Kanematsu, Masamichi; Sakai, Kensuke; Matsuda, Tsukasa; Hattori, Nobutaka; Mizuno, Yoshikuni; Suzuki, Daisuke; Miyata, Toshio; Noguchi, Noriko; Niki, Etsuo; Osawa, Toshihiko

    1998-01-01

    Acrolein (CH2=CH—CHO) is known as a ubiquitous pollutant in the environment. Here we show that this notorious aldehyde is not just a pollutant, but also a lipid peroxidation product that could be ubiquitously generated in biological systems. Upon incubation with BSA, acrolein was rapidly incorporated into the protein and generated the protein-linked carbonyl derivative, a putative marker of oxidatively modified proteins under oxidative stress. To verify the presence of protein-bound acrolein in vivo, the mAb (mAb5F6) against the acrolein-modified keyhole limpet hemocyanin was raised. It was found that the acrolein-lysine adduct, Nɛ-(3-formyl-3,4-dehydropiperidino)lysine, constitutes an epitope of the antibody. Immunohistochemical analysis of atherosclerotic lesions from a human aorta demonstrated that antigenic materials recognized by mAb5F6 indeed constituted the lesions, in which intense positivity was associated primarily with macrophage-derived foam cells and the thickening neointima of arterial walls. The observations that (i) oxidative modification of low-density lipoprotein with Cu2+ generated the acrolein-low-density lipoprotein adducts and (ii) the iron-catalyzed oxidation of arachidonate in the presence of protein resulted in the formation of antigenic materials suggested that polyunsaturated fatty acids are sources of acrolein that cause the production of protein-bound acrolein. These data suggest that the protein-bound acrolein represents potential markers of oxidative stress and long-term damage to protein in aging, atherosclerosis, and diabetes. PMID:9560197

  8. Modeling of metal-oxide semiconductor: Analytical bond-order potential for cupric oxide

    NASA Astrophysics Data System (ADS)

    Li, Kun; Yang, Wen; Wei, Ji-Lin; Du, Shi-Wen; Li, Yong-Tang

    2014-04-01

    Atomistic potentials for cupric element and cupric oxide are derived based on the analytical bond-order scheme that was presented by Brenner [Brenner D W, “Erratum: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films”, Phys. Rev. B 1992, 46 1948]. In this paper, for the pure cupric element, the energy and structural parameters for several bulk phases as well as dimmer structure are well reproduced. The reference data are taken from our density functional theory calculations and the available experiments. The model potential also provides a good description of the bulk properties of various solid structures of cupric oxide compound structures, including cohesive energies, lattice parameters, and elastic constants.

  9. Two Oxidation Sites for Low Redox Potential Substrates

    PubMed Central

    Morales, María; Mate, María J.; Romero, Antonio; Martínez, María Jesús; Martínez, Ángel T.; Ruiz-Dueñas, Francisco J.

    2012-01-01

    Versatile peroxidase shares with manganese peroxidase and lignin peroxidase the ability to oxidize Mn2+ and high redox potential aromatic compounds, respectively. Moreover, it is also able to oxidize phenols (and low redox potential dyes) at two catalytic sites, as shown by biphasic kinetics. A high efficiency site (with 2,6-dimethoxyphenol and p-hydroquinone catalytic efficiencies of ∼70 and ∼700 s−1 mm−1, respectively) was localized at the same exposed Trp-164 responsible for high redox potential substrate oxidation (as shown by activity loss in the W164S variant). The second site, characterized by low catalytic efficiency (∼3 and ∼50 s−1 mm−1 for 2,6-dimethoxyphenol and p-hydroquinone, respectively) was localized at the main heme access channel. Steady-state and transient-state kinetics for oxidation of phenols and dyes at the latter site were improved when side chains of residues forming the heme channel edge were removed in single and multiple variants. Among them, the E140G/K176G, E140G/P141G/K176G, and E140G/W164S/K176G variants attained catalytic efficiencies for oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) at the heme channel similar to those of the exposed tryptophan site. The heme channel enlargement shown by x-ray diffraction of the E140G, P141G, K176G, and E140G/K176G variants would allow a better substrate accommodation near the heme, as revealed by the up to 26-fold lower Km values (compared with native VP). The resulting interactions were shown by the x-ray structure of the E140G-guaiacol complex, which includes two H-bonds of the substrate with Arg-43 and Pro-139 in the distal heme pocket (at the end of the heme channel) and several hydrophobic interactions with other residues and the heme cofactor. PMID:23071108

  10. Potential disruption of protein-protein interactions by graphene oxide

    NASA Astrophysics Data System (ADS)

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-01

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.

  11. Potential disruption of protein-protein interactions by graphene oxide.

    PubMed

    Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong

    2016-06-14

    Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications. PMID:27306022

  12. Global Change Simulations Affect Potential Methane Oxidation in Upland Soils

    NASA Astrophysics Data System (ADS)

    Blankinship, J. C.; Hungate, B. A.

    2004-12-01

    Atmospheric concentrations of methane (CH4) are higher now than they have ever been during the past 420,000 years. However, concentrations have remained stable since 1999. Emissions associated with livestock husbandry are unlikely to have changed, so some combination of reduced production in wetlands, more efficient capture by landfills, or increased consumption by biological CH4 oxidation in upland soils may be responsible. Methane oxidizing bacteria are ubiquitous in upland soils and little is known about how these bacteria respond to anthropogenic global change, and how they will influence - or already are influencing - the radiative balance of the atmosphere. Might ongoing and future global changes increase biological CH4 oxidation? Soils were sampled from two field experiments to assess changes in rates of CH4 oxidation in response to global change simulations. Potential activities of CH4 oxidizing bacterial communities were measured through laboratory incubations under optimal temperature, soil moisture, and atmospheric CH4 concentrations (~18 ppm, or 10x ambient). The ongoing 6-year multifactorial Jasper Ridge Global Change Experiment (JRGCE) simulates warming, elevated precipitation, elevated atmospheric CO2, elevated atmospheric N deposition, and increased wildfire frequency in an annual grassland in a Mediterranean-type climate in central California. The ongoing 1-year multifactorial Merriam Climate Change Experiment (MCCE) simulates warming, elevated precipitation, and reduced precipitation in four different types of ecosystems along an elevational gradient in a semi-arid climate in northern Arizona. The high desert grassland, pinyon-juniper woodland, ponderosa pine forest, and mixed conifer forest ecosystems range in annual precipitation from 100 to 1000 mm yr-1, and from productivity being strongly water limited to strongly temperature limited. Among JRGCE soils, elevated atmospheric CO2 increased potential CH4 oxidation rates (p=0.052) and wildfire

  13. Detection of methicillin-resistant Staphylococcus pseudintermedius ST169 and novel ST354 SCCmec II-III isolates related to the worldwide ST71 clone.

    PubMed

    Ishihara, K; Koizumi, A; Saito, M; Muramatsu, Y; Tamura, Y

    2016-01-01

    The recent appearance of methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a concern for both veterinary and human healthcare. MRSP clonal lineages with sequence type (ST) 71-spa t02-staphylococcal cassette chromosome mec (SCCmec) II-III and ST68-spa t06-SCCmec V have spread throughout Europe and North America, respectively. The current study compared the molecular characteristics of 43 MRSP isolates from dogs in Japan with those of MRSP from previous reports using multilocus sequence typing based on seven housekeeping genes, SCCmec typing, and detection of antimicrobial resistance genes. Three related clonal lineages, ST71, ST169, and the newly registered ST354, were observed in SCCmec II-III isolates from Japan, despite MRSP SCCmec II-III isolates being thought to belong to a single clonal lineage. The majority of SCCmec II-III isolates belonging to ST169 (9/11) and ST354 (3/3), but not ST71 (0/11), harboured tetM. Four STs were observed for the SCCmec V isolates; however, neither ST68 nor related STs were found in the Japanese MRSP isolates. In conclusion, MRSP SCCmec II-III isolates from Japan belonged to ST71 and related STs (ST169 and ST354). A variety of MRSP SCCmec V clones, including some novel clones, were identified. PMID:26138564

  14. A potential biomarker for fatigue: Oxidative stress and anti-oxidative activity.

    PubMed

    Fukuda, Sanae; Nojima, Junzo; Motoki, Yukari; Yamaguti, Kouzi; Nakatomi, Yasuhito; Okawa, Naoko; Fujiwara, Kazumi; Watanabe, Yasuyoshi; Kuratsune, Hirohiko

    2016-07-01

    We sought to determine whether oxidative stress and anti-oxidative activity could act as biomarkers that discriminate patients with chronic fatigue syndrome (CFS) from healthy volunteers at acute and sub-acute fatigue and resting conditions. We calculated the oxidative stress index (OSI) from reactive oxygen metabolites-derived compounds (d-ROMs) and the biological antioxidant potential (BAP). We determined changes in d-ROMs, BAP, and OSI in acute and sub-acute fatigue in two healthy groups, and compared their values at rest between patients with CFS (diagnosed by Fukuda 1994 criteria) and another group of healthy controls. Following acute fatigue in healthy controls, d-ROMs and OSI increased, and BAP decreased. Although d-ROMs and OSI were significantly higher after sub-acute fatigue, BAP did not decrease. Resting condition yielded higher d-ROMs, higher OSI, and lower BAP in patients with CFS than in healthy volunteers, but lower d-ROMs and OSI when compared with sub-acute controls. BAP values did not significantly differ between patients with CFS and controls in the sub-acute condition. However, values were significantly higher than in the resting condition for controls. Thus, measured of oxidative stress (d-ROMS) and anti-oxidative activity (BAP) might be useful for discriminating acute, sub-acute, and resting fatigue in healthy people from patients with CFS, or for evaluating fatigue levels in healthy people. PMID:27224647

  15. Layer II/III of the prefrontal cortex: inhibition by the serotonin 5-HT1A receptor in development and stress

    PubMed Central

    Goodfellow, Nathalie M.; Benekareddy, Madhurima; Vaidya, Vidita A.; Lambe, Evelyn K.

    2009-01-01

    The modulation of the prefrontal cortex by the neurotransmitter serotonin (5-HT) is thought to play a key role in determining adult anxiety levels. Layer II/III of the prefrontal cortex, which mediates communication across cortical regions, displays a of high level 5-HT1A receptor binding in normal individuals and a significantly lower level in patients with mood and anxiety disorders. Here, we examine how serotonin modulates pyramidal neurons in layer II/III of the rat prefrontal cortex throughout postnatal development and in adulthood. Using whole cell recordings in brain slices of the rat medial prefrontal cortex, we observed that serotonin directly inhibits layer II/III pyramidal neurons through 5-HT1A receptors across postnatal development (P6 to P96). In adulthood, a sex difference in these currents emerges, consistent with human imaging studies of 5-HT1A receptor binding. We examined the effects of early life stress on the 5-HT1A receptor currents in layer II/III. Surprisingly, animals subjected to early life stress displayed significantly larger 5-HT1A-mediated outward currents throughout the third and fourth postnatal weeks following elevated 5-HT1A expression during the second postnatal week. Subsequent exposure to social isolation in adulthood resulted in the almost-complete elimination of 5-HT1A currents in layer II/III neurons suggesting an interaction between early life events and adult experiences. These data represent the first examination of functional 5-HT1A receptors in layer II/III of the prefrontal cortex during normal development as well as after stress. PMID:19675243

  16. [Value of training-induced effects on arterial vascular system and skeletal muscles in therapy of NYHA II/III heart failure].

    PubMed

    Huonker, M; Keul, J

    2001-11-01

    increase of more glycolytic type 2 fibers. In addition, the volume density and the surface area of the cristae of mitochondria are reduced. All these changes results in a decrease of aerobic skeletal muscle metabolism independent of the blood flow volume, so that the physical fitness of the patients progressively decline. On the basis of the training-induced physiological adaptations of the cardiovascular system, a special exercise therapy supervised by a physician was developed for patients with congestive heart failure NYHA II/III. It have been shown that various exercise programs, which are adjusted to the degree of cardiac function impairment are suitable to restore the endothelial dysfunction of the arterial vessels as well as to cure the disturbed skeletal muscle metabolism in these patients independent of an improvement of cardiac function. Therefore in patients with congestive heart failure NYHA II/III who underwent regularly such an exercise therapy, the secondary impaired physical fitness could be rebuild without an excessive risk for an acute exercise-induced cardiovascular emergency. PMID:11771449

  17. Measurement of the Flux and Zenith-Angle Distribution of Upward Through-Going Muons in Kamiokande II+III

    NASA Astrophysics Data System (ADS)

    Hatakeyama, S.; Hara, T.; Fukuda, Y.; Hayakawa, T.; Inoue, K.; Ishihara, K.; Ishino, H.; Joukou, S.; Kajita, T.; Kasuga, S.; Koshio, Y.; Kumita, T.; Matsumoto, K.; Nakahata, M.; Nakamura, K.; Okumura, K.; Sakai, A.; Shiozawa, M.; Suzuki, J.; Suzuki, Y.; Tomoeda, T.; Totsuka, Y.; Hirata, K. S.; Kihara, K.; Oyama, Y.; Koshiba, M.; Nishijima, K.; Horiuchi, T.; Fujita, K.; Koga, M.; Maruyama, T.; Suzuki, A.; Mori, M.; Suda, T.; Suzuki, A. T.; Ishizuka, T.; Miyano, K.; Okazawa, H.; Nagashima, Y.; Takita, M.; Yamaguchi, T.; Hayato, Y.; Kaneyuki, K.; Suzuki, T.; Takeuchi, Y.; Tanimori, T.; Tasaka, S.; Ichihara, E.; Miyamoto, S.; Nishikawa, K.

    1998-09-01

    The flux of upward through-going muons of minimum (mean) threshold energy >1.6 (3.0) GeV is measured, based on a total of 372 events observed by the Kamiokande II+III detector during 2456 detector live days. The observed muon flux was Φobs = [1.94+/-0.10\\(stat.\\)+0.07-0.06sys.\\)]×10-13 cm-2 s-1 sr-1, which is compared to an expected value of Φtheo = [2.46+/-0.54\\(theo.\\)]×10-13 cm-2 s-1 sr-1. The observation is in agreement with the prediction within the errors. The zenith-angle dependence of the observed upward through-going muons supports the previous indication of neutrino oscillations made by Kamiokande using sub- and multi-GeV atmospheric neutrino events.

  18. A constant ST segment elevation in leads II, III, AVF: An electrocardiographic, echocardiographic, clinical, exercise test, laboratory and multi-slice computed tomography angiographic study.

    PubMed

    Kalinauskiene, Egle; Balnyte, Ruta; Naudziunas, Albinas

    2016-01-01

    A constant ST-elevation was more often described in precordial leads. We presented it in leads II, III, AVF in 16 consecutive patients seeking to establish a link between it and clinical, laboratory, echocardiography, exercise test, and multi-slice computed tomography angiography data. Main complaint of these obese middle-age men was angina pectoris (68.75%). They usually had hypertension, dyslipidemia, concentric left ventricular hypertrophy and non-pathological exercise test. Coronary stenosis >50% was only in one case (6.25%). Despite the typical pain and risk factors, the constant ST-elevation in leads II, III, AVF usually was not associated with coronary stenosis. PMID:27212143

  19. Purification of human immunoglobulins A, G and M from Cohn fraction II/III by small peptide affinity chromatography.

    PubMed

    Liu, Zhuo; Gurgel, Patrick V; Carbonell, Ruben G

    2012-11-01

    This work describes attempts to purify human IgG, IgA and IgM from Cohn fraction II/III using HWRGWV affinity peptide resin. The effects of peptide density and different elution additives on recovery of the three antibodies were investigated. At low peptide density, salting-in salts such as magnesium chloride and calcium chloride facilitated antibody elution. Ethylene glycol, urea and arginine also facilitated elution because of their ability to decrease hydrophobic interactions, hydrogen bonding and electrostatic interactions. However, at high peptide density, no recovery improvements were observed because of increased non-specific hydrophobic interactions. The final elution conditions for each antibody were chosen based on the resulting yields and purities when a 10:2:1mg/mL mixture of human IgG, IgA and IgM was used as starting material. Different pretreatment methods were employed in order to improve the purity of antibodies from Cohn fraction II/III. After pretreatment with caprylic acid precipitation or combination of caprylic acid and polyethylene glycol precipitation, purities over 95% and yields of about 60% were obtained for hIgG, which are comparable to current chromatographic purification methods involving two chromatography steps when hIgG is isolated from plasma fractions. A hIgA-enriched fraction with 42% hIgA and 56% hIgG, as well as a hIgM enriched fraction with 46% hIgM, 28% hIgA and 24% hIgG, were obtained as the by-products. PMID:23026261

  20. Molecular basis of multiple sulfatase deficiency, mucolipidosis II/III and Niemann-Pick C1 disease - Lysosomal storage disorders caused by defects of non-lysosomal proteins.

    PubMed

    Dierks, Thomas; Schlotawa, Lars; Frese, Marc-André; Radhakrishnan, Karthikeyan; von Figura, Kurt; Schmidt, Bernhard

    2009-04-01

    Multiple sulfatase deficiency (MSD), mucolipidosis (ML) II/III and Niemann-Pick type C1 (NPC1) disease are rare but fatal lysosomal storage disorders caused by the genetic defect of non-lysosomal proteins. The NPC1 protein mainly localizes to late endosomes and is essential for cholesterol redistribution from endocytosed LDL to cellular membranes. NPC1 deficiency leads to lysosomal accumulation of a broad range of lipids. The precise functional mechanism of this membrane protein, however, remains puzzling. ML II, also termed I cell disease, and the less severe ML III result from deficiencies of the Golgi enzyme N-acetylglucosamine 1-phosphotransferase leading to a global defect of lysosome biogenesis. In patient cells, newly synthesized lysosomal proteins are not equipped with the critical lysosomal trafficking marker mannose 6-phosphate, thus escaping from lysosomal sorting at the trans Golgi network. MSD affects the entire sulfatase family, at least seven members of which are lysosomal enzymes that are specifically involved in the degradation of sulfated glycosaminoglycans, sulfolipids or other sulfated molecules. The combined deficiencies of all sulfatases result from a defective post-translational modification by the ER-localized formylglycine-generating enzyme (FGE), which oxidizes a specific cysteine residue to formylglycine, the catalytic residue enabling a unique mechanism of sulfate ester hydrolysis. This review gives an update on the molecular bases of these enigmatic diseases, which have been challenging researchers since many decades and so far led to a number of surprising findings that give deeper insight into both the cell biology and the pathobiochemistry underlying these complex disorders. In case of MSD, considerable progress has been made in recent years towards an understanding of disease-causing FGE mutations. First approaches to link molecular parameters with clinical manifestation have been described and even therapeutical options have been

  1. Fougerite and Fe II-III hydroxycarbonate green rust; ordering, deprotonation and/or cation substitution; structure of hydrotalcite-like compounds and mythic ferrosic hydroxide Fe(

    NASA Astrophysics Data System (ADS)

    Génin, Jean-Marie R.; Aïssa, Rabha; Géhin, Antoine; Abdelmoula, Mustapha; Benali, Omar; Ernstsen, Vibeke; Ona-Nguema, Georges; Upadhyay, Chandan; Ruby, Christian

    2005-05-01

    A green rust has been recognised as a new mineral (IMA 2003-057) and given the name fougerite. Its chemical counterpart is Fe II-III hydroxycarbonate GR1(CO32-) compound, which is partially deprotonated since formed by reduction of ferric oxyhydroxides through the activity of dissimilatory iron-reducing bacteria (DIRB) in anaerobic gley soils. Preparation of GR1(CO32-) by co-precipitation of Fe II and Fe III cations in carbonated medium shows by using Mössbauer spectroscopy that the domain of existence of GR1(CO32-) lies within [0.25,0.33] for x={[Fe]/[Fe]} with ordered upper limit [ṡ[. GR1(CO32-) gets oxidised into ferrihydrite evolving to goethite by aerial oxidation, or into ferric green rust GR1(, [ṡ[ by OH - deprotonation. A mass balance of iron ox(yhydrox)ides is drawn accordingly in the carbonated medium. Mössbauer spectra measured at 12 K show quite different magnetic properties and the three quadrupole doublets, comprising 2 ferrous and 1 ferric in GR1(CO32-), become 3 magnetically split ferric sextets in GR1(. Structures of ordered GR1(CO32-), GR1( and GR1(Cl -) hydroxychloride are drawn. Extension to other hydrotalcite-like compounds is proposed whereas occurrences of fougerite mixed with clay minerals are presented. Fougerite is FeII6(1-x)FeIII6x((CO, the partially deprotonated green rust where 1/3⩽x<2/3. Substitution of Fe cations by Mg II or Al III may occur but the proposal advocating a ferrosic hydroxide Fe( is discarded.

  2. A comparative study of nitrite reduction by synthetic and biogenic Fe(II-III) hydroxysalts green rusts: Evidence for hydroxyl-nitrite green rust formation as an intermediate reaction product.

    NASA Astrophysics Data System (ADS)

    Ona-Nguema, G.; Guerbois, D.; Morin, G.; Zhang, Y.; Noel, V.; Brest, J.

    2013-12-01

    The occurrence of high nitrite concentrations as a result of anthropogenic activities is an important water quality concern as it is highly toxic to human and fauna, and it is used as a nitrogen source for the assimilation process. The toxicity of nitrite is related to its transformation into carcinogenic N-nitroso compounds, which are suspected to be responsible for some gastric cancers, and to its ability to convert the hemoglobin to methaemoglobin what is then unable to fix oxygen and to transport it to the tissues, involving hypoxia and the blue-baby syndrome [1]. To reduce the adverse effect of nitrite on human health and on macroalgal blooms, any process enhancing the transformation of nitrite ions to nitrogen gas is of interest for the remediation of natural environments. To achieve this purpose the use of processes involving Fe(II)-containing minerals could be considered as one of the best options. Green-rusts are mixed Fe(II-III) layered double hydroxides commonly found in anoxic zones of natural environments such as sediments and hydromorphic soils. In such anoxic environments, green rust minerals play an important role in the biogeochemical redox cycling of iron and nitrogen, and can affect the speciation and mobility of many organic and inorganic contaminants. The present study investigates the reduction of nitrite by two synthetic and two biogenic green rusts. On the one hand, Fe(II-III) hydroxychloride and Fe(II-III) hydroxycarbonate green rusts were used as synthetic interlayer forms of GR, which are referred to as ';syn-GR(CO3)' and ';syn-GR(Cl)', respectively. On the other hand, the study was performed with biogenic Fe(II-III) hydroxycarbonate green rusts obtained from the bioreduction of two ferric precursors, either Fe(III)-oxyhydroxycarbonate or lepidocrocite; these biogenic green rusts are referred to as ';bio-GR(CO3)F' and ';bio-GR(CO3)L', respectively. For synthetic green rusts, results showed that the oxidation of both syn-GR(CO3) and syn

  3. Gadolinium oxide nanoparticles as potential multimodal imaging and therapeutic agents.

    PubMed

    Kim, Tae Jeong; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho

    2013-01-01

    Potentials of hydrophilic and biocompatible ligand coated gadolinium oxide nanoparticles as multimodal imaging agents, drug carriers, and therapeutic agents are reviewed. First of all, they can be used as advanced T1 magnetic resonance imaging (MRI) contrast agents because they have r1 larger than those of Gd(III)-chelates due to a high density of Gd(III) per nanoparticle. They can be further functionalized by conjugating other imaging agents such as fluorescent imaging (FI), X-ray computed tomography (CT), positron emission tomography (PET), and single photon emission tomography (SPECT) agents. They can be also useful for drug carriers through morphology modifications. They themselves are also potential CT and ultrasound imaging (USI) contrast and thermal neutron capture therapeutic (NCT) agents, which are superior to commercial iodine compounds, air-filled albumin microspheres, and boron ((10)B) compounds, respectively. They, when conjugated with targeting agents such as antibodies and peptides, will provide enhanced images and be also very useful for diagnosis and therapy of diseases (so called theragnosis). PMID:23432005

  4. Modeling Exposures to the Oxidative Potential of PM10

    PubMed Central

    2012-01-01

    Differences in the toxicity of ambient particulate matter (PM) due to varying particle composition across locations may contribute to variability in results from air pollution epidemiologic studies. Though most studies have used PM mass concentration as the exposure metric, an alternative which accounts for particle toxicity due to varying particle composition may better elucidate whether PM from specific sources is responsible for observed health effects. The oxidative potential (OP) of PM < 10 μm (PM10) was measured as the rate of depletion of the antioxidant reduced glutathione (GSH) in a model of human respiratory tract lining fluid. Using a database of GSH OP measures collected in greater London, U.K. from 2002 to 2006, we developed and validated a predictive spatiotemporal model of the weekly GSH OP of PM10 that included geographic predictors. Predicted levels of OP were then used in combination with those of weekly PM10 mass to estimate exposure to PM10 weighted by its OP. Using cross-validation (CV), brake and tire wear emissions of PM10 from traffic within 50 m and tailpipe emissions of nitrogen oxides from heavy-goods vehicles within 100 m were important predictors of GSH OP levels. Predictive accuracy of the models was high for PM10 (CV R2=0.83) but only moderate for GSH OP (CV R2 = 0.44) when comparing weekly levels; however, the GSH OP model predicted spatial trends well (spatial CV R2 = 0.73). Results suggest that PM10 emitted from traffic sources, specifically brake and tire wear, has a higher OP than that from other sources, and that this effect is very local, occurring within 50–100 m of roadways. PMID:22731499

  5. Oxidative potential of particulate matter at a German motorway.

    PubMed

    Hellack, Bryan; Quass, Ulrich; Nickel, Carmen; Wick, Gabriele; Schins, Roel P F; Kuhlbusch, Thomas A J

    2015-04-01

    Ambient particulate matter (PM10) was sampled alongside a motorway in North-Rhine Westphalia, Germany, during a one-year period. In sum, 120 PM10 samples on quartz fibre filters, 60 samples at each side of the motorway, were taken during clear cross-wind direction situations, i.e. upwind (local background situation) and downwind (traffic influenced). To quantify the traffic-related oxidative potential (OP), or more precisely the hydroxyl radical (OH˙) generation potency, these samples were analysed to study their hydrogen peroxide dependent oxidant generation by Electron Paramagnetic Resonance (EPR) spectroscopy using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide. In addition the PM10 mass, the chemical composition and the NOx concentrations were determined. For PM10 mass and traffic tracers like Sb, Ba, elemental and organic carbon as well as for NOx, an additional contribution to the background concentration caused by the traffic was observed (factor: 1.3-6.0). The downwind measurements showed in 72% of cases higher OH˙ generation potencies with an average factor of 1.4. Significant correlations to OH˙ were detected for Fe (r > 0.58) and Cu (r > 0.57) for the upwind and overall (upwind + downwind, r > 0.44) dataset. At the downwind side these correlations were absent and are assumed to be covered by the interferences with additional soot particles leading to a quenching of OH˙. Accordingly, no significant overall correlation of the OH˙ generation potency with the traffic intensity was detected. The suggested quenching effect was confirmed via standard diesel soot (SRM 2975) measurements using the EPR approach. In summary, the traffic related PM causes an intrinsic OH˙ generation via Fenton-like reaction but obviously also leads to interferences and scavenging by traffic related carbonaceous compounds. In consequence, for future studies that would link the intrinsic OP and adverse health effects we suggest to analyse the relationship to EC/OC and to use in

  6. Prognostic Role of BRAF Mutation in Stage II/III Colorectal Cancer Receiving Curative Resection and Adjuvant Chemotherapy: A Meta-Analysis Based on Randomized Clinical Trials

    PubMed Central

    Cao, Ying; Fang, Xuefeng; Zhong, Chenhan; Li, Dan; Yuan, Ying

    2016-01-01

    Background and Objective Studies examining the prognostic value of the BRAF mutation on relapse-free survival (RFS), disease-free survival (DFS) and overall survival (OS) in stage II/III colorectal cancer (CRC) patients receiving curative resection and adjuvant chemotherapy so far showed discrepant results. Therefore, a meta-analysis of relevant studies was performed for clarification. Methods Randomized trials of stage II/III colorectal cancer treated with curative resection followed by adjuvant chemotherapy were selected to conduct a meta-analysis. The necessary descriptive and statistical information such as hazard ratios (HRs) and 95% confidence intervals (CIs) were derived from published survival data. Results Seven phase III randomized clinical trials (RCTs) including 1,035 BRAF mutation stage II/III CRC patients receiving curative resection and adjuvant chemotherapy were analyzed. Overall, BRAF mutation resulted in poorer OS (HR = 1.42, 95% CI: 1.25–1.60; P < 0.00001), and poorer DFS (HR = 1.26, 95% CI: 1.07–1.48, P = 0.006) compared with BRAF wild-type CRC. The prognostic role on RFS could not be elucidated in the meta-analysis because of limited data. Conclusions BRAF mutation was significantly related with shorter DFS and OS among stage II/III CRC patients receiving adjuvant chemotherapy after curative resection. Its prognostic role for RFS needs to be further analyzed when more data is available. PMID:27138801

  7. Thymidine phosphorylase and hypoxia-inducible factor 1-α expression in clinical stage II/III rectal cancer: association with response to neoadjuvant chemoradiation therapy and prognosis.

    PubMed

    Lin, Shuhan; Lai, Hao; Qin, Yuzhou; Chen, Jiansi; Lin, Yuan

    2015-01-01

    The aim of this study was to determine whether pretreatment status of thymidine phosphorylase (TP), and hypoxia-inducible factor alpha (HIF-1α) could predict pathologic response to neoadjuvant chemoradiation therapy with oxaliplatin and capecitabine (XELOXART) and outcomes for clinical stage II/III rectal cancer patients. A total of 180 patients diagnosed with clinical stage II/III rectal cancer received XELOXART. The status of TP, and HIF-1α were determined in pretreatment biopsies by immunohistochemistry (IHC). Tumor response was assessed in resected regimens using the tumor regression grade system and TNM staging system. 5-year disease free survival (DFS) and 5-year overall survival (OS) were evaluated with the Kaplan-Meier method and were compared by the log-rank test. Over expression of TP and low expression of HIF-1α were associated with pathologic response to XELOXART and better outcomes (DFS and OS) in clinical stage II/III rectal cancer patients (P < 0.05). Our result suggested that pretreatment status of TP and HIF-1α were found to predict pathologic response and outcomes in clinical stage II/III rectal cancer received XELOXART. Additional well-designed, large sample, multicenter, prospective studies are needed to confirm the result of this study. PMID:26617778

  8. Oxidative stress in psoriasis and potential therapeutic use of antioxidants.

    PubMed

    Lin, Xiran; Huang, Tian

    2016-06-01

    The pathophysiology of psoriasis is complex and dynamic. Recently, the involvement of oxidative stress in the pathogenesis of psoriasis has been proposed. Oxidative stress is an imbalance between oxidants and antioxidants in favor of the oxidants, leading to a disruption of redox signaling and control and/or molecular damage. In this article, the published studies on the role of oxidative stress in psoriasis pathogenesis are reviewed, focusing on the impacts of oxidative stress on dendritic cells, T lymphocytes, and keratinocytes, on angiogenesis and on inflammatory signaling (mitogen-activated protein kinase, nuclear factor-κB, and Janus kinase/signal transducer and activator of transcription). As there is compelling evidence that oxidative stress is involved in the pathogenesis of psoriasis, the possibility of using this information to develop novel strategies for treatment of patients with psoriasis is of considerable interest. In this article, we also review the published studies on treating psoriasis with antioxidants and drugs with antioxidant activity. PMID:27098416

  9. Zeta potentials in the flotation of oxide and silicate minerals.

    PubMed

    Fuerstenau, D W; Pradip

    2005-06-30

    Adsorption of collectors and modifying reagents in the flotation of oxide and silicate minerals is controlled by the electrical double layer at the mineral-water interface. In systems where the collector is physically adsorbed, flotation with anionic or cationic collectors depends on the mineral surface being charged oppositely. Adjusting the pH of the system can enhance or prevent the flotation of a mineral. Thus, the point of zero charge (PZC) of the mineral is the most important property of a mineral in such systems. The length of the hydrocarbon chain of the collector is important because of chain-chain association enhances the adsorption once the surfactant ions aggregate to form hemimicelles at the surface. Strongly chemisorbing collectors are able to induce flotation even when collector and the mineral surface are charged similarly, but raising the pH sufficiently above the PZC can repel chemisorbing collectors from the mineral surface. Zeta potentials can be used to delineate interfacial phenomena in these various systems. PMID:16007737

  10. A synthetic leaf: the biomimetic potential of graphene oxide

    NASA Astrophysics Data System (ADS)

    Lamb, Marilla; Koch, George W.; Morgan, Eric R.; Shafer, Michael W.

    2015-03-01

    Emerging materials such as graphene oxide (GO) have micro and nano features that are functionally similar to those in plant cell walls involved in water transport. Therefore, it may now be possible to design and build biomimetic trees to lift water via mechanisms similar to those employed by trees, allowing for potential applications such as passive water pumping, filtering, and evaporative cooling. The tallest trees can raise large volumes of water to over 100 meters using only the vapor pressure gradient between their leaves and the atmosphere. This phenomenon occurs in all terrestrial plants when capillary forces generated in the microscopic pores in the cell walls of leaves are collectively applied to large diameter xylem conduits. The design of a synthetic tree that mimics these mechanisms will allow water to be moved to heights greater than is currently possible by any engineered system that does not require the use of a positive pressure pump. We are testing the suitability of membranous GO as the leaf of a synthetic tree and present an analysis in support of this design. In addition, we include results from a preliminary design using ceramics.

  11. GOLD B-C-D groups or GOLD II-III-IV grades: Which one better reflects the functionality of patients with chronic obstructive pulmonary disease?

    PubMed

    Moreira, Graciane L; Donária, Leila; Furlanetto, Karina C; Paes, Thais; Sant'Anna, Thaís; Hernandes, Nidia A; Pitta, Fabio

    2015-05-01

    The aim of this article is to investigate which global initiative for chronic obstructive lung disease (GOLD) classification (B-C-D or II-III-IV) better reflects the functionality of patients with moderate to very severe chronic obstructive pulmonary disease (COPD). Ninety patients with COPD were classified according to the GOLD B-C-D and II-III-IV classifications. Functionality was assessed by different outcomes: 6-min walk test (6MWT), activities of daily living (ADL) (London Chest ADL Scale), and daily life activity/inactivity variables assessed by activity monitoring (SenseWear armband, Pittsburgh, Pennsylvania, USA). The 6MWT was the only outcome significantly associated with both the GOLD classifications. Good functionality as assessed by the 6MWT was observed in 80%, 69%, and 43.5% (GOLD B, C, and D, respectively) and 81%, 59%, and 29% (GOLD II, III, and IV, respectively) of the patients. Association (V Cramer's) and correlation (Spearman) coefficients of 6MWT with GOLD B-C-D and II-III-IV were V = 0.30, r = -0.35, and V = 0.37, r = -0.25, respectively. Neither GOLD classification showed V or r ≥ 0.30 with any other functionality outcome. Both the GOLD B-C-D and II-III-IV classifications do not reflect well COPD patients' functionality. Despite low association and correlation coefficients in general, both GOLD classifications were better associated with functional exercise capacity (6MWT) than with subjectively assessed ADL and objectively assessed outcomes of physical activity/inactivity. PMID:25711468

  12. Systemic, postsymptomatic antisense oligonucleotide rescues motor unit maturation delay in a new mouse model for type II/III spinal muscular atrophy

    PubMed Central

    Bogdanik, Laurent P.; Osborne, Melissa A.; Davis, Crystal; Martin, Whitney P.; Austin, Andrew; Rigo, Frank; Bennett, C. Frank; Lutz, Cathleen M.

    2015-01-01

    Clinical presentation of spinal muscular atrophy (SMA) ranges from a neonatal-onset, very severe disease to an adult-onset, milder form. SMA is caused by the mutation of the Survival Motor Neuron 1 (SMN1) gene, and prognosis inversely correlates with the number of copies of the SMN2 gene, a human-specific homolog of SMN1. Despite progress in identifying potential therapies for the treatment of SMA, many questions remain including how late after onset treatments can still be effective and what the target tissues should be. These questions can be addressed in part with preclinical animal models; however, modeling the array of SMA severities in the mouse, which lacks SMN2, has proven challenging. We created a new mouse model for the intermediate forms of SMA presenting with a delay in neuromuscular junction maturation and a decrease in the number of functional motor units, all relevant to the clinical presentation of the disease. Using this new model, in combination with clinical electrophysiology methods, we found that administering systemically SMN-restoring antisense oligonucleotides (ASOs) at the age of onset can extend survival and rescue the neurological phenotypes. Furthermore, these effects were also achieved by administration of the ASOs late after onset, independent of the restoration of SMN in the spinal cord. Thus, by adding to the limited repertoire of existing mouse models for type II/III SMA, we demonstrate that ASO therapy can be effective even when administered after onset of the neurological symptoms, in young adult mice, and without being delivered into the central nervous system. PMID:26460027

  13. Natural Oxidant Demand Variability, Potential Controls, and Implications for in Situ, Oxidation-Based Remediation of Contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Dettmer, A.; Cruz, S.; Dungan, B.; Holguin, F. O.; Ulery, A. L.; Hunter, B.; Carroll, K. C.

    2014-12-01

    Naturally occurring reduced species associated with subsurface materials can impose a significant natural oxidant demand (NOD), which is the bulk consumption of oxidants by soil water, minerals, and organic matter. Although injection of oxidants has been used for chemical transformation of organic contaminants, NOD represents a challenge for the in-situ delivery of oxidants as a remediation alternative. Co-injection of complexation agents with oxidants has been proposed to facilitate the delivery of oxidants for in situ chemical oxidation remediation of contaminated groundwater. This study investigates variability of NOD for different oxidants and sediments. The effect of the addition of various complexation agents, including EDTA, tween 80, hydroxypropyl-beta-cyclodextrin (HPCD), humic acid, and four generations of poly(amidoamine) (PAMAM) dendrimers, on the NOD was also examined. NOD was measured for a clay loam (collected from Air Force Plant 44 in Tucson, AZ). Varying amounts of biosolids were mixed with subsamples of the clay loam to create three additional reference soils in order to study the effect of organic matter and other soil characteristics on the NOD. Bench-scale laboratory experiments were conducted to determine the NOD for various oxidants, using the four soils, and replicated with and without various delivery agents. Measured NOD showed variability for each soil and oxidant composition. Additionally, significant differences were observed in NOD with the addition of delivery agents. The results support the elucidation of potential controls over NOD and have implications for in situ, oxidation-based remediation of contaminated groundwater.

  14. Germline polymorphisms in genes involved in the Hippo pathway as recurrence biomarkers in stage II/III colon cancer

    PubMed Central

    Sebio, Ana; Matsusaka, Satoshi; Zhang, Wu; Yang, Dongyun; Ning, Yan; Stremitzer, Stefan; Stintzing, Sebastian; Sunakawa, Yu; Yamauchi, Shinichi; Fujimoto, Yoshiya; Ueno, Masashi; Lenz, Heinz-Josef

    2015-01-01

    The Hippo pathway regulates tissue growth and cell fate. In colon cancer, Hippo pathway deregulation promotes cellular quiescence and resistance to 5-Fluorouracil. In this study 14 polymorphisms in 8 genes involved in the Hippo pathway (MST1, MST2, LATS1, LATS2, YAP, TAZ, FAT4 and RASSF1A) were evaluated as recurrence predictors in 194 patients with stages II/III colon cancer treated with 5-Fu-based adjuvant chemotherapy. Patients with a RASSF1A rs2236947 AA genotype had higher 3-year recurrence rate than patients with CA/CC genotypes (56% vs 33%, HR: 1.87; p=0.017). Patients with TAZ rs3811715 CT or TT genotypes had lower 3-year recurrence rate than patients with a CC genotype (28% vs 40%; HR: 0.66; p=0.07). In left-sided tumors, this association was stronger (HR: 0.29; p=0.011) and a similar trend was found in an independent Japanese cohort. These promising results reveal polymorphisms in the Hippo pathway as biomarkers for stage II and III colon cancer. PMID:26370619

  15. Cux1 Enables Interhemispheric Connections of Layer II/III Neurons by Regulating Kv1-Dependent Firing.

    PubMed

    Rodríguez-Tornos, Fernanda M; Briz, Carlos G; Weiss, Linnea A; Sebastián-Serrano, Alvaro; Ares, Saúl; Navarrete, Marta; Frangeul, Laura; Galazo, Maria; Jabaudon, Denis; Esteban, José A; Nieto, Marta

    2016-02-01

    Neuronal subtype-specific transcription factors (TFs) instruct key features of neuronal function and connectivity. Activity-dependent mechanisms also contribute to wiring and circuit assembly, but whether and how they relate to TF-directed neuronal differentiation is poorly investigated. Here we demonstrate that the TF Cux1 controls the formation of the layer II/III corpus callosum (CC) projections through the developmental transcriptional regulation of Kv1 voltage-dependent potassium channels and the resulting postnatal switch to a Kv1-dependent firing mode. Loss of Cux1 function led to a decrease in the expression of Kv1 transcripts, aberrant firing responses, and selective loss of CC contralateral innervation. Firing and innervation were rescued by re-expression of Kv1 or postnatal reactivation of Cux1. Knocking down Kv1 mimicked Cux1-mediated CC axonal loss. These findings reveal that activity-dependent processes are central bona fide components of neuronal TF-differentiation programs and establish the importance of intrinsic firing modes in circuit assembly within the neocortex. PMID:26804994

  16. Equatorial π-stacking interactions in diruthenium (II,III) tetracarboxylate complexes containing extended π-systems

    NASA Astrophysics Data System (ADS)

    O'Rourke, Natasha F.; Ronaldson, Michael; Stanley Cameron, T.; Wang, Ruiyao; Aquino, Manuel A. S.

    2013-11-01

    The synthesis of three new valent-averaged tetracarboxylatodiruthenium (II,III) complexes, [Ru2(1-naphthylacetate)4(H2O)2](PF6)ṡ4THF, 1ṡ4THF, [Ru2(2-naphthoate)4(THF)2](PF6)ṡ3THF, 2ṡ3THF, and [Ru2(coumarin-3-carboxylate)4(MeOH)2](PF6)ṡMeOHṡH2O, 3ṡMeOHṡH2O, was accomplished using a well documented carboxylate exchange reaction. All three complexes were thoroughly characterized using infrared and UV-Vis spectroscopies, elemental analysis and X-ray diffraction. Due to the extended π-systems present, two of the complexes, 2ṡ3THF and 3ṡMeOHṡH2O, display extensive π-stacking in two dimensions, with similar interactions notably absent in 1ṡ4THF due to the perpendicular orientation of the naphthyl rings. Modest H-bonding is seen in complexes 1ṡ4THF and 3ṡMeOHṡH2O. As these types of complexes are noted secondary building units (SBU's) in the construction of metal-organic frameworks (MOF's), the significance of these interactions in stabilizing even larger, supramolecular structures, are noted.

  17. Germline polymorphisms in genes involved in the Hippo pathway as recurrence biomarkers in stages II/III colon cancer.

    PubMed

    Sebio, A; Matsusaka, S; Zhang, W; Yang, D; Ning, Y; Stremitzer, S; Stintzing, S; Sunakawa, Y; Yamauchi, S; Fujimoto, Y; Ueno, M; Lenz, H-J

    2016-08-01

    The Hippo pathway regulates tissue growth and cell fate. In colon cancer, Hippo pathway deregulation promotes cellular quiescence and resistance to 5-Fluorouracil (5-Fu). In this study, 14 polymorphisms in 8 genes involved in the Hippo pathway (MST1, MST2, LATS1, LATS2, YAP, TAZ, FAT4 and RASSF1A) were evaluated as recurrence predictors in 194 patients with stages II/III colon cancer treated with 5-Fu-based adjuvant chemotherapy. Patients with a RASSF1A rs2236947 AA genotype had higher 3-year recurrence rate than patients with CA/CC genotypes (56 vs 33%, hazard ratio (HR): 1.87; P=0.017). Patients with TAZ rs3811715 CT or TT genotypes had lower 3-year recurrence rate than patients with a CC genotype (28 vs 40%; HR: 0.66; P=0.07). In left-sided tumors, this association was stronger (HR: 0.29; P=0.011) and a similar trend was found in an independent Japanese cohort. These promising results reveal polymorphisms in the Hippo pathway as biomarkers for stages II and III colon cancer.The Pharmacogenomics Journal advance online publication, 15 September 2015; doi:10.1038/tpj.2015.64. PMID:26370619

  18. Contrasts in Oxidative Potential and Other Particulate Matter Characteristics Collected Near Major Streets and Background Locations

    PubMed Central

    Janssen, Nicole A.H.; Fischer, Paul H.; Kos, Gerard P.A.; Weijers, Ernie P.; Cassee, Flemming R.; van der Zee, Saskia C.; de Hartog, Jeroen J.; Brunekreef, Bert; Hoek, Gerard

    2011-01-01

    Background: Measuring the oxidative potential of airborne particulate matter (PM) may provide a more health-based exposure measure by integrating various biologically relevant properties of PM into a single predictor of biological activity. Objectives: We aimed to assess the contrast in oxidative potential of PM collected at major urban streets and background locations, the associaton of oxidative potential with other PM characteristics, and the oxidative potential in different PM size fractions. Methods: Measurements of PM with aerodynamic diameter ≤ 10 μm (PM10), PM with aerodynamic diameter ≤ 2.5 μm (PM2.5), soot, elemental composition, and oxidative potential of PM were conducted simultaneously in samples from 8 major streets and 10 urban and suburban background locations in the Netherlands. Six 1-week measurements were performed at each location over a 6-month period in 2008. Oxidative potential was measured as the ability to generate hydroxyl radicals in the presence of hydrogen peroxide in all PM10 samples and a subset of PM2.5 samples. Results: The PM10 oxidative potential of samples from major streets was 3.6 times higher than at urban background locations, exceeding the contrast for PM mass, soot, and all measured chemical PM characteristics. The contrast between major streets and suburban background locations was even higher (factor of 6.5). Oxidative potential was highly correlated with soot, barium, chromium, copper, iron, and manganese. Oxidative potential of PM10 was 4.6 times higher than the oxidative potential of PM2.5 when expressed per volume unit and 3.1 times higher when expressed per mass unit. Conclusions: The oxidative potential of PM near major urban roads was highly elevated compared with urban and suburban background locations, and the contrast was greater than that for any other measured PM characteristic. PMID:22015682

  19. Passivated iodine pentoxide oxidizer for potential biocidal nanoenergetic applications.

    PubMed

    Feng, Jingyu; Jian, Guoqiang; Liu, Qing; Zachariah, Michael R

    2013-09-25

    Iodine pentoxide (I2O5), also known as diiodine pentoxide, is a strong oxidizer which has been recently proposed as an iodine-rich oxidizer in nanoenergetic formulations, whose combustion products lead to molecular iodine as a biocidal agent. However, its highly hygroscopic nature hinders its performance as a strong oxidizer and an iodine releasing agent and prevents its implementation. In this work, we developed a gas phase assisted aerosol spray pyrolysis which enables creation of iron oxide passivated I2O5. Transmission electron microscopy elemental imaging as well as temperature-jump mass spectrometry confirmed the core shell nature of the material and the fact that I2O5 could be encapsulated in pure unhydrated form. Combustion performance finds an optimal coating thickness that enables combustion performance similar to a high performing CuO based thermite. PMID:23988006

  20. Characterization of the thrombogenic potential of surface oxides on stainless steel for implant purposes

    NASA Astrophysics Data System (ADS)

    Shih, Chun-Che; Shih, Chun-Ming; Su, Yea-Yang; Chang, Mau-Song; Lin, Shing-Jong

    2003-12-01

    Marketed stents are manufactured from various metals and passivated with different degrees of surface oxidation. The functional surface oxides on the degree of antithrombotic potential were explored through a canine femoral extracorporeal circuit model. Related properties of these oxide films were studied by open-circuit potential, current density detected at open-circuit potential, the electrochemical impedance spectroscopy, transmission electron microscopy, Auger spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. Experimental evidences showed that blood clot weight after a 30-min follow-up was significantly lower for the stainless steel wire passivated with amorphous oxide (AO) compared to the wire passivated with polycrystalline oxide (PO) or commercial as-received wire coils (AS). Surface characterizations showed that a stable negative current density at open-circuit potential and a significant lower potential were found for the wire surface passivated with AO than for the surface passivated with PO. Time constant of AO is about 25 times larger than that of polycrystalline oxide. Significant difference in oxide grain sizes was found between PO and AO. Surface chemistries revealed by the AES and XPS spectra indicated the presence of a Cr- and oxygen-rich surface oxide for AO, and a Fe-rich and oxygen-lean surface oxide for PO. These remarkable characteristics of AO surface film might have a potential to provide for excellent antithrombotic characteristics for the 316L stainless steel stents.

  1. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications.

    PubMed

    Ilc, Tina; Parage, Claire; Boachon, Benoît; Navrot, Nicolas; Werck-Reichhart, Danièle

    2016-01-01

    Plants use monoterpenols as precursors for the production of functionally and structurally diverse molecules, which are key players in interactions with other organisms such as pollinators, flower visitors, herbivores, fungal, or microbial pathogens. For humans, many of these monoterpenol derivatives are economically important because of their pharmaceutical, nutraceutical, flavor, or fragrance applications. The biosynthesis of these derivatives is to a large extent catalyzed by enzymes from the cytochrome P450 superfamily. Here we review the knowledge on monoterpenol oxidative metabolism in plants with special focus on recent elucidations of oxidation steps leading to diverse linalool and geraniol derivatives. We evaluate the common features between oxidation pathways of these two monoterpenols, such as involvement of the CYP76 family, and highlight the differences. Finally, we discuss the missing steps and other open questions in the biosynthesis of oxygenated monoterpenol derivatives. PMID:27200002

  2. Monoterpenol Oxidative Metabolism: Role in Plant Adaptation and Potential Applications

    PubMed Central

    Ilc, Tina; Parage, Claire; Boachon, Benoît; Navrot, Nicolas; Werck-Reichhart, Danièle

    2016-01-01

    Plants use monoterpenols as precursors for the production of functionally and structurally diverse molecules, which are key players in interactions with other organisms such as pollinators, flower visitors, herbivores, fungal, or microbial pathogens. For humans, many of these monoterpenol derivatives are economically important because of their pharmaceutical, nutraceutical, flavor, or fragrance applications. The biosynthesis of these derivatives is to a large extent catalyzed by enzymes from the cytochrome P450 superfamily. Here we review the knowledge on monoterpenol oxidative metabolism in plants with special focus on recent elucidations of oxidation steps leading to diverse linalool and geraniol derivatives. We evaluate the common features between oxidation pathways of these two monoterpenols, such as involvement of the CYP76 family, and highlight the differences. Finally, we discuss the missing steps and other open questions in the biosynthesis of oxygenated monoterpenol derivatives. PMID:27200002

  3. Randomized phase II/III clinical trial of elpamotide for patients with advanced pancreatic cancer: PEGASUS-PC Study.

    PubMed

    Yamaue, Hiroki; Tsunoda, Takuya; Tani, Masaji; Miyazawa, Motoki; Yamao, Kenji; Mizuno, Nobumasa; Okusaka, Takuji; Ueno, Hideki; Boku, Narikazu; Fukutomi, Akira; Ishii, Hiroshi; Ohkawa, Shinichi; Furukawa, Masayuki; Maguchi, Hiroyuki; Ikeda, Masafumi; Togashi, Yosuke; Nishio, Kazuto; Ohashi, Yasuo

    2015-07-01

    Gemcitabine is a key drug for the treatment of pancreatic cancer; however, with its limitation in clinical benefits, the development of another potent therapeutic is necessary. Vascular endothelial growth factor receptor 2 is an essential target for tumor angiogenesis, and we have conducted a phase I clinical trial using gemcitabine and vascular endothelial growth factor receptor 2 peptide (elpamotide). Based on the promising results of this phase I trial, a multicenter, randomized, placebo-controlled, double-blind phase II/III clinical trial has been carried out for pancreatic cancer. The eligibility criteria included locally advanced or metastatic pancreatic cancer. Patients were assigned to either the Active group (elpamotide + gemcitabine) or Placebo group (placebo + gemcitabine) in a 2:1 ratio by the dynamic allocation method. The primary endpoint was overall survival. The Harrington-Fleming test was applied to the statistical analysis in this study to evaluate the time-lagged effect of immunotherapy appropriately. A total of 153 patients (Active group, n = 100; Placebo group, n = 53) were included in the analysis. No statistically significant differences were found between the two groups in the prolongation of overall survival (Harrington-Fleming P-value, 0.918; log-rank P-value, 0.897; hazard ratio, 0.87, 95% confidence interval [CI], 0.486-1.557). Median survival time was 8.36 months (95% CI, 7.46-10.18) for the Active group and 8.54 months (95% CI, 7.33-10.84) for the Placebo group. The toxicity observed in both groups was manageable. Combination therapy of elpamotide with gemcitabine was well tolerated. Despite the lack of benefit in overall survival, subgroup analysis suggested that the patients who experienced severe injection site reaction, such as ulceration and erosion, might have better survival. PMID:25867139

  4. Changes in the BDNF-immunopositive cell population of neocortical layers I and II/III after focal cerebral ischemia in rats.

    PubMed

    Choi, Yongwon; Kang, Sung Goo; Kam, Kyung-Yoon

    2015-04-24

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and is widely distributed in the central nervous system, including the cerebral cortex. BDNF plays an important role in normal neural development, survival of existing neurons, and activity-dependent neuroplasticity. BDNF can also be neuroprotective and evoke neurogenesis in certain pathological conditions, such as cerebral ischemia. Neocortical layer I is an important region that can integrate feedforward and feedback information from other cortical areas and subcortical regions. In addition, it has recently been proposed as a possible source of neuronal progenitor cells after ischemia. Therefore, we investigated changes in the BDNF-immunoreactive cell population of neocortical layers I and II/III after middle cerebral artery occlusion (MCAO)-induced cerebral ischemia in rats. In unaffected condition, the number of BDNF(+) cells in layer I was significantly less than in layer II/III in the cingulate cortex and in the motor and sensory areas. The increase in the number of BDNF(+) cells in layer I 8 days after MCAO was more remarkable than layer II/III, in all regions except the area of cingulate cortex farthest from the infarct core. Only BDNF(+)-Ox-42(+) cells showed a tendency to increase consistently toward the infarct core in both layers I and II/III, implying a major source of BDNF for response to ischemic injury. The present study suggests that some beneficial effects during recovery from ischemic injury, such as increased supportive microglia/macrophages, occur owing to a sensitive response of BDNF in layer I. PMID:25681548

  5. Chlorhexidine markedly potentiates the oxidants scavenging abilities of Candida albicans.

    PubMed

    Ginsburg, I; Koren, E; Feuerstein, O; Zogakis, I P; Shalish, M; Gorelik, S

    2015-10-01

    The oxidant scavenging ability (OSA) of catalase-rich Candida albicans is markedly enhanced by chlorhexidine digluconate (CHX), polymyxin B, the bile salt ursodeoxycholate and by lysophosphatidylcholine, which all act as detergents facilitating the penetration of oxidants and their intracellular decomposition. Quantifications of the OSA of Candida albicans were measured by a highly sensitive luminol-dependent chemiluminescence assay and by the Thurman's assay, to quantify hydrogen peroxide (H2O2). The OSA enhancing activity by CHX depends to some extent on the media on which candida grew. The OSA of candida treated by CHX was modulated by whole human saliva, red blood cells, lysozyme, cationic peptides and by polyphenols. Concentrations of CHX, which killed over 95 % of Candida albicans cells, did not affect the cells' abilities to scavenge reactive oxygen species (ROS). The OSA of Candida cells treated by CHX is highly refractory to H2O2 (50 mM) but is strongly inhibited by hypochlorous acid, lecithin, trypan blue and by heparin. We speculate that similarly to catalase-rich red blood cells, Candida albicans and additional catalase-rich microbiota may also have the ability to scavenge oxidants and thus can protect catalase-negative anaerobes and facultative anaerobes cariogenic streptococci against peroxide and thus secure their survival in the oral cavity. PMID:26223507

  6. Paclitaxel injection concentrate for nanodispersion versus nab-paclitaxel in women with metastatic breast cancer: a multicenter, randomized, comparative phase II/III study.

    PubMed

    Jain, Minish M; Gupte, Smita U; Patil, Shekhar G; Pathak, Anand B; Deshmukh, Chetan D; Bhatt, Niraj; Haritha, Chiramana; Govind Babu, K; Bondarde, Shailesh A; Digumarti, Raghunadharao; Bajpai, Jyoti; Kumar, Ravi; Bakshi, Ashish V; Bhattacharya, Gouri Sankar; Patil, Poonam; Subramanian, Sundaram; Vaid, Ashok K; Desai, Chirag J; Khopade, Ajay; Chimote, Geetanjali; Bapsy, Poonamalle P; Bhowmik, Shravanti

    2016-02-01

    Paclitaxel is widely used in the treatment of patients with metastatic breast cancer (MBC). Formulations of paclitaxel contain surfactants and solvents or albumin derived from human blood. The use of co-solvents such as polyoxyethylated castor oil is thought to contribute to toxicity profile and hypersensitivity reactions as well as leaching of plasticizers from polyvinyl chloride bags and infusion sets. Currently, nab-paclitaxel, an albumin-bound paclitaxel in nanometer range continues to be the preferred taxane formulation used in clinic. This study (CTRI/2010/091/001116) investigated the efficacy and tolerability of a polyoxyethylated castor oil- and albumin-free formulation of paclitaxel [paclitaxel injection concentrate for nanodispersion (PICN)] compared with nab-paclitaxel in women with refractory MBC. The current study was a multicenter, open-label, parallel-group, randomized, comparative phase II/III trial evaluating the efficacy and safety of PICN (260 mg/m(2) [n = 64] and 295 mg/m(2) [n = 58] every 3 weeks) compared with nab-paclitaxel (260 mg/m(2) every 3 weeks [n = 58]) in women 18 and 70 years old with confirmed MBC. Overall response rate (ORR) was assessed with imaging every 2 cycles. An independent analysis of radiologic data was performed for evaluable patients. Progression-free survival (PFS) was a secondary efficacy measure. Independent radiologist-assessed ORRs in the evaluable population of women aged ≥70 years were 35, 49, and 43 % in the PICN 260 mg/m(2), PICN 295 mg/m(2), and nab-paclitaxel 260 mg/m(2) arms, respectively. Median PFS in the evaluable population was 23, 35, and 34 weeks in the PICN 260 mg/m(2), PICN 295 mg/m(2), and nab-paclitaxel 260 mg/m(2) arms, respectively. Adverse events occurred in similar proportions of patients across treatment arms. Hypersensitivity reactions were not frequently observed with the clinical use of PICN across the treatment cohorts. In women with metastatic breast cancer, PICN at 260 and 295 mg/m(2

  7. Oxidant production from source-oriented particulate matter - Part 1: Oxidative potential using the dithiothreitol (DTT) assay

    NASA Astrophysics Data System (ADS)

    Charrier, J. G.; Richards-Henderson, N. K.; Bein, K. J.; McFall, A. S.; Wexler, A. S.; Anastasio, C.

    2015-03-01

    Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM) are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these end points are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species in the body, possibly due to the transition metal content of the PM. Our goal is to quantify the oxidative potential of ambient particle sources collected during two seasons in Fresno, CA, using the dithiothreitol (DTT) assay. We collected PM from different sources or source combinations into different ChemVol (CV) samplers in real time using a novel source-oriented sampling technique based on single-particle mass spectrometry. We segregated the particles from each source-oriented mixture into two size fractions - ultrafine Dp ≤ 0.17 μm) and submicron fine (0.17 μm ≤ Dp ≤ 1.0 μm) - and measured metals and the rate of DTT loss in each PM extract. We find that the mass-normalized oxidative potential of different sources varies by up to a factor of 8 and that submicron fine PM typically has a larger mass-normalized oxidative potential than ultrafine PM from the same source. Vehicular emissions, regional source mix, commute hours, daytime mixed layer, and nighttime inversion sources exhibit the highest mass-normalized oxidative potential. When we apportion DTT activity for total PM sampled to specific chemical compounds, soluble copper accounts for roughly 50% of total air-volume-normalized oxidative potential, soluble manganese accounts for 20%, and other unknown species, likely including quinones and other organics, account for 30%. During nighttime, soluble copper and manganese largely explain the oxidative potential of PM, while daytime has a larger contribution from unknown (likely organic) species.

  8. Oxidative consumption of nitric oxide: a potential mediator of uremic vascular disease.

    PubMed

    Thuraisingham, R C; Yaqoob, M M

    2003-05-01

    Recent data has drawn our attention to the relationship between altered biomechanical properties of the vasculature and left ventricular hypertrophy (LVH) in uremia. We have been able to show that uremia causes functional changes in the conduit vessels of rats, predating structural changes and independent of blood pressure. As nitric oxide (NO) is a potent modulator of the cardiovascular system, we studied the NO pathway in uremia. The existing data are somewhat confusing, with some suggesting up-regulation of the NO system, and others the opposite. When examined critically, however, a pattern emerges, with studies examining NO release showing increased production, whereas those examining NO bioactivity show it to be attenuated. We hypothesized that there is increased NO release, but excess consumption in uremia. Our own data on NO metabolites (NOx) in the serum of healthy young male hemodialysis patients indicate higher concentrations both pre- and post-dialysis compared to controls. As the endothelium is a potential source of NO, we cultured endothelial cells in uremic plasma. These studies demonstrated increased basal NO release from cells cultured under uremic conditions compared to controls. Furthermore, alterations in arginine metabolism appear to play a role, as there is evidence for reduced arginase activity in these cells, thereby increasing arginine availability for the NO pathway. Given the in vivo data and clinical characteristics of the uremic syndrome suggesting reduced NO bioactivity, we examined the possibility that the excess NO generated is being consumed and rendered bio-inactive. Aortae from uremic and control rats were stained for the presence of nitrotyrosine. All uremic aortae stained positively, but nitrotyrosine was not present in any control aortae. PMID:12694303

  9. Global perspective on the oxidative potential of airborne particulate matter: a synthesis of research findings.

    PubMed

    Saffari, Arian; Daher, Nancy; Shafer, Martin M; Schauer, James J; Sioutas, Constantinos

    2014-07-01

    An emerging hypothesis in the field of air pollution is that oxidative stress is one of the important pathways leading to adverse health effects of airborne particulate matter (PM). To advance our understanding of sources and chemical elements contributing to aerosol oxidative potential and provide global comparative data, we report here on the biological oxidative potential associated with size-segregated airborne PM in different urban areas of the world, measured by a biological (cell-based) reactive oxygen species (ROS) assay. Our synthesis indicates a generally greater intrinsic PM oxidative potential as well as higher levels of exposure to redox-active PM in developing areas of the world. Moreover, on the basis of our observations, smaller size fractions are generally associated with higher intrinsic ROS activity compared with larger PM size fractions. Another important outcome of our study is the identification of major species and sources that are associated with ROS activity. Water-soluble transition metals (e.g., Fe, Ni, Cu, Cr, Mn, Zn and V) and water-soluble organic carbon (WSOC) showed consistent correlations with the oxidative potential of airborne PM across different urban areas and size ranges. The major PM sources associated with these chemical species include residual/fuel oil combustion, traffic emissions, and secondary organic aerosol formation, indicating that these sources are major drivers of PM-induced oxidative potential. Moreover, comparison of ROS activity levels across different seasons indicated that photochemical aging increases the intrinsic oxidative potential of airborne PM. PMID:24873754

  10. Interatomic potentials for mixed oxide and advanced nuclear fuels

    SciTech Connect

    Tiwary, Pratyush; Walle, Axel van de; Jeon, Byoungseon; Groenbech-Jensen, Niels

    2011-03-01

    We extend our recently developed interatomic potentials for UO{sub 2} to the fuel system (U,Pu,Np)O{sub 2}. We do so by fitting against an extensive database of ab initio results as well as to experimental measurements. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We therefore expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies.

  11. In vitro apoptotic and DNA damaging potential of nanobarium oxide

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Al-Bishri, Widad

    2016-01-01

    Barium oxide nanoparticles (BaONPs) are an important industrial compound and are widely used in polymers and paints. In this study, apoptotic and genotoxic effects of BaONPs in mouse embryonic fibroblast (L929) cells were determined by using single-cell gel test. In vitro cytotoxicity assays were performed to assess BaONPs’ toxicity in L929 cells. Mild cytotoxicity was observed in L929 cells due to BaONPs. BaONPs increased lipid peroxidation, catalase, and superoxide dismutase levels and lowered glutathione levels in L929 cells. This was accompanied by concomitant generation of reactive oxygen species and activation of caspase-3 in BaONPs-treated L929 cells. On the other hand, when we exposed L929 cells to BaONPs for 24 and 48 hours (comet assay), there was a duration- and dose-dependent increase in DNA impairment detected in the single-cell gel test. Thus, BaONPs exhibit genotoxic and apoptotic effects in L929 cells, most likely due to initiation of oxidative damage. PMID:26834473

  12. Conducting oxide formation and mechanical endurance of potential solid-oxide fuel cell interconnects in coal syngas environment

    SciTech Connect

    Liu, Kejia; Luo, Junhang; Johnson, Christopher; Liu, Xingbo; Lang, J.; Mao, S.X.

    2008-08-15

    The oxidation properties of potential SOFCs materials Crofer 22 APU, Ebrite and Haynes 230 exposed in coal syngas at 800 °C for 100 h were studied. The phases and surface morphology of the oxide scales were characterized by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis (EDX). The mechanical endurance and electrical resistance of the conducting oxides were characterized by indentation and electrical impedance, respectively. It was found that the syngas exposure caused the alloys to form porous oxide scales, which increased the electrical resistant and decreased the mechanical stability. As for short-term exposure in syngas, neither carbide nor metal dusting was found in the scales of all samples.

  13. Conducting oxide formation and mechanical endurance of potential solid-oxide fuel cell interconnects in coal syngas environment

    NASA Astrophysics Data System (ADS)

    Liu, Kejia; Luo, Junhang; Johnson, Chris; Liu, Xingbo; Yang, J.; Mao, Scott X.

    The oxidation properties of potential SOFCs materials Crofer 22 APU, Ebrite and Haynes 230 exposed in coal syngas at 800 °C for 100 h were studied. The phases and surface morphology of the oxide scales were characterized by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis (EDX). The mechanical endurance and electrical resistance of the conducting oxides were characterized by indentation and electrical impedance, respectively. It was found that the syngas exposure caused the alloys to form porous oxide scales, which increased the electrical resistant and decreased the mechanical stability. As for short-term exposure in syngas, neither carbide nor metal dusting was found in the scales of all samples.

  14. Oxidant production from source-oriented particulate matter - Part 1: Oxidative potential using the dithiothreitol (DTT) assay

    NASA Astrophysics Data System (ADS)

    Charrier, J. G.; Richards-Henderson, N. K.; Bein, K. J.; McFall, A. S.; Wexler, A. S.; Anastasio, C.

    2014-09-01

    Recent epidemiological evidence supports the hypothesis that health effects from inhalation of ambient particulate matter (PM) are governed by more than just the mass of PM inhaled. Both specific chemical components and sources have been identified as important contributors to mortality and hospital admissions, even when these endpoints are unrelated to PM mass. Sources may cause adverse health effects via their ability to produce reactive oxygen species, possibly due to the transition metal content of the PM. Our goal is to quantify the oxidative potential of ambient particle sources collected during two seasons in Fresno, CA using the dithiothreitol (DTT) assay. We collected PM from different sources or source combinations into different ChemVol (CV) samplers in real time using a novel source-oriented sampling technique based on single particle mass spectrometry. We segregated the particles from each source-oriented mixture into two size fractions - ultrafine (Dp ≤ 0.17 μm) and submicron fine (0.17 μm ≤ Dp ≤ 1.0 μm) - and measured metals and the rate of DTT loss in each PM extract. We find that the mass-normalized oxidative potential of different sources varies by up to a actor of 8 and that submicron fine PM typically has a larger mass-normalized oxidative potential than ultrafine PM from the same source. Vehicular Emissions, Regional Source Mix, Commute Hours, Daytime Mixed Layer and Nighttime Inversion sources exhibit the highest mass-normalized oxidative potential. When we apportion the volume-normalized oxidative potential, which also accounts for the source's prevalence, cooking sources account for 18-29% of the total DTT loss while mobile (traffic) sources account for 16-28%. When we apportion DTT activity for total PM sampled to specific chemical compounds, soluble copper accounts for roughly 50% of total air-volume-normalized oxidative potential, soluble manganese accounts for 20%, and other unknown species, likely including quinones and other

  15. AUTO-OXIDATION POTENTIAL OF RAW AND RETORTED OIL SHALE

    EPA Science Inventory

    This paper discusses an EPA sponsored study to assess the potential environmental impacts of leachates from raw mined western oil shales. The study was undertaken as a cooperative effort of the Environmental Protection Agency, Colorado State University, Rio Blanco Oil Shale Compa...

  16. Electrochemical Potential Gradient as a Quantitative in Vitro Test Platform for Cellular Oxidative Stress.

    PubMed

    Bryant, Carson; Atha, Donald; Reipa, Vytas

    2016-01-01

    Oxidative stress in a biological system is often defined as a redox imbalance within cells or groups of cells within an organism. Reductive-oxidative (redox) imbalances in cellular systems have been implicated in several diseases, such as cancer. To better understand the redox environment within cellular systems, it is important to be able to characterize the relationship between the intensity of the oxidative environment, characterized by redox potential, and the biomolecular consequences of oxidative damage. In this study, we show that an in situ electrochemical potential gradient can serve as a tool to simulate exogenous oxidative stress in surface-attached mammalian cells. A culture plate design, which permits direct imaging and analysis of the cell viability, following exposure to a range of solution redox potentials, was developed. The in vitro oxidative stress test vessel consists of a cell growth flask fitted with two platinum electrodes that support a direct current along the flask bottom. The applied potential span and gradient slope can be controlled by adjusting the constant current magnitude across the vessel with spatially localized media potentials measured with a sliding reference electrode. For example, the viability of Chinese Hamster Ovary cells under a gradient of redox potentials indicated that cell death was initiated at approximately 0.4 V vs. standard hydrogen electrode (SHE) media potential and this potential could be modified with antioxidants. This experimental platform may facilitate studies of oxidative stress characteristics on different types of cells by enabling imaging live cell cultures that have been exposed to a gradient of exogenous redox potentials. PMID:27409641

  17. Potentially toxic element release by fenton oxidation of sewage sludge.

    PubMed

    Andrews, J P; Asaadi, M; Clarke, B; Ouki, S

    2006-01-01

    The presence, in sewage sludge, of excess levels of the potentially toxic elements (PTE) copper, zinc, chromium, cadmium, nickel, lead and mercury, could impact on our ability to recycle these residues in the future. Far stricter limits on the levels of PTEs are likely in proposed legislation. A method involving the dosing of Fenton's reagent, a mixture of ferrous iron and hydrogen peroxide, under acidic conditions was evaluated for its potential to reduce metal levels. The [Fe]:[H2O2] (w/w) ratio was found to give a good indication of the percentage copper and zinc elution obtainable. Sites with no iron dosing as part of wastewater treatment required extra iron to be added in order to initiate the Fenton's reaction. A significant reduction, in excess of 70%, of the copper and zinc was eluted from both raw primary and activated sludge solid fractions. Cadmium and nickel could be reduced to below detection limits but elution of mercury, lead and chromium was less than 40%. The iron catalyst concentration was found to be a crucial parameter. This process has the potential to reduce the heavy metal content of the sludge and allow the recycling of sludge to continue in a sustainable manner. PMID:17087386

  18. Plasma Protein Oxidation and Its Correlation with Antioxidant Potential During Human Aging

    PubMed Central

    Pandey, Kanti Bhooshan; Mehdi, Mohd Murtaza; Maurya, Pawan Kumar; Rizvi, Syed Ibrahim

    2010-01-01

    Previous studies have indicated that the main molecular characteristic of aging is the progressive accumulation of oxidative damages in cellular macromolecules. Proteins are one of the main molecular targets of age-related oxidative stress, which have been observed during aging process in cellular systems. Reactive oxygen species (ROS) can lead to oxidation of amino acid side chains, formation of protein-protein cross-linkages, and oxidation of the peptide backbones. In the present study, we report the age-dependent oxidative alterations in biomarkers of plasma protein oxidation: protein carbonyls (PCO), advanced oxidation protein products (AOPPs) and plasma total thiol groups (T-SH) in the Indian population and also correlate these parameters with total plasma antioxidant potential. We show an age dependent decrease in T-SH levels and increase in PCO and AOPPs level. The alterations in the levels of these parameters correlated significantly with the total antioxidant capacity of the plasma. The levels of oxidized proteins in plasma provide an excellent biomarker of oxidative stress due to the relative long half-life of such oxidized proteins. PMID:20826915

  19. Phase II Study of Chemoradiotherapy With 5-Fluorouracil and Cisplatin for Stage II-III Esophageal Squamous Cell Carcinoma: JCOG Trial (JCOG 9906)

    SciTech Connect

    Kato, Ken; Muro, Kei; Minashi, Keiko; Ohtsu, Atsushi; Ishikura, Satoshi; Boku, Narikazu; Takiuchi, Hiroya; Komatsu, Yoshito; Miyata, Yoshinori; Fukuda, Haruhiko

    2011-11-01

    Purpose: In this Phase II study, we evaluated the efficacy and toxicity of chemoradiotherapy (CRT) with cisplatin (CDDP) and 5-fluorouracil (5-FU) for Stage II-III esophageal squamous cell carcinoma (ESCC). Patients and Methods: Patients with clinical Stage II-III (T1N1M0 or T2-3N0-1M0) thoracic ESCC were enrolled between April 2000 and March 2002. Chemotherapy comprised two courses of protracted infusion of 5-FU (400 mg/m{sup 2}/day) on Days 1-5 and 8-12, and 2-h infusion of CDDP (40 mg/m{sup 2}) on Days 1 and 8; this regimen was repeated every 5 weeks. Concurrent radiotherapy involved 60-Gy irradiation (30 fractions) for 8 weeks with a 2-week break. Responders received two courses of 5-FU (800 mg/m{sup 2}/day) on Days 1-5 and CDDP (80 mg/m{sup 2}) on Day 1. Final analysis was conducted in March 2007. Survival and late toxicities were monitored for 5 years. Results: The characteristics of the 76 patients enrolled were as follows: median age, 61 years; male/female, 68/8; performance status 0/1, 59/17 patients; Stage IIA/IIB/III, 26/12/38 patients. Of the 74 eligible patients, 46 (62.2%) achieved complete response. Median survival time was 29 months, with 3- and 5-year survival rates of 44.7% and 36.8%, respectively. Acute toxicities included Grade 3/4 esophagitis (17%), nausea (17%), hyponatremia (16%), and infection without neutropenia (12%). Late toxicities comprised Grade 3/4 esophagitis (13%), pericardial (16%) and pleural (9%) effusion, and radiation pneumonitis (4%), causing 4 deaths. Conclusions: CRT is effective for Stage II-III ESCC with manageable acute toxicities and can provide a nonsurgical treatment option. However, further improvement is required for reduction in late toxicity.

  20. Fatigue delamination growth in woven glass/epoxy composite laminates under mixed-mode II/III loading conditions at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Takeda, Tomo; Miura, Masaya; Shindo, Yasuhide; Narita, Fumio

    2013-12-01

    We investigate the cryogenic delamination growth behavior in woven glass fiber reinforced polymer (GFRP) composite laminates under mixed-mode II/III fatigue loading. Fatigue delamination tests were conducted with six-point bending plate (6PBP) specimens at room temperature, liquid nitrogen temperature (77 K) and liquid helium temperature (4 K), and the delamination growth rate data for various mixed-mode ratios of Modes II and III were obtained. The energy release rate was evaluated using the three-dimensional finite element method. In addition, the fatigue delamination growth mechanisms were characterized by scanning electron microscopic observations of the specimen fracture surfaces.

  1. Incidence and specificity of antibodies to types I, II, III, IV, and V collagen in rheumatoid arthritis and other rheumatic diseases as measured by 125I-radioimmunoassay

    SciTech Connect

    Stuart, J.M.; Huffstutter, E.H.; Townes, A.S.; Kang, A.H.

    1983-07-01

    Antibodies to human native and denatured types I, II, III, IV, and V collagens were measured using 125I-radioimmunoassay. Mean levels of binding by sera from 30 rheumatoid arthritis patients were significantly higher than those from 20 normal subjects against all of the collagens tested. The relative antibody concentration was higher in synovial fluid than in simultaneously obtained serum. Many patients with gout or various other rheumatic diseases also had detectable anticollagen antibodies. With a few notable exceptions, the majority of the reactivity detected in all patient groups was directed against covalent structural determinants present on all of the denatured collagens, suggesting a secondary reaction to tissue injury.

  2. Oxidative stress is a potential cost of breeding in male and female northern elephant seals

    PubMed Central

    Sharick, J.T.; Vazquez-Medina, J.P.; Ortiz, R.M.; Crocker, D.E.

    2014-01-01

    Summary The trade-off between current reproductive effort and survival is a key concept of life history theory. A variety of studies support the existence of this trade-off but the underlying physiological mechanisms are not well-understood. Oxidative stress has been proposed as a potential mechanism underlying the observed inverse relationship between reproductive investment and lifespan. Prolonged fasting is associated with oxidative stress including increases in the production of reactive oxygen species, oxidative damage and inflammation.Northern elephant seals (NES) undergo prolonged fasts while maintaining high metabolic rates during breeding. We investigated NES of both sexes to assess oxidative stress associated with extended breeding fasts. We measured changes in the plasma activity or concentrations of markers for oxidative stress in 30 adult male and 33 adult female northern elephant seals across their 1–3 month breeding fasts. Markers assessed included a pro-oxidant enzyme, several antioxidant enzymes, markers for oxidative damage to lipids, proteins and DNA, and markers for systemic inflammation.Plasma xanthine oxidase (XO), a pro-oxidant enzyme that increases production of oxidative radicals, and several protective antioxidant enzymes increased over breeding in both sexes. Males showed increased oxidative damage to lipids and DNA and increased systemic inflammation, while oxidative damage to proteins declined across breeding. In contrast, females showed no oxidative damage to lipids or DNA or changes in inflammation, but showed increases in oxidative damage to proteins. XO activity, antioxidant enzymes, oxidative damage markers, and inflammatory markers were strongly correlated in males but these relationships were weaker or non-existent in females.NES provide evidence for oxidative stress as a physiological cost of reproduction in a capital breeding mammal. Both sexes strongly up-regulated antioxidant defenses during breeding. Despite this response

  3. Oxygen potential of a prototypic Mo-cermet fuel containing plutonium oxide

    NASA Astrophysics Data System (ADS)

    Miwa, Shuhei; Osaka, Masahiko; Nozaki, Takahiro; Arima, Tatsumi; Idemitsu, Kazuya

    2015-10-01

    Oxygen potential of a prototypic Mo-cermet fuel containing 50 vol.% PuO2-x were investigated by the thermogravimetric analysis in the temperature range from 1273 K to 1473 K. It was shown that the oxygen potential and oxidation rate of the Mo-cermet were the same as those of pure PuO2-x below the oxygen potential of Mo/MoO2 oxidation reaction. The same features of the Mo-cermet sample containing 50 vol.% PuO2-x with those of pure PuO2-x were discussed in terms of the microstructure.

  4. Plasma electrolytic oxidation coatings on γTiAl alloy for potential biomedical applications.

    PubMed

    Lara Rodriguez, L; Sundaram, P A; Rosim-Fachini, E; Padovani, A M; Diffoot-Carlo, N

    2014-07-01

    In an attempt to enhance the potential of gamma titanium aluminide intermetallic alloy as a biomaterial, its surface characteristics were successfully modified using a calcium and phosphorous rich electrolyte through the application of plasma electrolytic oxidation. Scanning electron microscopy and atomic force microscopy were used to characterize the morphology and topographical features of the resulting coating while X-ray diffraction and energy dispersive spectroscopy were used to determine the surface oxide composition. The mechanical properties of the surface coating were characterized by nanoindentation studies. The results observed show the formation of a submicron scale porous structure and a concomitant increase in the surface roughness. The surface oxide was composed of rutile and anatase phases. Composition gradients of Ca and P were also present which can possibly enhance the biomaterial application potential of this treated surface. Nanoindentation measurements indicate the formation of a fairly compact oxide during the process. PMID:24259371

  5. Potential Impacts of two SO2 oxidation pathways on regional sulfate concentrations: acqueous-hase oxidation by NO2 and gas-phase oxidation by Stabilized Criegee Intermediates

    EPA Science Inventory

    We examine the potential impacts of two additional sulfate production pathways using the Community Multiscale Air Quality modeling system. First we evaluate the impact of the aqueous-phase oxidation of S(IV) by nitrogen dioxide using two published rate constants, differing by 1-2...

  6. The effect of coal bed dewatering and partial oxidation on biogenic methane potential

    USGS Publications Warehouse

    Jones, Elizabeth J.P.; Harris, Steve H.; Barnhart, Elliott P.; Orem, William H.; Clark, Arthur C.; Corum, Margo D.; Kirshtein, Julie D.; Varonka, Matthew S.; Voytek, Mary A.

    2013-01-01

    Coal formation dewatering at a site in the Powder River Basin was associated with enhanced potential for secondary biogenic methane determined by using a bioassay. We hypothesized that dewatering can stimulate microbial activity and increase the bioavailability of coal. We analyzed one dewatered and two water-saturated coals to examine possible ways in which dewatering influences coal bed natural gas biogenesis by looking at differences with respect to the native coal microbial community, coal-methane organic intermediates, and residual coal oxidation potential. Microbial biomass did not increase in response to dewatering. Small Subunit rRNA sequences retrieved from all coals sampled represented members from genera known to be aerobic, anaerobic and facultatively anaerobic. A Bray Curtis similarity analysis indicated that the microbial communities in water-saturated coals were more similar to each other than to the dewatered coal, suggesting an effect of dewatering. There was a higher incidence of long chain and volatile fatty acid intermediates in incubations of the dewatered coal compared to the water-saturated coals, and this could either be due to differences in microbial enzymatic activities or to chemical oxidation of the coal associated with O2 exposure. Dilute H2O2 treatment of two fractions of structural coal (kerogen and bitumen + kerogen) was used as a proxy for chemical oxidation by O2. The dewatered coal had a low residual oxidation potential compared to the water-saturated coals. Oxidation with 5% H2O2 did increase the bioavailability of structural coal, and the increase in residual oxidation potential in the water saturated coals was approximately equivalent to the higher methanogenic potential measured in the dewatered coal. Evidence from this study supports the idea that coal bed dewatering could stimulate biogenic methanogenesis through partial oxidation of the structural organics in coal once anaerobic conditions are restored.

  7. Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles’ Adverse Effects with a Complex of Bioprotectors

    PubMed Central

    Minigalieva, Ilzira A.; Katsnelson, Boris A.; Privalova, Larisa I.; Sutunkova, Marina P.; Gurvich, Vladimir B.; Shur, Vladimir Y.; Shishkina, Ekaterina V.; Valamina, Irene E.; Makeyev, Oleg H.; Panov, Vladimir G.; Varaksin, Anatoly N.; Grigoryeva, Ekaterina V.; Meshtcheryakova, Ekaterina Y.

    2015-01-01

    Stable suspensions of NiO and Mn3O4 nanoparticles (NPs) with a mean (±s.d.) diameter of 16.7 ± 8.2 and 18.4 ± 5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP) to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a “bio-protective complex” (BPC) comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment) of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA) test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn3O4-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn3O4-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn3O4-NPs in combination with NiO-NPs. PMID:26393577

  8. Attenuation of Combined Nickel(II) Oxide and Manganese(II, III) Oxide Nanoparticles' Adverse Effects with a Complex of Bioprotectors.

    PubMed

    Minigalieva, Ilzira A; Katsnelson, Boris A; Privalova, Larisa I; Sutunkova, Marina P; Gurvich, Vladimir B; Shur, Vladimir Y; Shishkina, Ekaterina V; Valamina, Irene E; Makeyev, Oleg H; Panov, Vladimir G; Varaksin, Anatoly N; Grigoryeva, Ekaterina V; Meshtcheryakova, Ekaterina Y

    2015-01-01

    Stable suspensions of NiO and Mn₃O₄ nanoparticles (NPs) with a mean (±s.d.) diameter of 16.7±8.2 and 18.4±5.4 nm, respectively, purposefully prepared by laser ablation of 99.99% pure nickel or manganese in de-ionized water, were repeatedly injected intraperitoneally (IP) to rats at a dose of 2.5 mg/kg 3 times a week up to 18 injections, either alone or in combination. A group of rats was injected with this combination with the background oral administration of a "bio-protective complex" (BPC) comprising pectin, vitamins A, C, E, glutamate, glycine, N-acetylcysteine, selenium, iodide and omega-3 PUFA, this composition having been chosen based on mechanistic considerations and previous experience. After the termination of injections, many functional and biochemical indices and histopathological features (with morphometric assessment) of the liver, spleen, kidneys and brain were evaluated for signs of toxicity. The Ni and Mn content of these organs was measured with the help of the atomic emission and electron paramagnetic resonance spectroscopies. We obtained blood leukocytes for performing the RAPD (Random Amplified Polymorphic DNA) test. Although both metallic NPs proved adversely bio-active in many respects considered in this study, Mn₃O₄-NPs were somewhat more noxious than NiO-NPs as concerns most of the non-specific toxicity manifestations and they induced more marked damage to neurons in the striatum and the hippocampus, which may be considered an experimental correlate of the manganese-induced Parkinsonism. The comparative solubility of the Mn₃O₄-NPs and NiO-NPs in a biological medium is discussed as one of the factors underlying the difference in their toxicokinetics and toxicities. The BPC has attenuated both the organ-systemic toxicity and the genotoxicity of Mn₃O₄-NPs in combination with NiO-NPs. PMID:26393577

  9. Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile

    SciTech Connect

    Roberts, John A. S.; Bullock, R. Morris

    2013-04-01

    Open circuit potentials were measured for acetonitrile solutions of a variety of acids and their conjugate bases under 1 atm H2. Acids examined were triethylammonium, dimethylformamidium, 2,6-dichloroanilinium, 4-cyanoanilinium, 4-bromoanilinium, and 4-anisidinium salts. These potentials, along with the pKa values of the acids, establish the value of the standard hydrogen electrode (SHE) potential in acetonitrile as -0.028(4) V vs the ferrocenium/ferrocene couple. Dimethylformamidium forms homoconjugates and other aggregates with dimethylformamide; open circuit potentials (OCPs) were used to quantify the extent of these reactions. Overpotentials for electrocatalytic hydrogen production and oxidation were determined from open circuit potentials and voltammograms of acidic or basic catalyst solutions under H2. For these solutions, agreement between OCP values and potentials calculated using the Nernst equation is within 12 mV. Finally, use of the measured equilibrium potential allows direct comparison of catalytic systems in different media; it requires neither pKa values, homoconjugation constants, nor the SHE potential.

  10. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon “Candidatus Nitrosotalea devanaterra”

    PubMed Central

    Sayavedra-Soto, Luis A.; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y.; Prosser, James I.; Nicol, Graeme W.

    2016-01-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer “Candidatus Nitrosotalea devanaterra” provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of “Ca. Nitrosotalea devanaterra” reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that “Ca. Nitrosotalea devanaterra” contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography–mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of “Ca. Nitrosotalea devanaterra” were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. PMID:26896134

  11. Identifying Potential Mechanisms Enabling Acidophily in the Ammonia-Oxidizing Archaeon "Candidatus Nitrosotalea devanaterra".

    PubMed

    Lehtovirta-Morley, Laura E; Sayavedra-Soto, Luis A; Gallois, Nicolas; Schouten, Stefan; Stein, Lisa Y; Prosser, James I; Nicol, Graeme W

    2016-05-01

    Ammonia oxidation is the first and rate-limiting step in nitrification and is dominated by two distinct groups of microorganisms in soil: ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). AOA are often more abundant than AOB and dominate activity in acid soils. The mechanism of ammonia oxidation under acidic conditions has been a long-standing paradox. While high rates of ammonia oxidation are frequently measured in acid soils, cultivated ammonia oxidizers grew only at near-neutral pH when grown in standard laboratory culture. Although a number of mechanisms have been demonstrated to enable neutrophilic AOB growth at low pH in the laboratory, these have not been demonstrated in soil, and the recent cultivation of the obligately acidophilic ammonia oxidizer "Candidatus Nitrosotalea devanaterra" provides a more parsimonious explanation for the observed high rates of activity. Analysis of the sequenced genome, transcriptional activity, and lipid content of "Ca Nitrosotalea devanaterra" reveals that previously proposed mechanisms used by AOB for growth at low pH are not essential for archaeal ammonia oxidation in acidic environments. Instead, the genome indicates that "Ca Nitrosotalea devanaterra" contains genes encoding both a predicted high-affinity substrate acquisition system and potential pH homeostasis mechanisms absent in neutrophilic AOA. Analysis of mRNA revealed that candidate genes encoding the proposed homeostasis mechanisms were all expressed during acidophilic growth, and lipid profiling by high-performance liquid chromatography-mass spectrometry (HPLC-MS) demonstrated that the membrane lipids of "Ca Nitrosotalea devanaterra" were not dominated by crenarchaeol, as found in neutrophilic AOA. This study for the first time describes a genome of an obligately acidophilic ammonia oxidizer and identifies potential mechanisms enabling this unique phenotype for future biochemical characterization. PMID:26896134

  12. Nitric-oxide adsorption and oxidation on Pt( 1 1 1 ) in electrolyte solution under potential control

    NASA Astrophysics Data System (ADS)

    Casero, E.; Alonso, C.; Martín-Gago, J. A.; Borgatti, F.; Felici, R.; Renner, F.; Lee, T.-L.; Zegenhagen, J.

    2002-06-01

    We studied the adsorption and oxidation of NO adlayers on Pt(1 1 1) prepared from different NO precursors in an electrochemical cell in situ by surface X-ray diffraction and ex situ by X-ray photoemission spectroscopy. We found that NO adsorbs molecularly, independent of the preparation method. There is no relaxation of the outermost Pt atomic layer induced by the presence of adsorbed NO. We observe a surface structure of the Pt(1 1 1) very similar to the clean surface prepared under ultra-high vacuum conditions. A surface mediated oxidation process of the NO towards NO 2 is initiated at a potential of around 0.95 V vs. normal hydrogen electrode. The in situ measurements of crystal truncation rods show that this process is accompanied by a significant roughening of the surface.

  13. Sufentanil and nitrous oxide anaesthesia for the recording of transcranial magnetic motor evoked potentials in dogs.

    PubMed

    Van Ham, L M; Nijs, J; Mattheeuws, D R; Vanderstraeten, G G

    1996-06-29

    Transcranial magnetic motor evoked potentials were recorded from the extensor carpi radialis muscle of the forelimbs and from the cranial tibial muscle of the hindlimbs of anaesthetised dogs. The dogs were premedicated with droperidol and fentanyl and a light plane of anaesthesia was induced and maintained with sufentanil and nitrous oxide. The potentials recorded under sufentanil and nitrous oxide anaesthesia were suppressed in comparison with baseline recordings under droperidol and fentanyl sedation: their latencies were significantly increased and their amplitudes significantly decreased (P < 0.05). However, the potentials could be recorded reliably in all the dogs and with very good reproducibility. This narcotic anaesthesia also allowed sensory evoked potentials to be recorded reliably. PMID:8817859

  14. [Complexes of cobalt (II, III) with derivatives of dithiocarbamic acid--effectors of peptidases of Bacillus thuringiensis and alpha-L-rhamnozidase of Eupenicillium erubescens and Cryptococcus albidus].

    PubMed

    Varbanets, L D; Matseliukh, E V; Seĭfullina, I I; Khitrich, N V; Nidialkova, N A; Hudzenko, E V

    2014-01-01

    The influence of cobalt (II, III) coordinative compounds with derivatives of dithiocarbamic acid on Bacillus thuringiensis IMV B-7324 peptidases with elastase and fibrinolytic activity and Eupenicillium erubescens and Cryptococcus albidus alpha-L-rhamnosidases have been studied. Tested coordinative compounds of cobalt (II, III) on the basis of their composition and structure are presented by 6 groups: 1) tetrachlorocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoCl4]; 2) tetrabromocobaltates (II) of 3,6-di(R,R')-iminio-1,2,4,5-tetratiane--(RR')2Ditt[CoBr4]; 3) isothiocyanates of tetra((R,R')-dithiocarbamatoisothiocyanate)cobalt (II)--[Co(RR'Ditc)4](NCS)2]; 4) dithiocarbamates of cobalt (II)--[Co(S2CNRR')2]; 5) dithiocarbamates of cobalt (III)--[Co(S2CNRR')3]; 6) molecular complexes of dithiocarbamates of cobalt (III) with iodine--[Co(S2CNRR')3] x 2I(2). These groups (1-6) are combined by the presence of the same complexing agent (cobalt) and a fragment S2CNRR' in their molecules. Investigated complexes differ by a charge of intrinsic coordination sphere: anionic (1-2), cationic (3) and neutral (4-6). The nature of substituents at nitrogen atoms varies in each group of complexes. It is stated that the studied coordination compounds render both activating and inhibiting effect on enzyme activity, depending on composition, structure, charge of complex, coordination number of complex former and also on the enzyme and strain producer. Maximum effect is achieved by activating of peptidases B. thuringiensis IMV B-7324 with elastase and fibrinolytic activity. So, in order to improve the catalytic properties of peptidase 1, depending on the type of exhibited activity, it is possible to recommend the following compounds: for elastase--coordinately nonsaturated complexes of cobalt (II) (1-4) containing short aliphatic or alicyclic substituents at atoms of nitrogen and increasing activity by 17-100% at an average; for fibrinolytic

  15. A randomized phase III trial comparing S-1 versus UFT as adjuvant chemotherapy for stage II/III rectal cancer (JFMC35-C1: ACTS-RC)

    PubMed Central

    Oki, E.; Murata, A.; Yoshida, K.; Maeda, K.; Ikejiri, K.; Munemoto, Y.; Sasaki, K.; Matsuda, C.; Kotake, M.; Suenaga, T.; Matsuda, H.; Emi, Y.; Kakeji, Y.; Baba, H.; Hamada, C.; Saji, S.; Maehara, Y.

    2016-01-01

    Backgrounds Preventing distant recurrence and achieving local control are important challenges in rectal cancer treatment, and use of adjuvant chemotherapy has been studied. However, no phase III study comparing adjuvant chemotherapy regimens for rectal cancer has demonstrated superiority of a specific regimen. We therefore conducted a phase III study to evaluate the superiority of S-1 to tegafur–uracil (UFT), a standard adjuvant chemotherapy regimen for curatively resected stage II/III rectal cancer in Japan, in the adjuvant setting for rectal cancer. Patients and methods The ACTS-RC trial was an open-label, randomized, phase III superiority trial conducted at 222 sites in Japan. Patients aged 20–80 with stage II/III rectal cancer undergoing curative surgery without preoperative therapy were randomly assigned to receive UFT (500–600 mg/day on days 1–5, followed by 2 days rest) or S-1 (80–120 mg/day on days 1–28, followed by 14 days rest) for 1 year. The primary end point was relapse-free survival (RFS), and the secondary end points were overall survival and adverse events. Results In total, 961 patients were enrolled from April 2006 to March 2009. The primary analysis was conducted in 480 assigned to receive UFT and 479 assigned to receive S-1. Five-year RFS was 61.7% [95% confidence interval (CI) 57.1% to 65.9%] for UFT and 66.4% (95% CI 61.9% to 70.5%) for S-1 [P = 0.0165, hazard ratio (HR): 0.77, 95% CI 0.63–0.96]. Five-year survival was 80.2% (95% CI 76.3% to 83.5%) for UFT and 82.0% (95% CI 78.3% to 85.2%) for S-1. The main grade 3 or higher adverse events were increased alanine aminotransferase and diarrhea (each 2.3%) in the UFT arm and anorexia, diarrhea (each 2.6%), and fatigue (2.1%) in the S-1 arm. Conclusion One-year S-1 treatment is superior to UFT with respect to RFS and has therefore become a standard adjuvant chemotherapy regimen for stage II/III rectal cancer following curative resection. PMID:27056996

  16. Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta.

    PubMed

    Damashek, Julian; Smith, Jason M; Mosier, Annika C; Francis, Christopher A

    2014-01-01

    Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California's Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the extensive discharge of ammonium into the Sacramento River has altered this ecosystem by vastly increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. This debate surrounding ammonium inputs highlights the importance of understanding the rates of, and controls on, nitrogen (N) cycling processes across the delta. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (which codes for the α-subunit of ammonia monooxygenase). There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB) outnumbering ammonia-oxidizing archaea (AOA) only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The benthic ammonia oxidizers in this nutrient-rich aquatic ecosystem may be important players in its overall nutrient cycling, and their community structure and biogeochemical function appear related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways, including benthic

  17. Airway inflammation and oxidative potential of air pollutant particles in a pediatric asthma panel

    PubMed Central

    Delfino, Ralph J.; Staimer, Norbert; Tjoa, Thomas; Gillen, Daniel L.; Schauer, James J.; Shafer, Martin M.

    2014-01-01

    Airborne particulate matter (PM) components from fossil fuel combustion can induce oxidative stress initiated by reactive oxygen species (ROS). Reported associations between worsening asthma and PM2.5 mass could be related to PM oxidative potential to induce airway oxidative stress and inflammation (hallmarks of asthma pathology). We followed 45 schoolchildren with persistent asthma in their southern California homes daily over 10 days with offline fractional exhaled nitric oxide (FENO), a biomarker of airway inflammation. Ambient exposures included daily average PM2.5, PM2.5 elemental and organic carbon (EC, OC), NO2, O3, and endotoxin. We assessed PM2.5 oxidative potential using both an abiotic and an in vitro bioassay on aqueous extracts of daily particle filters: (1) dithiothreitol (DTT) assay (abiotic), representing chemically produced ROS; and (2) ROS generated intracellularly in a rat alveolar macrophage model using the fluorescent probe 2′7′-dicholorohidroflourescin diacetate. We analyzed relations of FENO to air pollutants in mixed linear regression models. FENO was significantly positively associated with lag 1-day and 2-day averages of traffic-related markers (EC, OC, and NO2), DTT and macrophage ROS, but not PM2.5 mass. DTT associations were nearly twice as strong as other exposures per interquartile range: median FENO increased 8.7–9.9% per 0.43 nmole/min/m3 DTT. Findings suggest that future research in oxidative stress-related illnesses such as asthma and PM exposure would benefit from assessments of PM oxidative potential and composition. PMID:23673461

  18. Benthic ammonia oxidizers differ in community structure and biogeochemical potential across a riverine delta

    PubMed Central

    Damashek, Julian; Smith, Jason M.; Mosier, Annika C.; Francis, Christopher A.

    2015-01-01

    Nitrogen pollution in coastal zones is a widespread issue, particularly in ecosystems with urban or agricultural watersheds. California's Sacramento-San Joaquin Delta, at the landward reaches of San Francisco Bay, is highly impacted by both agricultural runoff and sewage effluent, leading to chronically high nutrient loadings. In particular, the extensive discharge of ammonium into the Sacramento River has altered this ecosystem by vastly increasing ammonium concentrations and thus changing the stoichiometry of inorganic nitrogen stocks, with potential effects throughout the food web. This debate surrounding ammonium inputs highlights the importance of understanding the rates of, and controls on, nitrogen (N) cycling processes across the delta. To date, however, there has been little research examining N biogeochemistry or N-cycling microbial communities in this system. We report the first data on benthic ammonia-oxidizing microbial communities and potential nitrification rates for the Sacramento-San Joaquin Delta, focusing on the functional gene amoA (which codes for the α-subunit of ammonia monooxygenase). There were stark regional differences in ammonia-oxidizing communities, with ammonia-oxidizing bacteria (AOB) outnumbering ammonia-oxidizing archaea (AOA) only in the ammonium-rich Sacramento River. High potential nitrification rates in the Sacramento River suggested these communities may be capable of oxidizing significant amounts of ammonium, compared to the San Joaquin River and the upper reaches of San Francisco Bay. Gene diversity also showed regional patterns, as well as phylogenetically unique ammonia oxidizers in the Sacramento River. The benthic ammonia oxidizers in this nutrient-rich aquatic ecosystem may be important players in its overall nutrient cycling, and their community structure and biogeochemical function appear related to nutrient loadings. Unraveling the microbial ecology and biogeochemistry of N cycling pathways, including benthic

  19. ANAEROBIC DDT BIOTRANSFORMATION: ENHANCEMENT BY APPLICATION OF SURFACTANTS AND LOW OXIDATION REDUCTION POTENTIAL

    EPA Science Inventory

    Enhancement of anaerobic DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl) ethane) biotransformation by mixed cultures was studied with application of surfactants and oxidation reduction potential reducing agents. Without amendments, DDT transformation resulted mainly in the pr...

  20. COMPUTATIONAL ELECTROCHEMISTRY: AQUEOUS ONE-ELECTRON OXIDATION POTENTIALS FOR SUBSTITUTED ANILINES

    EPA Science Inventory

    Semiempirical molecular orbital theory and density functional theory are used to compute one-electron oxidation potentials for aniline and a set of 21 mono- and di-substituted anilines in aqueous solution. Linear relationships between theoretical predictions and experiment are co...

  1. Protein Kinase A Governs Oxidative Phosphorylation Kinetics and Oxidant Emitting Potential at Complex I

    PubMed Central

    Lark, Daniel S.; Reese, Lauren R.; Ryan, Terence E.; Torres, Maria J.; Smith, Cody D.; Lin, Chien-Te; Neufer, P. Darrell

    2015-01-01

    The mitochondrial electron transport system (ETS) is responsible for setting and maintaining both the energy and redox charges throughout the cell. Reversible phosphorylation of mitochondrial proteins, particularly via the soluble adenylyl cyclase (sAC)/cyclic AMP (cAMP)/Protein kinase A (PKA) axis, has recently been revealed as a potential mechanism regulating the ETS. However, the governance of cAMP/PKA signaling and its implications on ETS function are incompletely understood. In contrast to prior reports using exogenous bicarbonate, we provide evidence that endogenous CO2 produced by increased tricarboxylic acid (TCA) cycle flux is insufficient to increase mitochondrial cAMP levels, and that exogenous addition of membrane permeant 8Br-cAMP does not enhance mitochondrial respiratory capacity. We also report important non-specific effects of commonly used inhibitors of sAC which preclude their use in studies of mitochondrial function. In isolated liver mitochondria, inhibition of PKA reduced complex I-, but not complex II-supported respiratory capacity. In permeabilized myofibers, inhibition of PKA lowered both the Km and Vmax for complex I-supported respiration as well as succinate-supported H2O2 emitting potential. In summary, the data provided here improve our understanding of how mitochondrial cAMP production is regulated, illustrate a need for better tools to examine the impact of sAC activity on mitochondrial biology, and suggest that cAMP/PKA signaling contributes to the governance of electron flow through complex I of the ETS. PMID:26635618

  2. Oxygen transport by oxygen potential gradient in dense ceramic oxide membranes

    SciTech Connect

    Maiya, P.S.; Balachandran, U.; Dusek, J.T.; Mieville, R.L.; Kleefisch, M.S.; Udovich, C.A.

    1996-05-01

    Numerous studies have been conducted in recent years on the partial oxidation of methane to synthesis gas (syngas: CO + H{sub 2}) with air as the oxidant. In partial oxidation, a mixed-oxide ceramic membrane selectively transports oxygen from the air; this transport is driven by the oxygen potential gradient. Of the several ceramic materials the authors have tested, a mixed oxide based on the Sr-Fe-Co-O system has been found to be very attractive. Extensive oxygen permeability data have been obtained for this material in methane conversion experiments carried out in a reactor. The data have been analyzed by a transport equation based on the phenomenological theory of diffusion under oxygen potential gradients. Thermodynamic calculations were used to estimate the driving force for the transport of oxygen ions. The results show that the transport equation deduced from the literature describes the permeability data reasonably well and can be used to determine the diffusion coefficients and the associated activation energy of oxygen ions in the ceramic membrane material.

  3. Thyroid Function in Women after Multimodal Treatment for Breast Cancer Stage II/III: Comparison With Controls From a Population Sample

    SciTech Connect

    Reinertsen, Kristin Valborg; Cvancarova, Milada; Wist, Erik; Bjoro, Trine; Dahl, Alv A.; Danielsen, Turi; Fossa, Sophie D.

    2009-11-01

    Purpose: A possible association between thyroid diseases (TD) and breast cancer (BC) has been debated. We examined prevalence and development of TD in women after multimodal treatment for Stage II/III BC compared with women from a general population. Secondarily, we explored the impact of two different radiotherapy (RT) techniques (standardized field arrangements vs. computed tomography [CT]-based dose planning) on TD in BC patients examined 35-120 months after primary BC treatment. Methods and Materials: A total of 403 BC patients completed a questionnaire about TD and had blood samples taken for analyses of thyroid function. All had undergone postoperative RT with or without (2%) adjuvant systemic treatment. The results in the BC patients were compared with a cancer-free, age-matched control group from a general population (CGr). Results: There was higher prevalence of self-reported hypothyroidism in the BC patients as compared with the CGr (18% vs. 6%, p < 0.001). The raised prevalence was predominantly due to a substantial increase in the development of hypothyroidism after BC diagnosis, whereas the prevalence of hypothyroidism before BC diagnosis was similar to that observed in the CGr. Patients treated with CT-based RT showed a trend for increased post-BC development of hypothyroidism as compared with those treated with standardized field arrangements (p = 0.08). Conclusions: Hypothyroidism is significantly increased in women after multimodal treatment for Stage II/III BC. Radiation to the thyroid gland may be a contributing factor. BC patients should be routinely screened for hypothyroidism.

  4. The potential of Angeli’s salt to decrease nitric oxide scavenging by plasma hemoglobin

    PubMed Central

    He, Xiaojun; Azarov, Ivan; Jeffers, Anne; Presley, Tennille; Richardson, Jodi; King, S. Bruce; Gladwin, Mark T.; Kim-Shapiro, Daniel B.

    2008-01-01

    Release of hemoglobin from the erythrocyte during intravascular hemolysis contributes to the pathology of a variety of diseased states. This effect is partially due to the enhanced ability of cell-free plasma hemoglobin, which is primarily found in the ferrous, oxygenated state, to scavenge nitric oxide. Oxidation of the cell-free hemoglobin to methemoglobin, which does not effectively scavenge nitric oxide, using inhaled nitric oxide has been shown to be effective in limiting pulmonary and systemic vasoconstriction. However, the ferric heme species may be reduced back to ferrous hemoglobin in plasma and has the potential to drive injurious redox chemistry. We propose that compounds that selectively convert cell-free hemoglobin to ferric, and ideally iron-nitrosylated heme species that do not actively scavenge nitric oxide would effectively treat intravascular hemolysis. We show here that nitroxyl, generated by Angeli’s salt (Sodium α-oxyhyponitrite, Na2N2O3), preferentially reacts with cell-free hemoglobin compared to that encapsulated in the red blood cell under physiologically relevant conditions. Nitroxyl oxidizes oxygenated ferrous hemoglobin to methemoglobin and can convert the methemoglobin to a more stable, less toxic species, iron-nitrosyl hemoglobin. These results support the notion that Angeli’s salt or a similar compound could be used to effectively treat conditions associated with intravascular hemolysis. PMID:18243145

  5. Effects of Aftermarket Control Technologies on Gas and Particle Phase Oxidative Potential from Diesel Engine Emissions.

    PubMed

    Pavlovic, Jelica; Holder, Amara L; Yelverton, Tiffany L B

    2015-09-01

    Particulate matter (PM) originating from diesel combustion is a public health concern due to its association with adverse effects on respiratory and cardiovascular diseases and lung cancer. This study investigated emissions from three stationary diesel engines (gensets) and varying power output (230 kW, 400 kW, and 600 kW) at 50% and 90% load to determine concentrations of gaseous (GROS) and PM reactive oxygen species (PMROS). In addition, the influence of three modern emission control technologies on ROS emissions was evaluated: active and passive diesel particulate filters (A-DPF and P-DPF) and a diesel oxidation catalyst (DOC). PMROS made up 30-50% of the total ROS measured without aftermarket controls. All applied controls removed PMROS by more than 75% on average. However, the oxidative potential of PM downstream of these devices was not diminished at the same rate and particles surviving the A-PDF had an even higher oxidative potential on a per PM mass basis compared to the particles emitted by uncontrolled gensets. Further, the GROS as compared to PMROS emissions were not reduced with the same efficiency (<36%). GROS concentrations were highest with the DOC in use, indicating continued formation of GROS with this control. Correlation analyses showed that PMROS and to a lesser extent GROS have a good correlation with semivolatile organic carbon (OC1) subfraction. In addition, results suggest that chemical composition, rather than PM size, is responsible for differences in the PM oxidative potential. PMID:26252945

  6. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Kramer, Amanda J.; Rattanavaraha, Weruka; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Lin, Ying-Hsuan

    2016-04-01

    Fine particulate matter (PM2.5) is known to contribute to adverse health effects, such as asthma, cardiopulmonary disease, and lung cancer. Secondary organic aerosol (SOA) is a major component of PM2.5 and can be enhanced by atmospheric oxidation of biogenic volatile organic compounds in the presence of anthropogenic pollutants, such as nitrogen oxides (NOx) and sulfur dioxide. However, whether biogenic SOA contributes to adverse health effects remains unclear. The objective of this study was to assess the potential of isoprene-derived epoxides and SOA for generating reactive oxygen species (ROS) in light of the recent recognition that atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol is a major contributor to the global SOA burden. The dithiothreitol (DTT) assay was used to characterize the ROS generation by the isoprene-derived epoxides, trans-β-isoprene epoxydiol (trans-β-IEPOX) and methacrylic acid epoxide (MAE), and their hydrolysis products, the 2-methyltetrol diastereomers (2-MT), 2-methylglyceric acid (2-MG), their organosulfate derivatives, as well as an isoprene-derived hydroxyhydroperoxide (ISOPOOH). In addition, ROS generation potential was evaluated for total SOA produced from photooxidation of isoprene and methacrolein (MACR) as well as from the reactive uptake of trans-β-IEPOX and MAE onto acidified sulfate aerosol. The high-NOx regime, which yields 2-MG-, MAE- and MACR-derived SOA has a higher ROS generation potential than the low-NOx regime, which yields 2-MT, IEPOX- and isoprene-derived SOA. ISOPOOH has an ROS generation potential similar to 1,4-naphthoquinone (1,4-NQ), suggesting a significant contribution of aerosol-phase organic peroxides to PM oxidative potential. MAE- and MACR-derived SOA show equal or greater ROS generation potential than reported in studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA.

  7. Brassinosteroid Ameliorates Zinc Oxide Nanoparticles-Induced Oxidative Stress by Improving Antioxidant Potential and Redox Homeostasis in Tomato Seedling.

    PubMed

    Li, Mengqi; Ahammed, Golam J; Li, Caixia; Bao, Xiao; Yu, Jingquan; Huang, Chunlei; Yin, Hanqin; Zhou, Jie

    2016-01-01

    In the last few decades use of metal-based nanoparticles (MNPs) has been increased significantly that eventually contaminating agricultural land and limiting crop production worldwide. Moreover, contamination of food chain with MNPs has appeared as a matter of public concern due to risk of potential health hazard. Brassinosteroid has been shown to play a critical role in alleviating heavy metal stress; however, its function in relieving zinc oxide nanoparticles (ZnO NPs)-induced phytotoxicity remains unknown. In this study, we investigated the potential role of 24-epibrassinolide (BR) in mitigating ZnO NPs-induced toxicity in tomato seedlings. Seedling growth, biomass production, and root activity gradually decreased, but Zn accumulation increased with increasing ZnO NPs concentration (10-100 mg/L) in growth media (½ MS). The augmentation of BR (5 nM) in media significantly ameliorated 50 mg/L ZnO NPs-induced growth inhibition. Visualization of hydrogen peroxide (H2O2), and quantification of H2O2 and malondialdehyde (MDA) in tomato roots confirmed that ZnO NPs induced an oxidative stress. However, combined treatment with BR and ZnO NPs remarkably reduced concentration of H2O2 and MDA as compared with ZnO NPs only treatment, indicating that BR supplementation substantially reduced oxidative stress. Furthermore, the activities of key antioxidant enzymes such as superoxide dismutase (SOD), catalase, ascorbate peroxidase and glutathione reductase were increased by combined treatment of BR and ZnO NPs compared with ZnO NPs only treatment. BR also increased reduced glutathione (GSH), but decreased oxidized glutathione (GSSG)] and thus improved cellular redox homeostasis by increasing GSH:GSSG ratio. The changes in relative transcript abundance of corresponding antioxidant genes such as Cu/Zn SOD, CAT1, GSH1, and GR1 were in accordance with the changes in those antioxidants under different treatments. More importantly, combined application of BR and ZnO NPs significantly

  8. Brassinosteroid Ameliorates Zinc Oxide Nanoparticles-Induced Oxidative Stress by Improving Antioxidant Potential and Redox Homeostasis in Tomato Seedling

    PubMed Central

    Li, Mengqi; Ahammed, Golam J.; Li, Caixia; Bao, Xiao; Yu, Jingquan; Huang, Chunlei; Yin, Hanqin; Zhou, Jie

    2016-01-01

    In the last few decades use of metal-based nanoparticles (MNPs) has been increased significantly that eventually contaminating agricultural land and limiting crop production worldwide. Moreover, contamination of food chain with MNPs has appeared as a matter of public concern due to risk of potential health hazard. Brassinosteroid has been shown to play a critical role in alleviating heavy metal stress; however, its function in relieving zinc oxide nanoparticles (ZnO NPs)-induced phytotoxicity remains unknown. In this study, we investigated the potential role of 24-epibrassinolide (BR) in mitigating ZnO NPs-induced toxicity in tomato seedlings. Seedling growth, biomass production, and root activity gradually decreased, but Zn accumulation increased with increasing ZnO NPs concentration (10–100 mg/L) in growth media (½ MS). The augmentation of BR (5 nM) in media significantly ameliorated 50 mg/L ZnO NPs-induced growth inhibition. Visualization of hydrogen peroxide (H2O2), and quantification of H2O2 and malondialdehyde (MDA) in tomato roots confirmed that ZnO NPs induced an oxidative stress. However, combined treatment with BR and ZnO NPs remarkably reduced concentration of H2O2 and MDA as compared with ZnO NPs only treatment, indicating that BR supplementation substantially reduced oxidative stress. Furthermore, the activities of key antioxidant enzymes such as superoxide dismutase (SOD), catalase, ascorbate peroxidase and glutathione reductase were increased by combined treatment of BR and ZnO NPs compared with ZnO NPs only treatment. BR also increased reduced glutathione (GSH), but decreased oxidized glutathione (GSSG)] and thus improved cellular redox homeostasis by increasing GSH:GSSG ratio. The changes in relative transcript abundance of corresponding antioxidant genes such as Cu/Zn SOD, CAT1, GSH1, and GR1 were in accordance with the changes in those antioxidants under different treatments. More importantly, combined application of BR and ZnO NPs

  9. Temperature response of methane oxidation and production potentials in peatland ecosystems across Finland

    NASA Astrophysics Data System (ADS)

    Welti, Nina; Korrensalo, Aino; Kerttula, Johanna; Maljanen, Marja; Uljas, Salli; Lohila, Annalea; Laine, Anna; Vesala, Timo; Elliott, David; Tuittila, Eeva-Stiina

    2016-04-01

    It has been suggested that the ecosystems located in the high latitudes are especially sensitive to warming. Therefore, we compared 14 peatland systems throughout Finland along a latitudinal gradient from 69°N to 61°N to examine the response of methane production and methane oxidation with warming climate. Peat samples were taken at the height of the growing season in 2015 from 0 - 10cm below the water table depth. The plant communities in sampling locations were described by estimating cover of each plant species and pH of water was measured. Upon return to the lab, we made two parallel treatments, under anoxic and oxic conditions in order to calculate the CH4 production and consumption potentials of the peat and used three temperatures, 4°C, 17.5°C, and 30°C to examine the temperature effect on the potentials. We hypothesized that there will be an observable response curve in CH4 production and oxidation relative to temperature with a greater response with increasing latitude. In general, increasing temperature increased the potential for CH4 production and oxidation, at some sites, the potential was highest at 17.5°C, indicating that there is an optimum temperature threshold for the in situ methane producing and oxidizing microbial communities. Above this threshold, the peat microbial communities are not able to cope with increasing temperature. This is especially noticeable for methane oxidation at sites above 62°N. As countries are being expected to adequately account for their greenhouse gas budgets with increasing temperature models, knowing where the temperature threshold exists is of critical importance.

  10. Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Dixit, H.; Saniz, R.; Cottenier, S.; Lamoen, D.; Partoens, B.

    2012-05-01

    We present electronic band structures of transparent oxides calculated using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. We studied the basic n-type conducting binary oxides In2O3, ZnO, CdO and SnO2 along with the p-type conducting ternary oxides delafossite CuXO2 (X=Al, Ga, In) and spinel ZnX2O4 (X=Co, Rh, Ir). The results are presented for calculated band gaps and effective electron masses. We discuss the improvements in the band gap determination using TB-mBJ compared to the standard generalized gradient approximation (GGA) in density functional theory (DFT) and also compare the electronic band structure with available results from the quasiparticle GW method. It is shown that the calculated band gaps compare well with the experimental and GW results, although the electron effective mass is generally overestimated.

  11. Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential.

    PubMed

    Dixit, H; Saniz, R; Cottenier, S; Lamoen, D; Partoens, B

    2012-05-23

    We present electronic band structures of transparent oxides calculated using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. We studied the basic n-type conducting binary oxides In(2)O(3), ZnO, CdO and SnO(2) along with the p-type conducting ternary oxides delafossite CuXO(2) (X=Al, Ga, In) and spinel ZnX(2)O(4) (X=Co, Rh, Ir). The results are presented for calculated band gaps and effective electron masses. We discuss the improvements in the band gap determination using TB-mBJ compared to the standard generalized gradient approximation (GGA) in density functional theory (DFT) and also compare the electronic band structure with available results from the quasiparticle GW method. It is shown that the calculated band gaps compare well with the experimental and GW results, although the electron effective mass is generally overestimated. PMID:22538303

  12. Preparation and characterization of an iron oxide-hydroxyapatite nanocomposite for potential bone cancer therapy

    PubMed Central

    Sneha, Murugesan; Sundaram, Nachiappan Meenakshi

    2015-01-01

    Recently, multifunctional magnetic nanostructures have been found to have potential applications in biomedical and tissue engineering. Iron oxide nanoparticles are biocompatible and have distinctive magnetic properties that allow their use in vivo for drug delivery and hyperthermia, and as T2 contrast agents for magnetic resonance imaging. Hydroxyapatite is used frequently due to its well-known biocompatibility, bioactivity, and lack of toxicity, so a combination of iron oxide and hydroxyapatite materials could be useful because hydroxyapatite has better bone-bonding ability. In this study, we prepared nanocomposites of iron oxide and hydroxyapatite and analyzed their physicochemical properties. The results suggest that these composites have superparamagnetic as well as biocompatible properties. This type of material architecture would be well suited for bone cancer therapy and other biomedical applications. PMID:26491311

  13. Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard.

    PubMed

    Osmond, Megan J; McCall, Maxine J

    2010-03-01

    Sunscreens containing metal oxide nanoparticles appear transparent on the skin and provide excellent protection against sunburn caused by UV radiation. While it is likely that nanoparticles remain on the surface of the skin of healthy adult humans, and thus are considered safe for use in sunscreens, there has been no comprehensive assessment of the impact on human health from exposure to the metal oxide nanoparticles destined for use in sunscreens, either in the workplace during the manufacturing process, in long-term use across a range of skin conditions, or upon release into the broader environment, either accidentally or consequent of normal sunscreen use. In this review, we focus on zinc oxide nanoparticles destined for use in modern sunscreens, and discuss the potential for human exposure and the health hazard at each stage of their manufacture and use. We highlight where there is a need for further research. PMID:20795900

  14. Control of intramolecular electron transfer by protonation: Dimers and polymers containing ruthenium II/III and 44' azopyridine

    NASA Astrophysics Data System (ADS)

    Launay, Jean-Pierre; Marvaud, Valérie

    1992-07-01

    The association of pentammine ruthenium(II) with the reducible ligand 44' azopyridine leads to a pH induced redox reaction in which ruthenium is oxidized to the III state, while 44' azopyridine is reduced to hydrazopyridine. In this process, the conjugated ligand is transformed in a nonconjugated one, with loss of its intramolecular electron transfer properties. In order to exploit this control of an intramolecular electron transfer by a protonation process, we have prepared ``shish-kebab'' polymers by first inserting ruthenium in tetrakis (3,5-diterbutyl 4-hydroxyphenyl) porphyrin under a CO atmosphere. The resulting Ru(CO)porphyrin complex is photochemically decarbonylated in the presence of bridging ligands (44×azopyridine or pyrazine). Polymers are thus obtained, which can be oxidized by iodine, giving rise to intervalence transitions between ruthenium(II) and (III) in the near-infrared. This provides a convenient way to monitor electron transfer along the polymer chain. In the case of 44' azopyridine, the pH induced redox reaction is again observed. Starting from a homovalent ruthenium(II) chain, this gives the possibility to switch ``ON'' or ``OFF'' the intervalence transition by a protonation/deprotonation reaction.

  15. Effect of biochar on nitrous oxide emission and its potential mechanisms.

    PubMed

    Liu, Liang; Shen, Guoqing; Sun, Mingxing; Cao, Xinde; Shang, Guofeng; Chen, Ping

    2014-08-01

    Extensive use of biochar to mitigate nitrous oxide (N2O) emission is limited by the lack of understanding on the exact mechanisms altering N2O emission from biochar-amended soil. Biochars produced from rice straw and dairy manure at 350 and 500 degrees C by oxygen-limited pyrolysis were used to investigate their influence on N2O emission. A quadratic effect of biochar levels was observed on the N2O emissions. The potential mechanisms were explored by terminal restriction fragment length polymorphism (T-RFLP) and real-time polymerase chain reaction (qPCR). A lower relative abundance of bacteria, which included ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), was observed at 4% biochar application rate. Reduced copy numbers of the ammonia monooxygenase gene amoA and the nitrite reductase gene nirS coincided with decreased N2O emissions. Therefore, biochar may potentially alter N2O emission by affecting ammonia-oxidizing and denitrification bacteria, which is determined by the application rate of biochar in soil. Implications: Biochar research has received increased interest in recent years because of the potential beneficial effects of biochar on soil properties. Recent research shows that biochar can alter the rates of nitrogen cycling in soil systems by influencing nitrification and denitrification, which are key sources of the greenhouse gas nitrous oxide (N2O). However, there are still some controversial data. The purpose of this research was to (1) examine how applications of different dose of biochar to soil affect emission of N2O and (2) improve the understanding of the underlying mechanisms. PMID:25185392

  16. Bacterial Fe(II) oxidation distinguished by long-range correlation in redox potential

    NASA Astrophysics Data System (ADS)

    Enright, Allison M. L.; Ferris, F. Grant

    2016-05-01

    The kinetics of bacterial Fe(II) oxidation was investigated 297 m underground at the Äspö Hard Rock Laboratory (near Oskarshamn, Sweden) under steady state groundwater flow conditions in a flow-through cell containing well-developed flocculent mats of bacteriogenic iron oxides (BIOS). Pseudo first-order rate constants of 0.004 min-1 and 0.009 min-1 were obtained for chemical and bacterial Fe(II) oxidation, respectively, based on the 104 min retention time of groundwater in the flow cell, inlet Fe(II) concentration of 21.0 ± 0.5 µm, outlet Fe(II) concentration of 8.5 ± 0.7 µm, as well as constant pH = - log H+ of 7.42 ± 0.01, dissolved O2 concentration of 0.11 ± 0.01 mg/L, and groundwater temperature of 12.4 ± 0.1°C. Redox potential was lower at the BIOS-free inlet (-135.4 ± 1.16 mV) compared to inside BIOS within the flow cell (-112.6 ± 1.91 mV), consistent with the Nernst relationship and oxidation of Fe(II) to Fe(III). Further evaluation of the redox potential time series data using detrended fluctuation analysis (DFA) revealed power law scaling in the amplitude of fluctuations over increasing intervals of time with significantly different (p < 0.01) DFA α scaling exponents of 1.89 ± 0.03 for BIOS and 1.67 ± 0.06 at the inlet. These α values not only signal the presence of long-range correlation in the redox potential time series measurements but also distinguish between the slower rate of chemical Fe(II) oxidation at the inlet and faster rate accelerated by FeOB in BIOS.

  17. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States

    SciTech Connect

    Yavitt, J.B.; Lang, G.E.; Downey, D.M. )

    1988-09-01

    Potential rates of methane production and carbon dioxide production were measured on 11 dates in 1986 in peat from six plant communities typical of moss-dominated peatlands in the Appalachian Mountains. Annual methane production ranged from 2.7 to 17.5 mol/sq m, and annual carbon dioxide production ranged from 30.6 to 79.0 mol/sq m. The wide range in methane production values among the communities found within a single peatland indicates that obtaining one production value for a peatland may not be appropriate. Low temperature constrained the potential for methane production in winter, while the chemical quality of the peat substrate appears to control methane production in the summer. Methane oxidation was measured throughout the peat profile to a depth of 30 cm. Values for methane oxidation ranged from 0.08 to 18.7 microM/hr among the six plant communities. Aerobic methane-oxidizing bacteria probably mediated most of the activity. On a daily basis during the summer, between 11 and 100% of the methane produced is susceptible to oxidation within the peat column. Pools of dissolved methane and dissolved carbon dioxide in pore waters were less than 0.2 and less than 1.0 mol/sq m, respectively, indicating that methane does not accumulate in the pore waters. Peatlands have been considered as an important source of biologically produced methane. Despite the high rates of methane production, the high rates of methane oxidation dampen the potential emission of methane to the atmosphere. 41 refs., 7 figs., 4 tabs.

  18. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.

    PubMed

    Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina

    2015-01-01

    Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need

  19. Sodium nitrite potentiates renal oxidative stress and injury in hemoglobin exposed guinea pigs.

    PubMed

    Baek, Jin Hyen; Zhang, Xiaoyuan; Williams, Matthew C; Hicks, Wayne; Buehler, Paul W; D'Agnillo, Felice

    2015-07-01

    Methemoglobin-forming drugs, such as sodium nitrite (NaNO2), may exacerbate oxidative toxicity under certain chronic or acute hemolytic settings. In this study, we evaluated markers of renal oxidative stress and injury in guinea pigs exposed to extracellular hemoglobin (Hb) followed by NaNO2 at doses sufficient to simulate clinically relevant acute methemoglobinemia. NaNO2 induced rapid and extensive oxidation of plasma Hb in this model. This was accompanied by increased renal expression of the oxidative response effectors nuclear factor erythroid 2-derived-factor 2 (Nrf-2) and heme oxygenase-1 (HO-1), elevated non-heme iron deposition, lipid peroxidation, interstitial inflammatory cell activation, increased expression of tubular injury markers kidney injury-1 marker (KIM-1) and liver-fatty acid binding protein (L-FABP), podocyte injury, and cell death. Importantly, these indicators of renal oxidative stress and injury were minimal or absent following infusion of Hb or NaNO2 alone. Together, these results suggest that the exposure to NaNO2 in settings associated with increased extracellular Hb may potentiate acute renal toxicity via processes that are independent of NaNO2 induced erythrocyte methemoglobinemia. PMID:25891524

  20. Chemical characteristics and oxidative potential of particulate matter emissions from gasoline, diesel, and biodiesel cars.

    PubMed

    Cheung, Ka Lam; Polidori, Andrea; Ntziachristos, Leonidas; Tzamkiozis, Theodoros; Samaras, Zissis; Cassee, Flemming R; Gerlofs, Miriam; Sioutas, Constantinos

    2009-08-15

    Three light-duty vehicles in five different configurations [a Honda Accord operating with diesel with a closed-coupled oxidation catalyst and an underfloor catalyst replaced in some tests with a diesel particle filter (DPF), a Toyota Corolla operating with gasoline, and a VW Golf alternatively operating with petrodiesel or biodiesel] were tested in a dynamometer facility to develop an improved understanding of the factors affecting the toxicity of particulate exhaust emissions. The vehicles were tested using a variety of real-world driving cycles, more than the certification test (New European Driving Cycle). Particle samples were collected and analyzed for elemental and organic carbon (EC and OC, respectively), water soluble and water insoluble organic carbon (WSOC and WISOC, respectively), and inorganic ions, and the emission rates (mg/km) for each vehicle/configuration were determined. A dithiothreitol (DTT) assay was used to assess the oxidative potential of the particulate matter (PM) samples. The DPF-equipped diesel and gasoline vehicles were characterized by the lowest overall PM mass emissions, while the diesel and biodiesel cars produced the most potent exhaust in terms of oxidative activity. When the DPF was fitted on the Honda Accord diesel vehicle, the mass emission rates and distance-based oxidative potential were both decreased by 98%, compared to the original configuration. Correlation analysis showed that the DTT consumption rate was highly associated with WSOC, WISOC, and OC (R = 0.98, 0.93, and 0.94, respectively), consistent with previous findings. PMID:19746734

  1. Potential Therapeutic Role of L-Carnitine in Skeletal Muscle Oxidative Stress and Atrophy Conditions

    PubMed Central

    Montesano, Anna; Senesi, Pamela; Luzi, Livio; Benedini, Stefano; Terruzzi, Ileana

    2015-01-01

    The targeting of nutraceutical treatment to skeletal muscle damage is an emerging area of research, driven by the need for new therapies for a range of muscle-associated diseases. L-Carnitine (CARN) is an essential nutrient and plays a key role in mitochondrial β-oxidation and in the ubiquitin-proteasome system regulation. As a dietary supplement to improve athletic performance, CARN has been studied for its potential to enhance β-oxidation. However, CARN effects on myogenesis, mitochondrial activity, and hypertrophy process are not completely elucidated. This in vitro study aims to investigate CARN role on skeletal muscle remodeling, differentiation process, and myotubes formation. We analyzed muscle differentiation and morphological features in C2C12 myoblasts exposed to 5 mM CARN. Our results showed that CARN was able to accelerate C2C12 myotubes formation and induce morphological changes, characterizing the start of hypertrophy process. In addition, CARN improved AKT activation and downstream cellular signaling pathways involved in skeletal muscle atrophy process prevention. Also, CARN positively regulated the pathways involved in oxidative stress defense. In this work, we provide an interesting novel mechanism of the potential therapeutic use of CARN to treat pathological conditions characterized by skeletal muscle morphological and functional impairment, oxidative stress production, and atrophy process in aging. PMID:25838869

  2. Improving carbon dioxide yields and cell efficiencies for ethanol oxidation by potential scanning

    NASA Astrophysics Data System (ADS)

    Majidi, Pasha; Pickup, Peter G.

    2014-12-01

    An ethanol electrolysis cell with aqueous ethanol supplied to the anode and nitrogen at the cathode has been operated under potential cycling conditions in order to increase the yield of carbon dioxide and thereby increase cell efficiency relative to operation at a fixed potential. At ambient temperature, faradaic yields of CO2 as high as 26% have been achieved, while only transient CO2 production was observed at constant potential. Yields increased substantially at higher temperatures, with maximum values at Pt anodes reaching 45% at constant potential and 65% under potential cycling conditions. Use of a PtRu anode increased the cell efficiency by decreasing the anode potential, but this was offset by decreased CO2 yields. Nonetheless, cycling increased the efficiency relative to constant potential. The maximum yields at PtRu and 80 °C were 13% at constant potential and 32% under potential cycling. The increased yields under cycling conditions have been attributed to periodic oxidative stripping of adsorbed CO, which occurs at lower potentials on PtRu than on Pt. These results will be important in the optimization of operating conditions for direct ethanol fuel cells and for the electrolysis of ethanol to produce clean hydrogen.

  3. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions.

    PubMed

    Segarra, K E A; Schubotz, F; Samarkin, V; Yoshinaga, M Y; Hinrichs, K-U; Joye, S B

    2015-01-01

    The role of anaerobic oxidation of methane (AOM) in wetlands, the largest natural source of atmospheric methane, is poorly constrained. Here we report rates of microbially mediated AOM (average rate=20 nmol cm(-3) per day) in three freshwater wetlands that span multiple biogeographical provinces. The observed AOM rates rival those in marine environments. Most AOM activity may have been coupled to sulphate reduction, but other electron acceptors remain feasible. Lipid biomarkers typically associated with anaerobic methane-oxidizing archaea were more enriched in (13)C than those characteristic of marine systems, potentially due to distinct microbial metabolic pathways or dilution with heterotrophic isotope signals. On the basis of this extensive data set, AOM in freshwater wetlands may consume 200 Tg methane per year, reducing their potential methane emissions by over 50%. These findings challenge precepts surrounding wetland carbon cycling and demonstrate the environmental relevance of an anaerobic methane sink in ecosystems traditionally considered strong methane sources. PMID:26123199

  4. Electronic defects and interface potentials for Al oxide films on Al and their relationship to electrochemical properties

    SciTech Connect

    SULLIVAN,JOHN P.; DUNN,ROBERTO G.; BARBOUR,J. CHARLES; WALL,FREDERICK D.; MISSERT,NANCY A.; BUCHHEIT,R.G.

    2000-06-01

    The relative electronic defect densities and oxide interface potentials were determined for naturally-occurring and synthetic Al oxides on Al. In addition, the effect of electrochemical treatment on the oxide electrical properties was assessed. The measurements revealed (1) that the open circuit potential of Al in aqueous solution is inversely correlated with the oxide electronic defect density (viz., lower oxide conductivities are correlated with higher open circuit potentials), and (2) the electronic defect density within the Al oxide is increased upon exposure to an aqueous electrolyte at open circuit or applied cathodic potentials, while the electronic defect density is reduced upon exposure to slight anodic potentials in solution. This last result, combined with recent theoretical predictions, suggests that hydrogen may be associated with electronic defects within the Al oxide, and that this H may be a mobile species, diffusing as H{sup +}. The potential drop across the oxide layer when immersed in solution at open circuit conditions was also estimated and found to be 0.3 V, with the field direction attracting positive charge towards the Al/oxide interface.

  5. Bacterial nanometric amorphous Fe-based oxide: a potential lithium-ion battery anode material.

    PubMed

    Hashimoto, Hideki; Kobayashi, Genki; Sakuma, Ryo; Fujii, Tatsuo; Hayashi, Naoaki; Suzuki, Tomoko; Kanno, Ryoji; Takano, Mikio; Takada, Jun

    2014-04-23

    Amorphous Fe(3+)-based oxide nanoparticles produced by Leptothrix ochracea, aquatic bacteria living worldwide, show a potential as an Fe(3+)/Fe(0) conversion anode material for lithium-ion batteries. The presence of minor components, Si and P, in the original nanoparticles leads to a specific electrode architecture with Fe-based electrochemical centers embedded in a Si, P-based amorphous matrix. PMID:24689687

  6. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation

    SciTech Connect

    Chen, Jing-Hsien; Tsai, Chia-Wen; Wang, Chi-Ping; Lin, Hui-Hsuan

    2013-10-15

    Gossypetin, a flavone originally isolated from Hibiscus species, has been shown to possess antioxidant, antimicrobial, and antimutagenic activities. Here, we investigated the mechanism(s) underlying the anti-atherosclerotic potential of gossypetin. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) scavenging activity assay showed that the addition of > 50 μM of gossypetin could scavenge over 50% of DPPH radicals. The inhibitory effects of gossypetin on the lipid and protein oxidation of LDL were defined by thiobarbituric acid reactive substance (TBARS) assay, the relative electrophoretic mobility (REM) of oxidized LDL (ox-LDL), and fragmentation of apoB in the Cu{sup 2+}-induced oxidation of LDL. Gossypetin showed potential in reducing ox-LDL-induced foam cell formation and intracellular lipid accumulation, and uptake ability of macrophages under non-cytotoxic concentrations. Molecular data showed that these influences of gossypetin might be mediated via peroxisome proliferator-activated receptor α (PPARα)/liver-X receptor α (LXRα)/ATP-binding cassette transporter A1 (ABCA1) and PPARγ/scavenger receptor CD36 pathways, as demonstrated by the transfection of PPARα siRNA or PPARγ expression vector. Our data implied that gossypetin regulated the PPAR signals, which in turn led to stimulation of cholesterol removal from macrophages and delay atherosclerosis. These results suggested that gossypetin potentially could be developed as an anti-atherosclerotic agent. - Highlights: • The anti-atherosclerotic effect of gossypetin in vitro was examined. • Gossypetin inhibited LDL oxidation. • Gossypetin showed potential in reducing on the formation of foam cells. • Gossypetin functions against ox-LDL through PPARa activation and PPARγ depression.

  7. Improving the Oxidative Stability of a High Redox Potential Fungal Peroxidase by Rational Design

    PubMed Central

    Sáez-Jiménez, Verónica; Acebes, Sandra; Guallar, Victor; Martínez, Angel T.; Ruiz-Dueñas, Francisco J.

    2015-01-01

    Ligninolytic peroxidases are enzymes of biotechnological interest due to their ability to oxidize high redox potential aromatic compounds, including the recalcitrant lignin polymer. However, different obstacles prevent their use in industrial and environmental applications, including low stability towards their natural oxidizing-substrate H2O2. In this work, versatile peroxidase was taken as a model ligninolytic peroxidase, its oxidative inactivation by H2O2 was studied and different strategies were evaluated with the aim of improving H2O2 stability. Oxidation of the methionine residues was produced during enzyme inactivation by H2O2 excess. Substitution of these residues, located near the heme cofactor and the catalytic tryptophan, rendered a variant with a 7.8-fold decreased oxidative inactivation rate. A second strategy consisted in mutating two residues (Thr45 and Ile103) near the catalytic distal histidine with the aim of modifying the reactivity of the enzyme with H2O2. The T45A/I103T variant showed a 2.9-fold slower reaction rate with H2O2 and 2.8-fold enhanced oxidative stability. Finally, both strategies were combined in the T45A/I103T/M152F/M262F/M265L variant, whose stability in the presence of H2O2 was improved 11.7-fold. This variant showed an increased half-life, over 30 min compared with 3.4 min of the native enzyme, under an excess of 2000 equivalents of H2O2. Interestingly, the stability improvement achieved was related with slower formation, subsequent stabilization and slower bleaching of the enzyme Compound III, a peroxidase intermediate that is not part of the catalytic cycle and leads to the inactivation of the enzyme. PMID:25923713

  8. Myeloperoxidase-mediated oxidation of high-density lipoproteins: fingerprints of newly recognized potential proatherogenic lipoproteins.

    PubMed

    Malle, Ernst; Marsche, Gunther; Panzenboeck, Ute; Sattler, Wolfgang

    2006-01-15

    Substantial evidence supports the notion that oxidative processes participate in the pathogenesis of atherosclerotic heart disease. Major evidence for myeloperoxidase (MPO) as enzymatic catalyst for oxidative modification of lipoproteins in the artery wall has been suggested in numerous studies performed with low-density lipoprotein. In contrast to low-density lipoprotein, plasma levels of high-density lipoprotein (HDL)-cholesterol and apoAI, the major apolipoprotein of HDL, inversely correlate with the risk of developing coronary artery disease. These antiatherosclerotic effects are attributed mainly to HDL's capacity to transport excess cholesterol from arterial wall cells to the liver during 'reverse cholesterol transport'. There is now strong evidence that HDL is a selective in vivo target for MPO-catalyzed oxidation impairing the cardioprotective and antiinflammatory capacity of this antiatherogenic lipoprotein. MPO is enzymatically active in human lesion material and was found to be associated with HDL extracted from human atheroma. MPO-catalyzed oxidation products are highly enriched in circulating HDL from individuals with cardiovascular disease where MPO concentrations are also increased. The oxidative potential of MPO involves an array of intermediate-generated reactive oxygen and reactive nitrogen species and the ability of MPO to generate chlorinating oxidants-in particular hypochlorous acid/hypochlorite-under physiological conditions is a unique and defining activity for this enzyme. All these MPO-generated reactive products may affect structure and function of HDL as well as the activity of HDL-associated enzymes involved in conversion and remodeling of the lipoprotein particle, and represent clinically useful markers for atherosclerosis. PMID:16171772

  9. Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the Carson River, Nevada

    USGS Publications Warehouse

    Oremland, R.S.; Miller, L.G.; Dowdle, P.; Connell, T.; Barkay, T.

    1995-01-01

    Sediments from mercury-contaminated and uncontaminated reaches of the Carson River, Nevada, were assayed for sulfate reduction, methanogenesis, denitrification, and monomethylmercury (MeHg) degradation. Demethylation of [14C]MeHg was detected at all sites as indicated by the formation of 14CO2 and 14CH4. Oxidative demethylation was indicated by the formation of 14CO2 and was present at significant levels in all samples. Oxidized/reduced demethylation product ratios (i.e., 14CO2/14CH4 ratios) generally ranged from 4.0 in surface layers to as low as 0.5 at depth. Production of 14CO2 was most pronounced at sediment surfaces which were zones of active denitrification and sulfate reduction but was also significant within zones of methanogenesis. In a core taken from an uncontaminated site having a high proportion of oxidized, coarse-grain sediments, sulfate reduction and methanogenic activity levels were very low and 14CO2 accounted for 98% of the product formed from [14C]MeHg. There was no apparent relationship between the degree of mercury contamination of the sediments and the occurrence of oxidative demethylation. However, sediments from Fort Churchill, the most contaminated site, were most active in terms of demethylation potentials. Inhibition of sulfate reduction with molybdate resulted in significantly depressed oxidized/reduced demethylation product ratios, but overall demethylation rates of inhibited and uninhibited samples were comparable. Addition of sulfate to sediment slurries stimulated production of 14CO2 from [14C]MeHg, while 2-bromoethanesulfonic acid blocked production of 14CH4. These results reveal the importance of sulfate-reducing and methanogenic bacteria in oxidative demethylation of MeHg in anoxic environments.

  10. Improving the oxidative stability of a high redox potential fungal peroxidase by rational design.

    PubMed

    Sáez-Jiménez, Verónica; Acebes, Sandra; Guallar, Victor; Martínez, Angel T; Ruiz-Dueñas, Francisco J

    2015-01-01

    Ligninolytic peroxidases are enzymes of biotechnological interest due to their ability to oxidize high redox potential aromatic compounds, including the recalcitrant lignin polymer. However, different obstacles prevent their use in industrial and environmental applications, including low stability towards their natural oxidizing-substrate H2O2. In this work, versatile peroxidase was taken as a model ligninolytic peroxidase, its oxidative inactivation by H2O2 was studied and different strategies were evaluated with the aim of improving H2O2 stability. Oxidation of the methionine residues was produced during enzyme inactivation by H2O2 excess. Substitution of these residues, located near the heme cofactor and the catalytic tryptophan, rendered a variant with a 7.8-fold decreased oxidative inactivation rate. A second strategy consisted in mutating two residues (Thr45 and Ile103) near the catalytic distal histidine with the aim of modifying the reactivity of the enzyme with H2O2. The T45A/I103T variant showed a 2.9-fold slower reaction rate with H2O2 and 2.8-fold enhanced oxidative stability. Finally, both strategies were combined in the T45A/I103T/M152F/M262F/M265L variant, whose stability in the presence of H2O2 was improved 11.7-fold. This variant showed an increased half-life, over 30 min compared with 3.4 min of the native enzyme, under an excess of 2000 equivalents of H2O2. Interestingly, the stability improvement achieved was related with slower formation, subsequent stabilization and slower bleaching of the enzyme Compound III, a peroxidase intermediate that is not part of the catalytic cycle and leads to the inactivation of the enzyme. PMID:25923713

  11. Methylmercury Oxidative Degradation Potentials in Contaminated and Pristine Sediments of the Carson River, Nevada

    PubMed Central

    Oremland, R. S.; Miller, L. G.; Dowdle, P.; Connell, T.; Barkay, T.

    1995-01-01

    Sediments from mercury-contaminated and uncontaminated reaches of the Carson River, Nevada, were assayed for sulfate reduction, methanogenesis, denitrification, and monomethylmercury (MeHg) degradation. Demethylation of [(sup14)C]MeHg was detected at all sites as indicated by the formation of (sup14)CO(inf2) and (sup14)CH(inf4). Oxidative demethylation was indicated by the formation of (sup14)CO(inf2) and was present at significant levels in all samples. Oxidized/reduced demethylation product ratios (i.e., (sup14)CO(inf2)/(sup14)CH(inf4) ratios) generally ranged from 4.0 in surface layers to as low as 0.5 at depth. Production of (sup14)CO(inf2) was most pronounced at sediment surfaces which were zones of active denitrification and sulfate reduction but was also significant within zones of methanogenesis. In a core taken from an uncontaminated site having a high proportion of oxidized, coarse-grain sediments, sulfate reduction and methanogenic activity levels were very low and (sup14)CO(inf2) accounted for 98% of the product formed from [(sup14)C]MeHg. There was no apparent relationship between the degree of mercury contamination of the sediments and the occurrence of oxidative demethylation. However, sediments from Fort Churchill, the most contaminated site, were most active in terms of demethylation potentials. Inhibition of sulfate reduction with molybdate resulted in significantly depressed oxidized/reduced demethylation product ratios, but overall demethylation rates of inhibited and uninhibited samples were comparable. Addition of sulfate to sediment slurries stimulated production of (sup14)CO(inf2) from [(sup14)C]MeHg, while 2-bromoethanesulfonic acid blocked production of (sup14)CH(inf4). These results reveal the importance of sulfate-reducing and methanogenic bacteria in oxidative demethylation of MeHg in anoxic environments. PMID:16535081

  12. Mn-oxidizing Bacteria in Oak Ridge, TN and the Potential for Mercury Remediation

    NASA Astrophysics Data System (ADS)

    Wright, K. L.; McNeal, K. S.; Han, F. X.

    2012-12-01

    East Fork Poplar Creek (EFPC) in Oak Ridge, TN was highly contaminated with elemental mercury in the 1950 and 1960. The area is still experiencing the effects of mercury contamination, and researchers are searching for ways to remediate the EFPC. One possible mechanism for bioremediation is the use of biogenic Mn oxides to remove heavy metals from water systems. Six native Pseudomonas bacteria species were isolated from the EFPC in order to examine biogenic Mn oxides production and bioremediation of Oak Ridge slurries. To investigate the biochemical interactions of Pseudomonas and the native microbial communities with Hg, Mn, Fe, S, six different slurry treatment groups were compared using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and cold vapor atomic absorption spectrometry (CVAAS). Oak Ridge slurries were autoclaved to inhibit microbial growth (group 1), autoclaved and amended with HgS (group 2), autoclaved and amended with Pseudomonas isolates and additional HgS (group 3), untreated slurry (group 4), normal slurry amended with HgS (group 5), and normal slurry amended with Pseudomonas isolates and additional HgS (group 6). The comparison of the autoclaved groups with the counterpart untreated and normal Oak Ridge slurries highlighted important microbial interactions. Also, the Pseudomonas isolates were grown separately in a MnSO4 media, and the individual bacteria were monitored for Mn-oxidization using ICP-AES and transmission electron microscopy (TEM). In the slurry sediments, the Pseudomonas isolates did produce Mn oxides which bound to mercury, and mercury bound to organic matter significantly decreased. However, after a significant decrease of dissolved mercury in the water, dissolved mercury was cycled back into the water system on day 10 of the study. Additionally, two individual native Oak Ridge Pseudomonas isolates demonstrated Mn-oxidization. Biogenic Mn oxides have the potential to decrease mercury cycling, however there is

  13. Fluorouracil-based preoperative chemoradiotherapy with or without oxaliplatin for stage II/III rectal cancer: a 3-year follow-up study

    PubMed Central

    Jiao, Dexin; Zhang, Rui; Gong, Zhiqiang; Liu, Fang; Chen, Yue; Yu, Qinrui; Sun, Liping; Duan, Hongyan; Zhu, Shendong; Liu, Fei; Wang, Jian

    2015-01-01

    Background Fluorouracil-based preoperative chemoradiotherapy has become the standard treatment for stage II/III rectal cancer. In order to improve the overall survival (OS) and disease-free survival (DFS), we added oxaliplatin to the standard treatment, and compared the effectiveness of these two treatment patterns. Methods A total of 206 patients enrolled in the prospective study had histologically confirmed rectal cancer of clinical stage II/III during July 2007 to July 2010. They were randomized into the experimental group received oxaliplatin and capecitabine in combination with radiotherapy, and the control group received capecitabine in combination with radiotherapy. All patients received surgery in 6−10 weeks after chemoradiotherapy and adjuvant chemotherapy with mFOLFOX6. The primary endpoints were DFS and OS, and the secondary endpoints included toxicity, compliance, and histopathological response. Results The 3-year OS in the experimental group and the control group was 90.29% vs. 86.41% (P>0.05), and the 3-year DFS was 80.58% vs. 69.90% (P>0.05). The pathological complete remission (pCR) rates were 23.30% and 19.42%, respectively (P=0.497). The 3-year local recurrence rates were 4.85% vs. 5.83% (P=0.694), and the 3-year distant metastasis rates were 16.50% and 28.16%, respectively (P=0.045). There were no significant differences in most grade 3−4 toxicities between two groups, however, grade 3−4 diarrhea occurred in 16.50% (17/103) of the experimental group, compared with 6.80% (7/103) of the control group (P=0.030). Also, the total grade 3−4 acute toxicity showed a significant difference (10.68% vs. 21.36%, P=0.037). Conclusions The experimental treatment did not lead significantly improved OS and DFS, and thus longer follow-up is warranted for our patient cohort. Adding oxaliplatin to capecitabine-based preoperative chemoradiotherapy can significantly reduce metastasis, but has only minimal impact on local recurrence. Although grade 3−4

  14. Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam.

    PubMed

    Boido, D; Farisello, P; Cesca, F; Ferrea, E; Valtorta, F; Benfenati, F; Baldelli, P

    2010-11-24

    Synapsins (SynI, SynII, SynIII) are a multigene family of synaptic vesicle (SV) phosphoproteins implicated in the regulation of synaptic transmission and plasticity. Synapsin I, II, I/II and I/II/III knockout mice are epileptic and SYN1/2 genes have been identified as major epilepsy susceptibility genes in humans. We analyzed cortico-hippocampal epileptiform activity induced by 4-aminopyridine (4AP) in acute slices from presymptomatic (3-weeks-old) and symptomatic (1-year-old) Syn I/II/III triple knockout (TKO) mice and aged-matched triple wild type (TWT) controls and assessed the effect of the SV-targeted antiepileptic drug (AED) levetiracetam (LEV) in reverting the epileptic phenotype. Both fast and slow interictal (I-IC) and ictal (IC) events were observed in both genotypes. The incidence of fast I-IC events was higher in presymptomatic TKO slices, while frequency and latency of I-IC events were similar in both genotypes. The major age and genotype effects were observed in IC activity, that was much more pronounced in 3-weeks-old TKO and persisted with age, while it disappeared from 1-year-old TWT slices. LEV virtually suppressed fast I-IC and IC discharges from 3-weeks-old TWT slices, while it only increased the latency of fast I-IC and IC activity in TKO slices. Analysis of I-IC events in patch-clamped CA1 pyramidal neurons revealed that LEV increased the inhibitory/excitatory ratio of I-IC activity in both genotypes. The lower LEV potency in TKO slices of both ages was associated with a decreased expression of SV2A, a SV protein acting as LEV receptor, in cortex and hippocampus. The results demonstrate that deletion of Syn genes is associated with a higher propensity to 4AP-induced epileptic paroxysms that precedes the onset of epilepsy and consolidates with age. LEV ameliorates such hyper excitability by enhancing the inhibition/excitation ratio, although the effect is hindered in TKO slices which exhibit a concomitant decrease in the levels of the LEV

  15. Redox reactions in mammalian spermatogenesis and the potential targets of reactive oxygen species under oxidative stress

    PubMed Central

    Fujii, Junichi; Imai, Hirotaka

    2014-01-01

    Reduction-oxidation (Redox) reactions are ubiquitous mechanisms for vital activities in all organisms, and they play pivotal roles in the regulation of spermatogenesis as well. Here we focus on 3 redox-involved processes that have drawn much recent attention: the regulation of signal transduction by reactive oxygen species (ROS) such as hydrogen peroxide, oxidative protein folding in the endoplasmic reticulum (ER), and sulfoxidation of protamines during sperm chromatin condensation. The first 2 of these processes are emerging topics in cell biology and are applicable to most living cells, which includes spermatogenic cells. The roles of ROS in signal transduction have been elucidated in the last 2 decades and have received broad attention, most notably from the viewpoint of the proper control of mitotic signals. Redox processes in the ER are important because this is the organelle where secretory and membrane proteins are synthesized and proceed toward their functional structure, so that malfunction of the ER affects not only the involved cells but also the accepting cells of the secreted proteins in multicellular organisms. Sulfoxidation is the third of these processes, and the sulfoxidation of chromatin is a unique process in sperm maturation. During recent sulfoxidase research, GPX4 has emerged as a promising enzyme that plays essential roles in the production of fertile sperm, but the involvement of other redox proteins is also becoming evident. Because the molecules involved in the redox reactions are prone to oxidation, they can be sensitive to oxidative damage, which makes them potential targets for antioxidant therapy. PMID:26413390

  16. Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments.

    PubMed

    Shen, Li-Dong; Hu, Bao-Lan; Liu, Shuai; Chai, Xiao-Ping; He, Zhan-Fei; Ren, Hong-Xing; Liu, Yan; Geng, Sha; Wang, Wei; Tang, Jing-Liang; Wang, Yi-Ming; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping

    2016-08-01

    In the current study, we investigated nitrite-dependent anaerobic methane oxidation (N-DAMO) as a potential methane sink in the Hangzhou Bay and the adjacent Zhoushan sea area. The potential activity of the N-DAMO process was primarily observed in Hangzhou Bay by means of (13)C-labeling experiments, whereas very low or no potential N-DAMO activity could be detected in the Zhoushan sea area. The measured potential N-DAMO rates ranged from 0.2 to 1.3 nmol (13)CO2 g(-1) (dry sediment) day(-1), and the N-DAMO potentially contributed 2.0-9.4 % to the total microbial methane oxidation in the examined sediments. This indicated that the N-DAMO process may be an alternative pathway in the coastal methane cycle. Phylogenetic analyses confirmed the presence of Candidatus Methylomirabilis oxyfera-like bacteria in all the examined sediments, while the group A members (the dominant bacteria responsible for N-DAMO) were found mainly in Hangzhou Bay. Quantitative PCR showed that the 16S rRNA gene abundance of Candidatus M. oxyfera-like bacteria varied from 5.4 × 10(6) to 5.0 × 10(7) copies g(-1) (dry sediment), with a higher abundance observed in Hangzhou Bay. In addition, the overlying water NO3 (-) concentration and salinity were identified as the most important factors influencing the abundance and potential activity of Candidatus M. oxyfera-like bacteria in the examined sediments. This study showed the evidence of N-DAMO in coastal environments and indicated the importance of N-DAMO as a potential methane sink in coastal environments. PMID:27225473

  17. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    PubMed

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). PMID:27474599

  18. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    SciTech Connect

    Fukano, Tatsuo; Motohiro, Tomoyoshi; Ida, Takashi; Hashizume, Hiroo

    2005-04-15

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7 nm in average size show an ionization potential of 5.01 eV, as compared with {approx}4.76 and {approx}4.64 eV in ITO and FTO films, respectively, which decreases as the FTO particle size increases. The ionization potentials are practically invariant against oxidation and reduction treatments, promising a wide application of the films to transparent conducting oxide electrodes in organic electroluminescent devices and light-emitting devices of high efficiencies.

  19. Ionization potentials of transparent conductive indium tin oxide films covered with a single layer of fluorine-doped tin oxide nanoparticles grown by spray pyrolysis deposition

    NASA Astrophysics Data System (ADS)

    Fukano, Tatsuo; Motohiro, Tomoyoshi; Ida, Takashi; Hashizume, Hiroo

    2005-04-01

    Indium tin oxide (ITO) films deposited with single layers of monodispersive fluorine-doped tin oxide (FTO) nanoparticles of several nanometers in size were grown on glass substrates by intermittent spray pyrolysis deposition using conventional atomizers. These films have significantly higher ionization potentials than the bare ITO and FTO films grown using the same technique. The ITO films covered with FTO particles of 7nm in average size show an ionization potential of 5.01eV, as compared with ˜4.76 and ˜4.64eV in ITO and FTO films, respectively, which decreases as the FTO particle size increases. The ionization potentials are practically invariant against oxidation and reduction treatments, promising a wide application of the films to transparent conducting oxide electrodes in organic electroluminescent devices and light-emitting devices of high efficiencies.

  20. Reduced graphene oxide anodes for potential application in algae biophotovoltaic platforms.

    PubMed

    Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C; Periasamy, Vengadesh

    2014-01-01

    The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm(-2) using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems. PMID:25531093

  1. Reduced Graphene Oxide Anodes for Potential Application in Algae Biophotovoltaic Platforms

    PubMed Central

    Ng, Fong-Lee; Jaafar, Muhammad Musoddiq; Phang, Siew-Moi; Chan, Zhijian; Salleh, Nurul Anati; Azmi, Siti Zulfikriyah; Yunus, Kamran; Fisher, Adrian C.; Periasamy, Vengadesh

    2014-01-01

    The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm−2 using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems. PMID:25531093

  2. Redox potential tuning by redox-inactive cations in nature's water oxidizing catalyst and synthetic analogues.

    PubMed

    Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A

    2016-04-20

    The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation. PMID:26762578

  3. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders.

    PubMed

    Ganie, Showkat Ahmad; Dar, Tanveer Ali; Bhat, Aashiq Hussain; Dar, Khalid B; Anees, Suhail; Zargar, Mohammad Afzal; Masood, Akbar

    2016-02-01

    Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed. PMID:26087000

  4. Improving the oxidation potential of Sb-doped SnO2 electrode by Zn/Sb co-doping

    NASA Astrophysics Data System (ADS)

    Chen, Aqing; Bin Li, Bin; Miljkovic, Bojan; Souza, Christina; Zhu, Kaigui; Ruda, Harry E.

    2014-07-01

    Inorganic oxides are recognized as attractive materials for developing anodes for wastewater treatment, potentially offering a cost effective solution for electro-oxidation. A key parameter in measuring the effectiveness of different anode materials is the oxygen over potential. In this paper, we study the role of Zn and Sb co-doping of SnO2 thin films to achieve enhanced oxidation potentials, suitable for use in wastewater treatment. The morphology, chemical, and electrochemical properties of the films were characterized, and as a result of an optimization study, suitable anode materials for wastewater treatment are identified.

  5. Exome sequencing identifies NFS1 deficiency in a novel Fe-S cluster disease, infantile mitochondrial complex II/III deficiency.

    PubMed

    Farhan, Sali M K; Wang, Jian; Robinson, John F; Lahiry, Piya; Siu, Victoria M; Prasad, Chitra; Kronick, Jonathan B; Ramsay, David A; Rupar, C Anthony; Hegele, Robert A

    2014-01-01

    Iron-sulfur (Fe-S) clusters are a class of highly conserved and ubiquitous prosthetic groups with unique chemical properties that allow the proteins that contain them, Fe-S proteins, to assist in various key biochemical pathways. Mutations in Fe-S proteins often disrupt Fe-S cluster assembly leading to a spectrum of severe disorders such as Friedreich's ataxia or iron-sulfur cluster assembly enzyme (ISCU) myopathy. Herein, we describe infantile mitochondrial complex II/III deficiency, a novel autosomal recessive mitochondrial disease characterized by lactic acidemia, hypotonia, respiratory chain complex II and III deficiency, multisystem organ failure and abnormal mitochondria. Through autozygosity mapping, exome sequencing, in silico analyses, population studies and functional tests, we identified c.215G>A, p.Arg72Gln in NFS1 as the likely causative mutation. We describe the first disease in man likely caused by deficiency in NFS1, a cysteine desulfurase that is implicated in respiratory chain function and iron maintenance by initiating Fe-S cluster biosynthesis. Our results further demonstrate the importance of sufficient NFS1 expression in human physiology. PMID:24498631

  6. Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park.

    PubMed

    Fortney, N W; He, S; Converse, B J; Beard, B L; Johnson, C M; Boyd, E S; Roden, E E

    2016-05-01

    Chocolate Pots hot springs (CP) is a unique, circumneutral pH, iron-rich, geothermal feature in Yellowstone National Park. Prior research at CP has focused on photosynthetically driven Fe(II) oxidation as a model for mineralization of microbial mats and deposition of Archean banded iron formations. However, geochemical and stable Fe isotopic data have suggested that dissimilatory microbial iron reduction (DIR) may be active within CP deposits. In this study, the potential for microbial reduction of native CP Fe(III) oxides was investigated, using a combination of cultivation dependent and independent approaches, to assess the potential involvement of DIR in Fe redox cycling and associated stable Fe isotope fractionation in the CP hot springs. Endogenous microbial communities were able to reduce native CP Fe(III) oxides, as documented by most probable number enumerations and enrichment culture studies. Enrichment cultures demonstrated sustained DIR driven by oxidation of acetate, lactate, and H2 . Inhibitor studies and molecular analyses indicate that sulfate reduction did not contribute to observed rates of DIR in the enrichment cultures through abiotic reaction pathways. Enrichment cultures produced isotopically light Fe(II) during DIR relative to the bulk solid-phase Fe(III) oxides. Pyrosequencing of 16S rRNA genes from enrichment cultures showed dominant sequences closely affiliated with Geobacter metallireducens, a mesophilic Fe(III) oxide reducer. Shotgun metagenomic analysis of enrichment cultures confirmed the presence of a dominant G. metallireducens-like population and other less dominant populations from the phylum Ignavibacteriae, which appear to be capable of DIR. Gene (protein) searches revealed the presence of heat-shock proteins that may be involved in increased thermotolerance in the organisms present in the enrichments as well as porin-cytochrome complexes previously shown to be involved in extracellular electron transport. This analysis offers

  7. Enhanced formation of silver nanoparticles in Ag+-NOM-iron(II, III) systems and antibacterial activity studies.

    PubMed

    Adegboyega, Nathaniel F; Sharma, Virender K; Siskova, Karolina M; Vecerova, Renata; Kolar, Milan; Zbořil, Radek; Gardea-Torresdey, Jorge L

    2014-03-18

    This work reports the role of iron redox pair (Fe(3+)/Fe(2+)) in the formation of naturally occurring silver nanoparticles (AgNPs) in the aquatic environment. The results showed that Fe(3+) or Fe(2+) ions in the mixtures of Ag(+) and natural organic matter enhanced the formation of AgNPs. The formation of AgNPs depended on pH and types of organic matter. Increase in pH enhanced the formation of AgNPs, and humic acids as ligands showed higher formation of AgNPs compared to fulvic acids. The observed results were described by considering the potentials of redox pairs of silver and iron species and the possible species involved in reducing silver ions to AgNPs. Dynamic light scattering and transmission electron microscopy measurements of AgNPs revealed mostly bimodal size distribution with decrease in size of AgNPs due to iron species in the reaction mixture. Minimum inhibitory concentration of AgNPs needed to inhibit the growth of various bacterial species suggested the role of surfaces of tested Gram-positive and Gram-negative bacteria. Stability study of AgNPs, formed in Ag(+)-humic acid/fulvic acids-Fe(3+) mixtures over a period of several months showed high stability of the particles with significant increase in surface plasmon resonance peak. The environmental implications of the results in terms of fate, transport, and ecotoxicity of organic-coated AgNPs are briefly presented. PMID:24524189

  8. Oxidative dissolution potential of biogenic and abiogenic TcO 2 in subsurface sediments

    NASA Astrophysics Data System (ADS)

    Fredrickson, James K.; Zachara, John M.; Plymale, Andrew E.; Heald, Steve M.; McKinley, James P.; Kennedy, David W.; Liu, Chongxuan; Nachimuthu, Ponnusamy

    2009-04-01

    Technetium-99 (Tc) is an important fission product contaminant associated with sites of nuclear fuels reprocessing and geologic nuclear waste disposal. Tc is highly mobile in its most oxidized state [Tc(VII)O4-] and less mobile in the reduced form [Tc(IV)O 2· nH 2O]. Here we investigate the potential for oxidation of Tc(IV) that was heterogeneously reduced by reaction with biogenic Fe(II) in two sediments differing in mineralogy and aggregation state; unconsolidated Pliocene-age fluvial sediment from the upper Ringold (RG) Formation at the Hanford Site and a clay-rich saprolite from the Field Research Center (FRC) background site on the Oak Ridge Site. Both sediments contained Fe(III) and Mn(III/IV) as redox active phases, but FRC also contained mass-dominant Fe-phyllosilicates of different types. Shewanella putrefaciens CN32 reduced Mn(III/IV) oxides and generated Fe(II) that was reactive with Tc(VII) in heat-killed, bioreduced sediment. After bioreduction and heat-killing, biogenic Fe(II) in the FRC exceeded that in RG by a factor of two. More rapid reduction rates were observed in the RG that had lower biogenic Fe(II), and less particle aggregation. EXAFS measurements indicated that the primary reduction product was a TcO 2-like phase in both sediments. The biogenic redox product Tc(IV) oxidized rapidly and completely in RG when contacted with air. Oxidation, in contrast, was slow and incomplete in the FRC, in spite of similar molecular scale speciation of Tc compared to RG. X-ray microprobe, electron microprobe, X-ray absorption spectroscopy, and micro X-ray diffraction were applied to the whole sediment and isolated Tc-containing particles. These analyses revealed that non-oxidizable Tc(IV) in the FRC existed as complexes with octahedral Fe(III) within intra-grain domains of 50-100 μm-sized, Fe-containing micas presumptively identified as celadonite. The markedly slower oxidation rates in FRC as compared to RG were attributed to mass

  9. Oxidative dissolution potential of biogenic and abiogenic TcO{sub 2} in subsurface sediments.

    SciTech Connect

    Fredrickson, J. K.; Zachara, J. M.; Plymale, A. E.; Heald, S. M.; McKinley, J. P.; Kennedy, D. W.; Liu, C.; Nachimuthu, P.

    2009-04-01

    Technetium-99 (Tc) is an important fission product contaminant associated with sites of nuclear fuels reprocessing and geologic nuclear waste disposal. Tc is highly mobile in its most oxidized state [Tc(VII)O{sub 4}{sup -}] and less mobile in the reduced form [Tc(IV)O{sub 2} {center_dot} nH{sub 2}O]. Here we investigate the potential for oxidation of Tc(IV) that was heterogeneously reduced by reaction with biogenic Fe(II) in two sediments differing in mineralogy and aggregation state; unconsolidated Pliocene-age fluvial sediment from the upper Ringold (RG) Formation at the Hanford Site and a clay-rich saprolite from the Field Research Center (FRC) background site on the Oak Ridge Site. Both sediments contained Fe(III) and Mn(III/IV) as redox active phases, but FRC also contained mass-dominant Fe-phyllosilicates of different types. Shewanella putrefaciens CN32 reduced Mn(III/IV) oxides and generated Fe(II) that was reactive with Tc(VII) in heat-killed, bioreduced sediment. After bioreduction and heat-killing, biogenic Fe(II) in the FRC exceeded that in RG by a factor of two. More rapid reduction rates were observed in the RG that had lower biogenic Fe(II), and less particle aggregation. EXAFS measurements indicated that the primary reduction product was a TcO{sub 2}-like phase in both sediments. The biogenic redox product Tc(IV) oxidized rapidly and completely in RG when contacted with air. Oxidation, in contrast, was slow and incomplete in the FRC, in spite of similar molecular scale speciation of Tc compared to RG. X-ray microprobe, electron microprobe, X-ray absorption spectroscopy, and micro X-ray diffraction were applied to the whole sediment and isolated Tc-containing particles. These analyses revealed that non-oxidizable Tc(IV) in the FRC existed as complexes with octahedral Fe(III) within intra-grain domains of 50-100 {micro}m-sized, Fe-containing micas presumptively identified as celadonite. The markedly slower oxidation rates in FRC as compared to RG were

  10. Enhanced electrochemical performance of template-free carbon-coated iron(II, III) oxide hollow nanofibers as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Im, Mi Eun; Pham-Cong, De; Kim, Ji Yoon; Choi, Hun Seok; Kim, Jae Hyun; Kim, Jong Pil; Kim, Jinwoo; Jeong, Se Young; Cho, Chae Ryong

    2015-06-01

    Carbon-coated Fe3O4 hollow nanofibers (Fe3O4/C hNFs) as a lithium ion battery anode material are prepared through electrospinning, annealing, and hydrothermal processing. At a high current density of 1000 mAg-1, the template-free Fe3O4/C hNFs exhibit high 1st- and 150th-cycle specific capacities of ∼963 and 978 mAhg-1, respectively. Moreover, Fe3O4/C hNFs have excellent and stable rate capability, compared to that of the Fe3O4 hNFs, and a capacity of 704 mAhg-1 at a current density of 2000 mAg-1. Owing to the carbon layer, the Li-ion diffusion coefficient of the Fe3O4/C hNFs, 8.10 × 10-14 cm2 s-1, is 60 times higher than that (1.33 × 10-15 cm2 s-1) of the Fe3O4 hNFs. These results indicate that Fe3O4/C hNFs may have important implications for developing high performance anodes for next-generation lithium ion batteries.

  11. Assessment of flares in lupus patients enrolled in a phase II/III study of rituximab (EXPLORER).

    PubMed

    Merrill, Jt; Buyon, Jp; Furie, Ra; Latinis, Km; Gordon, C; Hsieh, H-J; Brunetta, P

    2011-06-01

    The EXPLORER study was designed to assess the response to rituximab versus placebo in patients with moderate to severe extrarenal systemic lupus erythematosus (SLE) receiving background immunosuppression. The definition of response required reduced clinical activity without subsequent flares over 52 weeks, and the study did not meet its efficacy endpoint. The current exploratory analysis assessed flare rates in patients who achieved initial low disease activity response (British Isles Lupus Assessment Group [BILAG] C or better in all organs) during the study. Exploratory reanalysis of data from the EXPLORER trial was conducted, considering alternative definitions for flare. No difference was found between rituximab and placebo in preventing or delaying moderate to severe flares. However, when severe (BILAG A) flares alone were examined, rituximab reduced the risk of a subsequent first A flare (hazard ratio = 0.61; p = 0.052) and lowered mean ± SD annualized A flare rates (0.86 ± 1.47 vs. 1.41 ± 2.14; p = 0.038). Eighty-four (49.7%) rituximab-treated patients achieved low disease activity without subsequent A flares versus 31 (35.2%) placebo-treated patients (p = 0.027). Prednisone rescue for A flares was similar in rituximab- (24%) and placebo-treated (14%) patients (p = 0.204). This post hoc analysis evaluates the hypothesis that assessment of BILAG A flares may distinguish potential treatment effects with greater sensitivity than assessment of BILAG B flares. PMID:21478286

  12. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation.

    PubMed

    Baek, Gahyun; Kim, Jaai; Cho, Kyungjin; Bae, Hyokwan; Lee, Changsoo

    2015-12-01

    The effect of biostimulation with ferric oxides, semiconductive ferric oxyhydroxide, and conductive magnetite on the anaerobic digestion of dairy wastewater was examined in a batch mode. The reactors supplemented with ferric oxyhydroxide (R2) and magnetite (R3) showed significantly enhanced biomethanation performance compared with the control (R1). The removal of chemical oxygen demand (COD) after 30 days was 31.9, 59.3, and 82.5% in R1, R2, and R3, respectively. The consumed COD was almost fully recovered as biogas in R2 and R3, while only 79% was recovered in R1. The total energy production as biogas was accordingly 32.2, 71.0, and 97.7 kJ in R1, R2, and R3, respectively. The reactors also differed in the acid formation profile with more propionate and butyrate found in R1 and more acetate found in R3. The enhanced biomethanation seems to be associated with variations in the bacterial community structure supposedly induced by the ferric oxides added. In contrast, no evident variation was observed in the archaeal community structure among the reactors. The potential electric syntrophy formed between Methanosaeta concilii-like methanogens and electroactive iron-reducing bacteria, particularly Trichococcus, was likely responsible for the enhanced performance. The stimulated growth of fermentative iron reducers may also have contributed by altering the metabolic characteristics of the bacterial communities to produce more favorable acidogenic products for methanogenesis. The overall results suggest the potential of biostimulation with (semi)conductive ferric oxides to enhance the rate and efficiency of the biomethanation of organic wastes. This seems to be potentially attractive, as increasing attention is being paid to the energy self-sufficiency of waste/wastewater treatment processes today. PMID:26272096

  13. A review of the industrial and recent potential applications of trioctylphosphine oxide

    SciTech Connect

    Watson, E.K.; Rickelton, W.A. )

    1992-12-01

    The industrial applications of trioctylphosphine oxide, more commonly known as TOPO, make use of its complexing powers with metals and with hydrogen donor organic compounds. Commercial uses as a solvent extraction reagent are in the recovery of uranium from wet process phosphoric acid and in the recovery of byproduct acetic acid and furfural generated during sulphite wood pulping. Recently investigated potential uses include the separation of niobium from tantalum and the extraction of organic compounds, such as citric acid, from fermentation broths. Each process is discussed briefly. 29 refs., 2 figs.

  14. Analysis of surface potential and photocatalytic activity of Au-graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Patel, Arun Singh; Mishra, Mukesh; Mohanty, T.

    2014-04-01

    Surface potential of chemically synthesized graphene oxide (GO) and gold nanoparticles decorated GO (Au-GO) have been measured using scanning Kelvin probe (SKP) microscope. The Raman spectra of GO and Au-GO confirms presence of D and G peaks of GO. The intensity of both the peaks gets enhanced in case of Au-GO. The enhancement is due to surface enhanced Raman scattering (SERS) of GO. Such type of composite material has been used as a photocatalyst for degradation of Rhodamine B dye molecules. The degradation rate constant was found to be 1.6 × 10-2 min-1 in visible light.

  15. Stationary market applications potential of solid oxide and solid polymer fuel cell systems

    SciTech Connect

    Baker, J.N.; Fletcher, W.H.

    1996-12-31

    The UK DTI`s Advanced Fuel Cells Programme currently focuses on two main fuel cell technologies, namely the solid oxide and solid polymer systems (SOFC and SPFC), respectively. The provision of accurate and timely market data is regarded as an important part of the overall programme objectives, such as to assist both Government and industry in their appraisals of the technologies. The present study was therefore commissioned against this background, with a complementary study addressing transportation and mobile applications. The results reported herein relate to the stationary market applications potential of both SOFC and SPFC systems.

  16. Draft Genome Sequence of a Potential Nitrate-Dependent Fe(II)-Oxidizing Bacterium, Aquabacterium parvum B6

    PubMed Central

    Zhang, Xiaoxin

    2016-01-01

    Aquabacterium parvum B6 is a potential nitrate-dependent Fe(II)-oxidizing bacterium. The genes related to its denitrifying mechanism and iron metabolisms were unknown. We present the draft genome of Aquabacterium parvum B6, which could provide further insight into the nitrate-dependent Fe(II)-oxidizing mechanism of strain B6. PMID:26823591

  17. Draft Genome Sequence of a Potential Nitrate-Dependent Fe(II)-Oxidizing Bacterium, Aquabacterium parvum B6.

    PubMed

    Zhang, Xiaoxin; Ma, Fang; Szewzyk, Ulrich

    2016-01-01

    Aquabacterium parvum B6 is a potential nitrate-dependent Fe(II)-oxidizing bacterium. The genes related to its denitrifying mechanism and iron metabolisms were unknown. We present the draft genome of Aquabacterium parvum B6, which could provide further insight into the nitrate-dependent Fe(II)-oxidizing mechanism of strain B6. PMID:26823591

  18. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera.

    PubMed

    Singh, Brahma N; Singh, B R; Singh, R L; Prakash, D; Dhakarey, R; Upadhyay, G; Singh, H B

    2009-06-01

    The aqueous extract of leaf (LE), fruit (FE) and seed (SE) of Moringa oleifera was assessed to examine the ability to inhibit the oxidative DNA damage, antioxidant and anti-quorum sensing (QS) potentials. It was found that these extracts could significantly inhibit the OH-dependent damage of pUC18 plasmid DNA and also inhibit synergistically with trolox, with an activity sequence of LE > FE > SE. HPLC and MS/MS analysis was carried out, which showed the presence of gallic acid, chlorogenic acid, ellagic acid, ferulic acid, kaempferol, quercetin and vanillin. The LE was with comparatively higher total phenolics content (105.04 mg gallic acid equivalents (GAE)/g), total flavonoids content (31.28 mg quercetin equivalents (QE)/g), and ascorbic acid content (106.95 mg/100 g) and showed better antioxidant activity (85.77%), anti-radical power (74.3), reducing power (1.1 ascorbic acid equivalents (ASE)/ml), inhibition of lipid peroxidation, protein oxidation, OH-induced deoxyribose degradation, and scavenging power of superoxide anion and nitric oxide radicals than did the FE, SE and standard alpha-tocopherol. Eventually, LE and FE were found to inhibit violacein production, a QS-regulated behavior in Chromobacterium violaceum 12472. PMID:19425184

  19. The physiological role and pharmacological potential of nitric oxide in neutrophil activation.

    PubMed

    Armstrong, R

    2001-08-01

    There is contention over whether human neutrophils produce physiologically significant levels of nitric oxide (NO) during inflammatory reactions. Nevertheless, regardless of its cell source, NO does exert regulatory effects on neutrophil function. Depending on experimental conditions, NO can either inhibit or enhance neutrophil activation, in both cases probably acting through cyclic GMP. The explanation for these apparently contradictory findings may be that the effect depends upon the concentration of NO: low concentrations of NO being stimulatory and high concentrations inhibitory. Nitrite, produced at high concentrations from NO during inflammation, can react with neutrophil myeloperoxidase-derived hypochlorous acid (HOCl) to form the active oxidant nitryl chloride, a species capable of nitrating tyrosine and tyrosyl residues on proteins. Whether nitryl chloride acts to limit or amplify the oxidant effects of myeloperoxidase is not yet clear, although formation of nitrotyrosine has been linked with nitration of phagocytosed bacteria. Clearly, a better understanding of the inflammatory effects of NO on neutrophils is needed before the therapeutic potential of NO donors or inhibitors in inflammation can be realised. PMID:11515815

  20. Role of oxidative stress & transient receptor potential in chronic obstructive pulmonary disease

    PubMed Central

    Bose, Protiti; Bathri, Rashmi; Kumar, Lalit; Vijayan, V.K.; Maudar, K.K.

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) affect millions of people worldwide and is known to be one of the leading causes of death. The highly sensitive airways protect themselves from irritants by cough and sneeze which propel endogenous and exogenous substances to minimize airway noxious effects. One noxious effect of these substances is activation of peripheral sensory nerve endings of nociceptor neurons innervating these airways lining thus transmitting dangerous signals from the environment to the central nervous system (CNS). Nociceptor neurons include transient receptor potential (TRP) ion channels, especially the vanilloid and ankyrin subfamilies, TRPV1/A1 which can be activated by noxious chemical challenges in models of airways disease. As oxidative stress may activate airways sensory neurons and contribute to COPD exacerbations we sought to review the role that TRP channel activation by oxidative signals may have on airway responses. It would be prudent to target the TRP channels with antagonists and lower systemic oxidative stress with agents that can modulate TRP expression and boost the endogenous levels of antioxidants for treatment and management of COPD. PMID:26458340

  1. Correction: Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Hachani, Roxanne; Lowdell, Mark; Birchall, Martin; Hervault, Aziliz; Mertz, Damien; Begin-Colin, Sylvie; Thanh, Nguy&Ecirtil; N. Thi&Cmb. B. Dot; Kim

    2016-02-01

    Correction for `Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents' by Roxanne Hachani et al., Nanoscale, 2015, DOI: 10.1039/c5nr03867g.

  2. Sources, sinks, and mechanisms of hydroxyl radical (•OH) photoproduction and consumption in authentic acidic continental cloud waters from Whiteface Mountain, New York: The role of the Fe(r) (r = II, III) photochemical cycle

    NASA Astrophysics Data System (ADS)

    Arakaki, Takemitsu; Faust, Bruce C.

    1998-02-01

    Hydroxyl radical (•OH) photoproduction in 25 authentic acidic (pH = 2.9-4.4) continental cloud waters from Whiteface Mountain, New York was quantified by phenol formed from the •OH-mediated oxidation of benzene (1.2 mM) that was added as an •OH scavenger. Based on the effect of added bisulfite (HSO3-/HOSO2-), an HOOH sink, the •OH photoproduction in these samples was apportioned into two categories: HOOH-dependent sources (dominant), and HOOH-independent sources (minor). On average only a small percentage (median = 9.4%, mean±standard deviation = 16±12%) of the HOOH-dependent •OH source is due to direct photolysis (313 nm) of HOOH. Nearly all of the HOOH-dependent •OH source is accounted for by an iron(II)-HOOH photo-Fenton reaction mechanism (Fe(II) + HOOH → Fe(III) + •OH + OH-) that is initiated by photoreduction of Fe(III) to Fe(II) in the presence of HOOH. A photostationary state is established, involving rapid photolysis of Fe(III) to form Fe(II), and rapid reoxidation of Fe(II) to Fe(III). Consequently, a new term is introduced, Fe(r) (r = II, III), to represent the family of labile Fe(III) and Fe(II) species whose rapid photoredox cycling drives the Fenton production of •OH. The Fe(r) photochemical cycle, which drives the aqueous phase photoformation of •OH, is analogous to the classical NOx photochemical cycle, which drives the gas phase formation of O3 and thus •OH. Based on the cloud waters studied here, the iron(II)-HOOH photo-Fenton reaction is a significant source of •OH to acidic continental cloud waters in comparison to gas-to-drop partitioning processes. Filtering (0.5 μm Teflon) cloud water samples had little effect on the •OH photoformation kinetics. Measured lifetimes of aqueous •OH ranged from 2.4 to 10.6 μs in these cloud waters, and decreased with increasing concentration of dissolved organic carbon. In acidic atmospheric water drops, the principal aqueous sinks for •OH will be reactions with dissolved organic

  3. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  4. Analysis of surface potential and magnetic properties of Fe3O4/graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Mishra, Amodini; Mohanty, Tanuja

    2016-05-01

    Nanocomposite of magnetite/graphene oxide (Fe3O4/GO) has been synthesized by co-precipitation method. The phase formation of the magnetite nanoparticles (Fe3O4 NPs) was confirmed by X-ray diffraction (XRD) analysis. Effect of Fe3O4 NPs on the Raman spectra and on the surface potential of GO has been analyzed. Due to incorporation of NPs, change in the characteristic Raman peaks and also on the surface potential of GO is observed. Transmission electron microscopic (TEM) study has been carried out for surface morphology. Magnetic property measurement was carried out by using physical property measurement system (PPMS) at two different temperatures (30 K and 300K).

  5. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide

    SciTech Connect

    Crusius, Johann-Philipp Hassel, Egon; Hellmann, Robert Bich, Eckard

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N{sub 2}O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N{sub 2}O–N{sub 2}O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N{sub 2}O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data.

  6. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    PubMed Central

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  7. Chapter A6. Section 6.5. Reduction-Oxidation Potential (Electrode Method)

    USGS Publications Warehouse

    Nordstrom, Darrell Kirk; Wilde, Franceska D.

    2005-01-01

    Reduction-oxidation (redox) potential--also referred to as Eh--is a measure of the equilibrium potential, relative to the standard hydrogen electrode, developed at the interface between a noble metal electrode and an aqueous solution containing electroactive chemical species. Measurements of Eh are used to evaluate geochemical speciation models, and Eh data can provide insights on the evolution and status of water chemistry in an aqueous system. Nevertheless, the measurement is fraught with inherent interferences and limitations that must be understood and considered to determine applicability to the aqueous system being studied. For this reason, Eh determination is not one of the field parameters routinely measured by the U.S. Geological Survey (USGS). This section of the National Field Manual (NFM) describes the equipment and procedures needed to measure Eh in water using a platinum electrode. Guidance as to the limitations and interpretation of Eh measurement also is included.

  8. A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers.

    PubMed

    Lopresti, Adrian L; Maker, Garth L; Hood, Sean D; Drummond, Peter D

    2014-01-01

    Biomarkers are regularly used in medicine to provide objective indicators of normal biological processes, pathogenic processes or pharmacological responses to therapeutic interventions, and have proved invaluable in expanding our understanding and treatment of medical diseases. In the field of psychiatry, assessment and treatment has, however, primarily relied on patient interviews and questionnaires for diagnostic and treatment purposes. Biomarkers in psychiatry present a promising addition to advance the diagnosis, treatment and prevention of psychiatric diseases. This review provides a summary on the potential of peripheral biomarkers in major depression with a specific emphasis on those related to inflammatory/immune and oxidative stress/antioxidant defences. The complexities associated with biomarker assessment are reviewed specifically around their collection, analysis and interpretation. Focus is placed on the potential of peripheral biomarkers to aid diagnosis, predict treatment response, enhance treatment-matching, and prevent the onset or relapse of major depression. PMID:24104186

  9. Ab initio intermolecular potential energy surface and thermophysical properties of nitrous oxide.

    PubMed

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2015-06-28

    We present an analytical intermolecular potential energy surface (PES) for two rigid nitrous oxide (N2O) molecules derived from high-level quantum-chemical ab initio calculations. Interaction energies for 2018 N2O-N2O configurations were computed utilizing the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory using basis sets up to aug-cc-pVQZ supplemented with bond functions. A site-site potential function with seven sites per N2O molecule was fitted to the pair interaction energies. We validated our PES by computing the second virial coefficient as well as shear viscosity and thermal conductivity in the dilute-gas limit. The values of these properties are substantiated by the best experimental data. PMID:26133428

  10. Indium oxide thin film as potential photoanodes for corrosion protection of stainless steel under visible light

    SciTech Connect

    Zhang, Yan; Yu, Jianqiang; Sun, Kai; Zhu, Yukun; Bu, Yuyu; Chen, Zhuoyuan

    2014-05-01

    Graphical abstract: If the conduction band potential of In{sub 2}O{sub 3} is more negative than the corrosion potential of stainless steel, photo-induced electrons will be transferred from In{sub 2}O{sub 3} to the steel, thus shifting the potential of the steel into a corrosion immunity region and preventing the steel from the corrosion. - Highlights: • Indium oxide performed novel application under visible light. • Indium oxide by sol–gel method behaved better photoelectrochemical properties. • Electrons were transferred to stainless steel from indium oxide once light on. - Abstract: This paper reports the photoelectrochemical cathodic protection of 304 stainless steel by In{sub 2}O{sub 3} thin-film under visible-light. The films were fabricated with In{sub 2}O{sub 3} powders, synthesized by both sol–gel (In{sub 2}O{sub 3}-sg) and solid-state (In{sub 2}O{sub 3}-ss) processes. The photo-induced open circuit potential and the photo-to-current efficiency measurements suggested that In{sub 2}O{sub 3} could be a promising candidate material for photoelectrochemical cathodic protection of metallic alloys under visible light. Moreover, the polarization curve experimental results indicated that In{sub 2}O{sub 3}-sg thin-film can mitigate the corrosion potential of 304 stainless steel to much more negative values with a higher photocurrent density than the In{sub 2}O{sub 3}-ss film under visible-light illumination. All the results demonstrated that the In{sub 2}O{sub 3}-sg thin-film provides a better photoelectrochemical cathodic protection for 304 stainless steel than In{sub 2}O{sub 3}-ss thin-film under visible-light illumination. The higher photoelectrochemical efficiency is possibly due to the uniform thin films produced with the smaller particle size of In{sub 2}O{sub 3}-sg, which facilitates the transfer of the photo-induced electrons from bulk to the surface and suppresses the charge recombination of the electrons and holes.

  11. Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Torsæter, Ole

    2015-02-01

    This paper presents systematic studies of hydrophilic metal oxide nanoparticles (NPs) dispersed in brine intended to reveal their potential to enhance oil recovery (EOR) in various rock wettability systems. The stability in suspension (nanofluid) of the NPs has been identified as a key factor related to their use as an EOR agent. Experimental techniques have been developed for nanofluid stability using three coupled methods: direct visual observation, surface conductivity and particle size measurements. The use of a dispersant has been investigated and has been shown to successfully improve metal oxide nanofluid stability as a function of its concentration. The dispersant alters the nanofluid properties, i.e. surface conductivity, pH and particle size distribution. A two-phase coreflood experiment was conducted by injecting the stable nanofluids as a tertiary process (nano-EOR) through core plugs with various wettabilities ranging from water-wet to oil-wet. The combination of metal oxide nanofluid and dispersant improved the oil recovery to a greater extent than either silica-based nanofluid or dispersant alone in all wettability systems. The contact angle, interfacial tension (IFT) and effluent were also measured. It was observed that metal oxide-based nanofluids altered the quartz plates to become more water-wet, and the results are consistent with those of the coreflood experiment. The particle adsorption during the transport process was identified from effluent analysis. The presence of NPs and dispersant reduced the IFT, but its reduction is sufficient to yield significant additional oil recovery. Hence, wettability alteration plays a dominant role in the oil displacement mechanism using nano-EOR.

  12. Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment.

    PubMed

    Naureen, Ayesha; Rehman, Abdul

    2016-08-01

    Arsenite oxidizing bacteria, isolated from industrial wastewater, showed high resistance against arsenite (40 mM) and other heavy metals (10 mM Pb; 8 mM Cd; 6 mM Cr; 10 mM Cu and 26.6 mM As(5+)). Bacterial isolates were characterized, on the basis of morphological, biochemical and 16S rRNA ribotyping, as Bacillus cereus (1.1S) and Acinetobacter junii (1.3S). The optimum temperature and pH for the growth of both strains were found to be 37 °C and 7. Both the strains showed maximum growth after 24 h of incubation. The predominant form of arsenite oxidase was extracellular in B. cereus while in A. junii both types of activities, intracellular and extracellular, were found. The extracellular aresenite oxidase activity was found to be 730 and 750 µM/m for B. cereus and A. junii, respectively. The arsenite oxidase from both bacterial strains showed maximum activity at 37 °C, pH 7 and enhanced in the presence of Zn(2+). The presence of two protein bands with molecular weight of approximately 70 and 14 kDa in the presence of arsenic points out a possible role in arsenite oxidation. Arsenite oxidation potential of B. cereus and A. junii was determined up to 92 and 88 % in industrial wastewater after 6 days of incubation. The bacterial treated wastewater improved the growth of Vigna radiata as compared to the untreated wastewater. It indicates that these bacterial strains may find some potential applications in wastewater treatment systems to transform toxic arsenite into less toxic form, arsenate. PMID:27339314

  13. Enrichment processes of arsenic in oxidic sedimentary rocks - from geochemical and genetic characterization to potential mobility.

    PubMed

    Banning, Andre; Rüde, Thomas R

    2010-11-01

    Sedimentary marine iron ores of Jurassic age and Tertiary marine sandy sediments containing iron hydroxides concretions have been sampled from boreholes and outcrops in two study areas in Germany to examine iron and arsenic accumulation processes. Samples were analyzed for bulk rock geochemistry (INAA/ICP-OES), quantitative mineralogy (XRD with Rietveld analysis), element distribution (electron microprobe) and arsenic fractionation (sequential extraction). Bulk Jurassic ores contain an average arsenic content of 123 μg g(-1) hosted in mainly goethite ooids which slowly formed in times of condensed sedimentation. Enrichment occurred syndepositionally and is therefore characterized as primary. Iron concretions in Tertiary sediments mainly consist of goethite and yield arsenic up to 1860 μg g(-1). The accumulation process is secondary as it took place in the course of oxidation of the originally reduced marine sediments under terrestrial conditions, leading to element redistribution and local enrichment in the near-surface part. The scale of enrichment was assessed calculating Enrichment Factors, indicating that arsenic accumulation was favoured over other potential contaminants. In spite of higher bulk arsenic contents in the oxidic rocks, the mainly pyrite-hosted As pool within the reduced deeper part of the Tertiary sediments is shown to have a higher potential for remobilization and creation of elevated arsenic concentrations in groundwater. PMID:20561664

  14. Tuning oxide activity through modification of the crystal and electronic structure: from strain to potential polymorphs.

    PubMed

    Xu, Zhongnan; Kitchin, John R

    2015-11-21

    Discovering new materials with tailored chemical properties is vital for advancing key technologies in catalysis and energy conversion. One strategy is the modification of a material's crystal structure, and new methods allow for the synthesis and stabilization of potential materials in a range of crystal polymorph structures. We assess the potential reactivity of four metastable oxide polymorphs of MO2 (M = Ru, Rh, Pt, Ir) transition metal oxides. In spite of the similar local geometry and coordination between atoms in the metastable polymorphic and stable rutile structure, we find that polymorph reactivities cannot be explained by strain alone and offer tunable reactivity and increased stability. Atom-projected density of states reveals that the unique reactivity of polymorphs are caused by a redistribution of energy levels of the t2g-states. This structure-activity relationship is induced by slight distortions to the M-O bonds in polymorphic structures and is unattainable by strain. We predict columbite IrO2 to be more active than rutile IrO2 for oxygen evolution. PMID:26455918

  15. Application of the redox potential for controlling a sulfide oxidizing bioreactor

    SciTech Connect

    Janssen, A.J.H.; Meijer, S.; Lettinga, G.; Bontsema, J.

    1998-10-20

    The investigations described show that the formation of elemental sulfur from the biological oxidation of sulfide can be optimized by controlling the redox state of the solution. The nonsoluble sulfur can be removed by gravity sedimentation and re-used as a raw material, i.e., in bioleaching processes. It was shown that, by supplying an almost stoichiometrical amount of oxygen to the recirculated gas phase, the formation of sulfate is minimized. The redox potential is mainly determined by the sulfide concentration because this compound has a high standard exchange current density with the platinum electrode surface. By maintaining a particular redox set-point value, in fact, the reactor becomes a sulfide-stat. It was shown that in a sulfide-oxidizing bioreactor the measured redox potential, using a polished redox electrode, is kinetically determined rather than thermodynamically. The optimal redox value for sulfur formation is between {minus}147 and {minus}137 mV. The presented results are currently used for controlling several full-scale installations, which desulfurize biogas and high-pressure natural gas.

  16. Potentiation of osteoclast bone-resorption activity by inhibition of nitric oxide synthase.

    PubMed Central

    Kasten, T P; Collin-Osdoby, P; Patel, N; Osdoby, P; Krukowski, M; Misko, T P; Settle, S L; Currie, M G; Nickols, G A

    1994-01-01

    We have examined the effects of modulating nitric oxide (NO) levels on osteoclast-mediated bone resorption in vitro and the effects of nitric oxide synthase (NOS) inhibitors on bone mineral density in vivo. Diaphorase-based histochemical staining for NOS activity of bone sections or highly enriched osteoclast cultures suggested that osteoclasts exhibit substantial NOS activity that may account for basal NO production. Chicken osteoclasts were cultured for 36 hr on bovine bone slices in the presence or absence of the NO-generating agent sodium nitroprusside or the NOS inhibitors N-nitro-L-arginine methyl ester and aminoguanidine. Nitroprusside markedly decreased the number of bone pits and the average pit area in comparison with control cultures. On the other hand, NOS inhibition by N-nitro-L-arginine methyl ester or aminoguanidine dramatically increased the number of bone pits and the average resorption area per pit. In a model of osteoporosis, aminoguanidine potentiated the loss of bone mineral density in ovariectomized rats. Aminoguanidine also caused a loss of bone mineral density in the sham-operated rats. Inhibition of NOS activity in vitro and in vivo resulted in an apparent potentiation of osteoclast activity. These findings suggest that endogenous NO production in osteoclast cultures may regulate resorption activity. The modulation of NOS and NO levels by cells within the bone microenvironment may be a sensitive mechanism for local control of osteoclast bone resorption. Images PMID:7513424

  17. Determination of the nitrous oxide emission potential of deammonification under anoxic conditions.

    PubMed

    Schneider, Y; Beier, M; Rosenwinkel, K-H

    2011-12-01

    Various studies have been performed to determine nitrous oxide (N2O) emissions from conventional biological nitrogen removal processes in wastewater treatment like nitrification and denitrification in the main stream. However, with respect to the overall emissions of a wastewater treatment plant, part-stream treatment for high-strength wastewater (e.g., sludge liquor) is also expected to hold a significant emission potential because of high concentrations and extreme boundary conditions. This paper presents results from a laboratory-scale study on nitrous oxide production by biomass from a deammonification process (nitritation + anammox) under anoxic conditions. It was discovered that N2O formation results from incomplete endogenous denitrification rather than anammox and is dependent on substrate availability. Based on direct measurements of the dissolved N2O concentrations in a sequencing batch reactor, the dynamic behavior of N2O production is characterized in more detail. The results show that, during anoxic conditions, the N2O emission potential of deammonification is significantly lower than from conventional denitrification. PMID:22368962

  18. Mastectomy With Immediate Expander-Implant Reconstruction, Adjuvant Chemotherapy, and Radiation for Stage II-III Breast Cancer: Treatment Intervals and Clinical Outcomes

    SciTech Connect

    Wright, Jean L.; Cordeiro, Peter G.; Ben-Porat, Leah; Van Zee, Kimberly J.; Hudis, Clifford; Beal, Kathryn; McCormick, Beryl

    2008-01-01

    Purpose: To determine intervals between surgery and adjuvant chemotherapy and radiation in patients treated with mastectomy with immediate expander-implant reconstruction, and to evaluate locoregional and distant control and overall survival in these patients. Methods and Materials: Between May 1996 and March 2004, 104 patients with Stage II-III breast cancer were routinely treated at our institution under the following algorithm: (1) definitive mastectomy with axillary lymph node dissection and immediate tissue expander placement, (2) tissue expansion during chemotherapy, (3) exchange of tissue expander for permanent implant, (4) radiation. Patient, disease, and treatment characteristics and clinical outcomes were retrospectively evaluated. Results: Median age was 45 years. Twenty-six percent of patients were Stage II and 74% Stage III. All received adjuvant chemotherapy. Estrogen receptor staining was positive in 77%, and 78% received hormone therapy. Radiation was delivered to the chest wall with daily 0.5-cm bolus and to the supraclavicular fossa. Median dose was 5040 cGy. Median interval from surgery to chemotherapy was 5 weeks, from completion of chemotherapy to exchange 4 weeks, and from exchange to radiation 4 weeks. Median interval from completion of chemotherapy to start of radiation was 8 weeks. Median follow-up was 64 months from date of mastectomy. The 5-year rate for locoregional disease control was 100%, for distant metastasis-free survival 90%, and for overall survival 96%. Conclusions: Mastectomy with immediate expander-implant reconstruction, adjuvant chemotherapy, and radiation results in a median interval of 8 weeks from completion of chemotherapy to initiation of radiation and seems to be associated with acceptable 5-year locoregional control, distant metastasis-free survival, and overall survival.

  19. Japanese POEMS syndrome with Thalidomide (J-POST) Trial: study protocol for a phase II/III multicentre, randomised, double-blind, placebo-controlled trial

    PubMed Central

    Katayama, Kanako; Misawa, Sonoko; Sato, Yasunori; Sobue, Gen; Yabe, Ichiro; Watanabe, Osamu; Nishizawa, Masatoyo; Kusunoki, Susumu; Kikuchi, Seiji; Nakashima, Ichiro; Ikeda, Shu-ichi; Kohara, Nobuo; Kanda, Takashi; Kira, Jun-ichi; Hanaoka, Hideki; Kuwabara, Satoshi

    2015-01-01

    Introduction Polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes (POEMS) syndrome is a fatal systemic disorder associated with plasma cell dyscrasia and the overproduction of the vascular endothelial growth factor (VEGF). Recently, the prognosis of POEMS was substantially improved by introduction of therapeutic intervention for myeloma. However, no randomised clinical trial has been performed because of the rarity and severity of the disease. Methods and analysis The Japanese POEMS syndrome with Thalidomide (J-POST) Trial is a phase II/III multicentre, double-blinded, randomised, controlled trial that aims to evaluate the efficacy and safety of a 24-week treatment with thalidomide in POEMS syndrome, with an additional 48-week open-label safety study. Adults with POEMS syndrome who have no indication for transplantation are assessed for eligibility at 12 tertiary neurology centres in Japan. Patients who satisfy the eligibility criteria are randomised (1:1) to receive thalidomide (100–300 mg daily) plus dexamethasone (12 mg/m2 on days 1–4 of a 28-day cycle) or placebo plus dexamethasone. Both treatments were administered for 24 weeks (six cycles; randomised comparative study period). Patients who complete the randomised study period or show subacute deterioration during the randomised period participate in the subsequent 48-week open-label safety study (long-term safety period). The primary end point of the study is the reduction rate of serum VEGF levels at 24 weeks. Ethics and dissemination The protocol was approved by the Institutional Review Board of each hospital. The trial was notified and registered at the Pharmaceutical and Medical Devices Agency, Japan (No. 22-1716). The J-POST Trial is currently ongoing and is due to finish in August 2015. The findings of this trial will be disseminated through peer-reviewed publications and conference presentations and will also be disseminated to participants. Trial registration number

  20. Feasibility of radiotherapy after high-dose dense chemotherapy with epirubicin, preceded by dexrazoxane, and paclitaxel for patients with high-risk Stage II-III breast cancer

    SciTech Connect

    De Giorgi, Ugo . E-mail: ugo_degiorgi@yahoo.com; Giannini, Massimo; Frassineti, Luca; Kopf, Barbara; Palazzi, Silvia; Giovannini, Noemi; Zumaglini, Federica; Rosti, Giovanni; Emiliani, Ermanno; Marangolo, Maurizio

    2006-07-15

    Purpose: To verify the feasibility of, and quantify the risk of, pneumonitis from locoregional radiotherapy (RT) after high-dose dense chemotherapy with epirubicin and paclitaxel with peripheral blood progenitor cell support in patients with high-risk Stage II-III breast cancer. Methods and Materials: Treatment consisted of a mobilizing course of epirubicin 150 mg/m{sup 2}, preceded by dexrazoxane (Day 1), paclitaxel 175 mg/m{sup 2} (Day 2), and filgrastim; followed by three courses of epirubicin 150 mg/m{sup 2}, preceded by dexrazoxane (Day 1), paclitaxel 400 mg/m{sup 2} (Day 2), and peripheral blood progenitor cell support and filgrastim, every 16-19 days. After chemotherapy, patients were treated with locoregional RT, which included the whole breast or the chest wall, axilla, and supraclavicular area. Results: Overall, 64 of 69 patients were evaluable. The interval between the end of chemotherapy and the initiation of RT was at least 1.5-2 months (mean 2). No treatment-related death was reported. After a median follow-up of 27 months from RT (range 5-77 months), neither clinically relevant radiation pneumonitis nor congestive heart failure had been reported. Minor and transitory lung and cardiac toxicities were observed. Conclusion: Sequential high doses of epirubicin, preceded by dexrazoxane, and paclitaxel did not adversely affect the tolerability of locoregional RT in breast cancer patients. The risk of pneumonitis was not affected by the use of sequential paclitaxel with an interval of at least 1.5-2 months between the end of chemotherapy and the initiation of RT. Long-term follow-up is needed to define the risk of cardiotoxicity in these patients.

  1. Manganese(II,III) Oxyborate, Mn 2OBO 3: A Distorted Homometallic Warwickite—Synthesis, Crystal Structure, Band Calculations, and Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Norrestam, R.; Kritikos, M.; Sjödin, A.

    1995-02-01

    The manganese(II,III) oxyborate with the composition Mn2OBO3 has been synthesized by high-temperature techniques. X-ray studies show that crystals of the specimen, grown with borax as flux, are monoclinic, with space group P21/n, = 9.2866(7), b = 9.5333(10), c = 3.2438(3) Å, and β = 90.757(7)°. A model of the crystal structure has been refined with the 2064 most significant (l ≥ 5 · σ1) X-ray reflections with sin(θ)/λ ≤ 1.08 Å-1 to R = 0.40. The structure of Mn2OBO3 can be considered to be a distorted modification of the orthorhombic warwickite structure. The distortions, apparently caused by Jahn-Teller effects induced by the Mn3+ ions, remove the mirror symmetry of the parent undistorted warwickite. As a consequence, the space group symmetry is lowered from Pnam to one of its subgroups, P21/n. The structural results as well as the measured magnetic susceptibilities indicate high-spin manganese ions. The magnetic susceptibilities in the temperature region 110-300 K follow the Curie-Weiss law. The Weiss constant of -132(1) K indicates an antiferromagnetic ordering at low temperature. The bond distances and calculated bond valence sums indicate that the trivalent manganese ions are located in the two inner columns of the four-octahedra-wide walls. This metal charge distribution is supported by extended Hückel band calculations on some homometallic warwickites. The difference in metal coordination around one of the borate oxygen atoms is reflected by a significant deviation of the borate group geometry from the ideal trigonal symmetry.

  2. Fibroblast Growth Factor 2-A Predictor of Outcome for Patients Irradiated for Stage II-III Non-Small-Cell Lung Cancer

    SciTech Connect

    Rades, Dirk; Setter, Cornelia; Dahl, Olav; Schild, Steven E.; Noack, Frank

    2012-01-01

    Purpose: The prognostic value of the tumor cell expression of the fibroblast growth factor 2 (FGF-2) in patients with non-small-cell lung cancer (NSCLC) is unclear. The present study investigated the effect of tumor cell expression of FGF-2 on the outcome of 60 patients irradiated for Stage II-III NSCLC. Methods and Materials: The effect of FGF-2 expression and 13 additional factors on locoregional control (LRC), metastasis-free survival (MFS), and overall survival (OS) were retrospectively evaluated. These additional factors included age, gender, Karnofsky performance status, histologic type, histologic grade, T and N category, American Joint Committee on Cancer stage, surgery, chemotherapy, pack-years, smoking during radiotherapy, and hemoglobin during radiotherapy. Locoregional failure was identified by endoscopy or computed tomography. Univariate analyses were performed with the Kaplan-Meier method and the Wilcoxon test and multivariate analyses with the Cox proportional hazard model. Results: On univariate analysis, improved LRC was associated with surgery (p = .017), greater hemoglobin levels (p = .036), and FGF-2 negativity (p <.001). On multivariate analysis of LRC, surgery (relative risk [RR], 2.44; p = .037), and FGF-2 expression (RR, 5.06; p <.001) maintained significance. On univariate analysis, improved MFS was associated with squamous cell carcinoma (p = .020), greater hemoglobin levels (p = .007), and FGF-2 negativity (p = .001). On multivariate analysis of MFS, the hemoglobin levels (RR, 2.65; p = .019) and FGF-2 expression (RR, 3.05; p = .004) were significant. On univariate analysis, improved OS was associated with a lower N category (p = .048), greater hemoglobin levels (p <.001), and FGF-2 negativity (p <.001). On multivariate analysis of OS, greater hemoglobin levels (RR, 4.62; p = .002) and FGF-2 expression (RR, 3.25; p = .002) maintained significance. Conclusions: Tumor cell expression of FGF-2 appeared to be an independent negative predictor

  3. Three-dimensional localization of the α and β subunits and of the II-III loop in the skeletal muscle L-type Ca2+ channel.

    PubMed

    Szpyt, John; Lorenzon, Nancy; Perez, Claudio F; Norris, Ethan; Allen, Paul D; Beam, Kurt G; Samsó, Montserrat

    2012-12-21

    The L-type Ca(2+) channel (dihydropyridine receptor (DHPR) in skeletal muscle acts as the voltage sensor for excitation-contraction coupling. To better resolve the spatial organization of the DHPR subunits (α(1s) or Ca(V)1.1, α(2), β(1a), δ1, and γ), we created transgenic mice expressing a recombinant β(1a) subunit with YFP and a biotin acceptor domain attached to its N- and C- termini, respectively. DHPR complexes were purified from skeletal muscle, negatively stained, imaged by electron microscopy, and subjected to single-particle image analysis. The resulting 19.1-Å resolution, three-dimensional reconstruction shows a main body of 17 × 11 × 8 nm with five corners along its perimeter. Two protrusions emerge from either face of the main body: the larger one attributed to the α(2)-δ1 subunit that forms a flexible hook-shaped feature and a smaller protrusion on the opposite side that corresponds to the II-III loop of Ca(V)1.1 as revealed by antibody labeling. Novel features discernible in the electron density accommodate the atomic coordinates of a voltage-gated sodium channel and of the β subunit in a single docking possibility that defines the α1-β interaction. The β subunit appears more closely associated to the membrane than expected, which may better account for both its role in localizing the α(1s) subunit to the membrane and its suggested role in excitation-contraction coupling. PMID:23118233

  4. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial

    PubMed Central

    Heiss, Markus M; Murawa, Pawel; Koralewski, Piotr; Kutarska, Elzbieta; Kolesnik, Olena O; Ivanchenko, Vladimir V; Dudnichenko, Alexander S; Aleknaviciene, Birute; Razbadauskas, Arturas; Gore, Martin; Ganea-Motan, Elena; Ciuleanu, Tudor; Wimberger, Pauline; Schmittel, Alexander; Schmalfeldt, Barbara; Burges, Alexander; Bokemeyer, Carsten; Lindhofer, Horst; Lahr, Angelika; Parsons, Simon L

    2010-01-01

    Malignant ascites is a common manifestation of advanced cancers, and treatment options are limited. The trifunctional antibody catumaxomab (anti-epithelial cell-adhesion molecule x anti-CD3) represents a targeted immunotherapy for the intraperitoneal (i.p.) treatment of malignant ascites secondary to epithelial cancers. In this phase II/III trial (EudraCT 2004-000723-15; NCT00836654), cancer patients (n = 258) with recurrent symptomatic malignant ascites resistant to conventional chemotherapy were randomized to paracentesis plus catumaxomab (catumaxomab) or paracentesis alone (control) and stratified by cancer type (129 ovarian and 129 nonovarian). Catumaxomab was administered as an i.p. infusion on Days 0, 3, 7 and 10 at doses of 10, 20, 50 and 150 μg, respectively. The primary efficacy endpoint was puncture-free survival. Secondary efficacy parameters included time to next paracentesis, ascites signs and symptoms and overall survival (OS). Puncture-free survival was significantly longer in the catumaxomab group (median 46 days) than the control group (median 11 days) (hazard ratio = 0.254: p < 0.0001) as was median time to next paracentesis (77 versus 13 days; p < 0.0001). In addition, catumaxomab patients had fewer signs and symptoms of ascites than control patients. OS showed a positive trend for the catumaxomab group and, in a prospectively planned analysis, was significantly prolonged in patients with gastric cancer (n = 66; 71 versus 44 days; p = 0.0313). Although adverse events associated with catumaxomab were frequent, they were manageable, generally reversible and mainly related to its immunologic mode of action. Catumaxomab showed a clear clinical benefit in patients with malignant ascites secondary to epithelial cancers, especially gastric cancer, with an acceptable safety profile. PMID:20473913

  5. Ozone loss rates in the Arctic winter stratosphere during 1994-2000 derived from POAM II/III and ILAS observations: Implications for relationships among ozone loss, PSC occurrence, and temperature

    NASA Astrophysics Data System (ADS)

    Terao, Yukio; Sugita, Takafumi; Sasano, Yasuhiro

    2012-03-01

    Quantitative chemical ozone loss rates at the 475 K isentropic surface inside the Arctic polar vortex are evaluated for six winters (January through March) using a satellite-based Match technique. Satellite observational data are taken from the Polar Ozone and Aerosol Measurement (POAM) II for 1994-1996, the Improved Limb Atmospheric Spectrometer (ILAS) for 1997, and the POAM III for 1999-2000. The largest ozone loss rates were observed in the end of January 1995 (˜50 ± 20 ppbv d-1), February 1996 (˜40-50 ± 15 ppbv d-1), February 1997 (˜40 ± 8 ppbv d-1), January 2000 (˜60 ± 30 ppbv d-1), and early March 2000 (˜40 ± 10 ppbv d-1). The probability of polar stratospheric cloud (PSC) existence is estimated using aerosol extinction coefficient data from POAM II/III and ILAS. Ozone loss and the PSC probability are strongly correlated and an absolute increase of 10% in the PSC probability is found to amplify the chemical ozone loss rate during Arctic winter by approximately 25 ± 6 ppbv per day or 3.2 ± 0.7 ppbv per sunlit hour. Relationships between average Arctic winter ozone loss rates and various PSC- and temperature-related indices are investigated, including the area of polar vortex that is colder than the threshold temperature for PSC existence (APSC), the PSC formation potential (PFP), and the potential for activation of chlorine (PACl). Of these three, PACl provides the best proxy representation of interannual variability in Arctic ozone loss at the 475 K level. Large ozone loss occurred primarily for air masses that experienced low temperatures between 187 K and 195 K within the previous 10 days and the ozone loss rates clearly increase with decreasing the minimum temperature. The particularly large ozone losses of ˜9 ± 3 ppbv per sunlit hour in February 1996 and January 2000 were associated with low minimum temperatures of 187-189 K, simultaneously with high PSC probabilities.

  6. The NMR structure of the II-III-VI three-way junction from the Neurospora VS ribozyme reveals a critical tertiary interaction and provides new insights into the global ribozyme structure.

    PubMed

    Bonneau, Eric; Girard, Nicolas; Lemieux, Sébastien; Legault, Pascale

    2015-09-01

    As part of an effort to structurally characterize the complete Neurospora VS ribozyme, NMR solution structures of several subdomains have been previously determined, including the internal loops of domains I and VI, the I/V kissing-loop interaction and the III-IV-V junction. Here, we expand this work by determining the NMR structure of a 62-nucleotide RNA (J236) that encompasses the VS ribozyme II-III-VI three-way junction and its adjoining stems. In addition, we localize Mg(2+)-binding sites within this structure using Mn(2+)-induced paramagnetic relaxation enhancement. The NMR structure of the J236 RNA displays a family C topology with a compact core stabilized by continuous stacking of stems II and III, a cis WC/WC G•A base pair, two base triples and two Mg(2+) ions. Moreover, it reveals a remote tertiary interaction between the adenine bulges of stems II and VI. Additional NMR studies demonstrate that both this bulge-bulge interaction and Mg(2+) ions are critical for the stable folding of the II-III-VI junction. The NMR structure of the J236 RNA is consistent with biochemical studies on the complete VS ribozyme, but not with biophysical studies performed with a minimal II-III-VI junction that does not contain the II-VI bulge-bulge interaction. Together with previous NMR studies, our findings provide important new insights into the three-dimensional architecture of this unique ribozyme. PMID:26124200

  7. Iron and manganese in oxide minerals and in glasses: preliminary consideration of Eh buffering potential at Yucca Mountain, Nevada

    SciTech Connect

    Caporuscio, F.A.; Vaniman, D.T.

    1985-04-01

    The tuffs of Yucca Mountain at the Nevada Test Site are currently under investigation as a possible deep burial site for high-level radioactive waste disposal. One of the main concerns is the effect of oxidizing groundwater on the transport of radionuclides. Rock components that may affect the oxygen content of groundwater include Fe-Ti oxides, Mn oxides, and glasses that contain ferrous iron. Some phenocryst Fe-Ti oxides at Yucca Mountain are in reduced states, whereas groundmass Fe-Ti oxides have been oxidized to hematite, rutile, and pseudobrookite (Fe{sup 3+}-bearing phases) exclusively. Estimates of Fe{sup 2+}-bearing oxides indicate that less than 0.33 vol% phenocrysts is available to act as solid buffering agents of Eh. Of this percentage, significant amounts of Fe-Ti oxides are isolated from effective interaction with groundwater because they occur in densely welded, devitrified tuffs that have low interstitial permeability. Manganese oxides occur primarily along fractures in the ash-flow tuffs. Because the Mn oxides are concentrated along the same pathways (fractures) where transport has occurred in the past, these small volume percentages could act as buffers. However, the oxidation states of actual Mn-oxide phases are high (Mn{sup 4+}), and these minerals have virtually no potential for reducing groundwater Eh. Manganese oxides may even act as oxidizing agents. However, regardless of their poor capabilities as reducing agents, the Mn oxides could be important as sorbents of heavy metals at Yucca Mountain. The lack of accessible, pristine Fe-Ti oxides and the generally high oxidation states of Mn oxides seem to rule out these oxides as Eh buffers of the Yucca Mountain groundwater system. Reduction of ferrous iron within glassy tuffs may have some effect on Eh, but further study is needed. At present it is prudent to assume that minerals and glasses have little or no capacity for reducing oxygen-rich groundwater at Yucca Mountain. 25 refs., 3 figs., 12

  8. Cyto- and genotoxic potential of beta-carotene and cleavage products under oxidative stress.

    PubMed

    Alija, A J; Bresgen, N; Sommerburg, O; Langhans, C D; Siems, W; Eckl, P M

    2005-01-01

    Free radical attack on beta-carotene results in the formation of high amounts of cleavage products with prooxidant activities towards subcellular organelles such as mitochondria, a finding which could provide an explanation for the contradictory results obtained with beta-carotene in clinical efficacy and cancer prevention trials. Since primary hepatocytes proved to be very sensitive indicators for the genotoxic action of suspect mutagens/carcinogens we therefore investigated a beta-carotene cleavage products mixture (CP), apo-8'-beta-carotenal (apo-8') and beta-carotene in the primary rat hepatocyte assay in the presence and absence of oxidative stress provided by hypoxia/reoxygenation (Hy/re). The endpoints tested were: the mitotic indices, the percentages of necrotic and apoptotic cells, micronucleated cells (MN), chromosomal aberrations (CA) and sister chromatid exchanges (SCE). The results obtained indicate a genotoxic potential of both CP and apo-8' already in the concentration range of 100 nM and 1 microM, i.e. at physiologically relevant levels of beta-carotene and beta-carotene breakdown products. In contrast, no significant cytotoxic effects of these substances were observed, nor did beta-carotene induce significant cytotoxic or genotoxic effects at concentrations ranging from 0.01 up to 10 microM. However, when beta-carotene is supplemented during oxidative stress induced by hypoxia/reoxygenation, a dose-dependent increase of CP is observed accompanied by increasing genotoxicity. Furthermore, when beta-carotene cleavage products were supplied during oxidative stress significant additional increases of genotoxic effects were observed, the additional increases indicating an additive effect of both exposures. Summarizing, these results provide strong evidence that beta-carotene breakdown products are responsible for the occurrence of carcinogenic effects found in the Alpha-Tocopherol Beta-carotene-Cancer prevention (ATBC) study and the beta-CArotene and

  9. Understanding the sources and mitigation potential of nitrous oxide in agriculture

    NASA Astrophysics Data System (ADS)

    Horwath, W. R.; Zhu, X.; Doane, T. A.; Burger, M.

    2014-12-01

    More than half of the global warming potential of GHG emissions from agriculture is attributed to nitrous oxide (N2O).. Many factors control the production and release of N2O from soils. In addition to fertilizer N, soil N, moisture and carbon availability control N2O emissions. In addition, a previously overlooked factor, iron, was recently found to be the most significant factor influencing N2O production. Controlled by soil and management factors, N2O production is attributed to multiple pathways, including ammonia oxidation (AO), denitrification, and abiotic chemical reactions. Ammonia oxidation or nitrifier activity N2O production, is a well known pathway, but it significance to total N2O production is also highly debated and soil conditions influencing its production are poorly understood. Studies in a variety of crops in California strongly suggest that this pathway contributes substantially to N2O emissions. It is well established that denitrification primarily occurs under O2- limiting conditions, while N2O produced from AO is also influenced by soil O2 content, with maximum production occurring at low O2 levels (~0.5%). Since emission of N2O can arise from both AO and denitrification activities at low O2 concentrations, it is difficult to discern the importance of each pathway under various soil conditions and management. Furthermore, both the N form and concentration are determinants of nitrifier N2O production. The nitrifier denitrification pathway has been shown to dominate over nitrifier nitrification and nitrification coupled denitrification pathways. Irrigation, rainfall, and fertilization events stimulate microbial activity, including AO and denitrification that produces N2O and although limited, these events contribute to the majority of annual emissions. This uncertainty and complexity surrounding N2O production pathways has hampered the development of practices to reduce N2O emissions. As agricultural production intensifies in developing

  10. Acute renal failure potentiates methylmalonate-induced oxidative stress in brain and kidney of rats.

    PubMed

    Schuck, P F; Alves, L; Pettenuzzo, L F; Felisberto, F; Rodrigues, L B; Freitas, B W; Petronilho, F; Dal-Pizzol, F; Streck, E L; Ferreira, G C

    2013-03-01

    Tissue methylmalonic acid (MMA) accumulation is the biochemical hallmark of methylmalonic acidemia. The disease is clinically characterized by progressive neurological deterioration and kidney failure, whose pathophysiology is still unclear. In the present work we investigated the effects of acute MMA administration on various parameters of oxidative stress in cerebral cortex and kidney of young rats, as well as the influence of acute renal failure on MMA-elicited effects on these parameters. Acute renal failure was induced by gentamicin, an aminoglycoside antibiotic whose utilization over prolonged periods causes nephrotoxicity. The administration of gentamicin alone increased carbonyl content and inhibited superoxide dismutase (SOD) activity in cerebral cortex, as well as increased thiobarbituric acid-reactive substances (TBA-RS) and sulfhydryl levels and diminished glutathione peroxidase activity in kidney. On the other hand, MMA administration increased TBA-RS levels in cerebral cortex and decreased SOD activity in kidney. Furthermore, the simultaneous administration of MMA and gentamicin to the rats provoked an augment in TBA-RS levels and superoxide generation in cerebral cortex and in TBA-RS, carbonyl and sulfhydryl levels in kidney, while diminished SOD activity in both studied tissues. Finally, nitrate/nitrite content, reduced glutathione levels, 2',7'-dihydrodichlorofluorescein oxidation and catalase activity were not affected by this animal treatment in either tissue. In conclusion, our present data are in line with the hypothesis that MMA acts as a toxin in brain and kidney of rats and suggest that renal injury potentiates the toxicity of MMA on oxidative stress parameters in brain and peripheral tissues. PMID:23297832

  11. Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine

    PubMed Central

    2010-01-01

    . wallichii and H. antidysenterica - showed moderate antioxidant activity. Finally, potentially significant oxidative DNA damage preventive activity and antioxidant activity were noted in three plant extracts: C. icosandra, R. damascena and C. scariosus. These three plant extracts showed no cytotoxic activity against U937 cells. Conclusions The 50% methanolic extracts obtained from different plant parts contained significant amounts of polyphenols with superior antioxidant activity as evidenced by the scavenging of DPPH·, ABTS·+, NO, ·OH, O2.- and ONOO-. C. icosandra, R. damascena and C. scariosus showed significant potential for preventing oxidative DNA damage and radical scavenging activity, and the G. gummifera, A. pindrow, V. wallichii, H. antidysenterica, A. pyrethrum, A. tenuifolius and O. mascula extracts showed moderate activity. The extracts of C. icosandra, R. damascena and C. scariosus showed no cytotoxicity against U937 cells. In conclusion, these routinely used Unani plants, especially C. icosandra, R. damascena and C. scariosus, which are reported to have significant activity against several human ailments, could be exploited as potential sources of natural antioxidants for plant-based pharmaceutical industries. PMID:21159207

  12. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke.

    PubMed

    Zhou, Da; Fang, Ting; Lu, Lin-Qing; Yi, Li

    2016-08-01

    During the previous years, with the emerging of nanotechnology, the enormous capabilities of nanoparticles have drawn great attention from researchers in terms of their potentials in various aspects of pharmacology. Cerium oxide nanoparticles (nanoceria), considered as one of the most widely used nanomaterials, due to its tempting catalytic antioxidant properties, show a promising potential in diverse disorders, such as cerebral ischemic stroke (CIS), cancer, neurodegenerative and inflammatory diseases. Overwhelming generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during cerebral ischemia and reperfusion periods is known to aggravate brain damage via sophisticated cellular and molecular mechanisms, and therefore exploration of the antioxidant capacities of nanoceria becomes a new approach in reducing cerebral ischemic injury. Furthermore, utilizing nanoceria as a drug carrier might display the propensity to overcome limitations or inefficacy of other conceivable neuroprotectants and exhibit synergistic effects. In this review, we emphasize on the principle features of nanoceria and current researches concerning nanoceria as a potential therapeutic agent or carrier in improving the prognosis of CIS. PMID:27465320

  13. Cellular protection during oxidative stress: a potential role for D-ribose and antioxidants.

    PubMed

    Addis, Paul; Shecterle, Linda M; St Cyr, John A

    2012-09-01

    A healthy cellular system involves the maintenance of an intracellular metabolic balance. Reactive oxygen species (ROS) are constantly produced as a normal product of cellular metabolism; however, during situations of cellular stress, these levels can increase dramatically with the potential to cause deleterious cellular structural and/or functional consequences. There is a significant elevation in these ROS following stressful situations, such as ischemia, hypoxia, high-intensity exercise, and in many diseases. To combat these ROS, neutralizing endogenous enzymes, as well as exogenous antioxidants, can aid in minimizing their potential untoward cellular effects. Exogenous reducing antioxidant agents, such as vitamin C and/or E, play a role in addressing these formed species; however, recent research has suggested that fruit seed extracts may provide additional cellular benefits beyond their antioxidant features. Furthermore, supplemental D-ribose enhances the recovery of high-energy phosphates following stress and appears to potentially offer additional benefits by reducing radical formation. Specifically, during periods of hypoxia/ischemia, supplemental D-ribose may play an inhibitory role in the breakdown of adenine nucleotides, influencing the subsequent formation of xanthine and uric acid compounds; and thereby affecting the release of superoxide anion radicals. The combination of D-ribose with reducing antioxidants may provide a more optimal state of cellular protection during and following times of oxidative stress. PMID:22891990

  14. Lymphoblast Oxidative Stress Genes as Potential Biomarkers of Disease Severity and Drug Effect in Friedreich's Ataxia

    PubMed Central

    Hayashi, Genki; Cortopassi, Gino

    2016-01-01

    There is no current approved therapy for the ultimately lethal neuro- and cardio-degenerative disease Friedreich's ataxia (FA). Finding minimally-invasive molecular biomarkers of disease progression and drug effect could support smaller, shorter clinical trials. Since we and others have noted a deficient oxidative stress response in FA, we investigated the expression of 84 genes involved in oxidative stress, signaling, and protection in control and FA lymphoblasts ranging from 460 to 1122 GAA repeats. Several antioxidant genes responded in a dose-dependent manner to frataxin expression at the mRNA and protein levels, which is inversely correlated with disease progression and severity. We tested the effect of experimental Friedreich’s ataxia therapies dimethyl fumarate (DMF) and type 1 histone deacetylase inhibitor (HDACi) on biomarker mRNA expression. We observed that exposure of lymphoblasts to DMF and HDACi dose-dependently unsilenced frataxin expression and restored the potential biomarkers NCF2 and PDLIM1 expression to control levels. We suggest that in addition to frataxin expression, blood lymphoblast levels of NCF2 and PDLIM1 could be useful biomarkers for disease progression and drug effect in future clinical trials of Friedreich’s ataxia. PMID:27078885

  15. Lymphoblast Oxidative Stress Genes as Potential Biomarkers of Disease Severity and Drug Effect in Friedreich's Ataxia.

    PubMed

    Hayashi, Genki; Cortopassi, Gino

    2016-01-01

    There is no current approved therapy for the ultimately lethal neuro- and cardio-degenerative disease Friedreich's ataxia (FA). Finding minimally-invasive molecular biomarkers of disease progression and drug effect could support smaller, shorter clinical trials. Since we and others have noted a deficient oxidative stress response in FA, we investigated the expression of 84 genes involved in oxidative stress, signaling, and protection in control and FA lymphoblasts ranging from 460 to 1122 GAA repeats. Several antioxidant genes responded in a dose-dependent manner to frataxin expression at the mRNA and protein levels, which is inversely correlated with disease progression and severity. We tested the effect of experimental Friedreich's ataxia therapies dimethyl fumarate (DMF) and type 1 histone deacetylase inhibitor (HDACi) on biomarker mRNA expression. We observed that exposure of lymphoblasts to DMF and HDACi dose-dependently unsilenced frataxin expression and restored the potential biomarkers NCF2 and PDLIM1 expression to control levels. We suggest that in addition to frataxin expression, blood lymphoblast levels of NCF2 and PDLIM1 could be useful biomarkers for disease progression and drug effect in future clinical trials of Friedreich's ataxia. PMID:27078885

  16. Nitric oxide-releasing hydrophobic polymers: preparation, characterization, and potential biomedical applications.

    PubMed

    Reynolds, Melissa M; Frost, Megan C; Meyerhoff, Mark E

    2004-10-01

    The synthetic methods used recently in this laboratory to prepare a variety of novel nitric oxide (NO)-releasing hydrophobic polymers are reviewed. Nitric oxide is a well known inhibitor of platelet adhesion and activation. Thus, such NO release polymers have potential applications as thromboresistant coatings for a large number of blood-contacting biomedical devices (e.g., in vivo sensors, arteriovenous grafts, stents, catheters, extracorporeal circuits). The approaches taken to prepare NO releasing poly(vinyl chloride) (PVC), silicone rubber (SR), polymethacrylate (PM), and polyurethane (PU) materials are grouped into three categories: (1) dispersion/doping of discrete diazeniumdiolated molecules within the polymeric films; (2) chemical derivatization of polymeric filler microparticles (e.g., silicon dioxide, titanium dioxide) to possess NO release chemistry and then their dispersion within the hydrophobic polymers; and (3) covalent attachment of NO release moieties to polymer backbones. Specific chemical examples of each of these approaches are summarized and the advantages and disadvantages of each are discussed. Other related work in the field of NO release polymers is also cited. It is further shown that several of the NO-releasing polymeric materials already prepared exhibit the expected improved thromboresistivity when tested in vivo using appropriate animal models. PMID:15336308

  17. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination

    USGS Publications Warehouse

    Smith, R.L.; Ceazan, M.L.; Brooks, M.H.

    1994-01-01

    Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent K(m) of 0.45 to 0.60 ??M and a V(max) of 18.7 nmol cm-3 h-1 at 30??C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the K(m)s ranged from 0.30 to 3.32 ??M, with V(max)s of 1.85 to 13.29 fmol cell-1 h-1. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater.

  18. Antihyperlipidemic and Antioxidant Potential of Paeonia emodi Royle against High-Fat Diet Induced Oxidative Stress

    PubMed Central

    Zargar, Bilal A.; Masoodi, Mubashir H.; Ahmed, Bahar; Ganie, Showkat A.

    2014-01-01

    The present study was intended to evaluate the effects of Paeonia emodi rhizome extracts on serum triglycerides (TGs), total cholesterol (TC), low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-c), atherogenic index (AI), superoxide dismutase (SOD), and glutathione peroxidase (GPx). The plant was extensively examined for its in vitro antioxidant activity, and the preliminary phytochemical screening was carried out using standard protocols. Male Wistar rats were induced with hyperlipidemia using high-fat diet and were treated orally with hydroalcoholic and aqueous extracts at the dose of 200 mg/kg bw for 30 days. TGs, TC, LDL-c, and AI were significantly reduced while HDL-c, SOD, and GPx levels rose to a considerable extent. After subjecting to acute toxicity testing, the extracts were found to be safe. The observations suggest antihyperlipidemic and antioxidant potential of P. emodi in high-fat diet induced hyperlipidemic/oxidative stressed rats. PMID:24734192

  19. Oxidative potential of some endophytic fungi using 1-indanone as a substrate.

    PubMed

    Fill, Taicia Pacheco; da Silva, Jose Vinicius; de Oliveira, Kleber Thiago; da Silva, Bianca Ferreira; Rodrigues-Fo, Edson

    2012-06-01

    The oxidative potential of the fungus Penicillium brasilianum, a strain isolated as an endophyte from a Meliaceae plant (Melia azedarach), was investigated using 1-indanone as a substrate to track the production of monooxygenases. The fungus produced the dihydrocoumarin from 1-indanone with the classical Baeyer-Villiger reaction regiochemistry, and (-)-(R)-3-hydroxy-1-indanone with 78% ee. Minor compounds resulting from lipase and SAM activities were also detected. The biotransformation procedures were also applied to a collection of Penicillium and Aspergillus fungi obtained from M. azedarach and Murraya paniculata. The results showed that Baeyer-Villiger were mostly active in fungi isolated from M. azedarach. Almost all of the fungi tested produced 3-hydroxy-1-indanone.. PMID:22573162

  20. Analysis of flow decay potential on Galileo. [oxidizer flow rate reduction by iron nitrate precipitates

    NASA Technical Reports Server (NTRS)

    Cole, T. W.; Frisbee, R. H.; Yavrouian, A. H.

    1987-01-01

    The risks posed to the NASA's Galileo spacecraft by the oxidizer flow decay during its extended mission to Jupiter is discussed. The Galileo spacecraft will use nitrogen tetroxide (NTO)/monomethyl hydrazine bipropellant system with one large engine thrust-rated at a nominal 400 N, and 12 smaller engines each thrust-rated at a nominal 10 N. These smaller thrusters, because of their small valve inlet filters and small injector ports, are especially vulnerable to clogging by iron nitrate precipitates formed by NTO-wetted stainless steel components. To quantify the corrosion rates and solubility levels which will be seen during the Galileo mission, corrosion and solubility testing experiments were performed with simulated Galileo materials, propellants, and environments. The results show the potential benefits of propellant sieving in terms of iron and water impurity reduction.

  1. Climate change reduces warming potential of nitrous oxide by an enhanced Brewer-Dobson circulation

    NASA Astrophysics Data System (ADS)

    Kracher, Daniela; Reick, Christian H.; Manzini, Elisa; Schultz, Martin G.; Stein, Olaf

    2016-06-01

    The Brewer-Dobson circulation (BDC), which is an important driver of the stratosphere-troposphere exchange, is expected to accelerate with climate change. One particular consequence of this acceleration is the enhanced transport of nitrous oxide (N2O) from its sources at the Earth's surface toward its main sink region in the stratosphere, thus inducing a reduction in its lifetime. N2O is a potent greenhouse gas and the most relevant currently emitted ozone-depleting substance. Here we examine the implications of a reduced N2O lifetime in the context of climate change. We find a decrease in its global warming potential (GWP) and, due to a decline in the atmospheric N2O burden, also a reduction in its total radiative forcing. From the idealized transient global warming simulation we can identify linear regressions for N2O sink, lifetime, and GWP with temperature rise. Our findings are thus not restricted to a particular scenario.

  2. Tetranitroacetimidic acid: a high oxygen oxidizer and potential replacement for ammonium perchlorate.

    PubMed

    Vo, Thao T; Parrish, Damon A; Shreeve, Jean'ne M

    2014-08-27

    Considerable work has been focused on developing replacements for ammonium perchlorate (AP), a primary choice for solid rocket and missile propellants, due to environmental concerns resulting from the release of perchlorate into groundwater systems [corrected]. Additionally, the generation of hydrochloric acid contributes to high concentrations of acid rain and to ozone layer depletion. En route to synthesizing salts that contain cationic FOX-7, a novel, high oxygen-containing oxidizer, tetranitroacetimidic acid (TNAA), has been synthesized and fully characterized. The properties of TNAA were found to be exceptional, with a calculated specific impulse exceeding that of AP, leading to its high potential as a replacement for AP. TNAA can be synthesized easily in a one-step process by the nitration of FOX-7 in high yield (>93%). The synthesis, properties, and chemical reactivity of TNAA have been examined. PMID:25105731

  3. Links between Ammonia Oxidizer Community Structure, Abundance, and Nitrification Potential in Acidic Soils ▿ †

    PubMed Central

    Yao, Huaiying; Gao, Yangmei; Nicol, Graeme W.; Campbell, Colin D.; Prosser, James I.; Zhang, Limei; Han, Wenyan; Singh, Brajesh K.

    2011-01-01

    Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches. PMID:21571885

  4. Characterization and Functionalization of Iron-Oxide Nanoparticles for Use as Potential Agents for Cancer Thermotherapy

    NASA Astrophysics Data System (ADS)

    O'Reilly, Nora

    This thesis presents experimental studies of iron oxide nanoparticle synthesis, functionalization, and intracellular hyperthermal effects on murine macrophages as a model in vitro system. Colloidal suspensions of magnetic nanoparticles (MNPs) are of particular interest in Magnetic Fluid Hyperthermia (MFH). Iron oxide nanoparticles (IONPs) have garnered great interest as economical, biocompatible hyperthermia agents due to their superparamagnetic activity. Here we seek to optimize the synthetic reproducibility and in vitro utilization of IONPs for application in MFH. We compared aqueous synthetic protocols and various protective coating techniques using various analytical techniques and in vitro assays to assess the biocompatibility and feasibility of the various preparations of nanoparticles. Using a co-precipitation of iron salts methodology, iron oxide nanoparticles (IONPs) with an average diameter of 6-8nm were synthesized and stabilized with carboxylates. By performing calorimetry measurements in an oscillating magnetic field (OMF) with a frequency of 500 kHz and field strength of 0.008Tesla the superparamagnetic behavior of these particles was confirmed. To further investigate these IONPs in a biological application, citric acid-stabilized particles, in conjunction with heat generated by these IONPs when exposed to an OMF, were assessed to determine their effects on cell viability in a RAW 267.4 murine macrophage model system. Our results show that 91.5-97% of cells that have ingested IONPs die follow exposure to an OMF. Importantly, neither the IONPs (at applicable concentrations) nor the OMF show cytotoxic effects. These particular particles have promising preliminary results as hyperthermic agents in both the current literature and simple, proof-of-concept experiments in our laboratory setting. We present experimental results for the synthesis, characterization, and utilization of iron oxide nanoparticles in MFH. Our results show that while IONPs have

  5. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.

    PubMed

    Butler, Elizabeth C; Chen, Lixia; Hansel, Colleen M; Krumholz, Lee R; Elwood Madden, Andrew S; Lan, Ying

    2015-11-01

    Hexavalent chromium (Cr(vi), present predominantly as CrO4(2-) in water at neutral pH) is a common ground water pollutant, and reductive immobilization is a frequent remediation alternative. The Cr(iii) that forms upon microbial or abiotic reduction often co-precipitates with naturally present or added iron (Fe), and the stability of the resulting Fe-Cr precipitate is a function of its mineral properties. In this study, Fe-Cr solids were formed by microbial Cr(vi) reduction using Desulfovibrio vulgaris strain RCH1 in the presence of the Fe-bearing minerals hematite, aluminum substituted goethite (Al-goethite), and nontronite (NAu-2, Clay Minerals Society), or by abiotic Cr(vi) reduction by dithionite reduced NAu-2 or iron sulfide (FeS). The properties of the resulting Fe-Cr solids and their behavior upon exposure to the oxidant manganese (Mn) oxide (birnessite) differed significantly. In microcosms containing strain RCH1 and hematite or Al-goethite, there was significant initial loss of Cr(vi) in a pattern consistent with adsorption, and significant Cr(vi) was found in the resulting solids. The solid formed when Cr(vi) was reduced by FeS contained a high proportion of Cr(iii) and was poorly crystalline. In microcosms with strain RCH1 and hematite, Cr precipitates appeared to be concentrated in organic biofilms. Reaction between birnessite and the abiotically formed Cr(iii) solids led to production of significant dissolved Cr(vi) compared to the no-birnessite controls. This pattern was not observed in the solids generated by microbial Cr(vi) reduction, possibly due to re-reduction of any Cr(vi) generated upon oxidation by birnessite by active bacteria or microbial enzymes. The results of this study suggest that Fe-Cr precipitates formed in groundwater remediation may remain stable only in the presence of active anaerobic microbial reduction. If exposed to environmentally common Mn oxides such as birnessite in the absence of microbial activity, there is the potential

  6. WO3-α-Fe2O3 composite photoelectrodes with low onset potential for solar water oxidation.

    PubMed

    Zhao, Peng; Kronawitter, Coleman X; Yang, Xiaofang; Fu, Jie; Koel, Bruce E

    2014-01-28

    The physical and photoelectrochemical properties of a composite oxide photoelectrode comprised of α-Fe2O3 and WO3 crystals is investigated. The composite films exhibit a water oxidation photocurrent onset potential as low as 0.43 V vs. RHE, a value considerably lower than that of pure α-Fe2O3 photoanodes prepared in comparable synthesis conditions. This result represents one of the lowest onset potentials measured for hematite-based PEC water oxidation systems. Compositional analysis by X-ray Photoelectron Spectroscopy and Energy Dispersive Spectroscopy indicates the composition of the films differs between the surfaces and bulk, with tungsten found to be concentrated in the surface region. Post-reaction Raman spectroscopy characterization demonstrates that water interacts with surface WO3 crystals, an event that is associated with the formation of a hydrated form of the oxide. PMID:24323202

  7. Changes in oxidation-reduction potential during milk fermentation by wild lactic acid bacteria.

    PubMed

    Morandi, Stefano; Silvetti, Tiziana; Tamburini, Alberto; Brasca, Milena

    2016-08-01

    Oxidation-reduction potential (E h) is a fundamental physicochemical property of lactic acid bacteria that determines the microenvironment during the cheese manufacture and ripening. For this reason the E h is of growing interest in dairy research and the dairy industry. The objective of the study was to perform a comprehensive study on the reduction activity of wild lactic acid bacteria strains collected in different periods (from 1960 to 2012) from Italian dairy products. A total of 709 strains belonging to Lactococcus lactis, Enterococcus durans, E. faecium, E. faecalis and Streptococcus thermophilus species were studied for their reduction activity in milk. Kinetics of milk reduction were characterised by the minimum redox potential (E h7) and time of reaching E h7 (t min), the maximum difference between two measures (Δmax) and the time at which these maximum differences occurred (t*). Broad diversity in kinetic parameters was observed at both species and strain levels. E. faecalis and L. lactis resulted to be the most reducing species, while S. thermophilus was characterised by the lowest reducing power while the greatest heterogeneity was pointed out among E. durans and E. faecium strains. Considering the period of collection (1960-2012) we observed that the more recently isolated strains generally showed less reducing activity. This trend was particularly evident for the species E. durans, E. faecium and L. lactis while an opposite trend was observed in E. faecalis species. Data reported in this research provide new information for a deeper understanding of redox potential changes during milk fermentation due to bacterial growth. Gain knowledge of the redox potential of the LAB cultures could allow a better control and standardisation of cheesemaking process. PMID:27600976

  8. HLA-G 3’UTR Polymorphisms Impact the Prognosis of Stage II-III CRC Patients in Fluoropyrimidine-Based Treatment

    PubMed Central

    Garziera, Marica; Bidoli, Ettore; Cecchin, Erika; Mini, Enrico; Nobili, Stefania; Lonardi, Sara; Buonadonna, Angela; Errante, Domenico; Pella, Nicoletta; D’Andrea, Mario; De Marchi, Francesco; De Paoli, Antonino; Zanusso, Chiara; De Mattia, Elena; Tassi, Renato; Toffoli, Giuseppe

    2015-01-01

    An important hallmark of CRC is the evasion of immune surveillance. HLA-G is a negative regulator of host’s immune response. Overexpression of HLA-G protein in primary tumour CRC tissues has already been associated to worse prognosis; however a definition of the role of immunogenetic host background is still lacking. Germline polymorphisms in the 3’UTR region of HLA-G influence the magnitude of the protein by modulating HLA-G mRNA stability. Soluble HLA-G has been associated to 3’UTR +2960 Ins/Ins and +3035 C/T (lower levels) and +3187 G/G (high levels) genotypes. HLA-G 3’UTR SNPs have never been explored in CRC outcome. The purpose of this study was to investigate if common HLA-G 3’UTR polymorphisms have an impact on DFS and OS of 253 stage II-III CRC patients, after primary surgery and ADJ-CT based on FL. The 3’UTR was sequenced and SNPs were analyzed for their association with survival by Kaplan-Meier and multivariate Cox models; results underwent internal validation using a resampling method (bootstrap analysis). In a multivariate analysis, we estimated an association with improved DFS in Ins allele (Ins/Del +Ins/Ins) carriers (HR 0.60, 95% CI 0.38–0.93, P = 0.023) and in patients with +3035 C/T genotype (HR 0.51, 95% CI 0.26–0.99, P = 0.045). The +3187 G/G mutated carriers (G/G vs A/A+A/G) were associated to a worst prognosis in both DFS (HR 2.46, 95% CI 1.19–5.05, P = 0.015) and OS (HR 2.71, 95% CI 1.16–6.63, P = 0.022). Our study shows a prognostic and independent role of 3 HLA-G 3’UTR SNPs, +2960 14-bp INDEL, +3035 C>T, and +3187 A>G. PMID:26633805

  9. Prognostic Impact of Erythropoietin Expression and Erythropoietin Receptor Expression on Locoregional Control and Survival of Patients Irradiated for Stage II/III Non-Small-Cell Lung Cancer

    SciTech Connect

    Rades, Dirk; Setter, Cornelia; Dahl, Olav; Schild, Steven E.; Noack, Frank

    2011-06-01

    Purpose: Prognostic factors can guide the physician in selecting the optimal treatment for an individual patient. This study investigates the prognostic value of erythropoietin (EPO) and EPO receptor (EPO-R) expression of tumor cells for locoregional control and survival in non-small-cell lung cancer (NSCLC) patients. Methods and Materials: Fourteen factors were investigated in 62 patients irradiated for stage II/III NSCLC, as follows: age, gender, Karnofsky performance score (KPS), histology, grading, TNM/American Joint Committee on Cancer (AJCC) stage, surgery, chemotherapy, pack years (average number of packages of cigarettes smoked per day multiplied by the number of years smoked), smoking during radiotherapy, hemoglobin levels during radiotherapy, EPO expression, and EPO-R expression. Additionally, patients with tumors expressing both EPO and EPO-R were compared to those expressing either EPO or EPO-R and to those expressing neither EPO nor EPO-R. Results: On univariate analysis, improved locoregional control was associated with AJCC stage II cancer (p < 0.048), surgery (p < 0.042), no smoking during radiotherapy (p = 0.024), and no EPO expression (p = 0.001). A trend was observed for a KPS of >70 (p = 0.08), an N stage of 0 to 1 (p = 0.07), and no EPO-R expression (p = 0.10). On multivariate analysis, AJCC stage II and no EPO expression remained significant. No smoking during radiotherapy was almost significant. On univariate analysis, improved survival was associated with N stage 0 to 1 (p = 0.009), surgery (p = 0.039), hemoglobin levels of {>=}12 g/d (p = 0.016), and no EPO expression (p = 0.001). On multivariate analysis, N stage 0 to 1 and no EPO expression maintained significance. Hemoglobin levels of {>=}12 g/d were almost significant. On subgroup analyses, patients with tumors expressing both EPO and EPO-R had worse outcomes than those expressing either EPO or EPO-R and those expressing neither EPO nor RPO-R. Conclusions: EPO expression of tumor cells

  10. The reactive oxidant potential of different types of aged atmospheric particles: An outdoor chamber study

    NASA Astrophysics Data System (ADS)

    Rattanavaraha, Weruka; Rosen, Eli; Zhang, Haofei; Li, Qianfeng; Pantong, Karun; Kamens, Richard M.

    2011-07-01

    The reactive oxygen species (ROS) potential of aged diesel exhaust particulate matter (PM) and other aged aerosol systems in the presence and absence of an urban hydrocarbon environment was assessed. Experiments were performed in a 274 m 3 dual outdoor Teflon film chamber. Filter samples were taken to assess the oxidant generation associated with PM by an optimized dithiothreitol (DTT) method. Diesel exhaust PM had a higher ROS response when it was in the presence of an urban hydrocarbon mixture and was associated with significant O 3 production. For all the aged dilute diesel systems, ROS expression increased by a factor of 2-4 over fresh diesel particles. Other particle systems were also investigated. A low ROS was observed in most of the nighttime experiments, including the nighttime aerosols from SO 2 with O 3 and SO 2 aged by itself. However, when all the systems were compared, aged diesel exhaust tended to express very high ROS potentials, with secondary organic aerosols from an α-pinene + toluene + an urban HC mixture giving the highest ROS response.