Science.gov

Sample records for iii electron probe

  1. Pioneer III Probe

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Looking more like surgeons, these technicians wearing 'cleanroom' attire inspect the Pioneer III probe before shipping it to Cape Canaveral, Florida. Pioneer III was launched on December 6, 1958 aboard a Juno II rocket at the Atlantic Missile Range, Cape Canaveral, Florida. The mission objectives were to measure the radiation intensity of the Van Allen radiation belt, test long range communication systems, the launch vehicle and other subsystems. The Juno II failed to reach proper orbital escape velocity. The probe re-entered the Earth's atmosphere on December 7th ending its brief mission.

  2. Electronic communication. Part III.

    PubMed

    Bergren, M D

    1995-02-01

    This is the concluding article of a three-part series on electronic communication for school nurses. The October 1994 column described electronic communication and the hardware and software required. The December 1994 column examined e-mail, bulletin boards, databases, and file transfers. This column will list many health and nursing resources available on-line. Some of the resources are available only through the Internet. Others are accessible by more than one route: dial-in, telnet, gopher, or world wide web. A few of the services, such as MEDLINE, are only accessed with purchased accounts (Glowniak & Bushway, 1994). The electronic resources of interest to school nurses are so numerous it would be impossible to cite all of them in a column of this length. Selected resources for the school health provider will be listed in alphabetical order. PMID:7767047

  3. Electronics Book III.

    ERIC Educational Resources Information Center

    Johnson, Dennis; And Others

    This manual, the third of three curriculum guides for an electronics course, is intended for use in a program combining vocational English as a second language (VESL) with bilingual vocational education. Ten units cover AC fundamentals, circuit protection devices, low voltage circuits, communication systems, graphic illustrations, house wiring,…

  4. Novel Luminescent Probe Based on a Terbium(III) Complex for Hemoglobin Determination

    NASA Astrophysics Data System (ADS)

    Yegorova, A. V.; Leonenko, I. I.; Aleksandrova, D. I.; Scrypynets, Yu. V.; Antonovich, V. P.; Ukrainets, I. V.

    2014-09-01

    We have studied the spectral luminescent properties of Tb(III) and Eu(III) complexes with a number of novel derivatives of oxoquinoline-3-carboxylic acid amides (L1-L5 ). We have observed quenching of the luminescence of 1:1 Tb(III)-L1-5 complexes by hemoglobin (Hb), which is explained by resonance energy transfer of electronic excitation from the donor (Tb(III)-L1-5 ) to the acceptor (Hb). Using the novel luminescent probe Tb(III)-L1, we have developed a method for determining Hb in human blood. The calibration Stern-Volmer plot is linear in the Hb concentration range 0.6-36.0 μg/mL, detection limit 0.2 μg/mL (3·10-9 mol/L).

  5. Titanium pigmentation. An electron probe microanalysis study

    SciTech Connect

    Dupre, A.; Touron, P.; Daste, J.; Lassere, J.; Bonafe, J.L.; Viraben, R.

    1985-05-01

    A patient had an unusual pigmentary disease induced by titanium dioxide. The use of a topical cream containing titanium dioxide caused a xanthomalike appearance on the patient's penis. Electron probe microanalysis was valuable in establishing the cause of this balanitis.

  6. Nonlinear electron magnetohydrodynamics physics. III. Electron energization

    SciTech Connect

    Strohmaier, K. D.; Urrutia, J. M.; Stenzel, R. L.

    2008-04-15

    Wave-particle interactions of low-frequency whistler modes with wave magnetic fields exceeding the ambient field are investigated experimentally. These highly nonlinear modes are excited with magnetic loop antennas in a large magnetized afterglow plasma. While the nonlinear wave properties are described elsewhere, the present paper focuses on the modification of the electron distribution function by the whistler waves. When the electron current flows in regions of magnetic nulls, such as in spheromak and field-reversed configurations (FRCs), strong electron energization is observed. When the whistler modes are created by electron Hall currents, such as in whistler mirrors, no significant energization occurs. The electron temperature can be raised locally by an order of magnitude. Non-Maxwellian distributions with energetic tail electrons are observed. Electron energization to > or approx. 10 eV produces visible light emission whose time and space dependence is mapped. The light source travels with the subthermal speed of whistler spheromaks. When counterpropagating spheromaks collide, the resultant FRC produces strong local heating and light which dissipates its free magnetic energy.

  7. Electron temperature probe onboard Japan's Mars orbiter

    NASA Astrophysics Data System (ADS)

    Oyama, K.; Abe, T.; Schlegel, K.; Nagy, A.; Kim, J.; Marubashi, K.

    1999-12-01

    Japan' s first Mars spacecraft PLANET-B was successfully launched on 4th of July, 1998 and was named "NOZOMI" after the launch. One of the scientific instruments is a unique electron temperature probe which was developed in Japan and has been used for more than 20 years on sounding rockets as well as on scientific satellites (Oyama, 1991). The electron temperature probe dubbed PET (Probe for Electron Temperature measurements) consists of two planar electrodes, 150 mm in diameter, placed at the edges of the two solar cell panels of the "NOZOMI" spacecraft. Electron temperatures can be measured in plasmas with densities exceeding 1000 cm-1 with sufficient accuracy. The maximum sampling rate of 8 data points per satellite spin for each probe allows high resolution measurements (i.e., an angular resolution around the spin axis of 23 degrees). Additionally, the probe can measure the anisotropy of the electron temperature, if it exists. It is also possible to infer the existence of nonthermal electrons.

  8. Luminescent chiral lanthanide(III) complexes as potential molecular probes

    PubMed Central

    Muller, Gilles

    2009-01-01

    This perspective gives an introduction into the design of luminescent lanthanide(III)-containing complexes possessing chiral properties and used to probe biological materials. The first part briefly describes general principles, focusing on the optical aspect (i.e. lanthanide luminescence, sensitization processes) of the most emissive trivalent lanthanide ions, europium and terbium, incorporated into molecular luminescent edifices. This is followed by a short discussion on the importance of chirality in the biological and pharmaceutical fields. The second part is devoted to the assessment of the chiroptical spectroscopic tools available (typically circular dichroism and circularly polarized luminescence) and the strategies used to introduce a chiral feature into luminescent lanthanide(III) complexes (chiral structure resulting from a chiral arrangement of the ligand molecules surrounding the luminescent center or presence of chiral centers in the ligand molecules). Finally, the last part illustrates these fundamental principles with recent selected examples of such chiral luminescent lanthanide-based compounds used as potential probes of biomolecular substrates. PMID:19885510

  9. Creating and Probing Graphene Electron Optics with Local Scanning Probes

    NASA Astrophysics Data System (ADS)

    Stroscio, Joseph

    Ballistic propagation and the light-like dispersion of graphene charge carriers make graphene an attractive platform for optics-inspired graphene electronics where gate tunable potentials can control electron refraction and transmission. In analogy to optical wave propagation in lenses, mirrors and metamaterials, gate potentials can be used to create a negative index of refraction for Veselago lensing and Fabry-Pérot interferometers. In circular geometries, gate potentials can induce whispering gallery modes (WGM), similar to optical and acoustic whispering galleries albeit on a much smaller length scale. Klein scattering of Dirac carriers plays a central role in determining the coherent propagation of electron waves in these resonators. In this talk, I examine the probing of electron resonators in graphene confined by linear and circular gate potentials with the scanning tunneling microscope (STM). The tip in the STM tunnel junction serves both as a tunable local gate potential, and as a probe of the graphene states through tunneling spectroscopy. A combination of a back gate potential, Vg, and tip potential, Vb, creates and controls a circular pn junction that confines the WGM graphene states. The resonances are observed in two separate channels in the tunneling spectroscopy experiment: first, by directly tunneling into the state at the bias energy eVb, and, second, by tunneling from the resonance at the Fermi level as the state is gated by the tip potential. The second channel produces a fan-like set of WGM peaks, reminiscent of the fringes seen in planar geometries by transport measurements. The WGM resonances split in a small applied magnetic field, with a large energy splitting approaching the WGM spacing at 0.5 T. These results agree well with recent theory on Klein scattering in graphene electron resonators. This work is done in collaboration with Y. Zhao, J. Wyrick, F.D. Natterer, J. F. Rodriquez-Nieva, C. Lewandoswski, K. Watanabe, T. Taniguchi, N. B

  10. Pioneer Venus orbiter electron temperature probe

    NASA Technical Reports Server (NTRS)

    Brace, Larry H.

    1994-01-01

    This document lists the scientific accomplishments of the Orbiter Electron Temperature Probe (OETP) group. The OETP instrument was fabricated in 1976, integrated into the PVO spacecraft in 1977, and placed in orbit about Venus in December 1978. The instrument operated flawlessly for nearly 14 years until PVO was lost as it entered the Venusian atmosphere in October 1992. The OETP group worked closely with other PVO investigators to examine the Venus ionosphere and its interactions with the solar wind. After the mission was completed we continued to work with the scientist selected for the Venus Data Analysis Program (VDAP), and this is currently leading to additional publications.

  11. Quantitative WDS analysis using electron probe microanalyzer

    SciTech Connect

    Ul-Hamid, Anwar . E-mail: anwar@kfupm.edu.sa; Tawancy, Hani M.; Mohammed, Abdul-Rashid I.; Al-Jaroudi, Said S.; Abbas, Nureddin M.

    2006-04-15

    In this paper, the procedure for conducting quantitative elemental analysis by ZAF correction method using wavelength dispersive X-ray spectroscopy (WDS) in an electron probe microanalyzer (EPMA) is elaborated. Analysis of a thermal barrier coating (TBC) system formed on a Ni-based single crystal superalloy is presented as an example to illustrate the analysis of samples consisting of a large number of major and minor elements. The analysis was performed by known standards and measured peak-to-background intensity ratios. The procedure for using separate set of acquisition conditions for major and minor element analysis is explained and its importance is stressed.

  12. Atom Probe Tomography of Nanoscale Electronic Materials

    SciTech Connect

    Larson, David J.; Prosa, Ty J.; Perea, Daniel E.; Inoue, Hidekazu; Mangelinck, D.

    2016-01-01

    Atom probe tomography (APT) is a mass spectrometry based on time-of-flight measurements which also concurrently produces 3D spatial information. The reader is referred to any of the other papers in this volume or to the following references for further information 4–8. The current capabilities of APT, such as detecting a low number of dopant atoms in nanoscale devices or segregation at a nanoparticle interface, make this technique an important component in the nanoscale metrology toolbox. In this manuscript, we review some of the applications of APT to nanoscale electronic materials, including transistors and finFETs, silicide contact microstructures, nanowires, and nanoparticles.

  13. Transcribing RNA polymerase III observed by electron cryomicroscopy.

    PubMed

    Hoffmann, Niklas A; Jakobi, Arjen J; Vorländer, Matthias K; Sachse, Carsten; Müller, Christoph W

    2016-08-01

    Electron cryomicroscopy reconstructions of elongating RNA polymerase (Pol) III at 3.9 Å resolution and of unbound Pol III (apo Pol III) in two distinct conformations at 4.6 Å and 4.7 Å resolution allow the construction of complete atomic models of Pol III and provide new functional insights into the adaption of Pol III to fulfill its specific transcription tasks. PMID:27059519

  14. High Count Rate Electron Probe Microanalysis

    PubMed Central

    Geller, Joseph D.; Herrington, Charles

    2002-01-01

    Reducing the measurement uncertainty of quantitative analyses made using electron probe microanalyzers (EPMA) requires a careful study of the individual uncertainties from each definable step of the measurement. Those steps include measuring the incident electron beam current and voltage, knowing the angle between the electron beam and the sample (takeoff angle), collecting the emitted x rays from the sample, comparing the emitted x-ray flux to known standards (to determine the k-ratio) and transformation of the k-ratio to concentration using algorithms which includes, as a minimum, the atomic number, absorption, and fluorescence corrections. This paper discusses the collection and counting of the emitted x rays, which are diffracted into the gas flow or sealed proportional x-ray detectors. The representation of the uncertainty in the number of collected x rays collected reduces as the number of counts increase. The uncertainty of the collected signal is fully described by Poisson statistics. Increasing the number of x rays collected involves either counting longer or at a higher counting rate. Counting longer means the analysis time increases and may become excessive to get to the desired uncertainty. Instrument drift also becomes an issue. Counting at higher rates has its limitations, which are a function of the detector physics and the detecting electronics. Since the beginning of EPMA analysis, analog electronics have been used to amplify and discriminate the x-ray induced ionizations within the proportional counter. This paper will discuss the use of digital electronics for this purpose. These electronics are similar to that used for energy dispersive analysis of x rays with either Si(Li) or Ge(Li) detectors except that the shaping time constants are much smaller. PMID:27446749

  15. Direct electronic probing of biological complexes formation

    NASA Astrophysics Data System (ADS)

    Macchia, Eleonora; Magliulo, Maria; Manoli, Kyriaki; Giordano, Francesco; Palazzo, Gerardo; Torsi, Luisa

    2014-10-01

    Functional bio-interlayer organic field - effect transistors (FBI-OFET), embedding streptavidin, avidin and neutravidin as bio-recognition element, have been studied to probe the electronic properties of protein complexes. The threshold voltage control has been achieved modifying the SiO2 gate diaelectric surface by means of the deposition of an interlayer of bio-recognition elements. A threshold voltage shift with respect to the unmodified dielectric surface toward more negative potential values has been found for the three different proteins, in agreement with their isoelectric points. The relative responses in terms of source - drain current, mobility and threshold voltage upon exposure to biotin of the FBI-OFET devices have been compared for the three bio-recognition elements.

  16. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    SciTech Connect

    Plemmons, DA; Suri, PK; Flannigan, DJ

    2015-05-12

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasize how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and

  17. Electronic Raman scattering as a probe of anisotropic electron pairing

    SciTech Connect

    Devereaux, T.P.

    1995-08-01

    A theory for the electronic contribution to Raman scattering in anisotropic superconductors is presented. It is shown that Raman scattering can provide a wealth of polarization-(symmetry-) dependent information which probes the detailed angular dependence of the energy gap. Using a model band structure, the symmetry-dependent Raman spectra are calculated for d{sub x{sup 2}{minus}y{sup 2}} pairing and compared to the data taken on Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. Favorable agreement with the symmetry-dependent electronic spectra is shown. Further, the impurity dependence of theory is calculated, which provides an unique test of d{sub x{sup 2}{minus}y{sup 2}} pairing.

  18. Measurement of electron density using reactance cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Seong, D. J.; Chang, H. Y.

    2016-05-01

    This paper proposes a new measurement method of electron density using the reactance spectrum of the plasma in the cutoff probe system instead of the transmission spectrum. The highly accurate reactance spectrum of the plasma-cutoff probe system, as expected from previous circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], was measured using the full two-port error correction and automatic port extension methods of the network analyzer. The electron density can be obtained from the analysis of the measured reactance spectrum, based on circuit modeling. According to the circuit simulation results, the reactance cutoff probe can measure the electron density more precisely than the previous cutoff probe at low densities or at higher pressure. The obtained results for the electron density are presented and discussed for a wide range of experimental conditions, and this method is compared with previous methods (a cutoff probe using the transmission spectrum and a single Langmuir probe).

  19. Metastable atom probe for measuring electron beam density profiles

    NASA Technical Reports Server (NTRS)

    Lockhart, J. M.; Zorn, J. C.

    1972-01-01

    Metastable atom probe was developed for measuring current density in electron beam as function of two arbitrary coordinates, with spatial resolution better than 0.5 mm. Probe shows effects of space charge, magnetic fields, and other factors which influence electron current density, but operates with such low beam densities that introduced perturbation is very small.

  20. A single probe for imaging photons, electrons and physical forces

    NASA Astrophysics Data System (ADS)

    Pilet, Nicolas; Lisunova, Yuliya; Lamattina, Fabio; Stevenson, Stephanie E.; Pigozzi, Giancarlo; Paruch, Patrycja; Fink, Rainer H.; Hug, Hans J.; Quitmann, Christoph; Raabe, Joerg

    2016-06-01

    The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements. Just by the variation of one parameter, the SFM probe can be utilised to detect either sample photo-emitted electrons or transmitted photons. This allows the use of a single probe to detect electrons, photons and physical forces of interest. We also show recent progress and demonstrate the current limitations of using a high aspect ratio coaxial SFM probe to detect photo-emitted electrons with very high lateral resolution. Novel probe designs are proposed to further progress in using an SFM probe as a STXM detector.

  1. A single probe for imaging photons, electrons and physical forces.

    PubMed

    Pilet, Nicolas; Lisunova, Yuliya; Lamattina, Fabio; Stevenson, Stephanie E; Pigozzi, Giancarlo; Paruch, Patrycja; Fink, Rainer H; Hug, Hans J; Quitmann, Christoph; Raabe, Joerg

    2016-06-10

    The combination of complementary measurement techniques has become a frequent approach to improve scientific knowledge. Pairing of the high lateral resolution scanning force microscopy (SFM) with the spectroscopic information accessible through scanning transmission soft x-ray microscopy (STXM) permits assessing physical and chemical material properties with high spatial resolution. We present progress from the NanoXAS instrument towards using an SFM probe as an x-ray detector for STXM measurements. Just by the variation of one parameter, the SFM probe can be utilised to detect either sample photo-emitted electrons or transmitted photons. This allows the use of a single probe to detect electrons, photons and physical forces of interest. We also show recent progress and demonstrate the current limitations of using a high aspect ratio coaxial SFM probe to detect photo-emitted electrons with very high lateral resolution. Novel probe designs are proposed to further progress in using an SFM probe as a STXM detector. PMID:27146329

  2. Probing chromium(III) from chromium(VI) in cells by a fluorescent sensor.

    PubMed

    Hu, Xiangquan; Chai, Jie; Liu, Yanfei; Liu, Bin; Yang, Binsheng

    2016-01-15

    Cellular uptake of Cr(VI), followed by its reduction to Cr(III) with the formation of kinetically inert Cr(III) complexes, is a complex process. To better understand its physiological and pathological functions, efficient methods for the monitoring of Cr(VI) are desired. In this paper a selective fluorescent probe L, rhodamine hydrazide bearing a benzo[b]furan-2-carboxaldehyde group, was demonstrated as a red chemosensor for Cr(III) at about 586 nm. This probe has been used to probe Cr(III) which is reduced from Cr(VI) by reductants such as glutathione (GSH), vitamin C, cysteine (Cys), H2O2 and Dithiothreitol (DTT) by fluorescence spectra. Cr(VI) metabolism in vivo is primarily driven by Vc and GSH. Vc could reduce CrO4(2-) to Cr(III) in a faster rate than GSH. The indirectly detection limit for Cr(VI) by L+GSH system was determined to be 0.06 μM at pH=6.2. Moreover, the confocal microscopy image experiments indicated that Cr(VI) can be reduced to Cr(III) inside cells rapidly and the resulted Cr(III) can be captured and imaged timely by L. PMID:26414552

  3. Probing chromium(III) from chromium(VI) in cells by a fluorescent sensor

    NASA Astrophysics Data System (ADS)

    Hu, Xiangquan; Chai, Jie; Liu, Yanfei; Liu, Bin; Yang, Binsheng

    2016-01-01

    Cellular uptake of Cr(VI), followed by its reduction to Cr(III) with the formation of kinetically inert Cr(III) complexes, is a complex process. To better understand its physiological and pathological functions, efficient methods for the monitoring of Cr(VI) are desired. In this paper a selective fluorescent probe L, rhodamine hydrazide bearing a benzo[b]furan-2-carboxaldehyde group, was demonstrated as a red chemosensor for Cr(III) at about 586 nm. This probe has been used to probe Cr(III) which is reduced from Cr(VI) by reductants such as glutathione (GSH), vitamin C, cysteine (Cys), H2O2 and Dithiothreitol (DTT) by fluorescence spectra. Cr(VI) metabolism in vivo is primarily driven by Vc and GSH. Vc could reduce CrO42 - to Cr(III) in a faster rate than GSH. The indirectly detection limit for Cr(VI) by L + GSH system was determined to be 0.06 μM at pH = 6.2. Moreover, the confocal microscopy image experiments indicated that Cr(VI) can be reduced to Cr(III) inside cells rapidly and the resulted Cr(III) can be captured and imaged timely by L.

  4. Iridium(III) Anthraquinone Complexes as Two-Photon Phosphorescence Probes for Mitochondria Imaging and Tracking under Hypoxia.

    PubMed

    Sun, Lingli; Chen, Yu; Kuang, Shi; Li, Guanying; Guan, Ruilin; Liu, Jiangping; Ji, Liangnian; Chao, Hui

    2016-06-20

    In the present study, four mitochondria-specific and two-photon phosphorescence iridium(III) complexes, Ir1-Ir4, were developed for mitochondria imaging in hypoxic tumor cells. The iridium(III) complex has two anthraquinone groups that are hypoxia-sensitive moieties. The phosphorescence of the iridium(III) complex was quenched by the functions of the intramolecular quinone unit, and it was restored through two-electron bioreduction under hypoxia. When the probes were reduced by reductase to hydroquinone derivative products under hypoxia, a significant enhancement in phosphorescence intensity was observed under one- (λ=405 nm) and two-photon (λ=720 nm) excitation, with a two-photon absorption cross section of 76-153 GM at λ=720 nm. More importantly, these probes possessed excellent specificity for mitochondria, which allowed imaging and tracking of the mitochondrial morphological changes in a hypoxic environment over a long period of time. Moreover, the probes can visualize hypoxic mitochondria in 3D multicellular spheroids and living zebrafish through two-photon phosphorescence imaging. PMID:27145442

  5. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    PubMed Central

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-01-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1–40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1–40 peptide on the basis of their emission response. PMID:26419607

  6. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes

    NASA Astrophysics Data System (ADS)

    Lu, Lihua; Zhong, Hai-Jing; Wang, Modi; Ho, See-Lok; Li, Hung-Wing; Leung, Chung-Hang; Ma, Dik-Lung

    2015-09-01

    We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1-40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1-40 peptide on the basis of their emission response.

  7. Advances in Defocused-Beam Electron-Probe Microanalysis

    NASA Astrophysics Data System (ADS)

    Carpenter, P. K.; Zeigler, R. A.; Jolliff, B. L.

    2010-03-01

    Advances in defocused-beam electron-probe microanalysis are presented, with an Excel VBA algorithm which uses a polynomial alpha factor correction algorithm coupled with a catanorm procedure to correct DBA data.

  8. Inducing and Probing Attosecond-Time-Scale Electronic Wavefunction Beating

    NASA Astrophysics Data System (ADS)

    Ott, Christian; Raith, Philipp; Pfeifer, Thomas

    2010-03-01

    Much of the current interest in the field of ultrafast science focuses on the observation of attosecond dynamics of electronic wavepackets. These experiments typically require attosecond pulses either for pumping or probing such dynamics and/or are limited to observing electronic states embedded in the ionization continuum of atoms. Here, we present numerical evidence---based on solutions of the time-dependent Schr"odinger equation for a 1-dimensional model atom---that a pump--probe scheme with two few-cycle femtosecond laser pulses provides interferometric access to sub-femtosecond electron wavepacket dynamics. Both continuum- and bound-state electronic wavepacket interference can be simultaneously observed by recording and analyzing time-delay dependent interferences in the ATI spectrum of an atom. Both dipole-allowed and forbidden electronic transition information can be extracted from the data, making this approach a versatile and comprehensive spectroscopic method for probing the bound electronic level structure of an atom.

  9. Pygmy Resonances Probed with Electron Scattering

    SciTech Connect

    Bertulani, Carlos A

    2007-05-01

    Pygmy resonances in light nuclei excited in electron scattering are discussed. These collective modes will be explored in future electron-ion colliders such as ELISe/FAIR (spokesperson: Haik Simon - GSI). Response functions for direct breakup are explored with few-body and hydrodynamical models, including the dependence upon final-state interactions.

  10. Revisiting plasma hysteresis with an electronically compensated Langmuir probe

    SciTech Connect

    Srivastava, P. K.; Singh, S. K.; Awasthi, L. M.; Mattoo, S. K.

    2012-09-15

    The measurement of electron temperature in plasma by Langmuir probes, using ramped bias voltage, is seriously affected by the capacitive current of capacitance of the cable between the probe tip and data acquisition system. In earlier works a dummy cable was used to balance the capacitive currents. Under these conditions, the measured capacitive current was kept less than a few mA. Such probes are suitable for measurements in plasma where measured ion saturation current is of the order of hundreds of mA. This paper reports that controlled balancing of capacitive current can be minimized to less than 20 {mu}A, allowing plasma measurements to be done with ion saturation current of the order of hundreds of {mu}A. The electron temperature measurement made by using probe compensation technique becomes independent of sweep frequency. A correction of {<=}45% is observed in measured electron temperature values when compared with uncompensated probe. This also enhances accuracy in the measurement of fluctuation in electron temperature as {delta}T{sub pk-pk} changes by {approx}30%. The developed technique with swept rate {<=}100 kHz is found accurate enough to measure both the electron temperature and its fluctuating counterpart. This shows its usefulness in measuring accurately the temperature fluctuations because of electron temperature gradient in large volume plasma device plasma with frequency ordering {<=}50 kHz.

  11. Design study for electronic system for Jupiter Orbit Probe (JOP)

    NASA Technical Reports Server (NTRS)

    Elero, B. P., Jr.; Carignan, G. R.

    1978-01-01

    The conceptual design of the Jupiter probe spectrometer is presented. Block and circuit diagrams are presented along with tabulated parts lists. Problem areas are considered to be (1) the schedule, (2) weight limitations for the electronic systems, and (3) radiation hardness of the electronic devices.

  12. Atomic Resolution Imaging with a sub-50 pm Electron Probe

    SciTech Connect

    Erni, Rolf P.; Rossell, Marta D.; Kisielowski, Christian; Dahmen, Ulrich

    2009-03-02

    Using a highly coherent focused electron probe in a 5th order aberration-corrected transmission electron microscope, we report on resolving a crystal spacing less than 50 pm. Based on the geometrical source size and residual coherent and incoherent axial lens aberrations, an electron probe is calculated, which is theoretically capable of resolving an ideal 47 pm spacing with 29percent contrast. Our experimental data show the 47 pm spacing of a Ge 114 crystal imaged with 11-18percent contrast at a 60-95percent confidence level, providing the first direct evidence for sub 50-pm resolution in ADF STEM imaging.

  13. Detecting magnetic ordering with atomic size electron probes

    DOE PAGESBeta

    Idrobo, Juan Carlos; Rusz, Ján; Spiegelberg, Jakob; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Cantoni, Claudia; Lupini, Andrew R.

    2016-05-27

    While magnetism originates at the atomic scale, the existing spectroscopic techniques sensitive to magnetic signals only produce spectra with spatial resolution on a larger scale. However, recently, it has been theoretically argued that atomic size electron probes with customized phase distributions can detect magnetic circular dichroism. Here, we report a direct experimental real-space detection of magnetic circular dichroism in aberration-corrected scanning transmission electron microscopy (STEM). Using an atomic size-aberrated electron probe with a customized phase distribution, we reveal the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The novel experimental setupmore » presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution.« less

  14. Forbidden O III electron temperature in planetary nebulae

    NASA Astrophysics Data System (ADS)

    Keenan, F. P.; Aggarwal, K. M.

    1989-06-01

    The electron-temperature-sensitive emission-line ratio I(2s2 2p2 1D - 2s2 2p2 1S)/I(2s2 2p2 3P1,2 - 2s2 2p2 1D) = I(4363 A)/I(4959 + 5007 A) has been determined based upon relative level populations for O III obtained using impact excitation rates calculated with the R-matrix code. Results are presented for a temperature range which is applicable to planetary nebulae. Electron temperatures derived from the observed R values of several planetary nebulae agree well with those determined from electron-temperature-sensitive line ratios is such other species as (semiforbidden C III)/C II, forbidden N II, and forbidden Ar II.

  15. Probing active electron transfer branch in photosystem I reaction center.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Dashdorj, Naranbaatar; Xu, Wu; Martinsson, Peter; Chitnis, Parag

    2003-03-01

    Complimentary point mutations were introduced at the primary electron acceptor sites in A and B branches of the photosystem I (PS I) reaction center (RC) from Synechocystis sp. PCC 6803 and their effect on the kinetics of the electron transfer process was studied by means of ultrafast pump-probe spectroscopy. The results indicate that in these species the electron transfer occurs primarily along the A-branch. Previous optical experiments on PS I complexes from Chlorella sorokiniana demonstrated that both branches of RC are equally active. That suggests that the directionality of electron transfer in PS I is species dependent.

  16. Measuring ionospheric electron density using the plasma frequency probe

    SciTech Connect

    Jensen, M.D.; Baker, K.D. )

    1992-02-01

    During the past decade, the plasma frequency probe (PFP) has evolved into an accurate, proven method of measuring electron density in the ionosphere above about 90 km. The instrument uses an electrically short antenna mounted on a sounding rocket that is immersed in the plasma and notes the frequency where the antenna impedance is large and nonreactive. This frequency is closely related to the plasma frequency, which is a direct function of free electron concentration. The probe uses phase-locked loop technology to follow a changing electron density. Several sections of the plasma frequency probe circuitry are unique, especially the voltage-controlled oscillator that uses both an electronically tuned capacitor and inductor to give the wide tuning range needed for electron density measurements. The results from two recent sounding rocket flights (Thunderstorm II and CRIT II) under vastly different plasma conditions demonstrate the capabilities of the PFP and show the importance of in situ electron density measurements of understanding plasma processes. 9 refs.

  17. Low-Temperature Scanning Capacitance Probe for Imaging Electron Motion

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Westervelt, R. M.

    2014-12-01

    Novel techniques to probe electronic properties at the nanoscale can shed light on the physics of nanoscale devices. In particular, studying the scattering of electrons from edges and apertures at the nanoscale and imaging the electron profile in a quantum dot, have been of interest [1]. In this paper, we present the design and implementation of a cooled scanning capacitance probe that operates at liquid He temperatures to image electron waves in nanodevices. The conducting tip of a scanned probe microscope is held above the nanoscale structure, and an applied sample-to-tip voltage creates an image charge that is measured by a cooled charge amplifier [2] adjacent to the tip. The circuit is based on a low-capacitance, high- electron-mobility transistor (Fujitsu FHX35X). The input is a capacitance bridge formed by a low capacitance pinched-off HEMT transistor and tip-sample capacitance. We have achieved low noise level (0.13 e/VHz) and high spatial resolution (100 nm) for this technique, which promises to be a useful tool to study electronic behavior in nanoscale devices.

  18. Scanning-probe Single-electron Capacitance Spectroscopy

    PubMed Central

    Walsh, Kathleen A.; Romanowich, Megan E.; Gasseller, Morewell; Kuljanishvili, Irma; Ashoori, Raymond; Tessmer, Stuart

    2013-01-01

    The integration of low-temperature scanning-probe techniques and single-electron capacitance spectroscopy represents a powerful tool to study the electronic quantum structure of small systems - including individual atomic dopants in semiconductors. Here we present a capacitance-based method, known as Subsurface Charge Accumulation (SCA) imaging, which is capable of resolving single-electron charging while achieving sufficient spatial resolution to image individual atomic dopants. The use of a capacitance technique enables observation of subsurface features, such as dopants buried many nanometers beneath the surface of a semiconductor material1,2,3. In principle, this technique can be applied to any system to resolve electron motion below an insulating surface. As in other electric-field-sensitive scanned-probe techniques4, the lateral spatial resolution of the measurement depends in part on the radius of curvature of the probe tip. Using tips with a small radius of curvature can enable spatial resolution of a few tens of nanometers. This fine spatial resolution allows investigations of small numbers (down to one) of subsurface dopants1,2. The charge resolution depends greatly on the sensitivity of the charge detection circuitry; using high electron mobility transistors (HEMT) in such circuits at cryogenic temperatures enables a sensitivity of approximately 0.01 electrons/Hz½ at 0.3 K 5. PMID:23929222

  19. Transport Properties of III-N Hot Electron Transistors

    NASA Astrophysics Data System (ADS)

    Suntrup, Donald J., III

    Unipolar hot electron transistors (HETs) represent a tantalizing alternative to established bipolar transistor technologies. During device operation electrons are injected over a large emitter barrier into the base where they travel along the device axis with very high velocity. Upon arrival at the collector barrier, high-energy electrons pass over the barrier and contribute to collector current while low-energy electrons are quantum mechanically reflected back into the base. Designing the base with thickness equal to or less than the hot electron mean free path serves to minimize scattering events and thus enable quasi-ballistic operation. Large current gain is achieved by increasing the ratio of transmitted to reflected electrons. Although III-N HETs have undergone substantial development in recent years, there remain ample opportunities to improve key device metrics. In order to engineer improved device performance, a deeper understanding of the operative transport physics is needed. Fortunately, the HET provides fertile ground for studying several prominent electron transport phenomena. In this thesis we present results from several studies that use the III-N HET as both emitter and analyzer of hot electron momentum states. The first provides a measurement of the hot electron mean free path and the momentum relaxation rate in GaN; the second relies on a new technique called electron injection spectroscopy to investigate the effects of barrier height inhomogeneity in the emitter. To supplement our analysis we develop a comprehensive theory of coherent electron transport that allows us to model the transfer characteristics of complex heterojunctions. Such a model provides a theoretical touchstone with which to compare our experimental results. While these studies are of potential interest in their own right, we interpret the results with an eye toward improving next-generation device performance.

  20. Design of III-Nitride Hot Electron Transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Geetak

    III-Nitride based devices have made great progress over the past few decades in electronics and photonics applications. As the technology and theoretical understanding of the III-N system matures, the limitations on further development are based on very basic electronic properties of the material, one of which is electron scattering (or ballistic electron effects). This thesis explores the design space of III-N based ballistic electron transistors using novel design, growth and process techniques. The hot electron transistor (HET) is a unipolar vertical device that operates on the principle of injecting electrons over a high-energy barrier (φBE) called the emitter into an n-doped region called base and finally collecting the high energy electrons (hot electrons) over another barrier (φBC) called the collector barrier. The injected electrons traverse the base in a quasi-ballistic manner. Electrons that get scattered in the base contribute to base current. High gain in the HET is thus achieved by enabling ballistic transport of electrons in the base. In addition, low leakage across the collector barrier (I BCleak) and low base resistance (RB) are needed to achieve high performance. Because of device attributes such as vertical structure, ballistic transport and low-resistance n-type base, the HET has the potential of operating at very high frequencies. Electrical measurements of a HET structure can be used to understand high-energy electron physics and extract information like mean free path in semiconductors. The III-Nitride material system is particularly suited for HETs as it offers a wide range of DeltaEcs and polarization charges which can be engineered to obtain barriers which can inject hot-electrons and have low leakage at room temperature. In addition, polarization charges in the III-N system can be engineered to obtain a high-density and high-mobility 2DEG in the base, which can be used to reduce base resistance and allow vertical scaling. With these

  1. Structural and electronic properties of III-V bismuth compounds

    NASA Astrophysics Data System (ADS)

    Ferhat, M.; Zaoui, A.

    2006-03-01

    We have performed ab initio self-consistent calculations based on the full potential linear augmented plane-wave method with the generalized gradient approximation to investigate the structural and the electronic properties of the less known bismuth III-V compounds: BBi, AlBi, GaBi, and InBi. Ground state parameters are computed and compared with available theoretical and experimental works. The zinc-blende phase is found to be the most stable for BBi, AlBi, and GaBi, while InBi prefers the tetragonal PbO structure. The relativistic contraction of the 6s orbital of Bi has strong effect on the band structure of III-Bi compounds, which exhibits some features that differ considerably from those of typical III-V semiconductors. In particular, we found an inverted band gap, which reflects a semimetallic character of these systems. Their bonding nature is analyzed in terms of valence charge density transfer, showing three different natures of the bond. Besides, the calculated valence charge density for BBi shows an anomalous behavior characterized by a charge transfer toward the cation B atom, while the others III-Bi behave as the typical III-V compounds with a small charge transfer to the anion bismuth atom.

  2. Near-Relativistic Solar Electrons and Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.

    2003-01-01

    Recently it has been found that the inferred injection times of greater than 25 keV electrons are up to 30 minutes later than the start times of the associated type III radio bursts at the Sun. Thus it has been suggested that the electrons that produce type III bursts do not belong to the same population as those observed above 25 keV. This paper examines the characteristics and circumstances of 79 solar electron beam events measured on the ACE spacecraft. Particular attention is paid to the very low frequency emissions of the associated radio bursts and the ambient conditions at the arrival times of the electrons at the spacecraft. It is found that the inferred greater than 25 keV electron injection delays are correlated with the times required for the associated radio bursts to drift to the lowest frequencies. This suggests that the electrons responsible for the radio emission and those observed above 25 keV are part of a single population, and that the electrons both above and below 25 keV are delayed in the interplanetary medium. Further evidence for a single population is the general correspondence between electron and local radio intensities and temporal profiles. It is found that the delays increase with the ambient solar wind density consistent with the propagation times of the electrons being determined by the characteristics of the interplanetary medium. However it is known that particle arrival times at 1 AU are a linear function of inverse particle speed. Conventionally such a relationship is taken to indicate scatter-free propagation when inferred path lengths lie close to 1.2 AU, as they do for the electron events studied here. These conflicting interpretations require further investigation.

  3. Fluorescence sensing of phosdrin pesticide by the luminescent Eu(III)- and Tb(III)-bis(coumarin-3-carboxylic acid) probes.

    PubMed

    Hussein, Belal H M; Khairy, Gasser M; Kamel, Rasha M

    2016-04-01

    Luminescence quenching of the Eu(III)- and Tb(III)-bis (coumarin-3-carboxylic acid) (Ln(III)-(CCA)2) probes has been studied in the presence of organophosphorus or organochlorine pesticides; Phosdrin (P1), Malathion (P2), Profenofos (P3), Formothion (P4), Heptachlor (P5), and Endosulfan (P6). The luminescence intensity of lanthanide complex probes Ln(III)-(CCA)2 decreases as the concentration of the Phosdrin pesticide increases, while the other investigated pesticides have no significant influence on the lanthanide fluorescent intensities. It is observed that the quenching of Eu(III) and Tb(III)-coumarin-3-carboxylic acid by Phosdrin proceeds via static quenching processes according to Stern-Volmer plot. The binding constants (K) and the thermodynamic parameters of the interaction of Ln(III)-(CCA)2 with Phosdrin have been determined. A direct method for the determination of the Phosdrin in ethanol has been developed based on the luminescence changes of the Ln(III)-(CCA)2-phosdrin ternary complexes. The detection limits of P1 were 6.28 and 1.07 μM in case of Eu(III) and Tb(III)-complex, respectively. The influence of various interfering species on the detection of P1 has been investigated to assess the analytical applicability of the method. The new method was applied to determine the Phosdrin pesticide in different types of water samples. PMID:26802539

  4. Fluorescence sensing of phosdrin pesticide by the luminescent Eu(III)- and Tb(III)-bis(coumarin-3-carboxylic acid) probes

    NASA Astrophysics Data System (ADS)

    Hussein, Belal H. M.; Khairy, Gasser M.; Kamel, Rasha M.

    2016-04-01

    Luminescence quenching of the Eu(III)- and Tb(III)-bis (coumarin-3-carboxylic acid) (Ln(III)-(CCA)2) probes has been studied in the presence of organophosphorus or organochlorine pesticides; Phosdrin (P1), Malathion (P2), Profenofos (P3), Formothion (P4), Heptachlor (P5), and Endosulfan (P6). The luminescence intensity of lanthanide complex probes Ln(III)-(CCA)2 decreases as the concentration of the Phosdrin pesticide increases, while the other investigated pesticides have no significant influence on the lanthanide fluorescent intensities. It is observed that the quenching of Eu(III) and Tb(III)-coumarin-3-carboxylic acid by Phosdrin proceeds via static quenching processes according to Stern-Volmer plot. The binding constants (K) and the thermodynamic parameters of the interaction of Ln(III)-(CCA)2 with Phosdrin have been determined. A direct method for the determination of the Phosdrin in ethanol has been developed based on the luminescence changes of the Ln(III)-(CCA)2-phosdrin ternary complexes. The detection limits of P1 were 6.28 and 1.07 μM in case of Eu(III) and Tb(III)-complex, respectively. The influence of various interfering species on the detection of P1 has been investigated to assess the analytical applicability of the method. The new method was applied to determine the Phosdrin pesticide in different types of water samples.

  5. Cutoff probe using Fourier analysis for electron density measurement

    NASA Astrophysics Data System (ADS)

    Na, Byung-Keun; You, Kwang-Ho; Kim, Dae-Woong; Chang, Hong-Young; You, Shin-Jae; Kim, Jung-Hyung

    2012-01-01

    This paper proposes a new method for cutoff probe using a nanosecond impulse generator and an oscilloscope, instead of a network analyzer. The nanosecond impulse generator supplies a radiating signal of broadband frequency spectrum simultaneously without frequency sweeping, while frequency sweeping method is used by a network analyzer in a previous method. The transmission spectrum (S21) was obtained through a Fourier analysis of the transmitted impulse signal detected by the oscilloscope and was used to measure the electron density. The results showed that the transmission frequency spectrum and the electron density obtained with a new method are very close to those obtained with a previous method using a network analyzer. And also, only 15 ns long signal was necessary for spectrum reconstruction. These results were also compared to the Langmuir probe's measurements with satisfactory results. This method is expected to provide not only fast measurement of absolute electron density, but also function in other diagnostic situations where a network analyzer would be used (a hairpin probe and an impedance probe) by replacing the network analyzer with a nanosecond impulse generator and an oscilloscope.

  6. Energetic Electron Measurements from the Galileo Jupiter Probe

    NASA Technical Reports Server (NTRS)

    Mihalov, J. D.; Lanzerotti, L. J.; Fischer, H. M.; Pehlke, E.

    1998-01-01

    Energetic trapped electrons were measured with the Galileo Jupiter Probe, with samples from inside Io's orbit, down to just above the atmosphere. The energetic electron fluxes and spectra agree well with the earlier results from the Pioneer spacecraft, where comparison may be made under the assumption of simple power law spectra. New features from the Galileo measurements include direct observations of the electron pitch angle distributions and spectral softening, both as the atmosphere is approached and at smaller pitch angles at each measurement location.

  7. Electron density and electron temperature measurement in a bi-Maxwellian electron distribution using a derivative method of Langmuir probes

    SciTech Connect

    Choi, Ikjin; Chung, ChinWook; Youn Moon, Se

    2013-08-15

    In plasma diagnostics with a single Langmuir probe, the electron temperature T{sub e} is usually obtained from the slope of the logarithm of the electron current or from the electron energy probability functions of current (I)-voltage (V) curve. Recently, Chen [F. F. Chen, Phys. Plasmas 8, 3029 (2001)] suggested a derivative analysis method to obtain T{sub e} by the ratio between the probe current and the derivative of the probe current at a plasma potential where the ion current becomes zero. Based on this method, electron temperatures and electron densities were measured and compared with those from the electron energy distribution function (EEDF) measurement in Maxwellian and bi-Maxwellian electron distribution conditions. In a bi-Maxwellian electron distribution, we found the electron temperature T{sub e} obtained from the method is always lower than the effective temperatures T{sub eff} derived from EEDFs. The theoretical analysis for this is presented.

  8. Mapping magnetism with atomic resolution using aberrated electron probes

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan; Rusz, Ján; McGuire, Michael A.; Symons, Christopher T.; Vatsavai, Ranga Raju; Lupini, Andrew R.

    2015-03-01

    In this talk, we report a direct experimental real-space mapping of magnetic circular dichroism with atomic resolution in aberration-corrected scanning transmission electron microscopy (STEM). Using an aberrated electron probe with customized phase distribution, we reveal with electron energy-loss (EEL) spectroscopy the checkerboard antiferromagnetic ordering of Mn moments in LaMnAsO by observing a dichroic signal in the Mn L-edge. The aberrated probes allow the collection of EEL spectra using the transmitted beam, which results in a magnetic circular dichroic signal with intrinsically larger signal-to-noise ratios than those obtained via nanodiffraction techniques (where most of the transmitted electrons are discarded). The novel experimental setup presented here, which can easily be implemented in aberration-corrected STEM, opens new paths for probing dichroic signals in materials with unprecedented spatial resolution. This research was supported by DOE SUFD MSED, by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US DOE, and by the Swedish Research Council and Swedish National Infrastructure for Computing (NSC center)

  9. Electron density dependence of impedance probe plasma potential measurements

    NASA Astrophysics Data System (ADS)

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-01

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φp, when the probe radius is much larger than the Debye length, λD. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, Vb. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ωpi ≪ ω ≪ ωpe, where ωpi is the ion plasma frequency and ωpe is the electron plasma frequency. For a given frequency and applied bias, both Re(Zac) and Im(Zac) are available from Γ. When Re(Zac) is plotted versus Vb, a minimum predicted by theory occurs at φp [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Zac) appears at, or very near, a maximum at φp. As ne decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Zac) and their derivatives are useful as accompanying indicators to Re(Zac) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Zac).

  10. Electron temperature and density probe for small aeronomy satellites.

    PubMed

    Oyama, K-I; Hsu, Y W; Jiang, G S; Chen, W H; Cheng, C Z; Fang, H K; Liu, W T

    2015-08-01

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T(e) in low frequency mode and N(e) in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f(UHR)). The instrument which is named "TeNeP" can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode. PMID:26329217

  11. Electron temperature and density probe for small aeronomy satellites

    SciTech Connect

    Oyama, K.-I.; Hsu, Y. W.; Jiang, G. S.; Chen, W. H.; Liu, W. T.; Cheng, C. Z.; Fang, H. K.

    2015-08-15

    A compact and low power consumption instrument for measuring the electron density and temperature in the ionosphere has been developed by modifying the previously developed Electron Temperature Probe (ETP). A circuit block which controls frequency of the sinusoidal signal is added to the ETP so that the instrument can measure both T{sub e} in low frequency mode and N{sub e} in high frequency mode from the floating potential shift of the electrode. The floating potential shift shows a minimum at the upper hybrid resonance frequency (f{sub UHR}). The instrument which is named “TeNeP” can be used for tiny satellites which do not have enough conductive surface area for conventional DC Langmuir probe measurements. The instrument also eliminates the serious problems associated with the contamination of satellite surface as well as the sensor electrode.

  12. A capacitive probe for Electron Spin Resonance detection

    NASA Astrophysics Data System (ADS)

    Aloisi, Giovanni; Dolci, David; Carlà, Marcello; Mannini, Matteo; Piuzzi, Barbara; Caneschi, Andrea

    2016-02-01

    The use of the magnetic field associated with Maxwell displacement current in a capacitor is proposed for the detection of Electron Spin Resonance. A probe based on this concept is realized and successfully tested with CW radio-frequency in the band going from 200 MHz to 1 GHz with a DPPH sample. A significant increase of Signal to Noise Ratio is observed while increasing the frequency.

  13. Electron localization of anions probed by nitrile vibrations

    SciTech Connect

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; Miller, John R.

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrations respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ν(C≡N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤ kBT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport

  14. Electron localization of anions probed by nitrile vibrations

    DOE PAGESBeta

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; Miller, John R.

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrationsmore » respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ν(C≡N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤ kBT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport capability

  15. Electron energy distribution function by using probe method in electron cyclotron resonance multicharged ion source

    SciTech Connect

    Kumakura, Sho Kurisu, Yosuke; Kimura, Daiju; Yano, Keisuke; Imai, Youta; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). High-energy electrons in ECRIS plasma affect electron energy distribution and generate multicharged ion. In this study, we measure electron energy distribution function (EEDF) of low energy region (≦100 eV) in ECRIS plasma at extremely low pressures (10{sup −3}–10{sup −5} Pa) by using cylindrical Langmuir probe. From the result, it is found that the EEDF correlates with the electron density and the temperature from the conventional probe analysis. In addition, we confirm that the tail of EEDF spreads to high energy region as the pressure rises and that there are electrons with high energy in ECR multicharged ion source plasma. The effective temperature estimated from the experimentally obtained EEDF is larger than the electron temperature obtained from the conventional method.

  16. Oscillating plasma bubbles. III. Internal electron sources and sinks

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2012-08-15

    An internal electron source has been used to neutralize ions injected from an ambient plasma into a spherical grid. The resultant plasma is termed a plasma 'bubble.' When the electron supply from the filament is reduced, the sheath inside the bubble becomes unstable. The plasma potential of the bubble oscillates near but below the ion plasma frequency. Different modes of oscillations have been observed as well as a subharmonic and multiple harmonics. The frequency increases with ion density and decreases with electron density. The peak amplitude occurs for an optimum current and the instability is quenched at large electron densities. The frequency also increases if Langmuir probes inside the bubble draw electrons. Allowing electrons from the ambient plasma to enter, the bubble changes the frequency dependence on grid voltage. It is concluded that the net space charge density in the sheath determines the oscillation frequency. It is suggested that the sheath instability is caused by ion inertia in an oscillating sheath electric field which is created by ion bunching.

  17. Scanning electron microscopy and electron probe X-ray microanalysis (SEM-EPMA) of pink teeth

    SciTech Connect

    Ikeda, N.; Watanabe, G.; Harada, A.; Suzuki, T.

    1988-11-01

    Samples of postmortem pink teeth were investigated by scanning electron microscopy and electron probe X-ray microanalysis. Fracture surfaces of the dentin in pink teeth were noticeably rough and revealed many more smaller dentinal tubules than those of the control white teeth. Electron probe X-ray microanalysis showed that the pink teeth contained iron which seemed to be derived from blood hemoglobin. The present study confirms that under the same circumstance red coloration of teeth may occur more easily in the teeth in which the dentin is less compact and contains more dentinal tubules.

  18. The electronic structure of diodes probed under bias

    NASA Astrophysics Data System (ADS)

    Glans, Per-Anders; Guo, Jinghua; Park, Jeong; Gabor, Somorjai

    2009-03-01

    Chemists have known for decades that when metal nano-particles are affixed to a catalytically inactive oxide surface, the catalytic turnover rate of the array is more than 10 times that of a metal surface alone. However, the mechanism behind the effect is not clear. To understand the catalytic activity of the interface between the metal nano-structures and the oxide substrate, we have investigated the electronic structure of Pt and Pd doped diodes on a TiO2 substrate. The devices were put under bias during the measurements in an attempt to reproduce the potential differences found over the diode when used as a catalyst. This is challenging for electron based measuring techniques, but using photon-in, photon-out techniques we have successfully probed the electronic structure of Pt and Pd doped diodes under bias. The results from soft x-ray absorption and emission will be presented.

  19. Electron density dependence of impedance probe plasma potential measurements

    SciTech Connect

    Walker, D. N.; Blackwell, D. D.; Amatucci, W. E.

    2015-08-15

    In earlier works, we used spheres of various sizes as impedance probes in demonstrating a method of determining plasma potential, φ{sub p}, when the probe radius is much larger than the Debye length, λ{sub D}. The basis of the method in those works [Walker et al., Phys. Plasmas 13, 032108 (2006); ibid. 15, 123506 (2008); ibid. 17, 113503 (2010)] relies on applying a small amplitude signal of fixed frequency to a probe in a plasma and, through network analyzer-based measurements, determining the complex reflection coefficient, Γ, for varying probe bias, V{sub b}. The frequency range of the applied signal is restricted to avoid sheath resonant effects and ion contributions such that ω{sub pi} ≪ ω ≪ ω{sub pe}, where ω{sub pi} is the ion plasma frequency and ω{sub pe} is the electron plasma frequency. For a given frequency and applied bias, both Re(Z{sub ac}) and Im(Z{sub ac}) are available from Γ. When Re(Z{sub ac}) is plotted versus V{sub b}, a minimum predicted by theory occurs at φ{sub p} [Walker et al., Phys. Plasmas 17, 113503 (2010)]. In addition, Im(Z{sub ac}) appears at, or very near, a maximum at φ{sub p}. As n{sub e} decreases and the sheath expands, the minimum becomes harder to discern. The purpose of this work is to demonstrate that when using network analyzer-based measurements, Γ itself and Im(Z{sub ac}) and their derivatives are useful as accompanying indicators to Re(Z{sub ac}) in these difficult cases. We note the difficulties encountered by the most commonly used plasma diagnostic, the Langmuir probe. Spherical probe data is mainly used in this work, although we present limited data for a cylinder and a disk. To demonstrate the effect of lowered density as a function of probe geometry, we compare the cylinder and disk using only the indicator Re(Z{sub ac})

  20. Variation in plasmonic (electronic) spectral parameters of Pr (III) and Nd (III) with varied concentration of moderators

    SciTech Connect

    Mishra, Shubha; Limaye, S. N.

    2015-07-31

    It is said that the -4f shells behave as core and are least perturbed by changes around metal ion surrounding. However, there are evidences that-4f shells partially involved in direct moderator interaction. A systematic investigation on the plasmonic (electronic) spectral studies of some Rare Earths[RE(III).Mod] where, RE(III) = Pr(III),Nd(III) and Mod(moderator) = Y(III),La(III),Gd(III) and Lu(III), increased moderator concentration from 0.01 mol dm{sup −3} to 0.025 mol dm{sup −3} keeping the metal ion concentration at 0.01mol dm{sup −3} have been carried out. Variations in oscillator strengths (f), Judd-Ofelt parameters (T{sub λ}),inter-electronic repulsion Racah parameters (δE{sup k}),nephelauxetic ratio (β), radiative parameters (S{sub ED},A{sub T},β{sub R},T{sub R}). The values of oscillator strengths and Judd-Ofelt parameters have been discussed in the light of coordination number of RE(III) metal ions, denticity and basicity of the moderators. The [RE(III).Mod] bonding pattern has been studies in the light of the change in Racah parameters and nephelauxetic ratio.

  1. Sparse sampling and reconstruction for electron and scanning probe microscope imaging

    SciTech Connect

    Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.

    2015-07-28

    Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.

  2. Sheath Effects on Electron Density Measurements in Frequency Shift Probe and their Application to Electron Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Nakamura, Keiji; Zhang, Qi; Sugai, Hideo

    2009-10-01

    Technologies of plasma monitoring are important for accurate plasma control. We have developed a frequency shift probe, and the probe enables us to measure an electron density from variation of resonance frequency of the probe head similarly to the hairpin probe. A plane structure of the probe head make it possible to minimizes disturbance to the processing plasma, and the probe is applicable to a reactive polymer-deposition plasmas since the polymer has no significant effects on the resonance frequency. The electron density is usually obtained from a plasma-induced shift of the probe resonance frequency, however influences of a sheath around the probe should been considered for more precise density measurements. In this work, sheath effects on the frequency shift probe were investigated, and the frequency shift probe was applied to measure a electron temperature using the sheath effects. As the sheath thickness increased, the resonance frequency decreased, and the sheath effect is enhanced depending on probe structure. Since the sheath width is proportional to Debye length, the probe resonance frequency depends on electron density and electron temperature, suggesting that resonance frequencies obtained in two probes having different sheath dependence gives an unique solution of the density and temperature of electrons.

  3. The telescope readout electronics for the Gravity Probe B satellite.

    NASA Astrophysics Data System (ADS)

    Demroff, H. P.; Babu, S.; Bye, M. R.; Coleman, K. L.; Das, N.; Debra, D. B.; Ehrensberger, P. D., Jr.; Farley, R. P.; Gill, D. K.; Goebel, J. H.; Jhabvala, M.; Kashani, A.; Romero, E.; Sullivan, M. T.

    1998-06-01

    The pointing and stability requirements for the Gravity Probe B (GP-B) Relativity Mission pose a number of challenges for the star-tracking electronics. Because the telescope-gyroscope assembly operates at 2.8K, the detector circuit's Si JFETs at the telescope focal plane must be thermally isolated and heated to at least 50K through self-heating or with the aid of heating resistors. The authors have designed a low noise, thermally stable photodetector circuit that meets the GP-B requirements as well as fabricated an isolator to give the required thermal isolation and mechanical stability. Test results of the detector-isolator assembly are presented.

  4. Frontiers in Electron Microscopy: Probing the Nanoscale in Nanoseconds

    NASA Astrophysics Data System (ADS)

    Browning, Nigel

    2005-03-01

    Electron microscopy has traditionally been driven by the desire to investigate the result of a given materials process (e.g. nucleation and growth, fatigue etc) at the highest spatial resolution. However, this type of observation typically gives no indication as to how the material achieved its final state. With the nanotechnology revolution highlighting the novel properties that can be achieved by modifying the processing and ambient conditions a material is subjected to, the need to characterize the fundamentals behind the materials process itself has assumed critical importance. One of the developing methods to achieve this level of characterization is dynamic transmission electron microscopy (DTEM). Using a laser pulse to stimulate the electron emission, pulse durations of nanoseconds and shorter can be achieved with sufficient signal to obtain images and diffraction patterns from materials excited by a laser in a pump-probe configuration (with the probe being the electron beam). A novel nanosecond electron microscope incorporating this principle has been used initially to observe the hexagonal close packed (HCP) to body centered cubic (BCC) martensitic phase transformation in titanium. The general class of martensitic phase transformations occur by a rapid shear of the crystal lattice. No long range diffusion is required during these transformations, thus they propagate through a crystal with a speed that can approach the speed of sound. The images and diffraction patterns obtained can be interpreted in terms of the unusual vibrational stabilization of the high temperature BCC phase of Ti. An interesting observation is that the speed of the transition seems to be dependent on the history of the sample and appears to be linked to the presence of oxygen impurities. This work was performed in collaboration with A. Ziegler, G. H. Campbell, H. Kleinschmidt, and O. Bostonjoglo and supported by LLNL LDRD project 04-ERD-071. This work performed under the auspices of

  5. High-performance probes for light and electron microscopy

    PubMed Central

    Viswanathan, Sarada; Williams, Megan E.; Bloss, Erik B.; Stasevich, Timothy J.; Speer, Colenso M.; Nern, Aljoscha; Pfeiffer, Barret D.; Hooks, Bryan M.; Li, Wei-Ping; English, Brian P.; Tian, Teresa; Henry, Gilbert L.; Macklin, John J.; Patel, Ronak; Gerfen, Charles R.; Zhuang, Xiaowei; Wang, Yalin; Rubin, Gerald M.

    2015-01-01

    We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These “spaghetti monster” fluorescent proteins (smFPs) distribute well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localizes weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allow robust, orthogonal multi-color visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers, greatly increase the number of simultaneous imaging channels, and perform well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improve single-molecule image tracking and increase yield for RNA-Seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization. PMID:25915120

  6. High-performance probes for light and electron microscopy.

    PubMed

    Viswanathan, Sarada; Williams, Megan E; Bloss, Erik B; Stasevich, Timothy J; Speer, Colenso M; Nern, Aljoscha; Pfeiffer, Barret D; Hooks, Bryan M; Li, Wei-Ping; English, Brian P; Tian, Teresa; Henry, Gilbert L; Macklin, John J; Patel, Ronak; Gerfen, Charles R; Zhuang, Xiaowei; Wang, Yalin; Rubin, Gerald M; Looger, Loren L

    2015-06-01

    We describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These 'spaghetti monster' fluorescent proteins (smFPs) distributed well in neurons, notably into small dendrites, spines and axons. smFP immunolabeling localized weakly expressed proteins not well resolved with traditional epitope tags. By varying epitope and scaffold, we generated a diverse family of mutually orthogonal antigens. In cultured neurons and mouse and fly brains, smFP probes allowed robust, orthogonal multicolor visualization of proteins, cell populations and neuropil. smFP variants complement existing tracers and greatly increase the number of simultaneous imaging channels, and they performed well in advanced preparations such as array tomography, super-resolution fluorescence imaging and electron microscopy. In living cells, the probes improved single-molecule image tracking and increased yield for RNA-seq. These probes facilitate new experiments in connectomics, transcriptomics and protein localization. PMID:25915120

  7. Proteome of Geobacter sulfurreducens grown with Fe(III) oxide or Fe(III) citrate as the electron acceptor.

    SciTech Connect

    Ding, Y-H R.; Hixson, Kim K.; Aklujkar, Ma; Lipton, Mary S.; Smith, Richard D.; Lovley, Derek R.; Mester, Tunde

    2008-12-01

    e(III) oxides are the most abundant source of reducible Fe(III) by microorganisms in most soils and sediments, yet few studies on the physiology of Fe(III)-reducing microorganisms during growth on Fe(III) oxide have been conducted because of the technical difficulties in working with cell growth and harvest in the presence of Fe(III) oxides. Geobacter sulfurreducens is a representative of the Geobacter species that predominate in a variety of subsurface environments in which Fe(III) oxide is important. In order to better understand the physiology of Geobacter species during growth on Fe(III) oxide, the proteome of G. sulfurreducens grown on Fe(III) oxide was compared with the proteome of cells grown with soluble Fe(III) citrate. Two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) revealed 19 proteins that were more abundant during growth on Fe(III) oxide than on soluble Fe(III). These included proteins related to protein synthesis, electron transfer and energy production, oxidative stress, protein folding, outer membrane proteins, nitrogen metabolism and hypothetical proteins. Further analysis of the proteome with the accurate mass and time (AMT) tag method revealed additional proteins associated with growth on Fe(III) oxide. These included the outer-membrane c-type cytochrome, OmcS and OmcG, which genetic studies have suggested are required for Fe(III) oxide reduction. Furthermore, several other cytochromes, as yet unstudied, were detected to be significantly up regulated during growth on Fe(III) oxide and other proteins of unknown function were more abundant during growth on Fe(III) oxide than on soluble Fe(III). PilA, the structural protein for pili, which is required for Fe(III) oxide reduction, and other pilin-associated proteins were also more abundant during growth on Fe(III) oxide. Confirmation of the differential expression of proteins known to be important in Fe(III) oxide reduction was observed, and an additional number of previously

  8. Conformationally restricted analog and biotin-labeled probe based on beauveriolide III.

    PubMed

    Doi, Takayuki; Muraoka, Terushige; Ohshiro, Taichi; Matsuda, Daisuke; Yoshida, Masahito; Takahashi, Takashi; Omura, Satoshi; Tomoda, Hiroshi

    2012-01-01

    A conformationally restricted oxazoline analog 7 was designed on the basis of a SAR study of beauveriolide III (2) and its analogs reported previously. Conformational analysis by molecular mechanics calculation suggested that the three side chains of 7 mostly occupy the same spaces as those of 2. The analog 7 was synthesized by peptide coupling of the d-cyclohexylglycine-containing ester 11 and d-Ser-containing dipeptide 12, macrolactamization, and cyclodehydration of 6 for the construction of an oxazoline ring. The bicyclic 7 exhibited potential inhibitory activity for cholesteryl ester synthesis similar to that by 2. These results revealed biologically important 3D spaces of the three side chains in inhibitory activity for cholesteryl ester synthesis. In addition, we accomplished the synthesis of a biotin-labeled probe 8 by copper-catalyzed (3+2) cycloaddition of a biotin-containing alkyne 16 and azido-containing beauveriolide analog 15 prepared from 6. PMID:22079027

  9. The electronic spectra of mu-peroxodicobalt(III) complexes

    NASA Technical Reports Server (NTRS)

    Miskowski, Vincent M.

    1987-01-01

    Problems found in the determination of the electronic spectra of mu-peroxodicobalt(III) complexes are considered, and the common formation of different mu-peroxocomplexes upon oxygenation of Co(II)-ligand solutions is discussed. Three classes of spectra have been identified: (1) planar single bridged complexes; (2) nonplanar single-bridged complexes with a dihedral angle near 145 deg; and (3) dibridged mu-OH(-),O2(2-) complexes with a dihedral angle near 60 deg. All of the peroxide ligand-to-metal charge-transfer spectra are found to be consistent with a simple model that assumes a sinusoidal dependence of pi-asterisk O2(2-) energies and sigma-overlaps upon the dihedral angle.

  10. A restoration model of distorted electron density in wave-cutoff probe measurement

    SciTech Connect

    Jun, Hyun-Su Lee, Yun-Seong

    2014-02-15

    This study investigates the problem of electron density distortion and how the density can be restored in a wave-cutoff probe. Despite recent plasma diagnostics research using a wave-cutoff probe, the problem of electron density distortion caused by plasma conditions has not been resolved. Experimental results indicate that electron density measured using the wave-cutoff method is highly susceptible to variations in the probe tip gap. This electron density distortion is caused by the bulk plasma disturbance between probe tips, and it must be removed for calculating the absolute electron density. To do this, a detailed analytic model was developed using the power balance equation near probe tips. This model demonstrates the characteristics of plasma distortion in wave-cutoff probe measurement and successfully restored the absolute value of electron density with varying probe tip gaps.

  11. Deriving large electron temperatures and small electron densities with the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, Philippe; Wahlund, Jan-Erik; Holmberg, Mika; Lewis, Geraint; Schippers, Patricia; Rochel Grimald, Sandrine; Gurnett, Donald; Coates, Andrew; Dandouras, Iannis; Waite, Hunter

    2014-05-01

    The Langmuir Probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigate the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), and manage to reproduce the observations with a reasonable precision through empirical and theoretical methods. Conversely, the modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). We finally show that a significant influence of the energetic electrons (larger than the contribution of thermal ions) is also expected in various plasma environments of the Solar System, such as at Jupiter (i.e near Ganymede, Europa, Callisto and Io), or even at Earth (in the plasmasheet, the magnetosheath or in plasma cavities). Large electron temperatures and small electron densities could potentially be derived in these environments, which may be of interest for Langmuir Probes in the Earth magnetosphere or onboard the future JUICE mission at Jupiter.

  12. Dopant Profiling of III-V Nanostructures for Electronic Applications

    NASA Astrophysics Data System (ADS)

    Ford, Alexandra Caroline

    2011-12-01

    High electron mobility III-V compound semiconductors such as indium arsenide (InAs) are promising candidates for future active channel materials of electron devices to further enhance device performance. In particular, compound semiconductors heterogeneously integrated on Si substrates have been studied, combining the high mobility of III-V semiconductors and the well-established, low cost processing of Si technology. However, one of the primary challenges of III-V device fabrication is controllable, post-growth dopant profiling. Here InAs nanowires and ultrathin layers (nanoribbons) on SiO2/Si are investigated as the channel material for high performance field-effect transistors (FETs) and post-growth, patterned doping techniques are demonstrated. First, the synthesis of crystalline InAs nanowires with high yield and tunable diameters by using Ni nanoparticles as the catalyst material on SiO 2/Si substrates is demonstrated. The back-gated InAs nanowire FETs have electron field-effect mobilities of ˜4,000 cm2/Vs and ION/IOFF ˜104. The uniformity of the InAs nanowires is demonstrated by large-scale assembly of parallel arrays of nanowires (˜400 nanowires) on SiO2/Si substrates by a contact printing process. This enables high performance, "printable" transistors with 5--10 mA ON currents. Second, an epitaxial transfer method for the integration of ultrathin layers of single-crystalline InAs on SiO2/Si substrates is demonstrated. As a parallel to silicon-on-insulator (SOI) technology, the abbreviation "XOI" is used to represent this compound semiconductor-on-insulator platform. A high quality InAs/dielectric interface is obtained by the use of a thermally grown interfacial InAsOx layer (˜1 nm thick). Top-gated FETs exhibit a peak transconductance of ˜1.6 mS/microm at V DS=0.5V with ION/I OFF >104 and subthreshold swings of 107--150 mV/decade for a channel length of ˜0.5 microm. Next, temperature-dependent I-V and C-V studies of single InAs nanowire FETs are

  13. Electronic structure calculations of group III nitride clusters

    NASA Astrophysics Data System (ADS)

    Kandalam, Anil Kumar

    2002-04-01

    Group III nitrides have become materials of choice in the manufacturing of devices used in opto-electronic and high-temperature high-power electronic industries. Hence, these materials received wide attention and have become the focus of several theoretical and experimental studies. Though these materials are studied in bulk and thin film forms, research at the cluster level is still lacking. Hence, a first principles calculation, based on the Generalized Gradient Approximation (GGA) to Density Functional Theory (DFT) was initiated to study the structural and electronic properties of AlnN n, GanNn, and InnNn, (n = 1--6) clusters. The calculated results show that the small polyatomic nitride clusters (monomer, triatomic and dimer) have a strong tendency to form N-N multiple bonds leading to the weakening of any existent metal-N or metal-metal bonds. In the absence of the N-N bonds, the metal-nitrogen bond dominates, forming short bond-lengths and large force constants. However, the strength of these heteronuclear bonds decreases in going from Al to Ga and In, whereas the weak metal-metal bond increases its strength from Al to Ga to In in the nitride clusters. Starting from the trimers M3N3, a distinct structural difference between the lowest energy configurations of AlnNn and that of GanNn, and In nNn, clusters has been observed. For AlnNn, clusters, the metal-nitrogen bond is found to dominate the lowest energy configurations. As the cluster size is increased from Al3N3 to Al 6N6, a transition from planar ring structures towards a bulk-like three dimensional configurations is seen. However, in GanN n, and InnNn clusters, no such trend is observed and the lowest energy configurations are dominated either by N2 or (N3)- sub-units. The segregation of N atoms within the stoichiometric clusters indicates the possibility of N2 and N3 based defects in the thin-film deposition process which may affect the quality of the thin-film devices based on Group III nitrides.

  14. A micromachined probe array for interfacing between electronics and neurons

    NASA Astrophysics Data System (ADS)

    Xu, Chenyang

    2001-03-01

    We report a new fabrication technique for realizing a high-density penetrating metal probe array for interfacing the nervous system and electronic devices, such as neural recording and stimulation apparatus. The microelectrode array consists of multiple metal shanks projecting from a silicon supporting bulk. One neural interface site is located at the tip of each shank. The average distance between recording sites is 50 m. Each shank is comprised of two distinct segments for realizing both mechanical strength and tissue penetrating ability. A rear support segment is 6-mm-long, 40- m wide and 30- m thick. A front segment consists of a 250- m-long and 6- m-thick tapered tip, with the width at its widest point being 15 m. Electrical insulation to the microelectrode body is achieved by conformal coating of a thin film of Parylene-C. Exposed metal recording sites are defined by selectively removing Parylene-C from the electrode tips using photolithography and oxygen plasma etching. The electrical properties of the device were characterized, and then its full functionality as an in vivo recording probe was tested in ventral nerve cord ganglia of cockroaches.

  15. Implementing Transmission Electron Backscatter Diffraction for Atom Probe Tomography.

    PubMed

    Rice, Katherine P; Chen, Yimeng; Prosa, Ty J; Larson, David J

    2016-06-01

    There are advantages to performing transmission electron backscattering diffraction (tEBSD) in conjunction with focused ion beam-based specimen preparation for atom probe tomography (APT). Although tEBSD allows users to identify the position and character of grain boundaries, which can then be combined with APT to provide full chemical and orientation characterization of grain boundaries, tEBSD can also provide imaging information that improves the APT specimen preparation process by insuring proper placement of the targeted grain boundary within an APT specimen. In this report we discuss sample tilt angles, ion beam milling energies, and other considerations to optimize Kikuchi diffraction pattern quality for the APT specimen geometry. Coordinated specimen preparation and analysis of a grain boundary in a Ni-based Inconel 600 alloy is used to illustrate the approach revealing a 50° misorientation and trace element segregation to the grain boundary. PMID:27329309

  16. Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot

    PubMed Central

    Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2015-01-01

    Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582

  17. Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot

    NASA Astrophysics Data System (ADS)

    Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2015-09-01

    Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures.

  18. Electron probe microanalysis for high pressure minerals investigation

    NASA Astrophysics Data System (ADS)

    Lavrentiev, Y. G.; Sobolev, N. V.; Korolyuk, V. N.; Usova, L. V.

    2007-12-01

    In the early 1968 in Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, electron probe microanalyzer MS-46 was installed and started to operate for high pressure minerals EPMA investigation. In collaboration with Geophysical Laboratory of Carnegie Institution (Drs. F.R. Boyd, F. Schairer) a set of standards for silicates analysis was developed. Technique for quantitative analysis was developed (Lavrentiev et al., 1974, Zavodsk. Lab., v. 40, p. 657-661) and applied for the first in the USSR analyses of pyropes, associated with Siberian diamonds both as inclusions and xenoliths of diamondiferous peridotites (Sobolev et al., 1969, Dokl. Akad. Nauk SSSR, v. 188, p. 1141-1143; v. 189, p. 162-165). As a result of that research, unique Cr-rich subcalcic pyropes with high knorringite content were found in diamond-bearing kimberlites only and new mineralogical criteria for diamond exploration were developed (Sobolev 1971, Geol. Geofiz., v. 12, p. 70-80) which are still in use worldwide. Further development of electron probe instruments (JXA-5A, Camebax Micro, JXA-8100) and computers, as well as development of analysis technique led to creation of large analytical database. In another field of EPMA - determination of small concentrations of elements - for the first time importance of 0.01-0.3% Na2O admixtures in garnets (Sobolev, Lavrentiev, 1971, Contrib. Min. Petr., v. 31, p. 1-12) and K2O in clinopyroxenes (Sobolev et al., 1970, Dokl. Akad. Nauk SSSR, v. 192, p. 1349-1352) were demonstrated. Since then, determination of sodium content in EPMA of garnets and potassium in pyroxenes became a routine technique. Last generation analyzer (JXA-8100) provided record results down to 6 ppm in detection limit of Ni in pyropes (Lavrentiev et al., Rus. Geol. Geophys., 2006, v. 47, p. 1090-1093). As a result, application of EPMA for single mineral geothermometry (currently based mainly on PIXE method) becomes possible.

  19. The Influence of Energetic Electrons on the Cassini Langmuir Probe at Saturn : Deriving Large Electron Temperatures and Small Electron Densities

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Wahlund, J.; Holmberg, M.; Lewis, G.; Schippers, P.; Thomsen, M. F.; Rochel Grimald, S.; Gurnett, D. A.; Coates, A. J.; Dandouras, I. S.; Waite, J. H.

    2013-12-01

    The Langmuir probes (LPs) are commonly used to investigate the cold plasma characteristics in planetary ionospheres/magnetospheres. The LPs performances are limited to low temperatures (i.e. below 5-10 eV at Saturn) and large densities (above several particles/cm3). A strong sensitivity of the Cassini LP measurements to energetic electrons (hundreds eV) may however be observed at Saturn in the L Shell range L=6-10 RS. These electrons impact the surface of the probe and generate a detectable current of secondary electrons. We investigated the influence of such electrons on the current-voltage (I-V) characteristics (for negative potentials), showing that both the DC level and slope of the I-V curve are modified. The influence of energetic electrons may be interpreted in terms of the critical and anticritical temperatures concept that is important for spacecraft charging studies. Estimations of the maximum secondary yield value for the LP surface are obtained without using laboratory measurements. Empirical and theoretical methods were developed to reproduce the influence of the energetic electrons with a reasonable precision. Conversely, this modelling allows us to derive useful information about the energetic electrons from the LP observations : some information about their pitch angle anisotropy (if combined with the data from a single CAPS ELS anode), as well as an estimate of the electron temperature (in the range 100-300 eV) and of the electron density (above 0.1 particles/cm3). This enlarges the LP measurements capabilities when the influence of the energetic electrons is large (essentially near L=6-10 RS at Saturn). The understanding of this influence may be used for other missions using Langmuir probes, such as the future missions JUICE at Jupiter, BepiColombo at Mercury, or even the probes in the Earth magnetosphere.

  20. Heteronuclear Ir(III)-Ln(III) Luminescent Complexes: Small-Molecule Probes for Dual Modal Imaging and Oxygen Sensing.

    PubMed

    Jana, Atanu; Crowston, Bethany J; Shewring, Jonathan R; McKenzie, Luke K; Bryant, Helen E; Botchway, Stanley W; Ward, Andrew D; Amoroso, Angelo J; Baggaley, Elizabeth; Ward, Michael D

    2016-06-01

    Luminescent, mixed metal d-f complexes have the potential to be used for dual (magnetic resonance imaging (MRI) and luminescence) in vivo imaging. Here, we present dinuclear and trinuclear d-f complexes, comprising a rigid framework linking a luminescent Ir center to one (Ir·Ln) or two (Ir·Ln2) lanthanide metal centers (where Ln = Eu(III) and Gd(III), respectively). A range of physical, spectroscopic, and imaging-based properties including relaxivity arising from the Gd(III) units and the occurrence of Ir(III) → Eu(III) photoinduced energy-transfer are presented. The rigidity imposed by the ligand facilitates high relaxivities for the Gd(III) complexes, while the luminescence from the Ir(III) and Eu(III) centers provide luminescence imaging capabilities. Dinuclear (Ir·Ln) complexes performed best in cellular studies, exhibiting good solubility in aqueous solutions, low toxicity after 4 and 18 h, respectively, and punctate lysosomal staining. We also demonstrate the first example of oxygen sensing in fixed cells using the dyad Ir·Gd, via two-photon phosphorescence lifetime imaging (PLIM). PMID:27219675

  1. Sample Preparation for Electron Probe Microanalysis—Pushing the Limits

    PubMed Central

    Geller, Joseph D.; Engle, Paul D.

    2002-01-01

    There are two fundamental considerations in preparing samples for electron probe microanalysis (EPMA). The first one may seem obvious, but we often find it is overlooked. That is, the sample analyzed should be representative of the population from which it comes. The second is a direct result of the assumptions in the calculations used to convert x-ray intensity ratios, between the sample and standard, to concentrations. Samples originate from a wide range of sources. During their journey to being excited under the electron beam for the production of x rays there are many possibilities for sample alteration. Handling can contaminate samples by adding extraneous matter. In preparation, the various abrasives used in sizing the sample by sawing, grinding and polishing can embed themselves. The most accurate composition of a contaminated sample is, at best, not representative of the original sample; it is misleading. Our laboratory performs EPMA analysis on customer submitted samples and prepares over 250 different calibration standards including pure elements, compounds, alloys, glasses and minerals. This large variety of samples does not lend itself to mass production techniques, including automatic polishing. Our manual preparation techniques are designed individually for each sample. The use of automated preparation equipment does not lend itself to this environment, and is not included in this manuscript. The final step in quantitative electron probe microanalysis is the conversion of x-ray intensities ratios, known as the “k-ratios,” to composition (in mass fraction or atomic percent) and/or film thickness. Of the many assumptions made in the ZAF (where these letters stand for atomic number, absorption and fluorescence) corrections the localized geometry between the sample and electron beam, or takeoff angle, must be accurately known. Small angular errors can lead to significant errors in the final results. The sample preparation technique then becomes very

  2. Electron density measurement of cesium seeded negative ion source by surface wave probe

    SciTech Connect

    Kisaki, M.; Tsumori, K.; Nakano, H.; Ikeda, K.; Osakabe, M.; Nagaoka, K.; Shibuya, M.; Sato, M.; Sekiguchi, H.; Komada, S.; Kondo, T.; Hayashi, H.; Asano, E.; Takeiri, Y.; Kaneko, O.

    2012-02-15

    Electron density measurements of a large-scaled negative ion source were carried out with a surface wave probe. By comparison of the electron densities determined with the surface wave probe and a Langmuir probe, it was confirmed that the surface wave probe is highly available for diagnostic of the electron density in H{sup -} ion sources. In addition, it was found that the ratio of the electron density to the H{sup -} ion density dramatically decreases with increase of a bias voltage and the H{sup -} ions become dominant negative particles at the bias voltage of more than 6 V.

  3. Probing electronic transport of individual nanostructures with atomic precision

    SciTech Connect

    Qin, Shengyong; Li, An-Ping

    2012-01-01

    Accessing individual nanostructures with atomic precision is an important process in the bottom-up fabrication and characterization of electronic nanodevices. Local electrical contacts, namely nanoelectrodes, are often fabricated by using top-down lithography and chemical etching techniques. These processes however lack atomic precision and introduce the possibility of contamination. Here, we review recent reports on the application of a field-induced emission process in the fabrication of local contacts onto individual nanowires and nanotubes with atomic spatial precision. In this method, gold nanoislands are deposited onto nanostructures precisely by using a scanning tunneling microscope tip, which provides a clean and controllable process to ensure both electrically conductive and mechanically reliable contacts. The applicability of the technique has been demonstrated in a wide variety of nanostructures, including silicide atomic wires, carbon nanotubes, and copper nanowires. These local contacts bridge the nanostructures and the transport probes, allowing for the measurements of both electrical transport and scanning tunneling microscopy on the same nanostructures in situ. The direct correlation between electronic and transport properties and atomic structures can be explored on individual nanostructures at the unprecedented atomic level.

  4. Quantitative Electron Probe Microanalysis: State of the Art

    NASA Technical Reports Server (NTRS)

    Carpernter, P. K.

    2005-01-01

    Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete

  5. Effect of fast drifting electrons on electron temperature measurement with a triple Langmuir probe

    SciTech Connect

    Biswas, Subir Chowdhury, Satyajit; Pal, Rabindranath

    2015-08-14

    Triple Langmuir Probe (TLP) is a widely used diagnostics for instantaneous measurement of electron temperature and density in low temperature laboratory plasmas as well as in edge region of fusion plasma devices. Presence of a moderately energetic flowing electron component, constituting only a small fraction of the bulk electrons, is also a generally observed scenario in plasma devices, where plasmas are produced by electron impact ionization of neutrals. A theoretical analysis of its effect on interpretation of the TLP data for bulk electron temperature measurement is presented here assuming electron velocity distribution is not deviating substantially from a Maxwellian. The study predicts conventional expression from standard TLP theory to give overestimated value of bulk electron temperature. Correction factor is significant and largely depends on population density, temperature, and energy of the fast component. Experimental verification of theoretical results is obtained in the magnetized plasma linear experimental device of Saha Institute of Nuclear Physics where plasma is produced by an electron cyclotron resonance method and known to have a fast flowing electron component.

  6. A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(III) ion

    NASA Astrophysics Data System (ADS)

    Amjadi, Mohammad; Shokri, Roghayeh; Hallaj, Tooba

    2016-01-01

    In this work, a new turn-off fluorescence probe based on the graphene quantum dots (GQDs) was designed for detection and quantification of Au(III) ion. GQDs were prepared by two simple carbonization methods using glucose (g-GQDs) and citric acid (c-GQDs) as carbon sources. The effect of some metal ions on the fluorescence intensity of the prepared GQDs was studied. It was found that the fluorescence of both GQDs is significantly quenched by Au(III) ions but the sensitivity and analytical performances are different for two prepared GQDs. Using g-GQDs, a new analytical method was developed for the determination of Au(III) in the concentration range of 1.0-80 μM, with a detection limit of 0.5 μM. The developed method was applied to the determination of Au(III) in water and plasma samples with satisfactory results.

  7. Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials.

    PubMed

    Tang, Fengzai; Moody, Michael P; Martin, Tomas L; Bagot, Paul A J; Kappers, Menno J; Oliver, Rachel A

    2015-06-01

    Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of implantation damage induced by sample preparation. In the reconstructed InAlN layer Ga implantation was demonstrated for the standard "clean-up" voltage (5 kV), but this was significantly reduced by using a lower voltage (e.g., 1 kV). The characteristics of APT data from the desorption maps to the mass spectra and measured chemical compositions were examined within the GaN buffer layer underlying the InAlN layer in both pulsed laser and pulsed voltage modes. The measured Ga content increased monotonically with increasing laser pulse energy and voltage pulse fraction within the examined ranges. The best results were obtained at very low laser energy, with the Ga content close to the expected stoichiometric value for GaN and the associated desorption map showing a clear crystallographic pole structure. PMID:25926083

  8. Complexes of IrIII-Octaethylporphyrin with Peptides as Probes for Sensing Cellular O2

    PubMed Central

    Koren, Klaus; Dmitriev, Ruslan I; Borisov, Sergey M; Papkovsky, Dmitri B; Klimant, Ingo

    2012-01-01

    IrIII–porphyrins are a relatively new group of phosphorescent dyes that have potential for oxygen sensing and labeling of biomolecules. The requirement of two axial ligands for the IrIII ion permits simple linkage of biomolecules by a one-step ligand-exchange reaction, for example, using precursor carbonyl chloride complexes and peptides containing histidine residue(s). Using this approach, we produced three complexes of IrIII–octaethylporphyrin with cell-penetrating (Ir1 and Ir2) and tumor-targeting (Ir3) peptides and studied their photophysical properties. All of the complexes were stable and possessed bright, long-decay (unquenched lifetimes exceeding 45 μs) phosphorescence at around 650 nm, with moderate sensitivity to oxygen. The Ir1 and Ir2 complexes showed positive staining of a number of mammalian cell types, thus demonstrating localization similar to endoplasmic reticulum and ATP- and temperature-independent intracellular accumulation (direct translocation mechanism). Their low photo- and cytotoxicity allows intracellular oxygen to be probed. PMID:22532338

  9. Quantification of metallothioneins in the earthworm by lomefloxacin-europium(iii) fluorescent probe.

    PubMed

    Geng, Meng-Jiao; Liang, Shu-Xuan; Liu, Wei; Jin, Yu

    2014-08-01

    A new fluorimetric method was established for the determination of trace amounts of metallothioneins (MT) in earthworm, using a lomefloxacin-europium(iii) (LMLX-Eu(3+)) complex as a fluorescent probe. In a pH 6.5 Tris-HCl buffer solution, MT can markedly decrease the fluorescence intensity of LMLX-Eu(3+) at λ = 613 nm, and the magnitude of the decrease in this intensity was in direct proportion to the concentration of MT. The linear range was 0.08-20 mg L(-1) with a detection limit of 0.022 mg L(-1), and the recovery was in the range of 91.9-104.4%. The results show that the fluorimetric method is relatively accurate and sensitive to measurements of concentration for MT over a wide range. This method has been successfully applied to the determination of the concentration of MT induced by heavy metal ions (Cd(2+), Pb(2+), Cu(2+), Zn(2+)) in Eisenia andrei. The amount of MT increased significantly in a dose-dependent manner to the heavy-metal exposure, and these proteins can be used as biomarkers to assess the impact of heavy-metal contamination in soils. The method offered high sensitivity as well as accuracy with simple instrumentation and is suitable for direct quantification of total MT in Eisenia andrei. PMID:24924957

  10. Gd(III) complexes for electron-electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting.

    PubMed

    Garbuio, Luca; Zimmermann, Kaspar; Häussinger, Daniel; Yulikov, Maxim

    2015-10-01

    Spectral parameters of Gd(III) complexes are intimately linked to the performance of the Gd(III)-nitroxide or Gd(III)-Gd(III) double electron-electron resonance (DEER or PELDOR) techniques, as well as to that of relaxation induced dipolar modulation enhancement (RIDME) spectroscopy with Gd(III) ions. These techniques are of interest for applications in structural biology, since they can selectively detect site-to-site distances in biomolecules or biomolecular complexes in the nanometer range. Here we report relaxation properties, echo detected EPR spectra, as well as the magnitude of the echo reduction effect in Gd(III)-nitroxide DEER for a series of Gadolinium(III) complexes with chelating agents derived from tetraazacyclododecane. We observed that solvent deuteration does not only lengthen the relaxation times of Gd(III) centers but also weakens the DEER echo reduction effect. Both of these phenomena lead to an improved signal-to-noise ratios or, alternatively, longer accessible distance range in pulse EPR measurements. The presented data enrich the knowledge on paramagnetic Gd(III) chelate complexes in frozen solutions, and can help optimize the experimental conditions for most types of the pulse measurements of the electron-electron dipolar interactions. PMID:26342680

  11. Gd(III) complexes for electron-electron dipolar spectroscopy: Effects of deuteration, pH and zero field splitting

    NASA Astrophysics Data System (ADS)

    Garbuio, Luca; Zimmermann, Kaspar; Häussinger, Daniel; Yulikov, Maxim

    2015-10-01

    Spectral parameters of Gd(III) complexes are intimately linked to the performance of the Gd(III)-nitroxide or Gd(III)-Gd(III) double electron-electron resonance (DEER or PELDOR) techniques, as well as to that of relaxation induced dipolar modulation enhancement (RIDME) spectroscopy with Gd(III) ions. These techniques are of interest for applications in structural biology, since they can selectively detect site-to-site distances in biomolecules or biomolecular complexes in the nanometer range. Here we report relaxation properties, echo detected EPR spectra, as well as the magnitude of the echo reduction effect in Gd(III)-nitroxide DEER for a series of Gadolinium(III) complexes with chelating agents derived from tetraazacyclododecane. We observed that solvent deuteration does not only lengthen the relaxation times of Gd(III) centers but also weakens the DEER echo reduction effect. Both of these phenomena lead to an improved signal-to-noise ratios or, alternatively, longer accessible distance range in pulse EPR measurements. The presented data enrich the knowledge on paramagnetic Gd(III) chelate complexes in frozen solutions, and can help optimize the experimental conditions for most types of the pulse measurements of the electron-electron dipolar interactions.

  12. Electron Tunneling, a Quantum Probe for the Quantum World of Nanotechnology

    ERIC Educational Resources Information Center

    Hipps, K. W.; Scudiero, L.

    2005-01-01

    A quantum-mechanical probe is essential to study the quantum world, which is provided by electron tunneling. A spectroscopic mapping to image the electron-transport pathways on a sub-molecular scale is used.

  13. Reproducibility of the cutoff probe for the measurement of electron density

    NASA Astrophysics Data System (ADS)

    Kim, D. W.; You, S. J.; Kwon, J. H.; You, K. H.; Seo, B. H.; Kim, J. H.; Yoon, J.-S.; Oh, W. Y.

    2016-06-01

    Since a plasma processing control based on plasma diagnostics attracted considerable attention in industry, the reproducibility of the diagnostics using in this application has become a great interest. Because the cutoff probe is one of the potential candidates for this application, knowing the reproducibility of the cutoff probe measurement becomes quit important in the cutoff probe application research. To test the reproducibility of the cutoff probe measurement, in this paper, a comparative study among the different cutoff probe measurements was performed. The comparative study revealed remarkable result: the cutoff probe has a great reproducibility for the electron density measurement, i.e., there are little differences among measurements by different probes made by different experimenters. The discussion including the reason for the result was addressed via this paper by using a basic measurement principle of cutoff probe and a comparative experiment with Langmuir probe.

  14. Effect of surface topography on reflection electron energy loss plasmon spectra of group III metals

    SciTech Connect

    Strawbridge, B.; Singh, R. K.; Beach, C.; Mahajan, S.; Newman, N.

    2006-09-15

    In situ reflection electron energy loss spectroscopy (REELS) and reflection high energy electron diffraction employing a 20 keV electron beam at a 2 deg. grazing angle were used to characterize the surface properties of molecular beam epitaxy (MBE) grown Al, Ga, and In metals on silicon and sapphire substrates. In our study we found that the surface topography strongly influences the REELS plasmon spectra. Smooth Al films with <1 nm rms roughness exhibited surface plasmon peaks. Both surface and bulk plasmons are seen from an Al film with a rms roughness of 3.5 nm. Aluminum surfaces with >5 nm rms roughness yielded only bulk plasmon peaks. To understand the EELS spectrum for the Ga and In films, the rms roughness alone is not the relevant figure of merit as the electron beam interaction with the surface is influenced most by the shape of the tops of the surface grains and the grain size. Indium films on Si with a rms roughness of 52 nm were found to excite predominantly surface plasmons as the grazing angle electron beam scattered mostly off the flat top surface of each grain and was not strongly influenced by the crevices between the grains. The rounded tops of the Ga topography with 31 nm rms roughness facilitated transmission through the grains and therefore excited a combination of bulk and surface plasmons. This experimental method is very surface sensitive, as a probe depth of 0.8 nm was inferred from the diminishing intensity of the substrate peak with increasing coverage of a flat metal surface. The techniques and methods discussed here can be readily applied to other thin film systems such as MBE-grown III-V semiconductors, sputtered oxides, and other vacuum deposited materials.

  15. Aberrated electron probes for magnetic spectroscopy with atomic resolution: Theory and practical aspects

    DOE PAGESBeta

    Rusz, Ján; Idrobo, Juan Carlos

    2016-03-24

    It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. Here we present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  16. Aberrated electron probes for magnetic spectroscopy with atomic resolution: Theory and practical aspects

    NASA Astrophysics Data System (ADS)

    Rusz, Ján; Idrobo, Juan Carlos

    2016-03-01

    It was recently proposed that electron magnetic circular dichroism can be measured in scanning transmission electron microscopy with atomic resolution by tuning the phase distribution of an electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. We present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  17. Aberrated electron probes for novel spectroscopy with atomic resolution: theory and practical aspects

    SciTech Connect

    Rusz, Jan; Idrobo Tapia, Juan Carlos

    2016-01-01

    It was recently proposed that electron magnetic circular dichroism (EMCD) can be measured in scanning transmission electron microscopy (STEM) with atomic resolution by tuning the phase distribution of a electron beam. Here, we describe the theoretical and practical aspects for the detection of out-of-plane and in-plane magnetization utilizing atomic size electron probes. We present the calculated optimized astigmatic probes and discuss how to achieve them experimentally.

  18. Spin Relaxation in III-V Semiconductors in various systems: Contribution of Electron-Electron Interaction

    NASA Astrophysics Data System (ADS)

    Dogan, Fatih; Kesserwan, Hasan; Manchon, Aurelien

    2015-03-01

    In spintronics, most of the phenomena that we are interested happen at very fast time scales and are rich in structure in time domain. Our understanding, on the other hand, is mostly based on energy domain calculations. Many of the theoretical tools use approximations and simplifications that can be perceived as oversimplifications. We compare the structure, material, carrier density and temperature dependence of spin relaxation time in n-doped III-V semiconductors using Elliot-Yafet (EY) and D'yakanov-Perel'(DP) with real time analysis using kinetic spin Bloch equations (KSBE). The EY and DP theories fail to capture details as the system investigated is varied. KSBE, on the other hand, incorporates all relaxation sources as well as electron-electron interaction which modifies the spin relaxation time in a non-linear way. Since el-el interaction is very fast (~ fs) and spin-conserving, it is usually ignored in the analysis of spin relaxation. Our results indicate that electron-electron interaction cannot be neglected and its interplay with the other (spin and momentum) relaxation mechanisms (electron-impurity and electron-phonon scattering) dramatically alters the resulting spin dynamics. We use each interaction explicitly to investigate how, in the presence of others, each relaxation source behaves. We use GaAs and GaN for zinc-blend structure, and GaN and AlN for the wurtzite structure.

  19. Probing Electronic and Thermoelectric Properties of Single Molecule Junctions

    NASA Astrophysics Data System (ADS)

    Widawsky, Jonathan R.

    In an effort to further understand electronic and thermoelectric phenomenon at the nanometer scale, we have studied the transport properties of single molecule junctions. To carry out these transport measurements, we use the scanning tunneling microscope-break junction (STM-BJ) technique, which involves the repeated formation and breakage of a metal point contact in an environment of the target molecule. Using this technique, we are able to create gaps that can trap the molecules, allowing us to sequentially and reproducibly create a large number of junctions. By applying a small bias across the junction, we can measure its conductance and learn about the transport mechanisms at the nanoscale. The experimental work presented here directly probes the transmission properties of single molecules through the systematic measurement of junction conductance (at low and high bias) and thermopower. We present measurements on a variety of molecular families and study how conductance depends on the character of the linkage (metal-molecule bond) and the nature of the molecular backbone. We start by describing a novel way to construct single molecule junctions by covalently connecting the molecular backbone to the electrodes. This eliminates the use of linking substituents, and as a result, the junction conductance increases substantially. Then, we compare transport across silicon chains (silanes) and saturated carbon chains (alkanes) while keeping the linkers the same and find a stark difference in their electronic transport properties. We extend our studies of molecular junctions by looking at two additional aspects of quantum transport -- molecular thermopower and molecular current-voltage characteristics. Each of these additional parameters gives us further insight into transport properties at the nanoscale. Evaluating the junction thermopower allows us to determine the nature of charge carriers in the system and we demonstrate this by contrasting the measurement of amine

  20. Electrochemical and Electron Probe Microanalysis Measurements on Nanostructured Palladium

    NASA Astrophysics Data System (ADS)

    Marwan, Jan; Rackwitz, Vanessa

    2011-03-01

    The hydrogen region of nanostructured Pd in the cyclic voltammetry in 1 M H2SO4 was more resolved than that of plain Pd because of the thin walls of the nanostructure and the high surface area. We could distinguish the hydrogen adsorption and absorption processes. The permeation of hydrogen into the Pd metal lattice occurs with fast kinetics when the Pd surface is blocked by either crystal violet or Pt. We believe that the hydrogen absorption process takes place without passing through the adsorbed state so that hydrogen diffuses directly into the Pd bulk. This process speeds up when the formation of adsorbed hydrogen is suppressed by the coverage of poisons. These results were compared to those obtained in a heavy water solution to which the Pd electrode was exposed. Adsorption characteristics of deuterium on the Pd metal surface are slightly different to those obtained for hydrogen in previous studies. Diffusion of deuterium into the Pd metal lattice works with fast kinetics under appropriate surface modification. We are also interested in studying the Pd structure before and after long term electrolysis in light and heavy water using electron probe micronanalysis (EPMA) with a energy dispersive spectrometer (EDS)

  1. Improved electron probe microanalysis of trace elements in quartz

    USGS Publications Warehouse

    Donovan, John J.; Lowers, Heather; Rusk, Brian G.

    2011-01-01

    Quartz occurs in a wide range of geologic environments throughout the Earth's crust. The concentration and distribution of trace elements in quartz provide information such as temperature and other physical conditions of formation. Trace element analyses with modern electron-probe microanalysis (EPMA) instruments can achieve 99% confidence detection of ~100 ppm with fairly minimal effort for many elements in samples of low to moderate average atomic number such as many common oxides and silicates. However, trace element measurements below 100 ppm in many materials are limited, not only by the precision of the background measurement, but also by the accuracy with which background levels are determined. A new "blank" correction algorithm has been developed and tested on both Cameca and JEOL instruments, which applies a quantitative correction to the emitted X-ray intensities during the iteration of the sample matrix correction based on a zero level (or known trace) abundance calibration standard. This iterated blank correction, when combined with improved background fit models, and an "aggregate" intensity calculation utilizing multiple spectrometer intensities in software for greater geometric efficiency, yields a detection limit of 2 to 3 ppm for Ti and 6 to 7 ppm for Al in quartz at 99% t-test confidence with similar levels for absolute accuracy.

  2. Characterisation of wood combustion particles using electron probe microanalysis

    NASA Astrophysics Data System (ADS)

    Osán, János; Alföldy, Bálint; Török, Szabina; Van Grieken, René

    Biomass combustion for energy production has increased in recent years, mostly in domestic households and for the space heating of some public and agricultural buildings. Small wood combustion boilers are not equipped with any flue gas filtering system, and they release most of the small particles generated on combustion to the air. Particulate emissions from a 400 kW wood-fired heating plant were measured during standard winter operation. Cyclone fly ash and bottom ash, as well as ambient aerosol samples, were collected on site. The samples were analysed using conventional single-particle electron probe microanalysis (EPMA) including use of a thin-window detector allowing the determination of low- Z major elements such as C and O. The particles were classified based on the analyses obtained and using hierarchical cluster analysis. The majority of stack-gas particles were found to be in the respirable size range. Using EPMA, the wood combustion particles could be traced in the neighbouring air because of their characteristic potassium content. The cyclone- and bottom-ash particles have lower potassium contents due to alkali release during the combustion process.

  3. A relativistic DFT probe of polypyrrolic macrocyclic diuranium(III) complexes with terminal solvents and iodines.

    PubMed

    Su, Dong-Mei; Zheng, Xiu-Jun; Guo, Yuan-Ru; Pan, Qing-Jiang

    2016-08-01

    Relativistic density functional theory finds that two isomers of a diuranium(III) complex of a polypyrrolic macrocycle (H4L) feature active sites on uranium moieties, allowing for their potential application in activating industrially and economically important small molecules. To address this, a series of adducts [(X)nU2(L)]((2-m)+) (X = THF, I(-) and HI; n = 1 and 2; m = 0, 1 and 2) have been examined. The coordination from X to the exposed uranium(s) changes the general geometry and electronic structure slightly. Thermodynamic calculations reveal that iodine termination is energetically favored over THF/HI coordination. Graphical abstract Scalar and spin-orbit coupling relativistic DFT calculation reveals that the active sites on the uranium moieties of [U2(L)](2+) lead to formation of adducts [(THF)nU2(L)](2+), [InU2(L)]((2-n)+) and [(HI)nU2(L)](2+) (n = 1 and 2). Coordination to the exposed uranium(s) changes geometrical and electronic properties slightly, but iodine termination is the most energetically favored. PMID:27469391

  4. Direct Vlasov simulations of electron-attracting cylindrical Langmuir probes in flowing plasmas

    SciTech Connect

    Sánchez-Arriaga, G.; Pastor-Moreno, D.

    2014-07-15

    Current collection by positively polarized cylindrical Langmuir probes immersed in flowing plasmas is analyzed using a non-stationary direct Vlasov-Poisson code. A detailed description of plasma density spatial structure as a function of the probe-to-plasma relative velocity U is presented. Within the considered parametric domain, the well-known electron density maximum close to the probe is weakly affected by U. However, in the probe wake side, the electron density minimum becomes deeper as U increases and a rarified plasma region appears. Sheath radius is larger at the wake than at the front side. Electron and ion distribution functions show specific features that are the signature of probe motion. In particular, the ion distribution function at the probe front side exhibits a filament with positive radial velocity. It corresponds to a population of rammed ions that were reflected by the electric field close to the positively biased probe. Numerical simulations reveal that two populations of trapped electrons exist: one orbiting around the probe and the other with trajectories confined at the probe front side. The latter helps to neutralize the reflected ions, thus explaining a paradox in past probe theory.

  5. First measurements of electron temperature in the D region with a symmetric double probe

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.

    1973-01-01

    Measurement of the altitude profile of electron temperature in the ionospheric D region with the aid of a symmetric double probe flown on a Nike-Cajun payload launched on Oct. 13, 1971. The procedure for determining the electron temperature from the parameters of the double probe's current-voltage characteristic under conditions of nonnegligible ion-atom collision frequencies is described. It is shown that in its first lower ionospheric application the technique of the symmetric double probe has yielded the lowest values of electron temperature yet measured and has provided the very first direct measurement of electron temperature in the D region.

  6. New luminescent probe based on a terbium(III) complex for studying DNA affinity of aminoalkoxy fluorenones

    NASA Astrophysics Data System (ADS)

    Yegorova, A. V.; Leonenko, I. I.; Scrypynets, Yu. V.; Antonovich, V. P.; Malzev, G. V.; Ukrainets, I. V.; Aleksandrova, D. I.

    2013-07-01

    We have studied the spectral luminescent properties of complexes of Tb(III) ions with a series of new derivatives of 2-oxo-4-hydroxyquinoline-3-carboxylic acid amides (L1-L4). We have established that DNA significantly enhances the 4f luminescence of terbium(III) in these complex compounds. We show satisfactory agreement between the logarithms of the DNA binding constants for a series of aminoalkoxy fluorenones (R1-R6), obtained using ethidium bromide and the complex Tb(III)-L1, which we propose using as a new luminescent probe for studying the affinity of drugs (prodrugs) for DNA molecules in a series of structurally similar biologically active substances.

  7. Double-probe potential measurements near the Spacelab 2 electron beam

    NASA Technical Reports Server (NTRS)

    Steinberg, J. T.; Gurnett, D. A.; Banks, P. M.; Raitt, W. J.

    1988-01-01

    As part of the Spacelab 2 mission the plasma diagnostics package (PDP) was released from the shuttle as a free-flying satellite. The PDP carried a quasi-static electric field instrument which made differential voltage measurements between two floating probes. At various times during the free flight, an electron beam was ejected from the shuttle. Large differential voltages between the double probes were recorded in association with the electron beam. However, analysis indicates that these large signals are probably not caused by ambient electric fields. Instead, they can be explained by considering three effects: shadowing of the probes from streaming electrons by the PDP chassis, crossing of the PDP wake by the probes, and spatial gradients in the fluxes of energetic electrons reaching the probes. Plasma measurements on the PDP show that energetic electrons exist in a region 20 m wide and up to at least 170 m downstream from the electron beam. At 80 or more meters downstream from the beam, the double probe measurements show that the energetic electron flux is opposite to the injection direction, as would be expected for a secondary returning electron beam produced by scattering of the primary electron beam.

  8. Benchmarking the Sandia Pulsed Reactor III cavity neutron spectrum for electronic parts calibration and testing

    SciTech Connect

    Kelly, J.G.; Griffin, P.J.; Fan, W.C.

    1993-08-01

    The SPR III bare cavity spectrum and integral parameters have been determined with 24 measured spectrum sensor responses and an independent, detailed, MCNP transport calculation. This environment qualifies as a benchmark field for electronic parts testing.

  9. Probing ultrafast electronic and molecular dynamics with free-electron lasers

    NASA Astrophysics Data System (ADS)

    Fang, L.; Osipov, T.; Murphy, B. F.; Rudenko, A.; Rolles, D.; Petrovic, V. S.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Berrah, N.

    2014-06-01

    Molecular dynamics is an active area of research, focusing on revealing fundamental information on molecular structures and photon-molecule interaction and with broad impacts in chemical and biological sciences. Experimental investigation of molecular dynamics has been advanced by the development of new light sources and techniques, deepening our understanding of natural processes and enabling possible control and modification of chemical and biomolecular processes. Free-electron lasers (FELs) deliver unprecedented intense and short photon pulses in the vacuum ultraviolet and x-ray spectral ranges, opening a new era for the study of electronic and nuclear dynamics in molecules. This review focuses on recent molecular dynamics investigations using FELs. We present recent work concerning dynamics of molecular interaction with FELs using an intrinsic clock within a single x-ray pulse as well as using an external clock in a pump-probe scheme. We review the latest developments on correlated and coincident spectroscopy in FEL-based research and recent results revealing photo-induced interaction dynamics using these techniques. We also describe new instrumentations to conduct x-ray pump-x-ray probe experiments with spectroscopy and imaging detectors.

  10. The adverse effect of perpendicular ion drift flow on cylindrical triple probe electron temperature measurements

    NASA Astrophysics Data System (ADS)

    Tilley, D. L.; Gallimore, A. D.; Kelly, A. J.; Jahn, R. G.

    1994-03-01

    The cylindrical triple probe method is an attractive technique for measuring electron temperatures (Te) and electron number densities (ne) in a variety of plasmas sources. In practice, however, the cylindrical triple probe can be sensitive to sources of error that affect all Langmuir probe techniques. In particular, the presence of an ion drift velocity component that is perpendicular to the probe axis has been known to result in erroneous measurements of ne. Less obvious, however, is that ion flow perpendicular to the probe has a significant effect on the indicated Te. The purpose of this note is to make researchers aware of such an effect and to demonstrate a technique which can mitigate it. The approach taken to investigate this phenomenon was to make Te measurements in the plume of a 20 kW magnetoplasmadynamic thruster with the probe oriented at several angles with respect to the local ion flow.

  11. Azo-Based Iridium(III) Complexes as Multicolor Phosphorescent Probes to Detect Hypoxia in 3D Multicellular Tumor Spheroids

    PubMed Central

    Sun, Lingli; Li, Guanying; Chen, Xiang; Chen, Yu; Jin, Chengzhi; Ji, Liangnian; Chao, Hui

    2015-01-01

    Hypoxia is an important characteristic of malignant solid tumors and is considered as a possible causative factor for serious resistance to chemo- and radiotherapy. The exploration of novel fluorescent probes capable of detecting hypoxia in solid tumors will aid tumor diagnosis and treatment. In this study, we reported the design and synthesis of a series of “off-on” phosphorescence probes for hypoxia detection in adherent and three-dimensional multicellular spheroid models. All of the iridium(III) complexes incorporate an azo group as an azo-reductase reactive moiety to detect hypoxia. Reduction of non-phosphorescent probes Ir1-Ir8 by reductases under hypoxic conditions resulted in the generation of highly phosphorescent corresponding amines for detection of hypoxic regions. Moreover, these probes can penetrate into 3D multicellular spheroids over 100 μm and image the hypoxic regions. Most importantly, these probes display a high selectivity for the detection of hypoxia in 2D cells and 3D multicellular spheroids. PMID:26423609

  12. Photoinduced electron transfer between Fe(III) and adenosine triphosphate-BODIPY conjugates: Application to alkaline-phosphatase-linked immunoassay.

    PubMed

    Lin, Jia-Hui; Yang, Ya-Chun; Shih, Ya-Chen; Hung, Szu-Ying; Lu, Chi-Yu; Tseng, Wei-Lung

    2016-03-15

    Fluorescent boron dipyrromethene (BODIPY) analogs are often used as sensors for detecting various species because of their relatively high extinction coefficients, outstanding fluorescence quantum yields, photostability, and pH-independent fluorescence. However, there is little-to-no information in the literature that describes the use of BODIPY analogs for detecting alkaline phosphatase (ALP) activity and inhibition. This study discovered that the fluorescence of BODIPY-conjugated adenosine triphosphate (BODIPY-ATP) was quenched by Fe(III) ions through photoinduced electron transfer. The ALP-catalyzed hydrolysis of BODIPY-ATP resulted in the formation of BODIPY-adenosine and phosphate ions. The fluorescence of the generated BODIPY-adenosine was insensitive to the change in the concentration of Fe(III) ions. Thus, the Fe(III)-induced fluorescence quenching of BODIPY-ATP can be paired with its ALP-mediated dephosphorylation to design a turn-on fluorescence probe for ALP sensing. A method detection limit at a signal-to-noise ratio of 3 for ALP was estimated to be 0.02 units/L (~6 pM; 1 ng/mL). This probe was used for the screening of ALP inhibitors, including Na3VO4, imidazole, and arginine. Because ALP is widely used in enzyme-linked immunosorbent assays, the probe was coupled to an ALP-linked immunosorbent assay for the sensitive and selective detection of immunoglobulin G (IgG). The lowest detectable concentration for IgG in this system was 5 ng/mL. Compared with the use of 3,6-fluorescein diphosphate as a signal reporter in an ALP-linked immunosorbent assay, the proposed system provided comparable sensitivity, large linear range, and high stability over temperature and pH changes. PMID:26409025

  13. Iridium(III) Luminescent Probe for Detection of the Malarial Protein Biomarker Histidine Rich Protein-II.

    PubMed

    Davis, Keersten M; Bitting, Anna L; Markwalter, Christine F; Bauer, Westley S; Wright, David W

    2015-01-01

    This work outlines the synthesis of a non-emissive, cyclometalated Ir(III) complex, Ir(ppy)2(H2O)2(+) (Ir1), which elicits a rapid, long-lived phosphorescent signal when coordinated to a histidine-containing protein immobilized on the surface of a magnetic particle. Synthesis of Ir1, in high yields,is complete O/N and involves splitting of the parent cyclometalated Ir(III) chloro-bridged dimer into two equivalents of the solvated complex. To confirm specificity, several amino acids were probed for coordination activity when added to the synthesized probe, and only histidine elicited a signal response. Using BNT-II, a branched peptide mimic of the malarial biomarker Histidine Rich Protein II (pfHRP-II), the iridium probe was validated as a tool for HRP-II detection. Quenching effects were noted in the BNT-II/Ir1 titration when compared to L-Histidine/Ir1, but these were attributed to steric hindrance and triplet state quenching. Biolayer interferometry was used to determine real-time kinetics of interaction of Ir1 with BNT-II. Once the system was optimized, the limit of detection of rcHRP-II using the probe was found to be 12.8 nM in solution. When this protein was immobilized on the surface of a 50 µm magnetic agarose particle, the limit of detection was 14.5 nM. The robust signal response of this inorganic probe, as well as its flexibility of use in solution or immobilized on a surface, can lend itself toward a variety of applications, from diagnostic use to imaging. PMID:26273845

  14. Fabrication of nano ion-electron sources and nano-probes by local electron bombardment

    NASA Astrophysics Data System (ADS)

    Rezeq, Moh'd.; Ali, Ahmed; Barada, Hassan

    2015-04-01

    A new method for fabricating nano ion-electron sources and nano probes with an apex in the range of 1 nm is introduced. The method is based on bombarding a regular tip apex with electrons extracted and accelerated from a nearby source by the electric field. This can be achieved by placing a metal ring around a precursor metal tip at a level below the tip apex in a field ion microscope (FIM). The metal ring is then heated, by a grounded DC power source, to a temperature below the thermionic emission value. The electric field between the tip and the hot ring is high enough to cause electrons to be extracted from the metal ring, i.e. Schottky field emission, and then accelerated to the shank with energy sufficient to dislodge atoms from the shank. An atomic scale apex with a single atom end can be obtained by monitoring the evolution of the tip apex due to the movement of mobile atoms while adjusting the tip electric field and the temperature of the metal ring. As this method depends only on the electron bombardment mechanism, this makes it a clean process that can be applied to any metal or heavily doped semiconductor materials appropriate for generating a high electric field for FIM applications.

  15. Arrangement of electron transport chain components in bovine mitochondrial supercomplex I1III2IV1

    PubMed Central

    Althoff, Thorsten; Mills, Deryck J; Popot, Jean-Luc; Kühlbrandt, Werner

    2011-01-01

    The respiratory chain in the inner mitochondrial membrane contains three large multi-enzyme complexes that together establish the proton gradient for ATP synthesis, and assemble into a supercomplex. A 19-Å 3D map of the 1.7-MDa amphipol-solubilized supercomplex I1III2IV1 from bovine heart obtained by single-particle electron cryo-microscopy reveals an amphipol belt replacing the membrane lipid bilayer. A precise fit of the X-ray structures of complex I, the complex III dimer, and monomeric complex IV indicates distances of 13 nm between the ubiquinol-binding sites of complexes I and III, and of 10–11 nm between the cytochrome c binding sites of complexes III and IV. The arrangement of respiratory chain complexes suggests two possible pathways for efficient electron transfer through the supercomplex, of which the shorter branch through the complex III monomer proximal to complex I may be preferred. PMID:21909073

  16. Methods for measurement of electron emission yield under low energy electron-irradiation by collector method and Kelvin probe method

    SciTech Connect

    Tondu, Thomas; Belhaj, Mohamed; Inguimbert, Virginie

    2010-09-15

    Secondary electron emission yield of gold under electron impact at normal incidence below 50 eV was investigated by the classical collector method and by the Kelvin probe method. The authors show that biasing a collector to ensure secondary electron collection while keeping the target grounded can lead to primary electron beam perturbations. Thus reliable secondary electron emission yield at low primary electron energy cannot be obtained with a biased collector. The authors present two collector-free methods based on current measurement and on electron pulse surface potential buildup (Kelvin probe method). These methods are consistent, but at very low energy, measurements become sensitive to the earth magnetic field (below 10 eV). For gold, the authors can extrapolate total emission yield at 0 eV to 0.5, while a total electron emission yield of 1 is obtained at 40{+-}1 eV.

  17. Electronic linearization of piezoelectric actuators and noise budget in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Aloisi, G.; Santucci, A.; Carlà, M.; Dolci, D.; Lanzi, L.

    2006-07-01

    The maximum resolution achievable with a scanning probe microscope is limited by the probe size, by the mechanism of interaction with the sample, as is widely known, and by the electronic noise in the instrument. The evaluation of this noise for the three motion axes of a linearized high resolution scanning electrochemical microscope has been carried through and the intrinsic maximum resolution is discussed.

  18. Internal switches modulating electron tunneling currents in respiratory complex III.

    PubMed

    Hagras, Muhammad A; Stuchebrukhov, Alexei A

    2016-06-01

    In different X-ray crystal structures of bc1 complex, some of the key residues of electron tunneling pathways are observed in different conformations; here we examine their relative importance in modulating electron transfer and propose their possible gating function in the Q-cycle. The study includes inter-monomeric electron transfer; here we provide atomistic details of the reaction, and discuss the possible roles of inter-monomeric electronic communication in bc(1) complex. Binding of natural ligands or inhibitors leads to local conformational changes which propagate through protein and control the conformation of key residues involved in the electron tunneling pathways. Aromatic-aromatic interactions are highly utilized in the communication network since the key residues are aromatic in nature. The calculations show that there is a substantial change of the electron transfer rates between different redox pairs depending on the different conformations acquired by the key residues of the complex. PMID:26874053

  19. Identification of when a Langmuir probe is in the sheath of a spacecraft: The effects of secondary electron emission from the probe

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hsu, H.-W.; Horányi, M.

    2015-04-01

    Langmuir probes on spacecraft have been used for characterizing the ambient plasma parameters in space. When their boom is short compared to the Debye length, the probes remain immersed in the spacecraft sheath, causing the current-voltage (I-V) characteristics to deviate from that of a probe far away from the spacecraft. We present identification of when a Langmuir probe is in a sheath, based on the secondary electron (SE) emission from the probe itself. The I-V characteristics of a spherical probe are investigated in a plasma sheath above a conducting plate. Plasmas with cold and hot electrons (1 eV and 10 eV), as well as monoenergetic electrons (50-100 eV), are created. The derivative (dI/dV) of the probe I-V curves shows that in addition to a "knee" at a potential more positive than the plasma potential, an additional knee appears at a sheath potential at the probe location. This additional knee is created due to the SE emission from the probe and is identified as an indication of the probe being immersed in the sheath. Our experimental results reproduced the aspects of the Cassini Langmuir probe I-V characteristics, suggesting that at times, the probe may have been immersed in the sheath of the spacecraft in Saturn's magnetosphere, and SE emission from the probe itself may have significantly altered its I-V characteristics.

  20. Probing Electron Dynamics with the Laplacian of the Momentum Density

    SciTech Connect

    Sukumar, N.; MacDougall, Preston J.; Levit, M. Creon

    2012-09-24

    This chapter in the above-titled monograph presents topological analysis of the Laplacian of the electron momentum density in organic molecules. It relates topological features in this distribution to chemical and physical properties, particularly aromaticity and electron transport.

  1. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Wabiszewski, Graham E.; Goodman, Alexander J.; Carpick, Robert W.

    2016-01-01

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition.

  2. Characterizing nanoscale scanning probes using electron microscopy: A novel fixture and a practical guide.

    PubMed

    Jacobs, Tevis D B; Wabiszewski, Graham E; Goodman, Alexander J; Carpick, Robert W

    2016-01-01

    The nanoscale geometry of probe tips used for atomic force microscopy (AFM) measurements determines the lateral resolution, contributes to the strength of the tip-surface interaction, and can be a significant source of uncertainty in the quantitative analysis of results. While inverse imaging of the probe tip has been used successfully to determine probe tip geometry, direct observation of the tip profile using electron microscopy (EM) confers several advantages: it provides direct (rather than indirect) imaging, requires fewer algorithmic parameters, and does not require bringing the tip into contact with a sample. In the past, EM-based observation of the probe tip has been achieved using ad hoc mounting methods that are constrained by low throughput, the risk of contamination, and repeatability issues. We report on a probe fixture designed for use in a commercial transmission electron microscope that enables repeatable mounting of multiple AFM probes as well as a reference grid for beam alignment. This communication describes the design, fabrication, and advantages of this probe fixture, including full technical drawings for machining. Further, best practices are discussed for repeatable, non-destructive probe imaging. Finally, examples of the fixture's use are described, including characterization of common commercial AFM probes in their out-of-the-box condition. PMID:26827324

  3. Steric and Electronic Influence on Proton-Coupled Electron-Transfer Reactivity of a Mononuclear Mn(III)-Hydroxo Complex.

    PubMed

    Rice, Derek B; Wijeratne, Gayan B; Burr, Andrew D; Parham, Joshua D; Day, Victor W; Jackson, Timothy A

    2016-08-15

    A mononuclear hydroxomanganese(III) complex was synthesized utilizing the N5 amide-containing ligand 2-[bis(pyridin-2-ylmethyl)]amino-N-2-methyl-quinolin-8-yl-acetamidate (dpaq(2Me) ). This complex is similar to previously reported [Mn(III)(OH)(dpaq(H))](+) [Inorg. Chem. 2014, 53, 7622-7634] but contains a methyl group adjacent to the hydroxo moiety. This α-methylquinoline group in [Mn(III)(OH)(dpaq(2Me))](+) gives rise to a 0.1 Å elongation in the Mn-N(quinoline) distance relative to [Mn(III)(OH)(dpaq(H))](+). Similar bond elongation is observed in the corresponding Mn(II) complex. In MeCN, [Mn(III)(OH)(dpaq(2Me))](+) reacts rapidly with 2,2',6,6'-tetramethylpiperidine-1-ol (TEMPOH) at -35 °C by a concerted proton-electron transfer (CPET) mechanism (second-order rate constant k2 of 3.9(3) M(-1) s(-1)). Using enthalpies and entropies of activation from variable-temperature studies of TEMPOH oxidation by [Mn(III)(OH)(dpaq(2Me))](+) (ΔH(‡) = 5.7(3) kcal(-1) M(-1); ΔS(‡) = -41(1) cal M(-1) K(-1)), it was determined that [Mn(III)(OH)(dpaq(2Me))](+) oxidizes TEMPOH ∼240 times faster than [Mn(III)(OH)(dpaq(H))](+). The [Mn(III)(OH)(dpaq(2Me))](+) complex is also capable of oxidizing the stronger O-H and C-H bonds of 2,4,6-tri-tert-butylphenol and xanthene, respectively. However, for these reactions [Mn(III)(OH)(dpaq(2Me))](+) displays, at best, modest rate enhancement relative to [Mn(III)(OH)(dpaq(H))](+). A combination of density function theory (DFT) and cyclic voltammetry studies establish an increase in the Mn(III)/Mn(II) reduction potential of [Mn(III)(OH)(dpaq(2Me))](+) relative to [Mn(III)(OH)(dpaq(H))](+), which gives rise to a larger driving force for CPET for the former complex. Thus, more favorable thermodynamics for [Mn(III)(OH)(dpaq(2Me))](+) can account for the dramatic increase in rate with TEMPOH. For the more sterically encumbered substrates, DFT computations suggest that this effect is mitigated by unfavorable steric interactions between the

  4. Probing core-electron orbitals by scanning transmission electron microscopy and measuring the delocalization of core-level excitations

    NASA Astrophysics Data System (ADS)

    Jeong, Jong Seok; Odlyzko, Michael L.; Xu, Peng; Jalan, Bharat; Mkhoyan, K. Andre

    2016-04-01

    By recording low-noise energy-dispersive x-ray spectroscopy maps from crystalline specimens using aberration-corrected scanning transmission electron microscopy, it is possible to probe core-level electron orbitals in real space. Both the 1 s and 2 p orbitals of Sr and Ti atoms in SrTi O3 are probed, and their projected excitation potentials are determined. This paper also demonstrates experimental measurement of the electronic excitation impact parameter and the delocalization of an excitation due to Coulombic beam-orbital interaction.

  5. Gmr Second Order Electronic Gradiometer as Eddy Current Probe in Nde Applications

    NASA Astrophysics Data System (ADS)

    Valentino, M.; Bonavolontà, C.; Marrocco, N.; Peluso, G.; Pepe, G. P.

    2009-03-01

    This paper reports on Giant-Magneto Resistance (GMR) electronic second order gradiometer used as an EC probe to detect defects in Al-Ti riveted multi-layers non-magnetic metallic samples used in aircraft structures. An electronic characterization of the GMR gradiometer set-up for investigating the probe performance and its magnetic field sensitivity is presented. The comparison between magnetic images obtained by GMR probes and conventional excitation coils demonstrates the possibility to use successfully GMR technology as sensors for NDT applications.

  6. Role of Humic-Bound Iron as an Electron Transfer Agent in Dissimilatory Fe(III) Reduction

    PubMed Central

    Lovley, Derek R.; Blunt-Harris, Elizabeth L.

    1999-01-01

    The dissimilatory Fe(III) reducer Geobacter metallireducens reduced Fe(III) bound in humic substances, but the concentrations of Fe(III) in a wide range of highly purified humic substances were too low to account for a significant portion of the electron-accepting capacities of the humic substances. Furthermore, once reduced, the iron in humic substances could not transfer electrons to Fe(III) oxide. These results suggest that other electron-accepting moieties in humic substances, such as quinones, are the important electron-accepting and shuttling agents under Fe(III)-reducing conditions. PMID:10473447

  7. Role of defects in III-nitride based electronics

    SciTech Connect

    HAN,JUNG; MYERS JR.,SAMUEL M.; FOLLSTAEDT,DAVID M.; WRIGHT,ALAN F.; CRAWFORD,MARY H.; LEE,STEPHEN R.; SEAGER,CARLETON H.; SHUL,RANDY J.; BACA,ALBERT G.

    2000-01-01

    The LDRD entitled ``Role of Defects in III-Nitride Based Devices'' is aimed to place Sandia National Laboratory at the forefront of the field of GaN materials and devices by establishing a scientific foundation in areas such as material growth, defect characterization/modeling, and processing (metalization and etching) chemistry. In this SAND report the authors summarize their studies such as (1) the MOCVD growth and doping of GaN and AlGaN, (2) the characterization and modeling of hydrogen in GaN, including its bonding, diffusion, and activation behaviors, (3) the calculation of energetic of various defects including planar stacking faults, threading dislocations, and point defects in GaN, and (4) dry etching (plasma etching) of GaN (n- and p-types) and AlGaN. The result of the first AlGaN/GaN heterojunction bipolar transistor is also presented.

  8. Probing Actinide Electronic Structure through Pu Cluster Calculations

    DOE PAGESBeta

    Ryzhkov, Mickhail V.; Mirmelstein, Alexei; Yu, Sung-Woo; Chung, Brandon W.; Tobin, James G.

    2013-02-26

    The calculations for the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. Moreover, these theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure.

  9. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    NASA Astrophysics Data System (ADS)

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C.; Marshall, Matthew J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2013-04-01

    The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration.

  10. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    PubMed Central

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice C.; Marshall, Matthew J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.; Clarke, Thomas A.

    2013-01-01

    The mineral-respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes, MtrC and MtrA, brought together inside a transmembrane porin, MtrB, to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system containing a pool of internalized electron carriers was used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, the established in vivo orientation, electron transfer from the interior electron carrier pool through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The rates were 103 times higher than those reported for reduction of goethite, hematite, and lepidocrocite by S. oneidensis, and the order of the reaction rates was consistent with those observed in S. oneidensis cultures. In contrast, established rates for single turnover reactions between purified MtrC and Fe(III) oxides were 103 times lower. By providing a continuous flow of electrons, the proteoliposome experiments demonstrate that conduction through MtrCAB directly to Fe(III) oxides is sufficient to support in vivo, anaerobic, solid-phase iron respiration. PMID:23538304

  11. Scanning electron microscopy and electron probe microanalysis studies of human pineal concretions.

    PubMed

    Kodaka, T; Mori, R; Debari, K; Yamada, M

    1994-10-01

    The calcareous concretions of human pineal bodies were investigated with scanning electron microscopy and electron probe microanalysis. The initial concretions measuring 5-7 microns in diameter may have started at the calcified pinealocytes. They grew appositionally forming concentric laminations, and then the simple calcospherulites over 20 microns occasionally aggregated with each other. Some of them became numerous spherulite-aggregated concretions. Others individually grew with scallop-shaped concentric laminations at intervals of 0.05-1 microns and became lobated calcospherulites up to 0.5 mm. The concretions over 0.5 mm were formed by their attachments. The major elements were Ca and P, while traces of S, Mg, and Na were detected. In the calcification and crystallization values, the center of the concretions over 50 microns was significantly higher than the periphery, while there were no differences among the centers and also among the peripheries. The Ca and P amounts in the center were 30.8% and 14.2% by weight and the Ca/P molar ratio was 1.68; thereby the sand-grain-shaped crystals may be nearly hydroxyapatite, as reported previously. PMID:7699308

  12. Probing flexibility in porphyrin-based molecular wires using double electron electron resonance.

    PubMed

    Lovett, Janet E; Hoffmann, Markus; Cnossen, Arjen; Shutter, Alexander T J; Hogben, Hannah J; Warren, John E; Pascu, Sofia I; Kay, Christopher W M; Timmel, Christiane R; Anderson, Harry L

    2009-09-30

    A series of butadiyne-linked zinc porphyrin oligomers, with one, two, three, and four porphyrin units and lengths of up to 75 A, have been spin-labeled at both ends with stable nitroxide TEMPO radicals. The pulsed EPR technique of double electron electron resonance (DEER) was used to probe the distribution of intramolecular end-to-end distances, under a range of conditions. DEER measurements were carried out at 50 K in two types of dilute solution glasses: deutero-toluene (with 10% deutero-pyridine) and deutero-o-terphenyl (with 5% 4-benzyl pyridine). The complexes of the porphyrin oligomers with monodentate ligands (pyridine or 4-benzyl pyridine) principally adopt linear conformations. Nonlinear conformations are less populated in the lower glass-transition temperature solvent. When the oligomers bind star-shaped multidentate ligands, they are forced to bend into nonlinear geometries, and the experimental end-to-end distances for these complexes match those from molecular mechanics calculations. Our results show that porphyrin-based molecular wires are shape-persistent, and yet that their shapes can deformed by binding to multivalent ligands. Self-assembled ladder-shaped 2:2 complexes were also investigated to illustrate the scope of DEER measurements for providing structural information on synthetic noncovalent nanostructures. PMID:19736940

  13. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    NASA Astrophysics Data System (ADS)

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, Sanghyeon; Choi, Won Jun

    2016-02-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates.

  14. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications

    PubMed Central

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called “Si photonics”). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  15. Ultra-high-throughput Production of III-V/Si Wafer for Electronic and Photonic Applications.

    PubMed

    Geum, Dae-Myeong; Park, Min-Su; Lim, Ju Young; Yang, Hyun-Duk; Song, Jin Dong; Kim, Chang Zoo; Yoon, Euijoon; Kim, SangHyeon; Choi, Won Jun

    2016-01-01

    Si-based integrated circuits have been intensively developed over the past several decades through ultimate device scaling. However, the Si technology has reached the physical limitations of the scaling. These limitations have fuelled the search for alternative active materials (for transistors) and the introduction of optical interconnects (called "Si photonics"). A series of attempts to circumvent the Si technology limits are based on the use of III-V compound semiconductor due to their superior benefits, such as high electron mobility and direct bandgap. To use their physical properties on a Si platform, the formation of high-quality III-V films on the Si (III-V/Si) is the basic technology ; however, implementing this technology using a high-throughput process is not easy. Here, we report new concepts for an ultra-high-throughput heterogeneous integration of high-quality III-V films on the Si using the wafer bonding and epitaxial lift off (ELO) technique. We describe the ultra-fast ELO and also the re-use of the III-V donor wafer after III-V/Si formation. These approaches provide an ultra-high-throughput fabrication of III-V/Si substrates with a high-quality film, which leads to a dramatic cost reduction. As proof-of-concept devices, this paper demonstrates GaAs-based high electron mobility transistors (HEMTs), solar cells, and hetero-junction phototransistors on Si substrates. PMID:26864968

  16. Measurement and analysis of electron-neutral collision frequency in the calibrated cutoff probe

    NASA Astrophysics Data System (ADS)

    You, K. H.; You, S. J.; Kim, D. W.; Na, B. K.; Seo, B. H.; Kim, J. H.; Chang, H. Y.

    2016-03-01

    As collisions between electrons and neutral particles constitute one of the most representative physical phenomena in weakly ionized plasma, the electron-neutral (e-n) collision frequency is a very important plasma parameter as regards understanding the physics of this material. In this paper, we measured the e-n collision frequency in the plasma using a calibrated cutoff-probe. A highly accurate reactance spectrum of the plasma/cutoff-probe system, which is expected based on previous cutoff-probe circuit simulations [Kim et al., Appl. Phys. Lett. 99, 131502 (2011)], is obtained using the calibrated cutoff-probe method, and the e-n collision frequency is calculated based on the cutoff-probe circuit model together with the high-frequency conductance model. The measured e-n collision frequency (by the calibrated cutoff-probe method) is compared and analyzed with that obtained using a Langmuir probe, with the latter being calculated from the measured electron-energy distribution functions, in wide range of gas pressure.

  17. Sensing lymphoma cells based on a cell-penetrating/apoptosis-inducing/electron-transfer peptide probe.

    PubMed

    Sugawara, Kazuharu; Shinohara, Hiroki; Kadoya, Toshihiko; Kuramitz, Hideki

    2016-06-14

    To electrochemically sense lymphoma cells (U937), we fabricated a multifunctional peptide probe that consists of cell-penetrating/apoptosis-inducing/electron-transfer peptides. Electron-transfer peptides derive from cysteine residue combined with the C-terminals of four tyrosine residues (Y4). A peptide whereby Y4C is bound to the C-terminals of protegrin 1 (RGGRLCYCRRRFCVCVGR-NH2) is known to be an apoptosis-inducing agent against U937 cells, and is referred to as a peptide-1 probe. An oxidation response of the peptide-1 probe has been observed due to a phenolic hydroxyl group, and this response is decreased by the uptake of the peptide probe into the cells. To improve the cell membrane permeability against U937 cells, the RGGR at the N-terminals of the peptide-1 probe was replaced by RRRR (peptide-2 probe). In contrast, RNRCKGTDVQAWY4C (peptide-3 probe), which recognizes ovalbumin, was constructed as a control. Compared with the other probes, the change in the peak current of the peptide-2 probe was the greatest at low concentrations and occurred in a short amount of time. Therefore, the cell membrane permeability of the peptide-2 probe was increased based on the arginine residues and the apoptosis-inducing peptides. The peak current was linear and ranged from 100 to 1000 cells/ml. The relative standard deviation of 600 cells/ml was 5.0% (n = 5). Furthermore, the membrane permeability of the peptide probes was confirmed using fluorescent dye. PMID:27181650

  18. Probing Novel Properties of Nucleons and Nuclei via Parity Violating Electron Scattering

    SciTech Connect

    Mercado, Luis

    2012-05-01

    This thesis reports on two experiments conducted by the HAPPEx (Hall A Proton Parity Experiment) collaboration at the Thomas Jefferson National Accelerator Facility. For both, the weak neutral current interaction (WNC, mediated by the Z0 boson) is used to probe novel properties of hadronic targets. The WNC interaction amplitude is extracted by measuring the parity-violating asymmetry in the elastic scattering of longitudinally polarized electrons o unpolarized target hadrons. HAPPEx-III, conducted in the Fall of 2009, used a liquid hydrogen target at a momentum transfer of Q2 = 0.62 GeV2. The measured asymmetry was used to set new constraints on the contribution of strange quark form factors (GsE,M ) to the nucleon electromagnetic form factors. A value of APV = -23.803±} 0.778 (stat)± 0.359 (syst) ppm resulted in GsE + 0.517GsM = 0.003± 0.010 (stat)± 0.004 (syst)± 0.009 (FF). PREx, conducted in the Spring of 2010, used a polarized electron beam on a 208Pb target at a momentum transfer of Q2 = 0.009 GeV2. This parity-violating asymmetry can be used to obtain a clean measurement of the root-mean-square radius of the neutrons in the 208Pb nucleus. The Z0 boson couples mainly to neutrons; the neutron weak charge is much larger than that of the proton. The value of this asymmetry is at the sub-ppm level and has a projected experimental fractional precision of 3%. We will describe the accelerator setup used to set controls on helicity-correlated beam asymmetries and the analysis methods for finding the raw asymmetry for HAPPEx-III. We will also discuss in some detail the preparations to meet the experimental challenges associated with measuring such a small asymmetry with the degree of precision required for PREx.

  19. Simulation of Probe Position-Dependent Electron Energy-Loss Fine Structure

    SciTech Connect

    Oxley, M. P.; Kapetanakis, M. D.; Prange, Micah P.; Varela, M.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2014-03-31

    We present a theoretical framework for calculating probe-position-dependent electron energy-loss near-edge structure for the scanning transmission electron microscope by combining density functional theory with dynamical scattering theory. We show how simpler approaches to calculating near-edge structure fail to include the fundamental physics needed to understand the evolution of near-edge structure as a function of probe position and investigate the dependence of near-edge structure on probe size. It is within this framework that density functional theory should be presented, in order to ensure that variations of near-edge structure are truly due to local electronic structure and how much from the diffraction and focusing of the electron beam.

  20. Trigger probe for determining the orientation of the power distribution of an electron beam

    DOEpatents

    Elmer, John W.; Palmer, Todd A.; Teruya, Alan T.

    2007-07-17

    The present invention relates to a probe for determining the orientation of electron beams being profiled. To accurately time the location of an electron beam, the probe is designed to accept electrons from only a narrowly defined area. The signal produced from the probe is then used as a timing or triggering fiducial for an operably coupled data acquisition system. Such an arrangement eliminates changes in slit geometry, an additional signal feedthrough in the wall of a welding chamber and a second timing or triggering channel on a data acquisition system. As a result, the present invention improves the accuracy of the resulting data by minimizing the adverse effects of current slit triggering methods so as to accurately reconstruct electron or ion beams.

  1. Electron Shuttles Enhance Anaerobic Ammonium Oxidation Coupled to Iron(III) Reduction.

    PubMed

    Zhou, Guo-Wei; Yang, Xiao-Ru; Li, Hu; Marshall, Christopher W; Zheng, Bang-Xiao; Yan, Yu; Su, Jian-Qiang; Zhu, Yong-Guan

    2016-09-01

    Anaerobic ammonium oxidation coupled to iron(III) reduction, termed Feammox, is a newly discovered nitrogen cycling process. However, little is known about the roles of electron shuttles in the Feammox reactions. In this study, two forms of Fe(III) (oxyhydr)oxide ferrihydrite (ex situ ferrihydrite and in situ ferrihydrite) were used in dissimilatory Fe(III) reduction (DIR) enrichments from paddy soil. Evidence for Feammox in DIR enrichments was demonstrated using the (15)N-isotope tracing technique. The extent and rate of both the (30)N2-(29)N2 and Fe(II) formation were enhanced when amended with electron shuttles (either 9,10-anthraquinone-2,6-disulfonate (AQDS) or biochar) and further simulated when these two shuttling compounds were combined. Although the Feammox-associated Fe(III) reduction accounted for only a minor proportion of total Fe(II) formation compared to DIR, it was estimated that the potentially Feammox-mediated N loss (0.13-0.48 mg N L(-1) day(-1)) was increased by 17-340% in the enrichments by the addition of electron shuttles. The addition of electron shuttles led to an increase in the abundance of unclassified Pelobacteraceae, Desulfovibrio, and denitrifiers but a decrease in Geobacter. Overall, we demonstrated a stimulatory effect of electron shuttles on Feammox that led to higher N loss, suggesting that electron shuttles might play a crucial role in Feammox-mediated N loss from soils. PMID:27494694

  2. The cellular uptake and localization of non-emissive iridium(III) complexes as cellular reaction-based luminescence probes.

    PubMed

    Li, Chunyan; Liu, Yi; Wu, Yongquan; Sun, Yun; Li, Fuyou

    2013-01-01

    Improvement of cellular uptake and subcellular resolution remains a major obstacle in the successful and broad application of cellular optical probes. In this context, we design and synthesize seven non-emissive cyclometalated iridium(III) solvent complexes [Ir(CˆN)(2)(solv)(2)](+)L(-) (LIr2-LIr8, in which CˆN = 2-phenylpyridine (ppy) or its derivative; solv = DMSO, H(2)O or CH(3)CN; L(-) = PF(6)(-) or OTf(-)) applicable in live cell imaging to facilitate selective visualization of cellular structures. Based on the above variations (including different counter ions, solvent ligands, and CˆN ligands), structure-activity relationship analyses reveal a number of clear correlations: (1) variations in counter anions and solvent ligands of iridium(III) complexes do not affect cellular imaging behavior, and (2) length of the side carbon chain in CˆN ligands has significant effects on cellular uptake and localization/accumulation of iridium complexes in living cells. Moreover, investigation of the uptake mechanism via low-temperature and metabolism inhibitor assays reveal that [Ir(4-Meppy)(2)(CH(3)CN)(2)](+)OTf(-) (LIr5) with 2-phenylpyridine derivative with side-chain of methyl group at the 4-position as CˆN ligand permeates the outer and nuclear membranes of living cells through an energy-dependent, non-endocytic entry pathway, and translocation of the complex from the cell periphery towards the perinuclear region possibly occurs through a microtubule-dependent transport pathway. Nuclear pore complexes (NPCs) appear to selectively control the transport of iridium(III) complexes between the cytoplasm and nucleus. A generalization of trends in behavior and structure-activity relationships is presented, which should provide further insights into the design and optimization of future probes. PMID:23131533

  3. PROBING POPULATION III STARS IN GALAXY IOK-1 AT z = 6.96 THROUGH He II EMISSION

    SciTech Connect

    Cai Zheng; Fan Xiaohui; Jiang Linhua; Bian Fuyan; McGreer, Ian; Dave, Romeel; Egami, Eiichi; Zabludoff, Ann; Yang Yujin; Oh, S. Peng

    2011-08-01

    The He II {lambda}1640 emission line has been suggested as a direct probe of Population III (Pop III) stars at high redshift, since it can arise from highly energetic ionizing photons associated with hot, metal-free stars. We use the Hubble Space Telescope WFC3/F130N IR narrowband filter to probe He II {lambda}1640 emission in galaxy IOK-1 at z = 6.96. The sensitivity of this measurement is {approx}>5x deeper than for previous measurements. From this deep narrowband imaging, combined with broadband observations in the F125W and F160W filters, we find the He II flux to be (1.2 {+-} 1.0) x 10{sup -18} erg s{sup -1} cm{sup -2}, corresponding to a 1{sigma} upper limit on the Pop III star formation rate (SFR) of {approx}0.5 M{sub sun} yr{sup -1} for the case of a Salpeter initial mass function (IMF) with 50 {approx}< M/M{sub sun} {approx}< 1000 and mass loss. Given that the broadband measurements can be fit with a UV-continuum spectral flux density of {approx}4.85 x 10{sup -10} x {lambda}{sup -2.46} erg s{sup -1} cm{sup -2} A{sup -1}, which corresponds to an overall SFR of {approx}16{sup +2.6}{sub -2.6} M{sub sun} yr{sup -1}, massive Pop III stars represent {approx}< 6% of the total star formation. This measurement places the strongest limit yet on metal-free star formation at high redshift, although the exact conversion from He II luminosity to Pop III SFR is highly uncertain due to the unknown IMF, stellar evolution, and photoionization effects. Although we have not detected He II {lambda}1640 at more than the 1.2{sigma} level, our work suggests that a {approx}> 3{sigma} level detection is possible with the James Webb Space Telescope.

  4. Probing the Natural World, Level III, Record Book, Student Guide: In Orbit. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's edition of the Record Book which accompanies the unit "In Orbit" of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). Space is provided for answers to the questions from the student text as well as for the optional excursions and the self evaluation. An introductory note to the student…

  5. Probing the Natural World, Level III, Teacher's Edition: In Orbit. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on the properties of sunlight, the use of spectrums and spectroscopes, the heat and energy of the sun, the measurement of astronomical distances, and the size of the sun. Optimal…

  6. Probing the Natural World, Level III, Record Book, Teacher's Edition: In Orbit. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of the Record Book for the unit "In Orbit" of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The correct answers to the questions from the text are recorded. An introductory note to the student explains how to use the book and is followed by the notes to the teacher. Answers are…

  7. Probing the Natural World, Level III, Student Guide: In Orbit. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one unit of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on the properties of sunlight, the use of spectrums and spectroscopes, the heat and energy of the sun, the measurement of astronomical distances, and the size of the sun. Activities are student-centered and…

  8. Eu(III)-Sensitized Luminescence Probe for Determination of Tolnaftate in Pharmaceuticals and Biological Fluids.

    PubMed

    Alarfaj, Nawal A; El-Tohamy, Maha F

    2016-03-01

    A highly selective, sensitive, accurate, and reproducible luminescence procedure for determination of antifungal drug tolnaftate was developed. The introduced method was based on the formation of Europa Universalis III (Eu(III))-tolnaftate complex using sodium sulfite as a deoxygenated agent in the presence of acetate buffer (pH = 6) and micellar solution of anionic surfactant sodium dodecyl sulfate. The optimum conditions (effect of pH, buffer, surfactant, Eu(III), and sodium sulfite concentrations) for the luminescence signal were investigated and optimized. The luminescence signals were recorded at λex = 270 nm and λem = 460 nm. The method has a good linear response (0.2-130 μg/mL(-1)) between the luminescence intensity and the concentrations of the drug (r = 0.999), with a LOD 0.07 μg/mL(-1) and LOQ 0.2 μg/mL(-1). The luminescence signals of Eu (III)-tolnaftate-sodium dodecyl sulfate were found to be 200-fold more sensitive without the presence of micelle solution. The interferences of some additives, metals, amino acids, sugars, and other related pharmacological action drugs were examined and no interference was recorded. The proposed method was used for quick and simple determination of tolnaftate in its pharmaceuticals and biological fluids. PMID:26964843

  9. Tuning the cellular uptake properties of luminescent heterobimetallic iridium(III)-ruthenium(II) DNA imaging probes.

    PubMed

    Wragg, Ashley; Gill, Martin R; Turton, David; Adams, Harry; Roseveare, Thomas M; Smythe, Carl; Su, Xiaodi; Thomas, Jim A

    2014-10-20

    The synthesis of two new luminescent dinuclear Ir(III)-Ru(II) complexes containing tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz) as the bridging ligand is reported. Unlike many other complexes incorporating cyclometalated Ir(III) moieties, these complexes display good water solubility, allowing the first cell-based study on Ir(III)-Ru(II) bioprobes to be carried out. Photophysical studies indicate that emission from each complex is from a Ru(II) excited state and both complexes display significant in vitro DNA-binding affinities. Cellular studies show that each complex is rapidly internalised by HeLa cells, in which they function as luminescent nuclear DNA-imaging agents for confocal microscopy. Furthermore, the uptake and nuclear targeting properties of the complex incorporating cyclometalating 2-(4-fluorophenyl)pyridine ligands around its Ir(III) centre is enhanced in comparison to the non-fluorinated analogue, indicating that fluorination may provide a route to promote cell uptake of transition-metal bioprobes. PMID:25208528

  10. Probing the Natural World, Level III, Teacher's Edition: Environmental Science. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit and its activities focuses on environmental pollution and hazards. Optional excursions are suggested for students who wish to study an area in greater depth. An introduction describes the problem…

  11. Probing the Natural World, Level III, Student Guide: Winds and Weather. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one of the units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The chapters contain basic information about weather, its measurement and predictions, activities related to the subject, and optional excursions. A section of introductory notes to the student discusses how to use…

  12. Probing the Natural World, Level III, Teacher's Edition: Winds and Weather. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). This unit focuses on weather, its measurement and prediction. Optional excursions are given for students who wish to study a topic in greater depth on an individualized basis. An introduction describes the…

  13. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    DOE PAGESBeta

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  14. Calcium measurements with electron probe X-ray and electron energy loss analysis.

    PubMed Central

    LeFurgey, A; Ingram, P

    1990-01-01

    This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells and the changes in location and concentration of cations or anions accompanying calcium redistribution. Recent experiments in our laboratory document that EPXMA in

  15. Electronic structure of III-V zinc-blende semiconductors from first principles

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Yin, Haitao; Cao, Ronggen; Zahid, Ferdows; Zhu, Yu; Liu, Lei; Wang, Jian; Guo, Hong

    2013-06-01

    For analyzing quantum transport in semiconductor devices, accurate electronic structures are critical for quantitative predictions. Here we report theoretical analysis of electronic structures of all III-V zinc-blende semiconductor compounds. Our calculations are from density functional theory with the semilocal exchange proposed recently [Tran and Blaha, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.226401 102, 226401 (2009)], within the linear muffin tin orbital scheme. The calculated band gaps and effective masses are compared to experimental data and good quantitative agreement is obtained. Using the theoretical scheme presented here, quantum transport in nanostructures of III-V compounds can be confidently predicted.

  16. The detection of energetic electrons with the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Wahlund, J.-E.; Holmberg, M. K. G.; Morooka, M.; Grimald, S.; Eriksson, A.; Schippers, P.; Gurnett, D. A.; Krimigis, S. M.; Krupp, N.; Coates, A.; Crary, F.; Gustafsson, G.

    2012-10-01

    The Cassini Langmuir probe, part of the Radio and Plasma Wave Science (RPWS) instrument, has provided a wealth of information about the cold and dense plasma in the Saturnian system. The analysis of the ion side current (current for negative potentials) measured by the probe from 2005 to 2008 reveals also a strong sensitivity to energetic electrons (250-450 eV). These electrons impact the surface of the probe, and generate a detectable current of secondary electrons. A broad secondary electrons current region is inferred from the observations in the dipole L Shell range of ˜6-10, with a peak full width at half maximum (FWHM) at L = 6.4-9.4 (near the Dione and Rhea magnetic dipole L Shell values). This magnetospheric flux tube region, which displays a large day/night asymmetry, is related to the similar structure in the energetic electron fluxes as the one measured by the onboard Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS). It corresponds spatially to both the outer electron radiation belt observed by the Magnetosphere Imaging Instrument (MIMI) at high energies and to the low-energy peak which has been observed since the Voyager era. Finally, a case study suggests that the mapping of the current measured by the Langmuir probe for negative potentials can allow to identify the plasmapause-like boundary recently identified at Saturn, and thus potentially identify the separation between the closed and open magnetic field lines regions.

  17. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    DOE PAGESBeta

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strongmore » as those obtained by nanodiffraction methods.« less

  18. Achieving atomic resolution magnetic dichroism by controlling the phase symmetry of an electron probe

    SciTech Connect

    Rusz, Jan; Idrobo, Juan -Carlos; Bhowmick, Somnath

    2014-09-30

    The calculations presented here reveal that an electron probe carrying orbital angular momentum is just a particular case of a wider class of electron beams that can be used to measure electron magnetic circular dichroism (EMCD) with atomic resolution. It is possible to obtain an EMCD signal with atomic resolution by simply breaking the symmetry of the electron probe phase front using the aberration-corrected optics of a scanning transmission electron microscope. The probe’s required phase distribution depends on the sample’s magnetic symmetry and crystal structure. The calculations indicate that EMCD signals that use the electron probe’s phase are as strong as those obtained by nanodiffraction methods.

  19. Electron bubbles in helium clusters. II. Probing superfluidity.

    PubMed

    Rosenblit, Michael; Jortner, Joshua

    2006-05-21

    In this paper we present calculations of electron tunneling times from the ground electronic state of excess electron bubbles in ((4)He)(N) clusters (N=6500-10(7), cluster radius R=41.5-478 A), where the equilibrium bubble radius varies in the range R(b)=13.5-17.0 A. For the bubble center located at a radial distance d from the cluster surface, the tunneling transition probability was expressed as A(0)phi(d,R)exp(-betad), where beta approximately 1 A(-1) is the exponential parameter, A(0) is the preexponential factor for the bubble located at the cluster center, and phi(d,R) is a correction factor which accounts for cluster curvature effects. Electron tunneling dynamics is grossly affected by the distinct mode of motion of the electron bubble in the image potential within the cluster, which is dissipative (i.e., tau(D)tau(0)) in superfluid ((4)He)(N) clusters, where tau(D) is the bubble motional damping time (tau(D) approximately 4 x 10(-12) s for normal fluid clusters and tau(D) approximately 10 s for superfluid clusters), while tau(0) approximately 10(-9)-10(-10) s is the bubble oscillatory time. Exceedingly long tunneling lifetimes, which cannot be experimentally observed, are manifested from bubbles damped to the center of the normal fluid cluster, while for superfluid clusters electron tunneling occurs from bubbles located in the vicinity of the initial distance d near the cluster boundary. Model calculations of the cluster size dependence of the electron tunneling time (for a fixed value of d=38-39 A), with lifetimes increasing in the range of 10(-3)-0.3 s for N=10(4)-10(7), account well for the experimental data [M. Farnik and J. P. Toennies, J. Chem. Phys. 118, 4176 (2003)], manifesting cluster curvature effects on electron tunneling dynamics. The minimal cluster size for the dynamic stability of the bubble was estimated to be N=3800, which represents the

  20. Micro Electron MicroProbe and Sample Analyzer

    NASA Technical Reports Server (NTRS)

    Manohara, Harish; Bearman, Gregory; Douglas, Susanne; Bronikowski, Michael; Urgiles, Eduardo; Kowalczyk, Robert; Bryson, Charles

    2009-01-01

    A proposed, low-power, backpack-sized instrument, denoted the micro electron microprobe and sample analyzer (MEMSA), would serve as a means of rapidly performing high-resolution microscopy and energy-dispersive x-ray spectroscopy (EDX) of soil, dust, and rock particles in the field. The MEMSA would be similar to an environmental scanning electron microscope (ESEM) but would be much smaller and designed specifically for field use in studying effects of geological alteration at the micrometer scale. Like an ESEM, the MEMSA could be used to examine uncoated, electrically nonconductive specimens. In addition to the difference in size, other significant differences between the MEMSA and an ESEM lie in the mode of scanning and the nature of the electron source.

  1. Electronic spectroscopy and computational studies of glutathionylco(III)balamin.

    PubMed

    Eisenberg, Azaria S; Likhtina, Iya V; Znamenskiy, Vasiliy S; Birke, Ronald L

    2012-06-28

    We have studied glutathionylcobalamin (GS-Cbl) by optical spectroscopy and with density functional theory (DFT) and time-dependent DFT (TD-DFT) electronic structure methods of truncated geometric models. We examined the geometric structure of the models by comparison of DFT calculations with recent high-resolution experimental X-ray structure data ( Hannibal, L. et al. Inorg. Chem. 2010, 49, 9921) for GS-Cbl, and we examined the TD-DFT excitation simulations by comparison of the models with measured optical spectra. The calculations employed the B3LYP hybrid functional and the nonhybrid BP86 functional in both vacuum and water (conductor polarized continuum model (cpcm)) with the 6-311G(d,p) basis set. The optimized geometric structure calculations for six truncated models were made by varying the chemical structure, solvent model, and the two DFT functionals. All showed similar geometry. Charge decomposition analysis (CDA) and extended charge decomposition analysis (ECDA), especially with BP86 shows the similar charge transfer nature of the Co-S bond in GS-Cbl and the Co-C bond in CH(3)Cbl. Mayer and Wiberg bond orders illustrate the similar covalent nature of the two bonds. Finally, absolute optical spectral simulation calculations were compared with the experimental UV-visible extinction spectrum and the electronic circular dichroism (ECD) differential extinction spectrum. The BP86 method shows more spectral features, and the best fit was found for a GS-Cbl model with 5,6-dimethylbenzimidazole at the BP86/6-311G(d,p) level with a water cpcm solvent model. The excited state transitions were investigated with Martin's natural transition orbitals (NTOs). The BP86 calculations also showed π bonding interactions between Co and the axial S of the GS- ligand in the molecular orbitals (MOs) and NTOs. PMID:22568547

  2. {beta}-Decay probing the electron bulk correlations

    SciTech Connect

    Kondratyev, V.N.; Ayik, S.

    1994-12-31

    The theoretical approach based on the Boltzman-Langevin model is applied to study the thermal properties of the excitation phenomena in condensed matter. This approach making use of the advantages of the thermodynamic Green`s function method provides a tool for the self-consistent description of the many-body correlations. It is demonstrated that such a correlation modifies significantly the excitation strength properties of the electron gas. The resonant thermal effects in electron bulk excitation accompanying a radioactive decay in solids are discussed.

  3. Probing battery chemistry with liquid cell electron energy loss spectroscopy.

    PubMed

    Unocic, Raymond R; Baggetto, Loïc; Veith, Gabriel M; Aguiar, Jeffery A; Unocic, Kinga A; Sacci, Robert L; Dudney, Nancy J; More, Karren L

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. This is significant as the use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. We discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies. PMID:26404766

  4. Probing battery chemistry with liquid cell electron energy loss spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren Leslie; Aguiar, Jeffery A.

    2015-09-15

    Electron energy loss spectroscopy (EELS) was used to determine the chemistry and oxidation state of LiMn2O4 and Li4Ti5O12 thin film battery electrodes in liquid cells for in situ scanning/transmission electron microscopy (S/TEM). Using the L2,3 white line intensity ratio method we determine the oxidation state of Mn and Ti in a liquid electrolyte solvent and discuss experimental parameters that influence measurement sensitivity.

  5. Probing Battery Chemistry with Liquid Cell Electron Energy Loss Spectroscopy

    SciTech Connect

    Unocic, Raymond R.; Baggetto, Loic; Veith, Gabriel M.; Aguiar, Jeffery A.; Unocic, Kinga A.; Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.

    2015-11-25

    We demonstrate the ability to apply electron energy loss spectroscopy (EELS) to follow the chemistry and oxidation states of LiMn2O4 and Li4Ti5O12 battery electrodes within a battery solvent. The use and importance of in situ electrochemical cells coupled with a scanning/transmission electron microscope (S/TEM) has expanded and been applied to follow changes in battery chemistry during electrochemical cycling. Furthermore, we discuss experimental parameters that influence measurement sensitivity and provide a framework to apply this important analytical method to future in situ electrochemical studies.

  6. Electronic Raman scattering in superconductors as a probe of anisotropic electron pairing

    SciTech Connect

    Devereaux, T.P.; Einzel, D.

    1995-06-01

    A gauge-invariant theory for electronic Raman scattering for superconductors with anisotropic pairing symmetry is analyzed in detail. It is shown that Raman scattering in anisotropic superconductors provides a wealth of polarization-dependent information that probes the detailed angular dependence of the superconducting ground-state order parameter. The Raman spectra shows a unique polarization dependence for various anisotropic pair-state symmetries which affects the peak position of the spectra and generates symmetry-dependent low-frequency and temperature power laws that can be used to identify the magnitude and predominant symmetry of the energy gap. In particular, we calculate the collective modes and the subsequent symmetry-dependent Raman spectra for a {ital d}{sub {ital x}}{sup 2}{minus}{ital y}{sup 2} superconductor and compare our results to the relevant data on the cuprate systems as well as theoretical predictions for {ital s}-wave, anisotropic {ital s}-wave, and mixed-state energy gaps. Favorable agreement is shown with the predictions for {ital d}{sub {ital x}}{sup 2}{minus}{ital y}{sup 2} pairing and the experimental data on YBa{sub 2}Cu{sub 3}O{sub 7}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, and Tl{sub 2}Ba{sub 2}CuO{sub 6}.

  7. Probe measurements of the electron distribution function in a nonequilibrium plasma

    SciTech Connect

    Mustafaev, A.S.; Mezentsev, A.P.; Simonov, V.Y.; Kaplan, V.B.; Martsinovskii, A.M.

    1984-11-01

    The probe characteristics and their second derivatives with respect to the potential are recorded in a hot-cathode inert-gas (He, Ne, Ar) arc discharge plasma for pressures 0.05--3 torr and discharge currents i = 0.02--2 A. An isotropic ''swarm'' of fast electrons was observed at distances delectron distribution; the swarm was accelerated by the barrier at the cathode and there were no inelastic collisions. The influence of the fast electrons on the form of the probe characteristic must be analyzed in order to interpret the probe measurements under these conditions. The conventional methods for analyzing the probe characteristics do not apply, but it is shown that information about the plasma parameters can be obtained by modulating the probe current for plasmas with a highly nonmaxwellian energy distribution F(epsilon). The probe characteristics calculated from the measured distribution F(epsilon) agree with the measured results.

  8. Investigating geomagnetic activity dependent sources of 100s of keV electrons in Earth's inner radiation belt using Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Turner, D. L.; O'Brien, T. P., III; Fennell, J. F.; Claudepierre, S. G.; Blake, J. B.; Baker, D. N.; Henderson, M. G.; Reeves, G. D.

    2015-12-01

    By providing an unprecedented level of reliability in particle flux observations at low L-shells, NASA's Van Allen Probes mission has yielded a series of discoveries and unanswered questions concerning the inner electron radiation belt. Two such discoveries are: 1) a sharp cutoff in the energy distribution of electrons at ~900 keV, such that fluxes of electrons with energies greater than ~900 keV are below the detectability threshold of the Van Allen Probes' MagEIS instruments and consistent with upper flux limits of multi-MeV electrons calculated using the Van Allen Probes' REPT instruments, and 2) that impulsive injections of up to several hundred keV electrons may act as an activity-dependent source of electrons in the slot and inner radiation belt. In this presentation, we discuss results from phase space density (PSD) analysis of inner zone electrons. Such analysis, which examines PSD as a function of the three adiabatic invariants, effectively removes adiabatic variations in the particle observations allowing one to better identify source and loss processes ongoing in the system. We demonstrate that impulsive injections do indeed act as a source of inner radiation belt electrons and, when combined with losses in the slot region, can result in peaked radial distributions of electron PSD in the inner zone. We briefly discuss the nature of these low-L injections, which penetrate inside the plasmasphere and display strong energy and species dependencies. By examining such injections throughout the Van Allen Probes era, we also i) determine the occurrence rate of injections as a function of electron energy (and first adiabatic invariant), geomagnetic activity level, and L-shell; ii) estimate the contribution of such injections to the inner belt population; and iii) investigate how such injections disrupt coherent banded flux structures in the inner zone known as "zebra stripes".

  9. Probing plasma turbulence by modulating the electron temperature gradient

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Holland, C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Doyle, E. J.; Hillesheim, J.; Peebles, W. A.; Zeng, L.; White, A. E.; Austin, M. E.; Yan, Z.

    2010-05-15

    The local value of a/L{sub Te}, a turbulence drive term, was modulated with electron cyclotron heating in L-mode discharges on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] and the density and electron temperature fluctuations in low, intermediate, and high-k regimes were measured and compared with nonlinear gyrokinetic turbulence simulations using the GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)]. The local drive term at rhoapprox0.6 was reduced by up to 50%, which produced comparable reductions in electron temperature fluctuations at low-k. At intermediate k, k{sub t}hetaapprox4 cm{sup -1} and k{sub t}hetarho{sub s}approx0.8, a very interesting and unexpected result was observed where density fluctuations increased by up to 10% when the local drive term was decreased by 50%. Initial comparisons of simulations from GYRO with the thermal diffusivity from power balance analysis and measured turbulence response are reported. Simulations for the case with the lowest drive term are challenging as they are near the marginal value of a/L{sub Te} for trapped electron mode activity.

  10. The coupling of condensed matter excitations to electron probes

    SciTech Connect

    Ritchie, R.H.

    1988-01-01

    Aspects of coupling of a classical electron with bulk and surface excitations in condensed matter have been sketched. Some considerations of a self-energy approach to the complete quantal treatment of this coupling have been given. 19 refs., 3 figs.

  11. Time-resolved probes based on guanine/thymine-rich DNA-sensitized luminescence of terbium(III).

    PubMed

    Zhang, Min; Le, Huynh-Nhu; Jiang, Xiao-Qin; Yin, Bin-Cheng; Ye, Bang-Ce

    2013-12-01

    In this study, we have developed a novel strategy to highly sensitize the luminescence of terbium(III) (Tb(3+)) using a designed guanine/thymine-rich DNA (5'-[G3T]5-3') as an antenna ligand, in which [G3T]5 improved the luminescence of Tb(3+) by 3 orders of magnitude due to energy transfer from nucleic acids to Tb(3+) (i.e., antenna effect). Furthermore, label-free probes for the luminescent detection of biothiols, Ag(+), and sequence-specific DNA in an inexpensive, simple, and mix-and-read format are presented based on the [G3T]5-sensitized luminescence of Tb(3+) (GTSLT). The long luminescence lifetime of the probes readily enables time-resolved luminescence (TRL) experiments. Hg(2+) can efficiently quench the luminescence of Tb(3+) sensitized by [G3T]5 (Tb(3+)/[G3T]5); however, biothiols are readily applicable to selectively grab Hg(2+) for restoration of the luminescence of Tb(3+)/[G3T]5 initially quenched by Hg(2+), which can be used for "turn on" detection of biothiols. With the use of cytosine (C)-rich oligonucleotide c[G3T]5 complementary to [G3T]5, the formed [G3T]5/c[G3T]5 duplex cannot sensitize the luminescence of Tb(3+). However, in the presence of Ag(+), Ag(+) can combine the C base of c[G3T]5 to form C-Ag(+)-C complexes, leading to the split of the [G3T]5/c[G3T]5 duplex and then release of [G3T]5. The released [G3T]5 acts as an antenna ligand for sensitizing the luminescence of Tb(3+). Therefore, the Tb(3+)/[G3T]5/c[G3T]5 probe can be applied to detect Ag(+) in a "turn on" format. Moreover, recognition of target DNA via hybridization to a molecular beacon (MB)-like probe (MB-[G3T]5) can unfold the MB-[G3T]5 to release the [G3T]5 for sensitizing the luminescence of Tb(3+), producing a detectable signal directly proportional to the amount of target DNA of interest. This allows the development of a fascinating label-free MB probe for DNA sensing based on the luminescence of Tb(3+). Results and methods reported here suggest that a guanine/thymine-rich DNA

  12. Probing electron transport and structural properties of nanostructures on Si with a quadraprobe scanning tunneling microscope

    SciTech Connect

    Kim, Tae Hwan; Wendelken, J F; Li, An-Ping

    2008-01-01

    The electron transport and structural properties of nanostructured materials have been examined with a newly developed low temperature quadraprobe scanning tunneling microscope (STM) system. The quadraprobe STM system, as a "nano" version of a four-probe station provides an integrated research platform with a low temperature four-probe STM, a molecular-beam epitaxy growth chamber, a high resolution scanning electron microscope, and a scanning Auger microscope. The four STM probes can be driven independently with sub-nanometer precision, enabling conventional STM imaging and four-point electrical transport study of surface electronic systems and nanostructured materials at temperatures down to 10 K. Self-assembled nanostructures grown on Si by doping with metal atoms (Au, Gd, Ag) have been fabricated and characterized in situ.

  13. Recent Results from the Relativistic Electron Proton Telescope (REPT) onboard the Van Allen Probes Mission

    NASA Astrophysics Data System (ADS)

    Kanekal, S. G.; Baker, D. N.; Elkington, S. R.; Hoxie, V. C.; Li, X.; Spence, H. E.

    2013-05-01

    We describe recent results from the REPT instruments on board Van Allen Probes mission launched on 30 August 2012. The twin spacecraft comprising the Van Allen probes mission are identically instrumented and carry a comprehensive suite of sensors characterizing magnetospheric charged particle populations, electric and magnetic fields and plasma waves. The REPT instruments comprise a well-shielded silicon solid state detector stack, with a state of the art electronics and measure electrons of ~1.5 to > 20 MeV and protons of ~17 to > 100 MeV. The instruments were commissioned 3 days after launch and continue to provide high quality measurements. We describe the Van Allen probes and the REPT instrument and report on the new and unexpected features of the outer zone electron populations observed by REPT.

  14. Probing Ultrafast Nuclear Dynamics in Halomethanes by Time-Resolved Electron and Ion Imaging

    NASA Astrophysics Data System (ADS)

    Ziaee, F.; Rudenko, A.; Rolles, D.; Savelyev, E.; Bomme, C.; Boll, R.; Manschwetus, B.; Erk, B.; Trippel, S.; Wiese, J.; Kuepper, J.; Amini, K.; Lee, J.; Brouard, M.; Brausse, F.; Rouzee, A.; Olshin, P.; Mereshchenko, A.; Lahl, J.; Johnsson, P.; Simon, M.; Marchenko, T.; Holland, D.; Underwood, J.

    2016-05-01

    Femtosecond pump-probe experiments provide opportunities to investigate photochemical reaction dynamics and the resulting changes in molecular structure in detail. Here, we present a study of the UV-induced photodissociation of gas-phase halomethane molecules (CH3 I, CH2 IBr, ...) in a pump-probe arrangement using two complementary probe schemes, either using a femtosecond near-infrared laser or the FLASH free-electron laser. We measured electrons and ions produced during the interaction using a double-sided velocity map imaging spectrometer equipped with a CCD camera for electron detection and with the Pixel Imaging Mass Spectrometry (PImMS) camera for ions, which can record the arrival time for up to four ions per pixel. This project is supported by the DOE, Office of Science, BES, Division of Chemical, Geological, and Biological Sciences.

  15. Low Energy Electrons as Probing Tool for Astrochemical Reaction Mechanisms

    NASA Astrophysics Data System (ADS)

    Hendrik Bredehöft, Jan; Swiderek, Petra; Hamann, Thorben

    The complexity of molecules found in space varies widely. On one end of the scale of molecular complexity is the hydrogen molecule H2 . Its formation from H atoms is if not understood than at least thoroughly investigated[1]. On the other side of said spectrum the precursors to biopolymers can be found, such as amino acids[2,3], sugars[4], lipids, cofactors[5], etc, and the kerogen-like organic polymer material in carbonaceous meteorites called "black stuff" [6]. These have also received broad attention in the last decades. Sitting in the middle between these two extremes are simple molecules that are observed by radio astronomy throughout the Universe. These are molecules like methane (CH4 ), methanol (CH3 OH), formaldehyde (CH2 O), hydrogen cyanide (HCN), and many many others. So far more than 40 such species have been identified.[7] They are often used in laboratory experiments to create larger complex molecules on the surface of simulated interstellar dust grains.[2,8] The mechanisms of formation of these observed starting materials for prebiotic chemistry is however not always clear. Also the exact mechanisms of formation of larger molecules in photochemical experiments are largely unclear. This is mostly due to the very complex chemistry going on which involves many different radicals and ions. The creation of radicals and ions can be studied in detail in laboratory simulations. They can be created in a setup mimicking interstellar grain chemistry using slow electrons. There is no free electron radiation in space. What can be found though is a lot of radiation of different sorts. There is electromagnetic radiation (UV light, X-Rays, rays, etc.) and there is particulate radiation as well in the form of high energy ions. This radiation can provide energy that drives chemical reactions in the ice mantles of interstellar dust grains. And while the multitude of different kinds of radiation might be a little confusing, they all have one thing in common: Upon

  16. Novel probe for determining the size and position of a relativistic electron beam

    SciTech Connect

    Orzechowski, T.J.; Koehler, H.; Edwards, W.; Nelson, M.; Marshall, B.

    1984-07-23

    In order to determine the size and position of a relativistic electron beam inside the wiggler magnetic field of a Free Electron Laser (FEL), we have developed a new probe which intercepts the electron beam on a high Z target and monitors the resulting bremsstrahlung radiation. The probe is designed to move along the entire three meters of the wiggler. This FEL is designed to operate in the microwave region (2 to 8 mm) and the interaction region is an oversized waveguide with a cross section 3 cm x 9.8 cm. The axial probe moves inside this waveguide. The probe stops the electron beam on a Tantalum target and the resulting x-rays are scattered in the forward direction. A scintillator behind the beam stop reacts to the x-rays and emits visible light in the region where the x-rays strike. An array of fiber optics behind the scintillator transmits the visible light to a Reticon camera system which images the visible pattern from the scintillator. Processing the optical image is done by digitizing and storing the image and/or recording the image on video tape. Resolution and performance of this probe will be discussed.

  17. Simultaneous DC measurements of ion current density and electron temperature using a tunnel probe

    NASA Astrophysics Data System (ADS)

    Gunn, J. P.; Dejarnac, R.; Stöckel, J.

    2016-03-01

    The tunnel probe is a concave Langmuir probe designed to operate in strongly magnetized plasma. Due to its shape, the tunnel probe is immune to sheath expansion effects and thus provides absolutely calibrated measurements of the parallel ion current density. A two-dimensional, self-consistent kinetic model is employed to model the flow of charges within the cavity of the tunnel probe. The calculation predicts that the distribution of the ion flux onto the inner conductors depends on the electric field inside the tunnel, which in turn depends on the electron temperature. Therefore, if the tunnel is divided into two negatively biased collectors, it is possible to use the simulation results to determine the electron temperature from the measured ion current ratio. This means that a DC-biased tunnel probe can be used to provide fast, simultaneous measurements of the parallel ion current density and the electron temperature without collecting a single electron. Measurements in the CASTOR and Tore Supra tokamaks agree well with the numerical simulations.

  18. Electron collection theory for a D-region subsonic blunt electrostatic probe

    NASA Technical Reports Server (NTRS)

    Wai-Kwong Lai, T.

    1974-01-01

    Blunt probe theory for subsonic flow in a weakly ionized and collisional gas is reviewed, and an electron collection theory for the relatively unexplored case, Deybye length approximately 1, which occurs in the lower ionosphere (D-region), is developed. It is found that the dimensionless Debye length is no longer an electric field screening parameter, and the space charge field effect can be negelected. For ion collection, Hoult-Sonin theory is recognized as a correct description of the thin, ion density-perturbed layer adjacent the blunt probe surface. The large volume with electron density perturbed by a positively biased probe renders the usual thin boundary layer analysis inapplicable. Theories relating free stream conditions to the electron collection rate for both stationary and moving blunt probes are obtained. A model based on experimental nonlinear electron drift velocity data is proposed. For a subsonically moving probe, it is found that the perturbed region can be divided into four regions with distinct collection mechanisms.

  19. Geometric and Electronic Structure of a Peroxomanganese(III) Complex Supported by a Scorpionate Ligand

    PubMed Central

    Colmer, Hannah E.; Geiger, Robert A.; Leto, Domenick F.; Wijeratne, Gayan B.; Day, Victor W.; Jackson, Timothy A.

    2014-01-01

    A monomeric MnII complex has been prepared with the facially-coordinating TpPh2 ligand, (TpPh2 = hydrotris(3,5-diphenylpyrazol-1-yl)borate). The X-ray crystal structure shows three coordinating solvent molecules resulting in a six-coordinate complex with Mn-ligand bond lengths that are consistent with a high-spin MnII ion. Treatment of this MnII complex with excess KO2 at room temperature resulted in the formation of a MnIII-O2 complex that is stable for several days at ambient conditions, allowing for the determination of the X-ray crystal structure of this intermediate. The electronic structure of this peroxomanganese(III) adduct was examined by using electronic absorption, electron paramagnetic resonance (EPR), low-temperature magnetic circular dichroism (MCD), and variable-temperature variable-field (VTVH) MCD spectroscopies. Density functional theory (DFT), time-dependent (TD)-DFT, and multireference ab initio CASSCF/NEVPT2 calculations were used to assign the electronic transitions and further investigate the electronic structure of the peroxomanganese(III) species. The lowest ligand-field transition in the electronic absorption spectrum of the MnIII-O2 complex exhibits a blue shift in energy compared to other previously characterized peroxomanganese(III) complexes that results from a large axial bond elongation, reducing the metal-ligand covalency and stabilizing the σ-antibonding Mn dz2 MO that is the donor MO for this transition. PMID:25312785

  20. INTEGRATING THE STORED GRAIN ADVISOR PRO EXPERT SYSTEM WITH AN AUTOMATED ELECTRONIC ELECTRONIC GRAIN PROBE TRAPPING SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. A new commercial electronic grain probe trap (OPI Insector™) has recently been marketed. To make accurate insect management decisions, managers need to know both the insect species and numbe...

  1. Probing Transient Electron Dynamics Using Ultrafast X Rays

    NASA Astrophysics Data System (ADS)

    Bucksbaum, Philip

    2016-05-01

    Linear x-ray absorption in atoms or molecules creates highly excited multi-electron quantum systems, which relax rapidly by fluorescence or Auger emission. These relaxation rates are usually less than a few femtoseconds in duration, and so they can reveal transient elecronic states in molecules as they undergo photo-induced transformations. I will show recent results from femtosecond x-ray experiments that display this phenomenon. There are efforts underway to push the temporal resolving power of ultrafast x-ray pulses into the attosecond regime, using stronger fields to initiate nonlinear absorption processes such as transient stimulated electronic Raman scattering. I will discuss current progress and future prospects for research in this area. This research is supported through Stanford PULSE Institute, SLAC National Accelerator Lab by the U.S. Department of Energy, Office of Basic Energy Sciences, Atomic, Molecular, and Optical Science Program.

  2. Physics. Creating and probing electron whispering-gallery modes in graphene.

    PubMed

    Zhao, Yue; Wyrick, Jonathan; Natterer, Fabian D; Rodriguez-Nieva, Joaquin F; Lewandowski, Cyprian; Watanabe, Kenji; Taniguchi, Takashi; Levitov, Leonid S; Zhitenev, Nikolai B; Stroscio, Joseph A

    2015-05-01

    The design of high-finesse resonant cavities for electronic waves faces challenges due to short electron coherence lengths in solids. Complementing previous approaches to confine electronic waves by carefully positioned adatoms at clean metallic surfaces, we demonstrate an approach inspired by the peculiar acoustic phenomena in whispering galleries. Taking advantage of graphene's gate-tunable light-like carriers, we create whispering-gallery mode (WGM) resonators defined by circular pn junctions, induced by a scanning tunneling probe. We can tune the resonator size and the carrier concentration under the probe in a back-gated graphene device over a wide range. The WGM-type confinement and associated resonances are a new addition to the quantum electron-optics toolbox, paving the way to develop electronic lenses and resonators. PMID:25954005

  3. Probing Spin Accumulation induced Magnetocapacitance in a Single Electron Transistor

    PubMed Central

    Lee, Teik-Hui; Chen, Chii-Dong

    2015-01-01

    The interplay between spin and charge in solids is currently among the most discussed topics in condensed matter physics. Such interplay gives rise to magneto-electric coupling, which in the case of solids was named magneto-electric effect, as predicted by Curie on the basis of symmetry considerations. This effect enables the manipulation of magnetization using electrical field or, conversely, the manipulation of electrical polarization by magnetic field. The latter is known as the magnetocapacitance effect. Here, we show that non-equilibrium spin accumulation can induce tunnel magnetocapacitance through the formation of a tiny charge dipole. This dipole can effectively give rise to an additional serial capacitance, which represents an extra charging energy that the tunneling electrons would encounter. In the sequential tunneling regime, this extra energy can be understood as the energy required for a single spin to flip. A ferromagnetic single-electron-transistor with tunable magnetic configuration is utilized to demonstrate the proposed mechanism. It is found that the extra threshold energy is experienced only by electrons entering the islands, bringing about asymmetry in the measured Coulomb diamond. This asymmetry is an unambiguous evidence of spin accumulation induced tunnel magnetocapacitance, and the measured magnetocapacitance value is as high as 40%. PMID:26348794

  4. Detection of electron energy distribution function anisotropy in a magnetized electron cyclotron resonance plasma by using a directional Langmuir probe

    SciTech Connect

    Shikama, T. Hasuo, M.; Kitaoka, H.

    2014-07-15

    Anisotropy in the electron energy distribution function (EEDF) in an electron cyclotron resonance plasma with magnetized electrons and weakly magnetized ions is experimentally investigated using a directional Langmuir probe. Under an assumption of independent EEDFs in the directions parallel and perpendicular to the magnetic field, the directional variation of the EEDF is evaluated. In the measured EEDFs, a significantly large population density of electrons with energies larger than 30 eV is found in one of the cross-field directions depending on the magnetic field direction. With the aid of an electron trajectory calculation, it is suggested that the observed anisotropic electrons originate from the EEDF anisotropy and the cross-field electron drift.

  5. Electron Exciter Speeds Associated with Interplanetary Type III Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; MacDowall, R. J.

    2015-10-01

    This article provides a comprehensive quantitative investigation of the kinematics of the electron exciters associated with interplanetary type III solar radio bursts. Detailed multispacecraft analyses of the radio and plasma wave data from the widely separated Wind and STEREO spacecraft are provided for five interplanetary type III bursts that illustrate different aspects of the problems involved in establishing the electron exciter speeds. The exciter kinematics are determined from the observed frequency drift and in-situ radiation characteristics for each type III burst. The analysis assumes propagation of the electron exciters along a Parker spiral, with origin at the associated solar active region, and curvature determined by the measured solar wind speed. The analyses take fully into account the appropriate light-propagation-time corrections from the radio source to the observing spacecraft as the exciters propagate along the Parker spiral path. For the five in-situ type III bursts analyzed in detail here, we found that their initial exciter speeds, near the Sun, ranged from 0.2c to 0.38c, where c is the speed of light. This is significantly higher than the exciter speeds derived from other recent analyses. The results presented here further suggest that the type III electron exciters normally decelerate as they propagate through the interplanetary medium. We argue based on the observations by the widely separated spacecraft that the initial part of the type III radiation usually occurs at the fundamental of the plasma frequency. Finally, we compare the results for the exciter speeds to all previous determinations and provide quantitative arguments to explain the differences.

  6. Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals

    SciTech Connect

    White, Gaye F.; Shi, Zhi; Shi, Liang; Wang, Zheming; Dohnalkova, Alice; Marshall, Matthew J.; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David; Clarke, Thomas A.

    2013-04-16

    The mineral respiring bacterium Shewanella oneidensis uses a protein complex, MtrCAB, composed of two decaheme cytochromes brought together inside a transmembrane porin to transport electrons across the outer membrane to a variety of mineral-based electron acceptors. A proteoliposome system that contains methyl viologen as an internalised electron carrier has been used to investigate how the topology of the MtrCAB complex relates to its ability to transport electrons across a lipid bilayer to externally-located Fe(III) oxides. With MtrA facing the interior and MtrC exposed on the outer surface of the phospholipid bilayer, direct electron transfer from the interior through MtrCAB to solid-phase Fe(III) oxides was demonstrated. The observed rates of conduction through the protein complex were 2 to 3 orders of magnitude higher than that observed in whole cells, demonstrating that direct electron exchange between MtrCAB and Fe(III) oxides is efficient enough to support in-vivo, anaerobic, solid phase iron respiration.

  7. Electron beam irradiation of dimethyl-(acetylacetonate) gold(III) adsorbed onto solid substrates

    SciTech Connect

    Wnuk, Joshua D.; Gorham, Justin M.; Rosenberg, Samantha G.; Fairbrother, D. Howard; Dorp, Willem F. van; Madey, Theodore E.; Hagen, Cornelis W.

    2010-03-15

    Electron beam induced deposition of organometallic precursors has emerged as an effective and versatile method for creating two-dimensional and three-dimensional metal-containing nanostructures. However, to improve the properties and optimize the chemical composition of nanostructures deposited in this way, the electron stimulated decomposition of the organometallic precursors must be better understood. To address this issue, we have employed an ultrahigh vacuum-surface science approach to study the electron induced reactions of dimethyl-(acetylacetonate) gold(III) [Au{sup III}(acac)Me{sub 2}] adsorbed onto solid substrates. Using thin molecular films adsorbed onto cooled substrates, surface reactions, reaction kinetics, and gas phase products were studied in the incident energy regime between 40 and 1500 eV using a combination of x-ray photoelectron spectroscopy (XPS), reflection absorption infrared spectroscopy (RAIRS), and mass spectrometry (MS). XPS and RAIRS data indicate that electron irradiation of Au{sup III}(acac)Me{sub 2} is accompanied by the reduction in Au{sup III} to a metallic Au{sup 0} species embedded in a dehydrogenated carbon matrix, while MS reveals the concomitant evolution of methane, ethane, carbon monoxide, and hydrogen. The electron stimulated decomposition of Au{sup III}(acac)Me{sub 2} is first-order with respect to the surface coverage of the organometallic precursor, and exhibits a rate constant that is proportional to the electron flux. At an incident electron energy of 520 eV, the total reaction cross section was {approx_equal}3.6x10{sup -16} cm{sup 2}. As a function of the incident electron energy, the maximum deposition yield was observed at {approx_equal}175 eV. The structure of discrete Au-containing deposits formed at room temperature by rastering an electron beam across a highly ordered pyrolytic graphite substrate in the presence of a constant partial pressure of Au{sup III}(acac)Me{sub 2} was also investigated by atomic force

  8. Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate

    PubMed Central

    Kieft, T. L.; Fredrickson, J. K.; Onstott, T. C.; Gorby, Y. A.; Kostandarithes, H. M.; Bailey, T. J.; Kennedy, D. W.; Li, S. W.; Plymale, A. E.; Spadoni, C. M.; Gray, M. S.

    1999-01-01

    A thermophilic bacterium that can use O2, NO3−, Fe(III), and S0 as terminal electron acceptors for growth was isolated from groundwater sampled at a 3.2-km depth in a South African gold mine. This organism, designated SA-01, clustered most closely with members of the genus Thermus, as determined by 16S rRNA gene (rDNA) sequence analysis. The 16S rDNA sequence of SA-01 was >98% similar to that of Thermus strain NMX2 A.1, which was previously isolated by other investigators from a thermal spring in New Mexico. Strain NMX2 A.1 was also able to reduce Fe(III) and other electron acceptors. Neither SA-01 nor NMX2 A.1 grew fermentatively, i.e., addition of an external electron acceptor was required for anaerobic growth. Thermus strain SA-01 reduced soluble Fe(III) complexed with citrate or nitrilotriacetic acid (NTA); however, it could reduce only relatively small quantities (0.5 mM) of hydrous ferric oxide except when the humic acid analog 2,6-anthraquinone disulfonate was added as an electron shuttle, in which case 10 mM Fe(III) was reduced. Fe(III)-NTA was reduced quantitatively to Fe(II); reduction of Fe(III)-NTA was coupled to the oxidation of lactate and supported growth through three consecutive transfers. Suspensions of Thermus strain SA-01 cells also reduced Mn(IV), Co(III)-EDTA, Cr(VI), and U(VI). Mn(IV)-oxide was reduced in the presence of either lactate or H2. Both strains were also able to mineralize NTA to CO2 and to couple its oxidation to Fe(III) reduction and growth. The optimum temperature for growth and Fe(III) reduction by Thermus strains SA-01 and NMX2 A.1 is approximately 65°C; their optimum pH is 6.5 to 7.0. This is the first report of a Thermus sp. being able to couple the oxidation of organic compounds to the reduction of Fe, Mn, or S. PMID:10049886

  9. Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate

    SciTech Connect

    Kieft, T. L.; Fredrickson, J. K.; Onstott, T. C.; Gorby, Y. A.; Kostandarithes, H. M.; Bailey, T. J.; Kennedy, D. W.; Li, S. W.; Plymale, A. E.; Spadoni, C. M.; Gray, M. S.

    1995-10-25

    A thermophilic bacterium that could use O{sub 2}, NO{sub 3}{sup -}, Fe(III), or S{sup o} as terminal electron acceptors for growth was isolated from groundwater sampled at 3.2 km depth in a South African gold mine. This organism, designated SA-01, clustered most closely with members of the genus Thermus, as determined by 16S rDNA gene sequence analysis. The 16S rDNA sequence of SA-01 was >98% similar to that of Thermus strain NMX2 A.1, which was previously isolated by other investigators from a thermal spring in New Mexico. Strain NMX2 A.1 was also able to reduce Fe(III) and other electron acceptors, whereas Thermus aquaticus (ATCC 25104) and Thermus filiformis (ATCC 43280) did not reduce NO{sub 3}{sup -} or Fe(III). Neither SA-01 nor NMX2 A.1 grew fermentatively, i.e., addition of an external electron acceptor was required for anaerobic growth. Thermus SA-01 reduced soluble Fe(III) complexed with citrate or nitrilotriacetic acid (NTA); however, it could only reduce relatively small quantities (0.5 mM) of hydrous ferric oxide (HFO) except when the humic acid analog 2,6-anthraquinone disulfonate (AQDS) was added as an electron shuttle, in which case 10 mM Fe(III) was reduced. Fe(III)-NTA was reduced quantitatively to Fe(II), was coupled to the oxidation of lactate, and could support growth through three consecutive transfers. Suspensions of Thermus SA-01 cells also reduced Mn(IV), Co(III)-EDTA, Cr(VI), and AQDS. Mn(IV)-oxide was reduced in the presence of either lactate or H{sub 2}. Both strains were also able to mineralize NTA to CO{sub 2} and to couple its oxidation to Fe(III) reduction and growth. The optimum temperature for growth and Fe(III) reduction by Thermus SA-01 and NMX2 A.1 is approximately 65 C; optimum pH is 6.5 to 7.0. This is the first report of a Thermus sp. being able to couple the oxidation of organic compounds to the reduction of Fe, Mn or S.

  10. The influence of the secondary electrons induced by energetic electrons impacting the Cassini Langmuir probe at Saturn

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Holmberg, M. K. G.; Wahlund, J.-E.; Lewis, G. R.; Grimald, S. Rochel; Thomsen, M. F.; Gurnett, D. A.; Coates, A. J.; Crary, F. J.; Dandouras, I.

    2013-11-01

    The Cassini Langmuir Probe (LP) onboard the Radio and Plasma Wave Science experiment has provided much information about the Saturnian cold plasma environment since the Saturn Orbit Insertion in 2004. A recent analysis revealed that the LP is also sensitive to the energetic electrons (250-450 eV) for negative potentials. These electrons impact the surface of the probe and generate a current of secondary electrons, inducing an energetic contribution to the DC level of the current-voltage (I-V) curve measured by the LP. In this paper, we further investigated this influence of the energetic electrons and (1) showed how the secondary electrons impact not only the DC level but also the slope of the (I-V) curve with unexpected positive values of the slope, (2) explained how the slope of the (I-V) curve can be used to identify where the influence of the energetic electrons is strong, (3) showed that this influence may be interpreted in terms of the critical and anticritical temperatures concept detailed by Lai and Tautz (2008), thus providing the first observational evidence for the existence of the anticritical temperature, (4) derived estimations of the maximum secondary yield value for the LP surface without using laboratory measurements, and (5) showed how to model the energetic contributions to the DC level and slope of the (I-V) curve via several methods (empirically and theoretically). This work will allow, for the whole Cassini mission, to clean the measurements influenced by such electrons. Furthermore, the understanding of this influence may be used for other missions using Langmuir probes, such as the future missions Jupiter Icy Moons Explorer at Jupiter, BepiColombo at Mercury, Rosetta at the comet Churyumov-Gerasimenko, and even the probes onboard spacecrafts in the Earth magnetosphere.

  11. Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.

    PubMed

    Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue

    2016-03-14

    We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3 ]⋅H2 O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. PMID:26890339

  12. Narrowband Gyrosynchrotron Bursts: Probing Electron Acceleration in Solar Flares

    NASA Astrophysics Data System (ADS)

    Fleishman, Gregory D.; Nita, Gelu M.; Kontar, Eduard P.; Gary, Dale E.

    2016-07-01

    Recently, in a few case studies we demonstrated that gyrosynchrotron microwave emission can be detected directly from the acceleration region when the trapped electron component is insignificant. For the statistical study reported here, we have identified events with steep (narrowband) microwave spectra that do not show a significant trapped component and, at the same time, show evidence of source uniformity, which simplifies the data analysis greatly. Initially, we identified a subset of more than 20 radio bursts with such narrow spectra, having low- and high-frequency spectral indices larger than three in absolute value. A steep low-frequency spectrum implies that the emission is nonthermal (for optically thick thermal emission, the spectral index cannot be steeper than two), and the source is reasonably dense and uniform. A steep high-frequency spectrum implies that no significant electron trapping occurs, otherwise a progressive spectral flattening would be observed. Roughly half of these radio bursts have RHESSI data, which allow for detailed, joint diagnostics of the source parameters and evolution. Based on an analysis of radio-to-X-ray spatial relationships, timing, and spectral fits, we conclude that the microwave emission in these narrowband bursts originates directly from the acceleration regions, which have a relatively strong magnetic field, high density, and low temperature. In contrast, the thermal X-ray emission comes from a distinct loop with a smaller magnetic field, lower density, but higher temperature. Therefore, these flares likely occurred due to interaction between two (or more) magnetic loops.

  13. Attosecond electron emission probes of ultrafast nanolocalized fields

    NASA Astrophysics Data System (ADS)

    Kling, Matthias

    2011-05-01

    Ongoing experimental and theoretical work on the temporal and spatial characterization of nanolocalized plasmonic fields will be presented. Because of their broad spectral bandwidth, plasmons in metal nanoparticles undergo ultrafast dynamics with timescales as short as a few hundred attoseconds. So far, the spatiotemporal dynamics of optical fields localized on the nanoscale has been hidden from direct access in the real space and time domain. Our ultimate goal is to characterize the nanoplasmonic fields not only on a nanometer spatial scale but also on ~100 attosecond temporal scale. Information about the nanoplasmonic fields, which are excited by few-cycle laser pulses with stable electric field waveform, can be obtained by the measurement of photoemitted electrons. We will present recent results on the large acceleration of recollision electrons in nanolocalized fields near dielectric nanoparticles following the excitation by 5-fs near-infrared laser pulses with controlled electric field waveforms. This work has been carried out in collaboration with Th. Fennel (University of Rostock), E. Ruehl (FU Berlin), and M.I. Stockman (GSU Atlanta). We acknowledge support by the DFG via Emmy-Noether program and SPP1391.

  14. Probing vacuum birefringence using x-ray free electron and optical high-intensity lasers

    NASA Astrophysics Data System (ADS)

    Karbstein, Felix; Sundqvist, Chantal

    2016-07-01

    Vacuum birefringence is one of the most striking predictions of strong field quantum electrodynamics: Probe photons traversing a strong field region can indirectly sense the applied "pump" electromagnetic field via quantum fluctuations of virtual charged particles which couple to both pump and probe fields. This coupling is sensitive to the field alignment and can effectively result in two different indices of refraction for the probe photon polarization modes giving rise to a birefringence phenomenon. In this article, we perform a dedicated theoretical analysis of the proposed discovery experiment of vacuum birefringence at an x-ray free electron laser/optical high-intensity laser facility. Describing both pump and probe laser pulses realistically in terms of their macroscopic electromagnetic fields, we go beyond previous analyses by accounting for various effects not considered before in this context. Our study facilitates stringent quantitative predictions and optimizations of the signal in an actual experiment.

  15. Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Li, X.; Baker, D. N.; Claudepierre, S. G.; Fennell, J. F.; Blake, J. B.; Larsen, B. A.; Skoug, R. M.; Funsten, H. O.; Friedel, R. H. W.; Reeves, G. D.; Spence, H. E.; Mitchell, D. G.; Lanzerotti, L. J.

    2016-04-01

    Based on comprehensive measurements from Helium, Oxygen, Proton, and Electron Mass Spectrometer Ion Spectrometer, Relativistic Electron-Proton Telescope, and Radiation Belt Storm Probes Ion Composition Experiment instruments on the Van Allen Probes, comparative studies of ring current electrons and ions are performed and the role of energetic electrons in the ring current dynamics is investigated. The deep injections of tens to hundreds of keV electrons and tens of keV protons into the inner magnetosphere occur frequently; after the injections the electrons decay slowly in the inner belt but protons in the low L region decay very fast. Intriguing similarities between lower energy protons and higher-energy electrons are also found. The evolution of ring current electron and ion energy densities and energy content are examined in detail during two geomagnetic storms, one moderate and one intense. The results show that the contribution of ring current electrons to the ring current energy content is much smaller than that of ring current ions (up to ~12% for the moderate storm and ~7% for the intense storm), and <35 keV electrons dominate the ring current electron energy content at the storm main phases. Though the electron energy content is usually much smaller than that of ions, the enhancement of ring current electron energy content during the moderate storm can get to ~30% of that of ring current ions, indicating a more dynamic feature of ring current electrons and important role of electrons in the ring current buildup. The ring current electron energy density is also shown to be higher at midnight and dawn while lower at noon and dusk.

  16. Electron spin resonance scanning probe spectroscopy for ultrasensitive biochemical studies.

    PubMed

    Campbell, Jason P; Ryan, Jason T; Shrestha, Pragya R; Liu, Zhanglong; Vaz, Canute; Kim, Ji-Hong; Georgiou, Vasileia; Cheung, Kin P

    2015-01-01

    Electron spin resonance (ESR) spectroscopy's affinity for detecting paramagnetic free radicals, or spins, has been increasingly employed to examine a large variety of biochemical interactions. Such paramagnetic species are broadly found in nature and can be intrinsic (defects in solid-state materials systems, electron/hole pairs, stable radicals in proteins) or, more often, purposefully introduced into the material of interest (doping/attachment of paramagnetic spin labels to biomolecules of interest). Using ESR to trace the reactionary path of paramagnetic spins or spin-active proxy molecules provides detailed information about the reaction's transient species and the label's local environment. For many biochemical systems, like those involving membrane proteins, synthesizing the necessary quantity of spin-labeled biomolecules (typically 50 pmol to 100 pmol) is quite challenging and often limits the possible biochemical reactions available for investigation. Quite simply, ESR is too insensitive. Here, we demonstrate an innovative approach that greatly enhances ESR's sensitivity (>20000× improvement) by developing a near-field, nonresonant, X-band ESR spectrometric method. Sensitivity improvement is confirmed via measurement of 140 amol of the most common nitroxide spin label in a ≈593 fL liquid cell at ambient temperature and pressure. This experimental approach eliminates many of the typical ESR sample restrictions imposed by conventional resonator-based ESR detection and renders the technique feasible for spatially resolved measurements on a wider variety of biochemical samples. Thus, our approach broadens the pool of possible biochemical and structural biology studies, as well as greatly enhances the analytical power of existing ESR applications. PMID:25867553

  17. Probing concerted proton–electron transfer in phenol–imidazoles

    PubMed Central

    Markle, Todd F.; Rhile, Ian J.; DiPasquale, Antonio G.; Mayer, James M.

    2008-01-01

    A series of seven substituted 4,6-di-tert-butyl-2-(4,5-diarylimidazolyl)-phenols have been prepared and characterized, along with two related benzimidazole compounds. X-ray crystal structures of all of the compounds show that the phenol and imidazole rings are close to coplanar and are connected by an intramolecular ArOH⋯N hydrogen bond. One-electron oxidation of these compounds occurs with movement of the phenolic proton to the imidazole base by concerted proton–electron transfer (CPET) to yield fairly stable distonic radical cations. These phenol–base compounds are a valuable system in which to examine the key features of CPET. Kinetic measurements of bimolecular CPET oxidations, with Erxn between +0.04 and −0.33 V, give rate constants from (6.3 ± 0.6) × 102 to (3.0 ± 0.6) × 106 M−1 s−1. There is a good correlation of log(k) with ΔG°, with only one of the 15 rate constants falling more than a factor of 5.2 from the correlation line. Substituents on the imidazole affect the (O–H⋯N) hydrogen bond, as marked by variations in the 1H NMR and calculated vibrational spectra and geometries. Crystallographic dO⋯N values appear to be more strongly affected by crystal packing forces. However, there is almost no correlation of rate constants with any of these measured or computed parameters. Over this range of compounds from the same structural family, the dominant contributor to the differences in rate constant is the driving force ΔG°. PMID:18212121

  18. Density Functional Theory of Structural and Electronic Properties of III-N Semiconductors

    SciTech Connect

    Guerel, H. Hakan; Akinci, Oezden; Uenlue, Hilmi

    2010-11-01

    In this wok, we present the density functional theory (DFT) calculations of cubic III-N based semiconductors by using the full potential linear augmented plane-wave method plus local orbitals as implemented in the WIEN2k code. Our aim is to predict the pressure effect on structural and electronic properties of III-N binaries and ternaries. Results are given for structural properties (e.g., lattice constant, elastic constants, bulk modulus, and its pressure derivative) and electronic properties (e.g., band structure, density of states, band gaps and band widths) of GaAs, GaN, AlN, and InN binaries and GaAsN ternaries. The proposed model uses GGA exchange-correlation potential to determine band gaps of semiconductors at {Gamma}, L and X high symmetry points of Brillouin zone. The results are found in good agreement with available experimental data for structural and electronic properties of these semiconductors.

  19. The effect of ligand dynamics on heme electronic transition band III in myoglobin.

    PubMed

    Nienhaus, Karin; Lamb, Don C; Deng, Pengchi; Nienhaus, G Ulrich

    2002-02-01

    Band III is a near-infrared electronic transition at ~13,000 cm(-1) in heme proteins that has been studied extensively as a marker of protein conformational relaxation after photodissociation of the heme-bound ligand. To examine the influence of the heme pocket structure and ligand dynamics on band III, we have studied carbon monoxide recombination in a variety of myoglobin mutants after photolysis at 3 K using Fourier transform infrared temperature-derivative spectroscopy with monitoring in three spectral ranges, (1) band III, the mid-infrared region of (2) the heme-bound CO, and (3) the photodissociated CO. Here we present data on mutant myoglobins V68F and L29W, which both exhibit pronounced ligand movements at low temperature. From spectral and kinetic analyses in the mid-infrared, a small number of photoproduct populations can be distinguished, differing in their distal heme pocket conformations and/or CO locations. We have decomposed band III into its individual photoproduct contributions. Each photoproduct state exhibits a different "kinetic hole-burning" (KHB) effect, a coupling of the activation enthalpy for rebinding to the position of band III. The analysis reveals that the heme pocket structure and the photodissociated CO markedly affect the band III transition. A strong kinetic hole-burning effect results only when the CO ligand resides in the docking site on top of the heme group. Migration of CO away from the heme group leads to an overall blue shift of band III. Consequently, band III can be used as a sensitive tool to study ligand dynamics after photodissociation in heme proteins. PMID:11806945

  20. Predicting Stored Grain Insect Population Densities Using an Electronic Probe Trap

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Manual sampling of insects in stored grain is a laborious and time consuming process. Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. A new commercial electronic grain probe trap (OPI Insector™) has recently been marketed. We field tested...

  1. INTEGRATING THE STORED GRAIN ADVISOR PRO EXPERT SYSTEM WITH AN AUTOMATED ELECTRONIC GRAIN PROBE TRAPPING SYSTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Automation of grain sampling should help to increase the adoption of stored-grain integrated pest management. A new commercial electronic grain probe trap (OPI Insector) has recently been marketed. To make accurate insect management decisions, managers need to know both the insect species and number...

  2. The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens.

    PubMed

    Demers, Hendrix; Ramachandra, Ranjan; Drouin, Dominique; de Jonge, Niels

    2012-06-01

    Lateral profiles of the electron probe of scanning transmission electron microscopy (STEM) were simulated at different vertical positions in a micrometers-thick carbon sample. The simulations were carried out using the Monte Carlo method in CASINO software. A model was developed to fit the probe profiles. The model consisted of the sum of a Gaussian function describing the central peak of the profile and two exponential decay functions describing the tail of the profile. Calculations were performed to investigate the fraction of unscattered electrons as a function of the vertical position of the probe in the sample. Line scans were also simulated over gold nanoparticles at the bottom of a carbon film to calculate the achievable resolution as a function of the sample thickness and the number of electrons. The resolution was shown to be noise limited for film thicknesses less than 1 μm. Probe broadening limited the resolution for thicker films. The validity of the simulation method was verified by comparing simulated data with experimental data. The simulation method can be used as quantitative method to predict STEM performance or to interpret STEM images of thick specimens. PMID:22564444

  3. Probing the Earth's magnetosphere with an electron gun

    NASA Astrophysics Data System (ADS)

    Delzanno, Gian Luca; Camporeale, Enrico; Hogan, Erik; Moulton, J. David; Borovsky, Joseph; MacDonald, Elizabeth; Thomsen, Michelle

    2013-10-01

    The ability to unambiguously connect different parts of magnetosphere and ionosphere through magnetic field line tracing is critical to the understanding of the coupling between these two systems. A possible way to achieve this goal could use a magnetospheric spacecraft to emit an energetic electron beam along the local magnetic field and detect the emission optically at the magnetic foot-point in the ionosphere. In this idea it is critical to keep the spacecraft charging under control by emitting a contactor plasma before firing the beam. We present an overview of our effort to tackle this complex problem. We will focus on: (1) the further development of the Particle-In-Cell (PIC) code CPIC used for this study. CPIC couples the standard PIC algorithm with the generation and adaptation of the computational grid; (2) the widely-used static modeling of the contactor plasma and its inadequacy in some parameter regimes; (3) the PIC modeling of the contactor plasma injected across a static magnetic field and the possible development of instabilities at the edges of the contactor cloud, complemented by a simplified linear stability analysis to highlight the physics of these instabilities.

  4. Bioavailability of Fe(III) in Loess Sediments: An Important Source of Electron Acceptors

    SciTech Connect

    Bishop, Michael E.; Jaisi, Deb P.; Dong, Hailiang; Kukkadapu, Ravi K.; Ji, Junfeng

    2010-08-01

    A quantitative study was conducted to understand if Fe (III) in loess sediments is available for microbial respiration by using a common metal reducing bacterium, Shewanella putrefaciens, CN32. The loess samples were collected from three different sites: St. Louis (Peoria), Missouri, USA; Huanxia (HX) and Yanchang (YCH), Shanxi Province of China. Wet chemical analyses indicated that the total Fe concentration for the three samples was 1.69%, 2.76%, and 3.29%, respectively, of which 0.48%, 0.67%, and 1.27% was Fe(III). All unreduced loess sediments contained iron oxides and phyllosilicates (smectite, illite, chlorite, vermiculite), in addition to common minerals such as quartz, feldspar, plagioclase, calcite, and dolomite. Bioreduction experiments were performed at a loess concentration of 20 mg/mL using lactate as the sole electron donor, Fe(III) in loess as the sole electron acceptor in the presence and absence of anthraquinone-2, 6-disulfonate (AQDS) as an electron shuttle. Experiments were performed in non-growth (bicarbonate buffer) and growth (M1) media with a cell concentration of ~2.8 x 107 and 2.1 x 107 cells/mL, respectively. The unreduced and bioreduced solids were analyzed by X-ray diffraction (XRD), Mössbauer spectroscopy, diffuse reflection spectroscopy (DRS), and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) methods. Despite many similarities among the three loess samples, the extent and rate of Fe (III) reduction varied significantly. For example, in presence of AQDS the extent of reduction in the non-growth experiment was 25% in HX, 34% in Peoria, and 38% in YCH. The extent of reduction in the growth experiment was 72% in HX, 94% in Peoria, and 56% in YCH. The extent of bioreduction was lower in absence of AQDS. Overall, AQDS and the M1 growth medium significantly enhanced the rate and extent of bioreduction. Fe(III) in iron oxides and Fe(III)-containing phyllosilicates was bioreduced. Biogenic illite, siderite, and

  5. Quantitative Probes of Electron-Phonon Coupling in an Organic Charge-Transfer Material

    NASA Astrophysics Data System (ADS)

    Rury, Aaron; Sorenson, Shayne; Driscoll, Eric; Dawlaty, Jahan

    While organic charge transfer (CT) materials may provide alternatives to inorganic materials in electronics and photonics applications, properties central to applications remain understudied in these organic materials. Specifically, electron-phonon coupling plays a pivotal role in electronic applications yet this coupling in CT materials remains difficult to directly characterize. To better understand the suitability of organic CT materials for electronic applications, we have devised an experimental technique that can directly assess electron-phonon coupling in a model organic CT material. Upon non-resonant interaction with an ultrafast laser pulse, we show that coherent excitation of Raman-active lattice vibrations of quinhydrone, a 1:1 co-crystal of the hydroquinone and p-benzoquinone, modulates the energies of electronic transitions probed by a white light pulse. Using a well-established theoretical framework of vibrational quantum beat spectra across the probe bandwidth, we quantitatively extract the parameters describing these electronic transitions to characterize electron-phonon coupling in this material. In conjunction with temperature-dependent resonance Raman measurements, we assess the hypothesis that several sharp transitions in the near-IR correspond to previously unknown excitonic states of this material. These results and their interpretation set the foundation for further elucidation of the one of the most important parameters in the application of organic charge-transfer materials to electronics and photonics.

  6. Electronic Structure of Germanium Nanocrystal Films Probed with Synchrotron Radiation

    SciTech Connect

    Bostedt, C

    2002-05-01

    The fundamental structure--property relationship of semiconductor quantum dots has been investigated. For deposited germanium nanocrystals strong quantum confinement effects have been determined with synchrotron radiation based x-ray absorption and photoemission techniques. The nanocrystals are condensed out of the gas phase with a narrow size distribution and subsequently deposited in situ onto various substrates. The particles are crystalline in the cubic phase with a structurally disordered surface shell and the resulting film morphology depends strongly on the substrate material and condition. The disordered surface region has an impact on the overall electronic structure of the particles. In a size-dependent study, the conduction and valence band edge of germanium nanocrystals have been measured for the first time and compared to the bulk crystal. The band edges move to higher energies as the particle size is decreased, consistent with quantum confinement theory. To obtain a more accurate analysis of confinement effects in the empty states, a novel analysis method utilizing an effective particle size for the x-ray absorption experiment, which allows a deconvolution of absorption edge broadening effects, has been introduced. Comparison of the present study to earlier studies on silicon reveals that germanium exhibits stronger quantum confinement effects than silicon. Below a critical particle size of 2.3 {+-} 0.7 nm, the band gap of germanium becomes larger than that of silicon--even if it is the opposite for bulk materials. This result agrees phenomenologically with effective mass and tight binding theories but contradicts the findings of recent pseudopotential calculations. The discrepancy between theory and experiments is attributed to the differences in the theoretical models and experimental systems. The experimentally observed structural disorder of the particle surface has to be included in the theoretical models.

  7. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  8. Sloan Digital Sky Survey III photometric quasar clustering: probing the initial conditions of the Universe

    NASA Astrophysics Data System (ADS)

    Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; Lyons, Richard; Disbrow, Ashley; Seo, Hee-Jong; Ross, Ashley; Hirata, Christopher; Padmanabhan, Nikhil; O'Connell, Ross; Huff, Eric; Schlegel, David; Slosar, Anže; Weinberg, David; Strauss, Michael; Ross, Nicholas P.; Schneider, Donald P.; Bahcall, Neta; Brinkmann, J.; Palanque-Delabrouille, Nathalie; Yèche, Christophe

    2015-05-01

    The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h-3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10-15 on scales corresponding to matter-radiation equality and larger (0l ~ 2-3). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of fNL = -113+154-154 (1σ error). We next assume that the bias of quasar and galaxy distributions can be obtained independently from quasar/galaxy-CMB lensing cross-correlation measurements (such as those in Sherwin et al. (2013)). This can be facilitated by spectroscopic observations of the sources, enabling the redshift distribution to be completely determined, and allowing precise estimates of the bias

  9. A platform for in-situ multi-probe electronic measurements and modification of nanodevices inside a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Xu, T. T.; Ning, Z. Y.; Shi, T. W.; Fu, M. Q.; Wang, J. Y.; Chen, Q.

    2014-06-01

    We developed a new platform that enables in-situ four-probe electronic measurements, in-situ three-probe field-effect measurements, nanomanipulation, and in-situ modification of nanodevices inside a transmission electron microscope (TEM). The platform includes a specially designed chip-holder and a silicon (Si) chip with suspended metal electrodes. The chip-holder can hold one Si chip with a size up to 3 mm × 3 mm and provides four electrical connections that can be connected to the micrometer-sized electrodes on the Si chip by wire-bonding. The other side of the electrical connections on the chip-holder is connected to the electronic instruments outside the TEM through a commercial Nanofactory SPM-TEM holder. The Si chip with suspended metal electrodes on one of its edges was fabricated by lithography and wet etching. Carbon nanotubes (CNTs), InAs nanowires, and tungsten disulfide nanowires were placed to stride over and connect to the suspended electrodes on the Si chip by nanomanipulations inside a scanning electron microscope (SEM). By using the platform, I-V curves of an individual single-walled CNT connecting to four electrodes were in-situ measured between any two of the four suspended electrodes, and a high-resolution TEM image of the same CNT was obtained. Furthermore, four-terminal I-V measurement on an InAs nanowire was achieved on this platform, and with a movable probe used as a gate electrode, field-effect measurement on the same InAs nanowire device was accomplished in SEM. In addition, by using the movable probe on the SPM-TEM holder, we could further in-situ modify nanomaterial and nanodevices. The present work demonstrates a method that allows a direct correlation between the atomic-level structure and the electronic property of nanomaterials or nanodevices whose structure can be further modified in-situ.

  10. Femtomolar level sensing of inorganic arsenic(III) in water and in living-systems using a non-toxic fluorescent probe.

    PubMed

    Dey, Biswajit; Mukherjee, Priyanka; Mondal, Ranjan Kumar; Chattopadhyay, Asoke Prasun; Hauli, Ipsit; Mukhopadhyay, Subhra Kanti; Fleck, Michel

    2014-12-14

    A highly selective femtomolar level sensing of inorganic arsenic(III) as arsenious acid has been accomplished in water medium and in living-systems (on pollen grains of Tecoma stans; Candida albicans cells (IMTECH No. 3018) and Peperomia pellucida stem section) using a non-toxic fluorescent probe of a Cu(II)-complex. PMID:25347547

  11. Electron electric dipole moment as a sensitive probe of PeV scale physics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Tarek; Itani, Ahmad; Nath, Pran

    2014-09-01

    We give a quantitative analysis of the electric dipole moments as a probe of high scale physics. We focus on the electric dipole moment of the electron since the limit on it is the most stringent. Further, theoretical computations of it are free of QCD uncertainties. The analysis presented here first explores the probe of high scales via electron electric dipole moment (EDM) within minimal supersymmetric standard model where the contributions to the EDM arise from the chargino and the neutralino exchanges in loops. Here it is shown that the electron EDM can probe mass scales from tens of TeV into the PeV range. The analysis is then extended to include a vectorlike generation which can mix with the three ordinary generations. Here new CP phases arise and it is shown that the electron EDM now has not only a supersymmetric (SUSY) contribution from the exchange of charginos and neutralinos but also a nonsupersymmetric contribution from the exchange of W and Z bosons. It is further shown that the interference of the supersymmetric and the nonsupersymmetric contribution leads to the remarkable phenomenon where the electron EDM as a function of the slepton mass first falls and become vanishingly small and then rises again as the slepton mass increases. This phenomenon arises as a consequence of cancellation between the SUSY and the non-SUSY contribution at low scales while at high scales the SUSY contribution dies out and the EDM is controlled by the non-SUSY contribution alone. The high mass scales that can be probed by the EDM are far in excess of what accelerators will be able to probe. The sensitivity of the EDM to CP phases both in the SUSY and the non-SUSY sectors are also discussed.

  12. A Fresh Twist on The Electron Microscope: Probing Broken Symmetries at a New Level

    NASA Astrophysics Data System (ADS)

    Idrobo, Juan Carlos

    The introduction of aberration-correction in scanning transmission electron microscopy (STEM) has allowed the realization of Richard Feynman's long sought dream, atom-by-atom structural and elemental identification of materials by simply looking ``at the thing.'' Until now, the goal of aberration-correction in STEM has been to produce the smallest possible electron probes, which essentially corresponds to a near constant phase across the probe. Phases increase the size of electron probes and result in images and spectra with a lower spatial resolution. In this talk, calculations will be presented showing that aberrations in lenses are intrinsic generators of angular momentum, and that phases introduced in atomic-size electron probes can actually be beneficial when studying the symmetry of materials. In particular, examples of mapping magnetic ordering of materials with atomic size electron probes will be shown. Magnetic dichroism is one of the new frontiers where aberration-correction STEM can have a significant impact, and reveal information that is physically out of reach in X-ray and neutron synchrotrons. Current and future limitations in the experiments and requirements to reveal the magnetic moment (orbital and spin), charge ordering, crystal field splitting, spin-orbit-coupling, optical dichroism, and other physical phenomena associated with broken symmetries will be discussed. This research was supported by the Center for Nanophase Materials Sciences (CNMS), which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy. Collaborators: J. Rusz, J. Spiegelberg, M.A. McGuire, C.T. Symons, R.R. Vatsavai, C. Cantoni and A.R. Lupini.

  13. Probing the Quark Sea and Gluons: the Electron-Ion Collider Projects

    SciTech Connect

    Rolf Ent

    2012-04-01

    EIC is the generic name for the nuclear science-driven Electron-Ion Collider presently considered in the US. Such an EIC would be the world’s first polarized electron-proton collider, and the world’s first e-A collider. Very little remains known about the dynamical basis of the structure of hadrons and nuclei in terms of the fundamental quarks and gluons of Quantum Chromodynamics (QCD). A large community effort to sharpen a compelling nuclear science case for an EIC occurred during a ten-week program taking place at the Institute for Nuclear Theory (INT) in Seattle from September 13 to November 19, 2010. The critical capabilities of a stage-I EIC are a range in center-of-mass energies from 20 to 70 GeV and variable, full polarization of electrons and light ions (the latter both longitudinal and transverse), ion species up to A=200 or so, multiple interaction regions, and a high luminosity of about 10{sup 34} electron-nucleons per cm{sup 2} and per second. The physics program of such a stage-I EIC encompass inclusive measurements (ep/A{yields}e'+X), which require detection of the scattered lepon and/or the full scattered hadronic debris with high precision, semi-inclusive processes (ep/A{yields}e'+h+X), which require detection in coincidence with the scattered lepton of at least one (current or target region) hadron; and exclusive processes (ep/A{yields}e'+N'/A'+{gamma}/m), which require detection of all particles in the reaction. The main science themes of an EIC are to i) map the spin and spatial structure of quarks and gluons in nucleons, ii) discover the collective effects of gluons in atomic nuclei, and (iii) understand the emergence of hadronic matter from color charge. In addition, there are opportunities at an EIC for fundamental symmetry and nucleon structure measurements using the electroweak probe. To truly make headway to image the sea quarks and gluons in nucleons and nuclei, the EIC needs high luminosity over a range of energies as more exclusive

  14. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully. PMID:26572843

  15. Measuring the electron density gradients of dense plasmas by deflectometry using short-wavelength probe

    SciTech Connect

    Nejdl, J.; Kozlova, M.; Mocek, T.; Rus, B.

    2010-12-15

    A new and simple experimental technique for the measurement of electron density gradients in dense laser-produced plasmas using an electromagnetic wave probe is presented. The main advantage of this method is the low requirements on coherence of the probing beam. The method is based on measuring the deformation of the Talbot pattern of a two-dimensional grating that stems from the distortion of the probe beam wave-front caused by the gradients of the index of refraction. The compromise between spatial resolution and sensitivity for the given wavelength of the probe beam is set by the experimental design. The proposed technique was experimentally verified on plasmas that were created by either a point focus or a line focus of a laser interacting with various solid targets. In the experiments reported here, all plasmas were probed by a Ne-like Zn x-ray laser beam at 21.2 nm, but the technique is applicable for any wavelength of the probe.

  16. Advances in Ultrafast Control and Probing of Correlated-Electron Materials

    SciTech Connect

    Wall, Simon; Rini, Matteo; Dhesi, Sarnjeet S.; Schoenlein, Robert W.; Cavalleri, Andrea

    2011-02-24

    Here in this paper, we present recent results on ultrafast control and probing of strongly correlated-electron materials. We focus on magnetoresistive manganites, applying excitation and probing wavelengths that cover the mid-IR to the soft X-rays. In analogy with near-equilibrium filling and bandwidth control of phase transitions, our approach uses both visible and mid-IR pulses to stimulate the dynamics by exciting either charges across electronic bandgaps or specific vibrational resonances. Lastly, x-rays are used to unambiguously measure the microscopic electronic, orbital, and structural dynamics. Our experiments dissect and separate the nonequilibrium physics of these compounds, revealing the complex interplay and evolution of spin, lattice, charge, and orbital degrees of freedoms in the time domain.

  17. Automated determination of electron density from electric field measurements on the Van Allen Probes spacecraft

    NASA Astrophysics Data System (ADS)

    Zhelavskaya, Irina; Kurth, William; Spasojevic, Maria; Shprits, Yuri

    2016-07-01

    We present the Neural-network-based Upper-hybrid Resonance Determination (NURD) algorithm for automatic inference of the electron number density from plasma wave measurements made onboard NASA's Van Allen Probes mission. A feedforward neural network is developed to determine the upper hybrid resonance frequency, f_{uhr}, from electric field measurements, which is then used to calculate the electron number density. In previous missions, the plasma resonance bands were manually identified, and there have been few attempts to do robust, routine automated detections. We describe the design and implementation of the algorithm and perform an initial analysis of the resulting electron number density distribution obtained by applying NURD to 2.5 years of data collected with the EMFISIS instrumentation suite of the Van Allen Probes mission. Densities obtained by NURD are compared to those obtained by another recently developed automated technique and also to an existing empirical plasmasphere and trough density model.

  18. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Hachtel, J. A.; Marvinney, C.; Mouti, A.; Mayo, D.; Mu, R.; Pennycook, S. J.; Lupini, A. R.; Chisholm, M. F.; Haglund, R. F.; Pantelides, S. T.

    2016-04-01

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications.

  19. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope.

    PubMed

    Hachtel, J A; Marvinney, C; Mouti, A; Mayo, D; Mu, R; Pennycook, S J; Lupini, A R; Chisholm, M F; Haglund, R F; Pantelides, S T

    2016-04-15

    The nanoscale optical response of surface plasmons in three-dimensional metallic nanostructures plays an important role in many nanotechnology applications, where precise spatial and spectral characteristics of plasmonic elements control device performance. Electron energy loss spectroscopy (EELS) and cathodoluminescence (CL) within a scanning transmission electron microscope have proven to be valuable tools for studying plasmonics at the nanoscale. Each technique has been used separately, producing three-dimensional reconstructions through tomography, often aided by simulations for complete characterization. Here we demonstrate that the complementary nature of the two techniques, namely that EELS probes beam-induced electronic excitations while CL probes radiative decay, allows us to directly obtain a spatially- and spectrally-resolved picture of the plasmonic characteristics of nanostructures in three dimensions. The approach enables nanoparticle-by-nanoparticle plasmonic analysis in three dimensions to aid in the design of diverse nanoplasmonic applications. PMID:26934391

  20. A numerical method for determining highly precise electron energy distribution functions from Langmuir probe characteristics

    SciTech Connect

    Bang, Jin-Young; Chung, Chin-Wook

    2010-12-15

    Electron energy distribution functions (EEDFs) were determined from probe characteristics using a numerical ac superimposed method with a distortion correction of high derivative terms by varying amplitude of a sinusoidal perturbation voltage superimposed onto the dc sweep voltage, depending on the related electron energy. Low amplitude perturbation applied around the plasma potential represented the low energy peak of the EEDF exactly, and high amplitude perturbation applied around the floating potential was effective to suppress noise or distortion of the probe characteristic, which is fatal to the tail electron distribution. When a small random noise was imposed over the stabilized prove characteristic, the numerical differentiation method was not suitable to determine the EEDF, while the numerical ac superimposed method was able to obtain a highly precise EEDF.

  1. Mechanisms for Electron Transfer Through Pili to Fe(III) Oxide in Geobacter

    SciTech Connect

    Lovley, Derek R.

    2015-03-09

    The purpose of these studies was to aid the Department of Energy in its goal of understanding how microorganisms involved in the bioremediation of metals and radionuclides sustain their activity in the subsurface. This information is required in order to incorporate biological processes into decision making for environmental remediation and long-term stewardship of contaminated sites. The proposed research was designed to elucidate the mechanisms for electron transfer to Fe(III) oxides in Geobacter species because Geobacter species are abundant dissimilatory metal-reducing microorganisms in a diversity of sites in which uranium is undergoing natural attenuation via the reduction of soluble U(VI) to insoluble U(IV) or when this process is artificially stimulated with the addition of organic electron donors. This study investigated the novel, but highly controversial, concept that the final conduit for electron transfer to Fe(III) oxides are electrically conductive pili. The specific objectives were to: 1) further evaluate the conductivity along the pili of Geobacter sulfurreducens and related organisms; 2) determine the mechanisms for pili conductivity; and 3) investigate the role of pili in Fe(III) oxide reduction. The studies demonstrated that the pili of G. sulfurreducens are conductive along their length. Surprisingly, the pili possess a metallic-like conductivity similar to that observed in synthetic organic conducting polymers such as polyaniline. Detailed physical analysis of the pili, as well as studies in which the structure of the pili was genetically modified, demonstrated that the metallic-like conductivity of the pili could be attributed to overlapping pi-pi orbitals of aromatic amino acids. Other potential mechanisms for conductivity, such as electron hopping between cytochromes associated with the pili were definitively ruled out. Pili were also found to be essential for Fe(III) oxide reduction in G. metallireducens. Ecological studies demonstrated

  2. Measurement of electron density transients in pulsed RF discharges using a frequency boxcar hairpin probe

    NASA Astrophysics Data System (ADS)

    Peterson, David; Coumou, David; Shannon, Steven

    2015-11-01

    Time resolved electron density measurements in pulsed RF discharges are shown using a hairpin resonance probe using low cost electronics, on par with normal Langmuir probe boxcar mode operation. Time resolution of 10 microseconds has been demonstrated. A signal generator produces the applied microwave frequency; the reflected waveform is passed through a directional coupler and filtered to remove the RF component. The signal is heterodyned with a frequency mixer and rectified to produce a DC signal read by an oscilloscope. At certain points during the pulse, the plasma density is such that the applied frequency is the same as the resonance frequency of the probe/plasma system, creating reflected signal dips. The applied microwave frequency is shifted in small increments in a frequency boxcar routine to determine the density as a function of time. A dc sheath correction is applied for the grounded probe, producing low cost, high fidelity, and highly reproducible electron density measurements. The measurements are made in both inductively and capacitively coupled systems, the latter driven by multiple frequencies where a subset of these frequencies are pulsed. Measurements are compared to previous published results, time resolved OES, and in-line measurement of plasma impedance. This work is supported by the NSF DOE partnership on plasma science, the NSF GOALI program, and MKS Instruments.

  3. 5-Femtosecond Laser-Electron Synchronization for Pump-Probe Crystallography and Diffraction

    NASA Astrophysics Data System (ADS)

    Walbran, Matthew; Gliserin, Alexander; Jung, Kwangyun; Kim, Jungwon; Baum, Peter

    2015-10-01

    For improving the temporal resolution in ultrafast pump-probe electron or x-ray diffraction, we report a laser-electron synchronization concept via direct microwave extraction from the laser frequency comb combined with phase detection by fiber-loop interferometry, in situ drift correction via electron-energy analysis, and laser-electron streaking for final timing metrology. We achieve a laser-electron jitter below 5 fs (rms) integrated between 8 min and Nyquist period (400 ns). Slower drifts are also below 5 fs (rms) after active compensation. This result helps advance femtosecond crystallography with electrons or x rays to the regime of fundamental atomic-scale dynamics and light-matter interaction.

  4. Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond

    NASA Astrophysics Data System (ADS)

    Hall, L. T.; Kehayias, P.; Simpson, D. A.; Jarmola, A.; Stacey, A.; Budker, D.; Hollenberg, L. C. L.

    2016-01-01

    Electron spin resonance (ESR) describes a suite of techniques for characterizing electronic systems with applications in physics, chemistry, and biology. However, the requirement for large electron spin ensembles in conventional ESR techniques limits their spatial resolution. Here we present a method for measuring ESR spectra of nanoscale electronic environments by measuring the longitudinal relaxation time of a single-spin probe as it is systematically tuned into resonance with the target electronic system. As a proof of concept, we extracted the spectral distribution for the P1 electronic spin bath in diamond by using an ensemble of nitrogen-vacancy centres, and demonstrated excellent agreement with theoretical expectations. As the response of each nitrogen-vacancy spin in this experiment is dominated by a single P1 spin at a mean distance of 2.7 nm, the application of this technique to the single nitrogen-vacancy case will enable nanoscale ESR spectroscopy of atomic and molecular spin systems.

  5. Electron dropout echoes induced by interplanetary shock: Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Hao, Y. X.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S. Y.; Rankin, R.; Yuan, C.-J.; Lui, A. T. Y.; Spence, H. E.; Blake, J. B.; Baker, D. N.; Reeves, G. D.

    2016-06-01

    On 23 November 2012, a sudden dropout of the relativistic electron flux was observed after an interplanetary shock arrival. The dropout peaks at ˜1 MeV and more than 80% of the electrons disappeared from the drift shell. Van Allen twin Probes observed a sharp electron flux dropout with clear energy dispersion signals. The repeating flux dropout and recovery signatures, or "dropout echoes", constitute a new phenomenon referred to as a "drifting electron dropout" with a limited initial spatial range. The azimuthal range of the dropout is estimated to be on the duskside, from ˜1300 to 0100 LT. We conclude that the shock-induced electron dropout is not caused by the magnetopause shadowing. The dropout and consequent echoes suggest that the radial migration of relativistic electrons is induced by the strong dusk-dawn asymmetric interplanetary shock compression on the magnetosphere.

  6. Developing a "highway code" to steer the structural and electronic properties of Fe(III)/Dy(III) coordination clusters.

    PubMed

    Chen, Sihuai; Mereacre, Valeriu; Prodius, Denis; Kostakis, George E; Powell, Annie K

    2015-04-01

    In the recently established field of 3d/4f coordination cluster (CC) chemistry several burning questions still need to be addressed. It is clear that combining 3d and 4f metal ions within a coordination cluster core has the potential to lead to electronic structures that will be very difficult to describe but can also be extremely interesting. Furthermore, understanding why certain core topologies seem to be favored is difficult to predict. Here we show that the secondary coordination sphere provided by the ligands influences the favored product, as demonstrated for the compound [Fe4Dy2(μ3-OH)2(n-bdea)4(C6H5CO2)8]·MeCN (1), which has a 2Fe:2Dy:2Fe core and was made using [Fe(III)3O(C6H5)CO2)(L)3](+) as starting material plus Dy(NO3)3 and N-n-butyl-diethanolamine (n-bdeaH2), compared with the compound made using a methyl meta-substituent (R) on the phenyl ring of the benzoate, [Fe(III)3O(C6H4Me)CO2)(L)3](+) as starting material, which resulted in the "square-in-square" compound [Fe4Dy4(μ3-OH)4(n-bdea)4(O2CC6H4CH3)12]·MeCN (2) when using ambient conditions. Changing reaction conditions from ambient to solvothermal leads to "double-propeller" compounds [Fe4Dy4(μ4-O)3(n-bdea)3(C6H5CO2)12]·13MeCN (3) and [Fe4Dy4(μ4-O)3(n-bdea)3(O2CC6H4CH3)12]·MeCN (4) forming with this core, resulting irrespective of the substitution on the iron benzoate starting material. Furthermore, compounds 1 and 2 can be transformed into compounds 3 and 4, respectively, using a solvothermal method. Thus, compounds 3 and 4 appear to be the thermodynamically most stable species. The factors steering the reactions toward these products are discussed. The electronic structures have been investigated using magnetic and Mössbauer studies. All compounds are cooperatively coupled 3d/4f systems, with compound 1 showing single-molecule magnet behavior. PMID:25748725

  7. Tracking 3D Picometer-Scale Motions of Single Nanoparticles with High-Energy Electron Probes

    PubMed Central

    Ogawa, Naoki; Hoshisashi, Kentaro; Sekiguchi, Hiroshi; Ichiyanagi, Kouhei; Matsushita, Yufuku; Hirohata, Yasuhisa; Suzuki, Seiichi; Ishikawa, Akira; Sasaki, Yuji C.

    2013-01-01

    We observed the high-speed anisotropic motion of an individual gold nanoparticle in 3D at the picometer scale using a high-energy electron probe. Diffracted electron tracking (DET) using the electron back-scattered diffraction (EBSD) patterns of labeled nanoparticles under wet-SEM allowed us to super-accurately measure the time-resolved 3D motion of individual nanoparticles in aqueous conditions. The highly precise DET data corresponded to the 3D anisotropic log-normal Gaussian distributions over time at the millisecond scale. PMID:23868465

  8. Probing Electron Correlation via Attosecond xuv Pulses in the Two-Photon Double Ionization of Helium

    SciTech Connect

    Feist, J.; Nagele, S.; Pazourek, R.; Persson, E.; Burgdoerfer, J.; Schneider, B. I.; Collins, L. A.

    2009-08-07

    Recent experimental developments of high-intensity, short-pulse extreme ultraviolet light sources are enhancing our ability to study electron-electron correlations. We perform time-dependent calculations to investigate the so-called 'sequential' regime ((Planck constant/2pi)omega>54.4 eV) in the two-photon double ionization of helium. We show that attosecond pulses allow us not only to probe but also to induce angular and energy correlations of the emitted electrons. The final momentum distribution reveals regions dominated by the Wannier ridge breakup scenario and by postcollision interaction.

  9. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation for Solar Probe Plus

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.; SWEAP Investigation Team

    2010-12-01

    The NASA Solar Probe Plus mission will be humanity’s first direct visit to the atmosphere of our Sun. The spacecraft will close to within nine solar radii (about four million miles) of the solar surface in order to observe the heating of the corona and the acceleration of the solar wind first hand. A key requirement for Solar Probe Plus is the ability to make continuous, accurate, and fast measurements of the electrons and ionized helium (alpha-particles) and hydrogen (protons) that constitute the bulk of the solar wind. The Solar Wind Electrons Alphas and Protons (SWEAP) Investigation is a two-instrument suite that provides these observations. The purpose of this talk is to describe the science motivation for SWEAP, the instrument designs, and the expected data products. SWEAP consists of the Solar Probe Cup (SPC) and the Solar Probe Analyzers (SPAN). SWEAP measurements enable discovery and understanding of solar wind acceleration and formation, coronal and solar wind heating, high-energy particle acceleration, and the interaction between solar wind and the dust environment of the inner heliosphere. SPC is a Faraday Cup (FC) that looks at the Sun and measures ion and electron fluxes and flow angles as a function of energy. SPAN consists of an ion and electron electrostatic analyzer (ESA) on the ram side of SPP (SPAN-A) and an electron ESA on the anti-ram side (SPAN-B). SPAN-A and -B are rotated 90 degrees relative to one another so their broad FOV combine like the seams on a baseball to view the entire sky except for the region obscured by the heat shield. SWEAP data products include ion and electron velocity distribution functions with high energy and angular resolution at 0.5-16 Hz and flow angles and fluxes at 128 Hz. Continuous buffering provides triggered burst observations during shocks, reconnection events, and other transient structures with no changes to the instrument operating mode.

  10. Heptachlor induced mitochondria-mediated cell death via impairing electron transport chain complex III

    SciTech Connect

    Hong, Seokheon; Kim, Joo Yeon; Hwang, Joohyun; Shin, Ki Soon; Kang, Shin Jung

    2013-08-09

    Highlights: •Heptachlor inhibited mitochondrial electron transport chain complex III activity. •Heptachlor promoted generation of reactive oxygen species. •Heptachlor induced Bax activation. •Heptachlor induced mitochondria-mediated and caspase-dependent apoptosis. -- Abstract: Environmental toxins like pesticides have been implicated in the pathogenesis of Parkinson’s disease (PD). Epidemiological studies suggested that exposures to organochlorine pesticides have an association with an increased PD risk. In the present study, we examined the mechanism of toxicity induced by an organochlorine pesticide heptachlor. In a human dopaminergic neuroblastoma SH-SY5Y cells, heptachlor induced both morphological and functional damages in mitochondria. Interestingly, the compound inhibited mitochondrial electron transport chain complex III activity. Rapid generation of reactive oxygen species and the activation of Bax were then detected. Subsequently, mitochondria-mediated, caspase-dependent apoptosis followed. Our results raise a possibility that an organochlorine pesticide heptachlor can act as a neurotoxicant associated with PD.

  11. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents.

    PubMed

    Lo, Kenneth Kam-Wing

    2015-12-15

    Although the interactions of transition metal complexes with biological molecules have been extensively studied, the use of luminescent transition metal complexes as intracellular sensors and bioimaging reagents has not been a focus of research until recently. The main advantages of luminescent transition metal complexes are their high photostability, long-lived phosphorescence that allows time-resolved detection, and large Stokes shifts that can minimize the possible self-quenching effect. Also, by the use of transition metal complexes, the degree of cellular uptake can be readily determined using inductively coupled plasma mass spectrometry. For more than a decade, we have been interested in the development of luminescent transition metal complexes as covalent labels and noncovalent probes for biological molecules. We argue that many transition metal polypyridine complexes display triplet charge transfer ((3)CT) emission that is highly sensitive to the local environment of the complexes. Hence, the biological labeling and binding interactions can be readily reflected by changes in the photophysical properties of the complexes. In this laboratory, we have modified luminescent tricarbonylrhenium(I) and bis-cyclometalated iridium(III) polypyridine complexes of general formula [Re(bpy-R(1))(CO)3(py-R(2))](+) and [Ir(ppy-R(3))2(bpy-R(4))](+), respectively, with reactive functional groups and used them to label the amine and sulfhydryl groups of biomolecules such as oligonucleotides, amino acids, peptides, and proteins. Additionally, using a range of biological substrates such as biotin, estradiol, and indole, we have designed luminescent rhenium(I) and iridium(III) polypyridine complexes as noncovalent probes for biological receptors. The interesting results generated from these studies have prompted us to investigate the possible applications of luminescent transition metal complexes in intracellular systems. Thus, in the past few years, we have developed an interest

  12. Dual-Emissive Cyclometalated Iridium(III) Polypyridine Complexes as Ratiometric Biological Probes and Organelle-Selective Bioimaging Reagents.

    PubMed

    Zhang, Kenneth Yin; Liu, Hua-Wei; Tang, Man-Chung; Choi, Alex Wing-Tat; Zhu, Nianyong; Wei, Xi-Guang; Lau, Kai-Chung; Lo, Kenneth Kam-Wing

    2015-07-01

    In this Article, we present a series of cyclometalated iridium(III) polypyridine complexes of the formula [Ir(N^C)2(N^N)](PF6) that showed dual emission under ambient conditions. The structures of the cyclometalating and diimine ligands were changed systematically to investigate the effects of the substituents on the dual-emission properties of the complexes. On the basis of the photophysical data, the high-energy (HE) and low-energy (LE) emission features of the complexes were assigned to triplet intraligand ((3)IL) and triplet charge-transfer ((3)CT) excited states, respectively. Time-dependent density functional theory (TD-DFT) calculations supported these assignments and indicated that the dual emission resulted from the interruption of the communication between the higher-lying (3)IL and the lower-lying (3)CT states by a triplet amine-to-ligand charge-transfer ((3)NLCT) state. Also, the avidin-binding properties of the biotin complexes were studied by emission titrations, and the results showed that the dual-emissive complexes can be utilized as ratiometric probes for avidin. Additionally, all the complexes exhibited efficient cellular uptake by live HeLa cells. The MTT and Annexin V assays confirmed that no cell death and early apoptosis occurred during the cell imaging experiments. Interestingly, laser-scanning confocal microscopy revealed that the complexes were selectively localized on the cell membrane, mitochondria, or both, depending on the nature of the substituents of the ligands. The results of this work will contribute to the future development of dual-emissive transition metal complexes as ratiometric probes and organelle-selective bioimaging reagents. PMID:26087119

  13. Monitoring the Coherent Vibrational Control of Electronic Excitation Transfer Using Ultrafast Pump-Probe Polarization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Biggs, Jason; Cina, Jeffrey

    2010-03-01

    The interplay between nuclear and electronic degrees of freedom in molecular energy-transfer complexes is a subject of current interest. We have proposed a method to use coherent nuclear motion to control the transfer of electronic excitation energy between donor and acceptor moieties in electronically coupled dimers. The underlying electronic and nuclear motion at the level of quantum mechanical amplitudes can be observed using nonlinear wave-packet interferometry(nl-WPI), a form of fluorescence-detected multidimensional electronic spectroscopy. In our control scheme, coherent nuclear motion is induced in the acceptor chromophore prior to direct electronic excitation of the donor. This nuclear motion affects the instantaneous resonance conditions between donor and acceptor moieties and thus affects subsequent energy transfer dynamics. We have developed the framework to simulate four-pulse nl-WPI experiments, and the pump-probe limit thereof, on energy-transfer systems after interaction with a control pulse that induces nuclear motion. We present simulations in the pump-probe limit from model energy-transfer systems subjected to prior impulsive vibrational excitation, and show how pulse polarization can be used to infer electronic dynamics from isotropically oriented dimers.

  14. Ultrafast probing of transient electric fields from optical field ionized plasmas using picosecond electron deflectometry

    NASA Astrophysics Data System (ADS)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec

    2015-11-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) the applications due to the intrinsic short bunch duration and perfect synchronization with optical pump. Electrons with sub-relativistic (~100 keV) energies can be used to probe transient electric field generated in laser plasmas with very high sensitivity. In a proof-of-principle experiment, we measured field evolution from plasma produced by focusing femtosecond laser pulses into a gas jet at intensities up to 1017 W/cm2. Due to the energy spread in laser plasma generated electrons, dipole magnets are used to record a streaked electron image such that the temporal evolution can be mapped in a single shot. This technique allows for probing irreversible processes such as melting of crystalline samples.

  15. Direct observation of two-electron Ag(I)/Ag(III) redox cycles in coupling catalysis.

    PubMed

    Font, Marc; Acuña-Parés, Ferran; Parella, Teodor; Serra, Jordi; Luis, Josep M; Lloret-Fillol, Julio; Costas, Miquel; Ribas, Xavi

    2014-01-01

    Silver is extensively used in homogeneous catalysis for organic synthesis owing to its Lewis acidity, and as a powerful one-electron oxidant. However, two-electron redox catalytic cycles, which are most common in noble metal organometallic reactivity, have never been considered. Here we show that a Ag(I)/Ag(III) catalytic cycle is operative in model C-O and C-C cross-coupling reactions. An aryl-Ag(III) species is unequivocally identified as an intermediate in the catalytic cycle and we provide direct evidence of aryl halide oxidative addition and C-N, C-O, C-S, C-C and C-halide bond-forming reductive elimination steps at monometallic silver centres. We anticipate our study as the starting point for expanding Ag(I)/Ag(III) redox chemistry into new methodologies for organic synthesis, resembling well-known copper or palladium cross-coupling catalysis. Furthermore, findings described herein provide unique fundamental mechanistic understanding on Ag-catalysed cross-coupling reactions and dismiss the generally accepted conception that silver redox chemistry can only arise from one-electron processes. PMID:25014317

  16. Triple probe signal detection electronics for systems lacking a well defined ground.

    PubMed

    Compeau, R; Gilmore, M; Watts, C

    2008-10-01

    Triple probes have been used to measure plasma parameters of low temperature and edge plasmas, yielding simultaneous measurements of electron temperature, ion density, and floating potential. Unlike standard Langmuir and double probe techniques, there is no requirement to sweep the probe potential relative to the plasma, thus allowing fast time resolution. However, in some plasma systems "ground" is not well defined with respect to a known ground, may vary strongly in time, or may be at an inconveniently high voltage. The resulting high plasma (or floating) potential requires common mode rejection before the signals can be digitized. A signal detection circuit constructed from inexpensive operational amplifiers and that makes use of a novel floating bias generation configuration is described. PMID:19044612

  17. Triple probe signal detection electronics for systems lacking a well defined ground

    SciTech Connect

    Compeau, R.; Gilmore, M.; Watts, C.

    2008-10-15

    Triple probes have been used to measure plasma parameters of low temperature and edge plasmas, yielding simultaneous measurements of electron temperature, ion density, and floating potential. Unlike standard Langmuir and double probe techniques, there is no requirement to sweep the probe potential relative to the plasma, thus allowing fast time resolution. However, in some plasma systems 'ground' is not well defined with respect to a known ground, may vary strongly in time, or may be at an inconveniently high voltage. The resulting high plasma (or floating) potential requires common mode rejection before the signals can be digitized. A signal detection circuit constructed from inexpensive operational amplifiers and that makes use of a novel floating bias generation configuration is described.

  18. Effects of Electronic-State-Dependent Solute Polarizability: Application to Solute-Pump/Solvent-Probe Spectra.

    PubMed

    Sun, Xiang; Ladanyi, Branka M; Stratt, Richard M

    2015-07-23

    Experimental studies of solvation dynamics in liquids invariably ask how changing a solute from its electronic ground state to an electronically excited state affects a solution's dynamics. With traditional time-dependent-fluorescence experiments, that means looking for the dynamical consequences of the concomitant change in solute-solvent potential energy. But if one follows the shift in the dynamics through its effects on the macroscopic polarizability, as recent solute-pump/solvent-probe spectra do, there is another effect of the electronic excitation that should be considered: the jump in the solute's own polarizability. We examine the spectroscopic consequences of this solute polarizability change in the classic example of the solvation dye coumarin 153 dissolved in acetonitrile. After demonstrating that standard quantum chemical methods can be used to construct accurate multisite models for the polarizabilities of ground- and excited-state solvation dyes, we show via simulation that this polarizability change acts as a contrast agent, significantly enhancing the observable differences in optical-Kerr spectra between ground- and excited-state solutions. A comparison of our results with experimental solute-pump/solvent-probe spectra supports our interpretation and modeling of this spectroscopy. We predict, in particular, that solute-pump/solvent-probe spectra should be sensitive to changes in both the solvent dynamics near the solute and the electronic-state-dependence of the solute's own rotational dynamics. PMID:25299940

  19. Soft x-ray spectroscopy for probing electronic and chemical states of battery materials

    NASA Astrophysics Data System (ADS)

    Wanli, Yang; Ruimin, Qiao

    2016-01-01

    The formidable challenge of developing high-performance battery system stems from the complication of battery operations, both mechanically and electronically. In the electrodes and at the electrode-electrolyte interfaces, chemical reactions take place with evolving electron states. In addition to the extensive studies of material synthesis, electrochemical, structural, and mechanical properties, soft x-ray spectroscopy provides unique opportunities for revealing the critical electron states in batteries. This review discusses some of the recent soft x-ray spectroscopic results on battery binder, transition-metal based positive electrodes, and the solid-electrolyte-interphase. By virtue of soft x-ray’s sensitivity to electron states, the electronic property, the redox during electrochemical operations, and the chemical species of the interphases could be fingerprinted by soft x-ray spectroscopy. Understanding and innovating battery technologies need a multimodal approach, and soft x-ray spectroscopy is one of the incisive tools to probe the chemical and physical evolutions in batteries.

  20. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramasesha, Krupa; Leone, Stephen R.; Neumark, Daniel M.

    2016-05-01

    Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions.

  1. Real-Time Probing of Electron Dynamics Using Attosecond Time-Resolved Spectroscopy.

    PubMed

    Ramasesha, Krupa; Leone, Stephen R; Neumark, Daniel M

    2016-05-27

    Attosecond science has paved the way for direct probing of electron dynamics in gases and solids. This review provides an overview of recent attosecond measurements, focusing on the wealth of knowledge obtained by the application of isolated attosecond pulses in studying dynamics in gases and solid-state systems. Attosecond photoelectron and photoion measurements in atoms reveal strong-field tunneling ionization and a delay in the photoemission from different electronic states. These measurements applied to molecules have shed light on ultrafast intramolecular charge migration. Similar approaches are used to understand photoemission processes from core and delocalized electronic states in metal surfaces. Attosecond transient absorption spectroscopy is used to follow the real-time motion of valence electrons and to measure the lifetimes of autoionizing channels in atoms. In solids, it provides the first measurements of bulk electron dynamics, revealing important phenomena such as the timescales governing the switching from an insulator to a metallic state and carrier-carrier interactions. PMID:26980312

  2. Detection and Imaging of Superoxide in Roots by an Electron Spin Resonance Spin-Probe Method

    PubMed Central

    Warwar, Nasim; Mor, Avishai; Fluhr, Robert; Pandian, Ramasamy P.; Kuppusamy, Periannan; Blank, Aharon

    2011-01-01

    The detection, quantification, and imaging of short-lived reactive oxygen species, such as superoxide, in live biological specimens have always been challenging and controversial. Fluorescence-based methods are nonspecific, and electron spin resonance (ESR) spin-trapping methods require high probe concentrations and lack the capability for sufficient image resolution. In this work, a novel (to our knowledge), sensitive, small ESR imaging resonator was used together with a stable spin probe that specifically reacts with superoxide with a high reaction rate constant. This ESR spin-probe-based methodology was used to examine superoxide generated in a plant root as a result of an apical leaf injury. The results show that the spin probe rapidly permeated the plant's extracellular space. Upon injury of the plant tissue, superoxide was produced and the ESR signal decreased rapidly in the injured parts as well as in the distal part of the root. This is attributed to superoxide production and thus provides a means of quantifying the level of superoxide in the plant. The spin probe's narrow single-line ESR spectrum, together with the sensitive imaging resonator, facilitates the quantitative measurement of superoxide in small biological samples, such as the plant's root, as well as one-dimensional imaging along the length of the root. This type of methodology can be used to resolve many questions involving the production of apoplastic superoxide in plant biology. PMID:21943435

  3. Effect of electron temperature fluctuations on slowly swept Langmuir probe measurements

    SciTech Connect

    Rudakov, D.L.; Boedo, J.A.; Moyer, R.A.; Stangeby, P.C.; McLean, A.; Watkins, J.G.

    2004-10-01

    Swept Langmuir probes are widely used to measure electron temperature (T{sub e}) in laboratory plasmas by performing an exponential fit to the measured volt-ampere (I-V) characteristic. Often the probe voltage sweep frequency is much lower than the characteristic frequencies of the plasma fluctuations and a time-averaged I-V characteristic is used for the fit. We show by numerical modeling that in the presence of T{sub e} fluctuations with frequencies well above the voltage sweep frequency this standard technique applied to a swept single probe tends to read higher than the actual time-averaged T{sub e} provided no correlated plasma potential (V{sub p}) fluctuations are present. In the presence of coupled T{sub e} and V{sub p} fluctuations a slowly swept single probe may read either higher or lower than the average T{sub e}, depending on the relative amplitude and phase of the temperature and potential fluctuations. In contrast, swept double probe measurements of T{sub e} are virtually unaffected by either T{sub e} or V{sub p} fluctuations.

  4. Matched dipole probe for precise electron density measurements in magnetized and non-magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-09-01

    We present a plasma diagnostics method based on impedance measurements of a short matched dipole placed in the plasma. This allows measuring the local electron density in the range from 1012-1015 m-3 with a magnetic field of at least 0-50 mT. The magnetic field strength is not directly influencing the data analysis and requires only that the dipole probe is oriented perpendicularly to the magnetic field. As a result, the magnetic field can be non-homogeneous or even non-defined within the probe length without any effect on the final tolerance of the measurements. The method can be applied to plasmas of relatively small dimensions (< 10 cm) and doesn't require any special boundary conditions. The high sensitivity of the impedance measurements is achieved by using a miniature matching system installed close to the probe tip, which also allows to suppress sheath resonance effects. We experimentally show here that the tolerance of the electron density measurements reaches values lower than 1%, both with and without the magnetic field. The method is successfully validated by both analytical modeling and experimental comparison with Langmuir probes. The validation experiments are conducted in a low pressure (1 mTorr) Ar discharge sustained in a 10 cm size plasma chamber with and without a transversal magnetic field of about 20 mT. This work was supported by a Marie Curie International Incoming Fellowships within FP7 (NEPTUNE PIIF-GA-2012-326054).

  5. Langmuir probe diagnostics of plasma in high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P.; Kewlani, H.; Mishra, L.; Mittal, K. C.; Patil, D. S.

    2013-07-15

    A high current Electron Cyclotron Resonance (ECR) proton ion source has been developed for low energy high intensity proton accelerator at Bhabha Atomic Research Centre. Langmuir probe diagnostics of the plasma generated in this proton ion source is performed using Langmuir probe. The diagnostics of plasma in the ion source is important as it determines beam parameters of the ion source, i.e., beam current, emittance, and available species. The plasma parameter measurement in the ion source is performed in continuously working and pulsed mode using hydrogen as plasma generation gas. The measurement is performed in the ECR zone for operating pressure and microwave power range of 10{sup −4}–10{sup −3} mbar and 400–1000 W. An automated Langmuir probe diagnostics unit with data acquisition system is developed to measure these parameters. The diagnostics studies indicate that the plasma density and plasma electron temperature measured are in the range 5.6 × 10{sup 10} cm{sup −3} to 3.8 × 10{sup 11} cm{sup −3} and 4–14 eV, respectively. Using this plasma, ion beam current of tens of mA is extracted. The variations of plasma parameters with microwave power, gas pressure, and radial location of the probe have been studied.

  6. A Miniaturized Plasma Impedance Probe For Ionospheric Absolute Electron Density and Electron-Neutral Collision Frequency Measurements

    NASA Astrophysics Data System (ADS)

    Patra, S.; Rao, A. J.; Jayaram, M.; Hamoui, M. E.; Spencer, E. A.; Winstead, C.

    2008-12-01

    A fully integrated, low power, miniaturized Plasma Impedance Probe (PIP) is developed for small satellite constellation missions to create a map of electron density in the ionosphere. Two alternative methods for deriving plasma parameters from impedance measurements are discussed. The first method employs a frequency sweep technique, while the second employs a pulse based technique. The pulse based technique is a new method that leads to faster measurements. The two techniques necessitate different specifications for the front end analog circuit design. Unlike previous PIP designs, the integrated PIP performs direct voltage/current sampling at the probe's terminal. The signal processing tasks are performed by an off-chip FPGA to compute the impedance of the probe in the surrounding plasma. The new design includes self- calibration algorithms in order to increase the accuracy and reliability of the probe for small satellite constellation missions. A new feature included in this instrument is that the plasma parameters are derived from impedance measurements directly on the FPGA, significantly reducing the bandwith of telemetered data down to ground.

  7. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies.

    PubMed

    Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P

    2012-06-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great

  8. [Anaerobic reduction of humus/Fe (III) and electron transport mechanism of Fontibacter sp. SgZ-2].

    PubMed

    Ma, Chen; Yang, Gui-qin; Lu, Qin; Zhou, Shun-gui

    2014-09-01

    Humus and Fe(III) respiration are important extracellular respiration metabolism. Electron transport pathway is the key issue of extracellular respiration. To understand the electron transport properties and the environmental behavior of a novel Fe(III)- reducing bacterium, Fontibacter sp. SgZ-2, capacities of anaerobic humus/Fe(III) reduction and electron transport mechanisms with four electron acceptors were investigated in this study. The results of anaerobic batch experiments indicated that strain SgZ-2 had the ability to reduce humus analog [ 9,10-anthraquinone-2,6-disulfonic acid (AQDS) and 9,10-anthraquinone-2-sulfonic acid (AQS)], humic acids (HA), soluble Fe(III) (Fe-EDTA and Fe-citrate) and Fe(III) oxides [hydrous ferric oxide (HFO)]. Fermentative sugars (glucose and sucrose) were the most effective electron donors in the humus/Fe(III) reduction by strain SgZ-2. Additionally, differences of electron carrier participating in the process of electron transport with different electron acceptors (i. e. , oxygen, AQS, Fe-EDTA and HFO) were investigated using respiratory inhibitors. The results suggested that similar respiratory chain components were involved in the reducing process of oxygen and Fe-EDTA, including dehydrogenase, quinones and cytochromes b-c. In comparison, only dehydrogenase was found to participate in the reduction of AQS and HFO. In conclusion, different electron transport pathways may be employed by strain SgZ-2 between insoluble and soluble electron acceptors or among soluble electron acceptors. Preliminary models of electron transport pathway with four electron acceptors were proposed for strain SgZ-2, and the study of electron transport mechanism was explored to the genus Fontibacter. All the results from this study are expected to help understand the electron transport properties and the environmental behavior of the genus Fontibacter. PMID:25518675

  9. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    SciTech Connect

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Malka, V.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.

    2013-06-15

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  10. Accurate prediction of electron-paramagnetic-resonance tensors for spin probes dissolved in liquid crystals.

    PubMed

    Benzi, Caterina; Cossi, Maurizio; Barone, Vincenzo

    2005-11-15

    High-level ab initio g and A tensor components have been calculated for PD-tempone and tempo-palmitate (TP) radical spin probes dissolved in n-pentyl and n-hexyl cyanobiphenyl liquid crystals. Solvent effects have been included in the proposed approach by means of the polarizable continuum model, allowing for solvent anisotropy. An in-depth analysis of the electronic structure of probes was performed to choose a suitable model for TP and make the calculations more accessible. Computed magnetic tensor components have been compared with corresponding values measured in the rigid limit. The quality of the results suggests the use of quantum-mechanical data to determine the order parameter of the nematic from experimental electron-spin resonance measurements. PMID:16321115

  11. Probing electron acceleration and x-ray emission in laser-plasma accelerators

    NASA Astrophysics Data System (ADS)

    Thaury, C.; Ta Phuoc, K.; Corde, S.; Brijesh, P.; Lambert, G.; Mangles, S. P. D.; Bloom, M. S.; Kneip, S.; Malka, V.

    2013-06-01

    While laser-plasma accelerators have demonstrated a strong potential in the acceleration of electrons up to giga-electronvolt energies, few experimental tools for studying the acceleration physics have been developed. In this paper, we demonstrate a method for probing the acceleration process. A second laser beam, propagating perpendicular to the main beam, is focused on the gas jet few nanosecond before the main beam creates the accelerating plasma wave. This second beam is intense enough to ionize the gas and form a density depletion, which will locally inhibit the acceleration. The position of the density depletion is scanned along the interaction length to probe the electron injection and acceleration, and the betatron X-ray emission. To illustrate the potential of the method, the variation of the injection position with the plasma density is studied.

  12. Diagnostics principle of microwave cut-off probe for measuring absolute electron density

    SciTech Connect

    Jun, Hyun-Su

    2014-08-15

    A generalized diagnostics principle of microwave cut-off probe is presented with a full analytical solution. In previous studies on the microwave cut-off measurement of weakly ionized plasmas, the cut-off frequency ω{sub c} of a given electron density is assumed to be equal to the plasma frequency ω{sub p} and is predicted using electromagnetic simulation or electric circuit model analysis. However, for specific plasma conditions such as highly collisional plasma and a very narrow probe tip gap, it has been found that ω{sub c} and ω{sub p} are not equal. To resolve this problem, a generalized diagnostics principle is proposed by analytically solving the microwave cut-off condition Re[ε{sub r,eff}(ω = ω{sub c})] = 0. In addition, characteristics of the microwave cut-off condition are theoretically tested for correct measurement of the absolute electron density.

  13. Electron magnetic chiral dichroism in CrO2 thin films using monochromatic probe illumination in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Loukya, B.; Zhang, X.; Gupta, A.; Datta, R.

    2012-11-01

    Electron magnetic chiral dichroism (EMCD) has been studied in CrO2 thin films (with (100) and (110) growth orientations on TiO2 substrates) using a gun monochromator in an aberration corrected transmission electron microscope operating at 300 kV. Excellent signal-to-noise ratio is obtained at spatial resolution ˜10 nm using a monochromatic probe as compared to conventional parallel illumination, large area convergent beam electron diffraction and scanning transmission electron microscopy techniques of EMCD. Relatively rapid exposure using mono probe illumination enables collection of EMCD spectra in total of 8-9 min in energy filtered imaging mode for a given Cr L2,3 energy scan (energy range ˜35 eV). We compared the EMCD signal obtained by extracting the Cr L2,3 spectra under three beam diffraction geometry of two different reciprocal vectors (namely g=110 and 200) and found that the g=200 vector enables acquisition of excellent EMCD signal from relatively thicker specimen area due to the associated larger extinction distance. Orbital to spin moment ratio has been calculated using EMCD sum rules for 3d elements and dichroic spectral features associated with CrO2 are compared and discussed with XMCD theoretical spectra.

  14. Extracellular Electron Transfer to Fe(III) Oxides by the Hyperthermophilic Archaeon Geoglobus ahangari via a Direct Contact Mechanism

    PubMed Central

    Manzella, Michael P.; Reguera, Gemma

    2013-01-01

    The microbial reduction of Fe(III) plays an important role in the geochemistry of hydrothermal systems, yet it is poorly understood at the mechanistic level. Here we show that the obligate Fe(III)-reducing archaeon Geoglobus ahangari uses a direct-contact mechanism for the reduction of Fe(III) oxides to magnetite at 85°C. Alleviating the need to directly contact the mineral with the addition of a chelator or the electron shuttle anthraquinone-2,6-disulfonate (AQDS) stimulated Fe(III) reduction. In contrast, entrapment of the oxides within alginate beads to prevent cell contact with the electron acceptor prevented Fe(III) reduction and cell growth unless AQDS was provided. Furthermore, filtered culture supernatant fluids had no effect on Fe(III) reduction, ruling out the secretion of an endogenous mediator too large to permeate the alginate beads. Consistent with a direct contact mechanism, electron micrographs showed cells in intimate association with the Fe(III) mineral particles, which once dissolved revealed abundant curled appendages. The cells also produced several heme-containing proteins. Some of them were detected among proteins sheared from the cell's outer surface and were required for the reduction of insoluble Fe(III) oxides but not for the reduction of the soluble electron acceptor Fe(III) citrate. The results thus support a mechanism in which the cells directly attach and transfer electrons to the Fe(III) oxides using redox-active proteins exposed on the cell surface. This strategy confers on G. ahangari a competitive advantage for accessing and reducing Fe(III) oxides under the extreme physical and chemical conditions of hot ecosystems. PMID:23728807

  15. Electron probe microanalysis of the chemical elemental content of human follicular fluid.

    PubMed

    Chong, A P; Taymor, M L; Lechene, C P

    1977-05-15

    Follicular fluid samples were obtained by puncturing follicles of ovaries in situ from patients undergoing laparotomy. Sodium, potassium, chloride, magnesium, calcium, phosphorus, and sulfur concentrations measured by electron probe microanalysis were similar to those of blood, with minimal differences. This suggested that culture media in which these electrolytes are added in concentrations similar to those of serum are appropriate for culture of the human oocyte. PMID:855870

  16. Accuracy Evaluation of Electron-Probe Microanalysis as Applied to Semiconductors and Silicates

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Armstrong, John

    2003-01-01

    An evaluation of precision and accuracy will be presented for representative semiconductor and silicate compositions. The accuracy of electron-probe analysis depends on high precision measurements and instrumental calibration, as well as correction algorithms and fundamental parameter data sets. A critical assessment of correction algorithms and mass absorption coefficient data sets can be made using the alpha factor technique. Alpha factor analysis can be used to identify systematic errors in data sets and also of microprobe standards used for calibration.

  17. Polarized pump--probe spectroscopy of electronic excitation transport in photosynthetic antennas

    SciTech Connect

    Struve, W.S. )

    1990-08-01

    Polarized pump--probe spectroscopy was performed with 1.5--2 psec resolution on the bacteriochlorophyll a protein antenna complex from the green sulfur bacterium Prosthecochloris aestuarii and on native and enriched photosystem I particles from spinach. The resulting photobleaching profiles reflect the details of singlet electronic-excitation transport in these photosynthetic antennas, in which the pigments are complexed by proteins into clusters of five or more chromophores.

  18. Selective sensing of submicromolar iron(III) with 3,3‧,5,5‧-tetramethylbenzidine as a chromogenic probe

    NASA Astrophysics Data System (ADS)

    Zhang, Lufeng; Du, Jianxiu

    2016-04-01

    The development of highly selective and sensitive method for iron(III) detection is of great importance both from human health as well as environmental point of view. We herein reported a simple, selective and sensitive colorimetric method for the detection of Fe(III) at submicromolar level with 3,3,‧5,5‧-tetramethylbenzidine (TMB) as a chromogenic probe. It was observed that Fe(III) could directly oxidize TMB to form a blue solution without adding any extra oxidants. The reaction has a stoichiometric ratio of 1:1 (Fe(III)/TMB) as determined by a molar ratio method. The resultant color change can be perceived by the naked eye or monitored the absorbance change at 652 nm. The method allowed the measurement of Fe(III) in the range 1.0 × 10- 7-1.5 × 10- 4 mol L- 1 with a detection limit of 5.5 × 10- 8 mol L- 1. The relative standard deviation was 0.9% for eleven replicate measurements of 2.5 × 10- 5 mol L- 1 Fe(III) solution. The chemistry showed high selectivity for Fe(III) in contrast to other common cation ions. The practically of the method was evaluated by the determination of Fe in milk samples; good consistency was obtained between the results of this method and atomic absorption spectrophotometry as indicated by statistical analysis.

  19. Nonequilibrium Pump–Probe Photoexcitation as a Tool for Analyzing Unoccupied Equilibrium States of Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Yamaji, Youhei; Imada, Masatoshi

    2016-09-01

    Relaxation of electrons in a Hubbard ring coupled to a dissipative bosonic bath is studied to simulate the pump-probe photoemission measurement. From this insight, we propose an experimental method of eliciting the unoccupied part of single-particle spectra at the equilibrium of doped Mott insulators. We reveal first that the effective temperatures of distribution functions and electronic spectra are different during the relaxation, which makes the frequently employed thermalization picture inappropriate. Contrary to the conventional analysis, we show that the unoccupied spectra at equilibrium can be detected as the states that relax faster.

  20. In situ probing of helium desorption from individual nanobubbles under electron irradiation

    SciTech Connect

    David, M.-L.; Pailloux, F.; Mauchamp, V.; Pizzagalli, L.

    2011-04-25

    The understanding of the mechanisms of helium bubble formation and evolution in materials requires the quantitative determination of several key quantities such as the helium density in the bubbles. Helium nanobubbles of about 16 nm in diameter were created in silicon by helium implantation at high fluence and subsequent annealing. Individual nanobubbles were analyzed by spatially resolved Electron Energy-loss Spectroscopy (EELS). We report on the in situ probing of helium desorption from the nanobubbles under electron irradiation. This opens new perspectives for a more accurate determination of the helium density through spatially resolved EELS.

  1. Nonequilibrium Pump–Probe Photoexcitation as a Tool for Analyzing Unoccupied Equilibrium States of Correlated Electrons

    NASA Astrophysics Data System (ADS)

    Yamaji, Youhei; Imada, Masatoshi

    2016-09-01

    Relaxation of electrons in a Hubbard model coupled to a dissipative bosonic bath is studied to simulate the pump-probe photoemission measurement. From this insight, we propose an experimental method of eliciting unoccupied part of the single-particle spectra at the equilibrium of doped-Mott insulators. We reveal first that effective temperatures of distribution functions and electronic spectra are different during the relaxation, which makes the frequently employed thermalization picture inappropriate. Contrary to the conventional analysis, we show that the unoccupied spectra at equilibrium can be detected as the states that relax faster.

  2. Probing flexible conformations in molecular junctions by inelastic electron tunneling spectroscopy

    SciTech Connect

    Deng, Mingsen; Ye, Gui; Jiang, Jun; Cai, Shaohong; Sun, Guangyu

    2015-01-15

    The probe of flexible molecular conformation is crucial for the electric application of molecular systems. We have developed a theoretical procedure to analyze the couplings of molecular local vibrations with the electron transportation process, which enables us to evaluate the structural fingerprints of some vibrational modes in the inelastic electron tunneling spectroscopy (IETS). Based on a model molecule of Bis-(4-mercaptophenyl)-ether with a flexible center angle, we have revealed and validated a simple mathematical relationship between IETS signals and molecular angles. Our results might open a route to quantitatively measure key geometrical parameters of molecular junctions, which helps to achieve precise control of molecular devices.

  3. Probing electron-electron interactions in multilayer epitaxial graphene grown on SiC using temperature-dependent Hall slope

    NASA Astrophysics Data System (ADS)

    Liu, Chieh-I.; Wang, Pengjie; Mi, Jian; Lee, Hsin-Yen; Wang, Yi-Ting; Ho, Yi-Fan; Zhang, Chi; Lin, Xi; Elmquist, Randolph E.; Liang, Chi-Te

    2016-06-01

    We have studied electron-electron (e-e) interactions in multilayer graphene grown on SiC(0001). We find that the observed logarithmic temperature (ln T) dependence of the Hall slope is a good physical quantity for probing e-e interactions since it is not affected by electron-phonon scattering at high temperatures. By subtracting the weak localization correction term, we are able to study e-e interactions independently. It is found that the interaction correction terms determined by two methods, which both show ln T dependences, agree better with each other in the high-temperature regime. Our approach is applicable to other two-dimensional materials which do not have buckled structures.

  4. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse.

    PubMed

    Szlachetko, J; Milne, C J; Hoszowska, J; Dousse, J-Cl; Błachucki, W; Sà, J; Kayser, Y; Messerschmidt, M; Abela, R; Boutet, S; David, C; Williams, G; Pajek, M; Patterson, B D; Smolentsev, G; van Bokhoven, J A; Nachtegaal, M

    2014-03-01

    Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10(-18) s) to femtoseconds (10(-15) s) and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS), we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments. PMID:26798772

  5. Electron Affinity Calculations for Atoms: Sensitive Probe of Many-Body Effects

    NASA Astrophysics Data System (ADS)

    Felfli, Z.; Msezane, A. Z.

    2016-05-01

    Electron-electron correlations and core-polarization interactions are crucial for the existence and stability of most negative ions. Therefore, they can be used as a sensitive probe of many-body effects in the calculation of the electron affinities (EAs) of atoms. The importance of relativistic effects in the calculation of the EAs of atoms has recently been assessed to be insignificant up to Z of 85. Here we use the complex angular momentum (CAM) methodology wherein is embedded fully the electron-electron correlations, to investigate core-polarization interactions in low-energy electron elastic scattering from the atoms In, Sn, Eu, Au and At through the calculation of their EAs. For the core-polarization interaction we use the rational function approximation of the Thomas-Fermi potential, which can be analytically continued into the complex plane. The EAs are extracted from the large resonance peaks in the CAM calculated low-energy electron-atom scattering total cross sections and compared with those from measurements and sophisticated theoretical methods. It is concluded that when the electron-electron correlations and core polarization interactions (both major many-body effects) are accounted for adequately the importance of relativity on the calculation of the EAs of atoms can be assessed. Even for the high Z (85) At atom relativistic effects are estimated to contribute a maximum of 3.6% to its EA calculation.

  6. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    SciTech Connect

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; Reeves, G. D.; Friedel, R. H. W.; Henderson, M. G.; Larsen, B. A.

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energy channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).

  7. Communication: The electronic structure of matter probed with a single femtosecond hard x-ray pulse

    PubMed Central

    Szlachetko, J.; Milne, C. J.; Hoszowska, J.; Dousse, J.-Cl.; Błachucki, W.; Sà, J.; Kayser, Y.; Messerschmidt, M.; Abela, R.; Boutet, S.; David, C.; Williams, G.; Pajek, M.; Patterson, B. D.; Smolentsev, G.; van Bokhoven, J. A.; Nachtegaal, M.

    2014-01-01

    Physical, biological, and chemical transformations are initiated by changes in the electronic configuration of the species involved. These electronic changes occur on the timescales of attoseconds (10−18 s) to femtoseconds (10−15 s) and drive all subsequent electronic reorganization as the system moves to a new equilibrium or quasi-equilibrium state. The ability to detect the dynamics of these electronic changes is crucial for understanding the potential energy surfaces upon which chemical and biological reactions take place. Here, we report on the determination of the electronic structure of matter using a single self-seeded femtosecond x-ray pulse from the Linac Coherent Light Source hard x-ray free electron laser. By measuring the high energy resolution off-resonant spectrum (HEROS), we were able to obtain information about the electronic density of states with a single femtosecond x-ray pulse. We show that the unoccupied electronic states of the scattering atom may be determined on a shot-to-shot basis and that the measured spectral shape is independent of the large intensity fluctuations of the incoming x-ray beam. Moreover, we demonstrate the chemical sensitivity and single-shot capability and limitations of HEROS, which enables the technique to track the electronic structural dynamics in matter on femtosecond time scales, making it an ideal probe technique for time-resolved X-ray experiments. PMID:26798772

  8. A background correction algorithm for Van Allen Probes MagEIS electron flux measurements

    DOE PAGESBeta

    Claudepierre, S. G.; O'Brien, T. P.; Blake, J. B.; Fennell, J. F.; Roeder, J. L.; Clemmons, J. H.; Looper, M. D.; Mazur, J. E.; Mulligan, T. M.; Spence, H. E.; et al

    2015-07-14

    We describe an automated computer algorithm designed to remove background contamination from the Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) electron flux measurements. We provide a detailed description of the algorithm with illustrative examples from on-orbit data. We find two primary sources of background contamination in the MagEIS electron data: inner zone protons and bremsstrahlung X-rays generated by energetic electrons interacting with the spacecraft material. Bremsstrahlung X-rays primarily produce contamination in the lower energy MagEIS electron channels (~30–500 keV) and in regions of geospace where multi-M eV electrons are present. Inner zone protons produce contamination in all MagEIS energymore » channels at roughly L < 2.5. The background-corrected MagEIS electron data produce a more accurate measurement of the electron radiation belts, as most earlier measurements suffer from unquantifiable and uncorrectable contamination in this harsh region of the near-Earth space environment. These background-corrected data will also be useful for spacecraft engineering purposes, providing ground truth for the near-Earth electron environment and informing the next generation of spacecraft design models (e.g., AE9).« less

  9. Low energy electron induced reactions in fluorinated acetamide - probing negative ions and neutral stable counterparts*

    NASA Astrophysics Data System (ADS)

    Kopyra, Janina; König-Lehmann, Constanze; Illenberger, Eugen; Warneke, Jonas; Swiderek, Petra

    2016-06-01

    Electron impact to trifluoroacetamide (CF3CONH2, TFAA) in the energy range 0-12 eV leads to a variety of negative fragment ions which are formed via dissociative electron attachment (DEA). The underlying reactions range from single bond cleavages to remarkably complex reactions that lead to loss of the neutral units HF, H2O and HNCO as deduced from their directly observed ionic counterparts (M - H2O)-, (M - HF)- and (M - HNCO)-. Also formed are the pseudo-halogen ions CN- and OCN-. All these reactions proceed dominantly via a resonance located near 1 eV, i.e., electrons at subexcitation energies trigger reactions involving multiple bond cleavages. The electron induced generation of the neutral molecules HF, H2O and HNCO in condensed TFAA films is probed by temperature controlled thermal desorption spectrometry (TDS) which can be viewed as a complementary techniques to gas-phase experiments in DEA to directly probe the neutral counterparts. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  10. Electronic and optical properties of the group-III nitrides, their heterostructures and alloys

    SciTech Connect

    Lambrecht, W.R.L.; Kim, K.; Rashkeev, S.N.; Segall, B.

    1996-11-01

    Various aspects of the electronic structure of the group III nitrides are discussed. The relation between band structures and optical response in the vacuum ultraviolet is analyzed for zincblende and wurtzite GaN and for wurtzite AlN and compared with available experimental data obtained from reflectivity and spectroscopic ellipsometry. The spin-orbit and crystal field splittings of the valence band edges and their relations to exciton fine structure are discussed including substrate induced biaxial strain effects. The band-offsets between the III-nitrides and some relevant semiconductor substrates obtained within the dielectric midgap energy model are presented and strain effects which may alter these values are discussed. The importance of lattice mismatch in bandgap bowing is exemplified by comparing Al{sub x}Ga{sub 1{minus}x}N and In{sub x}Ga{sub 1{minus}x}N.

  11. Electron impact excitation of the Ne II and Ne III fine structure levels

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Loch, S. D.; Pindzola, M. S.; Cumbee, R.; Stancil, P. C.; Ballance, C. P.; McLaughlin, B. M.

    2016-05-01

    Electron impact excitation cross sections and rate coefficients of the low lying levels of the Ne II and Ne III ions are of great interest in cool molecular environments including young stellar objects, photodissociation regions, active galactic nuclei, and X-ray dominated regions. We have carried out details computations for cross sections and rate coefficients using the Dirac R-matrix codes (DARC), the Breit-Pauli R-matrix codes (BP) and the Intermediate Coupling Frame Transformation (ICFT) codes, for both Ne II and Ne III. We also compare our results with previous calculations. We are primarily interested in rate coefficients in the temperature range below 1000 K, and the focus is on obtaining the most accurate rate coefficients for those temperatures. We present both a recommended set of effective collision strengths and an indication of the uncertainties on these values. Work at Auburn University and UGA partly supported by NASA Grant NNX15AE47G.

  12. Mass Dependence of Iron Isotope Fractionation in Fe(II)-Fe(III) Electron Exchange Equilibration

    NASA Astrophysics Data System (ADS)

    Fujii, Yasuhiko; Kim, Sang-Ho; Nomura, Masao; Kawakami, Fumiaki

    2013-02-01

    A one hundred meter long ion-exchange chromatograph was used to establish rigorously the mass effects in the iron isotope fractionation in the Fe(II)-Fe(III) electron exchange equilibration.We used a highly porous, strongly basic anion exchange resin packed in glass columns. The abundance ratios of all natural iron isotopes, 54Fe, 56Fe, 57Fe, and 58Fe, in the effluent at the iron adsorption band boundary were measured with a mass spectrometer. The enrichment correlations among these isotopes were analyzed by three-isotope plots. The results clearly showed that the isotope fractionation of Fe(II)-Fe(III) is governed by the normal mass effect; the iron isotope fractionation is not proportional to the nuclear size, but proportional to the reduced mass difference of the pair of iron isotopes.

  13. Matched dipole probe for magnetized low electron density laboratory plasma diagnostics

    SciTech Connect

    Rafalskyi, Dmytro; Aanesland, Ane

    2015-07-15

    In this paper, a diagnostic method for magnetized and unmagnetized laboratory plasma is proposed, based on impedance measurements of a short matched dipole. The range of the measured electron densities is limited to low density plasmas (10{sup 12}–10{sup 15 }m{sup −3}), where other diagnostic methods have strong limitations on the magnetic field strength and topology, plasma dimensions, and boundary conditions. The method is designed for use in both large- and small-dimension plasma (<10 cm) without or with strong non-homogeneous magnetic field, which can be undefined within the probe size. The design of a matched dipole probe allows to suppress the sheath resonance effects and to reach high sensitivity at relatively small probe dimensions. Validation experiments are conducted in both magnetized (B ∼ 170 G) and unmagnetized (B = 0) low density (7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3}) low pressure (1 mTorr) 10 cm scale plasmas. The experimentally measured data show very good agreement with an analytical theory both for a non-magnetized and a magnetized case. The electron density measured by the matched dipole and Langmuir probes in the range of 7 × 10{sup 12 }m{sup −3}–7 × 10{sup 13 }m{sup −3} show less than 30% difference. An experimentally measured tolerance/uncertainty of the dipole probe method is estimated to ±1% for plasma densities above 2 × 10{sup 13 }m{sup −3}. A spatial resolution is estimated from the experiments to be about 3d, where d is the dipole diameter. The diagnostic method is also validated by comparing the measured plasma impedance curves with results of analytical modelling.

  14. Probing electron-phonon excitations in molecular junctions by quantum interference

    PubMed Central

    Bessis, C.; Della Rocca, M. L.; Barraud, C.; Martin, P.; Lacroix, J. C.; Markussen, T.; Lafarge, P.

    2016-01-01

    Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction’s conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green’s functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices. PMID:26864735

  15. Probing electron-phonon excitations in molecular junctions by quantum interference.

    PubMed

    Bessis, C; Della Rocca, M L; Barraud, C; Martin, P; Lacroix, J C; Markussen, T; Lafarge, P

    2016-01-01

    Electron-phonon coupling is a fundamental inelastic interaction in condensed matter and in molecules. Here we probe phonon excitations using quantum interference in electron transport occurring in short chains of anthraquinone based molecular junctions. By studying the dependence of molecular junction's conductance as a function of bias voltage and temperature, we show that inelastic scattering of electrons by phonons can be detected as features in conductance resulting from quenching of quantum interference. Our results are in agreement with density functional theory calculations and are well described by a generic two-site model in the framework of non-equilibrium Green's functions formalism. The importance of the observed inelastic contribution to the current opens up new ways for exploring coherent electron transport through molecular devices. PMID:26864735

  16. Characterization of microbially Fe(III)-reduced nontronite: Environmental cell-transmission electron microscopy study

    USGS Publications Warehouse

    Kim, J.-W.; Furukawa, Y.; Daulton, T.L.; Lavoie, D.; Newell, S.W.

    2003-01-01

    Microstructural changes induced by the microbial reduction of Fe(III) in nontronite by Shewanella oneidensis were studied using environmental cell (EC)-transmission electron microscopy (TEM), conventional TEM, and X-ray powder diffraction (XRD). Direct observations of clays by EC-TEM in their hydrated state allowed for the first time an accurate and unambiguous TEM measurement of basal layer spacings and the contraction of layer spacing caused by microbial effects, most likely those of Fe(III) reduction. Non-reduced and Fe(III)-reduced nontronite, observed by EC-TEM, exhibited fringes with mean d001 spacings of 1.50 nm (standard deviation, ?? = 0.08 nm) and 1.26 nm (?? = 0.10 nm), respectively. In comparison, the same samples embedded with Nanoplast resin, sectioned by microtome, and observed using conventional TEM, displayed layer spacings of 1.0-1.1 nm (non-reduced) and 1.0 nm (reduced). The results from Nanoplast-embedded samples are typical of conventional TEM studies, which have measured nearly identical layer spacings regardless of Fe oxidation state. Following Fe(III) reduction, both EC- and conventional TEM showed an increase in the order of nontronite selected area electron diffraction patterns while the images exhibited fewer wavy fringes and fewer layer terminations. An increase in stacking order in reduced nontronite was also suggested by XRD measurements. In particular, the ratio of the valley to peak intensity (v/p) of the 1.7 nm basal 001 peak of ethylene glycolated nontronite was measured at 0.65 (non-reduced) and 0.85 (microbially reduced).

  17. Electron densities for 10 planetary nebulae derived from the semiforbidden C III lambda 1907/1909 ratio. II

    NASA Astrophysics Data System (ADS)

    Feibelman, W. A.; Boggess, A.; McCracken, C. W.; Hobbs, R. W.

    1981-06-01

    Electron densities for IC 351, IC 2165, J900, IC 3568, NGC 6644, NGC 6891, IC 4997, NGC 7009, Hu 1-2, and IC 5217 are derived from high-dispersion semiforbidden C III spectrograms. For seven of these nebulae, the derived electron density is larger than the values derived from either surface brightness measurements or forbidden line ratios. Only one object, Hu 1-2, shows pronounced splitting of the semiforbidden C III emission lines due to a large expansion velocity.

  18. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria.

    PubMed

    Turrens, J F; Alexandre, A; Lehninger, A L

    1985-03-01

    Much evidence indicates that superoxide is generated from O2 in a cyanide-sensitive reaction involving a reduced component of complex III of the mitochondrial respiratory chain, particularly when antimycin A is present. Although it is generally believed that ubisemiquinone is the electron donor to O2, little experimental evidence supporting this view has been reported. Experiments with succinate as electron donor in the presence of antimycin A in intact rat heart mitochondria, which contain much superoxide dismutase but little catalase, showed that myxothiazol, which inhibits reduction of the Rieske iron-sulfur center, prevented formation of hydrogen peroxide, determined spectrophotometrically as the H2O2-peroxidase complex. Similarly, depletion of the mitochondria of their cytochrome c also inhibited formation of H2O2, which was restored by addition of cytochrome c. These observations indicate that factors preventing the formation of ubisemiquinone also prevent H2O2 formation. They also exclude ubiquinol, which remains reduced under these conditions, as the reductant of O2. Since cytochrome b also remains fully reduced when myxothiazol is added to succinate- and antimycin A-supplemented mitochondria, reduced cytochrome b may also be excluded as the reductant of O2. These observations, which are consistent with the Q-cycle reactions, by exclusion of other possibilities leave ubisemiquinone as the only reduced electron carrier in complex III capable of reducing O2 to O2-. PMID:2983613

  19. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    PubMed Central

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; Li, F.; Pai, C.-H.; Wan, Y.; Wu, Y. P.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; Lu, W.

    2016-01-01

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method. PMID:27403561

  20. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    DOE PAGESBeta

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; Li, F.; Pai, C. -H.; Wan, Y.; Wu, Y. P.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; et al

    2016-07-11

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of themore » wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. As a result, the capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.« less

  1. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe.

    PubMed

    Zhang, C J; Hua, J F; Xu, X L; Li, F; Pai, C-H; Wan, Y; Wu, Y P; Gu, Y Q; Mori, W B; Joshi, C; Lu, W

    2016-01-01

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method. PMID:27403561

  2. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    NASA Astrophysics Data System (ADS)

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; Li, F.; Pai, C.-H.; Wan, Y.; Wu, Y. P.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; Lu, W.

    2016-07-01

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.

  3. Electron Density Measurements of a Field-Reversed Configuration Using Fiber Probe Interferometry

    NASA Astrophysics Data System (ADS)

    Camacho, J. F.; Lynn, A. G.; Ruden, E. L.

    2010-11-01

    A HeNe laser interferometer operating at 632.8 nm with two single-mode optical fiber probe beams has been assembled to measure time history of the line-integrated electron density of a field-reversed configuration (FRC) for a magnetized target fusion (MTF) experiment. Our system features probe path lengths many times longer than the reference paths. We have performed simultaneous measurements along two diameters at different axial locations. During plasma formation, translation, and capture tests, the lower probe monitored the formation region, while the upper probe monitored the capture region corresponding to the location of an imploding cylindrical aluminum liner driven by the Shiva Star capacitor bank to compress and heat the FRC plasma. For the actual imploding liner experiment, the upper chord was moved to monitor the translating FRC at the entrance to the liner region. Results from the formation, translation, and capture tests as well as an actual imploding liner experiment will be presented. In addition, interferometer visibility measurements and other factors establishing the viability of our design will be discussed.

  4. Electronic Raman Scattering as an Ultra-Sensitive Probe of Strain Effects in Semiconductors

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Angelo; Fluegel, Brian; Beaton, Dan

    Semiconductor strain engineering has become a critical feature of high-performance electronics due to the significant device performance enhancements it enables. These improvements that emerge from strain induced modifications to the electronic band structure necessitate new ultra-sensitive tools for probing strain in semiconductors. Using electronic Raman scattering, we recently showed that it is possible to measure minute amounts of strain in thin semiconductor epilayers. We applied this strain measurement technique to two different semiconductor alloy systems, using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Comparing our strain sensitivity and signal strength in AlxGa1-xAs with those obtained using the industry-standard technique of phonon Raman scattering we found a sensitivity improvement of ×200, and a signal enhancement of 4 ×103 thus obviating key constraints in semiconductor strain metrology. The sensitivity of this approach rivals that of contemporary techniques and opens up a new realm for optically probing strain effects on electronic band structure. We acknowledge the financial support of the DOE Office of Science, BES under DE-AC36-80GO28308.

  5. Electron Probe Microanalysis of REE in Eudialyte Group Minerals: Challenges and Solutions.

    PubMed

    Atanasova, Petya; Krause, Joachim; Möckel, Robert; Osbahr, Inga; Gutzmer, Jens

    2015-10-01

    Accurate quantification of the chemical composition of eudialyte group minerals (EGM) with the electron probe microanalyzer is complicated by both mineralogical and X-ray-specific challenges. These include structural and chemical variability, mutual interferences of X-ray lines, in particular of the rare earth elements, diffusive volatility of light anions and cations, and instability of EGM under the electron beam. A novel analytical approach has been developed to overcome these analytical challenges. The effect of diffusive volatility and beam damage is shown to be minimal when a square of 20×20 µm is scanned with a beam diameter of 6 µm at the fastest possible speed, while measuring elements critical to electron beam exposure early in the measurement sequence. Appropriate reference materials are selected for calibration considering their volatile content and composition, and supplementary offline overlap correction is performed using individual calibration factors. Preliminary results indicate good agreement with data from laser ablation inductively coupled plasma mass spectrometry demonstrating that a quantitative mineral chemical analysis of EGM by electron probe microanalysis is possible once all the parameters mentioned above are accounted for. PMID:26313878

  6. New global loss model of energetic and relativistic electrons based on Van Allen Probes measurements

    NASA Astrophysics Data System (ADS)

    Orlova, Ksenia; Shprits, Yuri; Spasojevic, Maria

    2016-02-01

    The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) instrument on the Van Allen Probes provides a vast quantity of fully resolved wave measurements below L = 5.5, a critical region for radiation belt acceleration and loss. EMFISIS data show that plasmaspheric hiss waves can be observed at frequencies as low as 20 Hz and provide three-component magnetic field measurements that can be directly used for electron scattering calculations. Updated models of hiss properties based on statistical analysis of Van Allen Probes data were recently developed. We use these new models to compute and parameterize the lifetime of electrons as a function of kinetic energy, L shell, Kp index, and magnetic local time. We present a detailed analysis of the electron lifetime sensitivity to the model of the wave intensity and spectral distribution. We also compare the results with previous models of electron loss, which were based on single-component electric field measurements from the sweep frequency receiver on board the CRRES satellite.

  7. Gradual Diffusion and Punctuated Phase Space Density Enhancements of Highly Relativistic Electrons: Van Allen Probes Observations

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.

    2014-01-01

    The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.

  8. Elemental analysis of asbestos fibers by means of electron probe techniques

    PubMed Central

    Rubin, Ivan B.; Maggiore, Carl J.

    1974-01-01

    The identification and characterization of microparticles has become an important field of study in recent years due to their presence in the environment and association with pathogenesis. Asbestos fibers have been intensively studied for these reasons. Since conventional microscopy has not provided unique identification of these materials, electron probe microanalysis, which yields chemical data, has been utilized in conjunction with other techniques to provide the necessary answers. The options now available to undertake electron probe analysis are discussed with relation to their utilization for microparticle analyses. Two types of electron sources are available, thermionic and field emission. The x-ray spectroscopy requires the use of either wavelength-dispersive focussing crystal spectrometers or an energy-dispersive Si(Li) x-ray detector. Data are presented to demonstrate the feasibility of asbestos identification by using modified raw data obtained with a scanning electron microscope and energy-dispersive x-ray spectrometer. Further, the extension of the technique to other microparticle identification problems is discussed. ImagesFIGURE 1.FIGURE 5. PMID:4470958

  9. Quantitative high resolution electron microscopy of III-V compounds: A fuzzy logic approach

    NASA Astrophysics Data System (ADS)

    Hillebrand, R.; Hofmeister, H.; Werner, P.; Gösele, U.

    1995-09-01

    In the study of interdiffusion phenomena in layered structures of III-V compounds by high resolution electron microscopy, contrast features in the micrographs can be correlated with the variation of the chemical composition of the crystals. For quantitative interpretation of the micrographs a fuzzy logic approach is adapted to extract chemical information. The linguistic variable ``similarity of images'' is derived from the standard deviation (SD) of their difference patterns, which proved to be an appropriate measure. The approach developed is used to analyze simulated contrast tableaus of GaAs/P (As/P variation) and experimental micrographs of Al/GaAs (Al/Ga variation).

  10. Comparison of atom probe tomography and transmission electron microscopy analysis of oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    London, A. J.; Lozano-Perez, S.; Santra, S.; Amirthapandian, S.; Panigrahi, B. K.; Sundar, C. S.; Grovenor, C. R. M.

    2014-06-01

    Oxide dispersion strengthened steels owe part of their high temperature stability to the nano-scale oxides they contain. These yttrium-titanium oxides are notoriously difficult to characterise since they are embedded in a magnetic-ferritic matrix and often <10 nm across. This study uses correlated transmission electron microscopy and atom probe tomography on the same material to explore the kind of information that can be gained on the character of the oxide particles. The influence of chromium in these alloys is of interest, therefore two model ODS steels Fe-(14Cr)-0.2Ti-0.3Y2O3 are compared. TEM is shown to accurately measure the size of the oxide particles and atom probe tomography is necessary to observe the smallest sub-1.5 nm particles. Larger Y2Ti2O7 and Y2TiO5 structured particles were identified by high-resolution transmission electron microscopy, but the smallest oxides remain difficult to index. Chemical data from energy-filtered TEM agreed qualitatively with the atom probe findings. It was found that the majority of the oxide particles exhibit an unoxidised chromium shell which may be responsible for reducing the ultimate size of the oxide particles.

  11. Developing Nuclear Magnetic Resonance Force Microscopy (NMRFM) as an Electronic Probe of Nanoscale Condensed Matter Systems

    NASA Astrophysics Data System (ADS)

    Paster, Jeremy W.; Tennant, Daniel M.; Mozaffari, Shirin; Markert, John T.

    2015-03-01

    The investigation of NMR via magnetic force coupling in a large field gradient has led to vast improvements in spatial resolution over the conventional inductive method. It has been demonstrated that nanoscale force sensors could be scaled to distinguish a single nuclear spin, assuming experimental noise can be minimized and other specious force signatures stifled. Accordingly, there are many efforts aimed at repurposing NMR for 3D imaging on the atomic scale. In addition to proof-of-concept experiments aimed at separately resolving some of the eventual experimental barriers to atomic resolution, some of us have directed our attention to using NMR to probe the electronic environment in larger condensed matter systems which are not well suited for other scanning probe microscopy techniques and which are prohibitively small for inductive NMR detection. Previously, we proposed using NMRFM to probe superconducting transitions in microcrystals. In parallel, we revamped our investigation of thin films to explore two-dimensional conducting interfaces between insulating oxides. Presented here is a survey of the technical impediments as well as current strategies for unlocking this exciting potential for NMRFM, as a tool to investigate sub-surface electronic transport in microscale and nanoscale condensed matter systems.

  12. The Utilization of Spin Polarized Photoelectron Spectroscopy as a Probe of Electron Correlation with an Ultimate Goal of Pu

    SciTech Connect

    Tobin, James; Yu, Sung; Chung, Brandon; Morton, Simon; Komesu, Takashi; Waddill, George

    2008-02-11

    We are developing the technique of spin-polarized photoelectron spectroscopy as a probe of electron correlation with the ultimate goal of resolving the Pu electronic structure controversy. Over the last several years, we have demonstrated the utility of spin polarized photoelectron spectroscopy for determining the fine details of the electronic structure in complex systems such as those shown in the paper.

  13. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

    SciTech Connect

    Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; Clilverd, M.; Rodger, C. J.; Turunen, E.; Tsuchiya, F.

    2015-04-21

    Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometer and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.

  14. Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations

    DOE PAGESBeta

    Miyoshi, Y.; Oyama, S.; Saito, S.; Kurita, S.; Fujiwara, H.; Kataoka, R.; Ebihara, Y.; Kletzing, C.; Reeves, G.; Santolik, O.; et al

    2015-04-21

    Pulsating auroras show quasi-periodic intensity modulations caused by the precipitation of energetic electrons of the order of tens of keV. It is expected theoretically that not only these electrons but also subrelativistic/relativistic electrons precipitate simultaneously into the ionosphere owing to whistler mode wave-particle interactions. The height-resolved electron density profile was observed with the European Incoherent Scatter (EISCAT) Tromsø VHF radar on 17 November 2012. Electron density enhancements were clearly identified at altitudes >68 km in association with the pulsating aurora, suggesting precipitation of electrons with a broadband energy range from ~10 keV up to at least 200 keV. The riometermore » and network of subionospheric radio wave observations also showed the energetic electron precipitations during this period. During this period, the footprint of the Van Allen Probe-A satellite was very close to Tromsø and the satellite observed rising tone emissions of the lower band chorus (LBC) waves near the equatorial plane. Considering the observed LBC waves and electrons, we conducted a computer simulation of the wave-particle interactions. This showed simultaneous precipitation of electrons at both tens of keV and a few hundred keV, which is consistent with the energy spectrum estimated by the inversion method using the EISCAT observations. This result revealed that electrons with a wide energy range simultaneously precipitate into the ionosphere in association with the pulsating aurora, providing the evidence that pulsating auroras are caused by whistler chorus waves. We suggest that scattering by propagating whistler simultaneously causes both the precipitations of subrelativistic electrons and the pulsating aurora.« less

  15. Bipolar Monte Carlo simulation of electrons and holes in III-N LEDs

    NASA Astrophysics Data System (ADS)

    Kivisaari, Pyry; Sadi, Toufik; Oksanen, Jani; Tulkki, Jukka

    2015-03-01

    Recent measurements have generated a need to better understand the physics of hot carriers in III-Nitride (III-N) lightemitting diodes (LEDs) and in particular their relation to the efficiency droop and current transport. In this article we present fully self-consistent bipolar Monte Carlo (MC) simulations of carrier transport for detailed modeling of charge transport in III-N LEDs. The simulations are performed for a prototype LED structure to study the effects of hot holes and to compare predictions given by the bipolar MC model, the previously introduced hybrid Monte Carlo-drift-diffusion (MCDD) model, and the conventional drift-diffusion (DD) model. The predictions given by the bipolar MC model and the MCDD model are observed to be almost equivalent for the studied LED. Therefore our simulations suggest that hot holes do not significantly contribute to the basic operation of multi-quantum well LEDs, at least within the presently simulated range of material parameters. With the added hole transport simulation capabilities and fully self-constistent simulations, the bipolar Monte Carlo model provides a state-of-the-art tool to study the fine details of electron and hole dynamics in realistic LED structures. Further analysis of the results for a variety of LED structures will therefore be very useful in studying and optimizing the efficiency and current transport in next-generation LEDs.

  16. PROBING THE LARGE-SCALE TOPOLOGY OF THE HELIOSPHERIC MAGNETIC FIELD USING JOVIAN ELECTRONS

    SciTech Connect

    Owens, M. J.; Horbury, T. S.; Arge, C. N.

    2010-05-10

    Jupiter's magnetosphere acts as a point source of near-relativistic electrons within the heliosphere. In this study, three solar cycles of Jovian electron data in near-Earth space are examined. Jovian electron intensity is found to peak for an ideal Parker spiral connection, but with considerable spread about this point. Assuming the peak in Jovian electron counts indicates the best magnetic connection to Jupiter, we find a clear trend for fast and slow solar wind to be over- and under-wound with respect to the ideal Parker spiral, respectively. This is shown to be well explained in terms of solar wind stream interactions. Thus, modulation of Jovian electrons by corotating interaction regions (CIRs) may primarily be the result of changing magnetic connection, rather than CIRs acting as barriers to cross-field diffusion. By using Jovian electrons to remote sensing magnetic connectivity with Jupiter's magnetosphere, we suggest that they provide a means to validate solar wind models between 1 and 5 AU, even when suitable in situ solar wind observations are not available. Furthermore, using Jovian electron observations as probes of heliospheric magnetic topology could provide insight into heliospheric magnetic field braiding and turbulence, as well as any systematic under-winding of the heliospheric magnetic field relative to the Parker spiral from footpoint motion of the magnetic field.

  17. Electron thermalization in gases. III. Epithermal electron scavenging in rare gases

    NASA Astrophysics Data System (ADS)

    Mozumder, A.

    1981-06-01

    Earlier work on electron thermalization in rare gases by the author [J. Chem. Phys. 72, 1657 (1980); 72, 6289 (1980)] has been extended to include electron scavenging by an attaching compound present as a minor component. While the cooling rate for the surviving fraction proceeds as in the pure gas, the scavenging rate is calculated using a time-dependent velocity distribution function and a velocity-dependent attachment cross section. For the last mentioned item, functions decreasing with a certain power of velocity specific to a given scavenger have been experimentally found by Christophorou and co-workers; the same are used with analytical extension. In general, epithermal scavenging has been found to be ubiquitous and time dependent. It depends mainly on the thermalization time, relative scavenger concentration, temperature, and thermal attachment cross section. Relative scavenger effectiveness has been found to be temperature dependent. In a simple case autodetachment has been included in the calculation using SF6 as an example. Both attachment and detachment compete with thermalization, the equilibrium being established only in the postthermal regime. To ensure purely thermal reactions in a rare gas such as Ar, which has the longest thermalization time of all the rare gases, purification from reactive scavengers must be carried to the level of 1 ppb (part per billion) or better. For other rare gases the requirement may be less stringent.

  18. Probe-based measurement of lateral single-electron transfer between individual molecules.

    PubMed

    Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard

    2015-01-01

    The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques. PMID:26387533

  19. Probe-based measurement of lateral single-electron transfer between individual molecules

    NASA Astrophysics Data System (ADS)

    Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard

    2015-09-01

    The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques.

  20. Analysis of Electron Temperature in DC Ar/SF6 Plasma Using Cylindrical and Planar Probes

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Woo; Cho, Soon-Gook; Bae, Min-Keun; Kim, Hyung-Jin; Chung, Tae Hun; Chung, Kyu-Sun

    2013-11-01

    Electronegative plasmas are generated by adding SF6 gas to a background argon (Ar) DC plasma with parameters of n0 = 1×1010 cm3 and Te = 2 eV. The heating current of the thoriated filament was in the range of 20.5-21.5 A and the plasmas were generated under a discharge condition of 100 V/0.4 A. The amount of negative ions was controlled by adjusting the ratio of flow rate of SF6 = 0-10% to that of Ar. Plasma parameters were measured using cylindrical and planar electric probes. The behavior of electrons, which means the change in a parameter due to negative ion production, is characterized by measuring the floating and plasma potentials, and electron temperature. Electron temperature seems to increase and the potentials decrease with SF6 flow rate.

  1. Optical Probing of Ultrafast Electronic Decay in Bi and Sb with Slow Phonons

    NASA Astrophysics Data System (ADS)

    Li, J. J.; Chen, J.; Reis, D. A.; Fahy, S.; Merlin, R.

    2013-01-01

    Illumination with laser sources leads to the creation of excited electronic states of particular symmetries, which can drive isosymmetric vibrations. Here, we use a combination of ultrafast stimulated and cw spontaneous Raman scattering to determine the lifetime of A1g and Eg electronic coherences in Bi and Sb. Our results both shed new light on the mechanisms of coherent phonon generation and represent a novel way to probe extremely fast electron decoherence rates. The Eg state, resulting from an unequal distribution of carriers in three equivalent band regions, is extremely short lived. Consistent with theory, the lifetime of its associated driving force reaches values as small as 2 (6) fs for Bi (Sb) at 300 K.

  2. Fiber optic probe of free electron evanescent fields in the optical frequency range

    SciTech Connect

    So, Jin-Kyu MacDonald, Kevin F.; Zheludev, Nikolay I.

    2014-05-19

    We introduce an optical fiber platform which can be used to interrogate proximity interactions between free-electron evanescent fields and photonic nanostructures at optical frequencies in a manner similar to that in which optical evanescent fields are sampled using nanoscale aperture probes in scanning near-field microscopy. Conically profiled optical fiber tips functionalized with nano-gratings are employed to couple electron evanescent fields to light via the Smith-Purcell effect. We demonstrate the interrogation of medium energy (30–50 keV) electron fields with a lateral resolution of a few micrometers via the generation and detection of visible/UV radiation in the 700–300 nm (free-space) wavelength range.

  3. Probe-based measurement of lateral single-electron transfer between individual molecules

    PubMed Central

    Steurer, Wolfram; Fatayer, Shadi; Gross, Leo; Meyer, Gerhard

    2015-01-01

    The field of molecular electronics aims at using single molecules as functional building blocks for electronics components, such as switches, rectifiers or transistors. A key challenge is to perform measurements with atomistic control over the alignment of the molecule and its contacting electrodes. Here we use atomic force microscopy to examine charge transfer between weakly coupled pentacene molecules on insulating films with single-electron sensitivity and control over the atomistic details. We show that, in addition to the imaging capability, the probe tip can be used to control the charge state of individual molecules and to detect charge transfers to/from the tip, as well as between individual molecules. Our approach represents a novel route for molecular charge transfer studies with a host of opportunities, especially in combination with single atom/molecule manipulation and nanopatterning techniques. PMID:26387533

  4. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    DOE PAGESBeta

    Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-05-28

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We also applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Thus, comparing our strain sensitivity and signal strength inmore » AlxGa 1-x As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology.« less

  5. Probing of electronic structures of La@C82 superatoms upon clustering realized using glycine nanocavities

    NASA Astrophysics Data System (ADS)

    Taninaka, Atsushi; Ochiai, Takahiro; Kanazawa, Ken; Takeuchi, Osamu; Shigekawa, Hidemi

    2015-12-01

    We have succeeded in the first direct probe of the change in the electronic structures of La@C82 superatoms upon clustering by scanning tunneling microscopy/spectroscopy (STM/STS). An array of ∼1.3-nm-diameter glycine nanocavities self-assembled on a Cu(111) surface was used as a template. Isolated La@C82 superatoms were stably observed on terraces without diffusion to step edges, which enabled us to observe the change in the electronic structures associated with single, dimer, and clustered La@C82. A cluster with four La@C82 superatoms showed electronic structures similar to those obtained for thin films in previous works.

  6. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    PubMed Central

    Fluegel, Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-01-01

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10−4. Comparing our strain sensitivity and signal strength in AlxGa1−xAs with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology. PMID:26017853

  7. Atom probe and field emission electron spectroscopy studies of semiconductor films on metals

    NASA Astrophysics Data System (ADS)

    Ashino, Makoto; Tomitori, Masahiko; Nishikawa, Osamu

    1995-03-01

    The surface morphology and the electronic states of Ge overlayers deposited on Ir-and Mo-tips were investigated by a combined instrument of an atom probe (AP) and a field emission electron spectroscope (FEES). The overlayers were deposited on the tips while observing field emission microscope (FEM) images of the surfaces. The FEM images of thin Ge overlayers on the Ir-tips show layer-like structures. In field emission electron distribution (FEED) of a Ge overlayer on the Ir-tip, about 5 ML thick, an energy gap near the Fermi level was clearly widened by low temperature annealing. After the thickness was reduced to 3 ML by field evaporation, the energy gap still remained wide. The FEEDs of the Ge overlayers on the Mo-tips exhibit several peaks distinct from those on the Ir-tip. This may be attributed to the local strong electric field surrounding the Ge clusters formed on the Mo-tips.

  8. Calculation of the electron structure of vacancies and their compensated states in III-VI semiconductors

    SciTech Connect

    Mehrabova, M. A. Madatov, R. S.

    2011-08-15

    The Green's functions theory and the bond-orbital model are used as a basis for calculations of the electron structure of local defects-specifically, vacancies and their compensated states in III-VI semiconductors. The energy levels in the band gap are established, and the changes induced in the electron densities in the GaS, GaSe, and InSe semiconductors by anion and cation vacancies and their compensated states are calculated. It is established that, if a vacancy is compensated by an atom of an element from the same subgroup with the same tetrahedral coordination and if the ionic radius of the compensating atom is smaller than that of the substituted atom, the local levels formed by the vacancy completely disappear. It is shown that this mechanism of compensation of vacancies provides a means not only for recovering the parameters of the crystal, but for improving the characteristics of the crystal as well.

  9. Runaway electron damage to the Tore Supra Phase III outboard pump limiter

    SciTech Connect

    Nygren, R.; Lutz, T.; Walsh, D.; Martin, G.; Chatelier, M.; Loarer, T.; Guilhem, D.

    1996-08-01

    Operation of the Phase III outboard pump limiter (OPL) in Tore Supra in 1994 was terminated prematurely when runaway electrons during the current decay following a disruption pierced leading edge tube on the electron side and caused a water leak. The location, about 20 mm outside the last closed flux surface during normal operation, and the infrared (IR) images of the limiter indicate that the runaways moved in large outward steps, i.e. tens of millimeters, in one toroidal revolution. For plasma (runaway) currents in the range of 155 to 250 kA, the drift orbits open to the outside. Basic trajectory computations suggest that such motion is possible under the conditions present for this experiment. Activation measurements made on sections of the tube to indicate the area of local damage are presented here. An understanding of this event may provide important guidance regarding the potential damage from runaways in future tokamaks.

  10. Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond

    PubMed Central

    Hall, L. T.; Kehayias, P.; Simpson, D. A.; Jarmola, A.; Stacey, A.; Budker, D.; Hollenberg, L. C. L.

    2016-01-01

    Electron spin resonance (ESR) describes a suite of techniques for characterizing electronic systems with applications in physics, chemistry, and biology. However, the requirement for large electron spin ensembles in conventional ESR techniques limits their spatial resolution. Here we present a method for measuring ESR spectra of nanoscale electronic environments by measuring the longitudinal relaxation time of a single-spin probe as it is systematically tuned into resonance with the target electronic system. As a proof of concept, we extracted the spectral distribution for the P1 electronic spin bath in diamond by using an ensemble of nitrogen-vacancy centres, and demonstrated excellent agreement with theoretical expectations. As the response of each nitrogen-vacancy spin in this experiment is dominated by a single P1 spin at a mean distance of 2.7 nm, the application of this technique to the single nitrogen-vacancy case will enable nanoscale ESR spectroscopy of atomic and molecular spin systems. PMID:26728001

  11. Van Allen Probes observations linking radiation belt electrons to chorus waves during 2014 multiple storms

    NASA Astrophysics Data System (ADS)

    Liu, Si; Xiao, Fuliang; Yang, Chang; He, Yihua; Zhou, Qinghua; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.; Blake, J. B.; Baker, D. N.; Wygant, J. R.

    2015-02-01

    During 18 February to 2 March 2014, the Van Allen Probes encountered multiple geomagnetic storms and simultaneously observed intensified chorus and hiss waves. During this period, there were substantial enhancements in fluxes of energetic (53.8-108.3 keV) and relativistic (2-3.6 MeV) electrons. Chorus waves were excited at locations L = 4-6.2 after the fluxes of energetic were greatly enhanced, with a lower frequency band and wave amplitudes ˜20-100 pT. Strong hiss waves occurred primarily in the main phases or below the location L = 4 in the recovery phases. Relativistic electron fluxes decreased in the main phases due to the adiabatic (e.g., the magnetopause shadowing) or nonadiabatic (hiss-induced scattering) processes. In the recovery phases, relativistic electron fluxes either increased in the presence of enhanced chorus or remained unchanged in the absence of strong chorus or hiss. The observed relativistic electron phase space density peaked around L∗ = 4.5, characteristic of local acceleration. This multiple-storm period reveals a typical picture that chorus waves are excited by the energetic electrons at first and then produce efficient acceleration of relativistic electrons. This further demonstrates that the interplay between both competing mechanisms of chorus-driven acceleration and hiss-driven scattering often occurs in the outer radiation belts.

  12. Spectroscopic and Theoretical Study of Spin-Dependent Electron Transfer in an Iron(III) Superoxo Complex.

    PubMed

    Stout, Heather D; Kleespies, Scott T; Chiang, Chien-Wei; Lee, Way-Zen; Que, Lawrence; Münck, Eckard; Bominaar, Emile L

    2016-06-01

    It was shown previously (J. Am. Chem. Soc. 2014, 136, 10846) that bubbling of O2 into a solution of Fe(II)(BDPP) (H2BDPP = 2,6-bis[[(S)-2-(diphenylhydroxymethyl)-1-pyrrolidinyl]methyl]pyridine) in tetrahydrofuran at -80 °C generates a high-spin (SFe = (5)/2) iron(III) superoxo adduct, 1. Mössbauer studies revealed that 1 is an exchange-coupled system, [Formula: see text], where SR = (1)/2 is the spin of the superoxo radical, of which the spectra were not well enough resolved to determine whether the coupling was ferromagnetic (S = 3 ground state) or antiferromagnetic (S = 2). The glass-forming 2-methyltetrahydrofuran solvent yields highly resolved Mössbauer spectra from which the following data have been extracted: (i) the ground state of 1 has S = 3 (J < 0); (ii) |J| > 15 cm(-1); (iii) the zero-field-splitting parameters are D = -1.1 cm(-1) and E/D = 0.02; (iv) the major component of the electric-field-gradient tensor is tilted ≈7° relative to the easy axis of magnetization determined by the MS = ±3 and ±2 doublets. The excited-state MS = ±2 doublet yields a narrow parallel-mode electron paramagnetic resonance signal at g = 8.03, which was used to probe the magnetic hyperfine splitting of (17)O-enriched O2. A theoretical model that considers spin-dependent electron transfer for the cases where the doubly occupied π* orbital of the superoxo ligand is either "in" or "out" of the plane defined by the bent Fe-OO moiety correctly predicts that 1 has an S = 3 ground state, in contrast to the density functional theory calculations for 1, which give a ground state with both the wrong spin and orbital configuration. This failure has been traced to a basis set superposition error in the interactions between the superoxo moiety and the adjacent five-membered rings of the BDPP ligand and signals a fundamental problem in the quantum chemistry of O2 activation. PMID:27159412

  13. Non-invasive probe diagnostic method for electron temperature and ion current density in atmospheric pressure plasma jet source

    SciTech Connect

    Kim, Young-Cheol; Kim, Yu-Sin; Lee, Hyo-Chang; Moon, Jun-Hyeon; Chung, Chin-Wook; Kim, Yunjung; Cho, Guangsup

    2015-08-15

    The electrical probe diagnostics are very hard to be applied to atmospheric plasmas due to severe perturbation by the electrical probes. To overcome this, the probe for measuring electron temperature and ion current density is indirectly contacted with an atmospheric jet source. The plasma parameters are obtained by using floating harmonic analysis. The probe is mounted on the quartz tube that surrounds plasma. When a sinusoidal voltage is applied to a probe contacting on a quartz tube, the electrons near the sheath at dielectric tube are collected and the probe current has harmonic components due to probe sheath nonlinearity. From the relation of the harmonic currents and amplitude of the sheath voltage, the electron temperature near the wall can be obtained with collisional sheath model. The electron temperatures and ion current densities measured at the discharge region are in the ranges of 2.7–3.4 eV and 1.7–5.2 mA/cm{sup 2} at various flow rates and input powers.

  14. On modified finite difference method to obtain the electron energy distribution functions in Langmuir probes

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Ju; Choi, Hyeok; Kim, Jae-Hyun; Lee, Se-Hun; Yoo, Tae-Ho; Chung, Chin-Wook

    2016-06-01

    A modified central difference method (MCDM) is proposed to obtain the electron energy distribution functions (EEDFs) in single Langmuir probes. Numerical calculation of the EEDF with MCDM is simple and has less noise. This method provides the second derivatives at a given point as the weighted average of second order central difference derivatives calculated at different voltage intervals, weighting each by the square of the interval. In this paper, the EEDFs obtained from MCDM are compared to those calculated via the averaged central difference method. It is found that MCDM effectively suppresses the noises in the EEDF, while the same number of points are used to calculate of the second derivative.

  15. Matter under extreme conditions probed by a seeded free-electron-laser

    NASA Astrophysics Data System (ADS)

    Bencivenga, F.; Principi, E.; Giangrisostomi, E.; Battistoni, A.; Cucini, R.; Danailov, M. B.; Demidovich, A.; Di Cicco, A.; D'Amico, F.; Di Fonzo, S.; Filipponi, A.; Gessini, A.; Gunnella, R.; Hatada, K.; Kurdi, N.; Mahne, N.; Mincigrucci, R.; Raimondi, L.; Svetina, C.; Zangrando, M.; Masciovecchio, C.

    2015-08-01

    FERMI is the first user dedicated seeded free-electron-laser (FEL) working in the extreme ultraviolet (XUV) and soft x-ray range. The EIS-TIMEX experimental end-station was availabe to external users since from the beginning of the user operation of the facility, in Dicember 2012. EIS-TIMEX has been conceived to exploit the unique properties of the FERMI source to study matter under extreme and metastable thermodynamic conditions. We hereby report on its basic parameters and applications, which includes very low jitter (i.e., high time resolution) pump-probe measurements.

  16. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  17. Matter under extreme conditions probed by a seeded free-electron-laser

    SciTech Connect

    Bencivenga, F.; Principi, E.; Cucini, R.; Danailov, M. B.; Demidovich, A.; D’Amico, F.; Di Fonzo, S.; Gessini, A.; Kurdi, N.; Mahne, N.; Raimondi, L.; Zangrando, M.; Masciovecchio, C.; Giangrisostomi, E.; Battistoni, A.; Svetina, C.; Di Cicco, A.; Gunnella, R.; Hatada, K.; Filipponi, A.; and others

    2015-08-17

    FERMI is the first user dedicated seeded free-electron-laser (FEL) working in the extreme ultraviolet (XUV) and soft x-ray range. The EIS-TIMEX experimental end-station was availabe to external users since from the beginning of the user operation of the facility, in Dicember 2012. EIS-TIMEX has been conceived to exploit the unique properties of the FERMI source to study matter under extreme and metastable thermodynamic conditions. We hereby report on its basic parameters and applications, which includes very low jitter (i.e., high time resolution) pump-probe measurements.

  18. Improvements in Electron-Probe Microanalysis: Applications to Terrestrial, Extraterrestrial, and Space-Grown Materials

    NASA Technical Reports Server (NTRS)

    Carpenter, Paul; Armstrong, John

    2004-01-01

    Improvement in the accuracy of electron-probe microanalysis (EPMA) has been accomplished by critical assessment of standards, correction algorithms, and mass absorption coefficient data sets. Experimental measurement of relative x-ray intensities at multiple accelerating potential highlights errors in the absorption coefficient. The factor method has been applied to the evaluation of systematic errors in the analysis of semiconductor and silicate minds. Accurate EPMA of Martian soil stimulant is necessary in studies that build on Martian rover data in anticipation of missions to Mars.

  19. ZnO(0001) surfaces probed by scanning tunneling spectroscopy: Evidence for an inhomogeneous electronic structure

    NASA Astrophysics Data System (ADS)

    Dumont, J.; Hackens, B.; Faniel, S.; Mouthuy, P.-O.; Sporken, R.; Melinte, S.

    2009-09-01

    The stability of the polar Zn-terminated ZnO surface is probed by low-temperature scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Surface states in the bandgap of ZnO are evidenced by STS and their presence is correlated with the local surface corrugation. Very defective surface regions are characterized by a bulk electronic structure showing a wide bandgap while nanometer-scale defect free regions exhibit a narrower bandgap and surface states. We also image atomically resolved (√3 ×√3 )R30° reconstructions on the defect-free areas.

  20. Variation of Langmuir wave polarization with electron beam speed in type III radio bursts

    SciTech Connect

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E.

    2013-06-13

    Observations by the twin STEREO spacecraft of in-situ electric field waveforms and radio signatures associated with type III radio bursts have demonstrated that the polarization of electron beam-driven waves near the local plasma frequency depends strongly on the speed of the driving electron beam. We expand upon a previous study by including all radio bursts with in-situ waveforms observed by STEREO in 2011. The expanded data set contains five times more radio bursts (35 up from 7) and three times as many Langmuir waves (663 up from 168). While this expanded study supports the results of the original study, that faster (slower) beam electrons drive waves with strong (weak) electric fields perpendicular to the local magnetic field, the larger data set emphasizes that the observation of strong perpendicular electric fields at high electron beam speeds is probabilistic rather than definite. This property supports the interpretation of wave polarization dependence on beam speed as Langmuir/z-mode waves shifted to small wave number through interaction with turbulent solar wind density fluctuations.

  1. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors

    NASA Astrophysics Data System (ADS)

    Wanunu, Meni; Dadosh, Tali; Ray, Vishva; Jin, Jingmin; McReynolds, Larry; Drndić, Marija

    2010-11-01

    Small RNA molecules have an important role in gene regulation and RNA silencing therapy, but it is challenging to detect these molecules without the use of time-consuming radioactive labelling assays or error-prone amplification methods. Here, we present a platform for the rapid electronic detection of probe-hybridized microRNAs from cellular RNA. In this platform, a target microRNA is first hybridized to a probe. This probe:microRNA duplex is then enriched through binding to the viral protein p19. Finally, the abundance of the duplex is quantified using a nanopore. Reducing the thickness of the membrane containing the nanopore to 6 nm leads to increased signal amplitudes from biomolecules, and reducing the diameter of the nanopore to 3 nm allows the detection and discrimination of small nucleic acids based on differences in their physical dimensions. We demonstrate the potential of this approach by detecting picogram levels of a liver-specific miRNA from rat liver RNA.

  2. A sensitive charge scanning probe based on silicon single electron transistor

    NASA Astrophysics Data System (ADS)

    Lina, Su; Xinxing, Li; Hua, Qin; Xiaofeng, Gu

    2016-04-01

    Single electron transistors (SETs) are known to be extremely sensitive electrometers owing to their high charge sensitivity. In this work, we report the design, fabrication, and characterization of a silicon-on-insulator-based SET scanning probe. The fabricated SET is located about 10 μm away from the probe tip. The SET with a quantum dot of about 70 nm in diameter exhibits an obvious Coulomb blockade effect measured at 4.1 K. The Coulomb blockade energy is about 18 meV, and the charge sensitivity is in the order of 10‑5‑10‑3 e/Hz1/2. This SET scanning probe can be used to map charge distribution and sense dynamic charge fluctuation in nanodevices or circuits under test, realizing high sensitivity and high spatial resolution charge detection. Project supported by the Instrument Developing Project of the Chinese Academy of Sciences (No. YZ201152), the National Natural Science Foundation of China (No. 11403084), the Fundamental Research Funds for Central Universities (Nos. JUSRP51510, JUDCF12032), and the Graduate Student Innovation Program for Universities of Jiangsu Province (No. CXLX12_0724).

  3. Improvement of the Harmonic Technique of Probe for Measurements of Electron Temperature and Ion Density

    NASA Astrophysics Data System (ADS)

    Bai, Yujing; Li, Jianquan; Xu, Jun; Lu, Wenqi; Wang, Younian; Ding, Wanyu

    2016-01-01

    Conventional Langmuir probe techniques usually face the difficulty of being used in processing plasmas where dielectric compounds form, due to rapid failure by surface insulation. A solution to the problem, the so-called harmonic probe technique, had been proposed and shown effectiveness. In this study, the technique was investigated in detail by changing bias signal amplitudes V0, and evaluated its accuracy by comparing with the conventional Langmuir probe. It was found that the measured electron temperature Te increased with V0, but showing a relatively stable region when V0 > Te/e in which it was close to the true Te value. This is contrary to the general consideration that V0 should be smaller than Te/e for accurate measurement of Te. The phenomenon is interpreted by the non-negligible change of the ion current with V0 at low V0 values. On the other hand, the measured ni also increased with V0 due to the sheath expansion, and to improve the accuracy of ni it needs to linearly extrapolate the ni-V0 trend to V0=0. The results were applied to a diagnosis of the plasmas for chemical vapor deposition of diamond-like carbon thin films and the relationship between plasma parameters and films deposition rates was obtained.

  4. Theoretical and experimental study of the microwave cut-off probe for electron density measurements in low-temperature plasmas

    SciTech Connect

    Li Bin; Li Hong; Wang Huihui; Xie Jinlin; Liu Wandong

    2011-10-01

    The microwave cut-off probe for the electron density measurement in low-temperature plasmas is described in this article. It is based on the wave cutoff in an unmagnetized plasma. The measurement principle is analyzed theoretically using a model of plasma slab. Because of the high-pass characteristic of plasma, the waves above the cut-off frequency can penetrate the plasma slab, whereas the lower frequency waves are reflected from the cut-off layer. Therefore, an obvious critical point can be observed in the wave transmission spectrum. The abscissa of the critical point indicates the cut-off frequency, which is directly related to the maximum electron density between transmitting/receiving antennas of the cut-off probe. The measured electron densities are in agreement with the data obtained by the Langmuir probe. Experimental results show that the microwave cut-off probe can be used to diagnose the plasmas with a wide range of parameters.

  5. Physics, fabrication and characterization of III-V multi-gate FETs for low power electronics

    NASA Astrophysics Data System (ADS)

    Thathachary, Arun V.

    With transistor technology close to its limits for power constrained scaling and the simultaneous emergence of mobile devices as the dominant driver for new scaling, a pathway to significant reduction in transistor operating voltage to 0.5V or lower is urgently sought. This however implies a fundamental paradigm shift away from mature Silicon technology. III-V compound semiconductors hold great promise in this regard due to their vastly superior electron transport properties making them prime candidates to replace Silicon in the n-channel transistor. Among the plethora of binary and ternary compounds available in the III-V space, InxGa1-xAs alloys have attracted significant interest due to their excellent electron mobility, ideally placed bandgap and mature growth technology. Simultaneously, electrostatic control mandates multigate transistor designs such as the FinFET at extremely scaled nodes. This dissertation describes the experimental realization of III-V FinFETs incorporating InXGa1-XAs heterostructure channels for high performance, low power logic applications. The chapters that follow present experimental demonstrations, simulations and analysis on the following aspects (a) motivation and key figures of merit driving material selection and design; (b) dielectric integration schemes for high-k metal-gate stack (HKMG) realization on InXGa 1-XAs, including surface clean and passivation techniques developed for high quality interfaces; (c) novel techniques for transport (mobility) characterization in nanoscale multi-gate FET architectures with experimental demonstration on In0.7Ga0.3As nanowires; (d) Indium composition and quantum confined channel design for InXGa 1-XAs FinFETs and (e) InAs heterostructure designs for high performance FinFETs. Each chapter also contains detailed benchmarking of results against state of the art demonstrations in Silicon and III-V material systems. The dissertation concludes by assessing the feasibility of InXGa 1-XAs Fin

  6. STRUCTURAL ANALYSIS OF ALTERNATIVE COMPLEX III IN THE PHOTOSYNTHETIC ELECTRON TRANSFER CHAIN OF CHLOROFLEXUS AURANTIACUS

    PubMed Central

    Gao, Xinliu; Xin, Yueyong; Bell, Patrick D.; Wen, Jianzhong; Blankenship, Robert E.

    2010-01-01

    The green photosynthetic bacterium Chloroflexus aurantiacus, which belongs to the phylum of filamentous anoxygenic phototrophs, does not contain a cytochrome bc or bf type complex as is found in all other known groups of phototrophs. This suggests that a functional replacement exists to link the reaction center photochemistry to cyclic electron transfer as well as respiration. Earlier work identified a potential substitute of the cytochrome bc complex, now named alternative complex III (ACIII), which has been purified, identified and characterized from C. aurantiacus. ACIII functions as a menaquinol:auracyanin oxidoreductase in the photosynthetic electron transfer chain, and a related but distinct complex functions in respiratory electron flow to a terminal oxidase. In this work, we focus on elucidating the structure of the photosynthetic ACIII. We found that AC III is an integral-membrane protein complex of around 300 kDa that consists of 8 subunits of 7 different types. Among them, there are 4 metalloprotein subunits, including a 113 kDa iron-sulfur cluster-containing polypeptide, a 25 kDa penta-heme c-containing subunit and two 20 kDa mono-heme c-containing subunits in the form of a homodimer. A variety of analytical techniques were employed in determining the ACIII substructure, including HPLC combined with ESI-MS, metal analysis, potentiometric titration and intensity analysis of heme-staining SDS-PAGE. A preliminary structural model of the ACIII complex is proposed based on the analytical data and chemical cross-linking in tandem with mass analysis using MALDI-TOF, as well as transmembrane and transit peptide analysis. PMID:20614874

  7. Role of "electron shuttles" in the bioreduction of Fe(III) oxides in humid forest tropical soils.

    NASA Astrophysics Data System (ADS)

    Peretyazhko, T.; Sposito, G.

    2004-12-01

    Dissimilatory iron-reducing bacteria (DIRB) can reduce Fe(III) oxides either by direct contact between the organisms and the oxide surface or by indirect mechanisms not involving contact. These latter mechanisms can include (i) "electron shuttling" or (ii) soluble Fe(III) complexation with subsequent reduction. In the presence of humic substances, indirect Fe(III) reduction occurs, particularly by mechanism (i). Important electron-accepting groups in humic substances include quinone moieties, complexed Fe(III) and conjugated aromatic moieties. A model compound frequently used to study mechanism (i) is anthraquinone-2,6-disulfonate (AQDS), which is believed to function as an "electron shuttle" in a manner similar to humic substances. We are currently investigating Fe(III) reduction in humid tropical forest soils as affected by "electron shuttles," using AQDS and humic substances in our experiments. The soil samples were collected at the bottom of a toposequence in the Luquillo Experimental Forest, Puerto Rico. Development of anaerobic conditions in these soils occurs due to high precipitation and runoff water inputs. Fourteen-day anoxic incubations of soil suspensions amended with AQDS showed enhanced production of both soluble and particulate forms of Fe(II) as compared to non-amended soil suspensions. Our data indicated clearly that DIRB in the soil could utilize added "electron shuttles" effectively to reduce Fe(III). To examine factors controlling Fe(III) reduction by humic acid (HA), three IHSS HA samples (soil, peat and Leonardite) were both abiotically reduced by H2 treatment and microbially reduced by incubation with a filtrate from a soil suspension, then titrated with three different oxidants (iodine, cyanoferrate, and ferric citrate) to provide chemical and biological estimates of electron-accepting capacity at pH 5 and 7. The results will be discussed in terms of the three oxidants used, the properties of the HA samples, pH, and the effects of chemical

  8. Probing the electronic states and impurity effects in black phosphorus vertical heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Wang, Lin; Wu, Yingying; Gao, Heng; Wu, Yabei; Qin, Guanhua; Wu, Zefei; Han, Yu; Xu, Shuigang; Han, Tianyi; Ye, Weiguang; Lin, Jiangxiazi; Long, Gen; He, Yuheng; Cai, Yuan; Ren, Wei; Wang, Ning

    2016-03-01

    Atomically thin black phosphorus (BP) is a promising two-dimensional material for fabricating electronic and optoelectronic nano-devices with high mobility and tunable bandgap structures. However, the charge-carrier mobility in few-layer phosphorene (monolayer BP) is mainly limited by the presence of impurity and disorders. In this study, we demonstrate that vertical BP heterostructure devices offer great advantages in probing the electron states of monolayer and few-layer phosphorene at temperatures down to 2 K through capacitance spectroscopy. Electronic states in the conduction and valence bands of phosphorene are accessible over a wide range of temperature and frequency. Exponential band tails have been determined to be related to disorders. Unusual phenomena such as the large temperature-dependence of the electron state population in few-layer phosphorene have been observed and systematically studied. By combining the first-principles calculation, we identified that the thermal excitation of charge trap states and oxidation-induced defect states were the main reasons for this large temperature dependence of the electron state population and degradation of the on-off ratio in phosphorene field-effect transistors.

  9. Probing interfacial electron dynamics with time-resolved X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Neppl, Stefan

    2015-05-01

    Time-resolved core-level spectroscopy techniques using laser pulses to initiate and short X-ray pulses to probe photo-induced processes have the potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics at complex interfaces. We describe the implementation of femto- and picosecond time-resolved photoelectron spectroscopy at the Linac Coherent Light Source (LCLS) and at the Advanced Light Source (ALS) in order to follow light-driven electron dynamics at dye-semiconductor interfaces on femto- to nanosecond timescales, and from the perspective of individual atomic sites. A distinct transient binding-energy shift of the Ru3d photoemission lines originating from the metal centers of N3 dye-molecules adsorbed on nanoporous ZnO is observed 500 fs after resonant HOMO-LUMO excitation with a visible laser pulse. This dynamical chemical shift is accompanied by a characteristic surface photo-voltage response of the semiconductor substrate. The two phenomena and their correlation will be discussed in the context of electronic bottlenecks for efficient interfacial charge-transfer and possible charge recombination and relaxation pathways leading to the neutralization of the transiently oxidized dye following ultrafast electron injection. First steps towards in operando time-resolved X-ray absorption spectroscopy techniques to monitor interfacial chemical dynamics will be presented.

  10. Optimal dielectric and cavity configurations for improving the efficiency of electron paramagnetic resonance probes.

    PubMed

    Elnaggar, Sameh Y; Tervo, Richard; Mattar, Saba M

    2014-08-01

    An electron paramagnetic resonance (EPR) spectrometer's lambda efficiency parameter (Λ) is one of the most important parameters that govern its sensitivity. It is studied for an EPR probe consisting of a dielectric resonator (DR) in a cavity (CV). Expressions for Λ are derived in terms of the probe's individual DR and CV components, Λ1 and Λ2 respectively. Two important cases are considered. In the first, a probe consisting of a CV is improved by incorporating a DR. The sensitivity enhancement depends on the relative rather than the absolute values of the individual components. This renders the analysis general. The optimal configuration occurs when the CV and DR modes are nearly degenerate. This configuration guarantees that the probe can be easily coupled to the microwave bridge while maintaining a large Λ. It is shown that for a lossy CV with a small quality factor Q2, one chooses a DR that has the highest filling factor, η1, regardless of its Λ1 and Q1. On the other hand, if the CV has a large Q2, the optimum DR is the one which has the highest Λ1. This is regardless of its η1 and relative dielectric constant, ɛr. When the quality factors of both the CV and DR are comparable, the lambda efficiency is reduced by a factor of 2. Thus the signal intensity for an unsaturated sample is cut in half. The second case is the design of an optimum shield to house a DR. Besides preventing radiation leakage, it is shown that for a high loss DR, the shield can actually boost Λ above the DR value. This can also be very helpful for relatively low efficiency dielectrics as well as lossy samples, such as polar liquids. PMID:24937043

  11. Deducing fast electron density changes in randomly orientated uncrystallized biomolecules in a pump-probe experiment.

    PubMed

    Pande, K; Schwander, P; Schmidt, M; Saldin, D K

    2014-07-17

    We propose a method for deducing time-resolved structural changes in uncrystallized biomolecules in solution. The method relies on measuring the angular correlations of the intensities, when averaged over a large number of diffraction patterns from randomly oriented biomolecules in solution in a liquid solvent. The experiment is somewhat like a pump-probe version of an experiment on small angle X-ray scattering, except that the data expected by the algorithm are not just the radial variation of the averaged intensities. The differences of these correlation functions as measured from a photoexcited and dark structure enable the direct calculation of the difference electron density with a knowledge of only the dark structure. We exploit a linear relation we derive between the difference in these correlation functions and the difference electron density, applicable for small structural changes. PMID:24914159

  12. Deducing fast electron density changes in randomly orientated uncrystallized biomolecules in a pump–probe experiment

    PubMed Central

    Pande, K.; Schwander, P.; Schmidt, M.; Saldin, D. K.

    2014-01-01

    We propose a method for deducing time-resolved structural changes in uncrystallized biomolecules in solution. The method relies on measuring the angular correlations of the intensities, when averaged over a large number of diffraction patterns from randomly oriented biomolecules in solution in a liquid solvent. The experiment is somewhat like a pump–probe version of an experiment on small angle X-ray scattering, except that the data expected by the algorithm are not just the radial variation of the averaged intensities. The differences of these correlation functions as measured from a photoexcited and dark structure enable the direct calculation of the difference electron density with a knowledge of only the dark structure. We exploit a linear relation we derive between the difference in these correlation functions and the difference electron density, applicable for small structural changes. PMID:24914159

  13. Diagnostics of Fast Electrons within Castor Tokamak by Means of a Modified Cherenkov-Type Probe

    SciTech Connect

    Zebrowski, J.; Jakubowski, L.; Sadowski, M. J.; Malinowski, K.; Jakubowski, M.; Weinzettl, V.; Stockel, J.; Peterka, M.

    2008-03-19

    The paper reports on experimental studies performed within the CASTOR tokamak, which was operated at IPP in Prague, Czech Republic, during the last experimental campaign carried out in autumn 2006. The main aim was to implement a new diagnostic technique for measurements of energetic (>80 keV) electrons within the tokamak edge plasma region. The technique was based on the use of a Cherenkov-type probe similar to the first prototype detector, which was tested during the previous experiments with the CASTOR device. In particular, the distributions of fast electrons in a standard scenario at different values of plasma current I{sub p}, and toroidal magnetic field B{sub T} are determined.

  14. Electron Emission as a Probe of Plastic Deformation in Single Crystal Metals

    SciTech Connect

    J. Thomas Dickinson

    2007-09-28

    Work under this grant focused on the use of photoelectron emission as a probe of deformation processes in metals, principally single crystal and polycrystalline aluminum. Dislocations intersecting the surface produce patches of low work function metal which emit electrons when illuminated with the appropriate ultraviolet radiation. We have shown that changes in the photoemission signals during deformation can be used to identify the onset of strain localization. In some systems, the photoelectron kinetic energy distribution reflects the distribution of surface orientations, which depends on the competition between grain rotation and slip. Photoemission electron microscope images of shape memory alloys and thin films show marked changes in intensity and surface topography as the materal passes through its transition temperature. Photoelectron emission provides important information on the temporal progress of deformation processes that complements the spatial information provided by other techniques.

  15. Atom-probe and field emission electron spectroscope studies of Ge on Ir

    NASA Astrophysics Data System (ADS)

    Ashino, Makoto; Tomitori, Masahiko; Nishikawa, Osamu

    1993-04-01

    The combination of an atom-probe (AP) and a field emission electron spectroscope (FEES) was employed to investigate the electronic structure of Ge layers on an Ir substrate. Germanium forms a thin film with a fairly uniform thickness, possibly owing to a small activation energy for diffusion on Ir or the lattice matching between Ge and Ir. The FEES spectrum obtained from Ge layers thicker than 8-9 ML exhibits a semiconductive energy gap and a peak at 0.7 eV below the Fermi level as for Si on Mo. However, the minimum layer thickness to exhibit the semiconductive spectrum profile is significantly thicker than that for Si on Mo. The observed difference could be attributed to the layer structure of the deposited Ge and to the narrower energy gap of Ge than that of Si.

  16. Postvaccinal sarcomas in the cat: epidemiology and electron probe microanalytical identification of aluminum

    SciTech Connect

    Hendrick, M.J.; Goldschmidt, M.H.; Shofer, F.S.; Wang, Y.Y.; Somlyo, A.P. )

    1992-10-01

    An increase in fibrosarcomas in a biopsy population of cats in the Pennsylvania area appears to be related to the increased vaccination of cats following enactment of a mandatory rabies vaccination law. The majority of fibrosarcomas arose in sites routinely used by veterinarians for vaccination, and 42 of 198 tumors were surrounded by lymphocytes and macrophages containing foreign material identical to that previously described in postvaccinal inflammatory injection site reactions. Some of the vaccines used have aluminum-based adjuvants, and macrophages surrounding three tumors contained aluminum oxide identified by electron probe microanalysis and imaged by energy-filtered electron microscopy. Persistence of inflammatory and immunological reactions associated with aluminum may predispose the cat to a derangement of its fibrous connective tissue repair response, leading to neoplasia.

  17. III-V compound semiconductors for mass-produced nano-electronics: theoretical studies on mobility degradation by dislocation

    NASA Astrophysics Data System (ADS)

    Hur, Ji-Hyun; Jeon, Sanghun

    2016-02-01

    As silicon-based electronics approach the limit of scaling for increasing the performance and chip density, III-V compound semiconductors have started to attract significant attention owing to their high carrier mobility. However, the mobility benefits of III-V compounds are too easily accepted, ignoring a harmful effect of unavoidable threading dislocations that could fundamentally limit the applicability of these materials in nanometer-scale electronics. In this paper, we present a theoretical model that describes the degradation of carrier mobility by charged dislocations in quantum-confined III-V semiconductor metal oxide field effect transistors (MOSFETs). Based on the results, we conclude that in order for III-V compound MOSFETs to outperform silicon MOSFETs, Fermi level pinning in the channel should be eliminated for yielding carriers with high injection velocity.

  18. Carbon dot cluster as an efficient "off-on" fluorescent probe to detect Au(III) and glutathione.

    PubMed

    Gu, Jiangjiang; Hu, Donghua; Wang, Weina; Zhang, Qiuhong; Meng, Zhen; Jia, Xudong; Xi, Kai

    2015-06-15

    In this paper, we reported for the first time that Au(III) decorated carbon dot cluster (Au(III)/CDC) was synthesized to detect glutathione through fluorescence "off-on" approach. The "off" process was realized by the introduction of Au(III) on luminescent carbon dots (CDs), which formed the complex of Au(III)/CDC and quenched the fluorescence of CDs efficiently. This "off" process was used to detect Au(III) with the selectivity among 21 metal ions and the limitation was 0.48 μM (S/N=3). Au(III) could be removed from the complex by biothiol in the solution, which restored the fluorescence of CDC to achieve the "on" process. This process was selective for biothiols (especially for glutathione) among saccharides, dopamine and amino acids and the limit of detection was 2.02 μM (S/N=3). Due to the dependence of the fluorescence restoration on the concentration of glutathione, Au(III)/CDC was applied as the fluorescence sensor for detection of glutathione in the solution and cellular cytosol. By referring to the fluorescence change in the solution, the intracellular glutathione with/without oxygen stress was evaluated. As compared with the commercial assay, our Au(III)/CDC based assay was simple, facile and low cost, which would be useful to measure intracellular glutathione at different cellular states. PMID:25558871

  19. Measurement of total calcium in neurons by electron probe X-ray microanalysis.

    PubMed

    Pivovarova, Natalia B; Andrews, S Brian

    2013-01-01

    In this article the tools, techniques, and instruments appropriate for quantitative measurements of intracellular elemental content using the technique known as electron probe microanalysis (EPMA) are described. Intramitochondrial calcium is a particular focus because of the critical role that mitochondrial calcium overload plays in neurodegenerative diseases. The method is based on the analysis of X-rays generated in an electron microscope (EM) by interaction of an electron beam with the specimen. In order to maintain the native distribution of diffusible elements in electron microscopy specimens, EPMA requires "cryofixation" of tissue followed by the preparation of ultrathin cryosections. Rapid freezing of cultured cells or organotypic slice cultures is carried out by plunge freezing in liquid ethane or by slam freezing against a cold metal block, respectively. Cryosections nominally 80 nm thick are cut dry with a diamond knife at ca. -160 °C, mounted on carbon/pioloform-coated copper grids, and cryotransferred into a cryo-EM using a specialized cryospecimen holder. After visual survey and location mapping at ≤-160 °C and low electron dose, frozen-hydrated cryosections are freeze-dried at -100 °C for ~30 min. Organelle-level images of dried cryosections are recorded, also at low dose, by means of a slow-scan CCD camera and subcellular regions of interest selected for analysis. X-rays emitted from ROIs by a stationary, focused, high-intensity electron probe are collected by an energy-dispersive X-ray (EDX) spectrometer, processed by associated electronics, and presented as an X-ray spectrum, that is, a plot of X-ray intensity vs. energy. Additional software facilitates: 1) identification of elemental components by their "characteristic" peak energies and fingerprint; and 2) quantitative analysis by extraction of peak areas/background. This paper concludes with two examples that illustrate typical EPMA applications, one in which mitochondrial calcium analysis

  20. Electron-impact excitation collision strengths and theoretical line intensities for transitions in S III

    SciTech Connect

    Grieve, M. F. R.; Ramsbottom, C. A.; Hudson, C. E.; Keenan, F. P.

    2014-01-01

    We present Maxwellian-averaged effective collision strengths for the electron-impact excitation of S III over a wide range of electron temperatures of astrophysical importance, log T{sub e} (K) = 3.0-6.0. The calculation incorporates 53 fine-structure levels arising from the six configurations—3s {sup 2}3p {sup 2}, 3s3p {sup 3}, 3s {sup 2}3p3d, 3s {sup 2}3p4s, 3s {sup 2}3p4p, and 3s {sup 2}3p4d—giving rise to 1378 individual lines and is undertaken using the recently developed RMATRX II plus FINE95 suite of codes. A detailed comparison is made with a previous R-matrix calculation and significant differences are found for some transitions. The atomic data are subsequently incorporated into the modeling code CLOUDY to generate line intensities for a range of plasma parameters, with emphasis on allowed ultraviolet extreme-ultraviolet emission lines detected from the Io plasma torus. Electron density-sensitive line ratios are calculated with the present atomic data and compared with those from CHIANTI v7.1, as well as with Io plasma torus spectra obtained by Far-Ultraviolet Spectroscopic Explorer and Extreme-Ultraviolet Explorer. The present line intensities are found to agree well with the observational results and provide a noticeable improvement on the values predicted by CHIANTI.

  1. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  2. Point group sensitive probes of the pseudogap electronic structure in Bi2212

    NASA Astrophysics Data System (ADS)

    Hinton, J. P.; Koralek, J. D.; Orenstein, J.; Firmo, I.; Hamidian, M.; Fujita, K.; Davis, J. C.

    2011-03-01

    We combine optical transient grating spectroscopy (TGS) and spectroscopic imaging scanning tunneling microscopy (SI-STM) to study the pseudogap electronic structure in the underdoped cuprate superconductor Bi 2 Sr 2 CaCu 2 O8 + δ . In TGS a pair of 50 fs pump pulses at 800 nm coincident on the sample surface generate a sinusoidal variation in the index of refraction. This index grating is phase sensitively probed, allowing us to clearly resolve two components in the optical response below Tc. We attribute one of the components to a coherent nonlinear optical process, whose properties are sensitive to the point group symmetry of the pseudogap electronic structure. We compare the results of these optical experiments with recent analysis of SI-STM data (M. J. Lawler et al Nature 466 , 347 (2010)) which measures the amplitude of peaks at various reciprocal lattice vectors in the Fourier transform of atomically resolved images of the pseudogap electronic structure. The symmetry properties of the SI-STM Bragg amplitudes provide additional evidence relevant to the point group of the pseudogap electronic structure.

  3. A Neural Network Approach for Identifying Relativistic Electron Pitch Angle Distributions in Van Allen Probes Data

    NASA Astrophysics Data System (ADS)

    Souza, V. M. C. E. S.; Vieira, L.; Alves, L. R.; Da Silva, L. A.; Koga, D.; Sibeck, D. G.; Walsh, B.; Kanekal, S. G.; Silveira, M. D.; Medeiros, C.; Mendes, O., Jr.; Marchezi, J.; Rockenbach, M.; Jauer, P. R.; Gonzalez, W.; Baker, D. N.

    2015-12-01

    A myriad of physical phenomena occur in the inner magnetosphere, in particular at the Earth's radiation belts, which can be a result of the combination of both internal and external processes. However, the connection between physical processes occurring deep within the magnetosphere and external interplanetary drivers it is not yet well understood. In this work we investigate whether a selected set of interplanetary structures affect the local time distribution of three different classes of high energy electron pitch angle distributions (PADs), namely normal, isotropic, and butterfly. We split this work into two parts: initially we focus on the methodology used which employs a Self-Organized Feature Map (SOFM) neural network for identifying different classes of electron PAD shapes in the Van Allen Probes' Relativistic Electron Proton Telescope (REPT) data. The algorithm can categorize the input data into an arbitrary number of classes from which three of them appears the most: normal, isotropic and butterfly. Other classes which are related with these three also emerge and deserve to be addressed in detail in future works. We also discuss the uncertainties of the algorithm. Then, we move to the second part where we describe in details the criteria used for selecting the interplanetary events, and also try to investigate the relation between key parameters characterizing such interplanetary structures and the local time distributions of electron PAD shapes.

  4. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    SciTech Connect

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in the SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.

  5. Probing Interfacial Electronic States in CdSe Quantum Dots using Second Harmonic Generation Spectroscopy

    DOE PAGESBeta

    Doughty, Benjamin L.; Ma, Yingzhong; Shaw, Robert W

    2015-01-07

    Understanding and rationally controlling the properties of nanomaterial surfaces is a rapidly expanding field of research due to the dramatic role they play on the optical and electronic properties vital to light harvesting, emitting and detection technologies. This information is essential to the continued development of synthetic approaches designed to tailor interfaces for optimal nanomaterial based device performance. In this work, closely spaced electronic excited states in model CdSe quantum dots (QDs) are resolved using second harmonic generation (SHG) spectroscopy, and the corresponding contributions from surface species to these states are assessed. Two distinct spectral features are observed in themore » SHG spectra, which are not readily identified in linear absorption and photoluminescence excitation spectra. These features include a weak band at 395 6 nm, which coincides with transitions to the 2S1/2 1Se state, and a much more pronounced band at 423 4 nm arising from electronic transitions to the 1P3/2 1Pe state. Chemical modification of the QD surfaces through oxidation resulted in disappearance of the SHG band corresponding to the 1P3/2 1Pe state, indicating prominent surface contributions. Signatures of deep trap states localized on the surfaces of the QDs are also observed. We further find that the SHG signal intensities depend strongly on the electronic states being probed and their relative surface contributions, thereby offering additional insight into the surface specificity of SHG signals from QDs.« less

  6. THE ELECTRON ION COLLIDER. A HIGH LUMINOSITY PROBE OF THE PARTONIC SUBSTRUCTURE OF NUCLEONS AND NUCLEI.

    SciTech Connect

    EDITED BY M.S. DAVIS

    2002-02-01

    By the end of this decade, the advancement of current and planned research into the fundamental structure of matter will require a new facility, the Electron Ion Collider (EIC). The EIC will collide high-energy beams of polarized electrons from polarized protons and neutrons, and unpolarized beams of electrons off atomic nuclei with unprecedented intensity. Research at the EIC will lead to a detailed understanding of the structure of the proton, neutron, and atomic nuclei as described by Quantum Chromo-Dynamics (QCD), the accepted theory of the strong interaction. The EIC will establish quantitative answers to important questions by delivering dramatically increased precision over existing and planned experiments and by providing completely new experimental capabilities. Indeed, the EIC will probe QCD in a manner not possible previously. This document presents the scientific case for the design, construction and operation of the EIC. While realization of the EIC requires a significant advance in the development of efficient means of producing powerful beams of energetic electrons, an important consideration for choosing the site of the EIC is the planned upgrade to the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The upgrade planned for RHIC will fully meet the requirements for the ion beam for the EIC, providing a distinct advantage in terms of cost, schedule and the final operation.

  7. Magnetically insulated baffled probe for real-time monitoring of equilibrium and fluctuating values of space potentials, electron and ion temperatures, and densities

    SciTech Connect

    Demidov, V. I.; Koepke, M. E.; Raitses, Y.

    2010-10-15

    By restricting the electron-collection area of a cold Langmuir probe compared to the ion-collection area, the probe floating potential can become equal to the space potential, and thus conveniently monitored, rather than to a value shifted from the space potential by an electron-temperature-dependent offset, i.e., the case with an equal-collection-area probe. This design goal is achieved by combining an ambient magnetic field in the plasma with baffles, or shields, on the probe, resulting in species-selective magnetic insulation of the probe collection area. This permits the elimination of electron current to the probe by further adjustment of magnetic insulation which results in an ion-temperature-dependent offset when the probe is electrically floating. Subtracting the floating potential of two magnetically insulated baffled probes, each with a different degree of magnetic insulation, enables the electron or ion temperature to be measured in real time.

  8. Effect of strain on low-loss electron energy loss spectra of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Palisaitis, J.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Hultman, L.; Persson, P. O. Å.

    2011-12-01

    Thin films of AlN experiencing different strain states were investigated with a scanning transmission electron microscope (STEM) by low-loss electron energy loss spectroscopy (EELS). The results conclude that the low-loss properties and in particular, the plasmon peak position is shifted as a direct consequence of the inherent strain of the sample. The results reveal that strain, even minor levels, can be measured by STEM-EELS. These results were further corroborated by full potential calculations and expanded to include the similar III nitrides GaN and InN. It is found that a unit-cell volume change of 1% results in a bulk plasmon peak shift of 0.159, 0.168, and 0.079 eV for AlN, GaN, and InN, respectively, according to simulations. The AlN peak shift was experimentally corroborated with a corresponding peak shift of 0.156 eV. The unit-cell volume is used here since it is found that regardless of in- and out-of-plane lattice augmentation, the low-loss properties appear near identical for constant volume. These results have an impact on the interpretation of the plasmon energy and its applicability for determining and separating stress and composition. It is found that while the bulk plasmon energy can be used as a measure of the composition in a group-III nitride alloy for relaxed structures, the presence of strain significantly affects such a measurement. The strain is found to have a lower impact on the peak shift for Al1-xInxN (˜3% compositional error per 1% volume change) and In1-xGaxN alloys compared to significant variations for Al1-xGaxN (16% compositional error for 1% volume change). Hence a key understanding in low-loss studies of III nitrides is that strain and composition are coupled and affect one another.

  9. LAT1 targeted delivery of methionine based imaging probe derived from M(III) metal ions for early diagnosis of proliferating tumours using molecular imaging modalities.

    PubMed

    Hazari, Puja Panwar; Prakash, Surbhi; Meena, Virendra K; Jaswal, Ambika; Khurana, Harleen; Mishra, Surabhi Kirti; Bhonsle, Hemanth Kumar; Singh, Lokendra; Mishra, Anil K

    2015-01-01

    We investigated the potential of DTPA-bis(Methionine), a target specific amino acid based probe for detection of L-type amino acid transporters (LAT1) known to over express in proliferating tumours using multimodality imaging. The ligand, DTPA-bis(Met) was readily converted to lanthanide complexes and was found capable of targeting cancer cells using multimodality imaging. DTPA-bis(Met) complexes were synthesized and characterized by mass spectroscopy. MR longitudinal relaxivity, r₁ = 4.067 ± 0.31 mM⁻¹s⁻¹ and transverse relaxivity, r₂ = 8.61 ± 0.07 mM⁻¹s⁻¹ of Gd(III)-DTPA-bis(Met) were observed at pH 7.4 at 7 T. Bright, localized fluorescence of Eu(III)-DTPA-bis(Met) was observed with standard microscopy and displacement studies indicated ligand functionality. K(D) value determined for Eu(III)-DTPA-bis(Met) on U-87 MG cells was found to be 17.3 pM and showed appreciable fluorescence within the cells. Radio HPLC showed a radiochemical purity more than 95% (specific activity = 400-500 MBq/μmol, labelling efficiency 78 %) for ⁶⁸Ga(III)-DTPA-bis(Met). Pre-treatment of xenografted U-87 MG athymic mice with ⁶⁸Ga(III)-DTPA-bis(Met) following unlabelled L-methionine administration reduced tumour uptake by 10-folds in Micro PET. These data support the specific binding of ⁶⁸Ga(III)-DTPA-bis(Met) to the LAT1 transporter. To summarize, this agent possesses high stability in biological environment and exhibits effective interaction with its LAT1 transporters giving high accumulation in tumour area, excellent tumour/non-tumour ratio and low non-specific retention in vivo. PMID:25329672

  10. A luminescence switch-on probe for terminal deoxynucleotidyl transferase (TdT) activity detection by using an iridium(III)-based i-motif probe.

    PubMed

    Lu, Lihua; Wang, Modi; Liu, Li-Juan; Wong, Chun-Yuen; Leung, Chung-Hang; Ma, Dik-Lung

    2015-06-21

    An iridium(III) complex exhibiting higher responce towards i-motif DNA over dsDNA and ssDNA was employed for the construction of a TdT activity detection platform. The assay exhibited a linear signal enhancement for TdT in the concentration range of 0 to 8 U mL(-1), and the limit of detection for TdT was 0.25 U mL(-1). PMID:25999030

  11. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III.

    PubMed

    Göries, D; Dicke, B; Roedig, P; Stübe, N; Meyer, J; Galler, A; Gawelda, W; Britz, A; Geßler, P; Sotoudi Namin, H; Beckmann, A; Schlie, M; Warmer, M; Naumova, M; Bressler, C; Rübhausen, M; Weckert, E; Meents, A

    2016-05-01

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy)3. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM). PMID:27250401

  12. Intrinsic acidity of aluminum, chromium (III) and iron (III) μ 3-hydroxo functional groups from ab initio electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Dixon, David A.; Felmy, Andrew R.

    2000-05-01

    Density functional calculations are performed on M 3(OH) 7(H 2O) 62+ and M 3O(OH) 6(H 2O) 6+ clusters for MAl, Cr(III), and Fe(III), allowing determination of the relative acidities of the μ 3-hydroxo and aquo functional groups. Contrary to previous predictions and rationalizations, Fe 3OH and Al 3OH groups have nearly the same intrinsic acidity, while Cr 3OH groups are significantly more acidic. The gas-phase acidity of the Fe 3OH site is in good agreement with the value predicted by the molecular mechanics model previously used to estimate the relative acidities of surface sites on iron oxides. [ J. R. Rustad et al. (1996)Geochim. Cosmochim. Acta 60, 1563]. Acidities of aquo functional groups were also computed for Al and Cr. The AlOH 2 site is more acidic than the Al 3OH site, whereas the Cr 3OH site is more acidic than the CrOH 2 site. These findings predict that the surface charging behavior of chromium oxides/oxyhydroxides should be distinguishable from their Fe, Al counterparts. The calculations also provide insight into why the lepidocrocite/boehmite polymorph is not observed for CrOOH.

  13. An oligonucleotide-based label-free luminescent switch-on probe for RNA detection utilizing a G-quadruplex-selective iridium(iii) complex

    NASA Astrophysics Data System (ADS)

    Ma, Dik-Lung; Lin, Sheng; Leung, Ka-Ho; Zhong, Hai-Jing; Liu, Li-Juan; Chan, Daniel Shiu-Hin; Bourdoncle, Anne; Mergny, Jean-Louis; Wang, Hui-Min David; Leung, Chung-Hang

    2014-07-01

    We report herein the synthesis and application of a novel G-quadruplex-selective luminescent iridium(iii) complex for the construction of an oligonucleotide-based, label-free, rapid and convenient luminescent RNA detection platform.We report herein the synthesis and application of a novel G-quadruplex-selective luminescent iridium(iii) complex for the construction of an oligonucleotide-based, label-free, rapid and convenient luminescent RNA detection platform. Electronic supplementary information (ESI) available: Experimental details and spectral data. See DOI: 10.1039/c4nr00541d

  14. Comment on the paper ‘The impact of Langmuir probe geometries on electron current collection and the integral relation for obtaining electron energy distribution functions’

    NASA Astrophysics Data System (ADS)

    Tsankov, Tsanko V.; Czarnetzki, Uwe

    2016-08-01

    A paper by El Saghir and Shannon (2012 Plasma Sources Sci. Technol. 21 025003) raises the question about the validity of the widely-used Druyvesteyn formula for obtaining the electron energy distribution function by cylindrical probes. They conclude that there are deviations between the Druyvesteyn formula for cylindrical and for spherical probes. In this comment this conclusion is questioned and the correct expressions are derived. It is shown that no such difference exists when all three velocity components are correctly accounted for. Furthermore, the disturbance to the plasma introduced by the probe is estimated.

  15. Ionosphere plasma electron parameters from radio frequency sweeping impedance probe measurements

    NASA Astrophysics Data System (ADS)

    Spencer, E.; Patra, S.

    2015-09-01

    In this work we will describe the technique of using an RF sweeping impedance probe (SIP) to measure the AC impedance of an electrically short monopole immersed in a plasma. We analyze the SIP measurements which are taken from the payload of the Storms sounding rocket, launched from Wallops Island, Virginia, in 2007. The scientific objective of the Storms mission was to concentrate on whether density irregularities observed in midlatitude spread F could arise from ionospheric coupling to terrestrial weather. As such, independent measurements of the electron density profile are crucial. Since the inherent nature of the SIP technique makes it relatively insensitive to errors introduced through spacecraft charging, probe contamination, and other DC effects, it is an ideal instrument to employ under disturbed plasma conditions. The instrument measures both the magnitude and phase of the AC impedance from 100 kHz to 20 MHz in 128 frequency steps, performing 45,776 sweeps over the entire flight. From these measurements we infer both the absolute electron density ne and the electron neutral collision frequencies νen throughout the flight trajectory. The SIP data can be approximately analyzed using a fluid formulation and thin sheath approximation particularly at altitudes below 200 km, which allows us to match the measurements to quasi-static analytical formulas. At about 265 km on the upleg, the magnitude data transitioned to a highly damped response with increasing altitude. The phase data, on the other hand, continued to indicate increased plasma density and reduced collisionality as expected. For a large portion of the flight, the payload of the Storms mission exhibited an uncontrolled coning motion, making the local magnetic field orientation with respect to the dipole difficult to decipher. Despite these difficulties, we were able to obtain robust estimates of the electron density profile, using the phase information from each sweep. In addition, the electron

  16. Probing the magnetic and magnetothermal properties of M(II)-Ln(III) complexes (where M(II) = Ni or Zn; Ln(III) = La or Pr or Gd).

    PubMed

    Ahmed, Naushad; Das, Chinmoy; Vaidya, Shefali; Srivastava, Anant Kumar; Langley, Stuart K; Murray, Keith S; Shanmugam, Maheswaran

    2014-12-14

    We establish the coordination potential of the Schiff base ligand (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate (H2L)) via the isolation of various M(II)-Ln(III) complexes (where M(II) = Ni or Zn and Ln(III) = La or Pr or Gd). Single crystals of these five complexes were isolated and their solid state structures were determined by single crystal X-ray diffraction. Structural determination revealed molecular formulae of [NiGd(HL)2(NO3)3] (1), [NiPr(HL)2(NO3)3] (2) and [Ni2La(HL)4(NO3)](NO3)2 (3), [Zn2Gd(HL)4(NO3)](NO3)2 (4), and [Zn2Pr(HL)4(NO3)](NO3)2 (5). Complexes and were found to be neutral heterometallic dinuclear compounds, whereas 3-5 were found to be linear heterometallic trinuclear cationic complexes. Direct current (dc) magnetic susceptibility and magnetization measurements conclusively revealed that complexes 1 and 4 possess a spin ground state of S = 9/2 and 7/2 respectively. Empirically calculated ΔχMT derived from the variable temperature susceptibility data for all complexes undoubtedly indicates that the Ni(II) ion is coupled ferromagnetically with the Gd(III) ion, and antiferromagnetically with the Pr(III) ion in 1 and 2 respectively. The extent of the exchange interaction for was estimated by fitting the magnetic susceptibility data using the parameters (g = 2.028, S = 9/2, J = 1.31 cm(-1) and zJ = +0.007), supporting the phenomenon observed in an empirical approach. Similarly using a HDVV Hamiltonian, the magnetic data of 3 and 4 were fitted, yielding parameters g = 2.177, D = 3.133 cm(-1), J = -0.978 cm(-1), (for 3) and g = 1.985, D = 0.508 cm(-1) (for 4). The maximum change in magnetic entropy (-ΔSm) estimated from the isothermal magnetization data for was found to be 5.7 J kg(-1) K(-1) (ΔB = 7 Tesla) at 7.0 K, which is larger than the -ΔSm value extracted from 4 of 3.5 J kg(-1) K(-1) (ΔB = 7 Tesla) at 15.8 K, revealing the importance of the exchange interaction in increasing the overall ground state of a molecule for

  17. Effective Collision Strengths for Electron Impact Excitation of Inelastic Transitions in S III

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    1997-01-01

    We have calculated electron collisional excitation strengths for all electric dipole forbidden, semi-forbidden, and allowed transitions among the lowest 17 LS states 3s(exp 2)3p(exp 2) P-3, D-1, S-1, 3s3p(exp 3)S-5(exp 0), D-3(exp 0), P-3(exp 0), P-1(exp 0), S-3(exp 0), D-1(exp 0), 3S(exp 2)3p3d D-1(exp 0), F-3(exp 0), P-3(exp 0), D-3(exp 0), F-3(exp 0), P-1(exp 0), and 3S(exp 2)3p4S P-3(exp 0), P-l(exp 0) of S III using the R-matrix method. These S m states are represented by fairly extensive configuration-interaction wave functions that yield excited state energies in close agreement with recent laboratory measurements. Rydberg series of resonances converging to the excited state thresholds are explicitly included in the scattering calculation. The effective collision strengths are determined assuming Maxwellian distribution of electron energies. These are listed over a wide temperature range ([0.5-10] x 10(exp 4) K) and compared, where possible, with other available calculations. Subject headings: atomic data - atomic processes

  18. Encapsulation of Ln(III) Ions/Dyes within a Microporous Anionic MOF by Post-synthetic Ionic Exchange Serving as a Ln(III) Ion Probe and Two-Color Luminescent Sensors.

    PubMed

    Zhao, Shu-Na; Song, Xue-Zhi; Zhu, Min; Meng, Xing; Wu, Lan-Lan; Feng, Jing; Song, Shu-Yan; Zhang, Hong-Jie

    2015-06-26

    A new anionic framework {[Me2NH2]0.125[In0.125(H2L)0.25]⋅xDMF}n (1) with one-dimensional (1D) channels along the c axis of about 13.06×13.06 Å(2), was solvothermally synthesized and well characterized. Post-synthetic cation exchange of 1 with Eu(3+), Tb(3+), Dy(3+), Sm(3+) afforded lanthanide(III)-loaded materials, Ln(3+)@1, with different luminescent behavior, indicating that compound 1 could be used as a potential luminescent probe toward different lanthanide(III) ions. Additionally, compound 1 exhibits selective adsorption ability toward cationic dyes. Moreover, the RhB@1 realized the probing of different organic solvent molecules by tuning the energy transfer efficiency between two different emissions, especially for sensing DMF. This work highlights the practical application of luminescent guest@MOFs as sensors, and it paves the way toward other one/multi-color luminescent host-guest systems by rational selection of MOF hosts and guest chromophores with suitable emissive colors and energy levels. PMID:26013556

  19. Using Betatron Emissions from Laser Wakefield Accelerated Electrons to Probe Ultra-fast Warm Dense Matter

    NASA Astrophysics Data System (ADS)

    Kotick, Jordan; Schumaker, Will; Condamine, Florian; Albert, Felicie; Barbrel, Benjamin; Galtier, Eric; Granados, Eduardo; Ravasio, Alessandra; Glenzer, Siegfried

    2015-11-01

    Laser wakefield acceleration (LWFA) has been shown to produce short X-ray pulses from betatron oscillations of electrons within the plasma wake. These betatron X-rays pulses have a broad, synchrotron-like energy spectrum and a duration on the order of the driving laser pulse, thereby enabling probing of ultrafast interactions. Using the 1 J, 40fs short-pulse laser at the Matter in Extreme Conditions experimental station at LCLS, we have implemented LWFA to generate and subsequently characterized betatron X-rays. Notch filtering and single photon counting techniques were used to measure the betatron X-ray spectrum while the spatial profile was measured using X-ray CCDs and image plates. We used an ellipsoidal mirror to focus the soft betatron X-rays for pump-probe studies on various targets in conjunction with LCLS X-ray and optical laser pulses. This experimental platform provides the conditions necessary to do a detailed study of warm-dense matter dynamics on the ultrafast time-scale.

  20. Proton-Electron Double-Resonance Imaging of pH using phosphonated trityl probe

    PubMed Central

    Takahashi, Wataru; Bobko, Andrey A.; Dhimitruka, Ilirian; Hirata, Hiroshi; Zweier, Jay L.; Samouilov, Alexandre

    2014-01-01

    Variable Radio Frequency Proton-Electron Double-Resonance Imaging (VRF PEDRI) enables extracting a functional map from a limited number of images acquired at pre-selected EPR frequencies using specifically designed paramagnetic probes with high quality spatial resolution and short acquisition times. In this work we explored potential of VRF PEDRI for pH mapping of aqueous samples using recently synthesized pH-sensitive phosphonated trityl radical, pTR. The ratio of Overhauser enhancements measured at each pixel at two different excitation frequencies corresponding to the resonances of protonated and deprotonated forms of pTR probe allows for a pH map extraction. Long relaxation times of pTR allow for pH mapping at EPR irradiation power as low as 1.25 W during 130 s acquisition time with spatial resolution of about 1 mm. This is particularly important for in vivo applications enabling one to avoid sample overheating by reducing RF power deposition. PMID:25530673

  1. Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Kurth, W. S.; De Pascuale, S.; Faden, J. B.; Kletzing, C. A.; Hospodarsky, G. B.; Thaller, S.; Wygant, J. R.

    2015-02-01

    The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Field Instrument Suite and Integrated Science suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher-frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing a process and tools for identifying and digitizing the upper hybrid resonance frequency in order to infer the electron density as an essential parameter for interpreting not only the plasma wave data from the mission but also as input to various magnetospheric models. Good progress has been made in developing algorithms to identify fuh and create a data set of electron densities. However, it is often difficult to interpret the plasma wave spectra during active times to identify fuh and accurately determine ne. In some cases, there is no clear signature of the upper hybrid band, and the low-frequency cutoff of the continuum radiation is used. We describe the expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum.

  2. Electronic Raman scattering as an ultra-sensitive probe of strain effects in semiconductors

    SciTech Connect

    Fluegel., Brian; Mialitsin, Aleksej V.; Beaton, Daniel A.; Reno, John L.; Mascarenhas, Angelo

    2015-05-28

    Semiconductor strain engineering has become a critical feature of high-performance electronics because of the significant device performance enhancements that it enables. These improvements, which emerge from strain-induced modifications to the electronic band structure, necessitate new ultra-sensitive tools to probe the strain in semiconductors. Here, we demonstrate that minute amounts of strain in thin semiconductor epilayers can be measured using electronic Raman scattering. We also applied this strain measurement technique to two different semiconductor alloy systems using coherently strained epitaxial thin films specifically designed to produce lattice-mismatch strains as small as 10-4. Thus, comparing our strain sensitivity and signal strength in AlxGa 1-x As with those obtained using the industry-standard technique of phonon Raman scattering, we found that there was a sensitivity improvement of 200-fold and a signal enhancement of 4 × 103, thus obviating key constraints in semiconductor strain metrology.

  3. Electron and energy transfer as probes of interparticle ion-exchange reactions in zeolite Y

    SciTech Connect

    Brigham, E.S.; Snowden, P.T.; Kim, Y.I.; Mallouk, T.E. )

    1993-08-19

    Photoinduced electron transfer and energy transfer reactions of tris(2,2[prime]-bipyridyl)ruthenium(II) (Ru(bpy)[sub 3][sup 2+]) with methylviologen (MV[sup 2+]) and tris(2,2[prime]-bipyridyl)osmium(II) (Os(bpy)[sub 3][sup 2+]) ion-exchanged onto/into separate zeolite Y particles were studied by emission spectroscopy. The kinetics of interparticle exchange were probed by observing the quenching of the MLCT excited state of-Ru(bpy)[sub 3][sup 2+] by mobile MV[sup 2+] or OS(bpy)[sub 3][sup 2+] ions. The exchange reactions occur on time scales of seconds to hours, depending on the ionic strength of the surrounding medium. The time-dependent luminescence data were fitted to a dispersed kinetics model, from which average rate constants for the exchange reactions could be extracted. Time constants for interparticle exchange of MV[sup 2+] and Os(bpy)[sub 3][sup 2+] ions, in the range 10[sup 3]-10[sup 5] s at electrolyte concentrations of 0.1-3 mM, are significantly longer than the time scales (10[sup [minus]7]-10[sup 1] s) of most electrochemical and photochemical intrazeolitic reactions involving these and similar electroactive ions. These results argue for reaction mechanisms that invoke intrazeolite electron transfer, rather than exchange of electroactive ions followed by solution-phase electron transfer, in these systems. 25 refs., 6 figs., 1 tab.

  4. Characterizing Total Radiation Belt Electron Content Using Van Allen Probes Data

    NASA Astrophysics Data System (ADS)

    Huang, C. L.; Spence, H. E.; Boyd, A. J.; Jordan, A.; Paulson, K. W.; Zhang, J.; Blake, J. B.; Kletzing, C.

    2014-12-01

    The comprehensive particle and wave measurements of the Van Allen Probes enable us to monitor the entire radiation belt near the equator from L-shells of 2.5 to 6. Using the particle measurements, we create an improved, high-level quantity representing the entire outer belt. This quantity, the total radiation belt electron content (TRBEC), is the half-orbit sum of outer belt electrons over the radiation belt energy ranges of importance and all pitch angles using data from RBSP-ECT instrument on board both spacecraft. The goal is to characterize statistically the dynamics of the entire radiation belt by comparing TRBEC with solar wind parameters, magnetospheric waves, and electron seed population. When comparing TRBEC with solar wind velocity, our result shows a triangle-distribution similar to that which Reeves et al. (2011) found using geosynchronous electron flux. We also correlate TRBEC with other solar wind parameters to identify which solar wind conditions effectively enhance or deplete radiation belt electrons. In addition, plasma waves in the inner magnetosphere, via wave-particle interaction, are key elements affecting the dynamics of the radiation belt. Therefore, we compare TRBEC with integrated EMIC and chorus (upper and lower bands) wave power calculated from EMFISIS wave measurements to determine the relative importance between each wave-particle process. Finally, we demonstrate the ~100 keV seed population's characteristics that correspond to the MeV population enhancement. While the gross features of the two populations are similar, the MeV population's dynamics lag behind those of the seed population by 5 to 60 hours, which implies the acceleration or loss processes vary by event.

  5. Eu(III)-functionalized MIL-124 as fluorescent probe for highly selectively sensing ions and organic small molecules especially for Fe(III) and Fe(II).

    PubMed

    Xu, Xiao-Yu; Yan, Bing

    2015-01-14

    A layerlike MOF (MIL-124, orGa2(OH)4(C9O6H4)) has been prepared and chosen as a parent compound to encapsulate Eu(3+) cations by one uncoordinated carbonyl group in its pores. The Eu(3+)-incorporated sample (Eu(3+)@MIL-124) is fully characterized, which shows excellent luminescence and good fluorescence stability in water or other organic solvents. Subsequently, we choose Eu(3+)@MIL-124 as sensitive probe for sensing metal ions, anions, and organic small molecules because of its robust framework. Studying of the luminescence properties reveals that the complex Eu(3+)@MIL-124 was developed as a highly selective and sensitive probe for detection of Fe(3+) (detection limit, 0.28 μM) and Fe(2+) ions through fluorescence quenching of Eu(3+) and MOF over other metal ions. In connection to this, a probable sensing mechanism was also discussed in this paper. In addition, when Eu(3+)@MIL-124 was immersed in the different anions solutions and organic solvents, it also shows highly selective for Cr2O7(2-)(detection limit, 0.15 μM)and acetone. Remarkably, it is the first Eu-doped MOF to exhibit an excellent ability for the detection of Fe(3+) and Fe(2+) in an aqueous environment without any structural disintegration of the framework. PMID:25510710

  6. Direct probing of electron and hole trapping into nano-floating-gate in organic field-effect transistor nonvolatile memories

    SciTech Connect

    Cui, Ze-Qun; Wang, Shun; Chen, Jian-Mei; Gao, Xu; Dong, Bin E-mail: chilf@suda.edu.cn Chi, Li-Feng E-mail: chilf@suda.edu.cn Wang, Sui-Dong E-mail: chilf@suda.edu.cn

    2015-03-23

    Electron and hole trapping into the nano-floating-gate of a pentacene-based organic field-effect transistor nonvolatile memory is directly probed by Kelvin probe force microscopy. The probing is straightforward and non-destructive. The measured surface potential change can quantitatively profile the charge trapping, and the surface characterization results are in good accord with the corresponding device behavior. Both electrons and holes can be trapped into the nano-floating-gate, with a preference of electron trapping than hole trapping. The trapped charge quantity has an approximately linear relation with the programming/erasing gate bias, indicating that the charge trapping in the device is a field-controlled process.

  7. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy

    PubMed Central

    Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.

    2016-01-01

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity. PMID:26864779

  8. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy.

    PubMed

    Yamakawa, H; Miyamoto, T; Morimoto, T; Yada, H; Kinoshita, Y; Sotome, M; Kida, N; Yamamoto, K; Iwano, K; Matsumoto, Y; Watanabe, S; Shimoi, Y; Suda, M; Yamamoto, H M; Mori, H; Okamoto, H

    2016-01-01

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity. PMID:26864779

  9. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.

    2016-02-01

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity.

  10. Quantum Nuclear Dynamics Pumped and Probed by Ultrafast Polarization Controlled Steering of a Coherent Electronic State in LiH.

    PubMed

    Nikodem, Astrid; Levine, R D; Remacle, F

    2016-05-19

    The quantum wave packet dynamics following a coherent electronic excitation of LiH by an ultrashort, polarized, strong one-cycle infrared optical pulse is computed on several electronic states using a grid method. The coupling to the strong field of the pump and the probe pulses is included in the Hamiltonian used to solve the time-dependent Schrodinger equation. The polarization of the pump pulse allows us to control the localization in time and in space of the nonequilibrium coherent electronic motion and the subsequent nuclear dynamics. We show that transient absorption, resulting from the interaction of the total molecular dipole with the electric fields of the pump and the probe, is a very versatile probe of the different time scales of the vibronic dynamics. It allows probing both the ultrashort, femtosecond time scale of the electronic coherences as well as the longer dozens of femtoseconds time scales of the nuclear motion on the excited electronic states. The ultrafast beatings of the electronic coherences in space and in time are shown to be modulated by the different periods of the nuclear motion. PMID:26928262

  11. Remote plasmon-induced heat transfer probed by the electronic transport of a gold nanowire

    NASA Astrophysics Data System (ADS)

    Mennemanteuil, M.-M.; Buret, M.; Cazier, N.; Colas-Des-Francs, G.; Bouhelier, A.; Besbes, M.; Ben-Abdallah, P.

    2016-07-01

    We show in this paper that the heat generated by the optical excitation of resonant plasmonic antennas and diffusing along a simple glass/air interface disturbs the electron transport of a nearby conductive element. By probing the temperature-dependent resistance of a gold nanowire Rnw(T ) , we quantitatively analyze the impact of a resonant absorption of the laser by the antennas. We find that the temperature rise at the nanowire induced by the laser absorption of a distant nanoparticle may exceed that of a direct illumination of the nanowire itself. We also find that a global calibration of the temperature-dependent resistance underestimates the heat generated locally by the laser. The local temperatures deduced from resistance variations are verified by numerical simulations with a very satisfactory agreement.

  12. Thioamide quenching of fluorescent probes through photoinduced electron transfer: mechanistic studies and applications.

    PubMed

    Goldberg, Jacob M; Batjargal, Solongo; Chen, Benson S; Petersson, E James

    2013-12-11

    Previously we have shown that thioamides can be incorporated into proteins as minimally perturbing fluorescence-quenching probes to study protein dynamics, folding, and aggregation. Here, we show that the spontaneity of photoinduced electron transfer between a thioamide and an excited fluorophore is governed by the redox potentials of each moiety according to a Rehm-Weller-type model. We have used this model to predict thioamide quenching of various common fluorophores, and we rigorously tested more than a dozen examples. In each case, we found excellent agreement between our theoretical predictions and experimental observations. In this way, we have been able to expand the scope of fluorophores quenched by thioamides to include dyes suitable for microscopy and single-molecule studies, including fluorescein, Alexa Fluor 488, BODIPY FL, and rhodamine 6G. We describe the photochemistry of these systems and explore applications that demonstrate the utility of thioamide quenching of fluorescein to studying protein folding and proteolysis. PMID:24266520

  13. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors

    SciTech Connect

    Baumann, O.; Walz, B. ); Somlyo, A.V.; Somlyo, A.P. )

    1991-02-01

    Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental compositon of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 {plus minus} 1.1 mmol/kg (dry weight). During a 3-sec nonsaturating light stimulus, {approximately}50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was {approximately}0.7. Our results show unambiguously that the ER is the source of Ca{sup 2+} release during cell stimulation and suggest the Mg{sup 2+} can nearly balance the charge movement of Ca{sup 2+}.

  14. Probing local order in glasses from limited-volume electron and x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Liu, A. C. Y.; Tabor, R. F.; Bourgeois, L.; de Jonge, M. D.; Mudie, S. T.; Petersen, T. C.

    2016-05-01

    It has long been recognised that spatial fluctuations in local order in disordered assemblies of particles can be probed using limited-volume diffraction measurements. These measurements have unique advantages over broad-beam diffraction experiments that isotropically average over many structural configurations and result in one-dimensional intensity curves, requiring modelling to interpret. Despite the advantages of limiting illumination to a low number of particle configurations, obtaining quantitative measurements of local order from such experiments remains a challenge. The effects on the diffraction pattern of changing the beam energy, lateral size, aberrations and coherence and the specimen thickness have only recently been clarified. We review theoretical and experimental efforts in this direction in the fields of both electron and x-ray diffraction and identify promising areas of future development.

  15. Electron spin resonance probed competing states in NiMnInSi Heusler alloy

    NASA Astrophysics Data System (ADS)

    Chen, Y. S.; Lin, J. G.; Titov, I. S.; Granovsky, A. B.

    2016-06-01

    Shape memory Heusler alloy Ni50Mn35In12Si3 is investigated with electron spin resonance (ESR) technique in a temperature range of 200-300 K. ESR is a dynamic probe allowing us to separate the responses from various magnetic phases, thus to study the complex phase transitions. The sample shows three transition temperatures: TcA (271 K), TM (247 K) and TcM (212 K), where TcA is the Curie temperature of austenitic phase, TM and TcM are the temperatures of magnetostructural martensitic transition and the Curie temperature of martensitic phase, respectively. Furthermore, ESR data reveals the coexistence of two magnetic modes in whole temperature range of 200-300 K. Particularly in martensitic phase, two magnetic modes are attributed to two different kinds of lattice deformation, the slip and twinning deformations.

  16. Analysis of Iron Meteorites Using Computed Tomography and Electron-probe Microanalysis

    NASA Technical Reports Server (NTRS)

    Carpenter, P. K.; Gillies, D. C.

    2005-01-01

    Computed tomography (CT) imaging and electron-probe microanalysis (EPMA) have been used to study samples of the Mundrabilla and Colomera iron meteorites in order to perform structural, textural, and mineralogical analysis. Both gamma-ray (Co-60 source, essentially monochromatic 1.25MeV avg.) and x-ray (420 KeV, continuous) sources have been used, with effective resolution of approximately 1 mm and 0.25 mm, respectively. The gamma-ray source provides approx. 15 cm penetration through steel and is used for larger samples, whereas the x-ray source provides superior resolution at reduced penetration but exhibits beam hardening artifacts. Here we present a combined approach where CT and EPMA imaging and microanalysis aid in the identification of structural and compositional features in iron meteorites.

  17. Thioamide Quenching of Fluorescent Probes Through Photoinduced Electron Transfer: Mechanistic Studies and Applications

    PubMed Central

    Goldberg, Jacob M.; Batjargal, Solongo; Chen, Benson S.; Petersson, E. James

    2014-01-01

    Previously we have shown that thioamides can be incorporated into proteins as minimally perturbing fluorescence- quenching probes to study protein dynamics, folding, and aggregation. Here, we show that the spontaneity of photoinduced electron transfer between a thioamide and an excited fluorophore is governed by the redox potentials of each moiety according to a Rehm-Weller-type model. We have used this model to predict thioamide quenching of various common fluorophores, and we rigorously tested more than a dozen examples. In each case, we found excellent agreement between our theoretical predictions and experimental observations. In this way, we have been able to expand the scope of fluorophores quenched by thioamides to include dyes suitable for microscopy and single molecule studies, including fluorescein, Alexa Fluor 488, BODIPY FL, and rhodamine 6G. We describe the photochemistry of these systems and explore applications that demonstrate the utility of thioamide quenching of fluorescein to studying protein folding and proteolysis. PMID:24266520

  18. Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors.

    PubMed Central

    Baumann, O; Walz, B; Somlyo, A V; Somlyo, A P

    1991-01-01

    Honey bee photoreceptors contain large sacs of endoplasmic reticulum (ER) that can be located unequivocally in freeze-dried cryosections. The elemental composition of the ER was determined by electron probe x-ray microanalysis and was visualized in high-resolution x-ray maps. In the ER of dark-adapted photoreceptors, the Ca concentration was 47.5 +/- 1.1 mmol/kg (dry weight) (mean +/- SEM). During a 3-sec nonsaturating light stimulus, approximately 50% of the Ca content was released from the ER. Light stimulation also caused a highly significant increase in the Mg content of the ER; the ratio of Mg uptake to Ca released was approximately 0.7. Our results show unambiguously that the ER is the source of Ca2+ release during cell stimulation and suggest that Mg2+ can nearly balance the charge movement of Ca2+. Images PMID:1992466

  19. Probing the pairing symmetry of the iron pnictides with electronic Raman scattering

    SciTech Connect

    Boyd, G.R.

    2010-04-29

    An important issue in the study of the iron-arsenic based superconductors is the symmetry of the superconducting gap, a problem complicated by multiple gaps on different Fermi surface sheets. Electronic Raman scattering is a flexible bulk probe which allows one in principle to determine gap magnitudes and test for gap nodes in different regions of the Brillouin zone by employing different photon polarization states. Here we calculate the clean Raman intensity for A{sub 1g}, B{sub 1g} and B{sub 2g} polarizations, and discuss the peak structures and low-energy power laws which might be expected for several popular models of the superconducting gap in these systems.

  20. Accurate prediction of the ammonia probes of a variable proton-to-electron mass ratio

    NASA Astrophysics Data System (ADS)

    Owens, A.; Yurchenko, S. N.; Thiel, W.; Špirko, V.

    2015-07-01

    A comprehensive study of the mass sensitivity of the vibration-rotation-inversion transitions of 14NH3, 15NH3, 14ND3 and 15ND3 is carried out variationally using the TROVE approach. Variational calculations are robust and accurate, offering a new way to compute sensitivity coefficients. Particular attention is paid to the Δk = ±3 transitions between the accidentally coinciding rotation-inversion energy levels of the ν2 = 0+, 0-, 1+ and 1- states, and the inversion transitions in the ν4 = 1 state affected by the `giant' l-type doubling effect. These transitions exhibit highly anomalous sensitivities, thus appearing as promising probes of a possible cosmological variation of the proton-to-electron mass ratio μ. Moreover, a simultaneous comparison of the calculated sensitivities reveals a sizeable isotopic dependence which could aid an exclusive ammonia detection.

  1. Cr-polluted soil studied by high gradient magnetic separation and electron probe

    SciTech Connect

    Rikers, R.A.; Voncken, J.H.L.; Dalmijn, W.L.

    1998-12-01

    An Fe-rich soil from the site of a former leather tannery, heavily polluted with Cr, was studied using a combination of wet chemical analysis, high gradient magnetic separation (HGMS), and electron probe microanalysis (EPMA). It is demonstrated that such a combination is a powerful tool for the characterization of polluted soils, especially in cases where the pollution is present as discrete particles. Both EPMA and magnetic separation data indicated that the Cr pollution was present as a hydrous Cr-oxide phase. The Cr does not correlate with the Fe minerals, most likely as a result of the initial high Cr concentrations in the soil, which lead to precipitation of separate hydrous Cr-oxide minerals and Fe minerals. The Cr-containing material is present as (layered) aggregates, which are formed around larger quartz grains or around very small other particles that served as precipitation nuclei. Magnetic separation tests show that the Cr pollution can largely be removed by HGMS.

  2. Inner zone electron radial diffusion coefficients - An update with Van Allen Probes MagEIS data

    NASA Astrophysics Data System (ADS)

    O'Brien, Paul; Fennell, Joseph; Guild, Timothy; Mazur, Joseph; Claudepierre, Seth; Clemmons, James; Turner, Drew; Blake, Bernard; Roeder, James

    2016-07-01

    Using MagEIS data from NASA's recent Van Allen Probes mission, we estimate the quiet-time radial diffusion coefficients for electrons in the inner radiation belt and slot, for energies up to ~700 keV. We provide observational evidence that energy diffusion is negligible. The main dynamic processes, then, are radial diffusion and elastic pitch angle scattering. We use a coordinate system in which these two modes of diffusion are separable. Then we integrate over pitch angle to obtain a field line content whose dynamics consist of radial diffusion and loss to the atmosphere. We estimate the loss timescale from periods of exponential decay in the time series. We then estimate the radial diffusion coefficient from the temporal and radial variation of the field line content. We show that our diffusion coefficients agree well with previously determined values. Our coefficients are consistent with diffusion by electrostatic impulses, whereas outer zone radial diffusion is thought to be dominated by electromagnetic fluctuations.

  3. Light-Activated Protein Inhibition through Photoinduced Electron Transfer of a Ruthenium(II)–Cobalt(III) Bimetallic Complex

    PubMed Central

    Holbrook, Robert J.; Weinberg, David J.; Peterson, Mark D.; Weiss, Emily A.; Meade, Thomas J.

    2015-01-01

    We describe a mechanism of light activation that initiates protein inhibitory action of a biologically inert Co(III) Schiff base (Co(III)-sb) complex. Photoinduced electron transfer (PET) occurs from a Ru(II) bipyridal complex to a covalently attached Co(III) complex and is gated by conformational changes that occur in tens of nanoseconds. Reduction of the Co(III)-sb by PET initiates displacement of the inert axial imidazole ligands, promoting coordination to active site histidines of α-thrombin. Upon exposure to 455 nm light, the rate of ligand exchange with 4-methylimidazole, a histidine mimic, increases by approximately 5-fold, as observed by NMR spectroscopy. Similarly, the rate of α-thrombin inhibition increases over 5-fold upon irradiation. These results convey a strategy for light activation of inorganic therapeutic agents through PET utilizing redox-active metal centers. PMID:25671465

  4. The identification of group II inclusions in carbonaceous chondrites by electron probe microanalysis of perovskite

    NASA Technical Reports Server (NTRS)

    Kornacki, A. S.; Wood, J. A.

    1985-01-01

    The technique developed by Kornacki (1984) for identifying group II Ca/Al-rich inclusions in carbonaceous chondrites by electron-microprobe analysis of the ZrO2 or Y2O3 content of their perovskite component is demonstrated using material from 20 Allende inclusions. The results are presented in tables and graphs and compared with findings obtained by other procedures. Group II inclusions are found to have perovskites generally containing less than 0.10 wt pct ZrO2 and/or Y2O3 (average of several grains), while those of groups I, III, V, and VI have more than 0.25 wt pct ZrO2. Analysis of data on eight Allende Ca/Al-rich inclusions shows that 75 percent of the fine-grained inclusions belong to group II. The implications of these findings for fractionation processes in the primitive solar nebula are indicated.

  5. Gold chloride clusters with Au(III) and Au(I) probed by FT-ICR mass spectrometry and MP2 theory.

    PubMed

    Lemke, Kono H

    2014-05-01

    Microsolvated clusters of gold chloride are probed by electrospray ionization mass spectrometry (ESI-MS) and scalar relativistic electronic structure calculations. Electrospray ionization of aqueous AuCl3 leads to mononuclear clusters of types [AuCl2](+)(H2O)n (n = 0-4), [AuOHCl](+)(H2O)n (n = 0-1) and [AuCl2](+)(HCl)2(H2O)n (n = 0-4). In addition, strong ion signals due to dinuclear [Au2Cl5-xOHx](+)(H2O)n (x = 0-1) are present in ESI mass spectra of aqueous AuCl3, with the abundance of individual dinuclear species controlled by the concentration-dependent variation of the precursor complexes [AuCl2-xOHx](+)(H2O)n and AuCl3. Equilibrium structures, energies and thermodynamic properties of mono- and dinuclear gold clusters have been predicted using MP2 and CCSD(T) theory, and these data have been applied to examine the influence of microsolvation on cluster stability. Specifically, results from CCSD(T) calculations indicate that non-covalently bound ion-neutral complexes Au(+)(Cl2)(H2O)n, with formal Au(I), are the dominant forms of mononuclear gold with n = 0-2, while higher hydrates (n > 2) are covalently bound [AuCl2](+)(H2O)n complexes in which gold exists as Au(III). MP2 calculations show that the lowest energy structure of dinuclear gold is an ion-molecule cluster [Au2Cl(Cl2)2](+) consisting of a single-bridged digold-chloronium ion bound end-on to two dichlorine ligands, with two higher energy isomers, single-bridged [Au2Cl3(Cl2)](+) and double-bridged [Au2Cl5](+) clusters. Finally, AuAu interactions in the singly-bridged clusters [Au2Cl(Cl2)2](+)(H2O)n and [Au2Cl3(Cl2)](+)(H2O)n are examined employing a wide range of computational tools, including natural bond order (NBO) analysis and localized orbital locator (LOL) profiles. PMID:24643288

  6. In vivo imaging of a stable paramagnetic probe by pulsed-radiofrequency electron paramagnetic resonance spectroscopy.

    PubMed

    Murugesan, R; Cook, J A; Devasahayam, N; Afeworki, M; Subramanian, S; Tschudin, R; Larsen, J A; Mitchell, J B; Russo, A; Krishna, M C

    1997-09-01

    Imaging of free radicals by electron paramagnetic resonance (EPR) spectroscopy using time domain acquisition as in nuclear magnetic resonance (NMR) has not been attempted because of the short spin-spin relaxation times, typically under 1 microsecond, of most biologically relevant paramagnetic species. Recent advances in radiofrequency (RF) electronics have enabled the generation of pulses of the order of 10-50 ns. Such short pulses provide adequate spectral coverage for EPR studies at 300 MHz resonant frequency. Acquisition of free induction decays (FID) of paramagnetic species possessing inhomogenously broadened narrow lines after pulsed excitation is feasible with an appropriate digitizer/averager. This report describes the use of time-domain RF EPR spectrometry and imaging for in vivo applications. FID responses were collected from a water-soluble, narrow line width spin probe within phantom samples in solution and also when infused intravenously in an anesthetized mouse. Using static magnetic field gradients and back-projection methods of image reconstruction, two-dimensional images of the spin-probe distribution were obtained in phantom samples as well as in a mouse. The resolution in the images was better than 0.7 mm and devoid of motional artifacts in the in vivo study. Results from this study suggest a potential use for pulsed RF EPR imaging (EPRI) for three-dimensional spatial and spectral-spatial imaging applications. In particular, pulsed EPRI may find use in vivo studies to minimize motional artifacts from cardiac and lung motion that cause significant problems in frequency-domain spectral acquisition, such as in continuous wave (cw) EPR techniques. PMID:9339442

  7. Probing Warm Dense Matter electronic structure using X-ray absorption Near Edge Spectroscopy (XANES)

    NASA Astrophysics Data System (ADS)

    Benuzzi Mounaix, Alessandra

    2011-06-01

    The behavior and physical properties of warm dense matter, fundamental for various branches of physics including planetology and Inertial Confinement Fusion, are non trivial to simulate either theoretically, numerically or experimentally. Despite important progress obtained in the last decade on macroscopic characterization (e.g. equations of state), microscopic studies are today necessary to investigate finely the WDM structure changes, the phase transitions and to test physical hypothesis and approximations commonly used in calculations. In this work, highly compressed aluminum has been investigated with the aim of bringing information on the evolution of its electronic structure by using K-edge shift and XANES. The experiment was performed at LULI laboratory where we used one long pulse (500 ps, IL ~ 8 1013 W/cm2) to create a uniform shock and a second ps beam (IL ~ 1017 W/cm2) to generate an ultra-short broadband X-ray source near the Al K-edge. The spectra were registered by using two conical KAP Bragg crystals. The main target was designed to probe the Aluminum in reshocked conditions allowing us to probe and to test theories in an extreme regime up to now unexplored (ρ ~ 3 ρ0 and T ~ 8 eV). The hydrodynamical Al conditions were measured by using VISARs interferometers and self-emission diagnostics. By increasing the delay between the two beams, we have been able to observe the modification of absorption spectra for unloading Al conditions (ρ >= 0.5 g/cc), and to put in evidence the relocalization of the 3p valence electrons occurring in the metal-non metal transition. All data have been compared to ab initio and dense plasma calculations.

  8. Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe

    SciTech Connect

    Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

    2012-05-09

    Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy

  9. Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong

    2009-09-01

    The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

  10. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor.

    PubMed

    Qi, Yan-Xia; Zhang, Min; Zhu, Anwei; Shi, Guoyue

    2015-08-21

    In this work, a novel ratiometric fluorescent probe was developed for rapid, highly accurate, sensitive and selective detection of mercury(II) (Hg(2+)) based on terbium(III)/gold nanocluster conjugates (Tb(3+)/BSA-AuNCs), in which bovine serum albumin capped gold nanoclusters (BSA-AuNCs) acted as the signal indicator and terbium(III) (Tb(3+)) was used as the build-in reference. Our proposed ratiometric fluorescent probe exhibited unique specificity toward Hg(2+) against other common environmentally and biologically important metal ions, and had high accuracy and sensitivity with a low detection limit of 1 nM. In addition, our proposed probe was effectively employed to detect Hg(2+) in the biological samples from the artificial Hg(2+)-infected rats. More significantly, an appealing paper-based visual sensor for Hg(2+) was designed by using filter paper embedded with Tb(3+)/BSA-AuNC conjugates, and we have further demonstrated its feasibility for facile fluorescent sensing of Hg(2+) in a visual format, in which only a handheld UV lamp is used. In the presence of Hg(2+), the paper-based visual sensor, illuminated by a handheld UV lamp, would undergo a distinct fluorescence color change from red to green, which can be readily observed with naked eyes even in trace Hg(2+) concentrations. The Tb(3+)/BSA-AuNC-derived paper-based visual sensor is cost-effective, portable, disposable and easy-to-use. This work unveiled a facile approach for accurate, sensitive and selective measuring of Hg(2+) with self-calibration. PMID:26140286

  11. Development of an Iridium(III) Complex as a G-Quadruplex Probe and Its Application for the G-Quadruplex-Based Luminescent Detection of Picomolar Insulin.

    PubMed

    Wang, Modi; Wang, Wanhe; Kang, Tian-Shu; Leung, Chung-Hang; Ma, Dik-Lung

    2016-01-01

    In this study, an unreported Ir(III) complex 1 was identified by screening as a versatile G-quadruplex probe. It exhibited highly selective response for different G-quadruplex DNA over double strand, single strand and triplex DNA. Compared with the organic G-quadruplex probe thioflavin T, complex 1 displays a longer lifetime, a larger Stokes shift, comparable G-quadruplex/ssDNA enhancement ratios, and higher G-quadruplex/triplex DNA enhancement ratios. In consideration of the encouraging G-quadruplex probe performance of complex 1, we employed 1 to develop a G-quadruplex-based detection system for the detection of insulin as a "proof-of-principle" concept. We also demonstrate an optimization process that enhanced the sensitivity of this sensing assay. Compared to previously reported methods, our "mix-and-detect" detection methodology is easy operated, quick, and cost-effective. A detection limit as low as 80 pM for insulin can be achieved by this sensing approach, with a linear relationship between luminescence intensity and insulin concentration established from 80 pM to 20 nM. Moreover, this assay could work effectively in diluted human serum. PMID:26607385

  12. Ratiometric Molecular Probes Based on Dual Emission of a Blue Fluorescent Coumarin and a Red Phosphorescent Cationic Iridium(III) Complex for Intracellular Oxygen Sensing

    PubMed Central

    Yoshihara, Toshitada; Murayama, Saori; Tobita, Seiji

    2015-01-01

    Ratiometric molecular probes RP1 and RP2 consisting of a blue fluorescent coumarin and a red phosphorescent cationic iridium complex connected by a tetra- or octaproline linker, respectively, were designed and synthesized for sensing oxygen levels in living cells. These probes exhibited dual emission with good spectral separation in acetonitrile. The photorelaxation processes, including intramolecular energy transfer, were revealed by emission quantum yield and lifetime measurements. The ratios (RI=(Ip/If)) between the phosphorescence (Ip) and fluorescence (If) intensities showed excellent oxygen responses; the ratio of RI under degassed and aerated conditions (RI0/RI) was 20.3 and 19.6 for RP1 and RP2. The introduction of the cationic Ir (III) complex improved the cellular uptake efficiency compared to that of a neutral analogue with a tetraproline linker. The emission spectra of the ratiometric probes internalized into living HeLa or MCF-7 cells could be obtained using a conventional microplate reader. The complex RP2 with an octaproline linker provided ratios comparable to the ratiometric measurements obtained using a microplate reader: the ratio of the RI value of RP2 under hypoxia (2.5% O2) to that under normoxia (21% O2) was 1.5 and 1.7 for HeLa and MCF-7 cells, respectively. Thus, the intracellular oxygen levels of MCF-7 cells could be imaged by ratiometric emission measurements using the complex RP2. PMID:26066988

  13. Probing the Natural World, Level III, Teacher's Edition: Why You're You. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The chapters include basic information about heredity, activities, and optional "excursions." The answers to all activities are included. An introduction describes the work of Gregor Mendel and his…

  14. Probing the Natural World, Level III, Record Book, Student Guide: Why You're You. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's edition of the Record Book of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). Space is provided for answers to the questions from the text as well as for the "excursions" and the self evaluation. An introductory note to the student explains how to use the book. (SA)

  15. Probing the Natural World, Level III, Student Guide: Why You're You. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's text of one of the eight units of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The chapters include basic information about heredity, activities, and optional "excursions." A section on introductory notes to the student explains how to use the book. Data tables and empty spaces within the…

  16. Probing the Natural World, Level III, Record Book, Teacher's Edition: Winds and Weather. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the teacher's edition of the Record Book for the unit "Winds and Weather" of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). The correct answers to the questions from the student text are recorded. An introductory note to the teacher explains how to use the book. Answers are included for the activities…

  17. Probing the Natural World, Level III, Record Book, Student Guide: Winds and Weather. Intermediate Science Curriculum Study.

    ERIC Educational Resources Information Center

    Bonar, John R., Ed.; Hathway, James A., Ed.

    This is the student's edition of the Record Book for "Winds and Weather" of the Intermediate Science Curriculum Study (ISCS) for level III students (grade 9). Space is provided for answers to the questions from the text as well as for the optional excursions and the self evaluation. An introductory note to the student explains how to use the book.…

  18. Using the Multipole Resonance Probe to Stabilize the Electron Density During a Reactive Sputter Process

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter

    2015-09-01

    Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.

  19. Nanometer-scale probing of spin waves using single electron spins

    NASA Astrophysics Data System (ADS)

    van der Sar, Toeno; Casola, Francesco; Walsworth, Ronald; Yacoby, Amir

    2015-05-01

    We have developed a new approach to exploring magnetic excitations in correlated-electron systems, based on single electronic spins in atom-like defects diamond known as nitrogen-vacancy (NV) color centers. We demonstrate the power of this approach by detecting spin-wave excitations in a ferromagnetic microdisc with nanoscale spatial sensitivity over a broad range of frequencies and magnetic fields. We show how spin-wave resonances can be exploited for on-chip amplification of microwave magnetic fields, allowing strongly increased spin manipulation rates and single-spin magnetometry with enhanced sensitivity. Finally, we show the possibility to detect the magnetic spin noise produced by a thin (~ 30 nm) layer of a patterned ferromagnet. For the interpretation of our results, we develop a general framework describing single-spin stray field detection in terms of a filter function sensitive mostly to spin fluctuations with wavevector ~ 1 / d , where d is the NV-ferromagnet distance. Our results pave the way towards quantitative and non-perturbative detection of spectral properties in nanomagnets, establishing NV center magnetometry as an emergent probe of collective spin dynamics in condensed matter.

  20. Ultrafast terahertz probes of transient conducting and insulating phases in an electron-hole gas

    SciTech Connect

    Kaindl, Robert A.; Carnahan, Marc A.; Hagele, Daniel; Lovenich, Reinhold; Chemla, Daniel S.

    2003-04-10

    Many-body systems in nature exhibit complexity and self-organization arising from seemingly simple laws. The long-range Coulomb interaction between electrical charges generates a plethora of bound states in matter, ranging from the hydrogen atom to complex biochemical structures. Semiconductors form an ideal laboratory for studying many-body interactions of quasi-particles among themselves and with lattice vibrations and light. Oppositely charged electron and hole quasi-particles can coexist in an ionized but correlated plasma, or form bound hydrogen-like pairs called excitons which strongly affect physical properties. The pathways between such states however remain elusive in near-visible optical experiments that detect a subset of excitons with vanishing center-of-mass momenta. In contrast, transitions between internal exciton levels which occur in the far-infrared at terahertz (10 s) frequencies are in dependent of this restriction suggesting their use as a novel pro be of pair dynamics. Here, we employ an ultrafast terahertz probe to directly investigate the dynamical interplay of optically-generated excitons and unbound electron-hole pairs in GaAs quantum wells. Our observations witness an unexpected quasi-instantaneous excitonic enhancement, reveal formation of insulating excitons on a hundred picosecond timescale and manifest conditions under which excitonic populations prevail.

  1. Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer

    NASA Technical Reports Server (NTRS)

    Blaes, Brent R.; Schaefer, Rembrandt T.

    2012-01-01

    A multi-channel electrometer voltmeter that employs self-nulling lock-in detection electronics in conjunction with a mechanical resonator with noncontact voltage sensing electrodes has been developed for space-based measurement of an Internal Electrostatic Discharge Monitor (IESDM). The IESDM is new sensor technology targeted for integration into a Space Environmental Monitor (SEM) subsystem used for the characterization and monitoring of deep dielectric charging on spacecraft. Use of an AC-coupled lock-in amplifier with closed-loop sense-signal nulling via generation of an active guard-driving feedback voltage provides the resolution, accuracy, linearity and stability needed for long-term space-based measurement of the IESDM. This implementation relies on adjusting the feedback voltage to drive the sense current received from the resonator s variable-capacitance-probe voltage transducer to approximately zero, as limited by the signal-to-noise performance of the loop electronics. The magnitude of the sense current is proportional to the difference between the input voltage being measured and the feedback voltage, which matches the input voltage when the sense current is zero. High signal-to-noise-ratio (SNR) is achieved by synchronous detection of the sense signal using the correlated reference signal derived from the oscillator circuit that drives the mechanical resonator. The magnitude of the feedback voltage, while the loop is in a settled state with essentially zero sense current, is an accurate estimate of the input voltage being measured. This technique has many beneficial attributes including immunity to drift, high linearity, high SNR from synchronous detection of a single-frequency carrier selected to avoid potentially noisy 1/f low-frequency spectrum of the signal-chain electronics, and high accuracy provided through the benefits of a driven shield encasing the capacitance- probe transducer and guarded input triaxial lead-in. Measurements obtained from a

  2. Double electron-electron resonance probes Ca²⁺-induced conformational changes and dimerization of recoverin.

    PubMed

    Myers, William K; Xu, Xianzhong; Li, Congmin; Lagerstedt, Jens O; Budamagunta, Madhu S; Voss, John C; Britt, R David; Ames, James B

    2013-08-27

    Recoverin, a member of the neuronal calcium sensor (NCS) branch of the calmodulin superfamily, is expressed in retinal photoreceptor cells and serves as a calcium sensor in vision. Ca²⁺-induced conformational changes in recoverin cause extrusion of its covalently attached myristate (termed Ca²⁺-myristoyl switch) that promotes translocation of recoverin to disk membranes during phototransduction in retinal rod cells. Here we report double electron-electron resonance (DEER) experiments on recoverin that probe Ca²⁺-induced changes in distance as measured by the dipolar coupling between spin-labels strategically positioned at engineered cysteine residues on the protein surface. The DEER distance between nitroxide spin-labels attached at C39 and N120C is 2.5 ± 0.1 nm for Ca²⁺-free recoverin and 3.7 ± 0.1 nm for Ca²⁺-bound recoverin. An additional DEER distance (5-6 nm) observed for Ca²⁺-bound recoverin may represent an intermolecular distance between C39 and N120. ¹⁵N NMR relaxation analysis and CW-EPR experiments both confirm that Ca²⁺-bound recoverin forms a dimer at protein concentrations above 100 μM, whereas Ca²⁺-free recoverin is monomeric. We propose that Ca²⁺-induced dimerization of recoverin at the disk membrane surface may play a role in regulating Ca²⁺-dependent phosphorylation of dimeric rhodopsin. The DEER approach will be useful for elucidating dimeric structures of NCS proteins in general for which Ca²⁺-induced dimerization is functionally important but not well understood. PMID:23906368

  3. Interacting Thin Film Systems Probed by Electron Induced Extended Fine Structure

    NASA Astrophysics Data System (ADS)

    Idzerda, Yves Ulrich

    In order to obtain information on the structure and dynamics of various systems including interacting thin films, it is necessary to be able to measure local structure information with surface sensitivity. Three techniques of Electron Induced Extended Fine Structure (EIEFS), the electron analog of Extended X-ray Absorption Fine Structure (EXAFS), are described, compared, and applied to thin film systems. Surface Extended Electron Loss Fine Structure (SEELFS), Extended Appearence Potential Fine Structure (EAPFS) and Auger-Monitored Extended Fine Structure (AMEFS), are all local structure probes with varying degrees of surface sensitivity, and all yield similar information. Our results show that each technique can be measured by commercially available electron optics, SEELFS and AMEFS by either a cylindrical mirror analyzer (CMA) or by low energy electron diffraction (LEED) optics and EAPFS by the LEED optics. We have addressed questions concerning proper phase shifts for the analysis, short data ranges, required use of undifferentiated data, and experimental difficulties. Investigations of carbon, oxygen, sodium, potassium, cesium, and sulfur on Cu(111) and titanium on silicon demonstrate that SEELFS is applicable to single monolayer coverages of very low Z adsorbates and thin films. Many of the theoretical difficulties surrounding the analysis of SEELFS can be circumvented by the use of standards and the ratio technique analysis developed for EXAFS. We also find in our studies of silicon, titanium, and aluminum oxide that systems with plasmon losses in the region of interest cannot be analyzed, but systems with other characteristic losses which are very sharp or very broad can be. Examination of EAPFS shows that it is more surface sensitive and is applicable to single monolayer coverages (of a broader range of elements than SEELFS) and thin films. Unfortunately, EAPFS is not applicable to single crystal systems with low electron binding energies where diffraction

  4. Theory of probing attosecond electron wave packets via two-path interference of angle-resolved photoelectrons

    SciTech Connect

    Choi, N. N.; Jiang, T. F.; Morishita, T.; Lee, M.-H.; Lin, C. D.

    2010-07-15

    We study theoretically the electron wave packet generated by an attosecond pulse train (APT) which is probed with a time-delayed infrared (IR) laser pulse. The APT creates an excited state and a continuum electron wave packet. By ionizing the excited state with an IR, a delayed new continuum electron wave packet is created. The interference of the wave packets from the two paths, as reflected in angle-resolved photoelectron spectra, is analyzed analytically. Using the analytical expressions, we examine the possibility of retrieving information on the electron wave packet generated by the APT.

  5. Investigation of electronically excited indole relaxation dynamics via photoionization and fragmentation pump-probe spectroscopy

    SciTech Connect

    Godfrey, T. J.; Yu, Hui; Ullrich, Susanne

    2014-07-28

    The studies herein investigate the involvement of the low-lying {sup 1}L{sub a} and {sup 1}L{sub b} states with {sup 1}ππ{sup *} character and the {sup 1}πσ{sup *} state in the deactivation process of indole following photoexcitation at 201 nm. Three gas-phase, pump-probe spectroscopic techniques are employed: (1) Time-resolved photoelectron spectroscopy (TR-PES), (2) hydrogen atom (H-atom) time-resolved kinetic energy release (TR-KER), and (3) time-resolved ion yield (TR-IY). Each technique provides complementary information specific to the photophysical processes in the indole molecule. In conjunction, a thorough examination of the electronically excited states in the relaxation process, with particular focus on the involvement of the {sup 1}πσ{sup *} state, is afforded. Through an extensive analysis of the TR-PES data presented here, it is deduced that the initial excitation of the {sup 1}B{sub b} state decays to the {sup 1}L{sub a} state on a timescale beyond the resolution of the current experimental setup. Relaxation proceeds on the {sup 1}L{sub a} state with an ultrafast decay constant (<100 femtoseconds (fs)) to the lower-lying {sup 1}L{sub b} state, which is found to possess a relatively long lifetime of 23 ± 5 picoseconds (ps) before regressing to the ground state. These studies also manifest an additional component with a relaxation time of 405 ± 76 fs, which is correlated with activity along the {sup 1}πσ{sup *} state. TR-KER and TR-IY experiments, both specifically probing {sup 1}πσ{sup *} dynamics, exhibit similar decay constants, further validating these observations.

  6. Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes

    PubMed Central

    Kurth, W S; De Pascuale, S; Faden, J B; Kletzing, C A; Hospodarsky, G B; Thaller, S; Wygant, J R

    2015-01-01

    The twin Van Allen Probe spacecraft, launched in August 2012, carry identical scientific payloads. The Electric and Magnetic Field Instrument Suite and Integrated Science suite includes a plasma wave instrument (Waves) that measures three magnetic and three electric components of plasma waves in the frequency range of 10 Hz to 12 kHz using triaxial search coils and the Electric Fields and Waves triaxial electric field sensors. The Waves instrument also measures a single electric field component of waves in the frequency range of 10 to 500 kHz. A primary objective of the higher-frequency measurements is the determination of the electron density ne at the spacecraft, primarily inferred from the upper hybrid resonance frequency fuh. Considerable work has gone into developing a process and tools for identifying and digitizing the upper hybrid resonance frequency in order to infer the electron density as an essential parameter for interpreting not only the plasma wave data from the mission but also as input to various magnetospheric models. Good progress has been made in developing algorithms to identify fuh and create a data set of electron densities. However, it is often difficult to interpret the plasma wave spectra during active times to identify fuh and accurately determine ne. In some cases, there is no clear signature of the upper hybrid band, and the low-frequency cutoff of the continuum radiation is used. We describe the expected accuracy of ne and issues in the interpretation of the electrostatic wave spectrum. PMID:26167442

  7. A new method to probe the thermal electron content of the Galaxy through spectral analysis of background sources

    NASA Astrophysics Data System (ADS)

    Jones, D. I.; Igoshev, A. P.; Haverkorn, M.

    2016-08-01

    We present a new method for probing the thermal electron content of the Galaxy by spectral analysis of background point sources in the absorption-only limit to the radiative transfer equation. In this limit, calculating the spectral index, $\\alpha$, of these sources using a natural logarithm results in an additive factor, which we denote $\\alpha_\\mathrm{EM}$, resulting from the absorption of radiation due to the Galactic thermal electron population. We find that this effect is important at very low frequencies ($\

  8. k-space drift due to the density variation as a cause of electromagnetic emission generation of type III solar radio bursts by a non-gyrotropic electron beam

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David; Schmitz, Holger

    2013-04-01

    It is widely accepted that there is a correlation between super-thermal electron beams and type III solar radio bursts. Whilst the correlation is an established fact, the actual mechanism that generates the type III burst emission is not yet fully determined. The main source of the uncertainty is current inability to send in-situ probes at distances 0.15 - 1.5Rsun from the solar surface (photosphere). The most widely accepted mechanism, that historically appeared first is the plasma emission. In plasma emission mechanism quasilinear theory, kinetic Fokker-Planck type equation for describing the dynamics of an electron beam is used, in conjunction with the spectral energy density evolutionary equations for Langmuir and ion-sound waves. Further, non-linear wave-wave interactions between Langmuir, ion-acoustic and EM waves produce emission at electron plasma frequency, ?pe or the second harmonic, 2?pe. A variant of the plasma emission mechanism is the stochastic growth theory, where density irregularities produce a random growth, in such a way that Langmuir waves are generated stochastically and quasilinear interactions within the Langmuir clumps cause the beam to fluctuate about marginal stability. The latter models have been used for producing the solar type III burst observable parameters. Other possible mechanisms include: linear mode conversion, antenna radiation and non-gyrotropic electron beam emission [1]. Recent works [2,3] elucidated further the non-gyrotropic electron beam emission, first proposed in Ref.[1]. In particular, the effect of electron beam pitch angle and density gradient on solar type III radio bursts was studied [2] and the role of electron cyclotron maser (ECM) emission with a possible mode coupling to the z-mode was explored [3]. In this contribution and paper [4], using large-scale Particle-In-Cell simulations, we explore the non-gyrotropic electron beam emission mechanism by studying the effects of electron beam kinetics and k-space drift

  9. Studies on electronic spectral parameters of doped Nd(III) ion with therapeutically important ligands in dioxane solvent

    NASA Astrophysics Data System (ADS)

    Bajaj, Annu; Jain, Sushma

    2016-05-01

    The present investigation is concerened with the studies on electronic spectral parameters viz. Oscillator strength (P), Judd-Ofelt Tλ (λ=2,4,6), Slater-Condon(FK),Lande(ζ4F),Nephelauxetic ratio(β), Bonding parameter (b1/2) and Percent covalency parameter (δ%) for Nd(III) ion complexes with the ligands having Nitrogen,Oxygen Sulphur donor sites.The variation in the values of oscillator strength explicitly shows the relative sensitivities of the 4f-4f transition as well as the specific correlation between ligand structures and nature of Nd(III) ligand interaction.

  10. Electron densities for six planetary nebulae and HM Sagittae derived from the semiforbidden C III lambda 1907/1909 ratio

    NASA Astrophysics Data System (ADS)

    Feibelman, W. A.; Boggess, A.; Hobbs, R. W.; McCracken, C. W.

    1980-10-01

    Electron densities for IC 418, NGC 6572, IC 1297, NGC 3242, NGC 6818, NYC 3211, and HM Sagittae derived from high-dispersion IUE C III] spectrograms are consistently higher than those derived from either surface brightness measurements or forbidden line intensity ratios in the visible. The nebulae were selected for a range of excitation classes from 3 to 9. Line splitting due to expansion velocities is observed for three objects. The great width of the λ1909 C III] line in MM Sagittae suggests large expansion velocities.

  11. Cathodoluminescence, laser ablasion inductively coupled plasma mass spectrometry, electron probe microanalysis and electron paramagnetic resonance analyses of natural sphalerite

    USGS Publications Warehouse

    Karakus, M.; Hagni, R.D.; Koenig, A.; Ciftc, E.

    2008-01-01

    Natural sphalerite associated with copper, silver, lead-zinc, tin and tungsten deposits from various world-famous mineral deposits have been studied by cathodoluminescence (CL), laser ablasion inductively coupled plasma mass spectrometry (LA-ICP-MS), electron probe microanalysis (EPMA) and electron paramagnetic resonance (EPR) to determine the relationship between trace element type and content and the CL properties of sphalerite. In general, sphalerite produces a spectrum of CL colour under electron bombardment that includes deep blue, turquoise, lime green, yellow-orange, orange-red and dull dark red depending on the type and concentration of trace quantities of activator ions. Sphalerite from most deposits shows a bright yellow-orange CL colour with ??max centred at 585 nm due to Mn2+ ion, and the intensity of CL is strongly dependent primarily on Fe2+ concentration. The blue emission band with ??max centred at 470-490 nm correlates with Ga and Ag at the Tsumeb, Horn Silver, Balmat and Kankoy mines. Colloform sphalerite from older well-known European lead-zinc deposits and late Cretaceous Kuroko-type VMS deposits of Turkey shows intense yellowish CL colour and their CL spectra are characterised by extremely broad emission bands ranging from 450 to 750 nm. These samples are characterised by low Mn (<10 ppm) and Ag (<1 ppm), and they are enriched in Tl (1-30 ppm) and Pb (80-1500 ppm). Strong green CL is produced by sphalerite from the Balmat-Edwards district. Amber, lime-green and red-orange sphalerite produced weak orange-red CL at room temperatures, with several emission bands centred at 490, 580, 630, 680, 745, with ??max at 630 nm being the strongest. These emission bands are well correlated with trace quantities of Sn, In, Cu and Mn activators. Sphalerite from the famous Ogdensburg and Franklin mines exhibited brilliant deep blue and orange CL colours and the blue CL may be related to Se. Cathodoluminescence behaviour of sphalerite serves to characterise ore

  12. Recent progress of probing correlated electron states by point contact spectroscopy.

    PubMed

    Lee, Wei-Cheng; Greene, Laura H

    2016-09-01

    We review recent progress in point contact spectroscopy (PCS) to extract spectroscopic information out of correlated electron materials, with the emphasis on non-superconducting states. PCS has been used to detect bosonic excitations in normal metals, where signatures (e.g. phonons) are usually less than 1% of the measured conductance. In the superconducting state, point contact Andreev reflection (PCAR) has been widely used to study properties of the superconducting gap in various superconductors. It has been well-recognized that the corresponding conductance can be accurately fitted by the Blonder-Tinkham-Klapwijk (BTK) theory in which the AR occurring near the point contact junction is modeled by three parameters; the superconducting gap, the quasiparticle scattering rate, and a dimensionless parameter, Z, describing the strength of the potential barrier at the junction. AR can be as large as 100% of the background conductance, and only arises in the case of superconductors. In the last decade, there have been more and more experimental results suggesting that the point contact conductance could reveal new features associated with the unusual single electron dynamics in non-superconducting states, shedding a new light on exploring the nature of the competing phases in correlated materials. To correctly interpret these new features, it is crucial to re-examine the modeling of the point contact junctions, the formalism used to describe the single electron dynamics particularly in point contact spectroscopy, and the physical quantity that should be computed to understand the conductance. We will summarize the theories for point contact spectroscopy developed from different approaches and highlight these conceptual differences distinguishing point contact spectroscopy from tunneling-based probes. Moreover, we will show how the Schwinger-Kadanoff-Baym-Keldysh (SKBK) formalism together with the appropriate modeling of the nano-scale point contacts randomly distributed

  13. Recent progress of probing correlated electron states by point contact spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Cheng; Greene, Laura H.

    2016-09-01

    We review recent progress in point contact spectroscopy (PCS) to extract spectroscopic information out of correlated electron materials, with the emphasis on non-superconducting states. PCS has been used to detect bosonic excitations in normal metals, where signatures (e.g. phonons) are usually less than 1% of the measured conductance. In the superconducting state, point contact Andreev reflection (PCAR) has been widely used to study properties of the superconducting gap in various superconductors. It has been well-recognized that the corresponding conductance can be accurately fitted by the Blonder–Tinkham–Klapwijk (BTK) theory in which the AR occurring near the point contact junction is modeled by three parameters; the superconducting gap, the quasiparticle scattering rate, and a dimensionless parameter, Z, describing the strength of the potential barrier at the junction. AR can be as large as 100% of the background conductance, and only arises in the case of superconductors. In the last decade, there have been more and more experimental results suggesting that the point contact conductance could reveal new features associated with the unusual single electron dynamics in non-superconducting states, shedding a new light on exploring the nature of the competing phases in correlated materials. To correctly interpret these new features, it is crucial to re-examine the modeling of the point contact junctions, the formalism used to describe the single electron dynamics particularly in point contact spectroscopy, and the physical quantity that should be computed to understand the conductance. We will summarize the theories for point contact spectroscopy developed from different approaches and highlight these conceptual differences distinguishing point contact spectroscopy from tunneling-based probes. Moreover, we will show how the Schwinger–Kadanoff–Baym–Keldysh (SKBK) formalism together with the appropriate modeling of the nano-scale point contacts randomly

  14. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    DOE PAGESBeta

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; et al

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front.more » Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.« less

  15. Near-earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    SciTech Connect

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; Li, Xinlin; Malaspina, David; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew L.; Reeves, Geoffrey D.; Funsten, Herbert O.; Spence, Harlan E.; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei

    2015-08-10

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeV electron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L~5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ~40 s and a dispersionless injection of electrons up to ~3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

  16. Silicon/III-V laser with super-compact diffraction grating for WDM applications in electronic-photonic integrated circuits.

    PubMed

    Wang, Yadong; Wei, Yongqiang; Huang, Yingyan; Tu, Yongming; Ng, Doris; Lee, Cheewei; Zheng, Yunan; Liu, Boyang; Ho, Seng-Tiong

    2011-01-31

    We have demonstrated a heterogeneously integrated III-V-on-Silicon laser based on an ultra-large-angle super-compact grating (SCG). The SCG enables single-wavelength operation due to its high-spectral-resolution aberration-free design, enabling wavelength division multiplexing (WDM) applications in Electronic-Photonic Integrated Circuits (EPICs). The SCG based Si/III-V laser is realized by fabricating the SCG on silicon-on-insulator (SOI) substrate. Optical gain is provided by electrically pumped heterogeneous integrated III-V material on silicon. Single-wavelength lasing at 1550 nm with an output power of over 2 mW and a lasing threshold of around 150 mA were achieved. PMID:21369017

  17. Mtr Extracellular Electron Transfer Pathways in Fe(III)-reducing or Fe(II)-oxidizing Bacteria: A Genomic Perspective

    SciTech Connect

    Shi, Liang; Rosso, Kevin M.; Zachara, John M.; Fredrickson, Jim K.

    2012-12-01

    Originally discovered in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), the Mtr (i.e., metal-reducing) pathway exists in all characterized strains of metal-reducing Shewanella. The protein components identified to date for the Mtr pathway of MR-1 include four multi-heme c-type cytochromes (c-Cyts), CymA, MtrA, MtrC and OmcA, and a porin-like, outer membrane protein MtrB. They are strategically positioned along the width of the MR-1 cell envelope to mediate electron transfer from the quinone/quinol pool in the inner-membrane to the Fe(III)-containing minerals external to the bacterial cells. A survey of microbial genomes revealed homologues of the Mtr pathway in other dissimilatory Fe(III)-reducing bacteria, including Aeromonas hydrophila, Ferrimonas balearica and Rhodoferax ferrireducens, and in the Fe(II)-oxidizing bacteria Dechloromonas aromatica RCB, Gallionella capsiferriformans ES-2 and Sideroxydans lithotrophicus ES-1. The widespread distribution of Mtr pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria emphasizes the importance of this type of extracellular electron transfer pathway in microbial redox transformation of Fe. Their distribution in these two different functional groups of bacteria also emphasizes the bi-directional nature of electron transfer reactions carried out by the Mtr pathways. The characteristics of the Mtr pathways may be shared by other pathways used by microorganisms for exchanging electrons with their extracellular environments.

  18. Advances in Langmuir probe diagnostics of the plasma potential and electron-energy distribution function in magnetized plasma

    NASA Astrophysics Data System (ADS)

    Popov, Tsv K.; Dimitrova, M.; Ivanova, P.; Kovačič, J.; Gyergyek, T.; Dejarnac, R.; Stöckel, J.; Pedrosa, M. A.; López-Bruna, D.; Hidalgo, C.

    2016-06-01

    Advanced Langmuir probe techniques for evaluating the plasma potential and electron-energy distribution function (EEDF) in magnetized plasma are reviewed. It is shown that when the magnetic field applied is very weak and the electrons reach the probe without collisions in the probe sheath the second-derivative Druyvesteyn formula can be used for EEDF evaluation. At low values of the magnetic field, an extended second-derivative Druyvesteyn formula yields reliable results, while at higher values of the magnetic field, the first-derivative probe technique is applicable for precise evaluation of the plasma potential and the EEDF. There is an interval of intermediate values of the magnetic field when both techniques—the extended second-derivative and the first-derivative one—can be used. Experimental results from probe measurements in different ranges of magnetic field are reviewed and discussed: low-pressure argon gas discharges in the presence of a magnetic field in the range from 0.01 to 0.08 T, probe measurements in circular hydrogen plasmas for high-temperature fusion (magnetic fields from 0.45 T to 1.3 T) in small ISTTOK and CASTOR tokamaks, D-shape COMPASS tokamak plasmas, as well as in the TJ-II stellarator. In the vicinity of the last closed flux surface (LCFS) in tokamaks and in the TJ-II stellarator, the EEDF obtained is found to be bi-Maxwellian, while close to the tokamak chamber wall it is Maxwellian. The mechanism of the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is discussed. Comparison of the results from probe measurements with those obtained from calculations using the ASTRA and EIRENE codes shows that the main reason for the appearance of a bi-Maxwellian EEDF in the vicinity of the LCFS is the ionization of the neutral atoms.

  19. Electron-probe microanalysis of light elements in coal and other kerogen

    USGS Publications Warehouse

    Bustin, R.M.; Mastalerz, Maria; Raudsepp, M.

    1996-01-01

    Recent advances in electron microprobe technology including development of layered synthetic microstructures, more stable electronics and better matrix-correction programs facilitated routine microanalysis of the light elements in coal. Utilizing an appropriately equipped electron microprobe with suitable standards, it is now possible to analyze directly the light elements (C, O and N, if abundant) in coal macerals and other kerogen. The analytical results are both accurate compared to ASTM methods and highly precise, and provide an opportunity to access the variation in coal chemistry at the micrometre scale. Our experiments show that analyses using a 10 kV accelerating voltage and 10 nA beam current yield the most reliable data and result in minimum sample damage and contamination. High sample counts were obtained for C, O and N using a bi-elemental nickel-carbon pseudo-crystal (2d = 9.5 nm) as an analyzing crystal. Vitrinite isolated from anthracite rank coal proves the best carbon standard and is more desirable than graphite which has higher porosity, whereas lower rank vitrinite is too heterogeneous to use routinely as a standard. Other standards utilized were magnesite for oxygen and BN for nitrogen. No significant carbon, oxygen or nitrogen X-ray peak shifts or peak-shape changes occur between standards and the kerogen analyzed. Counting rates for carbon and oxygen were found to be constant over a range of beam sizes and currents for counting times up to 160 s. Probe-determined carbon and oxygen contents agree closely with those reported from ASTM analyses. Nitrogen analyses compare poorly to ASTM values which probably is in response to overlap between the nitrogen Ka peak with the carbon K-adsorption edge and the overall low nitrogen content of most of our samples. Our results show that the electron microprobe technique provides accurate compositional data for both minor and major elements in coal without the necessity and inherent problems associated with

  20. Near-Earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations

    NASA Astrophysics Data System (ADS)

    Dai, Lei; Wang, Chi; Duan, Suping; He, Zhaohai; Wygant, John R.; Cattell, Cynthia A.; Tao, Xin; Su, Zhenpeng; Kletzing, Craig; Baker, Daniel N.; Li, Xinlin; Malaspina, David; Blake, J. Bernard; Fennell, Joseph; Claudepierre, Seth; Turner, Drew L.; Reeves, Geoffrey D.; Funsten, Herbert O.; Spence, Harlan E.; Angelopoulos, Vassilis; Fruehauff, Dennis; Chen, Lunjin; Thaller, Scott; Breneman, Aaron; Tang, Xiangwei

    2015-08-01

    Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L ˜ 5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ˜40 s and a dispersionless injection of electrons up to ˜3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

  1. Probing short-range nucleon-nucleon interactions with an electron-ion collider

    NASA Astrophysics Data System (ADS)

    Miller, Gerald A.; Sievert, Matthew D.; Venugopalan, Raju

    2016-04-01

    We derive the cross section for exclusive vector meson production in high-energy deeply inelastic scattering off a deuteron target that disintegrates into a proton and a neutron carrying large relative momentum in the final state. This cross section can be expressed in terms of a novel gluon transition generalized parton distribution (T-GPD); the hard scale in the final state makes the T-GPD sensitive to the short-distance nucleon-nucleon interaction. We perform a toy model computation of this process in a perturbative framework and discuss the time scales that allow the separation of initial- and final-state dynamics in the T-GPD. We outline the more general computation based on the factorization suggested by the toy computation: In particular, we discuss the relative role of "pointlike" and "geometric" Fock configurations that control the parton dynamics of short-range nucleon-nucleon scattering. With the aid of exclusive J /ψ production data at the Hadron-Electron Ring Accelerator at DESY, as well as elastic nucleon-nucleon cross sections, we estimate rates for exclusive deuteron photodisintegration at a future Electron-Ion Collider (EIC). Our results, obtained using conservative estimates of EIC integrated luminosities, suggest that center-of-mass energies sNN˜12 GeV2 of the neutron-proton subsystem can be accessed. We argue that the high energies of the EIC can address outstanding dynamical questions regarding the short-range quark-gluon structure of nuclear forces by providing clean gluon probes of such "knockout" exclusive reactions in light and heavy nuclei.

  2. Electron probe X-ray microanalysis of boar and inobuta testes after the Fukushima accident

    PubMed Central

    Yamashiro, Hideaki; Abe, Yasuyuki; Hayashi, Gohei; Urushihara, Yusuke; Kuwahara, Yoshikazu; Suzuki, Masatoshi; Kobayashi, Jin; Kino, Yasuyuki; Fukuda, Tomokazu; Tong, Bin; Takino, Sachio; Sugano, Yukou; Sugimura, Satoshi; Yamada, Takahisa; Isogai, Emiko; Fukumoto, Manabu

    2015-01-01

    We aimed to investigate the effect of chronic radiation exposure associated with the Fukushima Daiichi Nuclear Power Plant (FNPP) accident on the testes of boar and inobuta (a hybrid of Sus scrofa and Sus scrofa domestica). This study examined the contamination levels of radioactive caesium (Cs), especially 134Cs and 137Cs, in the testis of both boar and inobuta during 2012, after the Fukushima accident. Morphological analysis and electron-probe X-ray microanalysis (EPMA) were also undertaken on the testes. The 134Cs and 137Cs levels were 6430 ± 23 and 6820 ± 32 Bq/kg in the boar testes, and 755 ± 13 and 747 ± 17 Bq/kg in the inobuta testes, respectively. The internal and external exposure of total 134Cs and 137Cs in the boar testes were 47.1 mGy and 176.2 mGy, respectively, whereas in the inobuta testes, these levels were 6.09 mGy and 59.8 mGy, respectively. Defective spermatogenesis was not detected by the histochemical analysis of radiation-exposed testes for either animal. In neither animal were Cs molecules detected, using EPMA. In conclusion, we showed that adverse radiation-induced effects were not detected in the examined boar and inobuta testes following the chronic radiation exposure associated with the FNPP accident. PMID:26825300

  3. Probing Majorana bound states via counting statistics of a single electron transistor

    NASA Astrophysics Data System (ADS)

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J. Q.

    2015-06-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs.

  4. Using Supra-Arcade Downflows as Probes of Electron Acceleration During Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina L.

    2011-01-01

    Extracting information from coronal features above flares has become more reliable with the availability of increasingly higher spatial and temporal-resolution data in recent decades. We are now able to sufficiently probe the region high above long-duration flaring active regions where reconnection is expected to be continually occurring. Flows in the supra-arcade region, first observed with Yohkoh/SXT, have been theorized to be associated with newly-reconnected outflowing loops. High resolution data appears to confirm these assertions. Assuming that these flows are indeed reconnection outflows, then the detection of those directed toward the solar surface (i.e. downflowing) should be associated with particle acceleration between the current sheet and the loop footpoints rooted in the chromosphere. RHESSI observations of highly energetic particles with respect to downflow detections could potentially constrain electron acceleration models. I will discuss measurements of these supra-arcade downflows (SADs) in relation to reconnection model parameters and present preliminary findings comparing the downflow timings with high-energy RHESSI lightcurves.

  5. PROBING ELECTRON-CAPTURE SUPERNOVAE: X-RAY BINARIES IN STARBURSTS

    SciTech Connect

    Linden, T.; Sepinsky, J. F.; Kalogera, V.; Belczynski, K.

    2009-07-10

    We develop population models of high-mass X-ray binaries (HMXBs) formed after bursts of star formation and we investigate the effect of electron-capture supernovae (ECS) of massive ONeMg white dwarfs and the hypothesis that ECS events are associated with typically low supernova kicks imparted to the nascent neutron stars. We identify an interesting ECS bump in the time evolution of HMXB numbers; this bump is caused by significantly increased production of wind-fed HMXBs 20-60 Myr post-starburst. The amplitude and age extent of the ECS bump depend on the strength of ECS kicks and the mass range of ECS progenitors. We also find that ECS-HMXBs form through a specific evolutionary channel that is expected to lead to binaries with Be donors in wide orbits. These characteristics, along with their sensitivity to ECS properties, provide us with an intriguing opportunity to probe ECS physics and progenitors through studies of starbursts of different ages. Specifically, the case of the Small Magellanic Cloud, with a significant observed population of Be-HMXBs and starburst activity 30-60 Myr ago, arises as a promising laboratory for understanding the role of ECS in neutron star formation.

  6. Nanometre-scale probing of spin waves using single-electron spins

    PubMed Central

    van der Sar, Toeno; Casola, Francesco; Walsworth, Ronald; Yacoby, Amir

    2015-01-01

    Pushing the frontiers of condensed-matter magnetism requires the development of tools that provide real-space, few-nanometre-scale probing of correlated-electron magnetic excitations under ambient conditions. Here we present a practical approach to meet this challenge, using magnetometry based on single nitrogen-vacancy centres in diamond. We focus on spin-wave excitations in a ferromagnetic microdisc, and demonstrate local, quantitative and phase-sensitive detection of the spin-wave magnetic field at ∼50 nm from the disc. We map the magnetic-field dependence of spin-wave excitations by detecting the associated local reduction in the disc's longitudinal magnetization. In addition, we characterize the spin–noise spectrum by nitrogen-vacancy spin relaxometry, finding excellent agreement with a general analytical description of the stray fields produced by spin–spin correlations in a 2D magnetic system. These complementary measurement modalities pave the way towards imaging the local excitations of systems such as ferromagnets and antiferromagnets, skyrmions, atomically assembled quantum magnets, and spin ice. PMID:26249673

  7. Electron probe X-ray microanalysis of boar and inobuta testes after the Fukushima accident.

    PubMed

    Yamashiro, Hideaki; Abe, Yasuyuki; Hayashi, Gohei; Urushihara, Yusuke; Kuwahara, Yoshikazu; Suzuki, Masatoshi; Kobayashi, Jin; Kino, Yasuyuki; Fukuda, Tomokazu; Tong, Bin; Takino, Sachio; Sugano, Yukou; Sugimura, Satoshi; Yamada, Takahisa; Isogai, Emiko; Fukumoto, Manabu

    2015-12-01

    We aimed to investigate the effect of chronic radiation exposure associated with the Fukushima Daiichi Nuclear Power Plant (FNPP) accident on the testes of boar and inobuta (a hybrid of Sus scrofa and Sus scrofa domestica). This study examined the contamination levels of radioactive caesium (Cs), especially (134)Cs and (137)Cs, in the testis of both boar and inobuta during 2012, after the Fukushima accident. Morphological analysis and electron-probe X-ray microanalysis (EPMA) were also undertaken on the testes. The (134)Cs and (137)Cs levels were 6430 ± 23 and 6820 ± 32 Bq/kg in the boar testes, and 755 ± 13 and 747 ± 17 Bq/kg in the inobuta testes, respectively. The internal and external exposure of total (134)Cs and (137)Cs in the boar testes were 47.1 mGy and 176.2 mGy, respectively, whereas in the inobuta testes, these levels were 6.09 mGy and 59.8 mGy, respectively. Defective spermatogenesis was not detected by the histochemical analysis of radiation-exposed testes for either animal. In neither animal were Cs molecules detected, using EPMA. In conclusion, we showed that adverse radiation-induced effects were not detected in the examined boar and inobuta testes following the chronic radiation exposure associated with the FNPP accident. PMID:26825300

  8. Probing Energy Levels of Large Array Quantum Dot Superlattice by Electronic Transport Measurement

    NASA Astrophysics Data System (ADS)

    Bisri, S. Z.; Degoli, E.; Spallanzani, N.; Krishnan, G.; Kooi, B.; Ghica, C.; Yarema, M.; Protesescu, L.; Heiss, W.; Kovalenko, M.; Pulci, O.; Ossicini, S.; Iwasa, Y.; Loi, M. A.

    2015-03-01

    Colloidal quantum dot superlattice (CQDS) emerges as new type of hybrid solids allowing easy fabrication of devices that exploits the quantum confinement properties of individual QD. This materials displays peculiar characters, making investigation of their transport properties nontrivial. Besides the bandgap variations, 0D nature of QD lead to the formation of discrete energy subbands. These subbands are crucial for multiple exciton generation (for efficient solar cell), thermoelectric material and multistate transistor. Full understanding of the CQDS energy level structure is vital to use them in complex devices. Here we show a powerful method to determine the CQDS electronic energy levels from their intrinsic charge transport characteristics. Via the use of ambipolar transistors with CQDS as active materials and gated using highly capacitive ionic liquid gating, Fermi energy can be largely tuned. It can access energy levels beyond QD's HOMO & LUMO. Ability to probe not only the bandgap, but also the discrete energy level from large assembly of QD at room temperature suggests the formation of energy minibands in this system.

  9. Quantification of ionic transport within thermally-activated batteries using electron probe micro-analysis

    NASA Astrophysics Data System (ADS)

    Humplik, Thomas; Stirrup, Emily K.; Grillet, Anne M.; Grant, Richard P.; Allen, Ashley N.; Wesolowski, Daniel E.; Roberts, Christine C.

    2016-07-01

    The transient transport of electrolytes in thermally-activated batteries is studied using electron probe micro-analysis (EPMA), demonstrating the robust capability of EPMA as a useful tool for studying and quantifying mass transport within porous materials, particularly in difficult environments where classical flow measurements are challenging. By tracking the mobility of bromine and potassium ions from the electrolyte stored within the separator into the lithium silicon anode and iron disulfide cathode, we are able to quantify the transport mechanisms and physical properties of the electrodes including permeability and tortuosity. Due to the micron to submicron scale porous structure of the initially dry anode, a fast capillary pressure driven flow is observed into the anode from which we are able to set a lower bound on the permeability of 10-1 mDarcy. The transport into the cathode is diffusion-limited because the cathode originally contained some electrolyte before activation. Using a transient one-dimensional diffusion model, we estimate the tortuosity of the cathode electrode to be 2.8 ± 0.8.

  10. Probing Nitrosyl Ligation of Surface-Confined Metalloporphyrins by Inelastic Electron Tunneling Spectroscopy

    PubMed Central

    2013-01-01

    Complexes obtained by the ligation of nitric oxide (NO) to metalloporphyrins represent important model systems with biological relevance. Herein we report a molecular-level investigation of surface-confined cobalt tetraphenyl porphyrin (Co-TPP) species and their interaction with NO under ultrahigh vacuum conditions. It is demonstrated that individual NO adducts can be desorbed using the atomically sharp tip of a scanning tunneling microscope, whereby a writing process is implemented for fully saturated regular metalloporphyrin arrays. The low-energy vibrational characteristics of individual Co-TPP-nitrosyl complexes probed by inelastic electron tunneling spectroscopy (IETS) reveal a prominent signature at an energy of ≃31 meV. Using density functional theory-based IETS simulations—the first to be performed on such an extensive interfacial nanosystem—we succeed to reproduce the low-frequency spectrum for the NO-ligated complex and explain the absence of IETS activity for bare Co-TPP. Moreover, we can conclusively assign the IETS peak of NO-Co-TPP to a unique vibration mode involving the NO complexation site, namely, the in-plane Co–N–O rocking mode. In addition, we verify that the propensity rules previously designed on small aromatic systems and molecular fragments hold true for a metal–organic entity. This work notably permits one to envisage IETS spectroscopy as a sensitive tool to chemically characterize hybrid interfaces formed by complex metal–organic units and gaseous adducts. PMID:23718257

  11. Probing Majorana bound states via counting statistics of a single electron transistor

    PubMed Central

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J. Q.

    2015-01-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs. PMID:26098973

  12. Probing Majorana bound states via counting statistics of a single electron transistor.

    PubMed

    Li, Zeng-Zhao; Lam, Chi-Hang; You, J Q

    2015-01-01

    We propose an approach for probing Majorana bound states (MBSs) in a nanowire via counting statistics of a nearby charge detector in the form of a single-electron transistor (SET). We consider the impacts on the counting statistics by both the local coupling between the detector and an adjacent MBS at one end of a nanowire and the nonlocal coupling to the MBS at the other end. We show that the Fano factor and the skewness of the SET current are minimized for a symmetric SET configuration in the absence of the MBSs or when coupled to a fermionic state. However, the minimum points of operation are shifted appreciably in the presence of the MBSs to asymmetric SET configurations with a higher tunnel rate at the drain than at the source. This feature persists even when varying the nonlocal coupling and the pairing energy between the two MBSs. We expect that these MBS-induced shifts can be measured experimentally with available technologies and can serve as important signatures of the MBSs. PMID:26098973

  13. Probing an Electron Scattering Resonance using Rydberg Molecules within a Dense and Ultracold Gas

    NASA Astrophysics Data System (ADS)

    Schlagmüller, Michael; Liebisch, Tara Cubel; Nguyen, Huan; Lochead, Graham; Engel, Felix; Böttcher, Fabian; Westphal, Karl M.; Kleinbach, Kathrin S.; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H.

    2016-02-01

    We present spectroscopy of a single Rydberg atom excited within a Bose-Einstein condensate. We not only observe the density shift as discovered by Amaldi and Segrè in 1934, but a line shape that changes with the principal quantum number n . The line broadening depends precisely on the interaction potential energy curves of the Rydberg electron with the neutral atom perturbers. In particular, we show the relevance of the triplet p -wave shape resonance in the e--Rb (5 S ) scattering, which significantly modifies the interaction potential. With a peak density of 5.5 ×1014 cm-3 , and therefore an interparticle spacing of 1300 a0 within a Bose-Einstein condensate, the potential energy curves can be probed at these Rydberg ion-neutral atom separations. We present a simple microscopic model for the spectroscopic line shape by treating the atoms overlapped with the Rydberg orbit as zero-velocity, uncorrelated, pointlike particles, with binding energies associated with their ion-neutral separation, and good agreement is found.

  14. Probing an Electron Scattering Resonance using Rydberg Molecules within a Dense and Ultracold Gas.

    PubMed

    Schlagmüller, Michael; Liebisch, Tara Cubel; Nguyen, Huan; Lochead, Graham; Engel, Felix; Böttcher, Fabian; Westphal, Karl M; Kleinbach, Kathrin S; Löw, Robert; Hofferberth, Sebastian; Pfau, Tilman; Pérez-Ríos, Jesús; Greene, Chris H

    2016-02-01

    We present spectroscopy of a single Rydberg atom excited within a Bose-Einstein condensate. We not only observe the density shift as discovered by Amaldi and Segrè in 1934, but a line shape that changes with the principal quantum number n. The line broadening depends precisely on the interaction potential energy curves of the Rydberg electron with the neutral atom perturbers. In particular, we show the relevance of the triplet p-wave shape resonance in the e^{-}-Rb(5S) scattering, which significantly modifies the interaction potential. With a peak density of 5.5×10^{14}  cm^{-3}, and therefore an interparticle spacing of 1300 a_{0} within a Bose-Einstein condensate, the potential energy curves can be probed at these Rydberg ion-neutral atom separations. We present a simple microscopic model for the spectroscopic line shape by treating the atoms overlapped with the Rydberg orbit as zero-velocity, uncorrelated, pointlike particles, with binding energies associated with their ion-neutral separation, and good agreement is found. PMID:26894707

  15. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    DOEpatents

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  16. Spectroscopic and probe measurements of the electron temperature in the plasma of a pulse-periodic microwave discharge in argon

    NASA Astrophysics Data System (ADS)

    Andreev, V. V.; Vasileska, I.; Korneeva, M. A.

    2016-07-01

    A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10-4 to 4 × 10-3 Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.

  17. Electron probe X-ray microanalysis of residual bodies in aged cultured human glial cells

    SciTech Connect

    Blomquist, E.; Fredriksson, B.A.; Brunk, U.

    1980-01-01

    Secondary lysosomes of the residual body type are frequent in nondividing cells from phase III cultures of human glial cells. These organelles have previously been shown to be analogous to lipofuscin granules of postmitotic cells in vivo. Most recent studies favor the assumption that residual bodies mainly result from incomplete degradation within the lysosomal vacuome of endogenous cellular components such as mitochondria and endoplasmic reticulum. Since iron occurs in several metalloenzymes produced by such organelles, it should then be possible to demonstrate accumulated iron within residual bodies. X-ray dispersive analysis of sectioned biological material is often hampered by diffusion and dissolution during preparation, as well as by too low a concentration of the elements. In this study we cultured glial cells on Formvar-coated gold grids and studied them unsectioned, after brief glutaraldehyde fixation and freeze-drying, in a transmission electron microscope at 100 kV in TEM and STEM mode. It was then possible to demonstrate iron in residual bodies of aged cells, presumably because the type of preparation utilized does not permit much dissolution.

  18. Probing in Space and Time the Nuclear Motion Driven by Nonequilibrium Electronic Dynamics in Ultrafast Pumped N2.

    PubMed

    Ajay, J; Šmydke, J; Remacle, F; Levine, R D

    2016-05-19

    An ultrafast electronic excitation of N2 in the vacuum ultraviolet creates a nonstationary coherent linear superposition of interacting valence and Rydberg states resulting in a net oscillating dipole moment. There is therefore a linear response to an electrical field that can be queried by varying the time delay between the pump and a second optical probe pulse. Both the pump and probe pulses are included in our computation as part of the Hamiltonian, and the time-dependent wave function for both electronic and nuclear dynamics is computed using a grid representation for the internuclear coordinate. Even on an ultrafast time scale there are several processes that can be discerned beyond the expected coherence oscillations. In particular, the coupling between the excited valence and Rydberg states of the same symmetry is very evident and can be directly probed by varying the delay between pulse and probe. For quite a number of vibrations the nuclear motion does not dephase the electronic disequilibrium. However, the nuclear motion does modulate the dipolar response by taking the wave packet in and out of the Franck-Condon region and by its strong influence on the coupling of the Rydberg and valence states. A distinct isotope effect arises from the dependence of the interstate coupling on the nuclear mass. PMID:26937745

  19. Correcting nonlinear drift distortion of scanning probe and scanning transmission electron microscopies from image pairs with orthogonal scan directions.

    PubMed

    Ophus, Colin; Ciston, Jim; Nelson, Chris T

    2016-03-01

    Unwanted motion of the probe with respect to the sample is a ubiquitous problem in scanning probe and scanning transmission electron microscopies, causing both linear and nonlinear artifacts in experimental images. We have designed a procedure to correct these artifacts by using orthogonal scan pairs to align each measurement line-by-line along the slow scan direction, by fitting contrast variation along the lines. We demonstrate the accuracy of our algorithm on both synthetic and experimental data and provide an implementation of our method. PMID:26716724

  20. High-Resolution and Specific Detection of Bacteria on Complex Surfaces Using Nanoparticle Probes and Electron Microscopy

    PubMed Central

    Ye, Jun; Nielsen, Shaun; Joseph, Stephen; Thomas, Torsten

    2015-01-01

    The study of the interaction of bacteria with surfaces requires the detection of specific bacterial groups with high spatial resolution. Here, we describe a method to rapidly and efficiently add nanogold particles to oligonucleotide probes, which target bacterial ribosomal RNA. These nanogold-labeled probes are then used in an in situ hybridization procedure that ensures both cellular integrity and high specificity. Electron microscopy subsequently enables the visualization of specific cells with high local precision on complex surface structures. This method will contribute to an increased understanding of how bacteria interact with surface structures on a sub-micron scale. PMID:26018431

  1. Steady state protein levels in Geobacter metallireducens grown with Iron (III) citrate or nitrate as terminal electron acceptor.

    SciTech Connect

    Ahrendt, A. J.; Tollaksen, S. L.; Lindberg, C.; Zhu, W.; Yates, J. R., III; Nevin, K. P.; Lovley, D.; Giometti, C. S.; Biosciences Division; The Scripps Research Inst.; Univ. of Massachusetts

    2007-01-01

    Geobacter species predominate in aquatic sediments and submerged soils where organic carbon sources are oxidized with the reduction of Fe(III). The natural occurrence of Geobacter in some waste sites suggests this microorganism could be useful for bioremediation if growth and metabolic activity can be regulated. 2-DE was used to monitor the steady state protein levels of Geobacter metallireducens grown with either Fe(III) citrate or nitrate to elucidate metabolic differences in response to different terminal electron acceptors present in natural environments populated by Geobacter. Forty-six protein spots varied significantly in abundance (p<0.05) between the two growth conditions; proteins were identified by tryptic peptide mass and peptide sequence determined by MS/MS. Enzymes involved in pyruvate metabolism and the tricarboxylic acid (TCA) cycle were more abundant in cells grown with Fe(III) citrate, while proteins associated with nitrate metabolism and sensing cellular redox status along with several proteins of unknown function were more abundant in cells grown with nitrate. These results indicate a higher level of flux through the TCA cycle in the presence of Fe(III) compared to nitrate. The oxidative stress response observed in previous studies of Geobacter sulfurreducens grown with Fe(III) citrate was not seen in G. metallireducens.

  2. The Global Positioning System constellation as a space weather monitor: Comparison of electron measurements with Van Allen Probes data

    NASA Astrophysics Data System (ADS)

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; Blake, J. Bernard; Baker, Daniel N.

    2016-02-01

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, we use a combination of four distributions that together capture a wide range of observed spectral shapes. Our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a "gold standard," we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies ≲4 MeV. We present data from 17 CXD-equipped GPS satellites covering the 2015 "St. Patrick's Day" geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.

  3. The Global Positioning System constellation as a space weather monitor. Comparison of electron measurements with Van Allen Probes data

    DOE PAGESBeta

    Morley, Steven K.; Sullivan, John P.; Henderson, Michael G.; Blake, J. Bernard; Baker, Daniel N.

    2016-02-06

    Energetic electron observations in Earth's radiation belts are typically sparse, and multipoint studies often rely on serendipitous conjunctions. This paper establishes the scientific utility of the Combined X-ray Dosimeter (CXD), currently flown on 19 satellites in the Global Positioning System (GPS) constellation, by cross-calibrating energetic electron measurements against data from the Van Allen Probes. By breaking our cross calibration into two parts—one that removes any spectral assumptions from the CXD flux calculation and one that compares the energy spectra—we first validate the modeled instrument response functions, then the calculated electron fluxes. Unlike previous forward modeling of energetic electron spectra, wemore » use a combination of four distributions that together capture a wide range of observed spectral shapes. Moreover, our two-step approach allowed us to identify, and correct for, small systematic offsets between block IIR and IIF satellites. Using the Magnetic Electron Ion Spectrometer and Relativistic Electron-Proton Telescope on Van Allen Probes as a “gold standard,” here we demonstrate that the CXD instruments are well understood. A robust statistical analysis shows that CXD and Van Allen Probes fluxes are similar and the measured fluxes from CXD are typically within a factor of 2 of Van Allen Probes at energies inline image4 MeV. Our team present data from 17 CXD-equipped GPS satellites covering the 2015 “St. Patrick's Day” geomagnetic storm to illustrate the scientific applications of such a high data density satellite constellation and therefore demonstrate that the GPS constellation is positioned to enable new insights in inner magnetospheric physics and space weather forecasting.« less

  4. Probing the atmosphere of the bulge G5III star OGLE-2002-BUL-069 by analysis of microlensed Hα line

    NASA Astrophysics Data System (ADS)

    Cassan, A.; Beaulieu, J. P.; Brillant, S.; Coutures, C.; Dominik, M.; Donatowicz, J.; Jørgensen, U. G.; Kubas, D.; Albrow, M. D.; Caldwell, J. A. R.; Fouqué, P.; Greenhill, J.; Hill, K.; Horne, K.; Kane, S.; Martin, R.; Menzies, J.; Pollard, K. R.; Sahu, K. C.; Vinter, C.; Wambsganss, J.; Watson, R.; Williams, A.; Fendt, C.; Hauschildt, P.; Heinmueller, J.; Marquette, J. B.; Thurl, C.

    2004-05-01

    We discuss high-resolution, time-resolved spectra of the caustic exit of the binary microlensing event OGLE 2002-BLG-069 obtained with UVES on the VLT. The source star is a G5III giant in the Galactic Bulge. During such events, the source star is highly magnified, and a strong differential magnification around the caustic resolves its surface. Using an appropriate model stellar atmosphere generated by the PHOENIX v2.6 code we obtain a model light curve for the caustic exit and compare it with a dense set of photometric observations obtained by the PLANET microlensing follow up network. We further compare predicted variations in the Hα equivalent width with those measured from our spectra. While the model and observations agree in the gross features, there are discrepancies suggesting shortcomings in the model, particularly for the Hα line core, where we have detected amplified emission from the stellar chromosphere after the source star's trailing limb exited the caustic. This achievement became possible by the provision of the very efficient OGLE-III Early Warning System, a network of small telescopes capable of nearly-continuous round-the-clock photometric monitoring, on-line data reduction, daily near-real-time modelling in order to predict caustic crossing parameters, and a fast and efficient response of a 8 m class telescope to a ``Target-of-Opportunity'' observation request. Based on observations made at ESO, 69.D-0261(A), 269.D-5042(A), 169.C-0510(A).

  5. Fabrication of surface confined biomolecular, polymeric, and metallic nanostructures using scanning probe and electron beam lithography

    NASA Astrophysics Data System (ADS)

    Lee, Woo Kyung

    This thesis presents the fabrication and characterization of surface-confined nanostructures of biomolecules, polymer brushes, and gold nanowires on gold and silicon substrates. The molecular recognition-mediated, stepwise fabrication of patterned proteins (biotin and streptavidin) and stimulus-responsive elastin-like polypeptide (ELP) nanostructures with feature sizes on the order of 200 nm is described. Dip-pen nanolithography (DPN) of 16-mercaptohexadecanoic acid (MHA) on gold was used to build templates to tether biomolecular nanostructures. It is shown that streptavidin nanopatterns provide adapter surfaces for biotinylated proteins by molecular recognition. Nanopatterned ELPs were shown to undergo a reversible, hydrophilic-hydrophobic phase transition in response to external stimuli. Here, this phase transition behavior was studied on the molecular level by adhesion force measurements using an AFM. The strong hydrophobic interactions between ELPs were exploited to reversibly immobilize a thioredoxin-ELP fusion protein onto ELP nanopatterns above the lower critical solution temperature (LCST), demonstrating the potential for ELP nanoarrays in reusable lab-on-chip devices for protein purification or nanoscale analysis. The fabrication of surface-confined stimulus-responsive pNIPAAM brush nanopatterns in a "grafting-from" approach that combines scanning probe lithography or electron beam lithography with surface-initiated atom transfer radical polymerization (ATRP) is described. The reversible, stimulus-responsive conformational height change of nanopatterned pNIPAAM brushes was demonstrated by inverse transition cycling in water-methanol cononsolvent mixtures. The triggered control of interfacial properties on the nanometer scale holds significant promise for actuation in bionanotechnology applications where polymeric actuators may manipulate the transport, separation, and detection of biomolecules. The potentially important phenomenon of polymer brush

  6. Observational Search for >10 MeV Electrons in the Inner Magnetosphere Using the Van Allen Probes Relativistic Proton Spectrometer

    NASA Astrophysics Data System (ADS)

    Mazur, J. E.; Looper, M. D.; O'Brien, T. P., III; Blake, J. B.

    2015-12-01

    Any detection of ultra-relativistic electrons (>10 MeV) trapped in the inner magnetosphere is potentially a sensitive indicator of a unique particle acceleration process or of a unique particle source. The 24 March 1991 shock injection of >15 MeV electrons is a classic example of the former, while the latter includes measurements in low Earth orbit of >100 MeV electrons and positrons from cosmic ray interactions with the atmosphere. In this paper we use new instrumentation on the Van Allen Probes to survey the inner magnetosphere for signatures of ultra-relativistic electrons. The Relativistic Proton Spectrometer, designed primarily for spectroscopy of 60 to 2000 MeV protons in the inner belt, nonetheless is capable of detecting minimum-ionizing electrons in a silicon detector stack. More critical to this survey is the instrument's Cherenkov radiator subsystem whose response to incident electrons ranges from a threshold near 10 MeV and reaches light saturation above 50 MeV. Together with the silicon detector system we are able to explore an energy range that has not been routinely studied in the context of the Earth's magnetosphere. We will report on quiet-time and storm-time signatures in regions of the inner magnetosphere that heretofore have not been explored with an orbit like that of Van Allen Probes. We will also quantitatively compare our electron energy spectra, or flux limits, with other measurements from Van Allen Probes and prior glimpses of high-energy electrons from low Earth orbit.

  7. Probing the Role of Two Critical Residues in Inulin Fructotransferase (DFA III-Producing) Thermostability from Arthrobacter sp. 161MFSha2.1.

    PubMed

    Yu, Shuhuai; Wang, Xiao; Zhang, Tao; Jiang, Bo; Mu, Wanmeng

    2016-08-10

    Inulin fructotransferase (IFTase) is an important enzyme that produces di-d-fructofuranose 1,2':2,3' dianhydride (DAF III), which is beneficial for human health. Present investigations mainly focus on screening and characterizing IFTase, including catalytic efficiency and thermostability, which are two important factors for enzymatic industrial applications. However, few reports aimed to improve these two characteristics based on the structure of IFTase. In this work, a structural model of IFTase (DFA III-producing) from Arthrobacter sp. 161MFSha2.1 was constructed through homology modeling. Analysis of this model reveals that two residues, Ser-309 and Ser-333, may play key roles in the structural stability. Therefore, the functions of the two residues were probed by site-directed mutagenesis combined with the Nano-DSC method and assays for residual activity. In contrast to other mutations, single mutation of serine 309 (or serine 333) to threonine did not decrease the enzymatic stability, whereas double mutation (serine 309 and serine 333 to threonine) can enhance thermostability (by approximately 5 °C). The probable mechanisms for this enhancement were investigated. PMID:27440442

  8. Quantification of the error induced on Langmuir probe determined electron temperature and density due to an RF plasma potential

    NASA Astrophysics Data System (ADS)

    Kafle, Nischal; Donovan, David; Martin, Elijah

    2015-11-01

    An RF plasma potential can significantly effect the IV characteristic of a Langmuir probe if not properly compensated. A substantial research effort in the low temperature plasma community has been carried out to determine this effect and how to achieve the required compensation for accurate measurements. However, quantification of the error induced on the extracted electron temperature and density from an uncompensated Langmuir probe due to an RF plasma potential has not been explored. The research presented is the first attempt to quantify this error in terms of RF plasma potential magnitude, electron temperature, and electron density. The Langmuir probe IV characteristic was simulated using empirical formulas fitted to the Laframboise simulation results. The RF effected IV characteristic was simulated by adding a sinusoidal variation to the plasma potential and computing the time average numerically. The error induced on the electron temperature and density was determined by fitting the RF effected IV characteristic to the empirical formulas representing the standard Laframboise simulation results. Experimental results indicating the accuracy of this quantification will be presented.

  9. Dual-role plasma absorption probe to study the effects of sheath thickness on the measurement of electron density

    NASA Astrophysics Data System (ADS)

    Li, Bin; Li, Hong; Chen, Zhipeng; Xie, Jinlin; Liu, Wandong

    2010-08-01

    A sensitive plasma absorption probe (PAP) is reported for measuring electron density in processing plasmas. The sheath formed around the probe tip is important for the resonance of surface waves. For determining the absolute electron density from the absorption frequency of the sensitive PAP, a proper value of sheath thickness relative to the Debye length is required to be assigned in the data processing. In this paper, a dual-role PAP has been proposed to study the effects of sheath thickness on the measurement of electron density. It is used as a Langmuir probe and a sensitive PAP simultaneously. Based on these two functions, the sheath thickness is calibrated before the measurement of electron density. The calibrated value is assigned in the data processing to replace the fitting coefficient used in the previous work. Therefore, the measurement error caused by an inaccurately assigned sheath thickness can be minimized effectively. Because of the bi-functional characteristic, the dual-role PAP is an independent diagnostic tool.

  10. Proteins involved in electron transfer to Fe(III) and Mn(IV) oxides by Geobacter sulfurreducens and Geobacter uraniireducens.

    PubMed

    Aklujkar, M; Coppi, M V; Leang, C; Kim, B C; Chavan, M A; Perpetua, L A; Giloteaux, L; Liu, A; Holmes, D E

    2013-03-01

    Whole-genome microarray analysis of Geobacter sulfurreducens grown on insoluble Fe(III) oxide or Mn(IV) oxide versus soluble Fe(III) citrate revealed significantly different expression patterns. The most upregulated genes, omcS and omcT, encode cell-surface c-type cytochromes, OmcS being required for Fe(III) and Mn(IV) oxide reduction. Other electron transport genes upregulated on both metal oxides included genes encoding putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc4 and Cbc5, periplasmic c-type cytochromes Dhc2 and PccF, outer membrane c-type cytochromes OmcC, OmcG and OmcV, multicopper oxidase OmpB, the structural components of electrically conductive pili, PilA-N and PilA-C, and enzymes that detoxify reactive oxygen/nitrogen species. Genes upregulated on Fe(III) oxide encode putative menaquinol : ferricytochrome c oxidoreductase complexes Cbc3 and Cbc6, periplasmic c-type cytochromes, including PccG and PccJ, and outer membrane c-type cytochromes, including OmcA, OmcE, OmcH, OmcL, OmcN, OmcO and OmcP. Electron transport genes upregulated on Mn(IV) oxide encode periplasmic c-type cytochromes PccR, PgcA, PpcA and PpcD, outer membrane c-type cytochromes OmaB/OmaC, OmcB and OmcZ, multicopper oxidase OmpC and menaquinone-reducing enzymes. Genetic studies indicated that MacA, OmcB, OmcF, OmcG, OmcH, OmcI, OmcJ, OmcM, OmcV and PccH, the putative Cbc5 complex subunit CbcC and the putative Cbc3 complex subunit CbcV are important for reduction of Fe(III) oxide but not essential for Mn(IV) oxide reduction. Gene expression patterns for Geobacter uraniireducens were similar. These results demonstrate that the physiology of Fe(III)-reducing bacteria differs significantly during growth on different insoluble and soluble electron acceptors and emphasize the importance of c-type cytochromes for extracellular electron transfer in G. sulfurreducens. PMID:23306674

  11. Application of (13)C and (15)N stable isotope probing to characterize RDX degrading microbial communities under different electron-accepting conditions.

    PubMed

    Cho, Kun-Ching; Lee, Do Gyun; Fuller, Mark E; Hatzinger, Paul B; Condee, Charles W; Chu, Kung-Hui

    2015-10-30

    This study identified microorganisms capable of using the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) or its metabolites as carbon and/or nitrogen sources under different electron-accepting conditions using (13)C and (15)N stable isotope probing (SIP). Mesocosms were constructed using groundwater and aquifer solids from an RDX-contaminated aquifer. The mesocosms received succinate as a carbon source and one of four electron acceptors (nitrate, manganese(IV), iron(III), or sulfate) or no additional electron acceptor (to stimulate methanogenesis). When RDX degradation was observed, subsamples from each mesocosm were removed and amended with (13)C3- or ring-(15)N3-, nitro-(15)N3-, or fully-labeled (15)N6-RDX, followed by additional incubation and isolation of labeled nucleic acids. A total of fifteen 16S rRNA sequences, clustering in α- and γ-Proteobacteria, Clostridia, and Actinobacteria, were detected in the (13)C-DNA fractions. A total of twenty seven sequences were derived from different (15)N-DNA fractions, with the sequences clustered in α- and γ-Proteobacteria, and Clostridia. Interestingly, sequences identified as Desulfosporosinus sp. (in the Clostridia) were not only observed to incorporate the labeled (13)C or (15)N from labeled RDX, but also were detected under each of the different electron-accepting conditions. The data suggest that (13)C- and (15)N-SIP can be used to characterize microbial communities involved in RDX biodegradation, and that the dominant pathway of RDX biodegradation may differ under different electron-accepting conditions. PMID:25935409

  12. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    SciTech Connect

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad; Sun Yawen; Zaanen, Jan

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces. As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.

  13. Van Allen Probes, THEMIS, GOES, and Cluster observations of EMIC waves, ULF pulsations, and an electron flux dropout

    NASA Astrophysics Data System (ADS)

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; MacDowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; Carr, C.; Santolík, O.

    2016-03-01

    We examined an electron flux dropout during the 12-14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervals of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12-13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13-14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst < -100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.

  14. Van Allen Probes, THEMIS, GOES, and cluster observations of EMIC waves, ULF pulsations, and an electron flux dropout

    DOE PAGESBeta

    Sigsbee, K.; Kletzing, C. A.; Smith, C. W.; MacDowall, R.; Spence, H.; Reeves, G.; Blake, J. B.; Baker, D. N.; Green, J. C.; Singer, H. J.; et al

    2016-03-04

    We examined an electron flux dropout during the 12–14 November 2012 geomagnetic storm using observations from seven spacecraft: the two Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS)-A (P5), Cluster 2, and Geostationary Operational Environmental Satellites (GOES) 13, 14, and 15. The electron fluxes for energies greater than 2.0 MeV observed by GOES 13, 14, and 15 at geosynchronous orbit and by the Van Allen Probes remained at or near instrumental background levels for more than 24 h from 12 to 14 November. For energies of 0.8 MeV, the GOES satellites observed two shorter intervalsmore » of reduced electron fluxes. The first interval of reduced 0.8 MeV electron fluxes on 12–13 November was associated with an interplanetary shock and a sudden impulse. Cluster, THEMIS, and GOES observed intense He+ electromagnetic ion cyclotron (EMIC) waves from just inside geosynchronous orbit out to the magnetopause across the dayside to the dusk flank. The second interval of reduced 0.8 MeV electron fluxes on 13–14 November was associated with a solar sector boundary crossing and development of a geomagnetic storm with Dst <–100 nT. At the start of the recovery phase, both the 0.8 and 2.0 MeV electron fluxes finally returned to near prestorm values, possibly in response to strong ultralow frequency (ULF) waves observed by the Van Allen Probes near dawn. A combination of adiabatic effects, losses to the magnetopause, scattering by EMIC waves, and acceleration by ULF waves can explain the observed electron behavior.« less

  15. Growth Optimization of III-N Electronic Devices by Plasma-Assisted Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Ahmadi, Elaheh

    InAlN has received significant attention due to its great potential for electronic and optoelectronic applications. In particular, In 0.18Al0.82N presents the advantage of being lattice-matched to GaN and simultaneously exhibiting a high spontaneous polarization charge, making In0.18 Al0.82N attractive for use as the barrier layer in high-electron-mobility transistors (HEMTs). However, in the case of InAlN growth by plasma-assisted molecular beam epitaxy (PAMBE), a strong non-uniformity in the in-plane In distribution was observed for both N-face and metal-face In0.18Al 0.82N. This compositional inhomogeneity manifests itself as a columnar microstructure with AlN-rich cores (5-10 nm in width) and InN-rich intercolumn boundaries. Because of the large differences between the bandgaps and polarization of InN and AlN, this non-uniformity in InAlN composition could be a source of scattering, leading to mobility degradation in HEMTs. In this work, the growth conditions for high quality lattice-matched InAlN layers on free-standing GaN substrates were explored by plasma-assisted molecular beam epitaxy (PAMBE) in the N-rich regime. The microstructure of N-face InAlN layers, lattice-matched to GaN, was investigated by scanning transmission electron microscopy and atom probe tomography. Microstructural analysis showed an absence of the lateral composition modulation that was previously observed in InAlN films grown by PAMBE. Using same growth conditions for InAlN layer, N-face GaN/AlN/GaN/InAlN high-electron-mobility transistors with lattice-matched InAlN back barriers were grown directly on SiC. A room temperature two-dimensional electron gas (2DEG) mobility of 1100cm2 V-1s-1 and 2DEG sheet charge density of 1.9 x1013 cm 2 was measured on these devices. However, the threading dislocation density (TDD) of GaN grown directly on SiC by PAMBE (≈2 x10 10 cm-2 ) is two orders of magnitude higher than GaN grown by MOCVD on SiC or sapphire (≈5 x10 8 cm-2). This high TDD can

  16. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells

    NASA Astrophysics Data System (ADS)

    Wang, Jianxi; Zhou, Cheng; Zhang, Jianjian; Zhu, Xinyue; Liu, Xiaoyan; Wang, Qin; Zhang, Haixia

    2016-09-01

    A new biothiol-selective fluorescent probe 1 based on photoinduced electron transfer (PET) mechanism was designed and synthesized. The UV-Vis absorption and fluorescent emission properties of probe 1 towards various analytes were studied in detail. The probe exhibited a large stokes shift (~ 200 nm) after reacted with biothiols and could selectively detect cysteine (Cys) in dimethyl sulfoxide (DMSO)/H2O solution (9:1, v/v, 10 mM phosphate buffer saline, pH 3.5) over glutathione (GSH), homocysteine (Hcy) and other analytes with a detection limit of 0.117 μM. In addition, probe 1 responded well to GSH, Hcy and Cys in the same above solution with pH 5.5 and got the detection limits of 0.151 μM, 0.128 μM and 0.037 μM, respectively. Probe 1 was of very low cytotoxicity and successfully applied for imaging of thiols in living cells.

  17. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells.

    PubMed

    Wang, Jianxi; Zhou, Cheng; Zhang, Jianjian; Zhu, Xinyue; Liu, Xiaoyan; Wang, Qin; Zhang, Haixia

    2016-09-01

    A new biothiol-selective fluorescent probe 1 based on photoinduced electron transfer (PET) mechanism was designed and synthesized. The UV-Vis absorption and fluorescent emission properties of probe 1 towards various analytes were studied in detail. The probe exhibited a large stokes shift (~200nm) after reacted with biothiols and could selectively detect cysteine (Cys) in dimethyl sulfoxide (DMSO)/H2O solution (9:1, v/v, 10mM phosphate buffer saline, pH3.5) over glutathione (GSH), homocysteine (Hcy) and other analytes with a detection limit of 0.117μM. In addition, probe 1 responded well to GSH, Hcy and Cys in the same above solution with pH5.5 and got the detection limits of 0.151μM, 0.128μM and 0.037μM, respectively. Probe 1 was of very low cytotoxicity and successfully applied for imaging of thiols in living cells. PMID:27203232

  18. Evidence for weakly bound electrons in non-irradiated alkane crystals: The electrons as a probe of structural differences in crystals

    SciTech Connect

    Pietrow, M. Misiak, L. E.; Gagoś, M.; Kornarzyński, K.; Szurkowski, J.; Grzegorczyk, M.; Rochowski, P.

    2015-02-14

    It is generally assumed that weakly bound (trapped) electrons in organic solids come only from radiolytical (or photochemical) processes like ionization caused by an excited positron entering the sample. This paper presents evidence for the presence of these electrons in non-irradiated samples of docosane. This can be due to the triboelectrification process. We argue that these electrons can be located (trapped) either in interlamellar gaps or in spaces made by non-planar conformers. Electrons from the former ones are bound more weakly than electrons from the latter ones. The origin of Vis absorption for the samples is explained. These spectra can be used as a probe indicating differences in the solid structures of hydrocarbons.

  19. Atom-probe and field emission electron spectroscopy studies of ordered structures and electronic properties of Ge overlayers on Ir-tips

    NASA Astrophysics Data System (ADS)

    Ashino, Makoto; Tomitori, Masahiko; Nishikawa, Osamu

    1994-03-01

    The combined instrument of an atom probe (AP) and a field emission electron spectroscope (FEES) was employed to investigate the crystallinity and the surface electronic state of Ge overlayers deposited on Ir tips. The crystallinity of Ge overlayers deposited at 300 and 420 K, and those annealed after the deposition, is better than that of the overlayers deposited at 50 K. The surface electronic state of the well-crystallized Ge overlayer is semiconductive at the thickness of ≈4 ML. When the degree of crystallinity is rather low or Ir atoms exist in the Ge overlayer, even a thick overlayer exhibits metallic surface electronic states. When an Ir atom exists on the overlayer surface, a small peak appears at ≈ 0.3 eV below the Fermi level in the field emission electron distribution (FEED), indicating a local state of the Ir atom.

  20. Electron transfer capacity dependence of quinone-mediated Fe(III) reduction and current generation by Klebsiella pneumoniae L17.

    PubMed

    Li, Xiaomin; Liu, Liang; Liu, Tongxu; Yuan, Tian; Zhang, Wei; Li, Fangbai; Zhou, Shungui; Li, Yongtao

    2013-06-01

    Quinone groups in exogenous electron shuttles can accelerate extracellular electron transfer (EET) from bacteria to insoluble terminal electron acceptors, such as Fe(III) oxides and electrodes, which are important in biogeochemical redox processes and microbial electricity generation. However, the relationship between quinone-mediated EET performance and electron-shuttling properties of the quinones remains incompletely characterized. This study investigates the effects of a series of synthetic quinones (SQs) on goethite reduction and current generation by a fermenting bacterium Klebsiella pneumoniae L17. In addition, the voltammetric behavior and electron transfer capacities (ETCs) of SQ, including electron accepting (EAC) and donating (EDC) capacities, is also examined using electrochemical methods. The results showed that SQ can significantly increase both the Fe(III) reduction rates and current outputs of L17. Each tested SQ reversibly accepted and donated electrons as indicated by the cyclic voltammograms. The EAC and EDC results showed that Carmine and Alizarin had low relative capacities of electron transfer, whereas 9,10-anthraquinone-2,6-disulfonic acid (AQDS), 2-hydroxy-1,4-naphthoquinone (2-HNQ), and 5-hydroxy-1,4-naphthoquinone (5-HNQ) showed stronger relative ETC, and 9,10-anthraquinone-2-carboxylic acid (AQC) and 9,10-anthraquinone-2-sulfonic acid (AQS) had high relative ETC. Enhancement of microbial goethite reduction kinetics and current outputs by SQ had a good linear relationship with their ETC, indicating that the effectiveness of quinone-mediated EET may be strongly dependent on the ETC of the quinones. Therefore, the presence of quinone compounds and fermenting microorganisms may increase the diversity of microbial populations that contribute to element transformation in natural environments. Moreover, ETC determination of different SQ would help to evaluate their performance for microbial EET under anoxic conditions. PMID:23461838

  1. Disruption of cellular elements and water in neurotoxicity: Studies using electron probe X-ray microanalysis

    SciTech Connect

    LoPachin, R.M. Jr.; Saubermann, A.J. )

    1990-12-01

    Regulation of elements and water in nerve cells is a complex, multifaceted process which appears to be vulnerable to neurotoxic events. However, much of our knowledge concerning the potential role of elements in nerve cell injury is limited by the relatively gross level of corresponding analyses. If we are to confirm and understand the proposed role, more precise and detailed information is needed. As indicated in this commentary, research employing electron probe microanalysis and digital X-ray imaging has begun to provide this necessary information. Recent EPMA studies of nerve and glial cells in the peripheral and central nervous systems have shown that each cell type and their corresponding morphologic compartments exhibit unique distributions of elements and water. The use of microprobe analysis has allowed us to document precisely how elements and water redistribute in morphological compartments of damaged nerve cells. Accumulating evidence from EPMA studies suggests that, rather than being an epiphenomenon, intracellular changes in diffusible elements might mediate the functional and structural consequences of neurotoxic insult. It is also evident from this research that elements other than Ca might play a pertinent role in the injury response and that changes in intraneuronal elemental composition might develop according to a specific temporal pattern. Therefore, rather than conducting end-point studies, longitudinal investigations are necessary to define the sequential pattern of elemental perturbation associated with a given neurotoxic event. Such research can also help identify the role of individual elements in the injury response. Future microprobe studies should be combined with measurements of ion levels to provide a comprehensive and dynamic view of elemental deregulation. 145 references.

  2. Calcium and magnesium transport by in situ mitochondria: electron probe analysis of vascular smooth muscle

    SciTech Connect

    Broderick, R.; Somlyo, A.P.

    1987-10-01

    The extent, time course, and reversibility of mitochondrial Ca/sup 2 +/ uptake secondary to cellular Ca/sup 2 +/ influx stimulated by massive Na+ efflux were evaluated by electron probe microanalysis of rabbit portal vein smooth muscle. Strips of portal vein were Na+ loaded for 3 hours at 37/sup 0/C in a K+-free 1 mM ouabain solution, after which rapid Na+ efflux was induced by washing with a Na+-free K+-Li+ solution (1 mM ouabain). Li+ washing Na+-loaded portal vein produced a large transient contraction accompanied by an increase (over 100-fold) in mitochondrial Ca/sup 2 +/ and also significant (p less than 0.05) increases in phosphorus and Mg/sup 2 +/. The Ca/sup 2 +/ loading of the mitochondria was reversed during prolonged Li+ wash, and by 2 hours, mitochondrial Ca/sup 2 +/, Mg/sup 2 +/, and phosphorus had returned to control levels. The maximal contractile response to stimulation remained normal, demonstrating that pathologic Ca/sup 2 +/ loading of mitochondria is reversible in situ and compatible with normal maximal force developed by the smooth muscle. Mitochondrial Ca/sup 2 +/ and phosphorus uptake were reduced but still significant when the Li+ wash contained 0.2 mM Ca/sup 2 +/ or when ouabain was omitted. The fact that mitochondrial Ca/sup 2 +/ loading accompanied submaximal contractions during 0.2 mM Ca/sup 2 +/-Li wash suggests supranormal affinity of mitochondria for Ca/sup 2 +/ and may be due, in part, to reverse operation of the mitochondrial Na+-Ca/sup 2 +/ exchanger. Mitochondrial Ca/sup 2 +/, Mg/sup 2 +/, and phosphorus uptake were eliminated when the Li+ wash was performed at 2/sup 0/C or when the wash contained no Ca/sup 2 +/.

  3. Elemental analysis of occupational and environmental lung diseases by electron probe microanalyzer with wavelength dispersive spectrometer.

    PubMed

    Takada, Toshinori; Moriyama, Hiroshi; Suzuki, Eiichi

    2014-01-01

    Occupational and environmental lung diseases are a group of pulmonary disorders caused by inhalation of harmful particles, mists, vapors or gases. Mineralogical analysis is not generally required in the diagnosis of most cases of these diseases. Apart from minerals that are encountered rarely or only in specific occupations, small quantities of mineral dusts are present in the healthy lung. As such when mineralogical analysis is required, quantitative or semi-quantitative methods must be employed. An electron probe microanalyzer with wavelength dispersive spectrometer (EPMA-WDS) enables analysis of human lung tissue for deposits of elements by both qualitative and semi-quantitative methods. Since 1993, we have analyzed 162 cases of suspected occupational and environmental lung diseases using an EPMA-WDS. Our institute has been accepting online requests for elemental analysis of lung tissue samples by EPMA-WDS since January 2011. Hard metal lung disease is an occupational interstitial lung disease that primarily affects workers exposed to the dust of tungsten carbide. The characteristic pathological findings of the disease are giant cell interstitial pneumonia (GIP) with centrilobular fibrosis, surrounded by mild alveolitis with giant cells within the alveolar space. EPMA-WDS analysis of biopsied lung tissue from patients with GIP has demonstrated that tungsten and/or cobalt is distributed in the giant cells and centrilobular fibrosing lesion in GIP. Pneumoconiosis, caused by amorphous silica, and acute interstitial pneumonia, associated with the giant tsunami, were also elementally analyzed by EPMA-WDS. The results suggest that commonly found elements, such as silicon, aluminum, and iron, may cause occupational and environmental lung diseases. PMID:24388365

  4. In vitro study on dental erosion provoked by various beverages using electron probe microanalysis.

    PubMed

    Willershausen, B; Schulz-Dobrick, B

    2004-09-29

    Tooth erosion is often based on chemical processes, among others the use of soft drinks or diverse beverages. The aim of this in vitro study was to analyse the erosive potential of different acidic beverages. Over a time span of 6 hours, dental slices (n=6 slices per tooth) from fully retained wisdom teeth were incubated with different beverages (coca cola, ice tea with lemon, apple juice and white wine). The controls were incubated with a 0.9% sodium chloride solution under the same conditions (37 degrees C, humidified atmosphere of 5% CO2 and 95% air). The quantitative elementary analysis for calcium, phosphorus, oxygen and other trace elements in the dental slices in various depths ranging from 5 to 50 microm was carried out using an electron probe micro-analyser (Jeol JXA 8900RL). A beverage-induced loss of minerals, particularly of the 2 main components calcium and phosphorus, especially in the uppermost layers of the enamel down to a depth of 30 microm could be observed. In the depth of 10 microm, the following total mineral loss could be determined: white wine (16%), coca cola (14.5%), apple juice (6.5%) and ice tea with lemon (6.5%). A direct correlation between the loss of minerals and the pH value of the beverages was not observed, because of the buffering effect of the drinks. The conversion of the weight percentages from the chemical analysis of Ca and P to their atomic percentages showed that during erosion the 2 main components were not dissolved in significantly different percentages. In this study the erosive potential of the tested soft drinks and other beverages could be demonstrated. However, it must be considered that numerous modifying factors influence the enamel surface, so an extrapolation from the in vitro study to an in vivo situation can only be applied with caution. PMID:15546808

  5. Simultaneous evaluation of one-electron reducing systems and radical reactions in cells by nitroxyl biradical as probe.

    PubMed

    Araki, Yoko; Koshiishi, Ichiro

    2016-07-01

    In the present study, a novel probe for the simultaneous evaluation of one-electron reducing systems (electron transport chain) and one-electron oxidizing systems (free radical reactions) in cells by electron chemical detection was developed. Six-membered cyclic nitroxyl radicals (2,2,6,6-tetramethylpiperidine-1-oxyl; TEMPO series) are sensitive to one-electron redox systems, generating the hydroxylamine form [TEMPO(H)] via one-electron reduction, and the secondary amine form [TEMPO(N)] via one-electron oxidation in the presence of thiols. In contrast, the sensitivities of five-membered cyclic nitroxyl radicals (2,2,5,5-tetramethylpyrrolidine-1-oxyl; PROXYL series) to the one-electron redox systems are comparatively low. The electron chemical detector can detect 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), TEMPO(H) and PROXYL but not TEMPO(N). Therefore, nitroxyl biradical, TEMPO-PROXYL, as a probe for the evaluation of one-electron redox systems was employed. TEMPO-PROXYL was synthesized by the conjunction of 4-amino-TEMPO with 3-carboxyl-PROXYL via the conventional dicyclohexyl carbodiimide reaction. TEMPO-PROXYL, TEMPO(H)-PROXYL and TEMPO(N)-PROXYL were simultaneously quantified by HPLC with Coularray detection. Calibration curves for the quantification of TEMPO-PROXYL, TEMPO(H)-PROXYL and TEMPO(N)-PROXYL were linear in the range from 80 nm to 80 μm, and the lowest quantification limit of each molecule was estimated to be <80 nm. The relative standard deviations at 0.8 and 80 μm were within 10% (n = 5). Copyright © 2015 John Wiley & Sons, Ltd. PMID:26613564

  6. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

    PubMed Central

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813

  7. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering.

    PubMed

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813

  8. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

    NASA Astrophysics Data System (ADS)

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; de Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe-Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances.

  9. Probing the electron-accepting reactivity of isomeric bis(pyrrolidinium) fullerene salts in aqueous solutions

    SciTech Connect

    Guldi, D.M.

    2000-02-24

    A series of water-soluble isomer bis(pyrrolidinium) salts, with C{sub 60}(C{sub 4}H{sub 10}N{sup +}){sub 2} as cationic moiety (2a--2d), were probed in radical- and light-induced reduction studies and compared to bis(carboxylates) C{sub 60}[C(COO{sup {minus}}){sub 2}]{sub 2} and to {gamma}-CD-encapsulated C{sub 60}. Pulse radiolytic reduction of 2a--2d with hydrated electrons and (CH{sub 3}){sub 2}{sup {sm{underscore}bullet}}COH radicals leads to the formation of the fullerene {pi}-radical anion, exhibiting fingerprint absorption characteristics in the near-IR region. Because of the electron-withdrawing nature of the pyrrolidinium groups the electron-acceptor properties of the investigated bis(pyrrolidinium) salts are markedly improved relative to the bis(carboxylates) (C{sub 60}[C(COO{sup {minus}}){sub 2}]{sub 2}) and also relative to C{sub 60}. For example, the rate constants for the fullerene reduction of 2a--2d with hydrated electrons ((0.88--2.2) x 10{sup 10} M{sup {minus}1} s{sup {minus}1}) and (CH{sub 3}){sub 2}{sm{underscore}bullet}COH radicals ((4.7--7.1) x 10{sup 8} M{sup {minus}1} s{sup {minus}1}) are clearly faster than those noted for C{sub 60}[C(COO{sup {minus}}){sub 2}]{sub 2} (e{sub aq}{sup {minus}}: (0.19--0.34) x 10{sup 10} M{sup {minus}1} s{sup {minus}1}; (CH{sub 3}){sub 2}{sup {sm{underscore}bullet}}COH: (0.9--2.2) x 10{sup 8}M{sup {minus}1} s{sup {minus}1}), and C{sub 60} (e{sub aq}{sup {minus}}: 1.8 x 10{sup 10} M{sup {minus}1} s{sup {minus}1}; (CH{sub 3}){sub 2}{sup {sm{underscore}bullet}}COH: 2.7 x 10{sup 8} M{sup {minus}1} s{sup {minus}1}). Photolysis of 2a--2d gives rise to singlet excited state absorptions that closely resemble earlier observations for the pyrrolidine precursor, e.g., C{sub 60}(C{sub 3}H{sub 7}N){sub 2} (1a--1d) in deoxygenated toluene solutions. The triplet lifetimes of 2a--2d, as measured by nanosecond-resolved photolysis, are typically around 33 {mu}s, similar to the triplet lifetimes of truly monomeric fullerene

  10. Probing interfacial electronic structures in atomic layer LaMnO{sub3} and SrTiO{sub 3} superlattices.

    SciTech Connect

    Shah, A. B.; Ramasse, Q. M.; Zhai, X.; Wen, J. G.; May, S. J.; Petrov, I.; Bhattacharya, A.; Abbamonte, P.; Eckstein, J. N.; Zuo, J.-M.; Univ. of Illinois; LBNL

    2010-01-01

    The interfacial electronic structure characterization of a m x (LaMnO{sub 3})/n x (SrTiO{sub 3}) superlattice based on scanning transmission electron microscopy and electron energy loss spectroscopy. Evidence of interfacial band alignment and electron transfer are presented based on the observation of O K edge of individual transition metal and oxygen atomic columns. Electron probe aberration correction was essential for the high spatial resolution mapping of interfacial electronic states.

  11. Photoacoustic Study on the Structural Variation of Titania Nanomaterials Using the Pr (III) Ion as a Spectral Probe

    NASA Astrophysics Data System (ADS)

    Zhang, H. X.; Liu, R. Y.; Yang, Y. T.; Wu, X. W.; Zhang, S. Y.; Liu, X. J.

    2016-06-01

    In this work, Pr^{3+}-doped titania nanomaterials were prepared by a sol-gel method. The structural variations of the samples during the phase transitions were studied by using the Pr^{3+} ion as a photoacoustic spectral probe. The result shows that for the gel sample heated at 80°C, the coordination environment of Pr^{3+} is similar to that of its aqueous ion. The f-f transitions of Pr^{3+} exhibit a continuous red shift along with the gel-to-anatase transition, indicating an increase of the `degree of covalency' for the Pr^{3+} bonding. For the sample calcined at 1100°C, however, the f-f transitions of Pr^{3+} show obvious blue shift. This can be attributed to the segregation of Pr^{3+} ions to the external surface during the anatase-to-rutile transition, forming Pr4Ti9O_{24}. The stabilization effect of the doped Pr^{3+ }ions on the anatase phase of the samples is also discussed.

  12. Cyclometalated Iridium(III) Complexes as AIE Phosphorescent Probes for Real-Time Monitoring of Mitophagy in Living Cells

    NASA Astrophysics Data System (ADS)

    Jin, Chengzhi; Liu, Jiangping; Chen, Yu; Guan, Ruilin; Ouyang, Cheng; Zhu, Yanjiao; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitophagy, which is a special autophagy that removes damaging mitochondria to maintain sufficient healthy mitochondria, provides an alternative path for addressing dysfunctional mitochondria and avoiding cellular death. In the present study, by coupling the triphenylamine group with 2-phenylimidazo[4,5-f][1,10]phenanthroline derivatives, we synthesized five Ir(III) complexes with an AIE property that are expected to fulfill requirements for real-time monitoring of mitophagy. Ir1-Ir5 were exploited to image mitochondria with a short incubation time by confocal microscopy and inductive coupled plasma-mass spectrometry (ICP-MS). Due to aggregation-induced emission (AIE), Ir1-Ir5 exhibited excellent photostability compared to MitoTracker Green (MTG). Moreover, Ir1-Ir5 manifested satisfactory photostability in the mitochondrial physiological pH range. In addition, the uptake mechanism of Ir1 was investigated using confocal microscopy and flow cytometry analysis. Finally, using both Ir1 and LysoTracker Green, we were able to achieve real-time monitoring of mitophagy.

  13. Cyclometalated Iridium(III) Complexes as AIE Phosphorescent Probes for Real-Time Monitoring of Mitophagy in Living Cells

    PubMed Central

    Jin, Chengzhi; Liu, Jiangping; Chen, Yu; Guan, Ruilin; Ouyang, Cheng; Zhu, Yanjiao; Ji, Liangnian; Chao, Hui

    2016-01-01

    Mitophagy, which is a special autophagy that removes damaging mitochondria to maintain sufficient healthy mitochondria, provides an alternative path for addressing dysfunctional mitochondria and avoiding cellular death. In the present study, by coupling the triphenylamine group with 2-phenylimidazo[4,5-f][1,10]phenanthroline derivatives, we synthesized five Ir(III) complexes with an AIE property that are expected to fulfill requirements for real-time monitoring of mitophagy. Ir1-Ir5 were exploited to image mitochondria with a short incubation time by confocal microscopy and inductive coupled plasma–mass spectrometry (ICP-MS). Due to aggregation-induced emission (AIE), Ir1-Ir5 exhibited excellent photostability compared to MitoTracker Green (MTG). Moreover, Ir1-Ir5 manifested satisfactory photostability in the mitochondrial physiological pH range. In addition, the uptake mechanism of Ir1 was investigated using confocal microscopy and flow cytometry analysis. Finally, using both Ir1 and LysoTracker Green, we were able to achieve real-time monitoring of mitophagy. PMID:26907559

  14. Probing the electronic structure of graphene sheets with various thicknesses by scanning transmission X-ray microscopy

    SciTech Connect

    Bai, Lili; Liu, Jinyin; Zhao, Guanqi; Gao, Jing; Sun, Xuhui E-mail: jzhong@suda.edu.cn; Zhong, Jun E-mail: jzhong@suda.edu.cn

    2013-12-16

    The electronic structure of an aggregation of graphene sheets with various thicknesses was probed by scanning transmission X-ray microscopy. A uniform oxidation of the graphene sheets in the flat area was observed regardless of the thickness, while in the folded area the result could be strongly affected by the geometry. Moreover, thick parts of the aggregation showed strong angle-dependence to the incident X-ray, while thin parts showed less angle-dependence, which might be related to the surface wrinkles and ripples. The electronic structure differences due to the geometry and thickness suggest a complicated situation in the aggregation of graphene sheets.

  15. Probe of the electron correlation in sequential double ionization of helium by two-color attosecond pulses

    NASA Astrophysics Data System (ADS)

    Peng, Liang-You; Zhang, Zheng; Jiang, Wei-Chao; Zhang, Gong-Qiu; Gong, Qihuang

    2012-12-01

    We theoretically study the sequential double ionization of He by two-color attosecond pulses. We show that, for short time delays between the two pulses, the ionization spectra cannot be explained by an independent model based on the time-dependent perturbation theory. By varying the time delay, one can probe the role of the electron correlation played in the double ionization, which is mostly obvious by examining the differential double-ionization yield. In the present scheme, we also identify a kind of “catch-up” interaction between the two ionized electrons.

  16. Electron paramagnetic resonance studies of slowly tumbling vanadyl spin probes in nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Bruno, G. V.; Harrington, J. K.; Eastman, M. P.

    1978-01-01

    An analysis of EPR line shapes by the method of Polnaszek, Bruno, and Freed is made for slowly tumbling vanadyl spin probes in viscous nematic liquid crystals. The use of typical vanadyl complexes as spin probes for nematic liquid crystals is shown to simplify the theoretical analysis and the subsequent interpretation. Rotational correlation times tau and orientational ordering parameters S sub Z where slow tumbling effects are expected to be observed in vanadyl EPR spectra are indicated in a plot. Analysis of the inertial effects on the probe reorientation, which are induced by slowly fluctuating torque components of the local solvent structure, yield quantitative values for tau and S sub Z. The weakly ordered probe VOAA is in the slow tumbling region and displays these inertial effects throughout the nematic range of BEPC and Phase V. VOAA exhibits different reorientation behavior near the isotropic-nematic transition temperature than that displayed far below this transition temperature.

  17. Global Distribution of Chorus Wave Intensity Directly Measured By Van Allen Probes and Themis and Inferred from Poes Electron Measurements

    NASA Astrophysics Data System (ADS)

    Li, W.; Thorne, R. M.; Ni, B.; Bortnik, J.; Kletzing, C.; Kurth, W. S.; Hospodarsky, G. B.; Angelopoulos, V.; Green, J. C.

    2014-12-01

    Whistler-mode chorus waves play a fundamental role in accelerating seed electrons to highly relativistic energies, as well as causing energetic electron precipitation into the upper atmosphere. Using newly available Van Allen Probes wave data and THEMIS high-resolution wave data, which provide extensive coverage in the entire inner magnetosphere, we construct an empirical global model of chorus wave intensity categorized by various levels of geomagnetic activity. Recently, we have developed a physics-based technique of linking chorus wave intensity and two-directional electron fluxes (30-100 keV) measured at the conjugate low altitudes by POES satellites to show that the inferred chorus wave intensity provides reasonable estimates on the averaged chorus wave intensity. We apply these two different methods, namely (1) the empirical chorus wave model dependent on geomagnetic activity, and (2) the inferred chorus wave intensity from two-directional POES electron measurements, to a few interesting events and evaluate their performance by comparing against in-situ observations of chorus wave intensity from Van Allen Probes and THEMIS. The developed global chorus wave model is critical in quantitatively evaluating the role of chorus waves in radiation belt and ring current electron dynamics.

  18. Ultrafast Surface-Enhanced Raman Probing of the Role of Hot Electrons in Plasmon-Driven Chemistry.

    PubMed

    Brandt, Nathaniel C; Keller, Emily L; Frontiera, Renee R

    2016-08-18

    Hot electrons generated through plasmonic excitations in metal nanostructures show great promise for efficiently driving chemical reactions with light. However, the lifetime, yield, and mechanism of action of plasmon-generated hot electrons involved in a given photocatalytic process are not well understood. Here, we develop ultrafast surface-enhanced Raman scattering (SERS) as a direct probe of plasmon-molecule interactions in the plasmon-catalyzed dimerization of 4-nitrobenzenethiol to p,p'-dimercaptoazobenzene. Ultrafast SERS probing of these molecular reporters in plasmonic hot spots reveals transient Fano resonances, which we attribute to near-field coupling of Stokes-shifted photons to hot electron-driven metal photoluminescence. Surprisingly, we find that hot spots that yield more photoluminescence are much more likely to drive the reaction, which indirectly proves that plasmon-generated hot electrons induce the photochemistry. These ultrafast SERS results provide insight into the relative reactivity of different plasmonic hot spot environments and quantify the ultrafast lifetime of hot electrons involved in plasmon-driven chemistry. PMID:27488515

  19. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: Analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe

    SciTech Connect

    Prevosto, L.; Mancinelli, B.; Kelly, H.

    2013-12-15

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core.

  20. Langmuir probe measurements in a time-fluctuating-highly ionized non-equilibrium cutting arc: analysis of the electron retarding part of the time-averaged current-voltage characteristic of the probe.

    PubMed

    Prevosto, L; Kelly, H; Mancinelli, B

    2013-12-01

    This work describes the application of Langmuir probe diagnostics to the measurement of the electron temperature in a time-fluctuating-highly ionized, non-equilibrium cutting arc. The electron retarding part of the time-averaged current-voltage characteristic of the probe was analysed, assuming that the standard exponential expression describing the electron current to the probe in collision-free plasmas can be applied under the investigated conditions. A procedure is described which allows the determination of the errors introduced in time-averaged probe data due to small-amplitude plasma fluctuations. It was found that the experimental points can be gathered into two well defined groups allowing defining two quite different averaged electron temperature values. In the low-current region the averaged characteristic was not significantly disturbed by the fluctuations and can reliably be used to obtain the actual value of the averaged electron temperature. In particular, an averaged electron temperature of 0.98 ± 0.07 eV (= 11400 ± 800 K) was found for the central core of the arc (30 A) at 3.5 mm downstream from the nozzle exit. This average included not only a time-average over the time fluctuations but also a spatial-average along the probe collecting length. The fitting of the high-current region of the characteristic using such electron temperature value together with the corrections given by the fluctuation analysis showed a relevant departure of local thermal equilibrium in the arc core. PMID:24387432

  1. Rapid electron density decay observed by surface-wave probe in afterglow of pulsed fluorocarbon-based plasma

    NASA Astrophysics Data System (ADS)

    Ohya, Yoshinobu; Iwata, Manabu; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru; Sugai, Hideo

    2016-08-01

    To elucidate the pulsed fluorocarbon plasma behavior, a surface-wave probe with high time resolution was used to measure the electron density n e in the afterglow of plasma. In a dual-frequency capacitively coupled plasma of fluorocarbon chemistry, e.g., an O2-based C4F6 and Ar mixture, n e vanished rapidly in a short time (∼5 µs), whilst the dc current flowing onto the top electrode biased at ‑300 V decreased very slowly (decay time ∼70 µs). This observation is clear evidence of ion–ion plasma formation by electron attachment in the afterglow. We point out that the electron attachment rates for fluorocarbon radicals significantly affect the electrons and ion–ion plasma behaviors observed at the afterglow phase.

  2. Source and Structure of Bursty Hot Electron Enhancements in the Tail Magnetosheath: Simultaneous Two-Probe Observation By Artemis

    NASA Astrophysics Data System (ADS)

    Wang, C. P.; Xing, X.; Lyons, L. R.; Angelopoulos, V.

    2014-12-01

    Bursty enhancements of hot electrons (~0.5 to 5 keV) with duration of minutes often occur in the tail magnetosheath. Determining the sources and energization of these hot electrons is important to understanding the coupling of the mangetosheath with the bowshock or magnetosphere. In this study we used the unique simultaneous measurements from the two ARTEMIS probes to investigate the likely source locations, spatial structures, and responsible processes for these hot electron enhancements. The enhancements can be seen at any distances across the magnetosheath, but those closer to the magnetopause more often have magnetosheath density and flow magnitudes decreased to more magnetosphere-like values. From simultaneous measurements of these enhancements with the two probes being on either side of magnetopause or both in the magnetosheath, it is evident that these hot electrons come from the magnetosphere near the current sheet without further energization, and that the enhancements are a result of bursty lateral magnetosphere intrusion into the magnetosheath, with weaker enhancements and smaller changes in the magnetosheath properties further outward from the intrusion. Using simultaneous observations having different separation distances and alignments between the probes, we estimated that a single isolated enhancement can have a thin and elongated structure as narrow as 2 RE wide in the X direction, as long as more than 7 RE in the Y direction, and as thin as 1 RE in the Z direction. From observed correlations between the enhancements seen on the magnetosheath side and magnetosheath intrusion seen on the magnetosphere side, we propose that Kelvin-Helmholtz perturbations at the magnetopause and subsequent magnetosphere-magnetosheath particle mixing due to reconnection or diffusion can plausibly explain the bursty magnetosphere intrusion deep into the magnetosheath and the different decreases of magnetosheath density and flow associated with the hot electron

  3. Synchrotron x-ray and electron micro-probe study of contaminated dredged sediments.

    NASA Astrophysics Data System (ADS)

    Poitevin, A.; Lerouge, C.; Wille, G.; Bataillard, P.; Hennet, L.

    2012-04-01

    Sediments originating from periodic dredging of waterways were traditionally disposed of in storage sites without any precautions or treatments. There may be some environmental concerns especially when the dredged material comes from historically contaminated areas such as the North French coal basin. This study aims to characterize the metal mobility (mainly Zn and Pb) in deposited dredged sediments by combining chemical and spectroscopic techniques. The sediments consist of a silty fraction (~ 40 %: dominant quartz, minor feldspar), carbonates and a clay fraction (illite dominant, illite-smectite mixed layer, kaolinite). This mineralogical heterogeneity and the observed grain-size distribution (70 to 80 % wt of the total sediment is <50µm) lead to a need to use microbeam techniques to identify Zn and Pb carriers. Electron probe micro-analyse (EPMA) combined with microbeam x-ray fluorescence (µXRF) at Synchrotron sources were used to identify Zn and Pb carriers. In particular Zn and Pb distributions in thin-section samples were determined by µ-XRF elemental mappings. EPMA was used to determine the distribution of light elements for which the energy of the emission lines is below 4 keV (Si, S, P…). The presence of reduced (sulphides) and oxidized (sulphates, oxihydroxides) phases strongly suggests that the redox state is one of the major parameters controlling the metal mobility. Therefore x-ray absorption spectroscopy experiments were also performed to study the oxidation state in both bulk samples and on selected regions of interest in thin section samples. Preliminary chemical analyses In this work, the potential effects of the sample preparation on phase's structure and redox state were also studied and will be presented. In particular measurements using x-ray absorption spectroscopy were carried out on air dried or lyophilised powders and on samples stored in a cryogenic environment after sampling. For the latter, we studied the evolution of the iron

  4. Industrial Education. Electricity/Electronics Curriculum Guide, Phase II. Instructional Modules, Level III.

    ERIC Educational Resources Information Center

    Lillo, Robert E.; Soffiotto, Nicholas S.

    Designed for students in the tenth grade, this electricity/electronics curriculum guide contains instructional modules for sixteen units of instruction: (1) orientation, (2) introduction to electricity/electronics, (3) electricity/electronics safety, (4) fundamental skills, (5) direct current circuits, (6) graphical illustrations, (7) circuit…

  5. Nanowires, Capacitors, and Other Novel Outer-Surface Components Involved in Electron Transfer to Fe(III) Oxides in Geobacter Species

    SciTech Connect

    Lovley, Derek R.

    2005-06-01

    In the past year studies have primarily focused on elucidating the role of pili in electron transport to Fe(III) oxide in Geobacter sulfurreducens. As summarized in last year's report, it was previously found that pili are specifically expressed during growth on Fe(III) oxide and that Fe(III) oxide reduction is inhibited if the gene for the structural pilin protein is deleted. However, it was also found that a pilin-deficient mutant of G. sulfurreducens could attached to Fe(III) oxide as well as wild type.

  6. Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies

    NASA Astrophysics Data System (ADS)

    Rehman, Gul; Shafiq, M.; Saifullah; Ahmad, Rashid; Jalali-Asadabadi, S.; Maqbool, M.; Khan, Imad; Rahnamaye-Aliabad, H.; Ahmad, Iftikhar

    2016-07-01

    The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III-V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha's modified Becke-Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III-V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.

  7. Control of intramolecular electron transfer by protonation: Dimers and polymers containing ruthenium II/III and 44' azopyridine

    NASA Astrophysics Data System (ADS)

    Launay, Jean-Pierre; Marvaud, Valérie

    1992-07-01

    The association of pentammine ruthenium(II) with the reducible ligand 44' azopyridine leads to a pH induced redox reaction in which ruthenium is oxidized to the III state, while 44' azopyridine is reduced to hydrazopyridine. In this process, the conjugated ligand is transformed in a nonconjugated one, with loss of its intramolecular electron transfer properties. In order to exploit this control of an intramolecular electron transfer by a protonation process, we have prepared ``shish-kebab'' polymers by first inserting ruthenium in tetrakis (3,5-diterbutyl 4-hydroxyphenyl) porphyrin under a CO atmosphere. The resulting Ru(CO)porphyrin complex is photochemically decarbonylated in the presence of bridging ligands (44×azopyridine or pyrazine). Polymers are thus obtained, which can be oxidized by iodine, giving rise to intervalence transitions between ruthenium(II) and (III) in the near-infrared. This provides a convenient way to monitor electron transfer along the polymer chain. In the case of 44' azopyridine, the pH induced redox reaction is again observed. Starting from a homovalent ruthenium(II) chain, this gives the possibility to switch ``ON'' or ``OFF'' the intervalence transition by a protonation/deprotonation reaction.

  8. Electronic Band Structures of the Highly Desirable III-V Semiconductors: TB-mBJ DFT Studies

    NASA Astrophysics Data System (ADS)

    Rehman, Gul; Shafiq, M.; Saifullah; Ahmad, Rashid; Jalali-Asadabadi, S.; Maqbool, M.; Khan, Imad; Rahnamaye-Aliabad, H.; Ahmad, Iftikhar

    2016-05-01

    The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III-V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha's modified Becke-Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III-V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.

  9. Resolving local voltage variations in opto-electronic devices with Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Tennyson, Elizabeth; Garrett, Joseph; Munday, Jeremy; Leite, Marina

    We employ illuminated Kelvin probe force microscopy (KPFM) to spatially resolve the open-circuit voltage (Voc) of optoelectronic devices with nanoscale spatial resolution, >5 orders of magnitude better than previous methods. In illuminated-KPFM, we measure the difference in work function between the sample surface and the probe, termed the contact potential difference (CPD). By grounding the bottom contact of the solar cell to the AFM probe, the difference between the illuminated and the dark signals is proportional to quasi-Fermi level splitting and, therefore, the Voc. We apply our scanning probe technique to a variety of solar cell materials, including polycrystalline CIGS, where we resolve local variations in Voc >150 mV. We use heterodyne-KPFM (where we map 1 μm2 in 16 seconds) to probe hybrid perovskites solar cells, and quantify in real-time the voltage changes upon material relaxation after illumination. This metrology yields new insights into the local electrical properties of solar cells, and can be expanded to any optoelectronic device.

  10. RAM - C P L Simulations of Electron Transport and Plasma Wave Scattering Using Van Allen Probes Data

    NASA Astrophysics Data System (ADS)

    Jordanova, V.; Zhang, J.; Saikin, A.; Albert, J.; Tu, W.; Chen, Y.; Morley, S.; De Pascuale, S.; Kletzing, C.

    2014-12-01

    The high variability of energetic electron fluxes in the inner magnetosphere remains inadequately explained due to their complex dynamics including competing particle acceleration and loss processes. We study the combined effects from scattering by chorus and EMIC waves and radial transport on ring current and radiation belt dynamics. We use our ring current-atmosphere interactions model that solves the kinetic equation for H+, O+, and He+ ions and electrons and is coupled with a time-dependent 2-D plasmasphere model (RAM-CPL). The plasma boundary conditions are specified from LANL geosynchronous observations. We simulate wave-particle interactions on a global scale as particles drift around the Earth using L and MLT-dependent event-specific chorus and EMIC wave models. The precipitating electron fluxes measured by multiple NOAA satellites are fitted to the equatorial wave measurements made by the EMFISIS instrument on the Van Allen Probes to infer the chorus wave amplitudes on a global scale. The fast dropout of the radiation belts during the October 2012 "double-dip" storm event is investigated and the role of various processes such as outward radial diffusion combined with magnetopause shadowing and enhanced electron precipitation into the atmosphere is evaluated. The simulated cold plasma densities are compared with in situ EMFISIS observations along the Van Allen Probes' orbits showing good agreement.

  11. Structural evolution and strain induced mixing in Cu–Co composites studied by transmission electron microscopy and atom probe tomography

    SciTech Connect

    Bachmaier, A.; Aboulfadl, H.; Pfaff, M.; Mücklich, F.; Motz, C.

    2015-02-15

    A Cu–Co composite material is chosen as a model system to study structural evolution and phase formations during severe plastic deformation. The evolving microstructures as a function of the applied strain were characterized at the micro-, nano-, and atomic scale-levels by combining scanning electron microscopy and transmission electron microscopy including energy-filtered transmission electron microscopy and electron energy-loss spectroscopy. The amount of intermixing between the two phases at different strains was examined at the atomic scale using atom probe tomography as complimentary method. It is shown that Co particles are dissolved in the Cu matrix during severe plastic deformation to a remarkable extent and their size, number, and volume fraction were quantitatively determined during the deformation process. From the results, it can be concluded that supersaturated solid solutions up to 26 at.% Co in a fcc Cu–26 at.% Co alloy are obtained during deformation. However, the distribution of Co was found to be inhomogeneous even at the highest degree of investigated strain. - Highlights: • Structural evolution in a deformed Cu–Co composite is studied on all length scales. • Amount of intermixing is examined by atom-probe tomography. • Supersaturated solid solutions up to 26 at.% Co in Cu are observed.

  12. Electron paramagnetic resonance studies of slowly tumbling vanadyl spin probes in nematic liquid crystals

    NASA Technical Reports Server (NTRS)

    Bruno, G. V.; Harrington, J. K.; Eastman, M. P.

    1978-01-01

    The purposes of this vanadyl spin probe study are threefold: (1) to establish when the breakdown of motionally narrowed formulas occurs; (2) to analyze the experimental vanadyl EPR line shapes by the stochastic Lioville method as developed by Polnaszek et al. (1973) for slow tumbling in an anisotropic liquid; and (3) to compare the vanadyl probe study results with those of Polnaszek and Freed (1975). Spectral EPR line shapes are simulated for experimental spectra of vanadyl acetylacetonate (VOAA) in nematic liquid crystal butyl p-(p-ethoxyphenoxycarbonyl) phenyl carbonate (BEPC) and Phase V of EM laboratories. It is shown that the use of typical vanadyl complexes as spin probes for nematic liquid crystals simplifies the theoretical analysis and the subsequent interpretation. Guidelines for the breakdown of motionally narrowed formulas are established. Both the slow tumbling aspects and the effects of non-Brownian rotation should be resolved in order to extract quantitative information about molecular ordering and rotational mobility.

  13. Structural, electrochemical and spectroelectrochemical study on the geometric and electronic structures of [(corrolato)Au(III)](n) (n = 0, +1, -1) complexes.

    PubMed

    Sinha, Woormileela; Sommer, Michael G; van der Meer, Margarethe; Plebst, Sebastian; Sarkar, Biprajit; Kar, Sanjib

    2016-02-21

    Synthesis of two new Au(III) corrole complexes with unsymmetrically substituted corrole ligands is presented here. The newly synthesized Au-compounds have been characterized by various spectroscopic techniques. The structural characterization of a representative Au(III) corrole has also been possible. Electrochemical, UV-vis-NIR/EPR spectroelectrochemical and DFT studies have been used to decipher the electronic structures of various electro-generated species. These are the first UV-vis-NIR/EPR spectroelectrochemical investigations on Au(III) corroles. Assignment of redox states of electro-generated Au(III) corroles is supported by DFT analysis. In contrast to the metal centered reduction reported in Au(III) porphyrins, one electron reduction in Au(III) corroles has been assigned to corrole centered on the basis of experimental and theoretical studies. Thus, the Au(III) corroles (not the analogous Au(III) porphyrin derivatives!) bear a truly redox inactive Au(III) center. Additionally, these Au-corrole complexes display NIR electrochromism, the origin of which is all on corrole-centered processes. PMID:26750146

  14. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    SciTech Connect

    Hopkins, Mark A. King, Lyon B.

    2014-05-15

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations.

  15. Source and structure of bursty hot electron enhancements in the tail magnetosheath: Simultaneous two-probe observation by ARTEMIS

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Ping; Xing, Xiaoyan; Nakamura, T. K. M.; Lyons, Larry R.; Angelopoulos, Vassilis

    2014-12-01

    Bursty enhancements of hot electrons (≳0.5 keV) with duration of minutes sometimes occur in the tail magnetosheath. In this study we used the unique simultaneous measurements from the two Acceleration Reconnection Turbulence and Electrodynamics of Moon's Interaction with the Sun probes to investigate the likely sources, spatial structures, and responsible processes for these hot electron enhancements. The enhancements can be seen at any distance across the magnetosheath, but those closer to the magnetopause are more often accompanied by magnetosheath density and flow magnitudes changing to more magnetosphere-like values. From simultaneous measurements with the two probes being on either side of magnetopause or both in the magnetosheath, it is evident that these hot electrons come from the magnetosphere near the current sheet without further energization and that the enhancements are a result of bursty lateral magnetosphere intrusion into the magnetosheath, the enhancements and changes in the magnetosheath properties becoming smaller with increasing outward distance from the intrusion. From limited events having specific separation distances and alignments between the probes, we estimated that a single isolated enhancement can have a thin and elongated structure as narrow as 2 RE wide in the X direction, as long as over 7 RE in the Y direction, and as thin as 1 RE in the Z direction. We propose that Kelvin-Helmholtz perturbations at the magnetopause and subsequent magnetosphere-magnetosheath particle mixing due to reconnection or diffusion can plausibly play an important role in generating the bursty magnetosphere intrusion into the magnetosheath and the hot electron enhancements.

  16. Assessment of plasma impedance probe for measuring electron density and collision frequency in a plasma with spatial and temporal gradients

    NASA Astrophysics Data System (ADS)

    Hopkins, Mark A.; King, Lyon B.

    2014-05-01

    Numerical simulations and experimental measurements were combined to determine the ability of a plasma impedance probe (PIP) to measure plasma density and electron collision frequency in a plasma containing spatial gradients as well as time-varying oscillations in the plasma density. A PIP is sensitive to collision frequency through the width of the parallel resonance in the Re[Z]-vs.-frequency characteristic, while also being sensitive to electron density through the zero-crossing of the Im[Z]-vs.-frequency characteristic at parallel resonance. Simulations of the probe characteristic in a linear plasma gradient indicated that the broadening of Re[Z] due to the spatial gradient obscured the broadening due to electron collision frequency, preventing a quantitative measurement of the absolute collision frequency for gradients considered in this study. Simulation results also showed that the PIP is sensitive to relative changes in electron collision frequency in a spatial density gradient, but a second broadening effect due to time-varying oscillations made collision frequency measurements impossible. The time-varying oscillations had the effect of causing multiple zero-crossings in Im[Z] at parallel resonance. Results of experiments and simulations indicated that the lowest-frequency zero-crossing represented the lowest plasma density in the oscillations and the highest-frequency zero-crossing represented the highest plasma density in the oscillations, thus the PIP probe was found to be an effective tool to measure both the average plasma density as well as the maximum and minimum densities due to temporal oscillations.

  17. Electron transfer. 94. Internal redox in cobalt(III)-bound hypophosphite

    SciTech Connect

    Linn, D.E. Jr.; Gould, E.S.

    1988-09-07

    The hypophosphite derivative of Co(III), (NH/sub 3/)/sub 5/CoO/sub 2/PH/sub 2//sup 2+/, decomposes in basic media, yielding Co(II) quantitatively along with a 1:1 mixture of hypophosphite and phosphite. When this reaction is carried out in basic solution in the presence of Na/sub 4/EDTA, a strongly absorbing intermediate is formed and then undergoes decay. The results of reaction kinetic studies are reported, and isotope labelling with the PD/sub 2/ analog of the complex was used to determine the kinetic isotope effect. A reaction scheme in which the reaction is initiated by removal of a P-bound proton from the hypophosphite ligand to form a conjugate base I, which then reacts with a second OH/sup /minus// and undergoes a hydride shift from the phosphorus to cobalt(III) generating a cobalt(I) species, is suggested. This cobalt (I) species rapidly reduces an additional molecule of Co(III) reactant to Co(II). 30 references, 2 figures, 4 tables.

  18. Spectroscopic and Electronic Structure Studies of Intermediate X in Ribonucleotide Reductase R2 and Two Variants: A Description of the FeIV-Oxo Bond in the FeIII-O-FeIV Dimer

    PubMed Central

    Mití, Nataša; Clay, Michael D.; Saleh, Lana; Solomon, Edward I.

    2008-01-01

    Spectroscopic and electronic structure studies of the class I Escherichia coli ribonucleotide reductase (RNR) intermediate X and three computationally-derived model complexes are presented, compared and evaluated to determine the electronic and geometric structure of the FeIII-FeIV active site of intermediate X. Rapid freeze-quench (RFQ) EPR, absorption and MCD were used to trap intermediate X in R2 wild-type (WT) and two variants, W48A and Y122F/Y356F. RFQ-EPR spin quantitation was used to determine the relative contributions of intermediate X and radicals present, while RFQ-MCD was used to specifically probe the FeIII/FeIV active site, which displayed three FeIV d-d transitions between 16 700 – 22 600 cm-1, two FeIV d-d spin-flip transitions between 23 500 – 24 300 cm-1 and five oxo to FeIV and FeIII charge transfer (CT) transitions between 25 000 – 32 000 cm-1. The FeIV d-d transitions were perturbed in the two variants, confirming that all three d-d transitions derive from the d-π manifold. Furthermore, the FeIV d-π splittings in the WT are too large to correlate with a bis-μ-oxo structure. The assignment of the FeIV d-d transitions in WT intermediate X best correlates with a bridged μ-oxo/μ-hydroxo [FeIII(μ-O)(μ-OH)FeIV] structure. The μ-oxo/μ-hydroxo core structure provides an important σ/π superexchange pathway, which is not present in the bis-μ-oxo structure, to promote facile electron transfer from Y122 to the remote FeIV through the bent oxo bridge, thereby generating the tyrosyl radical for catalysis. PMID:17602477

  19. Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams.

    PubMed

    Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M

    2016-02-18

    We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles. PMID:26807653

  20. Plasmatrough exohiss waves observed by Van Allen Probes: Evidence for leakage from plasmasphere and resonant scattering of radiation belt electrons

    NASA Astrophysics Data System (ADS)

    Zhu, Hui; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Shen, Chao; Xian, Tao; Wang, Shui; Kletzing, C. A.; Kurth, W. S.; Hospodarsky, G. B.; Spence, H. E.; Reeves, G. D.; Funsten, H. O.; Blake, J. B.; Baker, D. N.

    2015-02-01

    Exohiss waves are whistler mode hiss observed in the plasmatrough region. We present a case study of exohiss waves and the corresponding background plasma distributions observed by the Van Allen Probes in the dayside low-latitude region. The analysis of wave Poynting fluxes, suprathermal electron fluxes, and cold electron densities supports the scenario that exohiss leaks from the plasmasphere into the plasmatrough. Quasilinear calculations further reveal that exohiss can potentially cause the resonant scattering loss of radiation belt electrons ˜