Science.gov

Sample records for iii metal liner

  1. Surface treatment using metal foil liner

    NASA Technical Reports Server (NTRS)

    Garvey, Ray

    1989-01-01

    A metal foil liner can be used to seal large area surfaces. Characteristics of the two-layer foil liner are discussed. Micrographs for foil-to-foil, foil-to-composite, visible seams, and hidden seams are examined.

  2. Cooled thin metal liner

    NASA Technical Reports Server (NTRS)

    Liang, George P. (Inventor)

    1995-01-01

    A first metal sheet (34) has openings (46) in registration with depressions (40) in a second contacting metal sheet (36). Each depression has a downstream wall (42) at an angle of 24.degree. from the plane of the sheets. A metering hole (56) in the depression amidst cooling air in a direction to first impinge against an overlaying portion (48) of the first plate, before it diffuses along the downstream wall.

  3. Accommodation of liquid metal by cavity liners

    SciTech Connect

    Jeppson, D.W.

    1989-03-01

    Present liquid metal breeder reactor cell liner designs appear adequate to contain postulated leakages of lithium-lead alloy in an air or steam atmosphere and to contain lithium when inert atmospheres are present. If an air or steam atmosphere may be present in a cavity where lithium amy accumulate under postulated accident conditions, then consideration of stainless steel liners and further testing is recommended. Lithium testing of faulted liners should also be considered. SOFIRE II and WATRe computer codes may be useful in establishing liner design requirements and in determining water release from concrete behind the liners (potential hydrogen production) for postulated leakages to steel-lined concrete cavities.

  4. Accommodation of liquid metal by cavity liners

    SciTech Connect

    Jeppson, D.W.

    1988-10-01

    Present liquid metal breeder reactor cell liner designs appear adequate to contain postulated leakages of lithium-lead alloy in an air or steam atmosphere and to contain lithium when inert atmospheres are present. If an air or steam atmosphere may be present in a cavity where lithium may accumulate under postulated accident conditions, then consideration of stainless steel liners and further testing is recommended. Lithium testing of faulted liners should also be considered. SOFIRE II and WATRE computer codes may be useful in establishing liner design requirements and in determining water release from concrete behind the liners (potential hydrogen production) for postulated leakages to steel-lined concrete cavities. 1 ref., 10 figs.

  5. Expandable Metal Liner For Downhole Components

    DOEpatents

    Hall, David R.; Fox, Joe R.

    2004-10-05

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  6. Metal liner-driven quasi-isentropic compression of deuterium

    NASA Astrophysics Data System (ADS)

    Weinwurm, Marcus; Bland, Simon N.; Chittenden, Jeremy P.

    2013-09-01

    Properties of degenerate hydrogen and deuterium (D) at pressures of the order of terapascals are of key interest to Planetary Science and Inertial Confinement Fusion. In order to recreate these conditions in the laboratory, we present a scheme, where a metal liner drives a cylindrically convergent quasi-isentropic compression in a D fill. We first determined an external pressure history for driving a self-similar implosion of a D shell from a fictitious flow simulation [D. S. Clark and M. Tabak, Nucl. Fusion 47, 1147 (2007)]. Then, it is shown that this D implosion can be recreated inside a beryllium liner by shaping the current pulse. For a peak current of 10.8 MA cold and nearly isochoric D is assembled at around 12 500 kg/m3. Finally, our two-dimensional Gorgon simulations show the robustness of the implosion method to the magneto-Rayleigh-Taylor instability when using a sufficiently thick liner.

  7. Metal liner-driven quasi-isentropic compression of deuterium

    SciTech Connect

    Weinwurm, Marcus; Bland, Simon N.; Chittenden, Jeremy P.

    2013-09-15

    Properties of degenerate hydrogen and deuterium (D) at pressures of the order of terapascals are of key interest to Planetary Science and Inertial Confinement Fusion. In order to recreate these conditions in the laboratory, we present a scheme, where a metal liner drives a cylindrically convergent quasi-isentropic compression in a D fill. We first determined an external pressure history for driving a self-similar implosion of a D shell from a fictitious flow simulation [D. S. Clark and M. Tabak, Nucl. Fusion 47, 1147 (2007)]. Then, it is shown that this D implosion can be recreated inside a beryllium liner by shaping the current pulse. For a peak current of 10.8 MA cold and nearly isochoric D is assembled at around 12 500 kg/m{sup 3}. Finally, our two-dimensional Gorgon simulations show the robustness of the implosion method to the magneto-Rayleigh-Taylor instability when using a sufficiently thick liner.

  8. Precooling an acetabular liner makes its insertion into a metal shell easier.

    PubMed

    Kyle, Richard F; Bourgeault, Craig A; Lew, William D; Bechtold, Joan E

    2006-02-01

    Temporary shrinkage of an acetabular polyethylene liner due to precooling could reduce the force required to snap the liner into its metal shell. This study documented cooling and heating rates of liners with a particular locking mechanism design, determined forces required to seat liners in their shells as a function of temperature, and quantified the force surgeons can exert with their thumbs when seating a liner. It took up to 8 minutes to cool 58- and 70-mm liners in an ice-water bath from room temperature to near 0 degrees C, and up to 24 minutes to subsequently warm these liners to near body temperature. Forces required to seat liners were greater at room and body temperatures than at 0 degrees C. Liners precooled to 0 degrees C required insertion forces that could be generated manually by surgeons. PMID:16520215

  9. Heat dissipating nuclear reactor with metal liner

    DOEpatents

    Gluekler, E.L.; Hunsbedt, A.; Lazarus, J.D.

    1985-11-21

    A nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel is described in this disclosure. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  10. Heat dissipating nuclear reactor with metal liner

    DOEpatents

    Gluekler, Emil L.; Hunsbedt, Anstein; Lazarus, Jonathan D.

    1987-01-01

    Disclosed is a nuclear reactor containment including a reactor vessel disposed within a cavity with capability for complete inherent decay heat removal in the earth and surrounded by a cast steel containment member which surrounds the vessel. The member has a thick basemat in contact with metal pilings. The basemat rests on a bed of porous particulate material, into which water is fed to produce steam which is vented to the atmosphere. There is a gap between the reactor vessel and the steel containment member. The containment member holds any sodium or core debris escaping from the reactor vessel if the core melts and breaches the vessel.

  11. Liner conformality in ionized magnetron sputter metal deposition processes

    SciTech Connect

    Hamaguchi, S.; Rossnagel, S.M.

    1996-07-01

    The conformality of thin metal films (liners) formed on high-aspect-ratio trench structures in ionized magnetron sputter deposition processes is studied numerically and experimentally. The numerical simulator (SHADE) used to predict the surface topography is based on the shock-tracking method for surface evolution. The simulation results are in good agreement with experimentally observed thin-film topography. It is shown that combination of direct deposition and trench-bottom resputtering results in good conformality of step coverages and the amount of the resputtering needed for the good conformality is almost independent of trench aspect ratios. {copyright} {ital 1996 American Vacuum Society}

  12. Small gas turbine combustor experimental study: Compliant metal/ceramic liner and performance evaluation

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.; Norgren, C. T.

    1986-01-01

    Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.

  13. Foam-Metal Liner Attenuation of Low-Speed Fan Noise

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel R.; Jones, Michael G.

    2008-01-01

    A foam-metal liner for attenuation of fan noise was developed for and tested on a low speed fan. This type of liner represents a significant advance over traditional liners due to the possibility for placement in close proximity to the rotor. An advantage of placing treatment in this region is the modification of the acoustic near field, thereby inhibiting noise generation mechanisms. This can result in higher attenuation levels than can be achieved by liners located in the nacelle inlet. In addition, foam-metal liners could potentially replace the fan rub-strip and containment components, ultimately reducing engine components and thus weight, which can result in a systematic increase in noise reduction and engine performance. Foam-metal liners have the potential to reduce fan noise by 4 dB based on this study.

  14. Low-Speed Fan Noise Attenuation from a Foam-Metal Liner

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Jones, Michael G.

    2011-01-01

    A foam-metal liner for attenuation of fan noise was developed for and tested on a low-speed fan. This type of liner represents a significant advance over traditional liners, due to the possibility of placement in close proximity to the rotor. An advantage of placing treatment in this region is that the acoustic near field is modified, thereby inhibiting the noise-generation mechanism. This can result in higher attenuation levels than could be achieved by liners located in the nacelle inlet. In addition, foam-metal liners could potentially replace the fan rub strip and containment components, ultimately reducing engine components and thus weight, which can result in a systematic increase in noise reduction and engine performance. Foam-metal liners have the potential to reduce fan noise by 4 dB based on this study.

  15. Ceramic coating effect on liner metal temperatures of film-cooled annular combustor

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Wear, J. D.; Liebert, C. H.

    1979-01-01

    An experimental and analytical investigation was conducted to determine the effect of a ceramic coating on the average metal temperatures of full annular, film cooled combustion chamber liner. The investigation was conducted at pressures from 0.50 to 0.062. At all test conditions, experimental results indicate that application of a ceramic coating will result in significantly lower wall temperatures. In a simplified heat transfer analysis, agreement between experimental and calculated liner temperatures was achieved. Simulated spalling of a small portion of the ceramic coating resulted in only small increases in liner temperature because of the thermal conduction of heat from the hotter, uncoated liner metal.

  16. Cutaneous manifestation of metallosis in a metal-on-metal total hip arthroplasty after acetabular liner dissociation.

    PubMed

    Sporer, Scott M; Chalmers, Peter N

    2012-09-01

    In this case report, we describe a cutaneous manifestation of extensive metallosis in a patient 4 months post-metal-on-metal total hip arthroplasty with a Pinnacle cup with dissociation of the liner from the shell and resultant stripe burnishing of the shell and notch wear of the femoral neck. Dissociation of a metal liner has not been previously reported with this implant. Cutaneous metallosis has only been reported once in the literature. Clinicians should heighten their suspicion for metallosis secondary to hardware failure when encountering patients with skin discoloration in the setting of a painful and poorly functioning hip arthroplasty. In patients with failure of a metal-on-metal prosthesis with a modular metal liner in the acetabular component, liner dissociation must be considered. PMID:22397858

  17. Formation of metal and dielectric liners using a solution process for deep trench capacitors.

    PubMed

    Ham, Yong-Hyun; Kim, Dong-Pyo; Baek, Kyu-Ha; Park, Kun-Sik; Kim, Moonkeun; Kwon, Kwang-Ho; Shin, Hong-Sik; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We demonstrated the feasibility of metal and dielectric liners using a solution process for deep trench capacitor application. The deep Si trench via with size of 10.3 microm and depth of 71 microm were fabricated by Bosch process in deep reactive ion etch (DRIE) system. The aspect ratio was about 7. Then, nano-Ag ink and poly(4-vinylphenol) (PVPh) were used to form metal and dielectric liners, respectively. The thicknesses of the Ag and PVPh liners were about 144 and 830 nm, respectively. When the curing temperature of Ag film increased from 120 to 150 degrees C, the sheet resistance decreased rapidly from 2.47 to 0.72 Omega/sq and then slightly decreased to 0.6 Omega/sq with further increasing the curing temperature beyond 150 degrees C. The proposed liner formation method using solution process is a simple and cost effective process for the high capacity of deep trench capacitor. PMID:22966677

  18. Metal liner-driven cylindrically convergent isentropic compression of cryogenic deuterium

    NASA Astrophysics Data System (ADS)

    Weinwurm, Marcus; Bland, Simon N.; Chittenden, Jeremy P.

    2014-05-01

    In order to take advantage of geometrical convergence, we investigated a method, where a beryllium liner drives a cylindrical shockless compression in a cryogenic deuterium fill. The metal liner acts as a current carrier as well as a pressure boundary to the fill. The required driving pressure was obtained through a fictitious flow (FF) simulation [D S Clark and M Tabak 2007 Nucl. Fusion 47 1147]. A current model that can recreate the FF compression inside the liner by shaping the current pulse, is then introduced. This method also allows efficient compression of hydrogen at low entropy, enabling the recreation of conditions present in the interior of gas giants and potentially the observation of a transition into a metallic state. Our two-dimensional simulations show that thick liners remain robust to magneto-Rayleigh-Taylor instability growth, suggesting that cylindrical isentropic ramp compression is a promising scheme for extending deuterium's experimentally measured equation of state.

  19. Incomplete seating of a metal-backed alumina liner in ceramic-on-ceramic total hip arthroplasty.

    PubMed

    Carvajal Alba, Jaime A; Schiffman, Eric D; Scully, Sean P; Parvataneni, Hari K

    2010-01-01

    Metal-backed modular ceramic bearing systems using a recessed alumina liner in a titanium sleeve were developed to decrease ceramic chipping or fracture due to femoral neck impingement after total hip arthroplasty (THA). However, malseating of the metal-backed ceramic liner has recently been described. The goal of this study was to assess the prevalence, etiology, and clinical relevance of this event. Between 2005 and 2008, 51 consecutive patients (61 hips) underwent THA with a metal-backed alumina liner housed in a titanium shell. The metal-backed ceramic liner was aligned, seated, and impacted into the shell, and satisfaction in terms of liner stability and seating was confirmed intraoperatively. Postoperative assessment of seating was assessed with standard radiographs. Liner seating was classified as well seated, suspicious, or malseated. Seven liners (11.5%) were found to be malseated and 4 (6.5%) were considered suspicious. Radiographically, there was a gap between the liner and the shell located inferomedially in 4 patients and superolaterally in 3 patients. Two liners subsequently seated at 1 and 3 months postoperatively, respectively. No dislodgement, failures, or adverse events were identified. There were no revision surgeries. The significant percentage of malseated liners were potentially attributed to poor exposure, bony/soft tissue interposition, and surgeon learning curve. PMID:20055343

  20. Study of the Initiation Phase of Thick, Metallic Liners at 1MA

    NASA Astrophysics Data System (ADS)

    Bott, Simon; Blesener, I. C.; Hoyt, C. L.; Gourdain, P. A.; Greenly, J. B.; Hammer, D. A.; Kusse, B. R.; Chittenden, J. P.; Weinwurm, M.; Cuneo, M. E.

    2012-10-01

    We present a study investigating the initiation of plasma in solid, metallic liners where the liner thickness is large compared to the collisionless skin depth. The current pulse on the 1 MA, 100ns COBRA generator is comparable to the early stages of the current pulse on the Z generator, and studies in the low current regime may highlight details of the liner initiation pertinent to the MagLIF fusion scheme [1]. We present optical emission data from aluminum liners using gated imaging and streak photography, which show a dependence of onset of emission with the size of a small power-feed gap introduced at the cathode. We also show measurements of the B-field inside the liner, using miniature Bdot probes, which show a dependence on the liner diameter and thickness. These data will be compared to magneto-hydrodynamic simulations. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Work at Cornell University is supported by the NNSA-SSAA through Cooperative Agreement DE-FC03-02NA00057. [4pt] [1] Slutz et al, Phys Plasmas, 17, 056303 (2010)

  1. Autofrettage to Counteract Coefficient of Thermal Expansion Mismatch in Cryogenic Pressurized Pipes with Metallic Liners

    NASA Technical Reports Server (NTRS)

    Wen, Ed; Barbero, Ever; Tygielski, Phlip; Turner, James E. (Technical Monitor)

    2001-01-01

    Composite feedlines with metal liners have the potential to reduce weight/cost while providing the same level of permeation resistance and material compatibility of all-metal feedlines carrying cryogenic propellants in spacecraft. The major technical challenges are the large difference in Coefficient of Thermal Expansion between the liner and the composite, and the manufacturing method required to make a very thin liner with the required strength and dimensional tolerance. This study investigates the use of autofrettage (compressive preload) to counteract Coefficient of Thermal Expansion when pre-pressurization procedures cannot be used to solve this problem. Promising materials (aluminum 2219, Inconel 718, nickel, nickel alloy) and manufacturing techniques (chemical milling, electroplating) are evaluated to determine the best liner candidates. Robust, autofrettaged feedlines with a low Coefficient of Thermal Expansion liner (Inconel 718 or nickel alloy) are shown to successfully counteract mismatch at LOX temperature. A new concept, autofrettage by temperature, is introduced for high Coefficient of Thermal Expansion materials (aluminum and pure nickel) where pressure cannot be used to add compressive preload.

  2. AN EVALUATION OF POTENTIAL LINER MATERIALS FOR ELIMINATING FCCI IN IRRADIATED METALLIC NUCLEAR FUEL ELEMENTS

    SciTech Connect

    D. D. Keiser; J. I. Cole

    2007-09-01

    Metallic nuclear fuels are being looked at as part of the Global Nuclear Energy Program for transmuting longlive transuranic actinide isotopes contained in spent nuclear fuel into shorter-lived fission products. In order to optimize the performance of these fuels, the concept of using liners to eliminate the fuel/cladding chemical interactions that can occur during irradiation of a fuel element has been investigated. The potential liner materials Zr and V have been tested using solid-solid diffusion couples, consisting of liner materials butted against fuel alloys and against cladding materials. The couples were annealed at the relatively high temperature of 700°C. This temperature would be the absolute maximum temperature present at the fuel/cladding interface for a fuel element in-reactor. Analysis was performed using a scanning electron microscope equipped with energy-dispersive and wavelengthdispersive spectrometers (SEM/EDS/WDS) to evaluate any developed diffusion structures. At 700°C, minimal interaction was observed between the metallic fuels and either Zr or V. Similarly, limited interaction was observed between the Zr and V and the cladding materials. The best performing liner material appeared to be the V, based on amounts of interaction.

  3. Attenuation of FJ44 Turbofan Engine Noise with a Foam-Metal Liner Installed Over-the-Rotor

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Elliott, Dave M.; Jones, Michael G.; Hartley, Thomas C.

    2009-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was used as a demonstrator for a Foam-Metal Liner (FML) installed in close proximity to the fan. Two FML designs were tested and compared to the hardwall baseline. Traditional single degree-of-freedom liner designs were also evaluated to provide a comparison. Farfield acoustic levels and limited engine performance results are presented in this paper. The results show that the FML achieved up to 5 dB Acoustic Power Level (PWL) overall attenuation in the forward quadrant, equivalent to the traditional liner design. An earlier report presented the test set-up and conditions.

  4. Wear of the polyethylene liner-metallic shell interface in modular acetabular components. An in vitro analysis.

    PubMed

    Lieberman, J R; Kay, R M; Hamlet, W P; Park, S H; Kabo, J M

    1996-08-01

    The purpose of this study was to determine the effect of compression cycles and wear patterns on the polyethylene liner-metallic shell interface in modular acetabular components. Articular frictional torque was also measured. Modular acetabular components from five manufacturers were tested. The polyethylene liners were sputter coated with gold on the convex surface to enhance the visualization of wear and deformation patterns. Each component was cycled for 10 million cycles in a hydraulic fatigue testing machine. Frictional torque was measured prior to the start of the cyclic loading and in increments of 2 million cycles. Frictional torque was significantly lower in the design with an enhanced polyethylene liner. Abrasion of the gold from the convex surface of polyethylene liners varied from 2 to 23% between designs. Extrusion of the polyethylene into the screw holes in the metallic shells was universal. Three modes of damage (burnishing, punch-out, and gouging) were identified on the convex surface of the polyethylene liner. Abrasion of the gold from the convex surface of the polyethylene varied greatly between designs. This is indicative of relative motion between the polyethylene liner and the metallic shell. This motion must be minimized to limit the generation of wear debris from the convex surface of the polyethylene. Several aspects of modular acetabular component design could be implemented to potentially reduce wear, including limiting the number of holes available for screw placement, smoothing out the edges of the screw holes to avoid punch-out, and avoiding supplemental fixation of the liner unless it is essential to prevent motion between the liner and the metallic shell. PMID:8872582

  5. Azimuthal Current Density Distribution Resulting from a Power Feed Vacuum Gap in Metallic Liner Experiments at 1 MA

    NASA Astrophysics Data System (ADS)

    Bott-Suzuki, Simon; Cordaro, S. W.; Caballero Bendixsen, L. S.; Atoyan, L.; Byvank, T.; Potter, W.; Kusse, B. R.; Greenly, J. B.; Hammer, D. A.; Chittenden, J. P.; Jennings, C. A.

    2015-11-01

    We present a study investigating the initiation of plasma in solid, metallic liners where the liner thickness is large compared to the collisionless skin depth. A vacuum gap is introduced in the power feed and we investigate the effect of this on the azimuthal initiation of plasma in the liner. We present optical emission data from aluminum liners on the 1 MA, 100ns COBRA generator. We use radial and axial gated imaging and streak photography, which show a dependence of onset of emission with the size of a small power-feed vacuum gap. The evolution of ``hot-spots'' generated from breakdown vacuum gap evolves relatively slowly and azimuthal uniformity is not observed on the experimental time-scale. We also show measurements of the B-field both outside and inside the liner, using miniature Bdot probes, which show a dependence on the liner diameter and thickness, and a correlation to the details of the breakdown. These data will be compared to magneto-hydrodynamic simulations to infer how such non-uniformities may affect full liner implosion experiments.

  6. Strain monitoring of composite pressure vessel with thin metal liner using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhao, Jun-qing; Wang, Rong-guo; He, Xiao-dong; Liu, Wen-bo

    2009-07-01

    Composite pressure vessel with thin metal liner has the advantage of both composite and metal. Due to the difference of elastic strain limits of composite and metal, there is problem of the compatibility of deformation. Nine fiber Bragg gratings were bonded to the surface of longitudinal and hoop directions of pressure vessel to monitor the strain status during 4.5MPa service pressure condition. The measured strain by the Bragg sensor is perfectly linear with the applied force. However, the hoop strain decreased as loading process and increased as unloading process, it is also negative value on middle part of the dome. The phenomena had been discussed in this investigation. As a smart structure Bragg sensor can detect the real strain state of composite pressure vessel and is suitable for damage monitoring in service. Analyzing result shows the pressure vessel can work safely with the applied hydrostatic pressure.

  7. Collaboration with Williams International to Demonstrate the Characteristics of a Foam-Metal-Liner Installed Over-the-Rotor of a Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel; Elliott, Dave; Jones, Mike; Hartley, Tom

    2008-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was used as a demonstrator for foam-metal liner installed in close proximity to the fan. Two foam metal liner designs were tested and compared to the hardwall. Traditional Single-Degree-of-Freedom liner designs were also evaluated to provide a comparison. Normalized information on farfield acoustics is presented in this paper. The results show that up to 5 dB PWL overall attenuation was achieved in the forward quadrant. In general, the foam-metal liners performed better when the fan tip speed was below sonic.

  8. TOXICOLOGY OF METALS. VOLUME III

    EPA Science Inventory

    ;Contents: General chemistry of metals; Sampling and analytical methods; Sources, transport, and transformation of metals in the environment; Effects - general principles underlying the toxic action of metals; Factors influencing effects and dose-response relationships of metals;...

  9. Potential use of lateritic and marine clay soils as landfill liners to retain heavy metals.

    PubMed

    Chalermyanont, Tanit; Arrykul, Surapon; Charoenthaisong, Nanthanit

    2009-01-01

    The potential of a lateritic soil and a marine clay, typical of those found in hot and humid climatic regions, was assessed for use as a landfill liner material. A series of tests were conducted - physical and chemical, batch adsorption, column, hydraulic conductivity, etc., - to evaluate the heavy metal sorption capacity, chemical compatibility of hydraulic conductivity, and transport parameters of the soils. Experimental results showed that the marine clay had better adsorption capacity than that of the lateritic soil and that its hydraulic conductivity was an order of magnitude lower. In addition, the hydraulic conductivities of both soils when permeated with low concentration heavy metal solutions were below 1x10(-7)cm/s. When permeated with Cr, Pb, Cd, Zn, and Ni solutions, the retardation factors of the lateritic soil and the marine clay ranged from 10 to 98 and 37 to 165, respectively, while the diffusion coefficients ranged from 1.0x10(-5) to 7.5x10(-6) and 3.0 to 9.14x10(-7)cm2/s, respectively. For both soils, Cr and Pb were retained relatively well, while Cd, Zn, and Ni were more mobile. The marine clay had higher retardation factors and lower diffusion coefficients, and its hydraulic conductivity was more compatible with Cr solution, than that of the lateritic soil. In general, the properties of the marine clay indicate that it has significant advantages over the lateritic soil as landfill liner material. PMID:18550353

  10. A new landfill liner to reduce ground-water contamination from heavy metals

    SciTech Connect

    Tsai, T.D.; Vesilind, P.A.

    1998-11-01

    A series of permeameters (columns) was used to evaluate the effects of the percolation of water and 1,000 {micro}g/mL of zinc chloride solution through a mixture of montmorillonite clay, sand, and lime. The column test results show that the addition of lime changes the chemical and physical properties of the clay. The hydraulic conductivities for the mixture of clay with different percentages of lime at first increases with increasing lime and then decreases with increasing lime. The breakthrough curves indicate that the Zn(II) capture is increased and Zn(II) breakthrough is delayed with increasing lime addition. Lime also enhances the clay/lime mixture`s ability to resist puncture by sharp objects. Based on the effects of lime on Zn(II) captured by the clay, an explanation for the interacting effects of lime and Zn(II) capture on changing hydraulic conductivity is suggested. The results of this research demonstrate the potential of using lime-treated clay liners for landfills. Such liners would have lower hydraulic conductivity, better resistance to puncture, and enhanced ability to capture heavy metals.

  11. Finite-element and fracture-mechanics analyses of filament-wound pressure vessels with thin metallic liners

    SciTech Connect

    Shy, D.S.

    1987-01-01

    The theoretical background and concept are provided for analyzing the filament-wound pressure vessels with thin metallic liners. The thin metallic liner serves mainly as a permeation barrier to hold liquid or gas, while the composite is sized to carry most of the pressure loads. The bilinear material model is selected to simulate the material stress-strain curve that governs the metal linear behavior. Subjects investigated are classical lamination theory, quadratic failure criterion, bilinear material model, finite-element analysis for axisymmetric solids, and linear elastic fracture mechanics. Four sample cases are analyzed to demonstrate the capabilities of the developed finite-element program FEASY4ND in solving the axisymmetric shell problems. The cases investigated include the parametric study on Poisson's ratio, the thick-walled and thin-walled sphere analyses, and analysis of a sample filament-wound pressure vessel with a thin metallic liner. The filament-wound pressure vessel is analyzed at proof, operating, and design burst pressures. The liner cycle life is calculated based on the principle of linear elastic fracture mechanics.

  12. Conical shaped charge pressed powder, metal liner jet characterization and penetration in aluminum

    SciTech Connect

    Vigil, M.G.

    1997-05-01

    This work was conducted as part of a Near-wellbore Mechanics program at Sandia National Laboratories. An understanding of the interaction of the perforator jet from an explosive shaped charge with the fluid filled porous sandstone media is of basic importance to the completion of oil wells. Tests were conducted using the five-head Flash X-ray Test Site to measure the jet tip velocities and jet geometry for the OMNI and CAPSULE Conical Shaped Charge (CSC) oil well perforator jets fired into air. These tests were conducted to generate jet velocity and geometry information to be used in validating the CTH hydrocode modeling/simulation development of pressed powder, metal liner jets in air. Ten tests were conducted to determine the CSC jet penetration into 6061-T6 aluminum targets. Five tests were conducted with the OMNI CSC at 0.25, 6.0, and 19 inch standoffs from the target. Five tests were conducted with the CAPSULE CSC at 0.60, 5.0, 10.0, and 19 inch standoffs from the target. These tests were conducted to generate jet penetration into homogeneous target information for use in validating the CTH code modeling/simulation of pressed powder, metal liner jets penetrating aluminum targets. The Flash X-ray radiographs, jet velocities, jet diameters, and jet lengths data for jets fired into air are presented in this report. The jet penetration into aluminum and penetration hole profile data are also presented for the OMNI and CAPSULE perforators. Least Squares fits are presented for the measured jet velocity and jet penetration data.

  13. Adsorption of oils, heavy metals and dyes by recovered carbon powder from spent pot liner of aluminum smelter plant.

    PubMed

    Mazumder, B; Devi, Sasmita Rani

    2008-07-01

    Aluminum smelter plants employ Hall-Heroult electrolysis cells for electrolysis of molten cryolite to recover aluminum metal by electrolysis. These cells use carbon cathode blocks as a lining material inside. At the end of service life of the cells, pot lines are discarded and new carbon blocks are laid for fresh charging. These used carbon cathode blocks, known as spent pot liners, are heavily infested with toxic elements such as fluoride, cyanide, alkali, etc. Therefore, their disposal in open field poses great environmental risk. A simple process has been developed for decontamination of these spent pot liners and to recover its carbon value. The experiments indicated that this carbon, in the form of fine powder (around 20 micron in size) can absorb toxic elements like heavy metals, dyes, oils, etc. to a great extent and thus can be used for mitigating environmental pollution occuring due to various toxic wastes. PMID:19552074

  14. Uneven damage on head and liner contact surfaces of a retrieved Co-Cr-based metal-on-metal hip joint bearing: An important reason for the high failure rate.

    PubMed

    Koizumi, Yuichiro; Chen, Yan; Li, Yunping; Yamanaka, Kenta; Chiba, Akihiko; Tanaka, Shun-Ichiro; Hagiwara, Yoshihiro

    2016-05-01

    Detailed metallurgical investigations have been performed on a used Co-Cr-based metal-on-metal (MoM) hip joint bearing containing a type of liner that is commonly used in such joints. The damage on the metal-liner sliding surface was considerably more severe than that on the metal head counterpart, in terms of wear-scar density and width and microcrack frequency. Cross-sectional transmission electron microscopy revealed that a thick (>3 μm) nanocrystalline layer formed on the sliding surface of the head, whereas the liner had coarse carbides embedded in it and nanocrystals were formed in a very limited region no deeper than 1 μm. Comparative investigation of an unused head and a liner of identical type showed that although the chemical compositions of the liner and head were nearly identical, their microstructures were significantly different. Specifically, the grain size in the liner was larger than that in the head on average, and the grain boundaries of the liner were decorated with coarse carbides. Moreover, X-ray diffraction analysis revealed a large tensile residual stress only in the liner. These differences are possibly responsible for the wear damage on the liner being more serious than that on the head. PMID:26952456

  15. Experimental demonstration of the stabilizing effect of dielectric coatings on magnetically accelerated imploding metallic liners

    DOE PAGESBeta

    Awe, Thomas James; Peterson, Kyle J.; Yu, Edmund P.; McBride, Ryan D.; Sinars, Daniel B.; Gomez, Matthew R.; Jennings, Christopher Ashley; Martin, Matthew R.; Rosenthal, Stephen E.; Sefkow, Adam B.; et al

    2016-02-10

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. Lastly, the inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130 μm over the 4.0 mm axial height captured by the radiograph.

  16. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners

    SciTech Connect

    Sinars, D. B.; Slutz, S. A.; Herrmann, M. C.; McBride, R. D.; Cuneo, M. E.; Jennings, C. A.; Peterson, K. J.; Vesey, R. A.; Nakhleh, C.; Waisman, E. M.; Edens, A. D.; Lopez, M. R.; Smith, I. C.; Shores, J.; Bigman, V.; Bennett, G. R.; Atherton, B. W.; Savage, M.; Stygar, W. A.; Leifeste, G. T.

    2011-05-15

    A recent publication [D. B. Sinars et al., Phys. Rev. Lett. 105, 185001 (2010)] describes the first controlled experiments measuring the growth of the magneto-Rayleigh-Taylor instability in fast ({approx}100 ns) Z-pinch plasmas formed from initially solid aluminum tubes (liners). Sinusoidal perturbations on the surface of these liners with wavelengths of 25-400 {mu}m were used to seed single-mode instabilities. The evolution of the outer liner surface was captured using multiframe 6.151 keV radiography. The initial paper shows that there is good agreement between the data and 2-D radiation magneto-hydrodynamic simulations down to 50 {mu}m wavelengths. This paper extends the previous one by providing more detailed radiography images, detailed target characterization data, a more accurate comparison to analytic models for the amplitude growth, the first data from a beryllium liner, and comparisons between the data and 3D simulations.

  17. Experimental Demonstration of the Stabilizing Effect of Dielectric Coatings on Magnetically Accelerated Imploding Metallic Liners

    NASA Astrophysics Data System (ADS)

    Awe, T. J.; Peterson, K. J.; Yu, E. P.; McBride, R. D.; Sinars, D. B.; Gomez, M. R.; Jennings, C. A.; Martin, M. R.; Rosenthal, S. E.; Schroen, D. G.; Sefkow, A. B.; Slutz, S. A.; Tomlinson, K.; Vesey, R. A.

    2016-02-01

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μ m of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR =Rin,0/Rin(z ,t ) ] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z ,t ) displayed unprecedented uniformity, varying from 95 to 130 μ m over the 4.0 mm axial height captured by the radiograph.

  18. Experimental Demonstration of the Stabilizing Effect of Dielectric Coatings on Magnetically Accelerated Imploding Metallic Liners.

    PubMed

    Awe, T J; Peterson, K J; Yu, E P; McBride, R D; Sinars, D B; Gomez, M R; Jennings, C A; Martin, M R; Rosenthal, S E; Schroen, D G; Sefkow, A B; Slutz, S A; Tomlinson, K; Vesey, R A

    2016-02-12

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70  μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130  μm over the 4.0 mm axial height captured by the radiograph. PMID:26918996

  19. Thermal softening of metallic shaped-charge jets formed by the collapse of shaped-charge liners in the presence of a magnetic field

    NASA Astrophysics Data System (ADS)

    Fedorov, S. V.

    2016-05-01

    This paper presents an analysis of the possibility of increasing the ultimate stretching and penetration capability of metallic shaped-charge jets in the presence of an axial magnetic field in the shaped-charge liner due to heating and thermal softening of the jet material as a result of a sharp increase in the magnetic-field induction in the jet formation region upon liner collapse. This process is studied by numerical simulation in a quasi-two-dimensional formulation taking into account the inertial stretching of the conductive rigid-plastic rod in the presence of a longitudinal magnetic field in it.

  20. Reinforcing Liner For Composite Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Burgeson, John E.

    1990-01-01

    Proposed fiber-reinforced liner for graphite/epoxy fuel tank prevents metal-foil leakage barrier from detaching at low temperatures. Consists of epoxy containing fibers of Spectra 1000. Tank holds inner layers of foil, adhesive, and proposed liner. Liner much thinner than shell, adds little weight, and subtracts little volume. Lined composite tank used to hold liquids from room temperature to cryogenic temperatures. Not suitable for oxygen, because organic materials in liner oxidized quickly.

  1. Total Hip Arthroplasty Using Metal Head on a Highly Cross-linked Polyethylene Liner

    PubMed Central

    Kim, Min-Yook; Park, Ji-Hoon; Lee, Jung-Ho

    2015-01-01

    Purpose This retrospective study was performed to evaluate the clinical results and measure polyethylene liner wear in total hip arthroplasty (THA) with highly cross-linked polyethylene. Materials and Methods Except for patients who had died or were unable to have follow-up at least 2 years, 60 of 78 hips that underwent THA were included this study. The mean age was 64.5 years (range, 25-81 years) and the mean body mass index (BMI) was 23.0 kg/m2 (18.1-32.3 kg/m2). Diagnosis at the time of the operation was osteonecrois of the femoral head in 28 hips, primary osteoarthritis in 14, hip fracture in 13, and other diseases in 5. The mean follow-up period was 3.8 years (2.1-7.1 years). Harris hip score (HHS) was reviewed before THA and at the last follow-up. On the anteroposterior pelvic radiographs, acetabular cup inclination and ante-version were also measured. The annual linear wear rate was measured using Livermore's method on the radiographs. Results The mean HHS was 60.1 (28-94) before operation and 90.4 (47-100) at the last follow-up. In the immediate post-operation, the average inclination and anteversion angles of the acetabular cups were 46.3° (standard deviation, ±6.7°) and, 21.4°(±10.1°) respectively. The mean of the annual linear polyethylene wear was 0.079 mm/year (0.001-0.291 mm/year). Age, gender and BMI were not statistically related to linear polyethylene wear but the period of follow-up and the acetabular cup's inclination showed significant negative and positive correlation respectively. Conclusion The wear rate of a highly cross-linked polyethylene was shown to correlate negatively with duration of follow-up. However, our study was based on a short-term follow-up, so a long-term follow-up study is necessary in the future. PMID:27536629

  2. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid metal liners a)

    NASA Astrophysics Data System (ADS)

    Sinars, D. B.; Slutz, S. A.; Herrmann, M. C.; McBride, R. D.; Cuneo, M. E.; Jennings, C. A.; Chittenden, J. P.; Velikovich, A. L.; Peterson, K. J.; Vesey, R. A.; Nakhleh, C.; Waisman, E. M.; Blue, B. E.; Killebrew, K.; Schroen, D.; Tomlinson, K.; Edens, A. D.; Lopez, M. R.; Smith, I. C.; Shores, J.; Bigman, V.; Bennett, G. R.; Atherton, B. W.; Savage, M.; Stygar, W. A.; Leifeste, G. T.; Porter, J. L.

    2011-05-01

    A recent publication [D. B. Sinars et al., Phys. Rev. Lett. 105, 185001 (2010)] describes the first controlled experiments measuring the growth of the magneto-Rayleigh-Taylor instability in fast (˜100 ns) Z-pinch plasmas formed from initially solid aluminum tubes (liners). Sinusoidal perturbations on the surface of these liners with wavelengths of 25-400 μm were used to seed single-mode instabilities. The evolution of the outer liner surface was captured using multiframe 6.151 keV radiography. The initial paper shows that there is good agreement between the data and 2-D radiation magneto-hydrodynamic simulations down to 50 μm wavelengths. This paper extends the previous one by providing more detailed radiography images, detailed target characterization data, a more accurate comparison to analytic models for the amplitude growth, the first data from a beryllium liner, and comparisons between the data and 3D simulations.

  3. Synthesis, thermal and spectroscopic behaviors of metal-drug complexes: La(III), Ce(III), Sm(III) and Y(III) amoxicillin trihydrate antibiotic drug complexes

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Al-Maydama, Hussein M. A.; Al-Azab, Fathi M.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-07-01

    The metal complexes of Amoxicillin trihydrate with La(III), Ce(III), Sm(III) and Y(III) are synthesized with 1:1 (metal:Amox) molar ratio. The suggested formula structures of the complexes are based on the results of the elemental analyses, molar conductivity, (infrared, UV-visible and fluorescence) spectra, effective magnetic moment in Bohr magnetons, as well as the thermal analysis (TG), and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The results obtained suggested that Amoxicillin reacted with metal ions as tridentate ligands, coordinating the metal ion through its amino, imino, and β-lactamic carbonyl. The kinetic thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves.

  4. Synthesis and in vitro microbial evaluation of La(III), Ce(III), Sm(III) and Y(III) metal complexes of vitamin B6 drug

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Al-Azab, Fathi M.; Al-Maydama, Hussein M. A.; Amin, Ragab R.; Jamil, Yasmin M. S.

    2014-06-01

    Metal complexes of pyridoxine mono hydrochloride (vitamin B6) are prepared using La(III), Ce(III), Sm(III) and Y(III). The resulting complexes are investigated. Some physical properties, conductivity, analytical data and the composition of the four pyridoxine complexes are discussed. The elemental analysis shows that the formed complexes of La(III), Ce(III), Sm(III) and Y(III) with pyridoxine are of 1:2 (metal:PN) molar ratio. All the synthesized complexes are brown in color and possess high melting points. These complexes are partially soluble in hot methanol, dimethylsulfoxide and dimethylformamide and insoluble in water and some other organic solvents. Elemental analysis data, spectroscopic (IR, UV-vis. and florescence), effective magnetic moment in Bohr magnetons and the proton NMR suggest the structures. However, definite particle size is determined by invoking the X-ray powder diffraction and scanning electron microscopy data. The results obtained suggested that pyridoxine reacted with metal ions as a bidentate ligand through its phenolate oxygen and the oxygen of the adjacent group at the 4‧-position. The molar conductance measurements proved that the pyridoxine complexes are electrolytic in nature. The kinetic and thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves. The antibacterial evaluation of the pyridoxine and their complexes were also performed against some gram positive, negative bacteria as well as fungi.

  5. Electrochemistry and spectroscopy of ortho-metalated complexes of Ir(III) and Rh(III)

    SciTech Connect

    Ohsawa, Y.; Sprouse, S.; King, K.A.; DeArmond, M.K.; Hanck, K.W.; Watts, R.J.

    1987-02-26

    The electrochemical and UV-visible spectroscopic properties of Rh(III) and Ir(III) complexes of the ortho-metalating (NC) ligands, 2-phenylpyridine (ppy) and benzo(h)quinone (bzq), have been studied. Cyclic voltammetric studies of several of the dimeric species, (M(NC)/sub 2/Cl)/sub 2/, indicate metal-centered oxidation occurs at moderate potentials. Cationic monomers of the type M(NC)/sub 2/(NN)/sup +/ where (NN) = 2,2'-bipyridine or 1,10-phenanthroline have been prepared by reaction of the chelating ligands with the parent dimers. Cyclic voltammetric studies of these monomers indicate that several reversible ligand-centered reductions are generally observed and that the chelating ligand is more easily reduced than is the ortho-metalating ligand. Spectroscopic studies of the mixed ligand monomers indicate that dual emissions from MLCT states associated with the ortho-metalating and chelating ligands occur in the Ir(III) complexes whereas a single emission from a ligand-localized excited state is observed in the Rh(III) complexes. These results are discussed in terms of electronic and nuclear coupling factors analogous to those encountered in descriptions of bimolecular energy and electron-transfer processes.

  6. Evaluating the Acoustic Effect of Over-the-Rotor Foam-Metal Liner Installed on a Low Speed Fan Using Virtual Rotating Microphone Imaging

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.

    2010-01-01

    An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.

  7. Prediction of Heavy Metal Removal by Different Liner Materials from Landfill Leachate: Modeling of Experimental Results Using Artificial Intelligence Technique

    PubMed Central

    Turan, Nurdan Gamze; Gümüşel, Emine Beril; Ozgonenel, Okan

    2013-01-01

    An intensive study has been made to see the performance of the different liner materials with bentonite on the removal efficiency of Cu(II) and Zn(II) from industrial leachate. An artificial neural network (ANN) was used to display the significant levels of the analyzed liner materials on the removal efficiency. The statistical analysis proves that the effect of natural zeolite was significant by a cubic spline model with a 99.93% removal efficiency. Optimization of liner materials was achieved by minimizing bentonite mixtures, which were costly, and maximizing Cu(II) and Zn(II) removal efficiency. The removal efficiencies were calculated as 45.07% and 48.19% for Cu(II) and Zn(II), respectively, when only bentonite was used as liner material. However, 60% of natural zeolite with 40% of bentonite combination was found to be the best for Cu(II) removal (95%), and 80% of vermiculite and pumice with 20% of bentonite combination was found to be the best for Zn(II) removal (61.24% and 65.09%). Similarly, 60% of natural zeolite with 40% of bentonite combination was found to be the best for Zn(II) removal (89.19%), and 80% of vermiculite and pumice with 20% of bentonite combination was found to be the best for Zn(II) removal (82.76% and 74.89%). PMID:23844384

  8. Prediction of heavy metal removal by different liner materials from landfill leachate: modeling of experimental results using artificial intelligence technique.

    PubMed

    Turan, Nurdan Gamze; Gümüşel, Emine Beril; Ozgonenel, Okan

    2013-01-01

    An intensive study has been made to see the performance of the different liner materials with bentonite on the removal efficiency of Cu(II) and Zn(II) from industrial leachate. An artificial neural network (ANN) was used to display the significant levels of the analyzed liner materials on the removal efficiency. The statistical analysis proves that the effect of natural zeolite was significant by a cubic spline model with a 99.93% removal efficiency. Optimization of liner materials was achieved by minimizing bentonite mixtures, which were costly, and maximizing Cu(II) and Zn(II) removal efficiency. The removal efficiencies were calculated as 45.07% and 48.19% for Cu(II) and Zn(II), respectively, when only bentonite was used as liner material. However, 60% of natural zeolite with 40% of bentonite combination was found to be the best for Cu(II) removal (95%), and 80% of vermiculite and pumice with 20% of bentonite combination was found to be the best for Zn(II) removal (61.24% and 65.09%). Similarly, 60% of natural zeolite with 40% of bentonite combination was found to be the best for Zn(II) removal (89.19%), and 80% of vermiculite and pumice with 20% of bentonite combination was found to be the best for Zn(II) removal (82.76% and 74.89%). PMID:23844384

  9. Obtaining off-Hugoniot equation of state data on solid metals at extreme pressures via pulsed-power driven cylindrical liner implosions

    NASA Astrophysics Data System (ADS)

    Lemke, Raymond

    2015-06-01

    The focus of this talk is on magnetically driven, liner implosion experiments on the Z machine (Z) in which a solid, metal tube is shocklessly compressed to multi-megabar pressure. The goal of the experiments is to collect velocimetry data that can be used in conjunction with a new optimization based analysis technique to infer the principal isentrope of the tube material over a range of pressures. For the past decade, shock impact and ramp loading experiments on Z have used planar platforms exclusively. While producing state-of-the-art results for material science, it is difficult to produce drive pressures greater than 6 Mbar in the divergent planar geometry. In contrast, a cylindrical liner implosion is convergent; magnetic drive pressures approaching 50 Mbar are possible with the available current on Z (~ 20 MA). In our cylindrical experiments, the liner comprises an inner tube composed of the sample material (e.g., Ta) of unknown equation of state, and an outer tube composed of aluminum (Al) that serves as the current carrying cathode. Internal to the sample are fielded multiple PDV (Photonic Doppler Velocimetry) probes that measure velocity of the inner free surface of the imploding sample. External to the composite liner, at much larger radius, is an Al tube that is the return current anode. VISAR (velocity interferometry system for any reflector) probes measure free surface velocity of the exploding anode. Using the latter, MHD and optimization codes are employed to solve an inverse problem that yields the current driving the liner implosion. Then, the drive current, PDV velocity, MHD and optimization codes, are used to solve another inverse problem that yields pressure vs. density on approximately the principal isentrope of the sample material. Results for Ta, Re, and Cu compressed to ~ 10 Mbar are presented. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

  10. Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine

    NASA Astrophysics Data System (ADS)

    d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A.

    2014-05-01

    SPHINX is a 6MA, 1-us Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. A method for performing magnetic ramp compression experiments was developed using a compact Dynamic Load Current Multiplier inserted between the convolute and the load, to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments and initial results obtained over a set of experiments on an aluminum cylindrical liner. Current profiles measured at various critical locations across the system, are in good agreement with simulated current profiles. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. The potential of the technique in terms of applications and achievable ramp pressure levels lies in the prospects for improving the DLCM efficiency.

  11. Ramp compression of a metallic liner driven by a shaped 5 MA current on the SPHINX machine

    NASA Astrophysics Data System (ADS)

    D'Almeida, Thierry; Lassalle, Francis; Morell, Alain; Grunenwald, Julien; Zucchini, Frédéric; Loyen, Arnaud; Maysonnave, Thomas; Chuvatin, Alexandre

    2013-06-01

    SPHINX is a 6MA, 1- μs Linear Transformer Driver operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being considered for improving the generator performances, there is a compact Dynamic Load Current Amplifier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse. We present the overall experimental configuration chosen for these experiments, based on electrical and hydrodynamic simulations. Initial results obtained over a set of experiments on an aluminum cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented. Details of the electrical and Photonic Doppler Velocimetry (PDV) setups used to monitor and diagnose the ramp compression experiments are provided. Current profiles measured at various locations across the system, particularly the load current, agree with simulated current profile and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements agree with the hydrocode results obtained using the measured load current as the input. Higher ramp pressure levels are foreseen in future experiments with an improved DLCM system.

  12. Voluntary Consensus Organization Standards for Nondestructive Evaluation of Thin-Walled Metallic Liners and Composite Overwraps in Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor

    2012-01-01

    NASA fracture control requirements outlined in NASA-STD-5009 and NASA-STD-5014 are predicated on the availability and use of sensitive nondestructive evaluation (NDE) methods that can detect and monitor defects, thereby providing data that can be used to predict failure or reduce the risk of failure in fracture critical components. However, in the case of composite materials and components, including composite overwrapped pressure vessels (COPVs), the effect of defects is poorly understood, the NDE methods used to evaluate locate and size defects are typically at lower technical readiness level than analogous NDE methods used for metals, and demonstration studies to verify the probability of detection (POD) are generally lacking or unavailable. These factors together make failure prediction of fracture critical composite materials and components based on size, quantity, or orientation of defects nearly impossible. Also, when inspecting metal liners in as-manufactured COPVs, sensitivity is lost and only the inner surface of the liner is accessible. Also, NDE of COPVs as applied during manufacturing varies significantly from manufacturer to manufacturer and has not yet been standardized. Although requirements exist to perform NDE immediately after manufacturing to establish initial integrity of the parts, procedural detail for NDE of composites is still nonexistent or under development. For example, in practice, only a visual inspection of COPVs is performed during manufacturing and service, leaving in question whether defects of concern, for example, bridging, overwrap winding anomalies, impact damage below visible threshold, out-of-family strain growth, and liner buckling have been adequately detected and monitored. To address these shortcomings, in 2005 the NASA Nondestructive Evaluation Working Group (NNWG) began funding work to develop and adopt standards for nondestructive evaluation of aerospace composites in collaboration with the American Society for Testing

  13. Acoustic Liner for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.

    2010-01-01

    The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.

  14. Slow liner fusion

    SciTech Connect

    Shaffer, M.J.

    1997-08-01

    {open_quotes}Slow{close_quotes} liner fusion ({approximately}10 ms compression time) implosions are nondestructive and make repetitive ({approximately} 1 Hz) pulsed liner fusion reactors possible. This paper summarizes a General Atomics physics-based fusion reactor study that showed slow liner feasibility, even with conservative open-line axial magnetic field confinement and Bohm radial transport.

  15. Optimized multisectioned acoustic liners

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1979-01-01

    A critical examination is presented of the use of optimized axially segmented acoustic liners to increase the attenuation of a liner. New calculations show that segmenting is most efficient at high frequencies with relatively long duct lengths where the attenuation is low for both uniform and segmented liners. Statistical considerations indicate little advantage in using optimized liners with more than two segments while the bandwidth of an optimized two-segment liner is shown to be nearly equal to that of a uniform liner. Multielement liner calculations show a large degradation in performance due to changes in assumed input modal structure. Finally, in order to substantiate previous and future analytical results, in-house (finite difference) and contractor (mode matching) programs are used to generate theoretical attenuations for a number of liner configurations for liners in a rectangular duct with no mean flow. Overall, the use of optimized multisectioned liners (sometimes called phased liners) fails to offer sufficient advantage over a uniform liner to warrant their use except in low frequency single mode application.

  16. Synthesis of Imine-Naphthol Tripodal Ligand and Study of Its Coordination Behaviour towards Fe(III), Al(III), and Cr(III) Metal Ions

    PubMed Central

    Kaur, Kirandeep

    2014-01-01

    A hexadentate Schiff base tripodal ligand is synthesized by the condensation of tris (2-aminoethyl) amine with 2-hydroxy-1-naphthaldehyde and characterized by various spectroscopic techniques like UV-VIS, IR, NMR, MASS, and elemental analysis. The solution studies by potentiometric and spectrophotometric methods are done at 25 ± 1°C, µ = 0.1 M KCl, to calculate the protonation constants of the ligand and formation constants of metal complexes formed by the ligand with Fe(III), Al(III), and Cr(III) metal ions. The affinity of the ligand towards Fe(III) is compared with deferiprone (a drug applied for iron intoxication) and transferrin (the main Fe(III) binding protein in plasma). Structural analysis of the ligand and the metal complexes was done using semiempirical PM6 method. Electronic and IR spectra are calculated by semiempirical methods and compared with experimental one. PMID:25294978

  17. Probing the Physics of Narrow-line Regions in Active Galaxies. III. Accretion and Cocoon Shocks in the LINER NGC 1052

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Ho, I.-Ting; Dressel, Linda L.; Sutherland, Ralph; Kewley, Lisa; Davies, Rebecca; Hampton, Elise; Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2015-03-01

    We present Wide Field Spectrograph integral field spectroscopy and Hubble Space Telescope Faint Object Spectrograph spectroscopy for the low-ionization nuclear emission line region (LINER) galaxy NGC 1052. We infer the presence of a turbulent accretion flow forming a small-scale accretion disk. We find a large-scale outflow and ionization cone along the minor axis of the galaxy. Part of this outflow region is photoionized by the active galactic nucleus and shares properties with the extended narrow-line region of Seyfert galaxies, but the inner (R≲ 1.0″) accretion disk and the region around the radio jet appear shock excited. The emission-line properties can be modeled by a “double-shock” model in which the accretion flow first passes through an accretion shock in the presence of a hard X-ray radiation, and the accretion disk is then processed through a cocoon shock driven by the overpressure of the radio jets. This model explains the observation of two distinct densities (˜104 and ˜106 cm-3) and provides a good fit to the observed emission-line spectrum. We derive estimates for the velocities of the two shock components and their mixing fractions, the black hole mass, and the accretion rate needed to sustain the LINER emission and derive an estimate for the jet power. Our emission-line model is remarkably robust against variation of input parameters and hence offers a generic explanation for the excitation of LINER galaxies, including those of spiral type such as NGC 3031 (M81).

  18. Thin-metal lined PRD 49-III composite vessels. [evaluation of pressure vessels for burst strength and fatigue performance

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.

    1974-01-01

    Filament wound pressure vessels of various configurations were evaluated for burst strength and fatigue performance. The dimensions and characteristics of the vessels are described. The types of tests conducted are explained. It was determined that all vessels leaked in a relatively few cycles (20 to 60 cycles) with failure occurring in all cases in the metallic liner. The thin liner would de-bond from the composite and buckling took place during depressurization. No composite failures or indications of impeding composite failures were obtained in the metal-lined vessels.

  19. Liner mounting assembly

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A mounting assembly includes an annular supporting flange disposed coaxially about a centerline axis which has a plurality of circumferentially spaced apart supporting holes therethrough. An annular liner is disposed coaxially with the supporting flange and includes a plurality of circumferentially spaced apart mounting holes aligned with respective ones of the supporting holes. Each of a plurality of mounting pins includes a proximal end fixedly joined to the supporting flange through a respective one of the supporting holes, and a distal end disposed through a respective one of the liner mounting holes for supporting the liner to the supporting flange while unrestrained differential thermal movement of the liner relative to the supporting flange.

  20. Stability of Magnetically Implode Liners for High Energy Density Experiments

    SciTech Connect

    Reinovsky, R.E.; Anderson, W.E.; Atchison, W.L.; Bartsch, R.R.; Clark, D.A.; Ekdahl, C.E.; Faehl, R.J.; Goforth, J.H.; Keinigs, R.K.; Lindemuth, I.R.; Morgan, D.; Rodriguez, G.; Tasker, D.G.; Trainor, R.J.; Shlachter, J.S.

    1998-10-18

    Magnetically imploded cylindrical metal shells (z-pinch liners) are attractive drivers for a wide variety of hydrodynamics and material properties experiments. The ultimate utility of liners depends on the acceleration of near-solid density shells to velocities exceeding 20 km/sec with good azimuthal symmetry and axial uniformity. Two pulse power systems (Ranchero and Atlas) currently operational or under development at Los Alamos provide electrical energy adequate to accelerate {approximately}50 gr. liners to 1-2 MJ/cm kinetic energy. As in all z-pinches, the outer surface of a magnetically imploded liner is unstable to magneto-Rayleigh-Taylor (RT) modes during acceleration. Large-scale distortion in the liners from RT modes growing from glide plane interactions or initial imperfections could make liners unusable for man experiments. On the other hand, material strength in the liner should, from first principles, reduce the growth rate of RT modes - and can render some combinations of wavelength and amplitude analytically stable. The growth of instabilities in both soft aluminum liners and in high strength aluminum alloy liners has been studied analytically, computationally and experimentally at liner kinetic energies up to 100 KJ/cm on the Pegasus capacitor bank using driving currents up to 12 MA.

  1. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  2. Combustor liner cooling system

    DOEpatents

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  3. Photophysical effects of metal-carbon sigma bonds in ortho-metalated complexes of Ir(III) and Rh(III)

    SciTech Connect

    Sprouse, S.; King, K.A.; Spellane, P.J.; Watts, R.J.

    1984-10-31

    Dichloro-bridged dimers of the type (M(L)/sub 2/Cl)/sub 2/, where L is 2-phenylpyridine (ppy) or benzo(h)quinoline (bzq) and M is Rh(III) or Ir(III), have been characterized by /sup 13/C and /sup 1/H NMR spectroscopies and by absorption and emission spectroscopies. The NMR results confirm previous formulations of the complexes as dichloro-bridged ortho-metalated dimers in halocarbon solvents but indicate that they are cleaved to monomeric species of the type M(L)/sub 2/CIS in ligating solvents such as dimethylformamide (S = solvent). The absorption spectra of each of the complexes contain several low-energy bands which are assigned as metal-to-ligand charge-transfer (MLCT) transitions. All four of the dimers emit light following photoexcitation of their glassy solutions at 77 K. Their emission spectra and lifetimes lead to assignments of their emitting states as intraligand for the Rh(III) dimers and MLCT for the Ir(III) dimers. The Ir(III) dimers are also found to emit light following excitation at 295 K in deaerated dichloromethane. No emission is seen from the Rh(III) dimers under these conditions. Comparison of these results with previous results from studies of similar Rh(III) and Ir(III) complexes of 2,2'-bipyridine (bpy) and 1,10-phenanthroline (phen) indicates that the ortho-metalated ligands are considerably higher than bpy and phen in the spectrochemical series. In addition to raising the energy of ligand field excited states in their complexes, relative to similar bpy and phen species, they induce lower energy charge-transfer transitions. These effects are consistent with the synergistic function of the ortho-metalated ligands as both strong sigma donors and ..pi.. acceptors.

  4. Combustor liner durability analysis

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1981-01-01

    An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.

  5. Performance of semi-transportation-cooled liner in high-temperature-rise combustors

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.

    1981-01-01

    Results from tests with the Lamilloy combustor liner are compared with results obtained from a conventionally designed, film cooled, step-louver liner. Operation of the Lamilloy liner with counterrotating swirl combustor fuel modules with mixing venturis was possible to a fuel-air ratio of 0.065 without obtaining excessive liner metal temperatures. At the 0.065 fuel-air condition the average liner metal temperature was 140 K and the maximum local temperature 280 K above the inlet air temperature. Combustion efficiency, pattern factor, and smoke data are discussed.

  6. MiniBooNE liner integrity study

    SciTech Connect

    Ray Stefanski, Phil Martin and Jeff Sims

    2001-11-09

    The civil construction for the MiniBooNE project includes a 50-m decay path and beam absorbers. The decay path is a six-foot diameter corrugated metal pipe (CMP). To prevent activation of the groundwater, the CMP and beam absorbers are surrounded by crushed aggregate, and enclosed in a double-walled geotextile membrane, referred to as the liner. The minimum distance from the beam centerline to the liner is 10 feet. The double-wall construction of the liner forms three regions, the containment volume, the interstitial volume, and the exterior. Each of these volumes is connected to monitoring wells at both the upstream and downstream ends of the decay volume, i.e. a total of six monitoring pipes extend to the surface. To confirm the integrity of the liner system following its placement, the firm Earth Tech was contracted to perform tests. Michael Williams was the primary contact with Earth Tech. The following is the report from Earth Tech, with minor changes in the interest of clarity. A sketch of the decay region is shown; only one of the layers of the liner is shown, and only one monitoring port. At the time of these tests, the excavation in general, but particularly in the vicinity of the monitoring wells had not been backfilled in the final grade, as indicated by the dashed lines.

  7. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5.

    PubMed

    Holmberg, Rebecca J; Burns, Thomas; Greer, Samuel M; Kobera, Libor; Stoian, Sebastian A; Korobkov, Ilia; Hill, Stephen; Bryce, David L; Woo, Tom K; Murugesu, Muralee

    2016-06-01

    Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials. PMID:27061210

  8. On the metallicity of open clusters. III. Homogenised sample

    NASA Astrophysics Data System (ADS)

    Netopil, M.; Paunzen, E.; Heiter, U.; Soubiran, C.

    2016-01-01

    Context. Open clusters are known as excellent tools for various topics in Galactic research. For example, they allow accurately tracing the chemical structure of the Galactic disc. However, the metallicity is known only for a rather low percentage of the open cluster population, and these values are based on a variety of methods and data. Therefore, a large and homogeneous sample is highly desirable. Aims: In the third part of our series we compile a large sample of homogenised open cluster metallicities using a wide variety of different sources. These data and a sample of Cepheids are used to investigate the radial metallicity gradient, age effects, and to test current models. Methods: We used photometric and spectroscopic data to derive cluster metallicities. The different sources were checked and tested for possible offsets and correlations. Results: In total, metallicities for 172 open cluster were derived. We used the spectroscopic data of 100 objects for a study of the radial metallicity distribution and the age-metallicity relation. We found a possible increase of metallicity with age, which, if confirmed, would provide observational evidence for radial migration. Although a statistical significance is given, more studies are certainly needed to exclude selection effects, for example. The comparison of open clusters and Cepheids with recent Galactic models agrees well in general. However, the models do not reproduce the flat gradient of the open clusters in the outer disc. Thus, the effect of radial migration is either underestimated in the models, or an additional mechanism is at work. Conclusions: Apart from the Cepheids, open clusters are the best tracers for metallicity over large Galactocentric distances in the Milky Way. For a sound statistical analysis, a sufficiently large and homogeneous sample of cluster metallicities is needed. Our compilation is currently by far the largest and provides the basis for several basic studies such as the statistical

  9. Three LINERs Under the Hubble Spectral Microscope

    NASA Astrophysics Data System (ADS)

    Molina, Mallory; Eracleous, Michael; Barth, Aaron J.; Maoz, Dan; Walsh, Jonelle; Ho, Luis C.; Shields, Joseph C.

    2016-01-01

    The majority of low-ionization nuclear emission regions (LINERs) harbor supermassive black holes (SMBHs) with very low accretion rates. Since SMBHs spend most of their lifetimes in these low accretion-rate states, understanding LINERs is important for understanding active galactic nuclei (AGN) in the context of galaxy evolution. On scales of ~100 pc, the energy budget of LINERs appears to be deficient when the only source of power considered is the AGN. Thus, other energy sources are likely to contribute to the excitation of the emission-line gas. To probe these sources, we observed three nearby, bright, and representative LINERs with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST). We specifically looked at the 0.1-1 arcsecond scale (corresponding to ~5-50 pc) to find what these energy sources are and how far from the nucleus they take over the excitation of the gas. After subtracting both the unresolved nuclear light and the spatially-extended starlight, we measured a number of diagnostic emission line ratios. We find that within 10 pc, the observed line ratios of [O III]/[O II] vs [O IIII]/H-beta are consistent with AGN photoionization. The line ratios of [N II]/H-alpha vs [O III]/H-beta show that at larger distances, the excitation mechanism is most likely consistent with hot stars or shocks. Shocks are particularly appealing in the case of NGC 4278, which harbors a Gigahetz-Peaked radio source with small jets detected by the VLBA. If hot stars are the primary excitation mechanism, these are most likely post-AGB stars (from the old stellar population). We conclude from these representative cases that the characteristic LINER emission-line spectrum does not result from a single excitation mechanism, but rather from a combination of different mechanisms within the central 100 pc of each object that varies from object to object.

  10. Bioactivity of pyridine-2-thiolato-1-oxide metal complexes: Bi(III), Fe(III) and Ga(III) complexes as potent anti-Mycobacterium tuberculosis prospective agents.

    PubMed

    Machado, Ignacio; Marino, Leonardo Biancolino; Demoro, Bruno; Echeverría, Gustavo A; Piro, Oscar E; Leite, Clarice Q F; Pavan, Fernando R; Gambino, Dinorah

    2014-11-24

    In the search for new therapeutic tools against tuberculosis and to further address the therapeutic potential of pyridine-2-thiol 1-oxide (Hmpo) metal complexes, two new octahedral [M(III)(mpo)3] complexes, with M = Ga or Bi, were synthesized and characterized in the solid state and in solution. Attempts to crystallize [Ga(III)(mpo)3] in CH2Cl2 led to single crystals of the reaction product [GaCl(mpo)2], where the gallium(III) ion is in a square basis pyramidal environment, trans-coordinated at the basis to two pyridine-2-thiolato 1-oxide anions acting as bidentate ligands through their oxygen and sulfur atoms. The biological activity of the new [M(III)(mpo)3] complexes together with that of the previously reported Fe(III) analogous compound and the pyridine-2-thiol 1-oxide sodium salt (Na mpo) was evaluated on Mycobacterium tuberculosis. The compounds showed excellent activity, both in the standard strain H37Rv ATCC 27294 (pan-susceptible) and in five clinical isolates that are resistant to the standard first-line anti-tuberculosis drugs isoniazid and rifampicin. These pyridine-2-thiol 1-oxide derivatives are promising compounds for the treatment of resistant tuberculosis. PMID:25261824

  11. Preparation of manganese(II), chromium(III) and ferric(III) oxides nanoparticles in situ metal citraconate complexes frameworks

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2014-12-01

    The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3ṡnH2O where n = 6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM).

  12. Preparation of manganese(II), chromium(III) and ferric(III) oxides nanoparticles in situ metal citraconate complexes frameworks.

    PubMed

    Refat, Moamen S

    2014-12-10

    The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3⋅nH2O where n=6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM). PMID:24952090

  13. Composite heat pipe development status: Development of lightweight prototype carbon-carbon heat pipe with integral fins and metal foil liner

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rovang, Richard D.

    1995-01-01

    This report discusses development and proof-of-concept testing of a new lightweight carbon-carbon (C-C) space radiator heat pipe, carried out under the NASA Civil Space Technology Initiative (CSTI) High Capacity Power Program. The prototype heat pipe, equipped with a niobium-zirconium foil liner, was filled with potassium working fluid and tested for 11 hours, including startup from ambient temperature with the working fluid initially in the frozen state to near 700 K condenser temperature. Steady-state heat pipe input power during testing was facility limited to about 300 watts. Post test inspection showed the heat pipe to be in excellent condition after eight thermal cycles from ambient to steady-state operating temperature. Utilization of other liner materials and working fluids would greatly extend the spectrum of service temperatures for this technology, with potential applications ranging from small spacecraft heat rejection to aircraft and terrestrial uses.

  14. One-Liners

    ERIC Educational Resources Information Center

    Hathaway, Nan

    2008-01-01

    This article describes an exercise appropriate for all grade levels. This exercise is based on a book of Picasso's contour drawings called "Picasso's One-Liners," which combines a delightful assortment of one-line drawings with accompanying one-line quotes. Students are given a stack of copy paper and a black fine-tip marker. Students then take…

  15. A Liner Breakage in Total Hip Arthroplasty after Using 1st Generation Highly Cross Linked Polyethylene Mated against 36-mm Metal Head: A Case Report

    PubMed Central

    Choi, Won-Kee; Chae, Seung-Bum; Kim, Dong-Young

    2015-01-01

    It has been known the highly cross linked polyethylene (HXLPE) has an advantage of improved wear rate. However, the alteration in mechanical properties such as decreased tensile yield and fatigue strength make concerns about fragility of HXLPE. We experienced a case of HXLPE breakage. But, this case of liner breakage happened although patient belonged to normal BMI and proper acetabular cup position so called "safe zone" on radiographs. So, we report this case with reference review.

  16. Development of composite pressure vessels with nonmetallic liners

    NASA Astrophysics Data System (ADS)

    Murray, Con F.; Newhouse, Norman L.; Schimenti, John D.; Tiller, Dale B.

    1992-07-01

    Brunswick composites has developed metallic liners and composite cylinders for use in military and civilian aircraft, missiles, inflation systems and space applications. At present an all-composite pressurant tank is being developed for use in the natural gas vehicle (NGV). This tank uses a plastic liner of high density polyethylene (HDPE) as a leak-tight permeation barrier. Tank characteristics and testing are described. HDPE reduces cost, meets all space and missile pressurant tank requirements, and is readily availble. Test results indicate that an all-composite pressurant tank with an HDPE liner provides a tough, high cycle life, lightweight, environmentally stable pressurant tank with very low permeability. HDPE offers a viable, low cost alternative to conventional metal liners as well as many design advantages.

  17. The evolution of galaxies. III - Metal-enhanced star formation

    NASA Technical Reports Server (NTRS)

    Talbot, R. J., Jr.; Arnett, W. D.

    1973-01-01

    The problem of the paucity of low-metal-abundance low-mass stars is discussed. One alternative to the variable-initial-mass-function (VIMF) solution is proposed. It is shown that this solution - metal-enhanced star formation - satisfies the classical test which prompted the VIMF hypothesis. Furthermore, with no additional parameters it provides improved fits to other tests - e.g., inhomogeneities in the abundances in young stars, concordance of all nucleo-cosmochronologies, and a required yield of heavy-element production which is consistent with current stellar evolution theory. In this model the age of the Galaxy is 18.6 plus or minus 5.7 b.y.

  18. Infrared spectra of group III A metal oxides

    NASA Technical Reports Server (NTRS)

    Lynch, D. A., Jr.

    1972-01-01

    The measurement of infrared frequencies of metal-oxygen species which could be formed in the matrix and to investigate with an oxygen-18 enrichment study the controversy on the vibrational assignments for the suboxide. Several new molecules, Al3O2, Ga3O, In3O, In4O2, IntaO, IntaO2, and In2WO4, were found by mass spectrometric sampling to exist in extremely minor concentrations in the vapor phase. The latter three species were formed by reaction with the crucible materials and were unimportant for an infrared analysis. The infrared spectroscopic measurements were obtained by the matrix isolation technique of molecular beam sampling. The MO2 species were formed by direct reaction between metal and O2 in the matrix. A C2v structure and an O-M-O bond angle near 40 deg was favored for these molecules by analogy with a similar investigation of the alkali metals. The vibrational frequencies which were determined are given.

  19. Atlas performance and imploding liner parameter space

    SciTech Connect

    Reinovsky, R.; Lindemuth, I. R.; Atchison, W. L.; Cochrane, J. C. , Jr.; Faehl, R. J.

    2002-01-01

    Ultra-high magnetic fields have many applications in the confining and controlling plasmas and in exploring electron physics as manifested in the magnetic properties of materials. Another application of high fields is the acceleration of metal conductors to velocities higher than that achievable with conventional high explosive drive or gas guns. The Atlas pulse power system is the world's first pulse power system specifically designed to implode solid and near-solid density metal liners for use in pulse power hydrodynamic experiments. This paper describes the Atlas system during the first year of its operational life at Los Alamos, (comprising 10-15 implosion experiments); describes circuit models that adequately predicted the bulk kinematic behavior of liner implosions; and shows how those (now validated) models can be used to describe the range of parameters accessible through Atlas implosions.

  20. A microscale multi-functional metal-organic framework as a fluorescence chemosensor for Fe(III), Al(III) and 2-hydroxy-1-naphthaldehyde.

    PubMed

    Kang, Yang; Zheng, Xiang-Jun; Jin, Lin-Pei

    2016-06-01

    A microscale metal-organic framework [Eu(atpt)1.5(phen)(H2O)]n (H2atpt=2-aminoterephthalic acid, phen=1,10-phenanthroline) (Eu-MOF) was synthesized and characterized by elemental analysis, luminescence spectrum, powder X-ray diffraction, dynamic light scattering and scanning electron microscope. The fluorescence response of Eu-MOF to metal ions and aldehydes showed that Eu-MOF is highly selective to Fe(III), Al(III) and 2-hydroxy-1-naphthaldehyde (2-OH-NA). Eu-MOF could be utilized as a multi-functional fluorescence chemosensor for Fe(III), Al(III) and 2-hydroxy-1-naphthaldehyde (2-OH-NA). The detection limit of Fe(III), Al(III) and 2-OH-NA was 45, 10 and 36μM, respectively. The corresponding sensing mechanisms were explored. PMID:26967663

  1. Configuration Effects on Liner Performance

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2012-01-01

    The acoustic performance of a duct liner depends not only on the intrinsic properties of the liner but also on the configuration of the duct in which it is used. A series of experiments is performed in the NASA Langley Research Center Curved Duct Test Rig (at Mach 0.275) to evaluate the effect of duct configuration on the acoustic performance of single degree of freedom perforate-over-honeycomb liners. The liners form the sidewalls of the duct's test section. Variations of duct configuration include: asymmetric (liner on one side and hard wall opposite) and symmetric (liner on both sides) wall treatment; inlet and exhaust orientation, in which the sound propagates either against or with the flow; and straight and curved flow path. The effect that duct configuration has on the overall acoustic performance, particularly the shift in frequency and magnitude of peak attenuation, is quantified. The redistribution of incident mode content is shown. The liners constitute the side walls of the liner test section and the scatter of incident horizontal order 1 mode by the asymmetric treatment and order 2 mode by the symmetric treatment into order 0 mode is shown. Scatter of order 0 incident modes into higher order modes is also shown. This redistribution of mode content is significant because it indicates that the liner design can be manipulated such that energy is scattered into more highly attenuated modes, thus enhancing liner performance.

  2. Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping

    SciTech Connect

    D'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A. S.

    2013-09-15

    SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic

  3. Microsecond ramp compression of a metallic liner driven by a 5 MA current on the SPHINX machine using a dynamic load current multiplier pulse shaping

    NASA Astrophysics Data System (ADS)

    d'Almeida, T.; Lassalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.; Maysonnave, T.; Chuvatin, A. S.

    2013-09-01

    SPHINX is a 6 MA, 1-μs Linear Transformer Driver (LTD) operated by the CEA Gramat (France) and primarily used for imploding Z-pinch loads for radiation effects studies. Among the options that are currently being evaluated to improve the generator performances are an upgrade to a 20 MA, 1-μs LTD machine and various power amplification schemes, including a compact Dynamic Load Current Multiplier (DLCM). A method for performing magnetic ramp compression experiments, without modifying the generator operation scheme, was developed using the DLCM to shape the initial current pulse in order to obtain the desired load current profile. In this paper, we discuss the overall configuration that was selected for these experiments, including the choice of a coaxial cylindrical geometry for the load and its return current electrode. We present both 3-D Magneto-hydrodynamic and 1D Lagrangian hydrodynamic simulations which helped guide the design of the experimental configuration. Initial results obtained over a set of experiments on an aluminium cylindrical liner, ramp-compressed to a peak pressure of 23 GPa, are presented and analyzed. Details of the electrical and laser Doppler interferometer setups used to monitor and diagnose the ramp compression experiments are provided. In particular, the configuration used to field both homodyne and heterodyne velocimetry diagnostics in the reduced access available within the liner's interior is described. Current profiles measured at various critical locations across the system, particularly the load current, enabled a comprehensive tracking of the current circulation and demonstrate adequate pulse shaping by the DLCM. The liner inner free surface velocity measurements obtained from the heterodyne velocimeter agree with the hydrocode results obtained using the measured load current as the input. An extensive hydrodynamic analysis is carried out to examine information such as pressure and particle velocity history profiles or magnetic

  4. Characterization of lanthanide(III) DOTP complexes: Thermodynamics, protonation, and coordination to alkali metal ions

    SciTech Connect

    Sherry, A.D.; Ren, J.; Huskens, J.

    1996-07-31

    The chemical and thermodynamic characterization of Lanthanide(III) DOTP complexes was performed. Spectrophotometry, potentiometry, osmometry, and NMR spectroscopy were used in this characterization. Stability constants, protonation equilibria, and interactions of the complexes with alkali metal ions were measured and summarized.

  5. Preparations to ship EPICOR liners

    SciTech Connect

    Queen, S P

    1983-06-01

    The sampling and analysis of the hydrogen rich atmosphere of the 49 EPICOR II ion-exchange prefilter liners generated in the decontamination of radioactive water at TMI-2 will provide data to ensure safe storage and shipment of highly loaded ion-exchange media. This report discusses the prototype gas sampling tool used to breech the containment of the liners, the tool support equipment for sampling and inerting the liners, and the characterization program used for determining the radiolytic hydrogen generation rates in the liners.

  6. Migration behavior of landfill leachate contaminants through alternative composite liners.

    PubMed

    Varank, Gamze; Demir, Ahmet; Top, Selin; Sekman, Elif; Akkaya, Ebru; Yetilmezsoy, Kaan; Bilgili, M Sinan

    2011-08-01

    Four identical pilot-scale landfill reactors with different alternative composite liners were simultaneously operated for a period of about 540 days to investigate and to simulate the migration behaviors of phenolic compounds (phenol, 2-CP, 2-MP, 3-MP, 4-MP, 2-NP, 4-NP, 2,4-DNP, 2,4-DCP, 2,6-DCP, 2,4,5-TCP, 2,4,6-TCP, 2,3,4,6-TeCP, PCP) and heavy metals (Pb, Cu, Zn, Cr, Cd, Ni) from landfill leachate to the groundwater. Alternative landfill liners of four reactors consist of R1: Compacted clay liner (10 cm+10 cm, k=10(-8)m/sn), R2: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm+10 cm, k=10⁻⁸ m/sn), R3: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻⁸ m/sn)+bentonite liner (2 cm)+compacted clay liner (10 cm, k=10⁻⁸ m/sn), and R4: Geomembrane (2 mm HDPE)+compacted clay liner (10 cm, k=10⁻⁸ m/sn)+zeolite liner (2 cm)+compacted clay liner (10 cm, k=10⁻⁸ m/sn). Wastes representing Istanbul municipal solid wastes were disposed in the reactors. To represent bioreactor landfills, reactors were operated by leachate recirculation. To monitor and control anaerobic degradation in the reactors, variations of conventional parameters (pH, alkalinity, chloride, conductivity, COD, TOC, TKN, ammonia and alcaly metals) were also investigated in landfill leachate samples. The results of this study showed that about 35-50% of migration of organic contaminants (phenolic compounds) and 55-100% of migration of inorganic contaminants (heavy metals) to the model groundwater could be effectively reduced with the use of bentonite and zeolite materials in landfill liner systems. Although leachate contaminants can reach to the groundwater in trace concentrations, findings of this study concluded that the release of these compounds from landfill leachate to the groundwater may potentially be of an important environmental concern based on the experimental findings. PMID:21621822

  7. Unveiling the liner nature of NGC1052

    NASA Astrophysics Data System (ADS)

    Diniz, S. I. F.; Pastoriza, M. G.; Riffel, R.; Riffel, R. A.; Diniz, M. R.; Storchi-Bergmann, T.

    2014-10-01

    NGC 1052 is an E4 galaxy and classified as a typical LINER harboring a stellar rotating disk. However, the central region is spectroscopically unusual with broad optical emission lines, the nature of its emission line gas remains unclear. According to recent studies NGC 1052 exhibit Hα luminosities an order of magnitude above that estimated for an evolved population of extreme horizontal branch stars. Their Hα equivalent widths and optical-to-near infrared (NIR) spectral energy distributions are consistent with them being young stellar clusters aged < 7 Myr, and according to previous works, NGC 1052 may have experienced a merger event about 1 Gyr ago. There are mainly three possibilities to explain LINER's spectra: i) post asymptotic giant branch stars (post-AGB) that ionize their rapidly expanding shells, (ii) active galactic nuclei (AGNs) powered by the in fall of matter into an accretion disk, and (iii) shocks. The stellar population (SP) of AGNs shows an excess of intermediate age stars. Besides, NIR stellar population studies have revealed that the continuum of active galaxies is dominated by the contribution of intermediate age stellar populations. Hot dust emission unresolved is also commonly detected in NIR nuclear spectra of galaxies Seyfert and LINERs. Aimed to discriminate the dominant ionizing source of NGC 1052 we present preliminary results of high spatial resolution integral field spectroscopy, taken with gemini NIFS to map the dominant stellar population, as well as disentangling the featureless and hot dust components.

  8. Manufacturing Complicated Shells And Liners

    NASA Technical Reports Server (NTRS)

    Sobol, Paul J.; Faucher, Joseph E.

    1993-01-01

    Explosive forming, wax filling, and any one of welding, diffusion bonding, or brazing used in method of manufacturing large, complicated shell-and-liner vessels or structures. Method conceived for manufacture of film-cooled rocket nozzles but applicable to joining large coaxial shells and liners in general.

  9. III-V Nanowire Complementary Metal-Oxide Semiconductor Transistors Monolithically Integrated on Si.

    PubMed

    Svensson, Johannes; Dey, Anil W; Jacobsson, Daniel; Wernersson, Lars-Erik

    2015-12-01

    III-V semiconductors have attractive transport properties suitable for low-power, high-speed complementary metal-oxide-semiconductor (CMOS) implementation, but major challenges related to cointegration of III-V n- and p-type metal-oxide-semiconductor field-effect transistors (MOSFETs) on low-cost Si substrates have so far hindered their use for large scale logic circuits. By using a novel approach to grow both InAs and InAs/GaSb vertical nanowires of equal length simultaneously in one single growth step, we here demonstrate n- and p-type III-V MOSFETs monolithically integrated on a Si substrate with high I(on)/I(off) ratios using a dual channel, single gate-stack design processed simultaneously for both types of transistors. In addition, we demonstrate fundamental CMOS logic gates, such as inverters and NAND gates, which illustrate the viability of our approach for large scale III-V MOSFET circuits on Si. PMID:26595174

  10. Wear of a composite ceramic head caused by liner fracture.

    PubMed

    Morlock, Michael M; Witt, Florian; Bishop, Nick; Behn, Rainer; Dalla Pria, Paolo; Barrow, Rob; Dymond, Ian

    2014-07-01

    Third-generation composite ceramics (eg, Delta; DePuy Orthopaedics, Warsaw, Indiana; Ceramtec, Plochingen, Germany) have greatly improved material characteristics compared with second-generation products. This case report presents a patient after total hip arthroplasty with a fractured ceramic liner and a heavily worn ceramic head (both third-generation ceramics) retrieved 9 months after surgery. The patient showed no symptoms in the involved hip but presented to the hospital because of other symptoms. The failure was caused by a tilted liner that was overlooked after surgery and fractured consecutively. Rim chipping and splitting were the 2 fracture modes observed for the liner. The head did not fracture completely because of its high strength but became roughened by the ceramic fragments, causing major wear of the metal back of the cup. The phase transformation of the zirconium grains from tetragonal to monoclinic in the aluminum oxide matrix was shown by radiographic diffraction analysis in the heavily worn areas of the head. This transformation increases the fracture strength of the head. Metal debris caused by a roughened ceramic head without fracture is an unreported phenomenon for third-generation ceramic bearings in hip arthroplasty. This case shows that proper impaction of the ceramic liner into the metal shell to prevent later tiling during reduction is as important as correct component positioning. If a tilted ceramic liner is observed postoperatively, the position must be corrected immediately to prevent the major consequences observed in this patient. PMID:24992062

  11. Energy efficient engine pin fin and ceramic composite segmented liner combustor sector rig test report

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Lohmann, R. P.; Tanrikut, S.; Morris, P. M.

    1986-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt and Whitney has successfully completed a comprehensive test program using a 90-degree sector combustor rig that featured an advanced two-stage combustor with a succession of advanced segmented liners. Building on the successful characteristics of the first generation counter-parallel Finwall cooled segmented liner, design features of an improved performance metallic segmented liner were substantiated through representative high pressure and temperature testing in a combustor atmosphere. This second generation liner was substantially lighter and lower in cost than the predecessor configuration. The final test in this series provided an evaluation of ceramic composite liner segments in a representative combustor environment. It was demonstrated that the unique properties of ceramic composites, low density, high fracture toughness, and thermal fatigue resistance can be advantageously exploited in high temperature components. Overall, this Combustor Section Rig Test program has provided a firm basis for the design of advanced combustor liners.

  12. The missing metals problem - III. How many metals are expelled from galaxies?

    NASA Astrophysics Data System (ADS)

    Bouché, Nicolas; Lehnert, Matthew D.; Aguirre, Anthony; Péroux, Céline; Bergeron, Jacqueline

    2007-06-01

    We revisit the metal budget at z ~= 2, and include the contribution of the intergalactic medium (IGM). Past estimates of the metal budget have indicated that, at redshift z ~= 2.5, 90 per cent of the expected metals were missing. In the first two papers of this series, we have already shown that ~30 per cent of the metals are observed in all z ~ 2.5 galaxies detected in current surveys. This fraction could increase to <~60 per cent if we extrapolate the faint end of the luminosity function (LF), leaving >40 per cent of the metals missing. Here, we extend our analysis to the metals outside galaxies (i.e. in the IGM), using (i) observational data and (ii) analytical calculations. Our results for both are strikingly similar. (i) Observationally, we find that, besides the small (5 per cent) contribution of damped Lyα absorbers (DLAs), the forest and sub-DLAs contribute substantially to make <~30-45 per cent of the metal budget; however, neither of these appear to be sufficient to close the metal budget. The forest accounts for 15-30 per cent depending on the ultraviolet background, and sub-DLAs for >~2 to <~17 per cent depending on the ionization fraction. Combining the metals in galaxies and in the IGM, it appears now that >65 per cent of the metals have been accounted for, and the `missing metals problem' is substantially eased. (ii) We perform analytical calculations based on the effective yield-mass (yeff-Vc) relation, whose deficit for small galaxies is considered as evidence for supernova-driven outflows. As a test of the method, we show that, at z = 0, the calculation self-consistently predicts the total amount of metals expelled from galaxies. At z = 2, we find that the method predicts that 25-50 per cent of the metals have been ejected from galaxies into the IGM, consistent with the observations (<~35 per cent). The metal ejection is predominantly by LB < (1/3) L*B(z = 2) galaxies, which are responsible for 90 per cent of the metal enrichment, while the 50

  13. Investigation of HE driven cylindrical liner

    SciTech Connect

    Tan, Tai-Ho

    1995-03-01

    We developed a technique that can compress most materials to densities much higher than their original values and shock them hard enough to undergo phase changes to various partially ionized states. The process involves using high explosives to drive a thin cylindrical liner so that it will progressively implode and converge along the axis at very high velocity. The device is simple yet versatile. Its configuration is ideally suited as a compact laboratory for the investigation of the behavior of dense media under extreme conditions. Code simulations show that liners made from most metals can be successfully imploded to converge on axis, producing over 10 MB pressure. For example, a 2D hydrocode calculation predicts that in a simple configuration where a hollow core PBX-9501 explosive cylinder is corner initiated to drive a thin seamless 304 SS tubing, the final convergence velocity can exceed 1 cm/[Ls to produce a 15 MB pressure at impact as the density increases to 19.5 g/cc. The temperature from shock heating rises rapidly above 8 eV, and the result is a combination of radiation and plasma emissions. We have carried out several experiments with a wide array of diagnostics to investigate the implosion dynamics and final state interaction phenomena, and the results are compared with the code predictions. Radiographs of the liner implosion strongly indicate that the hydrodynamic processes are well behaved and calculable. Temperature measurement from the optical radiation is generally consistent with the code prediction. The velocity of the plasma front is measured by using optical pins and fast framing photography, and is found to lie between 11--17 cm/{mu}s. Fast framing photographs were taken with the aid of self luminous light to observe the evacuated chamber inside the imploding liner. The experimental results and their comparison with the calculation are discussed.

  14. Abundance anomalies in metal-poor stars from Population III supernova ejecta hydrodynamics

    NASA Astrophysics Data System (ADS)

    Sluder, Alan; Ritter, Jeremy S.; Safranek-Shrader, Chalence; Milosavljević, Miloš; Bromm, Volker

    2016-02-01

    We present a simulation of the long-term evolution of a Population III supernova remnant in a cosmological minihalo. Employing passive Lagrangian tracer particles, we investigate how chemical stratification and anisotropy in the explosion can affect the abundances of the first low-mass, metal-enriched stars. We find that reverse shock heating can leave the inner mass shells at entropies too high to cool, leading to carbon enhancement in the recollapsing gas. This hydrodynamic selection effect could explain the observed incidence of carbon-enhanced metal-poor stars at low metallicity. We further explore how anisotropic ejecta distributions, recently seen in direct numerical simulations of core-collapse explosions, may translate to abundances in metal-poor stars. We find that some of the observed scatter in the Population II abundance ratios can be explained by an incomplete mixing of supernova ejecta, even in the case of only one contributing enrichment event. We demonstrate that the customary hypothesis of fully mixed ejecta clearly fails if post-explosion hydrodynamics prefers the recycling of some nucleosynthetic products over others. Furthermore, to fully exploit the stellar-archaeological programme of constraining the Pop III initial mass function from the observed Pop II abundances, considering these hydrodynamical transport effects is crucial. We discuss applications to the rich chemical structure of ultrafaint dwarf satellite galaxies, to be probed in unprecedented detail with upcoming spectroscopic surveys.

  15. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  16. Liner setting tool and method

    SciTech Connect

    Baugh, J.L.; Fraser, J.M. III; Melenyzer, G.J.

    1989-07-18

    This paper describes a liner setting apparatus for setting a liner suspended from a tubular string in a subterranean well and for releasing from a set liner hanger to permit retrieval of the liner setting apparatus and the tubular string. The liner hanger including gripping members for bitting engagement with side walls of the wellbore in response to axial movement of the tubular string, the liner setting apparatus, and the liner within the well bore, and interior threads for threaded engagement and disengagement with the liner setting apparatus. The liner setting apparatus comprising: a tubular mandrel; a nut positioned about the tubular mandrel; a setting ring assembly positioned about the tubular mandrel and axially spaced between the nut and the upper end of the tubular mandrel. The setting ring assembly including: an annular torque control ring, one or more fingers each axially movable with respect to the torque control ring; a plurality of sleeves each positioned about the tubular mandrel and axially movable with respect to the torque control ring and with respect to each other, an actuating member radially moveable from a lock position such that the actuating member is within one of the plurality of locking recesses and the locking sleeves are axially adjacent each other, to an unlock position such that the actuating member is moved radially outwardly by engagement with the ramp surface during axial movement of the annular setting ring assembly, such that the actuating member separates the sleeves axially during radially outward movement thereof and thereby axially moves each of the one or more fingers to the unlock position.

  17. Megabar liner experiments on Pegasus II

    SciTech Connect

    Lee, H.; Bartsch, R.R.; Bowers, R.L.

    1997-09-01

    Using pulsed power to implode a liner onto a target can produce high shock pressures for many interesting application experiments. With a Pegasus II facility in Los Alamos, a detailed theoretical analysis has indicated that the highest attainable pressure is around 2 Mbar for a best designed aluminum liner. Recently, an interesting composite liner design has been proposed which can boost the shock pressure performance by a factor 4 over the aluminum liner. This liner design was adopted in the first megabar (Megabar-1) liner experiment carried out on Pegasus last year to verify the design concept and to compare the effect of Rayleigh-Taylor instabilities on liner integrity with the code simulations. We present briefly the physical considerations to explain why the composite liner provides the best shock pressure performance. The theoretical modeling and performance of Megabar-1 liner are discussed. Also presented are the first experimental results and the liner design modification for our next experiment.

  18. Reduction of Fe(III), Mn(IV), and Toxic Metals at 100°C by Pyrobaculum islandicum

    PubMed Central

    Kashefi, Kazem; Lovley, Derek R.

    2000-01-01

    It has recently been noted that a diversity of hyperthermophilic microorganisms have the ability to reduce Fe(III) with hydrogen as the electron donor, but the reduction of Fe(III) or other metals by these organisms has not been previously examined in detail. When Pyrobaculum islandicum was grown at 100°C in a medium with hydrogen as the electron donor and Fe(III)-citrate as the electron acceptor, the increase in cell numbers of P. islandicum per mole of Fe(III) reduced was found to be ca. 10-fold higher than previously reported. Poorly crystalline Fe(III) oxide could also serve as the electron acceptor for growth on hydrogen. The stoichiometry of hydrogen uptake and Fe(III) oxide reduction was consistent with the oxidation of 1 mol of hydrogen resulting in the reduction of 2 mol of Fe(III). The poorly crystalline Fe(III) oxide was reduced to extracellular magnetite. P. islandicum could not effectively reduce the crystalline Fe(III) oxide minerals goethite and hematite. In addition to using hydrogen as an electron donor for Fe(III) reduction, P. islandicum grew via Fe(III) reduction in media in which peptone and yeast extract served as potential electron donors. The closely related species P. aerophilum grew via Fe(III) reduction in a similar complex medium. Cell suspensions of P. islandicum reduced the following metals with hydrogen as the electron donor: U(VI), Tc(VII), Cr(VI), Co(III), and Mn(IV). The reduction of these metals was dependent upon the presence of cells and hydrogen. The metalloids arsenate and selenate were not reduced. U(VI) was reduced to the insoluble U(IV) mineral uraninite, which was extracellular. Tc(VII) was reduced to insoluble Tc(IV) or Tc(V). Cr(VI) was reduced to the less toxic, less soluble Cr(III). Co(III) was reduced to Co(II). Mn(IV) was reduced to Mn(II) with the formation of manganese carbonate. These results demonstrate that biological reduction may contribute to the speciation of metals in hydrothermal environments and could

  19. Investigation of the effect of a power feed vacuum gap in solid liner experiments at 1 MA

    SciTech Connect

    Bott-Suzuki, S. C. E-mail: sbottsuzuki@p3ucsd.com; Cordaro, S. W.; Caballero Bendixsen, L. S.; Blesener, I. C.; Atoyan, L.; Byvank, T.; Potter, W.; Bell, K. S.; Kusse, B. R.; Greenly, J. B.; Hammer, D. A.

    2015-09-15

    We present an experimental study of plasma initiation of a solid metal liner at the 1 MA level. In contrast to previous work, we introduce a vacuum gap at one of the liner connections to the power feed to investigate how this affects plasma initiation and to infer how this may affect the symmetry of the liner in compression experiments. We observed that the vacuum gap causes non-uniform plasma initiation both azimuthally and axially in liners, diagnosed by gated optical imaging. Using magnetic field probes external to the liner, we also determined that the optical emission is strongly linked to the current distribution in the liner. The apparent persistent of azimuthal non-uniformities may have implications for fusion-scale liner experiments.

  20. Design and preliminary results of a semitranspiration cooled /Lamilloy/ liner for a high-pressure high-temperature combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jones, R. E.

    1978-01-01

    A Lamilloy combustor liner has been designed, fabricated and tested in a combustor at pressures up to 8 atmospheres. The liner was fabricated of a three layer Lamilloy structure and designed to replace a conventional step-louver liner. The liner will be used in a combustor that provides hot gases to a turbine cooling test facility at pressures up to 40 atmospheres. The Lamilloy liner was tested extensively at lower pressures and demonstrated lower metal temperatures than the conventional liner, while at the same time requiring about 40 percent less cooling air flow. Tests conducted at combustor exit temperatures in excess of 2200 K have not indicated any cooling or durability problems with the Lamilloy liner.

  1. X-ray standing wave investigations of Group III and V metal adsorption on Si(001)

    SciTech Connect

    Qian, Y.; Bedzyk, M.J. |; Lyman, P.F.

    1997-05-01

    Investigations of atomic bonding, surface reconstruction, surface dynamics, and growth kinetics of group III and V metals on Si(001) are important for understanding the initial growth stage of III-V semiconductors on Si(001). Such studies can also provide valuable information for other important issues such as surfactant-mediated epitaxy, surface passivation and delta-doping layers. X-ray standing waves generated by dynamical Bragg diffraction were used as an element-specific structural probe for investigating Ga and Sb adsorption on Si(001). These high-resolution measurements reveal important quantitative structural information regarding the dimerized surface structures, and provide a stringent test for structural models proposed by various theoretical calculations. An overview of the X-ray standing wave technique and its application to surface structure and dynamics is presented.

  2. FGD liner experiments with wetlands

    SciTech Connect

    Mitsch, W.J.; Ahn, C.; Wolfe, W.E.

    1999-07-01

    The construction of artificial wetlands for wastewater treatment often requires impermeable liners not only to protect groundwater resources but also to ensure that there is adequate water in the wetland to support appropriate aquatic life, particularly wetland vegetation. Liners or relatively impervious site soils are very important to the success of constructed treatment wetlands in areas where ground water levels are typically close to the ground surface. This study, carried out at the Olentangy River Wetland Research Park, investigated the use of FGD material from sulfur scrubbers as a possible liner material for constructed wetlands. While several studies have investigated the use of FGD material to line ponds, no studies have investigated the use of this material as a liner for constructed wetlands. They used experimental mesocosms to see the effect of FGD liner materials in constructed wetlands on water quality and on wetland plant growth. This paper presents the results of nutrient analyses and physicochemical investigation of leachate and surface outflow water samples collected from the mesocosms. Plant growth and biomass of wetland vegetation are also included in this paper. First two year results are reported by Ahn et al. (1998, 1999). The overall goal of this study is the identification of advantages and disadvantages of using FGD by-product as an artificial liner in constructed wetlands.

  3. Characterization of Co(III) EDTA-Reducing Bacteria in Metal- and Radionuclide-Contaminated Groundwater

    SciTech Connect

    Gao, Weimin; Gentry, Terry J; Mehlhorn, Tonia L; Carroll, Sue L; Jardine, Philip M; Zhou, Jizhong

    2010-01-01

    The Waste Area Grouping 5 (WAG5) site at Oak Ridge National Laboratory has a potential to be a field site for evaluating the effectiveness of various bioremediation approaches and strategies. The site has been well studied in terms of its geological and geochemical properties over the past decade. However, despite the importance of microorganisms in bioremediation processes, the microbiological populations at the WAG5 site and their potential in bioremediation have not been similarly evaluated. In this study, we initiated research to characterize the microbial populations in WAG5 groundwater. Approximately 100 isolates from WAG5 groundwater were isolated and selected based on colony morphology. Fifty-five unique isolates were identified by BOX-PCR and subjected to further characterization. 16S rRNA sequences indicated that these isolates belong to seventeen bacterial genera including Alcaligenes (1 isolate), Aquamonas (1), Aquaspirillum (1), Bacillus (10), Brevundimonas (5), Caulobacter (7), Dechloromonas (2), Janibacter (1), Janthinobacterium (2), Lactobacillus (1), Paenibacillus (4), Pseudomonas (9), Rhodoferax (1), Sphingomonas (1), Stenotrophomonas (6), Variovorax (2), and Zoogloea (1). Metal respiration assays identified several isolates, which phylogenically belong or are close to Caulobacter, Stenotrophomonas, Bacillus, Paenibacillus and Pseudomonas, capable of reducing Co(III)EDTA- to Co(II)EDTA{sup 2-} using the defined M1 medium under anaerobic conditions. In addition, using WAG5 groundwater directly as the inoculants, we found that organisms associated with WAG5 groundwater can reduce both Fe(III) and Co(III) under anaerobic conditions. Further assays were then performed to determine the optimal conditions for Co(III) reduction. These assays indicated that addition of various electron donors including ethanol, lactate, methanol, pyruvate, and acetate resulted in metal reduction. These experiments will provide useful background information for future

  4. Synthesis, spectroscopic, thermal and anticancer studies of metal-antibiotic chelations: Ca(II), Fe(III), Pd(II) and Au(III) chloramphenicol complexes

    NASA Astrophysics Data System (ADS)

    Al-Khodir, Fatima A. I.; Refat, Moamen S.

    2016-09-01

    Four Ca(II), Fe(III), Pd(II) and Au(III) complexes of chloramphenicol drug have been synthesized and well characterized using elemental analyses, (infrared, electronic, and 1H-NMR) spectra, magnetic susceptibility measurement, and thermal analyses. Infrared spectral data show that the chloramphenicol drug coordinated to Ca(II), Pd(II) and Au(III) metal ions through two hydroxyl groups with 1:1 or 1:2 M ratios, but Fe(III) ions chelated towards chloramphenicol drug via the oxygen and nitrogen atoms of amide group with 1:2 ratio based on presence of keto↔enol form. The X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques were used to identify the nano-size particles of both iron(III) and gold(III) chloramphenicol complexes. The antimicrobial assessments of the chloramphenicol complexes were scanned and collected the results against of some kind of bacteria and fungi. The cytotoxic activity of the gold(III) complex was tested against the human colon carcinoma (HCT-116) and human hepatocellular carcinoma (HepG-2) tumor cell lines.

  5. Military Curricula for Vocational & Technical Education. Metals Processing Specialist, Blocks III and IV, Classroom Course 13-6.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These curriculum materials are the second section of a four-part, secondary-postsecondary-level course in metals processing. The course is one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. Block III, Introduction to Metallic Arc Welding,…

  6. Porous, rigid metal(III)-carboxylate metal-organic frameworks for the delivery of nitric oxide

    NASA Astrophysics Data System (ADS)

    Eubank, Jarrod F.; Wheatley, Paul S.; Lebars, Gaëlle; McKinlay, Alistair C.; Leclerc, Hervé; Horcajada, Patricia; Daturi, Marco; Vimont, Alexandre; Morris, Russell E.; Serre, Christian

    2014-12-01

    The room temperature sorption properties of the biological gas nitric oxide (NO) have been investigated on the highly porous and rigid iron or chromium carboxylate based metal-organic frameworks Material Institut Lavoisier (MIL)-100(Fe or Cr) and MIL-127(Fe). In all cases, a significant amount of NO is chemisorbed at 298 K with a loading capacity that depends both on the nature of the metal cation, the structure and the presence of additional iron(II) Lewis acid sites. In a second step, the release of NO triggered by wet nitrogen gas has been studied by chemiluminescence and indicates that only a partial release of NO occurs as well as a prolonged delivery at the biological level. Finally, an in situ infrared spectroscopy study confirms not only the coordination of NO over the Lewis acid sites and the stronger binding of NO on the additional iron(II) sites, providing further insights over the partial release of NO only in the presence of water at room temperature.

  7. Filament wound pressure vessels with load sharing liners for Space Shuttle Orbiter applications

    NASA Technical Reports Server (NTRS)

    Ecord, G. M.

    1976-01-01

    It is recognized that the use of overwrapped pressure vessels with load sharing liners may provide significant weight savings for high pressure gas containment in Space Shuttle Orbiter systems. The technology readiness to produce Kevlar wound vessels with load sharing liners of titanium 6Al-4V, Inconel 718 or cryoformed 301 steel has been demonstrated. It has been estimated that about 400 lbs can be saved in the Orbiter by using overwrapped vessels with load sharing liners instead of monolithic metal designs. Total weight of the composite vessels would be about 1350 lbs as opposed to about 1750 lbs for all-metal vessels.

  8. Long-term behavior of water content and density in an earthen liner

    USGS Publications Warehouse

    Frank, T.E.; Krapac, I.G.; Stark, T.D.; Strack, G.D.

    2005-01-01

    An extensively instrumented compacted earthen liner was constructed at the Illinois State Geological Survey facility in Champaign, III. in 1987. A pond of water 0.31 m deep was maintained on top of the 7.3 m ?? 14.6 m ?? 0.9 m thick liner for 14 years. One of the goals of the project was to evaluate the long-term performance of a compacted earthen liner by monitoring the long-term changes in water content and density. The water content of the earthen liner showed no trend with depth or time. The liner density remained essentially constant from construction through excavation in 2002. The liner did not become fully saturated. Upon excavation of the liner, the degree of saturation was 80.0??6.3% after 14 years of ponding under a hydraulic head of 0.31 m. The results imply that properly designed and constructed earthen liners may reduce the possibility of pollutants leaching from municipal solid waste containment facilities by remaining partially saturated for years and maintaining the placement density. Journal of Geotechnical and Geoenvironmental Engineering ?? ASCE.

  9. Review of laser produced multi-keV X-ray sources from metallic foils, cylinders with liner, and low density aerogels

    NASA Astrophysics Data System (ADS)

    Girard, Frédéric

    2016-04-01

    Experimental results obtained within the last fifteen years on multi-keV X-ray sources irradiated with nanosecond scale pulse duration 3ω laser light at TW power levels by CEA and collaborators are discussed in this review paper. Experiments were carried out on OMEGA and GEKKO XII laser facilities where emitting materials in the 5-10 keV multi-keV energy range are intermediate Z value metals from titanium to germanium. Results focused on conversion efficiency improvement by a factor of 2 when an underdense plasma is created using a laser pre-pulse on a metallic foil, which is then heated by a second laser pulse delayed in time. Metal coated inner surface walls of plastic cylindrical tube ablated by laser beam impacts showed that plasma confinement doubles X-ray emission duration as it gives adequate plasma conditions (electron temperature and density) over a long period of time. Low-density aerogels (doped with metal atoms uniformly distributed throughout their volume or metal oxides) contained in a plastic cylinder have been developed and their results are comparable to gas targets. A hybrid target concept consisting of a thin metal foil placed at the end of a cylinder filled with low density aerogel has emerged as it could collect benefits from pre-exploded thin foils, efficient laser absorption in aerogel, and confinement by cylinder walls. All target geometry performances are relatively close together at a given photon energy and mainly depend on laser irradiation condition optimizations. Results are compared with gas target performances from recent NIF experiments allowing high electron temperatures over large dimension low density plasmas, which are the principal parameters for efficient multi-keV X-ray production.

  10. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces. PMID:12573965

  11. Metal binding properties and structure of a type III metallothionein from the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fernandez, Lucia Rubio; Vandenbussche, Guy; Roosens, Nancy; Govaerts, Cédric; Goormaghtigh, Erik; Verbruggen, Nathalie

    2012-09-01

    Metallothioneins (MT) are low molecular weight proteins with cysteine-rich sequences that bind heavy metals with remarkably high affinities. Plant MTs differ from animal ones by a peculiar amino acid sequence organization consisting of two short Cys-rich terminal domains (containing from 4 to 8 Cys each) linked by a Cys free region of about 30 residues. In contrast with the current knowledge on the 3D structure of animal MTs, there is a striking lack of structural data on plant MTs. We have expressed and purified a type III MT from Noccaea caerulescens (previously Thlaspi caerulescens). This protein is able to bind a variety of cations including Cd(2+), Cu(2+), Zn(2+) and Pb(2+), with different stoichiometries as shown by mass spectrometry. The protein displays a complete absence of periodic secondary structures as measured by far-UV circular dichroism, infrared spectroscopy and hydrogen/deuterium exchange kinetics. When attached onto a BIA-ATR biosensor, no significant structural change was observed upon removing the metal ions. PMID:22668884

  12. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  13. Simulations of Liquid III-V and II-VI Semiconductors: Semiconducting versus Metallic Behavior.

    NASA Astrophysics Data System (ADS)

    Godlevsky, V.

    2000-03-01

    All III-V group semiconductors exhibit metallic behavior when melted. The coordination number of these materials changes from 4 in the bulk to ~ 6 in the liquid phase. With the increase of the coordination number and compositional disorder common to liquid III-V semiconductors, the covalent bonds of these materials are predominantly replaced by metallic bonds. Electron delocalization and high atomic randomization result in a large entropy change during the solidarrowliquid transition. Unlike III-V compounds, a number of II-VI semiconductors (e.g. CdTe, ZnTe and HgS) experience a semiconductorarrowsemiconductor transition upon melting. These compounds retain their fourfold coordination in the liquid phase. In our work, we perform ab initio simulations of liquid GaAs (l-GaAs) and CdTe (l-CdTe), as representatives of III-V and II-VI materials.(V. Godlevsky, J. Derby, and J.R. Chelikowsky, Phys. Rev. Lett. 81), 4959 (1998) As opposed to the more close-packed l-GaAs, l-CdTe has an open fourfold structure. Besides the coordination number, l-CdTe also retains some of its crystalline compositional features (e.g. there are fewer ``wrong'' bond defects than in l-GaAs). In l-CdTe, the density of states has a dip at the Fermi level indicating the semiconducting character of electrical conductivity in this material. The d.c. conductivity in l-CdTe is by two orders of magnitude lower than that in l-GaAs. The small change in the structural order and electron delocalization is in good agreement with the small entropy change observed experimentally during the melting of CdTe. As the temperature increases further, l-CdTe undergoes a fourfold-sixfold transition accompanied by the disappearing of band gap. The d.c. conductivity of sixfold coordinated l-CdTe is by an order of magnitude larger than the d.c. conductivity of fourfold coordinated l-CdTe.(V. Godlevsky, M. Jain, J. Derby, and J.R. Chelikowsky, Phys. Rev. B, 60), 8640 (1999)

  14. High Temperature Acoustic Liner Technology

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Posey, Joe W.

    1999-01-01

    This paper describes work currently in progress at Langley on liner concepts that employ structures that may be suitable for broadband exhaust noise attenuation in high speed flow environments and at elevated temperatures characteristic of HSCT applications. Because such liners will need to provide about 10 dB suppression over a 2 to 3 octave frequency range, conventional single-degree-of-freedom resonant structures will not suffice. Bulk absorbers have the needed broadband absorption characteristic; however, at lower frequencies they tend to be inefficient.

  15. EVALUATION OF LANDFILL-LINER DESIGNS

    EPA Science Inventory

    The effectiveness of landfill-liner designs is evaluated in terms of the slope, drainage length, and saturated hydraulic conductivity of the lateral drainage layer, the saturated hydraulic conductivity of the soil liner, and the fraction of the area under a synthetic liner where ...

  16. Preventing Cracks in Silicon-Reactor Liners

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1987-01-01

    Correct placement helps prevent contamination while eliminating crack-causing deposits. Repositioning quartz liner in silicon fluidized-bed reactor prevents cracking of liner when cools. Liner protects stainless-steel walls of reactor from abrasion by particles in fluidized bed. Prevents contamination of newly formed silicon by material abraded from wall and ensures high-quality product.

  17. Dual emission from an ortho-metalated Ir(III) complex

    SciTech Connect

    King, K.A.; Watts, R.J.

    1987-03-04

    Several complexes of Ir(III) containing both the bidentate N-coordinating ligand 2,2'-bipyridine (bpy) and the N,C-orthometalating ligand 2-phenylpyridine (ppy) have recently been prepared; these include the two species Ir(ppy)/sub 2/(bpy)/sup +/ (A) and Ir(ppy)(bpy)/sub 2//sup 2 +/ (B). The former was prepared from the dichloro-bridged dimer, (Ir(ppy)/sub 2/Cl)/sub 2/, by modification of the procedure of Nonoyama while the latter was obtained by reaction of cis-(Ir(bpy)/sub 2/(OSO/sub 2/CF/sub 3/)/sub 2/) (CF/sub 3/SO/sub 3/) with ppy in refluxing 2-ethoxyethanol. The purity of the complexes was monitored with thin-layer chromatography using silica gel plates and 1:1:1 acetone/methanol/water mixtures for elution. Samples of the complexes used in these studies showed only one component in thin-layer chromatography. While only one isomer of B is possible, there are three possible isomers of A. Data from /sup 1/H and /sup 13/C NMR experiments indicate that A has C/sub 2/ symmetry. The NMR spectrum indicates, as does thin-layer chromatography, that only a single isomer of A is present with no detectable impurities due to a mixture of isomers. While X-ray structural data for A are lacking, structural data for related complexes suggest that A is the isomer with cisoid metal-carbon bonds and bpy metal-nitrogen bonds transoid to the metal-carbon bonds and bpy metal-nitrogen bonds transoid to the metal-carbon bonds. These species were prepared in order to probe further the effects of metal-carbon bonding on energy-transfer processes and electron-transfer reactions of metal complexes. Emission spectroscopic studies reported here reveal unusual and distinct intramolecular energy-transfer behavior in these complexes. Whereas dual emission from the former is observed in glasses at 77 K, a single emission is observed in the latter.

  18. Beryllium liner implosion experiments on the Z accelerator in preparation for Magnetized Liner Inertial Fusion (MagLIF)*

    NASA Astrophysics Data System (ADS)

    McBride, Ryan D.

    2012-10-01

    Magnetized Liner Inertial Fusion (MagLIF) [1] is a concept that involves using a pulsed electrical current to implode an initially-solid, cylindrical metal tube (liner) filled with preheated and magnetized fusion fuel. One- and two-dimensional simulations predict that if sufficient liner integrity can be maintained throughout the implosion, then significant fusion yield (>100 kJ) is possible on the 25-MA, 100-ns Z accelerator. The greatest threat to the liner integrity is the Magneto-Rayleigh-Taylor (MRT) instability, which first develops on the outer liner surface, and then works its way inward toward the inner surface throughout the implosion. Two-dimensional simulations predict that a thick liner, with Router/δR=6, should be robust enough to keep the MRT instability from overly disrupting the fusion burn at stagnation. This talk will present the first experiments designed to study a thick, MagLIF-relevant liner implosion through to stagnation on Z [2]. The use of beryllium for the liner material enabled us to obtain penetrating monochromatic (6151±0.5 eV) radiographs that reveal information about the entire volume of the imploding liner. This talk will also discuss experiments that investigated Z's pulse-shaping capabilities to either shock- or shocklessly-compress the imploding liners [3], as well as our most recent experiments that used 2-micron-thick aluminum sleeves to provide high-contrast tracers for the positions and states of the inner surfaces of the imploding beryllium liners. The radiography data to be presented provide stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities, where quantitative areal density measurements, particularly of convergent fusion targets, are relatively scarce. We will also present power-flow tests of the MagLIF load hardware as well as new micro-B-dot measurements of the azimuthal drive magnetic field that penetrates the initially vacuum

  19. Spin-orbit interaction in monolayer (group-III) metal-monochalcogenides

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian; Physics Department Team

    Beginning with an analysis of the fundamental symmetries of monolayer (group-III) metal-monochalcogenides (such as GaSe), we examine various spin-dependent properties of this new series of 2D semiconductors. Interesting features resulting from spin-orbit interaction include broken valence band degeneracy, cubic Dresselhaus spin splitting, and eigenstate spin-mixing. The latter two control the type and magnitude of dominant spin relaxation pathways and influence the `caldera' shape valence band edge. Further phenomena endowed by spin-orbit interaction include a modest orbital contribution to the Lande g-factors and the possibility of optical orientation via band-edge photoexcitation spectroscopy, which shows an energy-dependent reversal of conduction electron spin polarization. Based on this analysis, we propose an experiment to use optically-driven spin dynamics to quantify different spin lifetimes for electron and holes. Reference: arXiv:1508.06963

  20. Electrical Characteristics and Interface Properties of III Nitride-Based Metal-Insulator-Semiconductor Structure

    SciTech Connect

    Mahyuddin, A.; Hassan, Z.; Yusof, Y.; Cheong, K. Y.

    2010-07-07

    In this work, III-Nitride based metal-insulator-semiconductor (MIS) structure has been studied using AlN/GaN heterostructures on Si (111) with AlN buffer layer grown by plasma-assisted molecular beam epitaxy (MBE). The structural and electrical characteristics of the films were studied through high resolution x-ray diffraction (HRXRD), capacitance-voltage (C-V) and current-voltage (I-V) measurements. The value of flat-band voltage was -0.7 V. A total fixed oxide charge density of 2.73x10{sup 11} cm{sup -2} was estimated. Terman's method was used to obtain the density of interface state in the MIS structure. The analysis showed low interface state density values of 3.66x10{sup 11} cm{sup -2} eV{sup -1}.

  1. Competitive effect of iron(III) on metal complexation by humic substances: characterisation of ageing processes.

    PubMed

    Lippold, H; Evans, N D M; Warwick, P; Kupsch, H

    2007-03-01

    Aiming at an assessment of counteractive effects on colloid-borne migration of actinides in the event of release from an underground repository, competition by Fe(III) in respect of metal complexation by dissolved organic matter was investigated for the example of Eu(III) as an analogue of trivalent actinides. Complexation with different humic materials was examined in cation exchange experiments, using (59)Fe and (152)Eu as radioactive tracers for measurements in dilute systems as encountered in nature. Competitive effects proved to be significant when Fe is present at micromolar concentrations. Flocculation as a limiting process was attributed to charge compensation of humic colloids. Fe fractions bound to humic acids (HA) were higher than 90%, exceeding the capacity of binding sites at high Fe concentrations. It is thus concluded that the polynuclear structure of hydrolysed Fe(III) is maintained when bound to HA, which is also inferred from UV-Vis spectrometry. The competitive effect was found to be enhanced if Fe and HA were in contact before Eu was added. Depending on the time of Fe/HA pre-equilibration, Eu complexation decreased asymptotically over a time period of several weeks, the amount of bound Fe being unchanged. Time-dependent observations of UV-Vis spectra and pH values revealed that the ageing effect was due to a decline in Fe hydrolysis rather than structural changes within HA molecules. Fe polycations are slowly degraded in contact with humic colloids, and more binding sites are occupied as a consequence of dispersion. The extent of degradation as derived from pH shifts depended on the Fe/HA ratio. PMID:17140629

  2. Design and preliminary results of a semitranspiration cooled (Lamilloy) liner for a high-pressure high-temperature combustor

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jones, R. E.

    1978-01-01

    A Lamilloy combustor liner was designed, fabricated and tested in a combustor at pressures up to 8 atmospheres. The liner was fabricated of a three layer Lamilloy structure and designed to replace a conventional step louver liner. The liner is to be used in a combustor that provides hot gases to a turbine cooling test facility at pressures up to 40 atmospheres. The Lamilloy liner was tested extensively at lower pressures and demonstrated lower metal temperatures than the conventional liner, while at the same time requiring about 40 percent less cooling air flow. Tests conducted at combustor exit temperatures in excess of 2200 K have not indicated any cooling or durability problems with the Lamilloy linear.

  3. The Most Metal-poor Stars. III. The Metallicity Distribution Function and Carbon-enhanced Metal-poor Fraction

    NASA Astrophysics Data System (ADS)

    Yong, David; Norris, John E.; Bessell, M. S.; Christlieb, N.; Asplund, M.; Beers, Timothy C.; Barklem, P. S.; Frebel, Anna; Ryan, S. G.

    2013-01-01

    We examine the metallicity distribution function (MDF) and fraction of carbon-enhanced metal-poor (CEMP) stars in a sample that includes 86 stars with [Fe/H] <= -3.0, based on high-resolution, high signal-to-noise spectroscopy, of which some 32 objects lie below [Fe/H] = -3.5. After accounting for the completeness function, the "corrected" MDF does not exhibit the sudden drop at [Fe/H] = -3.6 that was found in recent samples of dwarfs and giants from the Hamburg/ESO survey. Rather, the MDF decreases smoothly down to [Fe/H] = -4.1. Similar results are obtained from the "raw" MDF. We find that the fraction of CEMP objects below [Fe/H] = -3.0 is 23% ± 6% and 32% ± 8% when adopting the Beers & Christlieb and Aoki et al. CEMP definitions, respectively. The former value is in fair agreement with some previous measurements, which adopt the Beers & Christlieb criterion. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal 281.D-5015).

  4. THE MOST METAL-POOR STARS. III. THE METALLICITY DISTRIBUTION FUNCTION AND CARBON-ENHANCED METAL-POOR FRACTION , ,

    SciTech Connect

    Yong, David; Norris, John E.; Bessell, M. S.; Asplund, M.; Christlieb, N.; Beers, Timothy C.; Barklem, P. S.; Frebel, Anna; Ryan, S. G. E-mail: jen@mso.anu.edu.au E-mail: martin@mso.anu.edu.au E-mail: beers@pa.msu.edu E-mail: afrebel@mit.edu

    2013-01-01

    We examine the metallicity distribution function (MDF) and fraction of carbon-enhanced metal-poor (CEMP) stars in a sample that includes 86 stars with [Fe/H] {<=} -3.0, based on high-resolution, high signal-to-noise spectroscopy, of which some 32 objects lie below [Fe/H] = -3.5. After accounting for the completeness function, the 'corrected' MDF does not exhibit the sudden drop at [Fe/H] = -3.6 that was found in recent samples of dwarfs and giants from the Hamburg/ESO survey. Rather, the MDF decreases smoothly down to [Fe/H] = -4.1. Similar results are obtained from the 'raw' MDF. We find that the fraction of CEMP objects below [Fe/H] = -3.0 is 23% {+-} 6% and 32% {+-} 8% when adopting the Beers and Christlieb and Aoki et al. CEMP definitions, respectively. The former value is in fair agreement with some previous measurements, which adopt the Beers and Christlieb criterion.

  5. Metal interferences and their removal prior to the determination of As(T) and As(III) in acid mine waters by hydride generation atomic absorption spectrometry

    USGS Publications Warehouse

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ball, James W.

    2003-01-01

    Hydride generation atomic absorption spectrometry (HGAAS) is a sensitive and selective method for the determination of total arsenic (arsenic(III) plus arsenic(V)) and arsenic(III); however, it is subject to metal interferences for acid mine waters. Sodium borohydride is used to produce arsine gas, but high metal concentrations can suppress arsine production. This report investigates interferences of sixteen metal species including aluminum, antimony(III), antimony(V), cadmium, chromium(III), chromium(IV), cobalt, copper(II), iron(III), iron(II), lead, manganese, nickel, selenium(IV), selenium(VI), and zinc ranging in concentration from 0 to 1,000 milligrams per liter and offers a method for removing interfering metal cations with cation exchange resin. The degree of interference for each metal without cation-exchange on the determination of total arsenic and arsenic(III) was evaluated by spiking synthetic samples containing arsenic(III) and arsenic(V) with the potential interfering metal. Total arsenic recoveries ranged from 92 to 102 percent for all metals tested except antimony(III) and antimony(V) which suppressed arsine formation when the antimony(III)/total arsenic molar ratio exceeded 4 or the antimony(V)/total arsenic molar ratio exceeded 2. Arsenic(III) recoveries for samples spiked with aluminum, chromium(III), cobalt, iron(II), lead, manganese, nickel, selenium(VI), and zinc ranged from 84 to 107 percent over the entire concentration range tested. Low arsenic(III) recoveries occurred when the molar ratios of metals to arsenic(III) were copper greater than 120, iron(III) greater than 70, chromium(VI) greater than 2, cadmium greater than 800, antimony(III) greater than 3, antimony(V) greater than 12, or selenium(IV) greater than 1. Low recoveries result when interfering metals compete for available sodium borohydride, causing incomplete arsine production, or when the interfering metal oxidizes arsenic(III). Separation of interfering metal cations using

  6. Early time studies of cylindrical liner implosions at 1 MA on COBRA

    NASA Astrophysics Data System (ADS)

    Atoyan, L.; Byvank, T.; Cahill, A. D.; Hoyt, C. L.; de Grouchy, P. W. L.; Potter, W. M.; Kusse, B. R.; Hammer, D. A.

    2014-12-01

    Tests of the magnetized liner inertial fusion (MagLIF) concept will make use of the 27 MA Z machine at Sandia National Laboratories, Albuquerque, to implode a cylindrical metal liner to compress and heat preheated, magnetized plasma contained within it. While most pulsed power machines produce much lower currents than the Z-machine, there are issues that can still be addressed on smaller scale facilities. Recent work on the Cornell Beam Research Accelerator (COBRA) has made use of 10 mm long and 4 mm diameter metal liners having different wall thicknesses to study the initiation of plasma on the liner's surface as well as axial magnetic field compression [P.-A. Gourdain et al., Nucl. Fusion 53, 083006 (2013)]. This report presents experimental results with non-imploding liners, investigating the impact the liner's surface structure has on initiation and ablation. Extreme ultraviolet (XUV) imaging and optical 12 frame camera imaging were used to observe and assess emission non-uniformities as they developed. Axial and side-on interferometry was used to determine the distribution of plasma near the liner surface, including the impact of non-uniformities during the plasma initiation and ablation phases of the experiments.

  7. Characterization of EPICOR II Prefilter Liner 16

    SciTech Connect

    Yesso, J D; Pasupathi, V; Lowry, L

    1982-08-01

    As part of the overall TMI-2 Information and Examination Program, EPICOR II Prefilter Liner 16 was examined to provide information to aid in the development of technology for safely processing highly loaded ion-exchange media. The characterization program included sampling and analyses of the liner contents, including ion-exchange media, liquids and gases, as well as examinations of the liner interior and exterior. This report details the handling of the liner, sampling and analysis of the contents, and the examinations of the liner.

  8. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  9. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, Andrew H.; Holcombe, Cressie E.

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  10. Novel Materials for Prosthetic Liners

    NASA Technical Reports Server (NTRS)

    Ragolta, Carolina I.; Morford, Megan

    2011-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury that reduce quality of life. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications. Three tests were performed on several types of aerogel to assess the properties of each material. Moisture vapor permeability was tested by incubating four aerogel varieties with an artificial sweat solution at 37.0 C and less than 20% relative humidity for 24 hours. Two aerogel varieties were eliminated from the study due to difficulties in handling the material, and further testing proceeded with Pyrogel in 2.0 and 6.0 mm thicknesses. Force distribution was tested by compressing samples under a load of 4448 N at a rate of 2.5 mm/min. Biofilm formation was tested in a high-shear CDC Biofilm Reactor. Results showed that 2.0 mm Pyrogel blanket allowed 55.7 plus or minus 28.7% of an artificial sweat solution to transpire, and 35.5 plus or minus 27.8% transpired through 6.0 mm Pyrogel blanket. Samples also outperformed the load-bearing capabilities of existing liner materials. No statistically significant difference was found between the two Pyrogel thicknesses for either moisture vapor permeability or force distribution. In addition, biofilm formation results showed no change between the two Pyrogel thicknesses. The breathability and load bearing properties of aerogel make it a suitable material for application to prosthetic liners.

  11. Trace elements and heavy metals in hair of stage III breast cancer patients.

    PubMed

    Benderli Cihan, Yasemin; Sözen, Selim; Oztürk Yıldırım, Sema

    2011-12-01

    This prospective study was designed to compare the hair levels of 36 elements in 52 patients with stage III breast cancer to those of an equal number of healthy individuals. Principal component and cluster analysis were used for source of identification and apportionment of heavy metals and trace elements in these two groups. A higher average level of iron was found in samples from patients while controls had higher levels of calcium. Both patients and controls had elevated levels of tin, magnesium, zinc, and sodium. Almost all element values in cancer patients showed higher dispersion and asymmetry than in healthy controls. Between the two groups, there were statistically significant differences in the concentrations of silver, arsenic, gold, boron, barium, beryllium, calcium, cadmium, cerium, cobalt, cesium, gadolinium, manganese, nickel, lead, antimony, scandium, selenium, and zinc (p < 0.05). Strong positive correlations were found between lead and gold (r = 0.785) in the cancer group and between palladium and cobalt (r = 0.945) in the healthy individuals. Our results show that there are distinct patterns of heavy metals and trace elements in the hair of breast cancer patients in comparison to healthy controls. These results could be of significance in the diagnosis of breast cancer. PMID:21660533

  12. Filling The Gap of LINERs' SED

    NASA Astrophysics Data System (ADS)

    Curell, Gerold; Petersen, Vaughn; Flohic, Helene

    2016-01-01

    Low-ionization nuclear emission-line regions (LINERs) are found in nearly half of nearby galaxies. Some of the active galactic nuclei (AGNs) in these galaxies may harbor radiatively inefficient accretion flows (RIAFs), which may launch powerful outflows in the form of jets and wind. These outflows can influence the growth of the AGN by feedback. The spectral energy distribution (SED) of the AGN can help us determine which LINERs have RIAFs. However, published SEDs of LINERs are sparse and lack the data needed to constrain the accretion flow models.In order to build more complete SEDs of LINERs, we present the results of observations of 4 LINERS with APEX in the sub-mm. We also analyzed archival observations of 4 LINERS with ALMA. Finally, we put upper limits on the gamma-ray flux of 12 LINERS with archival FERMI observations.

  13. Ceramic composite liner material for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.; Walker, C. L.; Norgren, C. T.

    1984-01-01

    Advanced commercial and military gas turbine engines may operate at combustor outlet temperatures in excess of 1920 K (3000 F). At these temperatures combustors liners experience extreme convective and radiative heat fluxes. The ability of a plasma sprayed ceramic coating to reduce liner metal temperature has been recognized. However, the brittleness of the ceramic layer and the difference in thermal expansion with the metal substrate has caused cracking, spalling and some separation of the ceramic coating. Research directed at turbine tip seals (or shrouds) has shown the advantage of applying the ceramic to a compliant metal pad. This paper discusses recent studies of applying ceramics to combustor liners in which yttria stabilized zirconia plasma sprayed on compliant metal substrates which were exposed to near stoichiometric combustion, presents performance and durability results, and describes a conceptual design for an advanced, small gas turbine combustor. Test specimens were convectively cooled or convective-transpiration cooled and were evaluated in a 10 cm square flame tube combustor at inlet air temperatures of 533 K (500 F) and at a pressure of 0.5 MPa (75 psia). The ceramics were exposed to flame temperatures in excess of 2000 K (3320 F). Results appear very promising with all 30 specimens surviving a screening test and one of two specimens surviving a cyclic durability test.

  14. Expanding the family of bis-cyclometalated chiral-at-metal rhodium(iii) catalysts with a benzothiazole derivative.

    PubMed

    Ma, Jiajia; Shen, Xiaodong; Harms, Klaus; Meggers, Eric

    2016-05-28

    Synthetic access to previously elusive single enantiomers of an octahedral chiral-at-metal rhodium(iii) complex containing two cyclometalated 2-phenylbenzothiazoles and two acetonitrile ligands is reported. The complex is a superior chiral Lewis acid catalyst compared to its benzoxazole congener which can be rationalized with a higher steric congestion around the coordination sites. PMID:27143346

  15. Extraction of rare-earth metal(III) nitrates by neutral organophosphorus compounds from concentrated aqueous salt solutions

    SciTech Connect

    Pyartman, A.K.; Puzikov, E.A.

    1995-07-20

    Equations describing isotherms of extraction of rare-earth metal(III) nitrates by neutral organo-phosphorus compounds over a wide range of component concentrations in aqueous and organic phases have been proposed. Constants of phase extraction and empirical parameters characterizing the influence of organic phase composition on the activity coefficients of the components have been presented.

  16. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  17. Draft Genome Sequence of Micrococcus sp. Strain MS-AsIII-49, an Arsenate-Reducing Isolate from Tropical Metal-Rich Sediment.

    PubMed

    Costa, Patrícia S; Tschoeke, Diogo A; Silva, Bruno S O; Thompson, Fabiano; Reis, Mariana P; Chartone-Souza, Edmar; Nascimento, Andréa M A

    2015-01-01

    Micrococcus sp. strain MS-AsIII-49, which was isolated from a tropical metal-polluted stream sediment in Brazil, has the ability to reduce AsV to AsIII. Analysis of its draft genome revealed 186 contigs with a total size of 2,440,924 bp encoding several metal resistance genes. PMID:25883272

  18. Draft Genome Sequence of Micrococcus sp. Strain MS-AsIII-49, an Arsenate-Reducing Isolate from Tropical Metal-Rich Sediment

    PubMed Central

    Costa, Patrícia S.; Tschoeke, Diogo A.; Silva, Bruno S. O.; Thompson, Fabiano; Reis, Mariana P.; Chartone-Souza, Edmar

    2015-01-01

    Micrococcus sp. strain MS-AsIII-49, which was isolated from a tropical metal-polluted stream sediment in Brazil, has the ability to reduce AsV to AsIII. Analysis of its draft genome revealed 186 contigs with a total size of 2,440,924 bp encoding several metal resistance genes. PMID:25883272

  19. High-Yield Magnetized Liner Fusion Explosions and Blast Mitigation

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Vesey, Roger; Cuneo, Michael

    2011-10-01

    Cylindrical liner implosions with preheated and magnetized deuterium-tritium (DT) are predicted to reach fusion conditions on present pulsed power machines [S.A. Slutz et al Phys. Plasmas 17, 056303 (2010)]. We present simulations indicating that high yields (1-10 GJ) and gains (100-1000) may be possible at currents of about 60-70 MA if a cryogenic layer of solid DT is provided on the inside surface of the metal liner. A hot spot is formed from the central preheated magnetized low-density gas and a burn wave propagates radially into the surrounding cold dense fuel. These yields and gains are more than adequate for inertial fusion energy. However, the pulsed-power driver must be protected from the blast of these high-yield explosions. Numerical simulations are presented which show that the blast can be deflected and the fusion neutrons absorbed by a blanket that partially surrounds the liner. Thus a modest length transmission line can be used to deliver power to the liner. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  20. Determination of Chromium(III), Chromium(VI), and Chromium(III) acetylacetonate in water by ion-exchange disk extraction/metal furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Kamakura, Nao; Inui, Tetsuo; Kitano, Masaru; Nakamura, Toshihiro

    A new method for the separate determination of Chromium(III) (Cr(III)), Chromium(VI) (Cr(VI)), and Cr(III) acetylacetonate (Cr(acac)3) in water was developed using a cation-exchange extraction disk (CED) and an anion-exchange extraction disk (AED) combined with metal furnace atomic absorption spectrometry (MFAAS). A 100-mL water sample was adjusted to pH 5.6 and passed through the CED placed on the AED. Cr(acac)3 and Cr(III) were adsorbed on the CED, and Cr(VI) was adsorbed on the AED. The adsorbed Cr(acac)3 was eluted with 50 mL of carbon tetrachloride, followed by the elution of Cr(III) with 50 mL of 3 mol L- 1 nitric acid. Cr(VI) was eluted with 50 mL of 3 mol L- 1 nitric acid. The chemical species of Cr eluted from the CED with carbon tetrachloride was identified as Cr(acac)3 using infrared spectroscopy. The eluate of Cr(acac)3 was diluted to 100 mL with carbon tetrachloride, and those of Cr(III) and Cr(VI) were diluted to 100 mL with deionized water. All of the solutions were subsequently analyzed by MFAAS. The calibration curve for the Cr(acac)3 aqueous solutions exhibited good linearity in the range of 0.1 to 1 ng. The detection limit of Cr, which corresponded to three times the standard deviation (n = 10) of the blank values, was 20 pg. The recovery test for Cr(III), Cr(VI), and Cr(acac)3 exhibited desirable results (96.0%-107%) when 5 μg of each species (50 μg L- 1) was added to 100 mL water samples (i.e., tap water, rainwater, and bottled drinking water). In a humic acid solution, Cr(acac)3 was quantitatively recovered (103%), but Cr(III) and Cr(VI) exhibited poor recoveries (i.e., 84.8% and 78.4%, respectively).

  1. Thermal Hazard Evaluation of Cumene Hydroperoxide-Metal Ion Mixture Using DSC, TAM III, and GC/MS.

    PubMed

    You, Mei-Li

    2016-01-01

    Cumene hydroperoxide (CHP) is widely used in chemical processes, mainly as an initiator for the polymerization of acrylonitrile-butadiene-styrene. It is a typical organic peroxide and an explosive substance. It is susceptible to thermal decomposition and is readily affected by contamination; moreover, it has high thermal sensitivity. The reactor tank, transit storage vessel, and pipeline used for manufacturing and transporting this substance are made of metal. Metal containers used in chemical processes can be damaged through aging, wear, erosion, and corrosion; furthermore, the containers might release metal ions. In a metal pipeline, CHP may cause incompatibility reactions because of catalyzed exothermic reactions. This paper discusses and elucidates the potential thermal hazard of a mixture of CHP and an incompatible material's metal ions. Differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III) were employed to preliminarily explore and narrate the thermal hazard at the constant temperature environment. The substance was diluted and analyzed by using a gas chromatography spectrometer (GC) and gas chromatography/mass spectrometer (GC/MS) to determine the effect of thermal cracking and metal ions of CHP. The thermokinetic parameter values obtained from the experiments are discussed; the results can be used for designing an inherently safer process. As a result, the paper finds that the most hazards are in the reaction of CHP with Fe(2+). When the metal release is exothermic in advance, the system temperature increases, even leading to uncontrollable levels, and the process may slip out of control. PMID:27136518

  2. An extreme [O III] emitter at z = 3.2: a low metallicity Lyman continuum source

    NASA Astrophysics Data System (ADS)

    de Barros, S.; Vanzella, E.; Amorín, R.; Castellano, M.; Siana, B.; Grazian, A.; Suh, H.; Balestra, I.; Vignali, C.; Verhamme, A.; Zamorani, G.; Mignoli, M.; Hasinger, G.; Comastri, A.; Pentericci, L.; Pérez-Montero, E.; Fontana, A.; Giavalisco, M.; Gilli, R.

    2016-01-01

    Aims: Cosmic reionization is an important process occurring in the early epochs of the Universe. However, because of observational limitations due to the opacity of the intergalactic medium to Lyman continuum photons, the nature of ionizing sources is still not well constrained. While high-redshift star-forming galaxies are thought to be the main contributors to the ionizing background at z> 6, it is impossible to directly detect their ionizing emission. Therefore, looking at intermediate redshift analogues (z ~ 2-4) can provide useful hints about cosmic reionization. Methods: We investigate the physical properties of one of the best Lyman continuum emitter candidate at z = 3.212 found in the GOODS-S/CANDELS field with photometric coverage from the U to the MIPS 24 μm band and VIMOS/VLT and MOSFIRE/Keck spectroscopy. These observations allow us to derive physical properties such as stellar mass, star formation rate, age of the stellar population, dust attenuation, metallicity, and ionization parameter, and to determine how these parameters are related to the Lyman continuum emission. Results: Investigation of the UV spectrum confirms a direct spectroscopic detection of the Lyman continuum emission with S/N> 5. Non-zero Lyα flux at the systemic redshift and high Lyman-α escape fraction (fesc(Lyα) ≥ 0.78) suggest a low H i column density. The weak C and Si low-ionization absorption lines are also consistent with a low covering fraction along the line of sight. The subsolar abundances are consistent with a young and extreme starburst. The [O iii]λλ4959,5007+Hβ equivalent width (EW) is one of the largest reported for a galaxy at z> 3 (EW( [ O iii ] λλ4959,5007 + Hβ) ≃ 1600 Å, rest-frame; 6700 Å observed-frame) and the near-infrared spectrum shows that this is mainly due to an extremely strong [O iii] emission. The large observed [O iii]/[O ii] ratio (>10) and high ionization parameter are consistent with prediction from photoionization models in the

  3. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  4. Segmented Liner to Control Mode Scattering

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.

    2013-01-01

    The acoustic performance of duct liners can be improved by segmenting the treatment. In a segmented liner treatment, one stage of liner reduces the target sound and scatters energy into other acoustic modes, which are attenuated by a subsequent stage. The Curved Duct Test Rig is an experimental facility in which sound incident on the liner can be generated in a specific mode and the scatter of energy into other modes can be quantified. A series of experiments is performed in which the baseline configuration is asymmetric, that is, a liner is on one side wall of the test duct and the wall opposite is acoustically hard. Segmented liner treatment is achieved by progressively replacing sections of the hard wall opposite with liner in the axial direction, from 25% of the wall surface to 100%. It is found that the energy scatter from the (0,0) to the (0,1) mode reduces as the percentage of opposite wall treatment increases, and the frequency of peak attenuation shifts toward higher frequency. Similar results are found when the incident mode is of order (0,1) and scatter is into the (0,0) mode. The propagation code CDUCT-LaRC is used to predict the effect of liner segmenting on liner performance. The computational results show energy scatter and the effect of liner segmentation that agrees with the experimental results. The experiments and computations both show that segmenting the liner treatment is effective to control the scatter of incident mode energy into other modes. CDUCT-LaRC is shown to be a valuable tool to predict trends of liner performance with liner configuration.

  5. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    NASA Technical Reports Server (NTRS)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  6. Energy transfer through a multi-layer liner for shaped charges

    DOEpatents

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  7. A Finite Element Theory for Predicting the Attenuation of Extended-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2009-01-01

    A non-modal finite element theory for predicting the attenuation of an extended-reacting liner containing a porous facesheet and located in a no-flow duct is presented. The mathematical approach is to solve separate wave equations in the liner and duct airway and to couple these two solutions by invoking kinematic constraints at the facesheet that are consistent with a continuum theory of fluid motion. Given the liner intrinsic properties, a weak Galerkin finite element formulation with cubic polynomial basis functions is used as the basis for generating a discrete system of acoustic equations that are solved to obtain the coupled acoustic field. A state-of-the-art, asymmetric, parallel, sparse equation solver is implemented that allows tens of thousands of grid points to be analyzed. A grid refinement study is presented to show that the predicted attenuation converges. Excellent comparison of the numerically predicted attenuation to that of a mode theory (using a Haynes 25 metal foam liner) is used to validate the computational approach. Simulations are also presented for fifteen porous plate, extended-reacting liners. The construction of some of the porous plate liners suggest that they should behave as resonant liners while the construction of others suggest that they should behave as broadband attenuators. In each case the finite element theory is observed to predict the proper attenuation trend.

  8. Effect of surface topography on reflection electron energy loss plasmon spectra of group III metals

    SciTech Connect

    Strawbridge, B.; Singh, R. K.; Beach, C.; Mahajan, S.; Newman, N.

    2006-09-15

    In situ reflection electron energy loss spectroscopy (REELS) and reflection high energy electron diffraction employing a 20 keV electron beam at a 2 deg. grazing angle were used to characterize the surface properties of molecular beam epitaxy (MBE) grown Al, Ga, and In metals on silicon and sapphire substrates. In our study we found that the surface topography strongly influences the REELS plasmon spectra. Smooth Al films with <1 nm rms roughness exhibited surface plasmon peaks. Both surface and bulk plasmons are seen from an Al film with a rms roughness of 3.5 nm. Aluminum surfaces with >5 nm rms roughness yielded only bulk plasmon peaks. To understand the EELS spectrum for the Ga and In films, the rms roughness alone is not the relevant figure of merit as the electron beam interaction with the surface is influenced most by the shape of the tops of the surface grains and the grain size. Indium films on Si with a rms roughness of 52 nm were found to excite predominantly surface plasmons as the grazing angle electron beam scattered mostly off the flat top surface of each grain and was not strongly influenced by the crevices between the grains. The rounded tops of the Ga topography with 31 nm rms roughness facilitated transmission through the grains and therefore excited a combination of bulk and surface plasmons. This experimental method is very surface sensitive, as a probe depth of 0.8 nm was inferred from the diminishing intensity of the substrate peak with increasing coverage of a flat metal surface. The techniques and methods discussed here can be readily applied to other thin film systems such as MBE-grown III-V semiconductors, sputtered oxides, and other vacuum deposited materials.

  9. Investigation of metal binding sites on soil fulvic acid using Eu(III) luminescence spectroscopy

    SciTech Connect

    Yoon, T.H.; Moon, H. ); Park, Y.J.; Park, K.K. )

    1994-11-01

    The [sup 7]F[sub 0] [yields] [sup 5]D[sub 0] excitation spectra of Eu(III) complexed with soil fulvic acid (FA) were acquired over a range of solution pH (2.9-7.8) and FA concentrations (800-3200 mg L[sup [minus]1]) using a pulsed tunable dye laser system. The broad asymmetric excitation spectra were well-fitted to a sum of two conventional Lorentzian-shaped curves, revealing the existence of two types of carboxylate moieties for the binding of metal ions on FA which formed 1:1 (EuL[sup 2+]; L = carboxylate) and 1:2 complexes (EuL[sub 2][sup +]). The weaker binding species, EuL[sup 2+], seemed to be quite abundant and showed a rapid increase as the pH was raised from 2.9 to 6.3, but it was susceptible to hydrolysis at pH higher than 7 while the stronger binding species, EuL[sub 2][sup +], showed only a modest growth with an increase in pH. By contrast, on a more flexible synthetic linear polymer, poly(acrylic acid) (PAA) and poly(vinylbenzoic acid) (PVBA) as model polymers, EuL[sub 2][sup +] was seen as the dominant species except in acidic media. 28 refs., 10 figs., 3 tabs.

  10. Changes in near-surface microstructure of metallic limiters following one year of service in Doublet III

    SciTech Connect

    Trester, P.W.; Sevier, D.L.; Sabado, M.M.

    1981-08-01

    The structural alloys Ta-10W, Mo, and Inconel X-750 were used for plasma limiters during the 3-MW ohmic heating experiments of the Doublet III tokamak. Post-service examinations of these limiters are reviewed. Near-surface melting, cracking, and microstructural changes are shown and discussed. During III service, elements from other metallic components were transported by the plasma and deposited on the limiter surface; significantly, high concentrations of Ni, Fe, Mo, and C were detected in the regions found to be microcracked in the Ta-10W. Observations and analyses are made that are relevant to the design of limiter and armor components for larger tokamaks.

  11. Sorption Kinetics Of Selected Heavy Metals Adsorption To Natural And Fe(III) Modified Zeolite Tuff Containing Clinoptilolite Mineral

    NASA Astrophysics Data System (ADS)

    Sirotiak, Maroš; Lipovský, Marek; Bartošová, Alica

    2015-06-01

    In the research described in this paper, studied was sorption capacity of natural and ferric modification of zeolite tuff containing mineral clinoptilolite from the Nižný Hrabovec deposit to remove potentially toxic metals (ionic forms of chromium, nickel, copper and aluminium) from their water solutions. We reported that the Fe (III) zeolite has an enhanced ability to sorption of Cu (II), and a slight improvement occurs in the case of Cr (VI) and Ni (II). On the other hand, the deterioration was observed in the case of Al (III) adsorption.

  12. IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORATION 5 LBF CLASS ROCKET CHAMBER 25 LBF CLASS 75 HFC 25 TAC CERAMIC COMPOSITE ROCKET CHAMBER FROM REFRACTURY COMPOSITES INC. PURCHASE ORDER C-551941-

  13. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    SciTech Connect

    Slough, John

    2015-02-01

    To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuum and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power

  14. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  15. Elastomer liners for geothermal tubulars Y267 EPDM Liner Program:

    SciTech Connect

    Hirasuna, A.R.; Davis, D.L.; Flickinger, J.E.; Stephens, C.A.

    1987-12-01

    The elastomer, Y267 EPDM, has been identified as a hydrothermally stable material which can operate at temperatures in excess of 320/sup 0/C. The goal of the Y267 Liner Program was to demonstrate the feasibility of using this material as a liner for mild steel tubulars to prevent or mitigate corrosion. If successful, the usage of EPDM lined pipe by the geothermal community may have a significant impact on operating costs and serve as a viable alternative to the use of alloyed tubulars. Tooling procedures were developed under this program to mold a 0.64 cm (0.25'') thick Y267 EPDM liner into a tubular test section 61 cm (2') in length and 19.1 cm (7.5'') in diameter (ID). A successful effort was made to identify a potential coupling agent to be used to bond the elastomer to the steel tubular wall. This agent was found to withstand the processing conditions associated with curing the elastomer at 288/sup 0/C and to retain a significant level of adhesive strength following hydrothermal testing in a synthetic brine at 260/sup 0/C for a period of 166 hours. Bonding tests were conducted on specimens of mild carbon steel and several alloys including Hastelloy C-276. An objective of the program was to field test the lined section of pipe mentioned above at a geothermal facility in the Imperial Valley. Though a test was conducted, problems encountered during the lining operation precluded an encouraging outcome. The results of the field demonstration were inconclusive. 6 refs., 13 figs., 13 tabs

  16. Effects of Liner Geometry on Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Tracy, Maureen B.; Watson, Willie R.; Parrott, Tony L.

    2002-01-01

    Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner properties in the presence of grazing flow. The current report provides the results of a parametric study, in which a finite element method was used to assess the effects of variations of the following geometric parameters on liner impedance, with and without the presence of grazing flow: percent open area, sheet thickness, sheet thickness-to-hole diameter ratio and cavity depth. Normal incidence acoustic impedances were determined for eight acoustic liners, consisting of punched aluminum facesheets bonded to hexcell honeycomb cavities. Similar liners were tested in the NASA Langley Research Center grazing incidence tube to determine their response in the presence of grazing flow. The resultant data provide a quantitative assessment of the effects of these perforate, single-layer liner parameters on the acoustic impedance of the liner.

  17. Testing and Characterization of CMC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    Multiple combustor liner applications, both segmented and fully annular designs, have been configured for exposure in NASA's High Pressure Burner Rig (HPBR). The segmented liners were attached to the rig structure with SiC/SiC fasteners and exposed to simulated gas turbine conditions for nearly 200 hours. Test conditions included pressures of 6 atm., gas velocity of 42 m/s, and gas temperatures near 1450 C. The temperatures of both the cooled and combustion flow sides of the liners were measured using optical and contact measurement techniques. Minor weight loss was observed, but the liners remained structural sound, although damage was noted in some fasteners.

  18. Cracks in Flow Liners and Their Resolution

    NASA Technical Reports Server (NTRS)

    Harris, C. E.; Raju, I. S.

    2005-01-01

    Cracks were detected in flow liners at the gimbal joints in the LH2 feedlines of the space shuttle's main engines. The cracks initiated at defects in the drainage slots of the flow liners and grew due to high cycle fatigue. Fracture mechanics analyses were conducted to evaluate the life of the liners. These analyses yielded extremely short lives in the presence of small surface or corner cracks. A high fidelity detection method, edge replication, was used to detect the very small cracks. The detected cracks were removed by polishing and the surface quality of the slots was reestablished to improve life of the liners.

  19. Helical plasma striations in liners in the presence of an external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Atoyan, L.; Hammer, D. A.; Kusse, B. R.; Byvank, T.; Cahill, A. D.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.

    2016-02-01

    Awe et al. found on the 20 MA Z machine [Acta Phys. Pol. A 115, 956 (2009)] that applying an externally generated axial magnetic field to an imploding liner leads to a helical pattern in the liner when viewed with soft x-ray radiography ([Phys. Rev. Lett. 111, 235005 (2013)] and [Phys. Plasmas 21, 056303 (2014)]). Here, we show that this phenomenon is also observed in extreme ultraviolet self-emission images of 10 mm long cylindrical metal liners having varying diameters and varying wall thicknesses on a 1 MA, 100-200 ns pulsed power generator. The magnetic field in these experiments is created using either twisted return current wires positioned close to the liner, generating a time-varying Bz, or a Helmholtz coil, generating a steady-state Bz.

  20. Studies of Cylindrical Liner Z-Pinches at 1 MA on COBRA

    NASA Astrophysics Data System (ADS)

    Atoyan, Levon; Byvank, Tom; Cahill, Adam; Potter, William; de Grouchy, Philip; Kusse, Bruce; Hammer, David

    2014-10-01

    Tests of the magnetized liner inertial fusion (MagLIF) concept will make use of the 27 MA Z-machine to implode a cylindrical metal liner onto a preheated plasma contained within it. While most pulsed power machines produce much lower currents than the Z-machine, there are questions that can be addressed on smaller scale facilities. Recent work on the 1 MA Cornell Beam Research Accelerator (COBRA) has made use of 10 mm long cylindrical metal liners having a 4 mm diameter and a varying wall thickness to study the initiation of plasma on the liner's outer surface as well as axial magnetic field compression. We will present experimental results with both imploding and non-imploding liners, investigating the impact the liner's external surface structure has on initiation, outer surface ablation, and implosion. The effect of a uniform axial external magnetic field on observed surface striations will also be discussed. This research is supported by the National Nuclear Security Administration Stewardship Sciences Academic Programs under Department of Energy Cooperative Agreement DE-NA0001836.

  1. Homoleptic gallium(III) and indium(III) aminoalkoxides as precursors for sol-gel routes to metal oxide nanomaterials.

    PubMed

    Mishra, Shashank; Daniele, Stéphane; Petit, Sarah; Jeanneau, Erwann; Rolland, Marc

    2009-04-14

    New homoleptic aminoalkoxides of gallium(III) and indium(III) of the types M4{(OC2H4)2NMe}6 [M = Ga (1), In (2)] and [Ga{(OC2H4)3N}]n (3), as well as a previously described Ga2(OC2H4NMe2)6 (A) have been prepared by isopropoxo(chloro)-aminoalkoxo exchange reactions and characterised by elemental analyses, FT-IR and 1H NMR spectroscopy. Formation of a star-shaped Ga[Ga{mu-eta3:eta1-(OC2H4)2NMe}2]3 (1.4CHCl3) and a zigzag linear In4{mu-eta3:eta1-(OC2H4)2NMe}6 (2.6CHCl3), as revealed by X-ray single crystal structures, reflects the structural diversity among N-methyldiethanolaminate derivatives. Their hydrolyses in boiling water, either in presence or absence of tetraalkylamonium bromide, have been studied and, for gallium derivatives, compared with similar hydrolytic reactions of Ga(OiPr)3. The hydrolysed products were studied by FT-IR, TG-DTA and XRD techniques. For gallium derivatives, transition from orthorhombic Ga(O)OH phase of as-prepared powder to phase pure rhombohedral- and monoclinic-Ga2O3 occurred at about 500 degrees C and 700 degrees C, respectively, whereas cubic In(OH)3 phase of as-prepared powder of 2 was converted to cubic In2O3 at 250 degrees C. Partial hydrolyses were also performed and evolution of the particle size in solution was recorded by light scattering measurements. Various sol-gel processing parameters such as concentration and hydrolysis ratio (h) were studied in order to stabilise nano-sized colloidal suspensions for access to thin films by spin coating. The N-methyldiethanolamine derivatives 1 and 2 were found to be the most suitable candidates for sol-gel processing. The transparent Ga2O3 and In2O3 films obtained on glass or Si wafers from spin-coating of 1 and 2, respectively, were characterised by SEM, EDX and XRD. PMID:19319402

  2. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    2016-01-01

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron. PMID:27533864

  3. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART III

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  4. Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4

    SciTech Connect

    Roh, Yul; Gao, Haichun; Vali, Hojatollah; Kennedy, David W.; Yang, Zamin; Gao, Weimin; Dohnalkova, Alice; Stapleton, Raymond D.; Moon, Ji-Won; Phelps, T. J.; Fredrickson, Jim K.; Zhou, Jizhong

    2006-05-01

    A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using lactate, formate, pyruvate, or hydrogen as an electron donor. Growth during iron reduction occurred over the pH range of 7.0 to 8.9, a sodium chloride range of 0.05 to 5%, and a temperature range of 0 to 37°C, with an optimum growth temperature of 18°C. Unlike mesophilic dissimilatory Fe(III)-reducing bacteria, which produce mostly superparamagnetic magnetite (<35 nm), this psychrotolerant bacterium produces well-formed single-domain magnetite (>35 nm) at temperatures from 18 to 37°C. The genome size of this strain is about 4.5 Mb. Strain PV-4 is sensitive to a variety of commonly used antibiotics except ampicillin and can acquire exogenous DNA (plasmid pCM157) through conjugation.

  5. Metal Reduction and Iron Biomineralization by a Psychrotolerant Fe(III)-Reducing Bacterium, Shewanella sp. Strain PV-4

    SciTech Connect

    Roh, Yul; Gao, Haichun; Vali, Hojatollah; Kennedy, David W.; Yang, Zamin; Gao, Weimin; Dohnalkova, Alice; Stapleton, Raymond D.; Moon, Ji-Won; Phelps, Tommy J.; Fredrickson, Jim K.; Zhou, Jizhong

    2006-09-01

    A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using lactate, formate, pyruvate, or hydrogen as an electron donor. Growth during iron reduction occurred over the pH range of 7.0 to 8.9, a sodium chloride range of 0.05 to 5%, and a temperature range of 0 to 37 C, with an optimum growth temperature of 18 C. Unlike mesophilic dissimilatory Fe(III)-reducing bacteria, which produce mostly superparamagnetic magnetite (<35 nm), this psychrotolerant bacterium produces well-formed single-domain magnetite (>35 nm) at temperatures from 18 to 37 C. The genome size of this strain is about 4.5 Mb. Strain PV-4 is sensitive to a variety of commonly used antibiotics except ampicillin and can acquire exogenous DNA (plasmid pCM157) through conjugation.

  6. Stellar populations in Active Galactic Nuclei III

    NASA Astrophysics Data System (ADS)

    Boisson, C.; Joly, M.; Pelat, D.; Ward, M. J.

    2004-12-01

    In this paper we apply the stellar population synthesis method previously described in Boisson et al. (\\cite{Boisson2000}) to five more AGN. The analysis of these new data strengthen our previous conclusions: i) homogeneity of the stellar population within a class of nuclear activity regardless of the morphological type of the host galaxy; ii) populations within the nuclear regions of LINERs and Seyfert 2s are different: LINERs have a very old metal-rich population while in the Seyfert 2s a contribution of a weak burst of star formation is observed together with the old high metallicity component; iii) in the circum-nuclar region (200 pc ≤D≤1 kpc) of all the active galaxies in our sample, except for NGC 2992, we detect an old burst of star formation (0.2-1 Gyr),which is contrary to what is observed in normal galaxies. We note that the broad OIλ8446 Å emission line detected in the spectrum of the nucleus of NGC 2992 confirms its classification as a Seyfert 1. Based on observations collected at the New Technology Telescope of the European Southern Observatory, La Silla, Chile.

  7. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    SciTech Connect

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As a result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  8. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE PAGESBeta

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  9. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  10. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents.

    PubMed

    Yager-Elorriaga, D A; Steiner, A M; Patel, S G; Jordan, N M; Lau, Y Y; Gilgenbach, R M

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ∼600 kA with ∼200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines. PMID:26628134

  11. Liner Compression of a MAGO / Inverse-Pinch Configuration

    SciTech Connect

    Siemon, R E; Atchison, W L; Awe, T; Bauer, B S; Buyko, A M; Chernyshev, V K; Cowan, T E; Degnan, J H; Faehl, R J; Fuelling, S; Garanin, S F; Goodrich, T; Ivanovsky, A V; Lindemuth, I R; Makhin, V; Mokhov, V N; Reinovsky, R E; Ryutov, D D; Scudder, D W; Taylor, T; Yakubov, V B

    2005-05-18

    In the ''metal liner'' approach to Magnetized Target Fusion (MTF), a preheated magnetized plasma target is compressed to thermonuclear temperature and high density by externally driving the implosion of a flux conserving metal enclosure, or liner, which contains the plasma target. As in inertial confinement fusion, the principle fusion fuel heating mechanism is pdV work by the imploding enclosure, called a pusher in ICF. One possible MTF target, the hard-core diffuse z pinch, has been studied in MAGO experiments at VNIIEF, and is one possible target being considered for experiments on the Atlas pulsed power facility. Numerical MHD simulations show two intriguing and helpful features of the diffuse z pinch with respect to compressional heating. First, in two-dimensional simulations the m=0 interchange modes, arising from an unstable pressure profile, result in turbulent motions and self-organization into a stable pressure profile. The turbulence also gives rise to convective thermal transport, but the level of turbulence saturates at a finite level, and simulations show substantial heating during liner compression despite the turbulence. The second helpful feature is that pressure profile evolution during compression tends towards improved stability rather than instability when analyzed according to the Kadomtsev criteria. A liner experiment is planned for Atlas to study compression of magnetic flux without plasma as a first step. The Atlas geometry is compatible with a diffuse z pinch, and simulations of possible future experiments show that keV temperatures and useful neutron production for diagnostic purposes should be possible if a suitable plasma injector is added to the Atlas facility.

  12. Fe(III) hydroxide nucleation and growth on quartz in the presence of Cu(II), Pb(II), and Cr(III): metal hydrolysis and adsorption.

    PubMed

    Dai, Chong; Hu, Yandi

    2015-01-01

    Fe(III) hydroxide nanoparticles are an essential carrier for aqueous heavy metals. Particularly, iron hydroxide precipitation on mineral surfaces can immobilize aqueous heavy metals. Here, we used grazing-incidence small-angle X-ray scattering (GISAXS) to quantify nucleation and growth of iron hydroxide on quartz in 0.1 mM Fe(NO3)3 solution in the presence of Na(+), Cu(2+), Pb(2+), or Cr(3+) at pH = 3.7 ± 0.1. In 30 min, the average radii of gyration (R(g)) of particles on quartz grew from around 2 to 6 nm in the presence of Na(+) and Cu(2+). Interestingly, the particle sizes remained 3.3 ± 0.3 nm in the presence of Pb(2+), and few particles formed in the presence of Cr(3+). Quartz crystal microbalance dissipation (QCM-D) measurements showed that only Cr(3+) adsorbed onto quartz, while Cu(2+) and Pb(2+) did not. Cr(3+) adsorption changed the surface charge of quartz from negative to positive, thus inhibiting the precipitation of positively charged iron hydroxide on quartz. Masses and compositions of the precipitates were also quantified. This study provided new insights on interactions among quartz, iron hydroxide, and metal ions. Such information is helpful not only for environmental remediation but also for the doping design of iron oxide catalysts. PMID:25496643

  13. Estimation of leakage rates through flexible membrane liners

    SciTech Connect

    Murray, G.B.; McBean, E.A.; Sykes, J.F.

    1995-12-31

    Leakage rate calculations for both low-permeability soil liners and composite liners using flexible membrane liners (FMLs) overlying low-permeability soil are developed. Latin-Hypercube simulations with uncertainty assigned to the soil liner hydraulic conductivity value and the spatial frequency of FML holes are used to examine the variability in the liner leakage rats. The low-permeability soil hydraulic conductivity is the parameter with the greatest effect on landfill liner leakages rates. Composite liners have a significant impact on reducing leakage rates through the landfill liner.

  14. Three new europium(III) methanetriacetate metal-organic frameworks: the influence of synthesis on the product topology.

    PubMed

    Cañadillas-Delgado, Laura; Fabelo, Oscar; Pasán, Jorge; Déniz, Mariadel; Martínez-Benito, Carla; Díaz-Gallifa, Pau; Martín, Tomás; Ruiz-Pérez, Catalina

    2014-02-01

    Three new metal-organic framework structures containing Eu(III) and the little explored methanetriacetate (C7H7O6(3-), mta(3-)) ligand have been synthesized. Gel synthesis yields a two-dimensional framework with the formula [Eu(mta)(H2O)3]n·2nH2O, (I), while two polymorphs of the three-dimensional framework material [Eu(mta)(H2O)]n·nH2O, (II) and (III), are obtained through hydrothermal synthesis at either 423 or 443 K. Compounds (I) and (II) are isomorphous with previously reported Gd(III) compounds, but compound (III) constitutes a new phase. Compound (I) can be described in terms of dinuclear [Eu2(H2O)4](6+) units bonded through mta(3-) ligands to form a two-dimensional framework with topology corresponding to a (6,3)-connected binodal (4(3))(4(6)6(6)8(3))-kgd net, where the dinuclear [Eu2(H2O)4](6+) units are considered as a single node. Compounds (II) and (III) have distinct three-dimensional topologies, namely a (4(12)6(3))(4(9)6(6))-nia net for (II) and a (4(10)6(5))(4(11)6(4))-K2O2; 36641 net for (III). The crystal density of (III) is greater than that of (II), consistent with the increase of temperature, and thereby autogeneous pressure, in the hydrothermal synthesis. PMID:24441124

  15. REPORT OF WORKSHOP ON GEOSYNTHETIC CLAY LINERS

    EPA Science Inventory

    The purpose of the report is to summarize the information presented at the Geosynthetic Clay Liner (GCL) workshop held on July 9-10, 1992. The report does not represent the full extent of the information available on geosynthetic liners. Readers are directed to the summary of th...

  16. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  17. GEOSYNTHETIC CLAY LINERS (GCLS) IN LANDFILL COVERS

    EPA Science Inventory

    Low permeability, compacted clay linters are commonly required as a barrier to water infiltration in landfill covers. elatively new material, known as geosynthetic clay liner (GCL), has been proposed as an alternative to a compacted clay liner. CL has the practical advantages of ...

  18. HYDRAULIC CONDUCTIVITY OF THREE GEOSYNTHETIC CLAY LINERS

    EPA Science Inventory

    The hydraulic conductivity of three 2.9 m2 (32 sq ft) geosynthetic clay liners (GCLs) was measured. Tests were performed on individual sheets of the GCLs, on overlapped pieces of GCLs, and on composite liners consisting of a punctured geomembrane overlying a GCL. Hyd...

  19. Halogen-bonding in a new family of tris(haloanilato)metallate(III) magnetic molecular building blocks.

    PubMed

    Atzori, Matteo; Artizzu, Flavia; Sessini, Elisa; Marchiò, Luciano; Loche, Danilo; Serpe, Angela; Deplano, Paola; Concas, Giorgio; Pop, Flavia; Avarvari, Narcis; Mercuri, Maria Laura

    2014-05-21

    Here we report on new tris(haloanilato)metallate(III) complexes with general formula [A]3[M(X2An)3] (A = (n-Bu)4N(+), (Ph)4P(+); M = Cr(III), Fe(III); X2An = 3,6-dihalo derivatives of 2,5-dihydroxybenzoquinone (H4C6O4), chloranilate (Cl2An(2-)), bromanilate (Br2An(2-)) and iodanilate (I2An(2-))), obtained by a general synthetic strategy, and their full characterization. The crystal structures of these Fe(III) and Cr(III) haloanilate complexes consist of anions formed by homoleptic complexes formulated as [M(X2An)3](3-) and (Et)3NH(+), (n-Bu)4N(+), or (Ph4)P(+) cations. All complexes exhibit octahedral coordination geometry with metal ions surrounded by six oxygen atoms from three chelate ligands. These complexes are chiral according to the metal coordination of three bidentate ligands, and both Λ and Δ enantiomers are present in their crystal lattice. The packing of [(n-Bu)4N]3[Cr(I2An)3] (5a) shows that the complexes form supramolecular dimers that are held together by two symmetry related I···O interactions (3.092(8) Å), considerably shorter than the sum of iodine and oxygen van der Waals radii (3.50 Å). The I···O interaction can be regarded as a halogen bond (XB), where the iodine behaves as the XB donor and the oxygen atom as the XB acceptor. This is in agreement with the properties of the electrostatic potential for [Cr(I2An)3](3-) that predicts a negative charge accumulation on the peripheral oxygen atoms and a positive charge accumulation on the iodine. The magnetic behaviour of all complexes, except 5a, may be explained by considering a set of paramagnetic non-interacting Fe(III) or Cr(III) ions, taking into account the zero-field splitting effect. The presence of strong XB interactions in 5a are able, instead, to promote antiferromagnetic interactions among paramagnetic centers at low temperature, as shown by the fit with the Curie-Weiss law, in agreement with the formation of halogen-bonded supramolecular dimers. PMID:24626345

  20. Water movement through an experimental soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.R.; Herzog, B.L.

    1991-01-01

    A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (???1 x 10-7 cm s-1). The 8 x 15 x 0.9m liner was constructed in 15 cm compacted lifts using a 20,037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 x 10-9, 4.0 x 10-8, and 5.0 x 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (??? 1 ?? 10-7 cm s-1). The 8 ?? 15 ?? 0.9 m liner was constructed in 15 cm compacted lifts using a 20.037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water

  1. Stabilized Liner Compressor: The Return of Linus

    NASA Astrophysics Data System (ADS)

    Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan

    2015-11-01

    To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.

  2. Accelerating Thick Aluminum Liners Using Pulsed Power

    SciTech Connect

    Kyrala, G.A.; Hammerburg, J.E.; Bowers, D.; Stokes, J.; Morgan, D.V.; Anderson, W.E.; Cochrane, J.C.

    1999-06-28

    The authors have investigated the acceleration of very thick cylindrical aluminum liners using the Pegasus II capacitory bank. These accelerated solid liners will be used to impact other objects at velocities below 1.5 km/sec, allowing one to generate and sustain shocks of a few 100 kilobar for a few microseconds. A cylindrical shell of 1100 series aluminum with an initial inner radius of 23.61 mm, an initial thickness of 3.0 mm, and a height of 20 mm, was accelerated using a current pulse of 7.15 MA peak current and a 7.4 microsecond quarter cycle time. The aluminum shell was imploded within confining copper glide planes with decreasing separation with an inward slope of 8 degrees. At impact with a cylindrical target of diameter 3-cm, the liner was moving at 1.4 km/sec and its thickness increased to 4.5 mm. Radial X-ray radiograms of the liner showed both the liner and the glide plane interface. The curvature of the inner surface of the liner was measured before impact with the 15-mm radius target. The radiograms also showed that the copper glide planes distorted as the liner radius decreased and that some axial stress is induced in the liner. The axial stresses did not affect the inner curvature significantly. Post-shot calculations of the liner behavior indicated that the thickness of the glide plane played a significant role in the distortion of the interface between the liner and the glide plane.

  3. Immobilized metal affinity chromatography on collapsed Langmuir-Blodgett iron(III) stearate films and iron(III) oxide nanoparticles for bottom-up phosphoproteomics.

    PubMed

    Gladilovich, Vladimir; Greifenhagen, Uta; Sukhodolov, Nikolai; Selyutin, Artem; Singer, David; Thieme, Domenika; Majovsky, Petra; Shirkin, Alexey; Hoehenwarter, Wolfgang; Bonitenko, Evgeny; Podolskaya, Ekaterina; Frolov, Andrej

    2016-04-22

    Phosphorylation is the enzymatic reaction of site-specific phosphate transfer from energy-rich donors to the side chains of serine, threonine, tyrosine, and histidine residues in proteins. In living cells, reversible phosphorylation underlies a universal mechanism of intracellular signal transduction. In this context, analysis of the phosphoproteome is a prerequisite to better understand the cellular regulatory networks. Conventionally, due to the low contents of signaling proteins, selective enrichment of proteolytic phosphopeptides by immobilized metal affinity chromatography (IMAC) is performed prior to their LC-MS or -MS/MS analysis. Unfortunately, this technique still suffers from low selectivity and compromised analyte recoveries. To overcome these limitations, we propose IMAC systems comprising stationary phases based on collapsed Langmuir-Blodgett films of iron(III) stearate (FF) or iron(III) oxide nanoparticles (FO) and mobile phases relying on ammonia, piperidine and heptadecafluorooctanesulfonic acid (PFOS). Experiments with model phosphopeptides and phosphoprotein tryptic digests showed superior binding capacity, selectivity and recovery for both systems in comparison to the existing commercial analogs. As evidenced by LC-MS/MS analysis of the HeLa phosphoproteome, these features of the phases resulted in increased phosphoproteome coverage in comparison to the analogous commercially available phases, indicating that our IMAC protocol is a promising chromatographic tool for in-depth phosphoproteomic research. PMID:27016113

  4. Large Engine Technology Program. Task 21: Rich Burn Liner for Near Term Experimental Evaluations

    NASA Technical Reports Server (NTRS)

    Hautman, D. J.; Padget, F. C.; Kwoka, D.; Siskind, K. S.; Lohmann, R. P.

    2005-01-01

    The objective of the task reported herein, which was conducted as part of the NASA sponsored Large Engine Technology program, was to define and evaluate a near-term rich-zone liner construction based on currently available materials and fabrication processes for a Rich-Quench-Lean combustor. This liner must be capable of operation at the temperatures and pressures of simulated HSCT flight conditions but only needs sufficient durability for limited duration testing in combustor rigs and demonstrator engines in the near future. This must be achieved at realistic cooling airflow rates since the approach must not compromise the emissions, performance, and operability of the test combustors, relative to the product engine goals. The effort was initiated with an analytical screening of three different liner construction concepts. These included a full cylinder metallic liner and one with multiple segments of monolithic ceramic, both of which incorporated convective cooling on the external surface using combustor airflow that bypassed the rich zone. The third approach was a metallic platelet construction with internal convective cooling. These three metal liner/jacket combinations were tested in a modified version of an existing Rich-Quench-Lean combustor rig to obtain data for heat transfer model refinement and durability verification.

  5. Utilization of sepiolite materials as a bottom liner material in solid waste landfills.

    PubMed

    Guney, Yucel; Cetin, Bora; Aydilek, Ahmet H; Tanyu, Burak F; Koparal, Savas

    2014-01-01

    Landfill bottom liners are generally constructed with natural clay soils due to their high strength and low hydraulic conductivity characteristics. However, in recent years it is increasingly difficult to find locally available clay soils that satisfy the required engineering properties. Fine grained soils such as sepiolite and zeolite may be used as alternative materials in the constructions of landfill bottom liners. A study was conducted to investigate the feasibility of using natural clay rich in kaolinite, sepiolite, zeolite, and their mixtures as a bottom liner material. Unconfined compression tests, swell tests, hydraulic conductivity tests, batch and column adsorption tests were performed on each type of soil and sepiolite-zeolite mixtures. The results of the current study indicate that sepiolite is the dominant material that affects both the geomechanical and geoenvironmental properties of these alternative liners. An increase in sepiolite content in the sepiolite-zeolite mixtures increased the strength, swelling potential and metal adsorption capacities of the soil mixtures. Moreover, hydraulic conductivity of the mixtures decreased significantly with the addition of sepiolite. The utilization of sepiolite-zeolite materials as a bottom liner material allowed for thinner liners with some reduction in construction costs compared to use of a kaolinite-rich clay. PMID:24220149

  6. Dislocation of a dual mobility total hip replacement following fracture of the polyethylene liner.

    PubMed

    Vedrine, Bertrand; Guillaumot, Pierre; Chancrin, Jean-Luc

    2016-05-18

    An eight-year-old male English Setter was referred for management of a dislocation of a cemented dual mobility canine total hip prosthesis that occurred four months after the initial surgery. Revision surgery showed that the dislocation was associated with fracture of the ultra-high molecular weight polyethylene liner. The dislocation was successfully reduced after replacing the liner. A dual mobility acetabular component is composed of a mobile polyethylene liner inside a metallic cemented cup. Chronic wear of the components of a canine dual mobility total hip replacement has not been described previously. The use of this type of implant is fairly recent and limited long term follow-up of the implanted cases may be the explanation. Acute rupture of a polyethylene liner has never been described in humans, the only case of rupture of a polyethylene liner occurred 10 years after implantation. The case presented here of rupture of the polyethylene liner of a dual mobility total hip replacement is a hitherto unreported failure mode in this model of acetabular cup in the dog. PMID:26991949

  7. A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels

    PubMed Central

    Li, Lei; Xiang, Shenglin; Cao, Shuqi; Zhang, Jianyong; Ouyang, Gangfeng; Chen, Liuping; Su, Cheng-Yong

    2013-01-01

    Developing a synthetic methodology for the fabrication of hierarchically porous metal-organic monoliths that feature high surface area, low density and tunable porosity is imperative for mass transfer applications, including bulky molecule capture, heterogeneous catalysis and drug delivery. Here we report a versatile and facile synthetic route towards ultralight micro/mesoporous metal-organic aerogels based on the two-step gelation of metal-organic framework nanoparticles. Heating represents a key factor in the control of gelation versus crystallization of Al(III)-multicarboxylate systems. The porosity of the resulting metal-organic aerogels can be readily tuned, leading to the formation of well-ordered intraparticle micropores and aerogel-specific interparticle mesopores, thereby integrating the merits of both crystalline metal-organic frameworks and light aerogels. The hierarchical micro/mesoporosity of the Al-metal-organic aerogels is thoroughly evaluated by N2 sorption. The good accessibility of the micro/mesopores is verified by vapour/dye uptake, and their potential for utilization as effective fibre-coating absorbents is tested in solid-phase microextraction analyses. PMID:23653186

  8. Experimental progress toward magnetized liner inertial fusion on Z

    NASA Astrophysics Data System (ADS)

    Sinars, Daniel; Herrmann, Mark; Cuneo, Michael; Lamppa, Derek; Lopez, Andrew; McBride, Ryan; Rovang, Dean; Hanson, David; Harding, Eric; Nakhleh, Charles; Slutz, Stephen; Vesey, Roger; Sefkow, Adam; Peterson, Kyle

    2011-10-01

    Yields exceeding 100 kJ may be possible on the 25 MA Z facility at Sandia using the implosion of cylindrical metal liners onto magnetized (>10 T) and preheated (100-500 eV) deuterium-tritium fuel [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. The fusion fuel in such targets absorbs about 100 kJ, so a 100 kJ yield would be `scientific breakeven.' Suitable liner targets (Al and Be) have been fabricated and used in experiments on the magneto-Rayleigh-Taylor instability. Magnetic field coil prototypes for >10 T axial fields are being tested. Preheat experiments using the multi-kJ Z-Beamlet laser are planned. Cryogenic deuterium fuel systems have been developed. Integrated magnetized liner inertial fusion (MagLIF) tests using deuterium fuel are expected in 2013. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Excited-state properties of a triply ortho-metalated iridium(III) complex

    SciTech Connect

    King, K.A.; Spellane, P.J.; Watts, R.J.

    1985-03-06

    The characterization of the ground and luminescent excited states of a triply ortho-metalated complex of ppy, fac-Ir(ppy)/sub 3/ (ppy = 2-phenylpyridine) is effected. This complex, which is the first triply ortho-metalated ppy species to be characterized, is one of the strongest transition-metal photoreductants thus far reported. 20 references, 2 figures.

  10. Combined mode I-mode III fracture toughness of a particulate reinforced metal-matrix composite

    NASA Technical Reports Server (NTRS)

    Manoharan, M.; Lewandowski, J. J.

    1991-01-01

    The aim of this investigation was to determine the fracture behavior of a particulate reinfored aluminum alloy composite under combined mode I-mode III loading conditions. A modified three-point bend specimen was used to carry out these tests. It was found that the mode I loading condition was energetically most favorable. Addition of mode III components to the system seems to increase the amount of redundant work during fracture without affecting the critical fracture criterion.

  11. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    NASA Astrophysics Data System (ADS)

    Marques, Lippy F.; Correa, Charlane C.; Ribeiro, Sidney J. L.; dos Santos, Molíria V.; Dutra, José Diogo L.; Freire, Ricardo O.; Machado, Flávia C.

    2015-07-01

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) {[Ln2(2,5-tdc)3(dmso)2]·H2O}n (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal - prismatic geometry. The 2,5-tdc2- ligands connect four Ln(III) centers, adopting (κ1-κ1)-(κ1-κ1)-μ4 coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes.

  12. Synthesis, structural characterization, luminescent properties and theoretical study of three novel lanthanide metal-organic frameworks of Ho(III), Gd(III) and Eu(III) with 2,5-thiophenedicarboxylate anion

    SciTech Connect

    Marques, Lippy F.; Correa, Charlane C.; Ribeiro, Sidney J.L.; Santos, Molíria V. dos; Dutra, José Diogo L.; Freire, Ricardo O.; Machado, Flávia C.

    2015-07-15

    In this paper, the synthesis of three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. Crystal structure of (1) reveals that each lanthanide ion is seven-coordinated by oxygen atoms in an overall distorted capped trigonal – prismatic geometry. The 2,5-tdc{sup 2−} ligands connect four Ln(III) centers, adopting (κ{sup 1}–κ{sup 1})–(κ{sup 1}–κ{sup 1})–μ{sub 4} coordination mode, generating an 8-connected uninodal 3D network. In addition, theoretical studies for Eu(III) complex were performed using the Sparkle model for lanthanide complexes. - Graphical abstract: Three new metal-organic frameworks of lanthanides (LnMOFs) ([Ln{sub 2}(2,5-tdc){sub 3}(dmso){sub 2}]·H{sub 2}O){sub n} (Ln=Ho (1); Gd (2); Eu (3); 2,5-tdc=2,5-thiophenedicarboxylate anion; dmso=dimethylsulfoxide), were synthesized and their complete characterization, including single crystal X-ray diffraction, FTIR spectroscopy and thermogravimetric analysis are reported. In especial, photophysical properties of Eu(III) complex have been studied in detail via both theoretical and experimental approaches. - Highlights: • Three new LnMOFs were synthesized and fully characterized. • Ho{sup 3+}, Gd{sup 3+} and Eu{sup 3+} complexes photoluminescence properties were investigated. • Theoretical approaches for Eu{sup 3+} complex luminescence has been performed. • An energy level diagram is used to establish the ligand-to-metal energy transfer. • These metal−organic frameworks can act as light conversion molecular devices.

  13. Liners of natural porous materials to minimize pollutant migration. Final report, Oct. 1975 - Sep. 1977

    SciTech Connect

    Fuller, W.H.

    1981-07-01

    The use of natural low-cost materials as barriers for minimizing pollution migration out of landfills by retaining contaminants from liquids was investigated. The relative effectiveness of natural low-cost liners of crushed limestone, clayey soil, hydrous oxides of iron, and crushed pecan hulls for minimizing the migration of Be, Cd, Cr, Fe, Ni, Zn, and total organic carbon constituents of municipal solid waste landfill leachates was evaluated. Several leachate variables such as aqueous dilution, aeration, pH, and flux were also studied for their effect on movement of metals through 11 representative U.S. soils. Laboratory investigations using soil columns as a first step in screening for potential liners and manipulation practices are described. Limestone and hydrous iron oxide were found to be potentially useful as porous liners for retention of metallic leachate constituents. The amounts of these materials in natural soil were also found to be useful predictors of contaminant removal.

  14. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  15. VPS GRCop-84 Liner Development Efforts

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Holmes, Richard; McKechnie, Tim; Hickman, Robert; Pickens, Tim

    2003-01-01

    For the past several years, NASA's Marshall Space Flight Center (MSFC) has been working with Plasma Processes, Inc. (PPI) to fabricate combustion chamber liners using the Vacuum Plasma Spray (VPS) process. Multiple liners of a variety of shapes and sizes have been created. Each liner has been fabricated with GRCop-84 (a copper alloy with chromium and niobium) and a functional gradient coating (FGC) on the hot wall. While the VPS process offers versatility and a reduced fabrication schedule, the material system created with VPS allows the liners to operate at higher temperatures, with maximum blanch resistance and improved cycle life. A subscal unit (5K lbf thrust class) is being cycle tested in a LOX/Hydrogen thrust chamber assembly at MSFC. To date, over 75 hot-fire tests have been accumulated on this article. Tests include conditions normally detrimental to conventional materials, yet the VPS GRCop-84 liner has yet to show any signs of degradation. A larger chamber (15K lbf thrust class) has also been fabricated and is being prepared for hot-fire testing at MSFC near the end of 2003. Linear liners have been successfully created to further demonstrate the versatility of the process. Finally, scale up issues for the VPS process are being tackled with efforts to fabricate a full size, engine class liner. Specifically, a liner for the SSME's Main Combustion Chamber (MCC) has recently been attempted. The SSME size was chosen for convenience, since its design was readily available and its size was sufficient to tackle specific issues. Efforts to fabricate these large liners have already provided valuable lessons for using this process for engine programs. The material quality for these large units is being evaluated with destructive analysis and these results will be available by the end of 2003.

  16. Uranium(III) complexes with bulky aryloxide ligands featuring metal-arene interactions and their reactivity toward nitrous oxide.

    PubMed

    Franke, Sebastian M; Tran, Ba L; Heinemann, Frank W; Hieringer, Wolfgang; Mindiola, Daniel J; Meyer, Karsten

    2013-09-16

    We report the synthesis and use of an easy-to-prepare, bulky, and robust aryloxide ligand starting from inexpensive precursor materials. Based on this aryloxide ligand, two reactive, coordinatively unsaturated U(III) complexes were prepared that are masked by a metal-arene interaction via δ-backbonding. Depending on solvent and uranium starting material, both a tetrahydrofuran (THF)-bound and Lewis-base-free U(III) precursor can easily be prepared on the multigram scale. The reaction of these trivalent uranium species with nitrous oxide, N2O, was studied and an X-ray diffraction (XRD) study on single crystals of the product revealed the formation of a five-coordinate U(V) oxo complex with two different molecular geometries, namely, square pyramidal and trigonal bipyramidal. PMID:23987649

  17. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    SciTech Connect

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-07-07

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  18. Accumulation capacitance frequency dispersion of III-V metal-insulator-semiconductor devices due to disorder induced gap states

    NASA Astrophysics Data System (ADS)

    Galatage, R. V.; Zhernokletov, D. M.; Dong, H.; Brennan, B.; Hinkle, C. L.; Wallace, R. M.; Vogel, E. M.

    2014-07-01

    The origin of the anomalous frequency dispersion in accumulation capacitance of metal-insulator-semiconductor devices on InGaAs and InP substrates is investigated using modeling, electrical characterization, and chemical characterization. A comparison of the border trap model and the disorder induced gap state model for frequency dispersion is performed. The fitting of both models to experimental data indicate that the defects responsible for the measured dispersion are within approximately 0.8 nm of the surface of the crystalline semiconductor. The correlation between the spectroscopically detected bonding states at the dielectric/III-V interface, the interfacial defect density determined using capacitance-voltage, and modeled capacitance-voltage response strongly suggests that these defects are associated with the disruption of the III-V atomic bonding and not border traps associated with bonding defects within the high-k dielectric.

  19. Filament wound pressure vessels - Effects of using liner tooling of low pressure vessels for high pressure vessels development

    NASA Astrophysics Data System (ADS)

    Lal, Krishna M.

    High performance pressure vessels have been recently demanded for aerospace and defense applications. Filament wound pressure vessels consist of a metallic thin liner, which also acts as a mandrel, and composite/epoxy overwrap. Graphite/epoxy overwrapped vessels have been developed to obtain the performance ratio, PV/W, as high as one million inches. Under very high pressure the isotropic metallic liner deforms elasto-plastically, and orthotropic composite fibers deform elastically. Sometimes, for the development of ultra high pressure vessels, composite pressure vessels industry uses the existing liner tooling developed for low burst pressure capacity composite vessels. This work presents the effects of various design variables including the low pressure liner tooling for the development of the high burst pressure capacity Brilliant Pebbles helium tanks. Advance stress analysis and development of an ultra high pressure helium tank.

  20. Refractory liner materials used in slagging gasifiers

    SciTech Connect

    Bennett, James P.

    2004-09-01

    Refractory liners are used on the working face of entrained flow slagging gasifiers that react coal, petroleum coke, or other carbon feedstock with oxygen and water. The refractory liners protect the gasifier shell from elevated temperatures, corrosive slags, and thermal cycling during gasification. Refractory failure is primarily by two means, corrosive dissolution and spalling. High chrome oxide refractory materials have evolved as the material of choice to line the hot face of gasifiers, yet the performance of these materials does not meet the service requirements of industry. A review of gasifier liner materials, their evolution, issues impacting their performance, and future research direction are discussed.

  1. Development of plasma spray coated cylinder liners

    SciTech Connect

    Tricard, M.; Hagan, J.; Redington, P.; Subramanian, K.; Haselkorn, M.

    1996-09-01

    Improved fuel economy and reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, such insulation will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150 C to over 300 C. Since existing ring/liner materials cannot withstand these higher operating temperatures alternatives are needed for this critical tribological interface. This paper describes the development of a cost effective ID grinding technique for machining the bores of plasma sprayed diesel engine cylinder liners.

  2. Characterization of aquatic humic substances and their metal complexes by immobilized metal-chelate affinity chromatography on iron(III)-loaded ion exchangers.

    PubMed

    Burba, P; Jakubowski, B; Kuckuk, R; Küllmer, K; Heumann, K G

    2000-12-01

    The analytical fractionation of aquatic humic substances (HS) by means of immobilized metal-chelate affinity chromatography (IMAC) on metal-loaded chelating ion exchangers is described. The cellulose HYPHAN, loaded with different trivalent ions, and the chelate exchanger Chelex 100, loaded to 90% of its capacity with Fe(III), were used. The cellulose HYPHAN, loaded with 2% Fe(III), resulted in HS distribution coefficients Kd of up to 10(3.7) mL/g at pH 4.0 continuously decreasing down to 10(1.5) at pH 12, which were appropriate for HS fractionation by a pH-depending chromatographic procedure. Similar distribution coefficients Kd were obtained for HS sorption onto Fe(III)-loaded Chelex 100. On the basis of Fe-loaded HYPHAN both, a low-pressure and high-pressure IMAC technique, were developed for the fractionation of dissolved HS applying a buffer-based pH gradient for their gradual elution between pH 4.0 and 12.0. By coupling the Chelex 100 column under high-pressure conditions with an inductively coupled plasma mass spectrometer an on-line characterization of HS metal species could be achieved. Using these fractionation procedures a number of reference HS were characterized. Accordingly, the HA (humic acids) and FA (fulvic acids) studied could be discriminated into up to 6 fractions by applying cellulose HYPHAN, significantly differing in their Cu(II) complexation capacity but hardly in their substructures assessed by conventional FTIR. In the case of using Chelex 100 exchanger resin two major UV active HS fractions were obtained, which significantly differ in their complexation properties for Cu(II) and Pb(II), respectively. PMID:11227549

  3. Early time studies of cylindrical liner implosions at 1 MA on COBRA

    SciTech Connect

    Atoyan, L. Byvank, T. Cahill, A. D. Hoyt, C. L. Grouchy, P. W. L. de Potter, W. M. Kusse, B. R. Hammer, D. A.

    2014-12-15

    Tests of the magnetized liner inertial fusion (MagLIF) concept will make use of the 27 MA Z machine at Sandia National Laboratories, Albuquerque, to implode a cylindrical metal liner to compress and heat preheated, magnetized plasma contained within it. While most pulsed power machines produce much lower currents than the Z-machine, there are issues that can still be addressed on smaller scale facilities. Recent work on the Cornell Beam Research Accelerator (COBRA) has made use of 10 mm long and 4 mm diameter metal liners having different wall thicknesses to study the initiation of plasma on the liner’s surface as well as axial magnetic field compression [P.-A. Gourdain et al., Nucl. Fusion 53, 083006 (2013)]. This report presents experimental results with non-imploding liners, investigating the impact the liner’s surface structure has on initiation and ablation. Extreme ultraviolet (XUV) imaging and optical 12 frame camera imaging were used to observe and assess emission non-uniformities as they developed. Axial and side-on interferometry was used to determine the distribution of plasma near the liner surface, including the impact of non-uniformities during the plasma initiation and ablation phases of the experiments.

  4. Theory of formation of helical structures in a perfectly conducting, premagnetized Z-pinch liner

    NASA Astrophysics Data System (ADS)

    Yu, Edmund; Velikovich, Alexander; Peterson, Kyle

    2014-10-01

    The magnetized liner inertial fusion (MagLIF) concept uses an azimuthal magnetic field to collapse a thick metallic liner containing preheated fusion fuel. A critical component of the concept is an axial magnetic field, permeating both the fuel and surrounding liner, which reduces the compression necessary to achieve fusion conditions. Recent experiments demonstrate that a liner premagnetized with a 10 T axial field develops helical structures with a pitch significantly larger than an estimate of Bz /Bθ would suggest. The cause of the helical perturbations is still not understood. In this work, we present an analytic, linear theory in which we model the liner as a perfectly conducting metal, and study how bumps and divots on its surface redirect current flow, resulting in perturbations to B as well as j × B . We show that in the presence of axial and azimuthal magnetic field, the theory predicts divots will grow and deform at an angle determined by the magnetic field. We compare theoretical results with three dimensional, resistive MHD simulations. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000.

  5. Wear versus Thickness and Other Features of 5-Mrad Crosslinked UHMWPE Acetabular Liners

    PubMed Central

    Shen, Fu-Wen; Lu, Zhen

    2010-01-01

    Background The low wear rates of crosslinked polyethylenes provide the potential to use larger diameters to resist dislocation. However, this requires the use of thinner liners in the acetabular component, with concern that higher contact stresses will increase wear, offsetting the benefits of the crosslinking. Questions/purposes We asked the following questions: Is the wear of conventional and crosslinked polyethylene liners affected by ball diameter, rigidity of backing, and liner thickness? Are the stresses in the liner affected by thickness? Methods Wear rates were measured in a hip simulator and stresses were calculated using finite element modeling. Results Without crosslinking, the wear rate was 4% to 10% greater with a 36-mm diameter than a 28-mm diameter. With crosslinking, wear was 9% lower with a 36-mm diameter without metal backing and 4% greater with metal backing. Reducing the thickness from 6 mm to 3 mm increased the contact stress by 46%, but the wear rate decreased by 19%. Conclusions The reduction in wear with 5 Mrad of crosslinking was not offset by increasing the diameter from 28 mm to 36 mm or by using a liner as thin as 3 mm. Clinical Relevance The results indicate, for a properly positioned 5-Mrad crosslinked acetabular component and within the range of dimensions evaluated, neither wear nor stresses in the polyethylene are limiting factors in the use of larger-diameter, thinner cups to resist dislocation. PMID:20848244

  6. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusiona)

    NASA Astrophysics Data System (ADS)

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Greenly, J. B.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Ryutov, D. D.; Davis, J.-P.; Flicker, D. G.; Blue, B. E.; Tomlinson, K.; Schroen, D.; Stamm, R. M.; Smith, G. E.; Moore, J. K.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M.; Lopez, M. R.; Porter, J. L.; Matzen, M. K.

    2013-05-01

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless ("quasi-isentropic") liner compression. Third, we present "micro-Ḃ" measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density "precursor" plasma to the axis of symmetry.

  7. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M.; and others

    2013-05-15

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.

  8. KINEMATICS AND METALLICITIES IN THE BOOeTES III STELLAR OVERDENSITY: A DISRUPTED DWARF GALAXY?

    SciTech Connect

    Carlin, Jeffrey L.; Nidever, David L.; Majewski, Steven R.; Grillmair, Carl J.; Munoz, Ricardo R. E-mail: dln5q@virginia.edu E-mail: carl@ipac.caltech.edu

    2009-09-01

    We report the results of a spectroscopic study of the Booetes III (BooIII) stellar overdensity carried out with the Hectospec multifiber spectrograph on the MMT telescope. Radial velocities have been measured for 193 BooIII candidate stars selected to have magnitudes and colors consistent with its upper main sequence and lower red giant branch, as well as a number of horizontal-branch candidates. From 20 identified candidate BooIII members, we measure a systemic velocity of V {sub sun} = 197.5 {+-} 3.8 km s{sup -1} and a velocity dispersion of {sigma}{sub o} = 14.0 {+-} 3.2 km s{sup -1}. We use the somewhat large velocity dispersion and the implied highly radial orbit, along with morphological evidence from Grillmair and stellar abundances, to argue that BooIII is likely the first known object observed in a transitional state between being a bound dwarf galaxy and a completely unbound tidal stream.

  9. Crystal structure of hydrazine iron(III) phosphate, the first transition metal phosphate containing hydrazine

    PubMed Central

    David, Renald

    2015-01-01

    The title compound, poly[(μ2-hydrazine)(μ4-phosphato)iron(III)], [Fe(PO4)(N2H4)]n, was prepared under hydro­thermal conditions. Its asymmetric unit contains one FeIII atom located on an inversion centre, one P atom located on a twofold rotation axis, and two O, one N and two H atoms located on general positions. The FeIII atom is bound to four O atoms of symmetry-related PO4 tetra­hedra and to two N atoms of two symmetry-related hydrazine ligands, resulting in a slightly distorted FeO4N2 octa­hedron. The crystal structure consists of a three-dimensional hydrazine/iron phoshate framework whereby each PO4 tetra­hedron bridges four FeIII atoms and each hydrazine ligand bridges two FeIII atoms. The H atoms of the hydrazine ligands are also involved in moderate N—H⋯O hydrogen bonding with phosphate O atoms. The crystal structure is isotypic with the sulfates [Co(SO4)(N2H4)] and [Mn(SO4)(N2H4)]. PMID:26870399

  10. Drapery assembly including insulated drapery liner

    DOEpatents

    Cukierski, Gwendolyn

    1983-01-01

    A drapery assembly is disclosed for covering a framed wall opening, the assembly including drapery panels hung on a horizontal traverse rod, the rod having a pair of master slides and means for displacing the master slides between open and closed positions. A pair of insulating liner panels are positioned behind the drapery, the remote side edges of the liner panels being connected with the side portions of the opening frame, and the adjacent side edges of the liner panels being connected with a pair of vertically arranged center support members adapted for sliding movement longitudinally of a horizontal track member secured to the upper horizontal portion of the opening frame. Pivotally arranged brackets connect the center support members with the master slides of the traverse rod whereby movement of the master slides to effect opening and closing of the drapery panels effects simultaneous opening and closing of the liner panels.

  11. Ceramic composite liner material for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.; Walker, C. L.; Norgren, C. T.

    1984-01-01

    The application of ceramics to gas turbine combustor liners to reduce liner metal temperature was studied in an experiment in which yttria-stabilized zirconia plasma was sprayed on compliant metal substrates exposed to near stoichiometric combustion. The strain isolation pad materials chosen were Hoskins Alloy 875 and BRUNSLLOY 534 Fiber Metal of 0.25 and 0.38 cm thicknesses and 35 and 45 percent density levels. Combustor screening tests of all specimens showed no evidence of deterioration or failure. Specimens exposed to flame temperatures in excess of 2100 K were convectively or convective-transpiration cooled and were evaluated in a 10 cm sq flame tube at inlet air temperature of 533 K and pressure of 0.5 MPa. The results suggest the superiority of a system composed of the Hoskins Alloy 875 compliant pad with 0.25 cm thickness and 35 percent density coupled with a NiCrAlY bond coat and a 8 percent Y2O3-ZrO2 ceramic top coat of 0.19 cm thickness.

  12. CANMET Gasifier Liner Coupon Material Test Report

    SciTech Connect

    Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

    2007-01-31

    This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

  13. Liner target interaction experiments on Pegasus II

    SciTech Connect

    Hockaday, M.P.; Chrien, R.E.; Bartsch, R.

    1995-09-01

    The Los Alamos High Energy Density Physics program uses capacitively driven low voltage, inductive-storage pulse power to implode cylindrical targets for hydrodynamics experiments. Once a precision driver liner was characterized an experimental series characterizing the aluminum target dynamics was performed. The target was developed for shock-induced quasi-particle ejecta experiments including holography. The concept for the Liner shock experiment is that the driver liner is used to impact the target liner which then accelerates toward a collimator with a slit in it. A shock wave is set up in the target liner and as the shock emerges from the back side of the target liner, ejecta are generated. By taking a laser hologram the particle distribution of the ejecta are hoped to be determined. The goal for the second experimental series was to characterize the target dynamics and not to measure and generate the ejecta. Only the results from the third shot, Pegasus II-26 fired April 26th, 1994, from the series is discussed in detail. The second experimental series successfully characterized the target dynamics necessary to move forward towards the planned quasi-ejecta experiments.

  14. TEM Observation of Martensite Layer at the Weld Interface of an A508III to Inconel 82 Dissimilar Metal Weld Joint

    NASA Astrophysics Data System (ADS)

    Chen, Z. R.; Lu, Y. H.

    2015-12-01

    A lenticular martensite layer at the weld interface in an A508III/Inconel 82 dissimilar metal weld (DMW) joint was studied by TEM. The martensite/weld metal boundary was observed as the fusion boundary. There was a K-S orientation relationship between martensite and weld metal. The formation of the martensite was mainly determined by the distribution of alloy elements. The martensite was responsible for the hardness peak in the DMW.

  15. The Composition of Metals Bound to Class III Metallothionein (Phytochelatin and Its Desglycyl Peptide) Induced by Various Metals in Root Cultures of Rubia tinctorum.

    PubMed Central

    Maitani, T.; Kubota, H.; Sato, K.; Yamada, T.

    1996-01-01

    The induction of phytochelatins (PCs) and their desglycyl peptides (both are referred to as class III metallothionein [CIIIMT]) by exposure to various metals (Ag+, As3+, As5+, Cd2+, Cu2+, Ga3+, Hg2+, In3+, Ni2+, Pb2+, Pd2+, Se4+, and Zn2+) and the metal composition in the CIIIMTs were investigated in root cultures of Rubia tinctorum L. All of these metal species induced PCs to various degrees when analyzed by the postcolumn derivatization high-performance liquid chromatography method. The desglycyl peptides of PCs often were also present. However, only Ag, Cd, and Cu were bound to the CIIIMTs that they induced when analyzed by the high-performance liquid chromatography-inductively coupled plasma-atomic emission spectrometry method. Cu was also bound to the CIIIMTs induced by Ag+, As3+, and Cd2+. After Ag+ exposure, an Fe peak that may be of Fe-CIIIMT was also observed. However, most of the metal species studied were not bound to the CIIIMTs that they induced. PMID:12226248

  16. The Composition of Metals Bound to Class III Metallothionein (Phytochelatin and Its Desglycyl Peptide) Induced by Various Metals in Root Cultures of Rubia tinctorum.

    PubMed

    Maitani, T.; Kubota, H.; Sato, K.; Yamada, T.

    1996-04-01

    The induction of phytochelatins (PCs) and their desglycyl peptides (both are referred to as class III metallothionein [CIIIMT]) by exposure to various metals (Ag+, As3+, As5+, Cd2+, Cu2+, Ga3+, Hg2+, In3+, Ni2+, Pb2+, Pd2+, Se4+, and Zn2+) and the metal composition in the CIIIMTs were investigated in root cultures of Rubia tinctorum L. All of these metal species induced PCs to various degrees when analyzed by the postcolumn derivatization high-performance liquid chromatography method. The desglycyl peptides of PCs often were also present. However, only Ag, Cd, and Cu were bound to the CIIIMTs that they induced when analyzed by the high-performance liquid chromatography-inductively coupled plasma-atomic emission spectrometry method. Cu was also bound to the CIIIMTs induced by Ag+, As3+, and Cd2+. After Ag+ exposure, an Fe peak that may be of Fe-CIIIMT was also observed. However, most of the metal species studied were not bound to the CIIIMTs that they induced. PMID:12226248

  17. Time Dependent Effect of a Denture Cleanser on the Sorption and Solubility of Four Soft Liners-An Invitro Study

    PubMed Central

    Sudhapalli, Sruthikeerthi

    2016-01-01

    Introduction Soft liner materials, when used with ill fitting dentures, are constantly kept in a wet environment of either saliva or denture cleanser that affects their sorption and solubility. These inturn have detrimental effect on other properties. Aim To evaluate the influence of different exposure times of a commonly used denture cleanser on sorption and solubility of four soft liners. Materials and Methods Metal disc was fabricated to make the mould space for soft liner samples. Four materials were used, long term and short term acrylic liners; long term and short term silicone liners. Each of these were divided into four groups: first control group– all liners were kept in artificial saliva for entire period of study. Second group- liners were immersed daily in cleanser for 1 hour and then transferred to artificial saliva for rest of the day. Similarly samples of third and fourth groups were immersed in cleanser for 4 and 8 hours respectively and transferred to artificial saliva. Sorption and solubility tests were conducted and statistical analysis done. Statistical Analysis One-way ANOVA followed by Post-hoc Tukey’s test for pair wise comparisons was done. Significance was set at the probability level of p < 0.05. Results Solubility values of all groups were higher than the quoted ADA specifications. Conclusion Overall, silicones performed better than acrylics. Long term silicone was most stable. Short term acrylic was most unstable. The 8 hour immersion in denture cleanser caused significantly high sorption and solubility. PMID:27190940

  18. The Ringloc liner compared with the Hexloc liner in total hip arthroplasty

    PubMed Central

    Olof, Sköldenberg; Mats, Salemyr; Olle, Muren; Åke, Johansson; Torbjörn, Ahl; Henrik, Bodén

    2009-01-01

    The aim of this study was to compare the 10-year survival rate, pelvic osteolysis frequency and linear head penetration rate of the Hexloc and Ringloc liners used together with a partially threaded porous and hydroxyapatite coated cup and the Bi-Metric uncemented femoral stem. The 15-year results for the cup with the Hexloc liner are also reported. We included 332 consecutive hips (166 Hexloc and 166 Ringloc) on 281 patients in the study. Revisions of prosthesis components were recorded and pelvic osteolytic lesions were assessed using radiographs and computed tomography. The linear head penetration rate was measured using the Martell method. The 10-year survival rate of the liner with revision due to liner wear and/or osteolysis as endpoint was 88% for the Hexloc liner and 98% for the Ringloc liner. The 15-year survival rate of the Hexloc liner was 67%. Pelvic osteolysis was found in 27% of the Hexloc and 19% of the Ringloc hips. After 15 years, 53% of the Hexloc hips had developed an osteolytic lesion. The linear head penetration rate was 0.16 mm/year for the Hexloc liner and 0.12 mm/year for the Ringloc liner. This paper is the first to describe the rapidly deteriorating survival up to 15 years with the old generation gamma-in-air sterilized polyethylene used in Hexloc liners. The newer Ringloc liner with the ArCom™ polyethylene has superior clinical results but a linear wear rate and frequency of osteolytic lesions that is higher than expected. PMID:21808678

  19. Heterogeneous catalytic oxidation of As(III) on nonferrous metal oxides in the presence of H2O2.

    PubMed

    Kim, Dong-hyo; Bokare, Alok D; Koo, Min suk; Choi, Wonyong

    2015-03-17

    The oxidation of As(III) (arsenite) to As(V) (arsenate), a critical pretreatment process for total arsenic removal, is easily achieved using chemical oxidation methods. Hydrogen peroxide (H2O2) is widely used as an environmentally benign oxidant but its practical use for the arsenite oxidation is limited by the strong pH dependence and slow oxidation kinetics. This study demonstrated that H2O2-induced oxidation of As(III) can be markedly enhanced in the presence of nonferrous metal oxides (e.g., WO3, TiO2, ZrO2) as a heterogeneous catalyst working over a wide pH range in ambient reaction conditions. In particular, TiO2 is an ideal catalyst because it is not only active and stable but also easily available and inexpensive. Although the photocatalytic oxidation of As(III) on TiO2 was intensively studied, the thermal catalytic activities of TiO2 and other nonferrous metal oxides for the arsenic oxidation have been little investigated. The heterogeneous oxidation rate increased with increasing the TiO2 surface area and [H2O2] and weakly depended on pH whereas the homogeneous oxidation by H2O2 alone was favored only at alkaline condition. The oxidation rate in the TiO2/H2O2 system was not reduced at all in the absence of dioxygen. It was not retarded at all by OH radical scavengers but markedly inhibited by hydroperoxyl radical scavengers. It is proposed that the surface complexation of H2O2 on TiO2 induces the generation of the surface hydroperoxyl radical through an inner-sphere electron transfer, which subsequently reacts with As(III). The catalytic activity of TiO2 was maintained without showing any sign of deactivation. The heterogeneous catalytic oxidation is proposed as a viable method for the preoxidation treatment of As(III)-contaminated water under ambient conditions. PMID:25695481

  20. HEL-1: A DEMG Based Demonstration of Solid Liner Implosions at 100 MA

    SciTech Connect

    Reinovsky, R.E.; Anderson, B.G.; Clark, D.A.

    1997-12-31

    In August 1997, the Los Alamos National Laboratory (LANL) and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) conducted a joint experiment in Sarov, Russia to demonstrate the feasibility of applying explosive pulsed power technology to implode large scale, high velocity cylindrical liners. Kilogram mass metal liners imploding at velocities of 5-25 km/sec are useful scientific tools for producing high energy density environments, ultra high pressure shocks, and for the rapid compression of plasmas. To explore the issues associated with the design, operation and diagnosis of such implosions, VNIIEF and LANL designed and executed an practical demonstration in which a liner of approximately 1 kilogram mass was accelerated to 510 km/sec while undergoing a convergence of about 4:1. The scientific objectives of the experiment were threefold. First to explore the limits of very large, explosive, pulse power system delivering about 100 MA as drivers for accelerating solid density imploding liners to kinetic energies of 25 MJ or greater. Second to evaluate the behavior of single material (aluminum) liners imploding at 510 km/sec velocities by comparing experimental data with 1-D and 2-D numerical simulations. Third, to evaluate the condition of the selected liner at radial convergence of 4 and a final radius of 6 cm. A liner of such parameters could be used as a driver for equation of state measurements at megabar pressures or as a driver for a future experiment in which a magnetized fusion plasma would be compressed to approach ignition conditions.

  1. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  2. Consequence analysis of a liner breach due to steam under the liner

    SciTech Connect

    HIMES, D.A.

    1999-06-01

    Radiological and toxicological consequences are estimated for a steam release from tank C-106 associated with a breach of the tank liner due to formation of steam under the liner after dry-out of the sludge layer in the tank. The consequences are shown to be well below the most restrictive risk guidelines.

  3. Elaborated 1H NMR study for the ligitional behavior of two thiosemicarbazide derivatives towards some heavy metals (Sn(II), Sb(III), Pb(II) and Bi(III)), thermal, antibacterial and antifungal studies

    NASA Astrophysics Data System (ADS)

    El-Metwaly, Nashwa M.; Refat, Moamen S.

    2011-10-01

    A new series of heavy metal complexes are prepared. Sn(II), Sb(III), Pb(II) and Bi(III) are the metal ions used in complexation with two thiosemicarbazide ligands. The IR and 1H NMR spectra of the free ligands display their presence in thiole-thione forms coincide with each other. The IR spectra of the complexes support the presence of 2:2 molar ratio (M:HL) with HL 1 ligand and 1:1 beside 1:2 with HL 2. The ligand coordinates as bi molecules in some complexes and displays two tautomer forms at the same complex molecule 1H NMR spectra of Sn(II) and Sb(III) complexes were done and comes coincide with IR data. The electronic spectral analysis displays a lower shift appearance in n → π* charge transfer band in most isolated complexes. As well as, a new band is shinned in visible region with Sb(III), Bi(III) complexes and Sn(II)-HL 2. This band is pointed to its use in spectrophotometric analysis for these metal ions. The TG analysis for all isolated compounds was briefly discussed. The molecular modeling parameters support the stability of thiole form of the free ligands in comparing with their thiones by a small difference. The antibacterial and antifungal activities were studied against some organisms and reveal the priority of most investigated complexes.

  4. Reduction reactions of water soluble cyano-cobalt(III)-porphyrins: Metal versus ligand centered processes

    SciTech Connect

    Mosseri, S.; Neta, P.; Harriman, A.; Hambright, P. )

    1990-06-01

    Reduction reactions of dicyano-cobalt(III)-porphyrins (potential in vivo cyanide scavenger drugs) were studied by radiolytic and electrochemical methods using the water soluble tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP). For ((CN)2CoIIITPPS)-, reduction occurs stepwise to the CoII, CoI, and finally to the phlorin anion. This behavior is similar to that of the cobalt porphyrins in the absence of cyanide, except that the cyanide ligand shifts the reduction potentials to much more negative values. On the other hand, under radiolytic conditions, ((CN)2CoIIITMPyP)- is reduced on the porphyrin macrocycle by one electron to give the CoIII pi-radical anion, which disproportionates into the initial complex and the two-electron ring reduced CoIII phlorin. The radical anion is also formed by intramolecular electron transfer subsequent to the reaction of CoIITMPyP and cyanide. The results are compared with the chemistry of Vitamin B-12.

  5. Performance of a Checkerboard Liner With Uncertain Impedances

    NASA Technical Reports Server (NTRS)

    Robinson, J. H.; Watson, W. R.

    2005-01-01

    The current fleet of large commercial aircraft has successfully achieved FAA noise certifications because of, in part, the successful application of uniform passive duct liner treatments to control engine system noise. One goal of NASA's engine system noise reduction program is to develop technologies to improve the sound absorbing properties of duct liner treatments so that they remain effective in modern turbo fan engines. One such technology being studied is checkerboard or periodic axially and circumferentially segmented liners. A preliminary assessment of the potential of this technology was conducted by applying uncertainties associated with manufacturing, installation, source structure, and tonal frequency to a liner developed using deterministic design methods and generating a measure of improvement with respect to a uniform liner subjected to the same uncertainties. Deterministic design and analysis of the candidate checkerboard liner showed that it obtains a 1.5 dB per duct aspect ratio improvement in liner attenuation over a similarly designed uniform liner. When uncertainties in liner impedances, source structure, and frequency are considered, the performance of the checkerboard liner drops off dramatically. The final results of this paper show that the candidate checkerboard liner has a less than 25 percent chance of outperforming the uniform liner when moderate levels of uncertainty are considered. It is important to note that this study did not include the effects of mean flow on liner performance and, more important to note, that as a gradient based optimization process was used to design the checkerboard liner, it is almost certain that a global optimal design was not found for the candidate checkerboard liner. Had it been possible to find a better deterministically performing checkerboard liner, the probability that this candidate liner would outperform the uniform liner would certainly have been higher.

  6. Development of a fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1973-01-01

    This experimental program was undertaken to establish a fracture control method for composite tanks with load sharing liners. Uniaxial specimens containing surface flaws were loaded to failure (static fractured) and cycled to failure and the results were compared with burst tests and cyclic life tests of composite tanks having surface flaws present in the load sharing metal liners. The liner materials investigated were Inconel X750 STA, 2219-T62 aluminum and cryostretched 301 stainless steel at room temperature and at 78 K (-320 F) in liquid nitrogen. Differences were observed in comparing the uniaxial and tank test results. These differences should be resolved if an adequate fracture control method is to be developed.

  7. Advanced wear of an Oxinium™ femoral head implant following polyethylene liner dislocation.

    PubMed

    Tribe, H; Malek, S; Stammers, J; Ranawat, V; Skinner, J A

    2013-11-01

    Oxinium™ (Smith & Nephew, Memphis, TN, US) has been used in hip arthroplasty since 2003. The surface coating is hard and provides low wear rates but if this surface coating is damaged, the soft metal core is at risk of accelerated wear. Previous reports have described accelerated wear following intra and postoperative hip dislocation. We report a case of advanced wear of an in situ Oxinium™ femoral head implant following a cracked acetabular liner. The liner had disengaged from the titanium shell, allowing the Oxinium™ head to articulate directly with the shell. The disengaged liner led to dislocation of the Oxinium™ head, with associated pronounced wear of the head and the acetabular cup. The patient had a successful revision procedure. We advise close follow-up of patients with Oxinium™ implants, especially if associated with dislocation and closed reduction. PMID:24165329

  8. Adsorption mechanism of gallium(III) and indium(III) onto {gamma}-Al{sub 2}O{sub 3}

    SciTech Connect

    Lin, C.F.; Tsay, C.W.; Lee, D.Y.; Lo, S.L.; Yasunaga, Tatsuya; Chang, K.S.

    1997-04-01

    The transport of heavy metals in the aquatic environment has long been the primary interest of environmental engineers and geochemists. The adsorption mechanism of trivalent Ga and In onto {gamma}-Al{sub 2}O{sub 3} was investigated using a triple-layer model simulation and pressure-jump technique. Bidentate Ga{sup 3+} and In{sup 3+} and monodentate GaOH{sup 2+}/InOH{sup 2+} are the most likely surface species responsible for Ga(III)/In(III) adsorption. Sorption of Ga(III) and In(III) can be interpreted as an associative process. The adsorption pathway is a two-step mechanism: proton release from surface hydroxyl group(s) followed by coordination of Ga(III)/In(III) species to the depronated site(s). Intrinsic adsorption rate constants cannot be estimated with a liner free-energy relationship between the adsorption rate constant and the rate of water exchange, which is developed solely based on the dissociative sorption mechanism of divalent ions.

  9. Liner-less Tanks for Space Application - Design and Manufacturing Considerations

    NASA Technical Reports Server (NTRS)

    Jones, Brian H.; Li, Min-Chung

    2003-01-01

    Composite pressure vessels, used extensively for gas and fuel containment in space vehicles, are generally constructed with a metallic liner, while the fiber reinforcement carries the major portion of the pressure-induced load. The design is dominated by the liner s low strain at yield since the reinforcing fibers cannot operate at their potential load-bearing capability without resorting to pre-stressing (or autofrettaging). An ultra high-efficiency pressure vessel, which operates at the optimum strain capability of the fibers, can be potentially achieved with a liner-less construction. This paper discusses the design and manufacturing challenges to be overcome in the development of such a pressure vessel. These include: (1) gas/liquid containment and permeation, (2) design and structural analysis, and (3) manufacturing process development. The paper also presents the development and validation tests on a liner-less pressure vessel developed by Kaiser Compositek Inc. (KCI). It should be noted that KCI s liner-less tank exhibits a highly controlled leak-before-burst mode. This feature results in a structure having the highest level of safety.

  10. Composite liner design to maximize the shock pressure beyond megabars

    SciTech Connect

    Lee, H.

    1996-09-01

    Among the solid liners made of a single material which are imploded onto a target under the same driving condition, the aluminum liner produces the highest shock pressure. The authors propose the composite liner design which can increase the shock pressure several times over the best performance obtainable from an aluminum liner. They have also developed a general formulation to optimize the composite liner design for any driving current, and derived a set of very useful scaling relations. Finally, the authors present some 1-D simulations of the optimal composite liners to be fielded at Pegasus and Procyon in the upcoming megabar experiments.

  11. Resolution and analysis of the components in dual emission of mixed-chelate/ortho-metalate complexes of iridium(III)

    SciTech Connect

    Wilde, A.P.; King, K.A.; Watts, R.J. )

    1991-01-24

    Spectral resolutions of the two components in dual emissions for four mixed-chelate/ortho-metalated complexes of Ir(III) are reported. Resolution of the component emissions from samples of the complexes Ir(bzq){sub 2}(bpy){sup +} and Ir(bzq){sub 2}(phen){sup +} (bzq = benzo(h)quinoline, bpy = 2,2{prime}-bipyridine, phen = 1,10-phenanthroline) in rigid glasses at 77 K has been achieved by time-resolved emission spectroscopy. In each case the lower energy emissions component is assigned to a metal-to-ligand charge-transfer excited state associated with the chelating ligand and the higher energy component to a MLCT excited state associated with the ortho-metalating bzq ligand. Component in the dual emissions of Ir(ppy){sub 2}(bpy){sup +} and Ir(ppy){sub 2}(phen){sup +} (ppy = 2-phenylpyridine) are too similar in their lifetimes to permit full resolution of the two emissions by time-resolved emission spectroscopy when both components are populated by 337-nm excitation.

  12. Tokamak with liquid metal toroidal field coil

    DOEpatents

    Ohkawa, Tihiro; Schaffer, Michael J.

    1981-01-01

    Tokamak apparatus includes a pressure vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within the pressure vessel defines a toroidal space within the liner. Liquid metal fills the reservoir outside said liner. Electric current is passed through the liquid metal over a conductive path linking the toroidal space to produce a toroidal magnetic field within the toroidal space about the major axis thereof. Toroidal plasma is developed within the toroidal space about the major axis thereof.

  13. Plasma-Jet-Driven Magneto-Inertial Fusion (PJMIF): Physics and Design for a Plasma Liner Formation Experiment

    NASA Astrophysics Data System (ADS)

    Hsu, Scott; Cassibry, Jason; Witherspoon, F. Douglas

    2014-10-01

    Spherically imploding plasma liners are a potential standoff compression driver for magneto-inertial fusion, which is a hybrid of and operates in an intermediate density between those of magnetic and inertial fusion. We propose to use an array of merging supersonic plasma jets to form a spherically imploding plasma liner. The jets are to be formed by pulsed coaxial guns with contoured electrodes that are placed sufficiently far from the location of target compression such that no hardware is repetitively destroyed. As such, the repetition rate can be higher (e.g., 1 Hz) and ultimately the power-plant economics can be more attractive than most other MIF approaches. During the R&D phase, a high experimental shot rate at reasonably low cost (e.g., < 1 k/shot) may be achieved with excellent diagnostic access, thus enabling a rapid learning rate. After some background on PJMIF and its prospects for reactor-relevant energy gain, this poster describes the physics objectives and design of a proposed 60-gun plasma-liner-formation experiment, which will provide experimental data on: (i) scaling of peak liner ram pressure versus initial jet parameters, (ii) liner non-uniformity characterization and control, and (iii) control of liner profiles for eventual gain optimization.

  14. Use of FGD as an impervious liner

    SciTech Connect

    Wolfe, W.E.; Butalia, T.S.

    1998-07-01

    Increasing generation of coal combustion products (CCPs), particularly flue gas desulfurization (FGD) material, has led utilities to look for beneficial uses of these products. This paper presents one such utilization application of CCPs, i.e., the use of FGD material as an impervious liner for ponds and lagoons. The construction of a full scale lagoon using compacted FGD as a liner is presented. The project was undertaken primarily to address two critical questions, (1) what is the quality of water that permeates through an FGD liner and (2) what is the quantity of water permeating through a field compacted FGD fill of known thickness? The effects of construction processes on the behavior of compacted FGD are evaluated. The monitoring of the performance of the lagoon liner is discussed. Preliminary results indicate that the permeability of the field compacted FGD liner is reducing with time and is approaching the EPA recommended value of 1 x 10{sup {minus}7} cm/sec for waste containment facilities.

  15. Use of FGD as an impervious liner

    SciTech Connect

    Wolfe, W.E.; Butalia, T.S.

    1998-04-01

    Increasing generation of coal combustion products (CCPs), particularly flue gas desulfurization (FGD) material, has led utilities to look for beneficial uses of these products. This paper presents one such utilization application of CCPs, i.e., the use of FGD material as an impervious liner for ponds and lagoons. The construction of a full scale lagoon using compacted FGD as a liner is presented. The project was undertaken primarily to address two critical questions, (1) what is the quality of water that permeates through an FGD liner and (2) what is the quantity of water permeating through a field compacted FGD fill of known thickness? The effects of construction processes on the behavior of compacted FGD are evaluated. The monitoring of the performance of the lagoon liner is discussed. Preliminary results indicate that the permeability of the field compacted FGD liner is reducing with time and is approaching the EPA recommended value of 1x10{sup -7} cm/sec for waste containment facilities.

  16. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. PMID:26650573

  17. Toward anti-Markovnikov 1-Alkyne O-Phosphoramidation: Exploiting Metal-Ligand Cooperativity in a 1,3-N,O-Chelated Cp*Ir(III) Complex.

    PubMed

    Drover, Marcus W; Love, Jennifer A; Schafer, Laurel L

    2016-07-13

    Metal-ligand cooperation between iridium(III) and a 1,3-N,O-chelating phosphoramidate ligand has been used to develop a protocol for the intermolecular O-phosphoramidation of 1-alkynes. This selective C-O bond-forming reaction differs from that of standard amidation reactions, highlighting the ability to control N- or O-functionalization based on judicious choice of N,O-chelating ligand and metal center. Advances toward the development of catalytic anti-Markovnikov O-phosphoramidation using iridium(III), including characterization of rare reactive intermediates that invoke 1,3-bidentate donor ligand hemilability, are disclosed. PMID:27327491

  18. Symmetry, distorted band structure, and spin-orbit coupling of group-III metal-monochalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Li, Pengke; Appelbaum, Ian

    2015-11-01

    The electronic structure of (group-III) metal-monochalcogenide monolayers exhibits many unusual features. Some, such as the unusually distorted upper valence-band dispersion we describe as a "caldera," are primarily the result of purely orbital interactions. Others, including spin splitting and wave-function spin mixing, are directly driven by spin-orbit coupling. We employ elementary group theory to explain the origin of these properties, and use a tight-binding model to calculate the phenomena enabled by them, such as the band-edge carrier effective g factors, optical absorption spectrum, conduction electron spin orientation, and a relaxation-induced upper-valence-band population inversion and spin polarization mechanism.

  19. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.

    PubMed

    Pan, Bingjun; Qiu, Hui; Pan, Bingcai; Nie, Guangze; Xiao, Lili; Lv, Lu; Zhang, Weiming; Zhang, Quanxing; Zheng, Shourong

    2010-02-01

    The present study developed a polymer-based hybrid sorbent (HFO-001) for highly efficient removal of heavy metals [e.g., Pb(II), Cd(II), and Cu(II)] by irreversibly impregnating hydrated Fe(III) oxide (HFO) nanoparticles within a cation-exchange resin D-001 (R-SO(3)Na), and revealed the underlying mechanism based on X-ray photoelectron spectroscopy (XPS) study. HFO-001 combines the excellent handling, flow characteristics, and attrition resistance of conventional cation-exchange resins with the specific affinity of HFOs toward heavy metal cations. As compared to D-001, sorption selectivity of HFO-001 toward Pb(II), Cu(II), and Cd(II) was greatly improved from the Ca(II) competition at greater concentration. Column sorption results indicated that the working capacity of HFO-001 was about 4-6 times more than D-001 with respect to removal of three heavy metals from simulated electroplating water (pH approximately 4.0). Also, HFO-001 is particularly effective in removing trace Pb(II) and Cd(II) from simulated natural waters to meet the drinking water standard, with treatment volume orders of magnitude higher than D-001. The superior performance of HFO-001 was attributed to the Donnan membrane effect exerted by the host D-001 as well as to the impregnated HFO nanoparticles of specific interaction toward heavy metal cations, as further confirmed by XPS study on lead sorption. More attractively, the exhausted HFO-001 beads can be effectively regenerated by HCl-NaCl solution (pH 3) for repeated use without any significant capacity loss. PMID:19906397

  20. Drag Measurements of Porous Plate Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Wolter, John D.

    2005-01-01

    This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.

  1. Surface modifications of pistons and cylinder liners

    SciTech Connect

    Suzuki, Y. )

    1988-01-01

    With higher brake mean effective pressure (BMEP) of a diesel engine, pistons and cylinder liners suffer from increasing mechanical and thermal loading which causes several problems on these engine parts. The main critical problems are thermally induced cracking on the piston head and scuffing on the cylinder bore. Hard anodizing the piston head is described. It is currently the most effective countermeasure against heat cracking. Another promising method, to reinforce the piston head by means of SiC-whiskers, is also reported. A new process for improving the surface lubrication of the cylinder liner was developed. The bore has numerous finely distributed micropits which act as good oil reservoir. This improves the antiscuffing property of the cylinder liner.

  2. A Nanoscale Multiresponsive Luminescent Sensor Based on a Terbium(III) Metal-Organic Framework.

    PubMed

    Dang, Song; Wang, Ting; Yi, Feiyan; Liu, Qinghui; Yang, Weiting; Sun, Zhong-Ming

    2015-08-01

    A nanoscale terbium-containing metal-organic framework (nTbL), with a layer-like structure and [H2 NMe2 ](+) cations located in the framework channels, was synthesized under hydrothermal conditions. The structure of the as-prepared sample was systematically confirmed by powder XRD and elemental analysis; the morphology was characterized by field-emission SEM and TEM. The photoluminescence studies revealed that rod-like nTbL exhibited bright-green emission, corresponding to (5)D4 →(7)FJ (J=6-3) transitions of the Tb(3+) ion under excitation. Further sensing measurements revealed that as-prepared nTbL could be utilized as a multiresponsive luminescent sensor, which showed significant and exclusive detection ability for Fe(3+) ions and phenylmethanol. These results highlight the practical applications of lanthanide-containing metal-organic frameworks as fluorescent probes. PMID:25965107

  3. Hot subdwarf stars in close-up view. III. Metal abundances of subdwarf B stars

    NASA Astrophysics Data System (ADS)

    Geier, S.

    2013-01-01

    Context. Hot subdwarf B stars (sdBs) are considered to be core helium-burning stars with very thin hydrogen envelopes situated on or near the extreme horizontal branch. The formation of sdBs is still unclear as well as the chemical composition of their atmospheres. The observed helium depletion is attributed to atmospheric diffusion. Metal abundances have been determined for about a dozen sdBs only resulting in puzzling patterns with enrichment of heavy metals and depletion of lighter ones. Aims: We present a detailed metal abundance analysis of 106 sdBs. Methods: From high resolution spectra we measured elemental abundances of up to 24 different ions per star. A semi-automatic analysis pipeline was developed to calculate and fit LTE models to a standard set of spectral lines. Results: A general trend of enrichment was found with increasing temperature for most of the heavier elements. The lighter elements like carbon, oxygen, and nitrogen are depleted and less affected by temperature. Although there is considerable scatter from star to star, the general abundance patterns in most sdBs are similar. State-of-the-art diffusion models predict such patterns and are in qualitative agreement with our results. However, the highest enrichments measured cannot be explained with these models. Peculiar line shapes of the strongest metal lines in some stars indicate vertical stratification to be present in the atmospheres. Such effects are not accounted for in current diffusion models and may be responsible for some of the yet unexplained abundance anomalies. Tables A.1-A.3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A110

  4. REVIEW OF LINER AND CAP REGULATIONS FOR LANDFILLS

    EPA Science Inventory

    The U.S. Environmental Protection Agency through its research and field experiences has developed control strategies for hazardous and municipal solid waste landfills and surface impoundments. hese control strategies include liner and cover systems. he liner systems include doubl...

  5. Lifecycle Verification of Tank Liner Polymers

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Smith, Barton

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties and to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2

  6. Acoustic Panel Liner for an Engine Nacelle

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Nark, Douglas M. (Inventor); Ayle, Earl (Inventor); Ichihashi, Fumitaka (Inventor)

    2016-01-01

    An acoustic panel liner includes a face sheet, back plate, and liner core positioned there-between, which may be used in an engine nacelle. Elongated chambers contain variable amounts of septa at a calibrated depth or depths. The septa may have varying DC flow resistance. The chambers may have a hexagonal or other polygonal cross sections. The septa, such as mesh caps, may be bonded to an inner wall of a corresponding chamber. The insertion depths may be the same or different. If different, the pattern of distribution of the depths may be randomized.

  7. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  8. Assessing liner performance using on-farm milk meters.

    PubMed

    Penry, J F; Leonardi, S; Upton, J; Thompson, P D; Reinemann, D J

    2016-08-01

    The primary objective of this study was to quantify and compare the interactive effects of liner compression, milking vacuum level, and pulsation settings on average milk flow rates for liners representing the range of liner compression of commercial liners. A secondary objective was to evaluate a methodology for assessing liner performance that can be applied on commercial dairy farms. Eight different liner types were assessed using 9 different combinations of milking system vacuum and pulsation settings applied to a herd of 80 cows with vacuum and pulsation conditions changed daily for 36d using a central composite experimental design. Liner response surfaces were created for explanatory variables milking system vacuum (Vsystem) and pulsator ratio (PR) and response variable average milk flow rate (AMF=total yield/total cups-on time) expressed as a fraction of the within-cow average flow rate for all treatments (average milk flow rate fraction, AMFf). Response surfaces were also created for between-liner comparisons for standardized conditions of claw vacuum and milk ratio (fraction of pulsation cycle during which milk is flowing). The highest AMFf was observed at the highest levels of Vsystem, PR, and overpressure. All liners showed an increase in AMF as milking conditions were changed from low to high standardized conditions of claw vacuum and milk ratio. Differences in AMF between liners were smallest at the most gentle milking conditions (low Vsystem and low milk ratio), and these between-liner differences in AMF increased as liner overpressure increased. Differences were noted with vacuum drop between Vsystem and claw vacuum depending on the liner venting system, with short milk tube vented liners having the greater vacuum drop than mouthpiece chamber vented liners. The accuracy of liner performance assessment in commercial parlors fitted with milk meters can be improved by using a central composite experimental design with a repeated center point treatment

  9. Supernova 1987 A - Prototype of low metallicity type III supernovae or peculiar exception?

    NASA Technical Reports Server (NTRS)

    Langer, N.

    1991-01-01

    New stellar evolution calculations for the SN 1987 A progenitor, including a small but appropriate amount of semiconvection and mixing induced by differential rotation, yield good agreement with many observational constraints, as the HRD position of the progenitor star, a previous red supergiant phase, and CNO surface abundances close to the values obtained with the IUE satellite. The HRD track and surface abundances in different evolutionary stages are found to reflect many general properties of massive stars in the LMC. The results indicate that the SN 1987 A progenitor may have been an average massive star in the LMC, and that blue supergiants may be common SN II progenitors in low metallicity galaxies.

  10. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of...

  11. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Nonmetallic membrane liner. 193.2187 Section 193.2187 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank....

  12. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of...

  13. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Nonmetallic membrane liner. 193.2187 Section 193.2187 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank....

  14. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Nonmetallic membrane liner. 193.2187 Section 193.2187 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank....

  15. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of...

  16. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Nonmetallic membrane liner. 193.2187 Section 193.2187 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank....

  17. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Nonmetallic membrane liner. 193.2187 Section 193.2187 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank....

  18. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of...

  19. ELECTRICAL RESPONSE OF A LEAK IN A GEOMEMBRANE LINER

    EPA Science Inventory

    A leak in a geomembrane lined impoundment or landfill has a characteristic electrical response. imulate the waste material, the liner, and the soil under the liner by infinite horizontal layers and express the secondary potential for a leak in the geomembrane liner in terms of a ...

  20. Sub-Chronic Oral Exposure to Iridium (III) Chloride Hydrate in Female Wistar Rats: Distribution and Excretion of the Metal

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Bergamaschi, Antonio; Conti, Marcelo Enrique; Pino, Anna; Mattei, Daniela; Bocca, Beatrice; Alimonti, Alessandro

    2012-01-01

    Iridium tissue distribution and excretion in female Wistar rats following oral exposure to iridium (III) chloride hydrate in drinking water (from 1 to 1000 ng/ml) in a sub-chronic oral study were determined. Samples of urine, feces, blood and organs (kidneys, liver, lung, spleen and brain) were collected at the end of exposure. The most prominent fractions of iridium were retained in kidney and spleen; smaller amounts were found in lungs, liver and brain. Iridium brain levels were lower than those observed in other tissues but this finding can support the hypothesis of iridium capability to cross the blood brain barrier. The iridium kidney levels rose significantly with the administered dose. At the highest dose, important amounts of the metal were found in serum, urine and feces. Iridium was predominantly excreted via feces with a significant linear correlation with the ingested dose, which is likely due to low intestinal absorption of the metal. However, at the higher doses iridium was also eliminated through urine. These findings may be useful to help in the understanding of the adverse health effects, particularly on the immune system, of iridium dispersed in the environment as well as in identifying appropriate biological indices of iridium exposure. PMID:22942873

  1. Tank 241-AY-102 Secondary Liner Corrosion Evaluation - 14191

    SciTech Connect

    Boomer, Kayle D.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2014-01-07

    In October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of 241-AY-102 (AY-102) was leaking. A number of evaluations were performed after discovery of the leak which identified corrosion from storage of waste at the high waste temperatures as one of the major contributing factors in the failure of the tank. The propensity for corrosion of the waste on the annulus floor will be investigated to determine if it is corrosive and must be promptly removed or if it is benign and may remain in the annulus. The chemical composition of waste, the temperature and the character of the steel are important factors in assessing the propensity for corrosion. Unfortunately, the temperatures of the wastes in contact with the secondary steel liner are not known; they are estimated to range from 45 deg C to 60 deg C. It is also notable that most corrosion tests have been carried out with un-welded, stress-relieved steels, but the secondary liner in tank AY-102 was not stress-relieved. In addition, the cold weather fabrication and welding led to many problems, which required repeated softening of the metal to flatten secondary bottom during its construction. This flame treatment may have altered the microstructure of the steel.

  2. Chemical abundance analysis of symbiotic giants - III. Metallicity and CNO abundance patterns in 24 southern systems

    NASA Astrophysics Data System (ADS)

    Gałan, Cezary; Mikołajewska, Joanna; Hinkle, Kenneth H.; Joyce, Richard R.

    2016-01-01

    The elemental abundances of symbiotic giants are essential to address the role of chemical composition in the evolution of symbiotic binaries, to map their parent population, and to trace their mass transfer history. However, the number of symbiotic giants with fairly well determined photospheric composition is still insufficient for statistical analyses. This is the third in a series of papers on the chemical composition of symbiotic giants determined from high-resolution (R ˜ 50 000), near-infrared spectra. Here we present results for 24 S-type systems. Spectrum synthesis methods employing standard local thermal equilibrium analysis and atmosphere models were used to obtain photospheric abundances of CNO and elements around the iron peak (Fe, Ti, Ni, and Sc). Our analysis reveals metallicities distributed in a wide range from slightly supersolar ([Fe/H] ˜ +0.35 dex) to significantly subsolar ([Fe/H] ˜ -0.8 dex) but principally with near-solar and slightly subsolar metallicity ([Fe/H] ˜ -0.4 to -0.3 dex). The enrichment in 14N isotope, found in all these objects, indicates that the giants have experienced the first dredge-up. This was confirmed in a number of objects by the low 12C/13C ratio (5-23). We found that the relative abundance of [Ti/Fe] is generally large in red symbiotic systems.

  3. Corrosion protection of metals by conductive polymers III. Improved performance and inhibition in NaCl

    SciTech Connect

    Lu, W.K.; Elsenbaumer, R.L.; Chen, T.; Kulkarni, V.G.

    1998-07-01

    The use of conducting polymers for corrosion prevention is an area which has gained increasing attention during the last decade. This study explores the use of polyaniline based polymer coatings for corrosion prevention on mild steel. Data on coating degradation and passivation on electrochemically polarized painted metal specimens exposed to acid chloride solutions and artificial seawater at an ambient temperature are presented. A Systematic comparison between controls and designated coated sample sets has been made to demonstrate good corrosion protection efficiency with synergistic effects between conductive polymers and metals by classical DC monitoring techniques. Brief comparisons are made with data from simulated marine exposure. Meanwhile, in separate experiments, electrochemical data were obtained for conductive polymer primer coatings with epoxy top-coat under fully immersed conditions by using electrochemical noise (ECN) monitoring and scanning electrochemical microscopy (SECM) techniques to discover the initial localized corrosion phenomena in order to achieve further understanding of the protection mechanism. Additionally, electrochemical impedance (EIS) spectra were utilized for the assessment of anti-corrosion performance provided by conducting polymers to mild steel.

  4. Surface chemistry of the atomic layer deposition of metals and group III oxides

    NASA Astrophysics Data System (ADS)

    Goldstein, David Nathan

    Atomic Layer Deposition (ALD) is a thin-film growth technique offering precise control of film thickness and the ability to coat high-aspect-ratio features such as trenches and nanopowders. Unlike other film growth techniques, ALD does not require harsh processing conditions and is not limited by line-of-sight deposition. Emerging applications for ALD materials include semiconductor devices, gas sensors, and water-diffusion barriers. The chemistry behind ALD involves understanding how the precursors interact with surfaces to deposit the desired material. All ALD precursors need to be stable on the substrate to ensure self-limiting behavior yet reactive enough to be easily removed with the second reagent. Recent precursor development has provided many volatile organometallic compounds for most of the periodic table. As the number of precursors increases, proper precursor choice becomes crucial. This is because the film properties, growth rates, and growth temperature vary widely between the precursors. Many of the above traits can be predicted with knowledge of the precursor reaction mechanisms. This thesis aims to link surface reaction mechanisms to observed growth and nucleation trends in metal and oxide ALD systems. The first portion of this thesis explores the mechanisms of two ALD oxide systems. First, I examine the mechanism of ALD alumina with ozone. Ozone is used as an oxidant in the semiconductor industry because the deposited Al 2O3 films possess better insulating properties and ozone is easier to purge from a vacuum system. FT-IR analysis reveals a complicated array of surface intermediates such as formate, carbonate, and methoxy groups that form during Al2O3 growth with ozone. Next, a new method to deposit thin films of Ga2O3 is introduced. Gallium oxide is a transparent conducting oxide that needs expensive solid precursors to be deposited by ALD. I show that trimethylgallium is a good high-temperature ALD precursor that deposits films of Ga2O 3 with

  5. An extreme O III emitter at z=3.2: a low metallicity Lyman continuum source

    NASA Astrophysics Data System (ADS)

    de Barros, S.; Vanzella, E.

    2015-12-01

    We investigate the physical properties of a Lyman continuum emitter candidate at z=3.212 with photometric coverage from U to MIPS 24μm band and VIMOS/VLT and MOSFIRE/Keck spectroscopy. Investigation of the UV spectrum confirms a direct spectroscopic detection of the Lyman continuum emission with S/N>5. Non-zero Lyα flux at the systemic redshift and high Lyman-α escape fraction suggest a low HI column density. The weak C and Si low-ionization absorption lines are also consistent with a low covering fraction along the line of sight. The O IIIdoub+Hβ equivalent width is one of the largest reported for a galaxy at z>3 (EW(O IIIdoub+Hβ)} ≃q 1600Å, rest-frame; 6700Å observed-frame) and the NIR spectrum shows that this is mainly due to an extremely strong [OIII] emission. The large observed O III/O II ratio (>10) and high ionization parameter are consistent with prediction from photoionization models in case of a density-bounded nebula scenario. This source is currently the first high-z example of a Lyman continuum emitter exhibiting indirect and direct evidences of a Lyman continuum leakage and having physical properties consistent with theoretical expectation from Lyman continuum emission from a density-bounded nebula.

  6. ALFALFA DISCOVERY OF THE NEARBY GAS-RICH DWARF GALAXY LEO P. III. AN EXTREMELY METAL DEFICIENT GALAXY

    SciTech Connect

    Skillman, Evan D.; Berg, Danielle A.; Olive, Keith A.; McQuinn, Kristen B. W. E-mail: berg@astro.umn.edu E-mail: kmcquinn@astro.umn.edu; and others

    2013-07-01

    We present KPNO 4 m and LBT/MODS spectroscopic observations of an H II region in the nearby dwarf irregular galaxy Leo P discovered recently in the Arecibo ALFALFA survey. In both observations, we are able to accurately measure the temperature sensitive [O III] {lambda}4363 line and determine a ''direct'' oxygen abundance of 12 + log(O/H) = 7.17 {+-} 0.04. Thus, Leo P is an extremely metal deficient (XMD) galaxy, and, indeed, one of the most metal deficient star-forming galaxies ever observed. For its estimated luminosity, Leo P is consistent with the relationship between luminosity and oxygen abundance seen in nearby dwarf galaxies. Leo P shows normal {alpha} element abundance ratios (Ne/O, S/O, and Ar/O) when compared to other XMD galaxies, but elevated N/O, consistent with the ''delayed release'' hypothesis for N/O abundances. We derive a helium mass fraction of 0.2509{sup +0.0184}{sub -0.0123}, which compares well with the WMAP + BBN prediction of 0.2483 {+-} 0.0002 for the primordial helium abundance. We suggest that surveys of very low mass galaxies compete well with emission line galaxy surveys for finding XMD galaxies. It is possible that XMD galaxies may be divided into two classes: the relatively rare XMD emission line galaxies which are associated with starbursts triggered by infall of low-metallicity gas and the more common, relatively quiescent XMD galaxies like Leo P, with very low chemical abundances due to their intrinsically small masses.

  7. Efficient generation of perfluoroalkyl radicals from sodium perfluoroalkanesulfinates and a hypervalent iodine(iii) reagent: mild, metal-free synthesis of perfluoroalkylated organic molecules.

    PubMed

    Sakamoto, Ryu; Kashiwagi, Hirotaka; Selvakumar, Sermadurai; Moteki, Shin A; Maruoka, Keiji

    2016-07-01

    This article describes an efficient method for the introduction of perfluoroalkyl groups into N-acrylamides, 2-isocyanides, olefins, and other heterocycles using perfluoroalkyl radicals that were generated from the reaction between sodium perfluoroalkanesulfinates and a hypervalent iodine(iii) reagent. This approach represents a simple, scalable perfluoroalkylation method under mild and metal-free conditions. PMID:27304228

  8. Diagnostics for the plasma liner experiment.

    PubMed

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed. PMID:21033980

  9. FACTORS CONTROLLING MINIMUM SOIL LINER THICKNESS

    EPA Science Inventory

    This report describes a three-part study to gather information on liquid flow through soil liners in hazardous waste disposal facilities. n the first part of the study a model was developed to simulate flow occurring through discreet channels in lifts (a layer of compacted soil) ...

  10. Precision solid liner experiments on Pegasus II

    SciTech Connect

    Bowers, R.L.; Brownell, J.H.; Lee, H.

    1995-09-01

    Pulsed power systems have been used in the past to drive solid liner implosions for a variety of applications. In combination with a variety of target configurations, solid liner drivers can be used to compress working fluids, produce shock waves, and study material properties in convergent geometry. The utility of such a driver depends in part on how well-characterized the drive conditions are. This, in part, requires a pulsed power system with a well-characterized current wave form and well understood electrical parameters. At Los Alamos, the authors have developed a capacitively driven, inductive store pulsed power machine, Pegasus, which meets these needs. They have also developed an extensive suite of diagnostics which are capable of characterizing the performance of the system and of the imploding liners. Pegasus consists of a 4.3 MJ capacitor bank, with a capacitance of 850 {micro}f fired with a typical initial bank voltage of 90 kV or less. The bank resistance is about 0.5 m{Omega}, and bank plus power flow channel has a total inductance of about 24 nH. In this paper the authors consider the theory and modeling of the first precision solid liner driver fielded on the LANL Pegasus pulsed power facility.

  11. Diagnostics for the Plasma Liner Experiment

    SciTech Connect

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-10-15

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of {approx}0.1 Mbar using {approx}1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n{sub i}{approx}10{sup 16} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}1 eV at the plasma gun mouth to n{sub i}>10{sup 19} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  12. Membrane behavior of clay liner materials

    NASA Astrophysics Data System (ADS)

    Kang, Jong Beom

    Membrane behavior represents the ability of porous media to restrict the migration of solutes, leading to the existence of chemico-osmosis, or the flow of liquid in response to a chemical concentration gradient. Membrane behavior is an important consideration with respect to clay soils with small pores and interactive electric diffuse double layers associated with individual particles, such as bentonite. The results of recent studies indicate the existence of membrane behavior in bentonite-based hydraulic barriers used in waste containment applications. Thus, measurement of the existence and magnitude of membrane behavior in such clay soils is becoming increasingly important. Accordingly, this research focused on evaluating the existence and magnitude of membrane behavior for three clay-based materials that typically are considered for use as liners for waste containment applications, such as landfills. The three clay-based liner materials included a commercially available geosynthetic clay liner (GCL) consisting of sodium bentonite sandwiched between two geotextiles, a compacted natural clay known locally as Nelson Farm Clay, and compacted NFC amended with 5% (dry wt.) of a sodium bentonite. The study also included the development and evaluation of a new flexible-wall cell for clay membrane testing that was used subsequently to measure the membrane behaviors of the three clay liner materials. The consolidation behavior of the GCL under isotropic states of stress also was evaluated as a preliminary step in the determination of the membrane behavior of the GCL under different effective consolidation stresses.

  13. III-nitride quantum cascade detector grown by metal organic chemical vapor deposition

    SciTech Connect

    Song, Yu Huang, Tzu-Yung; Badami, Pranav; Gmachl, Claire; Bhat, Rajaram; Zah, Chung-En

    2014-11-03

    Quantum cascade (QC) detectors in the GaN/Al{sub x}Ga{sub 1−x}N material system grown by metal organic chemical vapor deposition are designed, fabricated, and characterized. Only two material compositions, i.e., GaN as wells and Al{sub 0.5}Ga{sub 0.5}N as barriers are used in the active layers. The QC detectors operates around 4 μm, with a peak responsivity of up to ∼100 μA/W and a detectivity of up to 10{sup 8} Jones at the background limited infrared performance temperature around 140 K.

  14. Electrochemical detection of arsenic(III) completely free from noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold.

    PubMed

    Gao, Chao; Yu, Xin-Yao; Xiong, Shi-Quan; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-03-01

    In recent decades, electrochemical detection of arsenic(III) has been undergoing revolutionary developments with higher sensitivity and lower detection limit. Despite great success, electrochemical detection of As(III) still depends heavily on noble metals (predominantly Au) in a strong acid condition, thus increasing the cost and hampering the widespread application. Here, we report a disposable platform completely free from noble metals for electrochemical detection of As(III) in drinking water under nearly neutral condition by square wave anodic stripping voltammetry. By combining the high adsorptivity of Fe3O4 microspheres toward As(III) and the advantages of room temperature ionic liquid (RTIL), the Fe3O4-RTIL composite modified screen-printed carbon electrode (SPCE) showed even better electrochemical performance than commonly used noble metals. Several ionic liquids with different viscosities and surface tensions were found to have a different effect on the voltammetric behavior toward As(III). Under the optimized conditions, the Fe3O4-RTIL composites offered direct detection of As(III) within the desirable range (10 ppb) in drinking water as specified by the World Health Organization (WHO), with a detection limit (3σ method) of 8 × 10(-4) ppb. The obtained sensitivity was 4.91 μA ppb(-1), which is the highest as far as we know. In addition, a possible mechanism for As(III) preconcentration based on adsorption has been proposed and supported by designed experiments. Finally, this platform was successfully applied to analyzing a real sample collected from Inner Mongolia, China. PMID:23374085

  15. Formed platelet liner concept for regeneratively cooled chambers

    NASA Technical Reports Server (NTRS)

    Burkhardt, W. M.; Tobin, S. E.; Mueggenburg, H. H.

    1990-01-01

    A process for the fabrication of a formed platelet regeneratively cooled combustion chamber liner is described, and the benefits offered by the combustor liner are discussed. The advantages of using formed platelet combustor liners include a substantially increased cycle life and decreased coolant pressure drop in conjunction with low manufacturing costs. In the initial experiments, zirconium copper combustor liner sections with a hot gas wall thickness as small as 0.008 inch and channel aspect ratios of 15 have been achieved. It is also shown that HIP provides an excellent bonding technique for joining chamber liner panels.

  16. Statistically Based Approach to Broadband Liner Design and Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    A broadband liner design optimization includes utilizing in-duct attenuation predictions with a statistical fan source model to obtain optimum impedance spectra over a number of flow conditions for one or more liner locations in a bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners having impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increasing weighting to specific frequencies and/or operating conditions. One or more broadband design approaches are utilized to produce a broadband liner that targets a full range of frequencies and operating conditions.

  17. Structural, magnetic and phonon properties of Cr(III)-doped perovskite metal formate framework [(CH3)2NH2][Mn(HCOO)3

    NASA Astrophysics Data System (ADS)

    Mączka, Mirosław; Gągor, Anna; Hermanowicz, Krzysztof; Sieradzki, Adam; Macalik, Lucyna; Pikul, Adam

    2016-05-01

    We have incorporated Cr(III) into [(CH3)2NH2][Mn(HCOO)3] (DMMn) multiferroic metal organic framework (MOF). The highest concentration of Cr(III) in the synthesized samples reached 15.9 mol%. The obtained samples were characterized by powder and single-crystal X-ray diffraction, DSC, magnetic susceptibility, dielectric, EPR, Raman and IR methods. These methods and the performed chemical analysis revealed that electrical charge neutrality after substitution of Cr(III) for Mn(II) is maintained by partial replacement of dimethylammonium (DMA+) cations by neutral HCOOH molecules. These changes in the chemical composition are responsible for weakening of the hydrogen bonds and decreased flexibility of the framework. This in turn leads to lowering of the ferroelectric phase transition temperature, observed around 185 K for undoped DMMn and around 155 K for the sample containing 3.1 mol% of Cr(III), and lack of macroscopic phase transition for the samples with Cr(III) content of 8.2 and 15.9 mol %. Another interesting effect observed for the studied samples is pronounced strengthening of the weak ferromagnetism of in Cr(III)-doped samples, associated with slight decrease of the ferromagnetic ordering temperature from 8.5 K for DMMn to 7.0 K for the sample with 15.9 mol % Cr(III) content.

  18. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-04-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. PMID:24718363

  19. Influence of atomic processes on the implosion of plasma liners

    SciTech Connect

    Kim, Hyoungkeun; Zhang Lina; Samulyak, Roman; Parks, Paul

    2012-08-15

    The influence of atomic physics processes on the implosion of plasma liners for magneto-inertial nuclear fusion has been investigated numerically by using the method of front tracking in spherically symmetric geometry and equation of state models accounting for dissociation and ionization. Simulation studies of the self-collapse of argon liners to be used in the Los Alamos Plasma Liner Experiment (PLX) program have been performed as well as studies of implosion of deuterium and argon liners on plasma targets. Results show that atomic processes in converging liners reduce the temperature of liners and increase the Mach number that results in the increase of the stagnation pressure and the fusion energy gain. For deuterium and argon liners imploding on plasma targets, dissociation and ionization increased the stagnation pressure and the fusion energy gain by the factor of 1.5 (deuterium) and 2 (argon) correspondingly. Similarly, ionization during the self-collapse of argon liners leads to approximately doubling of the Mach number and the stagnation pressure. The influence of the longitudinal density spread of the liner has also been investigated. The self-collapse stagnation pressure decreased by the factor of 8.7 when the initial position of the liner was shifted from the merging radius (33 cm) to the PLX chamber edge (137.2 cm). Simulations with and without the heat conduction demonstrated that the heat conduction has negligible effect on the self-collapse pressure of argon liners.

  20. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.

    PubMed

    Lin, Yiji; Zou, Fang; Wan, Shigang; Ouyang, Jie; Lin, Lirong; Zhang, Hui

    2012-06-14

    Chiral tetrakis(β-diketonate) Ln(III) complexes Δ-[NaLa(d-hfc)(4)(CH(3)CN)] (1) and Λ-[NaLa(l-hfc)(4) (CH(3)CN)] (2) (d/l-hfc(-) = 3-heptafluo-robutylryl-(+)/(-)-camphorate) are a pair of enantiomers and crystallize in the same Sohncke space group (P2(1)2(1)2(1)) with dodecahedral (DD) geometry. Typically positive and negative exciton splitting patterns around 320 nm were observed in the solid-state circular dichroism (CD) spectra of complexes 1 and 2, which indicate that their shell configurational chiralities are Δ and Λ, respectively. The apparent bisignate couplets in the solid-state CD spectra of [CsLn(d-hfc)(4)(H(2)O)] [Ln = La (3), Yb (5)] and [CsLn(l-hfc)(4)(H(2)O)] [Ln = La (4), Yb (6)] show that they are a pair of enantiomers and their absolute configurations are denoted Δ and Λ, respectively. The crystallographic data of 5 reveals that its coordination polyhedron is the square antiprism (SAP) geometry and it undergoes a phase transition from triclinic (α phase, P1) to monoclinic (β phase, C2) upon cooling. The difference between the two phases is brought about by the temperature dependent behaviour of the coordination water molecules, but this did not affect the configurational chirality of the Δ-SAP-[Yb(d-hfc)(4)](-) moiety. Furthermore, time-dependent CD, UV-vis and (19)F NMR were applied to study the solution behavior of these complexes. It was found that the chiral-at-metal stability of the three pairs of complexes is different and affected by both the Ln(3+) and M(+) ion size. The results show that the Cs(+) cation can retain the metal center chirality and stablize the structures of [Ln(d/l-hfc)(4)](-) or the dissociated tris(d/l-hfc)Ln(III) species in solution for a longer time than that of the Na(+) cation, and it is important that the Cs(+) ion successfully lock the configurational chirality around the Yb(3+) center of the complex species in solution. This is reasoned by the short Cs(+)···FC, Cs(+)···O-Yb and Cs(+)···Yb(3

  1. Liner Stability Experiments at Pegasus: Diagnostics and Experimental Results

    SciTech Connect

    Clark, D.A.; Morgan, D.V.; Rodriguez, G.

    1998-10-18

    A series of experiments to compare imploding liner performance with magneto-hydrodynamic (MHD) modeling has been performed at the Los Alamos National Laboratory Pegasus II pulse power machine. Liner instability growth originating from initial perturbations machined into the liner has been observed with high resolution. Three major diagnostics were used: radiography, Velocity Interferometer for a Surface of Any Reflector (VISAR), and fiber optic impact pins. For radiography, three flash x-ray units were mounted radially to observe liner shape at three different times during the implosion. Liner velocity was measured continuously with the VISAR for the entire distance traveled in two experiments. Optical impact pins provide a high-resolution measure of liner symmetry and shape near the end of travel. Liner performance has compared well with predictions.

  2. A modeling approach for the purification of group III metals (Ga and In) by zone refining

    SciTech Connect

    Ghosh, K.; Dhar, S.; Mani, V. N.

    2008-07-15

    An 'experimental friendly' model for zone refining process is proposed which predicts effective zone length in each refining passes that would lead to maximal solute removal, thereby leading to ultrapurification of the material for use in high-end electronic applications. The effectiveness of the model is experimentally tested and validated by purifying gallium from 4N (99.99%) to 6N5 (99.99995%) purity level at 30% yield and {approx}6 N at 70% yield with respect to targeted metallic impurities such as, Zn, Cu, Al, Ca, Bi, Si, Pb, Ni, Mn, and Fe, as analyzed by inductively coupled plasma optical emission spectrometry, graphite furnace atomic absorption spectrometry, and high resolution inductively coupled plasma mass spectrometry techniques. The distribution coefficient (k) of all the targeted impurities, detected in the purified gallium, was found to be less than 1. By comparing the experimentally obtained axial concentration profiles with the theoretical calculations, the k values of some detected impurities, such as Ca and Al, are determined to be {approx}0.8, Pb and Bi to be 0.7, Cu to be 0.65, and Fe to be 0.68, which prove the efficiency of the proposed model in reducing the concentration of these vulnerable impurities significantly. Following the model and as evidenced from the theoretical predictions, degradation of material purification containing a mixture of impurities having k less than as well as greater than 1 was elucidated experimentally by zone refining of 4N6 indium. Only a 40% yield of 5N6 indium was obtained, thereby highlighting the intricacies and problem areas in ultrapurification of these types of material.

  3. Significant reduction of instability growth in magnetically driven liner implosions

    NASA Astrophysics Data System (ADS)

    Peterson, Kyle; Awe, Tom; Rosenthal, Steve; McBride, Ryan; Sinars, Daniel; Yu, Edmund; Robertson, Grafton; Cuneo, Mike; Savage, Mark; Knapp, Patrick; Schmit, Paul; Slutz, Steve; Blue, Brent; Schroen, Diana; Tomlinson, Kurt

    2014-10-01

    Recent experiments on Sandia's Z facility have shown a significant reduction of instability growth in solid metallic rods driven with a ~20 MA, 100ns current pulse when thick, ~70 μm dielectric coatings were employed to mitigate nonlinear growth of the electrothermal instability. In this paper, we present new electrothermal mitigation experiments with MagLIF relevant aluminum (aspect ratio 9) and beryllium liners (aspect ratio 6). These experiments show a similar improvement in instability performance while imploding to much higher convergence ratios and undergoing much greater acceleration. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  4. Application of flowing stream techniques to water analysis Part III. Metal ions: alkaline and alkaline-earth metals, elemental and harmful transition metals, and multielemental analysis.

    PubMed

    Miró, Manuel; Estela, José Manuel; Cerdà, Víctor

    2004-05-28

    In the earlier parts of this series of reviews [1,2], the most relevant flowing stream techniques (namely, segmented flow analysis, continuous flow analysis, flow injection (FI) analysis, sequential injection (SI) analysis, multicommuted flow injection analysis and multisyringe flow injection analysis) applied to the determination of several core inorganic parameters for water quality assessment, such as nutrients and anionic species including nitrogen, sulfur and halogen compounds, were described. In the present paper, flow techniques are presented as powerful analytical tools for the environmental monitoring of metal ions (alkaline and alkaline-earth metals, and elemental and harmful transition metals) as well as to perform both multielemental and speciation analysis in water samples. The potentials of flow techniques for automated sample treatment involving on-line analyte separation and/or pre-concentration are also discussed in the body of the text, and demonstrated for each individual ion with a variety of strategies successfully applied to trace analysis. In this context, the coupling of flow methodologies with atomic spectrometric techniques such as flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICPMS) or hydride-generation (HG)/cold-vapor (CV) approaches, launching the so-called hyphenated techniques, is specially worth mentioning. PMID:18969420

  5. Measurement of the solar neutrino capture rate with gallium metal, part III

    SciTech Connect

    Elliott, Steven Ray

    2008-01-01

    The Russian-American experiment SAGE began to measure the solar neutrino capture rate with a target of gallium metal in December 1989. Measurements have continued with only a few brief interruptions since that time. In this article we present the experimental improvements in SAGE since its last published data summary in December 2001. Assuming the solar neutrino production rate was constant during the period of data collection, combined analysis of 168 extractions through December 2007 gives a capture rate of solar neutrinos with energy more than 233 keY of 65.4{sup +3.1}{sub 3.0} (stat) {sup +2.6}{sub -2.8} (syst) SNU. The weighted average of the results of all three Ga solar neUlrino experiments, SAGE, Gallex, and GNO, is now 66.1 {+-} 3.1 SNU, where statistical and systematic uncertainties have been combined in quadrature. During the recent period of data collection a new test of SAGE was made with a reactor-produced {sup 37}Ar neutrino source. The ratio of observed to calculated rates in this experiment, combined with the measured rates in the three prior {sup 51}Cr neutrino-source experiments with Ga, is 0.88 {+-} 0.05. A probable explanation for this low result is that the cross section for neutrino capture by the two lowest-lying excited states in {sup 71}Ge has been overestimated. If we assume these cross sections are zero, then the standard solar model including neutrino oscillations predicts a total capture rate in Ga in the range of 63--67 SNU with an uncertainly of about 5%, in good agreement with experiment. We derive the current value of the pp neutrino flux produced in the Sun to be {phi}{sup {circle_dot}}{sub pp} = (6.1 {+-} 0.8) x 10{sup 10}/(cm{sup 2} s), which agrees well with the flux predicted by the standard solar model. Finally, we make several tests and show that the data are consistent with the assumption that the solar neutrino production rate is constant in time.

  6. Helical Striation Pattern Generation and Axial Field Compression in Aluminum Liner Experiments at 1 MA

    NASA Astrophysics Data System (ADS)

    Atoyan, Levon; Byvank, Tom; Greenly, John; Kusse, Bruce; Pikuz, Sergei; Potter, William; Shelkovenko, Tania; Hammer, David

    2015-11-01

    Awe et al. [Phys. Plasmas 21, 235005, 2014] found on the 20 MA Z machine that applying an externally generated axial magnetic field to an imploding liner produces a helical plasma pattern near the surface of the liner. Here we show that this phenomenon is also observed using 10 mm long cylindrical metal liners having 16 mm diameter and 3 to 6 μm wall thickness on the 1 MA, 100-200 ns COBRA pulsed power generator [T. A. Shelkovenko et al., Rev. Sci. Instrum. 77, 10F521, 2006]. The magnetic field in these experiments is created using a 150 μs rise time Helmholtz coil, and the pattern is observed using extreme ultraviolet imaging. Moreover, using B-dot probes we show that there is a 4-8% axial magnetic field compression relative to the initially applied Bz. Using a visible light framing camera, we show that this compression begins before the outside surface of the liner has become a visible light emitting plasma. This research was sponsored by the NNSA SSAP under DOE Coop Agreement DE-NA0001836 and DOE grant DE-NA0001847 as well as by NSF grant PHY-1102471.

  7. Friction Stir Welding of GR-Cop 84 for Combustion Chamber Liners

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn K.; Carter, Robert; Ellis, David L.; Goudy, Richard

    2004-01-01

    GRCop-84 is a copper-chromium-niobium alloy developed by the Glenn Research Center for liquid rocket engine combustion chamber liners. GRCop-84 exhibits superior properties over conventional copper-base alloys in a liquid hydrogen-oxygen operating environment. The Next Generation Launch Technology program has funded a program to demonstrate scale-up production capabilities of GR-Cop 84 to levels suitable for main combustion chamber production for the prototype rocket engine. This paper describes a novel method of manufacturing the main combustion chamber liner. The process consists of several steps: extrude the GR-Cop 84 powder into billets, roll the billets into plates, bump form the plates into cylinder halves and friction stir weld the halves into a cylinder. The cylinder is then metal spun formed to near net liner dimensions followed by finish machining to the final configuration. This paper describes the friction stir weld process development including tooling and non-destructive inspection techniques, culminating in the successful production of a liner preform completed through spin forming.

  8. Ligational behavior of clioquinol antifungal drug towards Ag(I), Hg(II), Cr(III) and Fe(III) metal ions: Synthesis, spectroscopic, thermal, morphological and antimicrobial studies

    NASA Astrophysics Data System (ADS)

    El-Megharbel, Samy M.; Refat, Moamen S.

    2015-04-01

    This article presents a synthesis, characterization, theoretical and biological (anti-bacterial, and anti-fugal) evaluation studies of Ag(I), Hg(II), Cr(III) and Fe(III) complexes of clioquinol (CQ) drug ligand. Structures of the titled complexes cited herein were discussed using elemental analyses and spectral measurements e.g., IR, 1H NMR, and electronic studies. The results confirmed the formation of the clioquinol complexes by three molar ratios (1:1) for Ag(I), (1:2) for Hg(II) and (1:3) for both Cr(III) and Fe(III) metal ions. The clioquinol reacts as a bidentate chelate bound to all respected metal ions through the oxygen and nitrogen of quinoline-8-ol. The metal(II) ions coordinated to clioquinol ligand through deprotonation of sbnd OH terminal group. Infrared and 1H NMR spectral data confirm that coordination is via the oxygen of phenolic group and nitrogen atom of quinoline moiety. The molar conductance measurements of the CQ complexes in DMSO correspond to be non-electrolyte nature. Thus, these complexes may be formulated as [Ag(CQ)(H2O)2] H2O, [Hg(CQ)2]ṡ2H2O, [Cr(CQ)3] and [Fe(CQ)3]H2O. The Coats-Redfern method, the kinetic thermodynamic parameters like activation energies (E∗), entropies (ΔS∗), enthalpies (ΔH∗), and Gibbs free energies (ΔG∗) of the thermal decomposition reactions have been deduced from thermogravimetric curves (TG) with helpful of differential thermo gravimetric (DTG) curves. The narrow size distribution in nano-scale range for the clioquinol complexes have been discussed using X-ray powder diffraction (XRD), scanning electron microscope (SEM), and X-ray energy dispersive spectrometer (EDX) analyzer.

  9. The effect on the lanthanide luminescence of structurally simple Eu(III) cyclen complexes upon deprotonation of metal bound water molecules and amide based pendant arms.

    PubMed

    Plush, Sally E; Clear, Naomi A; Leonard, Joseph P; Fanning, Ann-Marie; Gunnlaugsson, Thorfinnur

    2010-04-21

    A series of substituted 1,4,7,10-tetraazacylcododecane ligands 1-4, possessing sensitizing nitrobenzene or naphthalene antennae, as one of the amide pendant arms, and their complexes with europium(III) were synthesised. The protonation constants and the metal ion stability constants of two of these ligands were determined by potentiometric titration. The pK(a) of the water molecules coordinated to the complexed metal ion were determined by both luminescent and potentiometric measurements. The luminescence pH dependence of a further three Eu(III) complexes, 5-7, which lack any antennae, were also studied with the aim of gaining a better understanding of the role of the metal bound water molecules in the luminescence properties of such complexes upon direct excitation of the lanthanide ion. The results from these luminescent measurements demonstrate that the Eu(III) emission was significantly modulated as a function of pH for all the complexes, which we assigned to changes occurring in the coordination environment of the ion within the cyclen system, caused by deprotonation of metal bound water molecules and/or deprotonation of pendent amide arms. PMID:20354617

  10. A novel method for study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering technique

    NASA Astrophysics Data System (ADS)

    Long, Xiufen; Zhang, Caihua; Cheng, Jiongjia; Bi, Shuping

    2008-01-01

    We present a novel method for the study of the aggregation of protein induced by metal ion aluminum(III) using resonance Rayleigh scattering (RRS) technique. In neutral Tris-HCl medium, the effect of this aggregation of protein results in the enhancement of RRS intensity and the relationship between the enhancement of the RRS signal and the Al concentration is nonlinear. On this basis, we established a new method for the determination of the critical induced-aggregation concentrations ( CCIAC) of metal ion Al(III) inducing the protein aggregation. Our results show that many factors, such as, pH value, anions, salts, temperature and solvents have obvious effects. We also studied the extent of aggregation and structural changes using ultra-violet spectrometry, protein intrinsic fluorescence and circular dichroism to further understand the exact mechanisms of the aggregation characteristics of proteins induced by metal ion Al(III) at the molecular level, to help us to develop effective methods to investigate the toxicity of metal ion Al, and to provide theoretical and quantitative evidences for the development of appropriate treatments for neurodementia such as Parkinson's disease, Alzheimer's disease and dementia related to dialysis.

  11. Broadband Liner Optimization for the Source Diagnostic Test Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.

    2012-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations.

  12. The utilization of sepiolite in landfill liners.

    PubMed

    Güney, Y; Ozdemir, H V

    2005-05-01

    In this study, sepiolite and natural soil-added sepiolite mixtures were studied to find out whether they can be used as compacted landfill liner, as they are an economic alternative to the other compacted day liners or not. Geotechnical and physico-chemical properties of sepiolite and sepiolite mixtures, containing 25% and 50% natural soil by weight, and compacted at water contents ranging from 35% to 60%, were determined by hydraulic conductivity, leachate analysis, unconfined compression strength, consolidation, volumetric shrinkage and swelling tests. The test results showed that the compacted natural soil-added sepiolite mixtures exhibit lower permeability and swelling properties, and higher compressive strength than pure sepiolite. The overall evaluation of the results has revealed that the natural soil-added sepiolite showed good promise and it can be used as a landfill barrier due to its high capacity of contaminant adsorption. PMID:15974274

  13. Examination of shaped charge liner shock loading

    SciTech Connect

    Murphy, M.J.; Moore, T.W.; Lee, C.G.; Breithaupt, R.; Avara, G.R.

    1996-07-01

    A series of experiments was conducted for the purpose of achieving a more fundamental understanding of the shaped charge liner shock loading environment. The test configuration, representing the middle portion of a shaped charge, consists of a 50 mm deep, 100 mm tall, and 2 mm thick copper plate driven by 50 mm deep, 100 mm tall, tapered thickness wedge of LX-14. An electrically driven 50 mm square flyer is used to surface initiate the base of the LX-14 causing a plane detonation wave to propagate into the explosive wedge along the liner surface. Fabry-Perot laser velocimetry measures the particle velocity time history of the plate. The CTH and DYNA2D hydrocodes are used to simulate the experiments. Calculations of the velocity profiles are compared to the experimental results. The effects of mesh density, copper material failure and strength models, and explosive detonation models are discussed.

  14. Low-Convergence Magnetized Liner Inertial Fusion

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Vesey, Roger; Sinars, Daniel; Sefkow, Adam

    2013-10-01

    Numerical simulations indicate that pulsed-power driven liner-implosions could produce substantial fusion yields if the deuterium-tritium (DT) fuel is first magnetized and preheated [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. As with all inertial fusion, the implosions could be degraded by the Rayleigh-Taylor instability. Since highly convergent implosions are more susceptible to this instability, we have explored the necessary conditions to obtain significant fusion yield with low-convergence liner-implosions. Such low-convergence implosions can be obtained if the fuel is sufficiently preheated and magnetized. We present analytic and numerical studies of laser plasma heating, which indicate that low convergence implosions should be possible with sufficient laser energy. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contra.

  15. Acoustic-Liner Admittance in a Duct

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1986-01-01

    Method calculates admittance from easily obtainable values. New method for calculating acoustic-liner admittance in rectangular duct with grazing flow based on finite-element discretization of acoustic field and reposing of unknown admittance value as linear eigenvalue problem on admittance value. Problem solved by Gaussian elimination. Unlike existing methods, present method extendable to mean flows with two-dimensional boundary layers as well. In presence of shear, results of method compared well with results of Runge-Kutta integration technique.

  16. Cavitation modeling and diesel engine cylinder liners

    NASA Astrophysics Data System (ADS)

    Chandekar, Gautam; Pardue, Sally

    2003-10-01

    A common occurrence of cavitation damage is the waterside pitting of a wet sleeve liner in a diesel engine. The automotive industry utilizes an ultrasonic test of 20 kHz according to ASTM standards to quantify the effectiveness of engine coolant additives to prevent damage. However, recent tests indicate a mismatch between the ultrasonic test results and actual engine test runs. The focus of this study is to generate numerical models of bubble dynamics using already published literature. In most of the published papers higher-range frequencies (ultrasonic >15 kHz) are used. It is useful to explore the results of lower excitation frequencies as the vibrating frequencies of a diesel engine liner are between 500-9000 Hz. A Rayleigh-Plesset equation, nonlinear in nature, is used to plot the relation between bubble radius and time. Plots of the numerical solution from MATLAB are compared with plots published in the literature. Results from when the frequency of excitation is changed to the liner wall frequency and the fluid properties are changed to approximate engine conditions will be presented. Future work will examine the energy released by the bubble collapse and its correlation with erosion measured as mass change in a standard test button.

  17. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... liners? 250.425 Section 250.425 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... pressure testing liners? (a) You must test each drilling liner (and liner-lap) to a pressure at least equal to the anticipated pressure to which the liner will be subjected during the formation...

  18. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... liners? 250.425 Section 250.425 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... pressure testing liners? (a) You must test each drilling liner (and liner-lap) to a pressure at least equal to the anticipated pressure to which the liner will be subjected during the formation...

  19. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... liners? 250.425 Section 250.425 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... pressure testing liners? (a) You must test each drilling liner (and liner-lap) to a pressure at least equal to the anticipated pressure to which the liner will be subjected during the formation...

  20. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... liners? 250.425 Section 250.425 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... requirements for pressure testing liners? (a) You must test each drilling liner (and liner-lap) to a pressure at least equal to the anticipated pressure to which the liner will be subjected during the...

  1. Effect of denture cleansers on surface hardness of resilient denture liners at various time intervals- an in vitro study

    PubMed Central

    Pahuja, Rasleen Kaur; Bansal, Sanjay

    2013-01-01

    PURPOSE This study was aimed to determine the effect of two chemically distinct denture cleansers and water on the surface hardness of acrylic and silicone based soft denture liners at various time intervals. MATERIALS AND METHODS Two commonly used commercial resilient liner material were selected based on their chemical composition (silicone- and acrylic-based soft liners) for this investigation. 120 cylindrical specimens were made of 15 mm × 10 mm dimensions (according to ASTM: D-2240-64T) in a custom made metal mold. All specimens were stored in artificial saliva throughout the study. Forty specimens were cleansed daily in 0.5% sodium hypochlorite solution; forty were cleansed in sodium perborate and remaining forty specimens were daily rinsed in water. Testing was done at 1 week, 1 month, 3 months and 6 months for surface hardness using a Shore A Durometer. A mean of 3 reading for each sample was subjected to one-way ANOVA, Post Hoc test and pair-t test for statistical analysis. P values of less than 0.05 were taken as statistically significant. RESULTS Surface hardness of all the samples was significantly higher after a period of 6 months irrespective of the cleansing treatment. Minor changes were observed between control, sodium hypochlorite and sodium perborate groups with time. Greater change was observed in surface hardness of acrylic-based soft denture liners as compared to silicone-based soft liners for all groups, as time progressed. CONCLUSION Silicone-based soft denture liners performed significantly better in all cleansing treatments than acrylic-based soft denture liners. PMID:24049568

  2. Accelerated aging tests of liners for uranium mill tailings disposal

    SciTech Connect

    Barnes, S.M.; Buelt, J.L.; Hale, V.Q.

    1981-11-01

    This document describes the results of accelerated aging tests to determine the long-term effectiveness of selected impoundment liner materials in a uranium mill tailings environment. The study was sponsored by the US Department of Energy under the Uranium Mill Tailings Remedial Action Project. The study was designed to evaluate the need for, and the performance of, several candidate liners for isolating mill tailings leachate in conformance with proposed Environmental Protection Agency and Nuclear Regulatory Commission requirements. The liners were subjected to conditions known to accelerate the degradation mechanisms of the various liners. Also, a test environment was maintained that modeled the expected conditions at a mill tailings impoundment, including ground subsidence and the weight loading of tailings on the liners. A comparison of installation costs was also performed for the candidate liners. The laboratory testing and cost information prompted the selection of a catalytic airblown asphalt membrane and a sodium bentonite-amended soil for fiscal year 1981 field testing.

  3. Method for selectively controlling flow across slotted liners

    SciTech Connect

    Peavy, M.A.; Dees, J.M.

    1993-08-31

    A process is described for decreasing flow rate across the radial boundary of a selected interval in a well bore containing a slotted liner comprising: placing an explosive and an internally catalyzed resin solution inside an elongated container; locating the elongated container opposite the selected interval in the well bore where flow rate through the slotted liner is to be decreased; firing the explosive; and allowing the resin to cure on the slotted liner before initiating flow through the well. A method is described for decreasing production of unwanted fluids from a horizontal well containing a slotted liner comprising: placing an explosive and an internally catalyzed resin inside an elongated container; placing the elongated container opposite an interval in the horizontal well where unwanted fluid is entering the well bore through the slotted liner; firing the explosive; and permitting the resin to cure on the slotted liner before initiating flow in the well.

  4. Flux penetration of an aluminum liner during working fluid compression

    SciTech Connect

    Bell, D.E.; Hussey, T.W.

    1995-08-15

    The Phillips Laboratory working fluid experiment is a research effort to study the compression of a hot hydrogen gas using an electromagnetically imploded solid liner. In our experiments, the solid liner is driven by a 5 MJ discharge which Joule heats the aluminum, melting and eventually vaporizing it. This numerical study explores the vaporization and flux penetration of a solid aluminum liner during its implosion. In particular, it considers the effect that flux which has penetrated the liner has on the hot hydrogen working fluid. A study of the dynamics of the solid liner was performed with one-dimensional radiation magnetohydrodynamic simulations, which included a careful treatment of the electrical resistivity near the phase transitions. An analytic snowplow model is developed in order to estimate the minimum working fluid density required to ignore flux penetration through the liner.

  5. General synthetic approach to heterostructured nanocrystals based on noble metals and I-VI, II-VI, and I-III-VI metal chalcogenides.

    PubMed

    Liu, Minghui; Zeng, Hua Chun

    2014-08-19

    Solid metal precursors (alloys or monometals) can serve both as a starting template and as a source material for chemical transformation to metal chalcogenides. Herein, we develop a simple solution-based strategy to obtain highly monodisperse noble-metal-based heterostructured nanocrystals from such precursor seeds. By utilizing chemical and structural inhomogeneity of these metal seeds, in this work, we have synthesized a total of five I-VI (Ag2S, Ag2Se, Ag3AuS2, Ag3AuSe2, and Cu9S5), three II-VI (CdS, CdSe, and CuSe), and four I-III-VI (AgInS2, AgInSe2, CuInS2, and CuInSe2) chalcogenides, together with their fifteen associated heterodimers (Au-Ag2S, Au-Ag2Se, Au-Ag3AuS2, Au-Ag3AuSe2, Au-AgInS2, Au-AgInSe2, Au-CdS, Au-CdSe, Ag-Ag2S, Ag-AgInS2, Au-Cu9S5, Au-CuInS2, Au-CuSe, Au-CuInSe2, and Pt-AgInS2) to affirm the process generality. Briefly, by adding elemental sulfur or selenium to AuAg alloy seeds and tuning the reaction conditions, we can readily obtain phase-pure Au-Ag2S, Au-Ag2Se, Au-Ag3AuS2, and Au-Ag3AuSe2 heterostructures. Similarly, we can also fabricate Au-AgInS2 and Au-AgInSe2 heterostructures from the AuAg seeds by adding sulfur/selenium and indium precursors. Furthermore, by partial or full conversion of Ag seeds, we can prepare both single-phase Ag chalcogenide nanocrystals and Ag-based heterostructures. To demonstrate wide applicability of this strategy, we have also synthesized Au-based binary and ternary Cu chalcogenide (Au-Cu9S5, Au-CuSe, Au-CuInS2, and Au-CuInSe2) heterostructures from alloy seeds of AuCu and Pt chalcogenides (e.g., Pt-AgInS2) from alloy seeds of PtAg. The structure and composition of the above products have been confirmed with X-ray diffraction, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and energy-dispersive X-ray spectroscopy methods. A kinetic investigation of the formation mechanism of these heterostructures is brought forward using Au-AgInS2 and Ag-CuInS2 as model examples. PMID

  6. Novel transition metal complexes of 4-hydroxy-coumarin-3-thiocarbohydrazone: Pharmacodynamic of Co(III) on rats and antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Mosa, A. I.; Emara, Adel A. A.; Yousef, J. M.; Saddiq, A. A.

    2011-10-01

    A new series of stable transition metal complexes of the formula M(L)X·S, where M = Cu(II), Ni(II), Co(III), Cr(III) and Fe(III) and L is the deprotonated ligand of 4-hydroxy-coumarin-3-thiocarbohydrazone, X = Cl -, NO 3- or CH 3COO - and S = H 2O and/or EtOH. The HL ligand was prepared by the reaction of 3-formyl-4-hydroxy-coumarine with thiocarbohydrazide in the molar ratio 1:1. The HL ligand and its metal complexes were characterized by elemental analysis, 1H NMR, IR and electronic spectra, and molar conductance and magnetic measurements and thermal gravimetric analysis (TGA). The HL ligand acts as a monobasic tridentate ONS donor in all metal complexes, and coordinated through the phenolic OH, azomethine nitrogen and thione sulfur. Electronic spectra with magnetic moments suggested varieties of geometries around the central metal atoms. Thermal gravimetric analysis indicates that the complexes are stable up to 300 °C, and release the uncoordinated and/or coordinated H 2O/solvent molecules, which is accompanied by a color change. The formed complexes after releasing the solvent were investigated and their structures are suggested to have square planar or octahedral arrangement. Pharmacodynamic of cobalt(III) complex on some biochemical parameters and histological studies in serum and heart tissue in rats have been studied. Although the complexes demonstrated a significant effect at low dose than the high dose, the ligand showed significant good effects in both high and low doses on the biochemical analysis in serum and heart tissue. Cobalt complex was screened in order to evaluate its antifungal activity against the filamentous fungi Aspergillus niger, Aspergillus fumigatus, and Aspergillus flavus, and antibacterial activity against the Candida albicans, Escherichia coli, Klebseilla pneumoniae and Pseudomonas aeruginosa.

  7. Correlating shaped charge performance with processing conditions and microstructure of an aluminum alloy 1100 liner enabled by a new method to arrest nascent jet formation

    NASA Astrophysics Data System (ADS)

    Scheid, James Eric

    Aluminum-lined shaped charges are used in special applications where jet and / or slug residue in the target is undesired. The three different microstructures of the aluminum liners studied herein resulted from three different manufacturing interpretations of the same design. One interpretation was completely machining the liners from best available annealed round stock. The second was to cold-forge the liners from annealed round-stock in an open-die forge to near-final dimensions, and then machine the liners to the final dimensions. The third variant in this study was to use the above forged liner, but with annealing after the machining. These three manufacturing choices resulted in significant variations in shaped charge performance. The goal of this research was to clarify the relationships between the liner metal microstructure and properties, and the corresponding shaped charge dynamic flow behavior. What began as an investigation into user-reported performance problems associated inherently with liner manufacturing processes and resultant microstructure, resolved into new understandings of the relationships between aluminum liner microstructure and shaped charge collapse kinetics. This understanding was achieved through an extensive literature review and the comprehensive characterization of the material properties of three variants of an 1100 aluminum shaped charge liner with a focus on collapse and nascent jet formation. The machined liner had a microstructure with large millimeter-sized grains and fine particles aligned in bands parallel to the charge axis. The forged liner microstructure consisted of very small one micrometer-sized (1 mum) subgrains and fine particles aligned largely in bands elongated parallel to the liner contour. The annealed liner was characterized by ten micrometer (10 mum) sized equiaxed grains with residual fine particles in the forged alignment. This characterization was enabled by the development, execution and validation of a

  8. Composite liner, multi-megabar shock driver development

    SciTech Connect

    Bartsch, R.R.; Clark, D.A.; Morgan, D.V.

    1998-12-31

    A magnetically imploded, cylindrical, multi-layer liner is under development for use as an equation of state shock driver using energetic, pulsed-power sources. The stability and uniformity of the imploding liner has been investigated on the Pegasus pulsed-power facility at liner velocities of >7 mm/usec. Using a thick aluminum driver layer to carry the current and a platinum impactor layer to generate the shock on impact with a target, the expected platinum-on-platinum shock level is 6 to 8 Mbar for operation of the Pegasus capacitor bank at the maximum charge voltage of 90 kV. The initial liner design utilized 8 grams of aluminum with a 1 gram (12-micron thick) layer of platinum on the inside. The inner surface was observed with flash radiography oriented transversely to the axis of the collapsing liner, and with fiber-optic time-of-arrival detectors on the target. Short wavelength perturbations of the inner surface along the axial direction were observed with amplitudes between 200 to 400 microns. A second liner was evaluated with increased aluminum mass and thickness to avoid drive current penetration and the resulting melting and susceptibility to Rayleigh Taylor instabilities. With 10 grams of aluminum at an initial radius of 2.5 cm, the initial liner thickness was almost 50% greater than for the first liner. This liner was observed to be more uniform at impact than the initial design, with perturbed amplitudes less than 100 to 200 microns at wavelengths of a few millimeters. Based on these results a third experiment is being prepared with the 10 gram aluminum liner of the second design and with a 1 gram, 15 micron platinum impactor layer. Liner stability measurements will be presented, application of this liner system to EOS measurement will be discussed, and the evolution to higher energy experiments on ATLAS will be presented.

  9. Analysis of dry cylinder liner behavior during engine operation

    SciTech Connect

    Mizutani, Kazunori; Murata, Katsuhiro; Suzawa, Takashi; Niitsu, Yasuhiko

    1996-09-01

    Engine manufacturers are continuing to develop new engine designs that provide higher power output, lower fuel consumption and lower engine weight. In order to achieve significant engine weight reduction, the light weight cylinder block structure employs dry cylinder liners rather than wet cylinder liners. The cast iron dry liner structure is utilized because of the superior wear and scuff resistance of the cast iron. Thin wall dry cast iron liners are being employed in both gasoline and diesel engines. Dry cylinder liners with wall thickness of 1.5 mm are in production for Japanese automotive diesel engines. In the case of the dry thin wall cast iron liners, 2 design configurations are employed: loose-fit type having a specified clearance between the outer liner surface and the cylinder bore surface; press-in type having an interference fit between the outer surface of liner and the cylinder bore surface. The physical properties of cast iron must be considered during the design phase if successful production designs are to be provided. In addition the operating stress caused by piston slap, combustion pressure variation and resultant effect on operating stress in the liner must be considered during the design. This paper summarizes the results of a series of studies undertaken to determine the effect of piston slap, combustion pressure and initial stress on resultant behavior of thin wall cylinder liners under engine operating conditions. The resultant data may be utilized to improve the overall design of thin wall dry cylinder liners, especially for loose-fit liners.

  10. LIQUID BUTANE FILLED LOAD FOR A LINER DRIVEN PEGASUS EXPERIMENT

    SciTech Connect

    M.A. SALAZAR; W. ANDERSON; ET AL

    2001-06-01

    A hydrogen rich, low density liquid, contained within the internal volume of a cylindrical liner, was requested of the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division for one of the last liner driven experiments conducted on the Los Alamos Pegasus facility. The experiment was a continuation of the Raleigh-Taylor hydrodynamics series of experiments and associated liners that have been described previously [1,2].

  11. Liquid butane filled load for a liner driven Pegasus experiment.

    SciTech Connect

    Salazar, M. A.; Armijo, E. V.; Anderson, W. E.; Atchison, W. L.; Bartos, J. J.; Garcia, F.; Randolph, B.; Sheppard, M. G.; Stokes, J. L.

    2001-01-01

    A hydrogen rich, low density liquid, contained within the internal volume of a cylindrical liner, was requested of the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division for one of the last liner driven experiments conducted on the Los Alamos Pegasus facility. The experiment (Fig.1) was a continuation of the Raleigh-Taylor hydrodynamics series of experiments and associated liners that have been described previously.

  12. Effects of oxidation state on metal ion binding by Medicago sativa (alfalfa): Atomic and X-ray absorption spectroscopic studies with Fe(II) and Fe(III)

    SciTech Connect

    Tiemann, K.J.; Gardea-Torresdey, J.L.; Gamez, G.; Dokken, K.; Cano-Aguilera, I.; Renner, M.W.; Furenlid, L.R.

    2000-02-15

    The authors present here experimental results that investigate the effects of metal-ion binding on iron-ion sorption to and recovery from alfalfa biomass. Fe(II)- and Fe(III)-ion binding were measured in order to ascertain the differences in binding strengths due to changes in oxidation state. Stronger binding was found for iron(III)-biomass as compared to iron(II)-biomass. The optimal pH for iron uptake was determined to be 5. The results of pH binding profile, orion desorption, and temperature-dependent binding experiments as well as X-ray spectroscopic (XAS) measurements all suggest that binding of iron by alfalfa biomass may be occurring through carboxyl ligands. The XAS experiments further demonstrate that the metal binding proceeds without an oxidation state change, and both iron(II) and iron(III) have similar coordination environments. The information presented will assist in understanding the binding of other metals to alfalfa biomass and in developing methods for their recovery.

  13. Enhanced liners for attenuating utility by-product liquors

    SciTech Connect

    Martin, W.J.; Dennison, D. )

    1990-03-01

    The enhancement of soil liners for selected inorganic solution species by improving attenuation properties neutralizing reagents was investigated. One soil type (Cole silt loam) and two coal combustion liquors (boiling cleaning waste (acidic) and water treatment system brine (alkaline)) were used in laboratory studies. These studies tested the effectiveness of the use of neutralizing reagents both as a direct solution treatment and as a neutralizing barrier in a waste impoundment. The two kinds of laboratory experiments conducted were batch experiments for assessing the reagent's effectiveness and for selecting some for further study, and column experiments to (1) investigate different reagent application techniques, (2) determine the reagent's effects on permeability, and (3) study the changes in contaminant mobility. The batch studies resulted in the selection of two cost-effective neutralizing agents, hydrated lime (Ca(OH){sub 2}) for the acidic waste and alum (Al{sub 2}(SO{sub 4}){sub 3}{center dot}8H{sub 2}O) for the alkaline waste. In the column studies, these reagents were incorporated several ways in amending a soil liner to create neutralizing barriers. The results showed that a layered combination of homogeneous amended soil over unamended soil provided the most applicable and effective barrier with acceptable permeability. Precipitation, adsorption, and bacteriological activity were the major mechanisms involved in changing contaminant mobility and permeability. Several mineralogical changes occurred during contact in both studies, although the most significant was the precipitation of iron hydroxide and aluminum hydroxide, with their subsequent adsorption of trace metals. 13 refs., 26 figs.

  14. Optimization and Control of Acoustic Liner Impedance with Bias Flow

    NASA Technical Reports Server (NTRS)

    Wood, Houston; Follet, Jesse

    2000-01-01

    Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.

  15. Durability of organobentonite-amended liner for decelerating chloroform transport.

    PubMed

    He, Shichong; Zhu, Lizhong

    2016-04-01

    Chloroform is added to landfill for suppressing methane generation, which however may transport through landfill liners and lead to contamination of groundwater. To decelerate chloroform transport, the enhanced sorption ability of clay liners following organobentonite addition was tested. In this study, we used batch sorption to evaluate sorption capacity of chloroform to organobentonite, followed by column tests and model simulations for assessing durability of different liners. Results show that adding 10% CTMAB-bentonite (organobentonite synthesized using cetyltrimethylammonium bromide) increased the duration of a bentonite liner by 88.5%. CTMAB-bentonite consistently showed the highest sorption capacity (Qm) among six typical organobentonites under various environmental conditions. The removal rate of chloroform by CTMAB-bentonite was 3.6-23 times higher than that by natural soils. According to the results derived by model simulation, a 70-cm 10% CTMAB-bentonite liner exhibited much better durability than a 100-cm compact clay liner (CCL) and natural bentonite liner evidenced by the delayed and lower peak of eluent concentration. A minimum thickness of 65.8 cm of the 10% CTMAB-bentonite liner could completely sorb the chloroform in a 100-m-high landfill. The 10% CTMAB-bentonite liner exhibiting much better durability has the promise for reducing environmental risk of chloroform in landfill. PMID:26874063

  16. The effect of electro-thermal and electro-choric instabilities and material strength on MagLIF liner stability

    NASA Astrophysics Data System (ADS)

    Pecover, James; Chittenden, Jeremy

    2015-11-01

    Magnetized liner inertial fusion (MagLIF) is a promising route to controlled thermonuclear fusion. The concept involves magnetically imploding a metal liner containing fuel with an azimuthal magnetic field (Bz) ; a key limitation of such systems is the magneto-Rayleigh-Taylor (MRT) instability. MagLIF relevant liner implosions with Bz = 0 carried out at SNL showed high amplitude MRT growth; we present a quantitative comparison between experimental results and 3D results from our MHD code Gorgon, demonstrating closer agreement for the MRT properties with the inclusion of electro-thermal and electro-choric instabilities (ETI and ECI) and material strength. The ETI and ECI result in early time azimuthally correlated structures which provide a seed for the MRT. Material strength increases the ETI amplitude due to positive feedback during the solid phase of the liner. Similar liner implosions with Bz exhibited a re-orientation of the MRT into helical structures, which are yet to be reproduced by simulations without an artificial helical initialisation. Our 3D Gorgon results with Bz show helices prior to vapourisation; these occur at initially positive angles before changing sign, tending to zero later in time. This angle does not follow the relative magnitudes of Bz and Bθ as would be expected for the MRT. The angle instead follows the ratio of axial and azimuthal currents (induced by compression or rarefaction of the initial Bz) , indicating an electro-thermal origin.

  17. Finite element analysis of the impingement on the acetabular liner rim due to wear of the acetabular liner surface

    NASA Astrophysics Data System (ADS)

    Saputra, Eko; Anwar, Iwan Budiwan; Ismail, Rifky; Jamari, J.; van der Heide, Emile

    2016-04-01

    This workstudies the impingement on the rim of acetabular liner due to wear on the surface of acetabular liner using finite element simulation. A three dimensional contact model between a femoral head and an acetabular liner was developed. There are three steps in this simulation, i.e. creating the virtualwear on the surface of acetabular liner, applying the load at the femoral head, and rotating the femoral head from neutral position till the impingement occurrence. The virtualwear is created based on the data of wear depth which was obtained from literature. Results showed that the wear on the acetabular liner surface wouldaffected the impingement occurrence, in which the impingement angle becomes narrow. In addition, the failure possibility of the acetabular liner rimwould become higher.

  18. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    DOE PAGESBeta

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Tomlinson, K.; Robertson, G. R.; Knudson, M. D.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; et al

    2016-01-07

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as itmore » implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ~1000 GPa is achieved in all cases. Lastly, these experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.« less

  19. Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

    NASA Astrophysics Data System (ADS)

    Lemke, R. W.; Dolan, D. H.; Dalton, D. G.; Brown, J. L.; Tomlinson, K.; Robertson, G. R.; Knudson, M. D.; Harding, E.; Mattsson, A. E.; Carpenter, J. H.; Drake, R. R.; Cochrane, K.; Blue, B. E.; Robinson, A. C.; Mattsson, T. R.

    2016-01-01

    We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ˜1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.

  20. Syntheses, crystal structures, and properties of six new lanthanide(III) transition metal tellurium(IV) oxyhalides with three types of structures.

    PubMed

    Shen, Yue-Ling; Mao, Jiang-Gao

    2005-07-25

    Solid-state reactions of lanthanide(III) oxide (and lanthanide(III) oxyhalide), transition metal halide (and transition metal oxide), and TeO(2) at high temperature lead to six new lanthanide transition metal tellurium(IV) oxyhalides with three different types of structures, namely, DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, ErCuTe(2)O(6)Br, Sm(2)Mn(Te(5)O(13))Cl(2), Dy(2)Cu(Te(5)O(13))Br(2), and Nd(4)Cu(TeO(3))(5)Cl(3). Compounds DyCuTe(2)O(6)Cl, ErCuTe(2)O(6)Cl, and ErCuTe(2)O(6)Br are isostructural. The lanthanide(III) ion is eight-coordinated by eight oxygen atoms, and the copper(II) ion is five-coordinated by four oxygens and a halide anion in a distorted square pyramidal geometry. The interconnection of Ln(III) and Cu(II) ions by bridging tellurite anions results in a three-dimensional (3D) network with tunnels along the a-axis; the halide anion and the lone-pair electrons of the tellurium(IV) ions are oriented toward the cavities of the tunnels. Compounds Sm(2)Mn(Te(5)O(13))Cl(2) and Dy(2)Cu(Te(5)O(13))Br(2) are isostructural. The lanthanide(III) ions are eight-coordinated by eight oxygens, and the divalent transition metal ion is octahedrally coordinated by six oxygens. Two types of polymeric tellurium(IV) oxide anions are formed: Te(3)O(8)(4)(-) and Te(4)O(10)(4)(-). The interconnection of the lanthanide(III) and divalent transition metal ions by the above two types of polymeric tellurium(IV) oxide anions leads to a 3D network with long, narrow-shaped tunnels along the b-axis. The halide anions remain isolated and are located at the above tunnels. Nd(4)Cu(TeO(3))(5)Cl(3) features a different structure. All five of the Nd(III) ions are eight-coordinated (NdO(8) for Nd(1), Nd(2), Nd(4), and Nd(5) and NdO(7)Cl for Nd(3)), and the copper(I) ion is tetrahedrally coordinated by four chloride anions. The interconnection of Nd(III) ions by bridging tellurite anions resulted in a 3D network with large tunnels along the b-axis. The CuCl(4) tetrahedra are interconnected into

  1. Evaluation of Microleakage in Class II Cavities using Packable Composite Restorations with and without use of Liners.

    PubMed

    Arora, Rajesh; Kapur, Ravi; Sibal, Nikhil; Juneja, Sumit

    2012-09-01

    The advent of the esthetic era and advances in adhesive technology saw the emergence of resin composite materials. But the problem of polymerization shrinkage remained. This was due to the contraction of the resin during curing inducing internal and interfacial stresses at the tooth restoration interface, leading to gap formation and subsequent micro-leakage. A number of techniques and modifications in the material have been proposed to minimize polymerization shrinkage and microleakage. In this study, the hypothesis that the placement of resin-modified glass ionomer cement (RMGIC) or flowable composite, as liner, beneath the packable composite, on the gingival surface of the tooth [coronal or apical to cementoenamel junction (CEJ)], could reduce the microleakage in class II composite restorations, was tested. Sixty recently extracted noncarious human mandibular molars were used. The teeth were randomly divided into three groups (20 specimens each): Group I (Filtek P60 with RMGIC liner), group II (Filtek P60 with Filtek Z350 liner) and Group III (Filtek P60 without liner). The teeth of each group were further subdivided into two subgroups (equal number of cavities). Subgroup A gingival seat 1 mm occlusal to CEJ on mesial side. Subgroup B gingival seat 1 mm apical to CEJ on distal side. It was concluded that in class II composite restorations gingival microleakage is more at the dentinal surface than on enamel. The use of a flowable composite and RMGIC, as liners, beneath the packable composite, in class II composite restorations, significantly reduces the microleakage when margins are in dentin, but the reverse is true, when the margins are in enamel. How to cite this article: Arora R, Kapur R, Sibal N, Juneja S. Evaluation of Microleakage in Class II Cavities using Packable Composite Restorations with and without use of Liners. Int J Clin Pediatr Dent 2012;5(3):178-184. PMID:25206164

  2. Metals as electron acceptors in single-chamber microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Li, Yan; Wu, Yining; Puranik, Sampada; Lei, Yu; Vadas, Timothy; Li, Baikun

    2014-12-01

    Two typical oxidized-status metals (Fe(III) and Cr(VI)) were studied as electron acceptors on cathodes in single chamber microbial fuel cells (SCMFCs) to explore novel sustainable technology for metal treatment. The batch-mode tests indicated that the voltages of SCMFCs steadily increased with Fe(III) concentrations (10, 30, and 50 mg L-1) and Cr(VI) concentrations (1, 3, and 10 mg L-1). The maximum power density was 658 ± 6 mW m-2 at 50 mg L-1 of Fe(III), and 419 ± 4 mW m-2 at 10 mg L-1 Cr(VI). The conversion efficiency of Cr(VI) and Fe(III) were high (>89%), and coulombic efficiency ranged 23-100%. Cr(VI) concentration of 10 mg L-1 started to irreversibly inhibit SCMFCs. The open circuit potentials (OCPs) well reflected the organic substrate removal in anode and metal reduction on cathode. Cathode liner sweep voltammetry (LSV) showed the electrochemical activity increased with metal concentrations, and the cathode of Fe(III) had better LSV performance than Cr(VI). Microbial community analysis of biofilms showed that the DNA band patterns of anode biofilms were similar, while cathode biofilms varied with electron acceptors. This study demonstrated the high power generation of SCMFCs with metals as electron acceptors, and revealed the great potential of expanding MFCs for diverse waste treatment.

  3. Neutron Diffraction Characterization of Residual Strain in Welded Inconel 718 for NASA Space Shuttle Flow Liners

    SciTech Connect

    Rathod, C.R.; Vaidyanathan, R.; Livescu, V.; Clausen, B.; Bourke, M. A. M.; Notardonato, W.U.; Femminineo, M.

    2004-06-28

    This work quantitatively assesses residual strains and stresses associated with the weld repair process used to repair cracks on NASA's space shuttle flow liners. The coupons used in this investigation were made of the same INCONEL 718 alloy used for the flow liners. They were subjected to identical welding and certification procedures that were carried out on the space shuttle. Neutron diffraction measurements at Los Alamos National Laboratory determined residual strains at selected locations in a welded coupon at 293 K and 135 K. The weld repair process introduced Mises effective residual stresses of up to 555 MPa. On comparing the measurements at 293 K and 135 K, no significant change to the residual strain profile was noted at the low temperature. This indicated minimal mismatch in the coefficients of thermal expansion between the base metal and the weld.

  4. Full-Scale GRCop-84 Combustion Chamber Liner Preform Fabricated Successfully

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Russell, Carolyn K.; Goudy, Rick

    2005-01-01

    GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) has been under development at the NASA Glenn Research Center for several years. The alloy possesses a unique combination of good thermal conductivity, high elevated temperature strength, long creep life, and long low-cycle- fatigue. The alloy is also more oxidation resistant than pure copper and most competitive alloys. The combination of properties has attracted attention from major rocket engine manufacturers who are interested in the alloy for the combustion chamber liner in their next generation of regeneratively cooled engines. Before GRCop-84 can be used in a main combustion chamber application, it must be demonstrated that the alloy can be made successfully to the large sizes and proper shape needed and that it retain useful properties. Recent efforts have successfully demonstrated the ability to fabricate a liner preform via metal spinning that retains the alloy s strength even in the welded sections.

  5. The GuideLiner Catheter: A Useful Tool in the Armamentarium of the Interventional Cardiologist

    PubMed Central

    Boukhris, Marouane; Azzarelli, Salvatore; Tomasello, Salvatore Davide; Elhadj, Zied Ibn; Marzà, Francesco; Galassi, Alfredo R.

    2015-01-01

    Regardless of the clinical setting, a good back-up represents one of the most important conditions to ensure guide wire and balloon advancement and stent delivery. As a “mother and child” system, the GuideLiner catheter (Vascular Solutions Inc., Minneapolis, MN, USA) provides an extension to the guide catheter with better coaxial alignment and stability. We report two didactic cases showing the usefulness of the GuideLiner device in everyday catheterization laboratory practice. The first case was a primary percutaneous coronary intervention (PCI) in a 71-year-old diabetic man admitted for inferior ST-elevation myocardial infarction, related to tight proximal stenosis in a dominant tortuous and calcified left circumflex. The second case was an elective PCI in a 76-year-old man admitted for stable angina (Canadian Cardiovascular Society [CCS] class III), related to focal intra-stent restenosis of a saphenous venous graft to the left anterior descending. In both cases, the GuideLiner catheter provided a good back-up insuring the success of PCI and drug-eluting stents implantation, with a good in-hospital outcome. PMID:26985211

  6. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  7. PROPERTIES OF M31. III. CANDIDATE BEAT CEPHEIDS FROM PS1 PANDROMEDA DATA AND THEIR IMPLICATION ON METALLICITY GRADIENT

    SciTech Connect

    Lee, C.-H.; Kodric, M.; Seitz, S.; Riffeser, A.; Koppenhoefer, J.; Bender, R.; Hopp, U.; Gössl, C.; Snigula, J.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Hodapp, K. W.; Kaiser, N.; Kudritzki, R.-P.; Tonry, J. L.; Wainscoat, R. J.; Price, P. A.

    2013-11-01

    We present a sample of M31 beat Cepheids from the Pan-STARRS 1 PAndromeda campaign. By analyzing 3 years of PAndromeda data, we identify 17 beat Cepheids, spreading over a galactocentric distance of 10-16 kpc. Since the relation between the fundamental mode period and the ratio of the fundamental to the first overtone period places a tight constraint on metallicity, we are able to derive the metallicity at the position of the beat Cepheids using the relations from the model of Buchler. Our metallicity estimates show sub-solar values within 15 kpc, similar to the metallicities from H II regions. We then use the metallicity estimates to calculate the metallicity gradient of the M31 disk, which we find to be closer to the metallicity gradient derived from planetary nebula than the metallicity gradient from H II regions.

  8. IUE and Einstein observations of the LINER galaxy NGC 4579

    NASA Technical Reports Server (NTRS)

    Reichert, G. A.; Puchnarewicz, E. M.; Mason, K. O.

    1990-01-01

    Results of International Ultraviolet Explorer (IUE) and Einstein observations of the LINER galaxy NGC 4579 are reported. Spatial profiles of the long wavelength IUE emission show a two component structure, with an unresolved core superimposed on broader underlying emission. The core spectrum shows strong C II lambda 2326 and broad Mg II lambda 2800 emission, and perhaps emission due to blends of Fe II multiplets (2300 to 23600 angstrom). The short wavelength emission is spatially unresolved, and shows C II lambda 1335, C III lambda 1909 broad C IV lambda 1550 emission, and a broad feature at approximately 1360 angstrom which may be due to 0.1 lambda 1356. Contrary to previous reports no evidence for He II lambda 1640 is found in the spectrum. An unresolved x ray source is detected at the location of the nucleus; its spectrum is well fitted by a power law of energy slope alpha approximately -0.5. These results further support the idea that NGC 4579 may contain a dwarf Seyfert nucleus.

  9. Direct synthesis of high-valent aryl-Cu(II) and aryl-Cu(III) compounds: mechanistic insight into arene C-H bond metalation.

    PubMed

    Zhang, Hu; Yao, Bo; Zhao, Liang; Wang, De-Xian; Xu, Bo-Qing; Wang, Mei-Xiang

    2014-04-30

    Copper and its salts are abundant, inexpensive, and eco-friendly and have been used as the surrogates of noble metals to effect arene C-H bond activation and transformations. Despite of the recent significant progress of the study, syntheses of high-valent arylcopper(II-III) compounds are still very rare and mechanisms of copper(II)-catalyzed reactions remain elusive. With the use of azacalix[1]arene[3]pyridines as a platform, a number of arylcopper(II) compounds were synthesized efficiently from the reaction of Cu(ClO4)2 under ambient conditions. The resulting aryl-Cu(II) compounds, which contain an unprecedented (substituted) phenyl-Cu(II) σ-bond, were stable under atmospheric conditions and can undergo facile oxidation reaction by free copper(II) ions or oxone to afford arylcopper(III) compounds in good yields. Both arylcopper(II) and arylcopper(III) compounds were characterized unambiguously by means of XRD, XPS, and NMR methods. Experimental evidence including reaction kinetics, LFER and KIE, and theoretical calculations indicated that the Cu(ClO4)2-mediated arene C-H bond activation proceeds plausibly through an electrophilic aromatic metalation pathway. The synthesis of high-valent arylcopper compounds and the reaction mechanism reported here highlight the diversity and richness of organocopper chemistry. PMID:24730979

  10. Optimal Spray Application Rates for Ornamental Nursery Liner Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray deposition and coverage at different application rates for nursery liners of different sizes were investigated to determine the optimal spray application rates. Experiments were conducted on two and three-year old red maple liners. A traditional hydraulic sprayer with vertical booms was used t...

  11. ONERA-NASA Cooperative Effort on Liner Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Primus, Julien; Piot, Estelle; Simon, Frank; Jones, Michael G.; Watson, Willie R

    2013-01-01

    As part of a cooperation between ONERA and NASA, the liner impedance eduction methods developed by the two research centers are compared. The NASA technique relies on an objective function built on acoustic pressure measurements located on the wall opposite the test liner, and the propagation code solves the convected Helmholtz equation in uniform ow using a finite element method that implements a continuous Galerkin discretization. The ONERA method uses an objective function based either on wall acoustic pressure or on acoustic velocity acquired above the liner by Laser Doppler Anemometry, and the propagation code solves the linearized Euler equations by a discontinuous Galerkin discretization. Two acoustic liners are tested in both ONERA and NASA ow ducts and the measured data are treated with the corresponding impedance eduction method. The first liner is a wire mesh facesheet mounted onto a honeycomb core, designed to be linear with respect to incident sound pressure level and to grazing ow velocity. The second one is a conventional, nonlinear, perforate-over-honeycomb single layer liner. Configurations without and with ow are considered. For the nonlinear liner, the comparison of liner impedance educed by NASA and ONERA shows a sensitivity to the experimental conditions, namely to the nature of the source and to the sample width.

  12. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calcium hydroxide cavity liner. 872.3250 Section 872.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner....

  13. QUANTIFICATION OF LEAK RATES THROUGH HOLES IN LANDFILL LINERS

    EPA Science Inventory

    A study was undertaken to evaluate the rate at which liquids leak through flaws in the flexible membrane liner (FML) component of composite FML-soil liners. The variables studied were: flaw size and shape, FML type and thickness, the influence of a geotextile between the compacte...

  14. Verification of a variable rate sprayer for nursery liner applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experimental variable-rate sprayer designed for liner applications was tested by comparing its spray deposit and coverage, and droplet density inside canopies of six nursery liner varieties with constant-rate applications. Spray samplers, including water sensitive papers (WSP) and nylon screens, ...

  15. LABORATORY STUDIES OF SOIL BEDDING REQUIREMENTS FOR FLEXIBLE MEMBRANE LINERS

    EPA Science Inventory

    The initial objective of this study was to investigate the performance of membrane liners during construction of hazardous waste landfills and develop a means for protecting the liners from damage. This objective included the development of laboratory tests that could be used to ...

  16. CONSTRUCTION, MONITORING, AND PERFORMANCE OF TWO SOIL LINERS

    EPA Science Inventory

    A prototype soil liner and a field-scale soil liner were constructed to test whether compacted soil barrier systems could be built to meet the standard set by the U.S. Environmental Protection Agency (EPA) for saturated hydraulic conductivity (< 1 x 10'7 cm/s). In situ ponded inf...

  17. Frequency and Time Domain Modeling of Acoustic Liner Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.

    1982-01-01

    As part of a research program directed at the acoustics of advanced subsonic propulsion systems undertaken at NASA Langley, Duke University was funded to develop a boundary condition model for bulk-reacting nacelle liners. The overall objective of the Langley program was to understand and predict noise from advanced subsonic transport engines and to develop related noise control technology. The overall technical areas included: fan and propeller source noise, acoustics of ducts and duct liners, interior noise, subjective acoustics, and systems noise prediction. The Duke effort was directed toward duct liner acoustics for the development of analytical methods to characterize liner behavior in both frequency domain and time domain. A review of duct acoustics and liner technology can be found in Reference [1]. At that time, NASA Langley was investigating the propulsion concept of an advanced ducted fan, with a large diameter housed inside a relatively short duct. Fan diameters in excess of ten feet were proposed. The lengths of both the inlet and exhaust portions of the duct were to be short, probably less than half the fan diameter. The nacelle itself would be relatively thin-walled for reasons of aerodynamic efficiency. The blade-passage frequency was expected to be less than I kHz, and very likely in the 200 to 300 Hz range. Because of the design constraints of a short duct, a thin nacelle, and long acoustic wavelengths, the application of effective liner technology would be especially challenging. One of the needs of the NASA Langley program was the capability to accurately and efficiently predict the behavior of the acoustic liner. The traditional point impedance method was not an adequate model for proposed liner designs. The method was too restrictive to represent bulk reacting liners and to allow for the characterization of many possible innovative liner concepts. In the research effort at Duke, an alternative method, initially developed to handle bulk

  18. Study of imploding liner-electrode wall interaction

    SciTech Connect

    Chernyshev, V.K.; Zharinov, Y.I.; Kudolkin, I.D.; Ruzin, V.N.; Ionov, A.I.

    1994-12-01

    The report gives the results of the experiments on aluminum liner acceleration and their interaction with electrode walls. The liners having the radius of 30 mm, wall thickness of 1mm and 0.7 mm and a length of 30 mm are accelerated by a magnetic field, created by explosive magnetic generator (EMC). A helical generator 100 mm in diameter and 700 mm in length was used to create a magnetic field. During the process of compression a liner shape was recorded using X-ray facility. The report gives experimental set-up, electrical and design data of experimental units and diagnostic equipment data, also raw experimental data, analysis data and description of an analysis method. Based on the experiments the authors chose the method to bring a liner into a contact with electrode walls, which permits continuous contact of a liner with electrode wall is in the process of motion.

  19. Nondestructive evaluation of environmental barrier coatings in CFCC combustor liners.

    SciTech Connect

    Sun, J. G.; Benz, J.; Ellingson, W. A.; Kimmel, J. B.; Price, J. R.; Energy Technology; Solar Turbines, Inc

    2007-01-01

    Advanced combustor liners fabricated of SiC/SiC continuous fiber-reinforced ceramic composite (CFCC) and covered with environmental barrier coatings (EBCs) have been successfully tested in Solar Turbines Inc. field engines. The primary goal for the CFCC/EBC liners is to reach a 30,000-h lifetime. Because the EBCs, when applied on the hot surfaces of liners, protect the underlying CFCC from oxidation damage, their performance is critical in achieving the lifetime goal. To determine CFCC/EBC liner condition and assess operating damage, the liners were subjected to nondestructive evaluation (NDE) during various processing stages, as well as before and after the engine test. The NDE techniques included pulsed infrared thermal imaging, air-coupled ultrasonic scanning, and X-ray computerized tomography. It was found that EBC damage and spallation depend on the condition of the CFCC material. The NDE results and correlations with destructive examination are discussed.

  20. Iridium(III) amine complexes as high-stability structure-directing agents for the synthesis of metal phosphates

    SciTech Connect

    Williams, D.J.; Kruger, J.S.; McLeroy, A.F.; Wilkinson, A.P.; Hanson, J.C.

    1999-08-01

    Structure-directing agents based on iridium(III) complexes provide a hydrothermally robust alternative to the corresponding cobalt compounds. The slight size difference between Co(III) and Ir(III) does not dramatically influence the nature of the AlPO products that are obtained from hydrothermal synthesis using complexes based upon the ligands 1,2-diaminoethane and trans-1,2-diaminocyclohexane (chxn). However, the very slow ligand exchange kinetics of the Ir(III) complexes facilitate the use of increased hydrothermal synthesis temperatures when compared to the corresponding Co(III) complexes. For the two systems that they have examined, the use of Ir(III) allows the synthesis temperatures to be increased by {approximately} 40 C over the maximum that is viable for the corresponding cobalt complexes. This increase allowed us to prepare AlPO single crystals using Ir({+-}chxn){sub 3}{sup 3+}, whereas they authors could only obtain powders using the corresponding cobalt complexes. The use of iridium in place of cobalt increases the range of ligands that can be considered in constructing chelate complexes for use as structure-directing agents and may facilitate the preparation of different AlPO products from those found using cobalt complexes, as higher hydrothermal synthesis temperatures can be employed.

  1. The effect of base/liner use on restoration leakage.

    PubMed

    von Fraunhofer, J A; Marshall, K R; Holman, B G

    2006-01-01

    Central to the success of a restoration is the quality of the restoration-dentin interfacial seal; any compromise of the seal can lead to secondary or recurrent decay. Class V restorations have a high leakage propensity and this study evaluates the effect of base/liner placement on leakage behavior. Class V intracoronal half enamel/half dentin preparations (3.0 x 2.0 x 2.0 mm) were cut in four groups (n = 10) of extracted human teeth with a new bur used for each cavity preparation. All teeth were single-rooted, single-canal anterior teeth. Base/liner usage differed between each group. The first group of teeth had no liner or base, while a liner was placed in the second group of teeth prior to conditioning and restoration. A base was placed in the third group of cavity preparations and both the base and liner were placed in the fourth group. After preparation, a small diameter bare-end PVC-insulated copper wire was inserted within the root canal of each tooth from the apex to firm contact with the pulp chamber roof. The tooth-wire interface and root surface was sealed and leakage was followed electrochemically for 35 days in 0.9% NaCl solution. All of the teeth leaked to some degree; however, teeth that were restored without liner or base demonstrated the smallest amount of leakage. The greatest leakage was noted in teeth restored with both a base and a liner; teeth restored with only a base showed greater leakage than those restored with only a liner. The findings indicate that the presence of a base and/or a liner results in greater leakage compared with intracoronal Class V preparations that were conditioned and restored only. The data suggest that placing both a base and a liner increases restoration leakage significantly. PMID:16689065

  2. High energy imploding liner experiment HEL-1: Experimental results

    SciTech Connect

    Clark, D.A.; Anderson, B.G.; Ekdahl, C.A.

    1997-09-01

    Magnetically driven imploding liner systems can be used as a source of shock energy for materials equation of state studies, implosion driven magnetized plasma fusion experiments, and other similar applications. The imploding liner is a cylinder of conducting material through which a current is passed in the longitudinal direction. Interaction of the current with its own magnetic field causes the liner to implode. Sources of electrical energy for imploding liner systems are capacitor banks or explosive pulse power systems seeded by capacitor banks. In August, 1996, a high energy liner experiment (HEL-1) was conducted at the All-Russia Scientific Research Institute (VNIIEF) in Sarov, Russia. A 5 tier 1 meter diameter explosive disk generator provided electrical energy to drive a 48 cm outside diameter, 4 mm thick, aluminum alloy liner having a mass of about 11kg onto an 11 cm diameter diagnostic package. The purpose of the experiment was to measure performance of the explosive pulse power generator and the heavy imploding liner. Electrical performance diagnostics included inductive (B-dot) probes, Faraday Rotation current measurement, Rogowski total current measurement, and voltage probes. Flux loss and conductor motion diagnostics included current-joint voltage measurements and motion sensing contact pins. Optical and electrical impact pins, inductive (B-dot) probes, manganin pressure probes, and continuously recording resistance probes in the Central Measuring Unit (CMU) and Piezo and manganin pressure probes, optical beam breakers, and inductive probes located in the glide planes were used as liner symmetry and velocity diagnostics. Preliminary analysis of the data indicate that a peak current of more than 100 MA was attained and the liner velocity was between 6.7 km/sec and 7.5 km/sec. Liner kinetic energy was between 22 MJ and 35 MJ. 4 refs., 6 figs., 1 tab.

  3. Determination of pressure and density of shocklessly compressed beryllium through x-ray radiography of a magnetically driven cylindrical liner implosion

    NASA Astrophysics Data System (ADS)

    Lemke, R. W.; Martin, M. R.; McBride, R. D.; Davis, J.-P.; Knudson, M. D.

    2011-06-01

    High current, pulsed-power driven liner implosions can be used to produce extreme pressure states in condensed matter for equation of state (EOS) studies. The Z accelerator can deliver a current pulse to a cylindrical liner (tubular shell) that rises to a peak current of ~20 MA in ~100 ns; at peak current the magnetic pressure is ~28 Mbar on the surface of a liner with radius 0.15 cm. We discuss a semi-empirical technique for obtaining EOS data for a metallic solid, quasi-isentropically (shocklessly) compressed to multi-megabar pressure, through x-ray radiography of a high current, magnetically driven, cylindrical liner implosion. Results are presented from experiments on Z in which a solid beryllium (Be) liner is quasi-isentropically compressed by magnetic pressure. Radiographs of the liner are used in conjunction with hydrodynamic equations to determine density and pressure on the principal quasi-isentrope of solid Be to a peak pressure of 2.4 Mbar. Sandia is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-ACO4-94AL85000.

  4. Laboratory measurements of contaminant attenuation of uranium mill tailings leachates by sediments and clay liners

    SciTech Connect

    Serne, R.J.; Peterson, S.R.; Gee, G.W.

    1983-04-01

    We discuss FY82 progress on the development of laboratory tools to aid in the prediction of migration potential of contaminants present in acidic uranium mill tailings leachate. Further, empirical data on trace metal and radionuclide migration through a clay liner are presented. Acidic uranium mill tailings solution from a Wyoming mill was percolated through a composite sediment called Morton Ranch Clay liner. These laboratory columns and subsequent sediment extraction data show: (1) As, Cr, Pb, Ag, Th and V migrate very slowly; (2) U, Cd, Ni, Zn, Fe, Mn and similar transition metals are initially immobilized during acid neutralization but later are remobilized as the tailings solution exhausts the clay liner's acid buffering capacity. Such metals remain immobilized as long as the effluent pH remains above a pH value of 4 to 4.5, but they become mobile once the effluent pH drops below this range; and (3) fractions of the Se and Mo present in the influent tailings solution are very mobile. Possible controlling mechanisms for the pH-dependent immobilization-mobilization of the trace metals are discussed. More study is required to understand the controlling mechanisms for Se and Mo and Ra for which data were not successfully collected. Using several column lengths (from 4.5 to 65 cm) and pore volume residence times (from 0.8 to 40 days) we found no significant differences in contaminant migration rates or types and extent of controlling processes. Thus, we conclude that the laboratory results may be capable of extrapolation to actual disposal site conditions.

  5. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.

    PubMed

    Kwon, Jang-Soon; Yun, Seong-Taek; Lee, Jong-Hwa; Kim, Soon-Oh; Jo, Ho Young

    2010-02-15

    Kinetic and equilibrium sorption experiments were conducted on removal of divalent heavy metals (Pb(II), Cu(II), Zn(II), Cd(II)) and trivalent arsenic (As(III)) from aqueous solutions by scoria (a vesicular pyroclastic rock with basaltic composition) from Jeju Island, Korea, in order to examine its potential use as an efficient sorbent. The removal efficiencies of Pb, Cu, Zn, Cd, and As by the scoria (size=0.1-0.2mm, dose=60gL(-1)) were 94, 70, 63, 59, and 14%, respectively, after a reaction time of 24h under a sorbate concentration of 1mM and the solution pH of 5.0. A careful examination on ionic concentrations in sorption batches suggested that sorption behaviors of heavy metals onto scoria are mainly controlled by cation exchange. On the other hand, arsenic appeared to be sensitive to specific sorption onto hematite (a minor constituent of scoria). Equilibrium sorption tests indicated that the removal efficiency for heavy metals increases with increasing pH of aqueous solutions, which is resulted from precipitation as hydroxides. Similarly, multi-component systems containing heavy metals and arsenic showed that the arsenic removal increases with increasing pH of aqueous solutions, which can be attributed to coprecipitation with metal hydroxides. The empirically determined sorption kinetics were well fitted to a pseudo-second order model, while equilibrium sorption data for heavy metals and arsenic onto scoria were consistent with the Langmuir and Freundlich isotherms, respectively. Natural scoria studied in this work is an efficient sorbent for concurrent removal of divalent heavy metals and arsenic. PMID:19828237

  6. Method of melting metals to reduce contamination from crucibles

    DOEpatents

    Banker, John G.; Wigginton, Hubert L.

    1977-01-01

    Contamination of metals from crucible materials during melting operations is reduced by coating the interior surface of the crucible with a ceramic non-reactive with the metallic charge and disposing a metal liner formed from a portion of the metallic charge within the coated crucible. The liner protects the ceramic coating during loading of the remainder of the charge and expands against the ceramic coating during heat-up to aid in sintering the coating.

  7. A New Use for a Familiar Fold: the X-Ray Crystal Structure of GTP-Bound GTP Cyclohydrolase III From Methanocaldococcus Jannaschii Reveals a Two Metal Ion Catalytic Mechanism

    SciTech Connect

    Morrison, S.D.; Roberts, S.A.; Zegeer, A.M.; Montfort, W.R.; Bandarian, V.

    2009-05-26

    GTP cyclohydrolase (GCH) III from Methanocaldococcus jannaschii, which catalyzes the conversion of GTP to 2-amino-5-formylamino-6-ribosylamino-4(3H)-pyrimidinone 5'-phosphate (FAPy), has been shown to require Mg{sup 2+} for catalytic activity and is activated by monovalent cations such as K{sup +} and ammonium [Graham, D. E., Xu, H., and White, R. H. (2002) Biochemistry 41, 15074-15084]. The reaction is formally identical to that catalyzed by a GCH II ortholog (SCO 6655) from Streptomyces coelicolor; however, SCO 6655, like other GCH II proteins, is a zinc-containing protein. The structure of GCH III complexed with GTP solved at 2 {angstrom} resolution clearly shows that GCH III adopts a distinct fold that is closely related to the palm domains of phosphodiesterases, such as DNA polymerase I. GCH III is a tetramer of identical subunits; each monomer is composed of an N- and a C-terminal domain that adopt nearly superimposible structures, suggesting that the protein has arisen by gene duplication. Three metal ions were located in the active site, two of which occupy positions that are analogous to those occupied by divalent metal ions in the structures of a number of palm domain containing proteins, such as DNA polymerase I. Two conserved Asp residues that coordinate the metal ions, which are also found in palm domain containing proteins, are observed in GCH III. Site-directed variants (Asp{yields}Asn) of these residues in GCH III are less active than wild-type. The third metal ion, most likely a potassium ion, is involved in substrate recognition through coordination of O6 of GTP. The arrangement of the metal ions in the active site suggests that GCH III utilizes two metal ion catalysis. The structure of GCH III extends the repertoire of possible reactions with a palm fold to include cyclohydrolase chemistry.

  8. Further Development and Assessment of a Broadband Liner Optimization Process

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2016-01-01

    The utilization of advanced fan designs (including higher bypass ratios) and shorter engine nacelles has highlighted a need for increased fan noise reduction over a broader frequency range. Thus, improved broadband liner designs must account for these constraints and, where applicable, take advantage of advanced manufacturing techniques that have opened new possibilities for novel configurations. This work focuses on the use of an established broadband acoustic liner optimization process to design a variable-depth, multi-degree of freedom liner for a high speed fan. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design a liner aimed at producing impedance spectra that most closely match the predicted optimum values. The multi-degree of freedom design is carried through design, fabrication, and testing. In-duct attenuation predictions compare well with measured data and the multi-degree of freedom liner is shown to outperform a more conventional liner over a range of flow conditions. These promising results provide further confidence in the design tool, as well as the enhancements made to the overall design process.

  9. Multimegajoule electromagnetic implosion of shaped solid-density liners

    SciTech Connect

    Degnan, J.H.; Baker, W.L.; Alme, M.L.

    1995-03-01

    Electromagnetic implosions of shaped cylindrical aluminum liners that remain at solid density are discussed. The approximate liner parameters have an initial radius of 3 to 4 cm, are 4 cm in height, and are nearly 0.1 cm thick. The liners are driven by the Shiva Star 1300-{mu}f capacitor bank at an 84-kV charging voltage and an nearly 30-nH total initial inductance (including implosion load). The discharge current travels along the length of the liner and rises to 14 MA in nearly 8 {mu}s. The implosion time is nearly 12 {mu}s. Diagnostics include inductive current and capacitive voltage probes, magnetic probes, and radiography. Both right-circular cylinder and conical liner implosion data are displayed and discussed. Radiography indicates implosion behavior substantially consistent with two-dimensional magnetohydrodynamic calculations, which predict inner surface implosion velocities exceeding 20 km/s, and compressed density of two to three times solid density. Less growth of perturbations is evident for the conical liner (nearly 1% thickness tolerance) than for the right-circular cylindrical liner (nearly 3% thickness tolerance). 12 refs., 8 figs.

  10. Two-dimensional modeling of magnetically imploded liners

    SciTech Connect

    Atchison, W.L.; Bowers, R.L.; Brownell, J.H.; Lee, H.

    1996-11-01

    Magnetically imploded massive cylindrical liner drivers have been studied in two-dimensions for low, intermediate and high energy pulsed power systems. The simulations have been carried out using a resistive Eulerian magnetohydrodynamics computational model which includes material strength, and models the interactions between the imploding liner and the electrode walls. The computations simulate the generation of perturbations and their subsequent growth during the implosion. At low energies a solid liner remains in the plastic regime, reaching an inner cylindrical target with velocities of a few mm per {mu}s. At higher energies (where one-dimensional models predict implosion velocities of order 1 cm/{mu}s or more) resistive heating of the liner results in melting, and the effects of magnetically driven instabilities become important. We discuss the two-dimensional issues which arise in these systems. These include: the onset of perturbations associated with the motion of the liner along the electrodes; the growth of instabilities in liquid layers; and the suppression of instability growth during the implosion by maintaining a solid inner layer. Studies have been made of liners designed for the Pegasus capacitor bank facility (currents in the 5 - 12 MA regime), and for the Procyon high explosive system (currents in the 20 MA regime). This work focus on the design and performance of the first Pegasus composite megabar liner experiment.

  11. Thermographic inspection of pipes, tanks, and containment liners

    NASA Astrophysics Data System (ADS)

    Renshaw, Jeremy B.; Lhota, James R.; Muthu, Nathan; Shepard, Steven M.

    2015-03-01

    Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concrete for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.

  12. Thermographic inspection of pipes, tanks, and containment liners

    SciTech Connect

    Renshaw, Jeremy B. Muthu, Nathan; Lhota, James R.; Shepard, Steven M.

    2015-03-31

    Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concrete for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.

  13. CANMET Gasifier Liner Coupon Material Test Plan

    SciTech Connect

    Mark Fitzsimmons; Alan Darby; Fred Widman

    2005-10-30

    The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

  14. A sensate liner for personnel monitoring applications

    NASA Astrophysics Data System (ADS)

    Lind, Eric J.; Jayaraman, Sundaresan; Park, Ms. Sungmee; Rajamanickam, Rangaswamy; Eisler, Robert, , Dr.; Burghart, Mr. George; McKee, Mr. Tony

    This program develops and demonstrates technologies useful for implementing a manageable cost effective systems approach to monitoring the medical condition of personnel by way of an instrumented uniform hereafter referred to as a Sensate Liner (SL). The SL consists of a form fitting garment which contains and interconnects sensing elements and devices to an electronics pack containing a processor and transmitter. The SL prototype requires fiber, textile, garment and sensor development. The SL textile consists of a mesh of electrically and optically conductive fibers integrated into the normal structure (woven or knitted) of fibers and yarns selected for comfort and durability. A suite of SL garment compatible embedded biological and physical sensors are then integrated into the SL. The initial SL sensor suite is selected to improve triage for combat casualties. Additional SL sensor concepts for medical monitoring will be discussed.

  15. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  16. Studies of solid liner stability in electromagnetic implosions

    SciTech Connect

    Atchison, W.L.; Faehl, R.J.; Rienovsky, R.E.; Morgan, D.

    1998-12-31

    The authors have conducted a series of experiments involving electromagnetic implosion of solid aluminum liners on the Pegasus II capacitor bank. These experiments consisted of liners on which single wavelength perturbations had been cut into the outer surface. Typical liner thickness was 400 mm and the usual material was the 1100 aluminum alloy. This alloy is relatively soft with a high conductivity. Recently comparisons have been made with harder but more resistive alloys. The sinusoidal perturbations ranged in amplitude between 10--100 mm and their wavelength between 0.5 and 2.0 mm. Radiographs of the imploding liners showed that the initial perturbations grew to amplitudes of 2000--4000 mm before completely rupturing and injecting flux into the region interior to the liner. Throughout the growth of the perturbations, there was virtually no coupling to other wavelengths. Even after liner disruption, the series of disk-like structures that resulted remained at the same scale length until impact with a center conductor. Two-dimensional MHD simulations of these experiments with the high conductivity Al-1100 alloy have yielded consistently good agreement, both qualitatively and quantitatively. Because the magnetic diffusion time in this alloy is comparable to or longer than the growth time, they find that the dynamics can be approximated by theories of Rayleigh-Taylor instability for which strength has been included. Recently, the authors have conducted two experiments with other aluminum alloys. These alloys have a significantly higher tensile yield strength than the 1100 alloy, but also somewhat high resistivity. Because the magnetic diffusion, ohmic heating, and loss of strength all occur on shorter times than does the growth, the forces acting on the liner are more distributed throughout the liner thickness than on the previous experiments. Qualitatively different features have been observed in the radiographs of these experiments. Two-dimensional MHD

  17. Formed platelet combustor liner construction feasibility, phase A

    NASA Technical Reports Server (NTRS)

    Hayes, W. A.; Janke, D. E.

    1992-01-01

    Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase

  18. Retrieved Highly Crosslinked UHMWPE Acetabular Liners Have Similar Wear Damage as Conventional UHMWPE

    PubMed Central

    Schroder, David T.; Kelly, Natalie H.; Parks, Michael L.

    2010-01-01

    Background Highly crosslinked UHMWPE is associated with increased wear resistance in hip simulator and clinical studies. Laboratory and case studies, however, have described rim fracture in crosslinked acetabular liners. Controversy exists, therefore, on the relative merits of crosslinked liners over conventional liners in terms of wear performance versus resistance to fatigue cracking. Questions/purposes We asked whether crosslinked liners would show less surface damage than conventional liners but would be more susceptible to fatigue damage. Methods We examined 36 conventional UHMWPE and 39 crosslinked UHMWPE retrieved implants with similar patient demographics and identical design for evidence of wear damage, including articular surface damage, impingement, screw-hole creep, and rim cracks. Results We observed no difference in wear damage scores for the two liners. Conventional liners more frequently impinged but were more often elevated with smaller head sizes. We observed creep in approximately 70% of both types of liners. Incipient rim cracks were found in five crosslinked liners, and one liner had a rim fracture. Only one conventional liner had an incipient rim crack. Conclusions Contrary to our expectation, damage was similar between crosslinked and conventional UHMWPE liners. Moreover, the 15% occurrence (six of 39) of incipient or complete fractures in crosslinked liners as compared with a 3% occurrence (one of 36) in conventional liners may have implications for the long-term performance of crosslinked liners. Longer-term studies will be necessary to establish the fate of rim cracks and thus the overall clinical fatigue performance of crosslinked liners. PMID:20844998

  19. Prediction of the acoustic impedance of duct liners

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.; Tester, B. J.

    1976-01-01

    Recent research which contributes to the prediction of the acoustic impedance of duct liners is reviewed. This review includes the linear and nonlinear properties of sheet and bulk type materials and methods for the measurement of these properties. It also includes the effect of grazing flow on the acoustic properties of materials. Methods for predicting the properties of single or multilayered, point reacting or extended reaction, and flat or curved liners are discussed. Based on this review, methods for predicting the properties of the duct liners which are typically used in aircraft engines are recommended. Some areas of needed research are discussed briefly.

  20. Pegasus liner stability experiments: Diagnostics and experimental results

    SciTech Connect

    Clark, D.A.; Morgan, D.V.; Rodriguez, G.

    1998-12-31

    A series of experiments to compare imploding cylindrical liner performance with Magneto-HydroDynamic (MHD) modeling has been performed at the Los Alamos National Laboratory Pegasus capacitor bank. Several configurations of aluminum liners have been used; some with initial perturbations and some smooth. Instability growth resulting from the perturbations has been observed with high resolution. Load diagnostics included radial x-rays, fiber optic impact pins, and VISAR (Velocity Interferometer for a Surface of Any Reflector). Diagnostic results and comparisons for several liner stability (LS) experiments are presented.

  1. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-07-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N‧-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs.

  2. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities.

    PubMed

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-01-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N'-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs. PMID:27431731

  3. Optical and electrochemical characteristics of ethylenediamine complexes of Pt(II) and Ir(III) with metalated 2-phenyl- and 2-naphthylbenzothiazole

    NASA Astrophysics Data System (ADS)

    Katlenok, E. A.; Balashev, K. P.

    2016-05-01

    The cyclometalated complexes [Pt(C^N)En]PF6 and [Ir(C^N)2En]PF6 ((C^N)- are deprotonated forms of 2-phenylbenzothiazole or 2-naphthylbenzothiazole and En is ethylenediamine) are studied by 1H NMR, IR, electronic absorption, and emission spectroscopy, as well as by voltammetry. Metalation of heterocyclic ligands leads to the formation of five-membered {M(C^N)} cycles in the composition of squareplanar Pt(II) complexes and octahedral Ir(III) complexes of the cis-C,C structure. A bathochromic shift of the metal-to-cyclometalated ligand charge transfer bands and a decrease in the potential difference between the single-electron waves of metal-centered oxidation and ligand-centered reduction of complexes upon substitution of 2-phenylbenzothiazole by 2-naphthylbenzothiazole and of Pt(II) by Ir(II) are shown. The phosphorescence of complexes in the visible region is assigned to the radiative transition from the metal-modified intraligand electronic excited state.

  4. Lanthanide Metal-Organic Frameworks with Six-Coordinated Ln(III) Ions and Free Functional Organic Sites for Adsorptions and Extensive Catalytic Activities

    PubMed Central

    Zhu, Yu; Zhu, Min; Xia, Li; Wu, Yunlong; Hua, Hui; Xie, Jimin

    2016-01-01

    Three chelating-amino-functionalized lanthanide metal-organic frameworks, Y-DDQ, Dy-DDQ and Eu-DDQ, were synthesized with a flexible dicarboxylate ligand based on quinoxaline (H2DDQ = N, N′-dibenzoic acid-2,3-diaminoquinoxaline). The three-dimensional framework is constructed by the H2DDQ linkers connecting the zigzag ladders, showing a net of sra topology. In the structures, one kind of Ln(III) ions metal centers are six-coordinated and thus can potentially behave as open metal sites (OMSs), while the free chelating amino groups can act as free functional organic sites (FOSs). The N2 and Ar adsorption behaviors indicate that these Ln-DDQ exhibits stable microporous frameworks with high surface area after remove of the solvents. Owing to presence of OMSs and FOSs, these MOFs show good ability of CO2, dyes captures and Lewis acid catalyst for cyanosilylation reaction. In view of the existing FOSs in the framework, Pd NPs were immobilized onto the MOFs through graft interactions between free chelating amino groups and metal ions precursor using postsynthetic modification. The well dispersed Pd@Ln-DDQs exhibit efficient and recyclable catalytic reduction of 4-nitrophenol to 4-aminophenol, and they can also act as an excellent catalyst for Suzuki-Miyaura cross-coupling reactions with the exposed Pd NPs. PMID:27431731

  5. Application of the Ta liner technique to produce Ca beams at INFN-Legnaro National Laboratories (INFN-LNL)

    NASA Astrophysics Data System (ADS)

    Galatà, A.; Sattin, M.; Manzolaro, M.; Martini, D.; Facco, A.; Tinschert, K.; Spaedtke, P.; Lang, R.; Kulevoy, T.

    2014-02-01

    The ECR ion sources are able to produce a wide variety of highly charged metallic ion beams thanks to the development of different techniques (ovens, sputtering, direct insertion, metal ions from volatile compounds (MIVOC)). In the case of the ovens, the sticking of the hot vapors on the surface of the plasma chamber leads to high material consumption rates. For elements like Ca, a tantalum liner inserted inside the chamber can be used to limit this phenomenon. The modeling of temperature distribution inside the chamber with and without the liner was carried out with COMSOL-multiphysics code. Results of simulation and the comparison with experiments performed at INFN-Legnaro National Laboratories with Ca beams are discussed.

  6. Application of the Ta liner technique to produce Ca beams at INFN-Legnaro National Laboratories (INFN-LNL)

    SciTech Connect

    Galatà, A. Sattin, M.; Manzolaro, M.; Martini, D.; Facco, A.; Tinschert, K.; Spaedtke, P.; Lang, R.; Kulevoy, T.

    2014-02-15

    The ECR ion sources are able to produce a wide variety of highly charged metallic ion beams thanks to the development of different techniques (ovens, sputtering, direct insertion, metal ions from volatile compounds (MIVOC)). In the case of the ovens, the sticking of the hot vapors on the surface of the plasma chamber leads to high material consumption rates. For elements like Ca, a tantalum liner inserted inside the chamber can be used to limit this phenomenon. The modeling of temperature distribution inside the chamber with and without the liner was carried out with COMSOL-multiphysics code. Results of simulation and the comparison with experiments performed at INFN-Legnaro National Laboratories with Ca beams are discussed.

  7. Super and massive AGB stars - III. Nucleosynthesis in metal-poor and very metal-poor stars - Z = 0.001 and 0.0001

    NASA Astrophysics Data System (ADS)

    Doherty, Carolyn L.; Gil-Pons, Pilar; Lau, Herbert H. B.; Lattanzio, John C.; Siess, Lionel; Campbell, Simon W.

    2014-06-01

    We present a new grid of stellar models and nucleosynthetic yields for super-AGB stars with metallicities Z = 0.001 and 0.0001, applicable for use within galactic chemical evolution models. Contrary to more metal-rich stars where hot bottom burning is the main driver of the surface composition, in these lower metallicity models the effect of third dredge-up and corrosive second dredge-up also have a strong impact on the yields. These metal-poor and very metal-poor super-AGB stars create large amounts of 4He, 13C, 14N and 27Al as well as the heavy magnesium isotopes 25Mg and 26Mg. There is a transition in yield trends at metallicity Z ≈ 0.001, below which we find positive yields of 12C, 16O, 15N and 28Si, which is not the case for higher metallicities. We explore the large uncertainties derived from wind prescriptions in super-AGB stars, finding ≈2 orders of magnitude difference in yields of 22Ne, 23Na, 24, 25, 26Mg, 27Al and our s-process proxy isotope g. We find inclusion of variable composition low-temperature molecular opacities is only critical for super-AGB stars of metallicities below Z ≈ 0.001. We analyse our results, and those in the literature, to address the question: Are super-AGB stars the polluters responsible for extreme population in the globular cluster NGC 2808? Our results, as well as those from previous studies, seem unable to satisfactorily match the extreme population in this globular cluster.

  8. The Subaru FMOS Galaxy Redshift Survey (FastSound). III. The mass-metallicity relation and the fundamental metallicity relation at z ˜ 1.4*

    NASA Astrophysics Data System (ADS)

    Yabe, Kiyoto; Ohta, Kouji; Akiyama, Masayuki; Bunker, Andrew; Dalton, Gavin; Ellis, Richard; Glazebrook, Karl; Goto, Tomotsugu; Imanishi, Masatoshi; Iwamuro, Fumihide; Okada, Hiroyuki; Shimizu, Ikkoh; Takato, Naruhisa; Tamura, Naoyuki; Tonegawa, Motonari; Totani, Tomonori

    2015-12-01

    We present the results from a large near-infrared spectroscopic survey made with Subaru/FMOS (FastSound) consisting of ˜ 4000 galaxies at z ˜ 1.4 with significant Hα detection. We measure the gas-phase metallicity from the [N II]λ6583/Hα emission line ratio of the composite spectra in various stellar mass and star-formation rate bins. The resulting mass-metallicity relation generally agrees with previous studies obtained in a similar redshift range to that of our sample. No clear dependence of the mass-metallicity relation on star-formation rate is found. Our result at z ˜ 1.4 is roughly in agreement with the fundamental metallicity relation at z ˜ 0.1 with a fiber aperture corrected star-formation rate. We detect significant [S II]λλ6716,6731 emission lines from the composite spectra. The electron density estimated from the [S II]λλ6716,6731 line ratio ranges from 10-500 cm-3, which generally agrees with that of local galaxies. On the other hand, the distribution of our sample on [N II]λ6583/Hα vs. [S II]λλ6716,6731/Hα is different to that found locally. We estimate the nitrogen-to-oxygen abundance ratio (N/O) from the N2S2 index, and find that the N/O in galaxies at z ˜ 1.4 is significantly higher than the local values at a fixed metallicity and stellar mass. The metallicity at z ˜ 1.4 recalculated with this N/O enhancement taken into account decreases by 0.1-0.2 dex. The resulting metallicity is lower than the local fundamental metallicity relation.

  9. Interaction of Uranium Mill Tailings Leachate with Soils and Clay Liners

    SciTech Connect

    Gee, G. W.; Campbell, A. C.; Sherwood, D. R.; Strickert, R. G.; Phillips, S. J.

    1980-06-01

    This study evaluates leachate-soil interactions that will take place at the Morton Ranch for certain disposal alternatives. Laboratory tests were conducted to evaluate the following: 1) physical and chemical characteristics of geologic materials from the Morton Ranch. 2) physical and chemical characteristics of acid leach tailings and tallings solution, 3) leaching tests with selected tailings materials and leach solutions to evaluate the leachability of contaminants with time under specific disposal alternatives, 4) adsorption studies measuring the sorption characteristics of heavy metals and radionuclides on the geologic materials at Morton Ranch, 5) clay liner stability tests to evaluate effects of acid leachate on clay mineralogy and clay permeability.

  10. Subscale hot-fire testing of a formed platelet liner

    NASA Technical Reports Server (NTRS)

    Elam, Sandra K.; Hayes, William A.

    1993-01-01

    To investigate low-cost options for fabricating main combustion chambers, formed platelet liners are being developed. The savings in manufacturing time and cost associated with platelet liners are accompanied by promising thermal advantages, such as lower-wall temperatures and increased cycle life. A subscale liner was tested by NASA at Marshall Space Flight Center (MSFC) to demonstrate its thermal performance. Testing to date has provided chamber pressures up to 2524 psia, while a maximum chamber pressure of 2700 psia is planned. In general, the liner has remained in good condition and performed well, with only minor areas of localized roughening. Data from this subscale test program is being used to develop a full size chamber for testing on a Space Shuttle Main Engine at MSFC in 1994.

  11. Method of repairing a wellbore liner for sand control

    SciTech Connect

    Dees, J.M.

    1992-10-13

    This patent describes a method of repairing a damaged wellbore liner for controlling sand and other fine materials. It comprises: positioning a quantity of fluid resin material in alignment with the portion of the wellbore liner to be repaired; positioning a gas generator in proximity with the fluid resin material; actuating the gas generator to increase wellbore pressure in a substantially instantaneous manner to a pressure substantially in excess of well pressure to force the fluid resin material from the wellbore into the damaged area of the wellbore liner; and subsequently polymerizing the resin material to form a consolidated, porous permeable matrix that allows the flow of production fluid into the well while preventing the flow of sand, or other fine materials into the well through the previously damaged area of the wellbore liner.

  12. Acoustic Liner Drag: A Parametric Study of Conventional Configurations

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2015-01-01

    Interest in the characterization of the aerodynamic drag performance of acoustic liners has increased in the past several years. This paper details experiments in NASA Langley's Grazing Flow Impedance Tube to quantify the relative drag of several conventional perforate-over-honeycomb liner configurations. For a fixed porosity, facesheet hole diameter and cavity depth are varied to study the effect of each. These configurations are selected to span the range of conventional liner geometries used in commercial aircraft engines. Detailed static pressure and acoustic measurements are made for grazing flows up to M=0.5 at 140 dB SPL for tones between 400 and 2800 Hz. These measurements are used to calculate a resistance factor (?) for each configuration. Analysis shows a correlation between perforate hole size and the resistance factor but cavity depth seems to have little influence. Acoustic effects on liner drag are observed to be limited to the lower Mach numbers included in this investigation.

  13. SLIDE PRESENTATION: LIMITATIONS OF USE OF GEOSYNTHETIC CLAY LINERS (GCLS)

    EPA Science Inventory

    This presentation describes the design and construction issues pertaining to the use of geosynthetic clay liners (GCLSs) in waste containment. The presentation covers new materials, potential design and construction pitfalls and a summary of ongoing research.

  14. Experimental Impedance of Single Liner Elements with Bias Flow

    NASA Technical Reports Server (NTRS)

    Follet, J. I.; Betts, J. F.; Kelly, Jeffrey J.; Thomas, Russell H.

    2000-01-01

    An experimental investigation was conducted to generate a high quality database, from which the effects of a mean bias flow on the acoustic impedance of lumped-element single-degree-of-freedom liners was determined. Acoustic impedance measurements were made using the standard two-microphone method in the NASA Langley Normal Incidence Tube. Each liner consisted of a perforated sheet with a constant-area cavity. Liner resistance was shown to increase and to become less frequency and sound pressure level dependent as the bias flow was increased. The resistance was also consistently lower for a negative bias flow (suction) than for a positive bias flow (blowing) of equal magnitude. The slope of the liner reactance decreased with increased flow.

  15. Mechanical behavior of tungsten shaped charge liner materials

    SciTech Connect

    Lassila, D.H.

    1993-08-01

    Radiographs of jets produced by shaped charges with tungsten liners have documented both ductile and brittle breakup behavior. The relationships between the varying breakup behavior of tungsten shaped charge jets and metallurgical characteristics and/or mechanical behavior of the liner are not understood. In this paper the mechanical behavior of warm-forged and chemical-vapor-deposition (CVD) tungsten is discussed relative to the typical deformation history of an element of liner material which becomes part of the jet. The analyses suggest the following: (1) tungsten liner material is damaged, or possibly pulverized, during shock loading at the high-explosive detonation front; (2) pulverized material is consolidated in the convergence zone under conditions of high pressure, and (3) variations in observed breakup behavior of tungsten may be related to high temperature embrittlement. The low temperature ductile-brittle transition temperature of tungsten (DBTT) is not believed to be directly related to observed variations in break-up behavior of jets.

  16. IET. Stack interior. Masons lay fire brick liner, leaving air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET. Stack interior. Masons lay fire brick liner, leaving air layer between bricks and concrete wall. Date: May 20, 1955. INEEL negative no. 55-1306 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  17. High-speed velocimetry inside imploding cylindrical liners

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Lemke, Ray; Dalton, Devon; Harding, Eric; McBride, Ryan; Martin, Matthew; Blue, Brent; Walker, Scott

    2014-03-01

    Dynamic planar compression is conceptually simple but difficult to maintain at extreme pressure (>5 Mbar). Higher pressures are attainable with imploding cylindrical liners, using Photonic Doppler velocimetry (PDV) to track the liner interior. PDV measures Doppler shift directly--1 GHz of beat frequency for every 1 km/s of velocity--requiring a special ``leapfrog'' approach for liners traveling in excess of 20 km/s. Single-point and multi-point PDV measurements have been performed in aluminum, beryllium, and tantalum liners under ramp compression, and the technique can readily applied to other implosion experiments. Combined with electrical current diagnostics, these measurements test thermodynamic equations of state at pressures up to 10 MBar and beyond. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  18. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials.

    PubMed

    Musso, T B; Parolo, M E; Pettinari, G; Francisca, F M

    2014-12-15

    Sorption of Cu(II) and Zn(II) on three natural clays meeting the international requirements for use as liners was evaluated by means of batch tests. The purpose of this research was to determine the retention capacities of the clays for metal cations commonly present in urban solid waste leachates. The pH and ionic strength conditions were set at values frequently found in real leachates. The changes observed in the XRD patterns and FTIR spectra upon adsorption can be considered an evidence of clay-metal electrostatic interaction. The Langmuir model was found to best describe the sorption processes, offering maximum sorption capacities from 8.16 to 56.89 mg/g for Cu(II) and from 49.59 to 103.83 mg/g for Zn(II). All samples remove more Zn(II) than Cu(II), which may be related to the different geometry of the hydrated Cu(II) cation. The total amount of metal sorption was strongly influenced by the total specific surface area, the presence of carbonates and the smectite content of the clays. In addition to their known quality as physical barriers, the adsorbed amounts obtained indicate the suitability of the tested clays to contribute to the retardation of Cu(II) and Zn(II) transport through clay liners. PMID:25156265

  19. Self-assembly of Terbium(III)-based metal-organic complexes with two-photon absorbing active

    NASA Astrophysics Data System (ADS)

    Li, Dandan; Shao, Nanqi; Sun, Xianshun; Zhang, Guocui; Li, Shengli; Zhou, Hongping; Wu, Jieying; Tian, Yupeng

    2014-12-01

    Hybrid complexes based on D-π-A type dyes p-aminostyryl-pyridinum and Terbium(III) complex anion (1, 2) have been synthesized by ionic exchange reaction. Meanwhile two different alkyl-substituted amino groups were used as electron donors in organic dyes cations. The synthesized complexes were characterized by element analysis. In addition, the structural features of them were systematic studied by single crystal X-ray diffraction analysis. Their linear properties have been systematically investigated by absorption spectra and fluorescence, the results show that the energy transfer takes place from the trans-4-[4‧-(N,N-diethylamino)styryl]-N-methyl pyridinium (2‧) cation to Tb(III). In addition, complex 2 exhibit a large two-photon absorption coefficient β: 0.044 cm/GW at 710 nm.

  20. Configuration Effects on Acoustic Performance of a Duct Liner

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Nark, Douglas; Howerton, Brian M.

    2008-01-01

    Continued success in aircraft engine noise reduction necessitates ever more complete understanding of the effect that flow path geometry has on sound propagation in the engine. The Curved Duct Test Rig (CDTR) has been developed at NASA Langley Research Center to investigate sound propagation through a duct of comparable size (approximately the gap of GE90) and physical characteristics to the aft bypass duct of typical aircraft engines. The liner test section is designed to mimic the outer/inner walls of an engine exhaust bypass duct that has been unrolled circumferentially. Experiments to investigate the effect of curvature along the flow path on the acoustic performance of a test liner are performed in the CDTR and reported in this paper. Flow paths investigated include both straight and curved with offsets from the inlet to the discharge plane of and 1 duct width, respectively. The test liners are installed on the side walls of the liner test section. The liner samples are perforate over honeycomb core, which design is typical of liners installed in aircraft nacelles. In addition to fully treated side walls, combinations of treated and acoustically rigid walls are investigated. While curvature in the hard wall duct is found not to reduce the incident sound significantly, it does cause mode scattering. It is found that asymmetry of liner treatment causes scattering of the incident mode into less attenuated modes, which degrades the overall liner attenuation. It is also found that symmetry of liner treatment enhances liner performance by eliminating scattering into less attenuated modes. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation (CDUCT-LaRC) have also been made and are reported in this paper. The effect of curvature in the rigid wall configuration estimated by CDUCT-LaRC is similar to the observed results, and the mode scattering seen in the measurements also occurs in the

  1. Transition metal quinone-thiosemicarbazone complexes 3: Spectroscopic characterizations of spin-mixed iron (III) of naphthoquinone-thiosemicarbazones

    NASA Astrophysics Data System (ADS)

    Chikate, Rajeev C.; Padhye, Subhash B.

    2007-04-01

    An interesting series of iron (III) complexes with naphthoquinone-thiosemicarbazones are synthesized and physico-chemically characterized by elemental analysis, UV-vis, IR, EPR and magnetic susceptibility measurements. They possess a cationic octahedral [FeL 2] + species and a tetrahedral [FeCl 4] - anion and exhibit unusual spin-mixed states involving high-spin and low-spin ferric centers as revealed from magnetic behavior with significant amount of exchange interactions mediated by intermolecular associations. The magnetic susceptibility data is fitted with S=5/2 and S=1/2 Heisengberg's exchange coupled model; Hˆ=-2JSS and the magnetic exchange interactions are found to be of the order of -13.6 cm -1 indicating the moderate coupling between two paramagnetic centers present in different chemical and structural environment. The presence of spin-paired iron (III) cation having dxz2dxz2dxz1 ground state is revealed from the EPR spectra with three prominent peaks while the high-spin tetrahedral iron (III) anion exhibits characteristics g = 4 signal whose intensity increases with lowering the temperature suggesting its influence on the magnetic properties of the complex molecule. FTIR measurements indicate tridentate ONS donor systems involving quinone/hydroxyl oxygen, imine/hydrazinic nitrogen and thione/thiol sulfur atoms as binding sites for naphthoquinone-thiosemicarbazones.

  2. Landing Gear Door Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)

    2014-01-01

    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  3. Flap Side Edge Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  4. Spectroscopic Studies of Very Metal-poor Stars with the Subaru High Dispersion Spectrograph. III. Light Neutron-Capture Elements

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Honda, Satoshi; Beers, Timothy C.; Kajino, Toshitaka; Ando, Hiroyasu; Norris, John E.; Ryan, Sean G.; Izumiura, Hideyuki; Sadakane, Kozo; Takada-Hidai, Masahide

    2005-10-01

    Elemental abundance measurements have been obtained for a sample of 18 very metal-poor stars using spectra obtained with the Subaru Telescope High Dispersion Spectrograph. Seventeen stars, among which 16 are newly analyzed in the present work, were selected from candidate metal-poor stars identified in the HK survey of Beers and colleagues. The metallicity range covered by our sample is -3.1<~[Fe/H]<~-2.4. The abundances of carbon, α-elements, and iron-peak elements determined for these stars confirm the trends found by previous work. One exception is the large overabundance of Mg, Al, and Sc found in BS 16934-002, a giant with [Fe/H]=-2.8. Interestingly, this is the most metal-rich star (by about 1 dex in [Fe/H]) known with such large overabundances in these elements. Furthermore, BS 16934-002 does not share the large overabundances of carbon that are associated with the two other, otherwise similar, extremely metal-poor stars CS 22949-037 and CS 29498-043. By combining our new results with those of previous studies, we investigate the distribution of neutron-capture elements in very metal-poor stars, focusing on the production of the light neutron-capture elements (e.g., Sr, Y, and Zr). Large scatter is found in the abundance ratios between the light and heavy neutron-capture elements (e.g., Sr/Ba, Y/Eu) for stars with low abundances of heavy neutron-capture elements. Most of these stars have extremely low metallicity ([Fe/H]<~-3). By contrast, the observed scatter in these ratios is much smaller in stars with excesses of heavy neutron-capture elements and with higher metallicity. These results can be naturally explained by assuming that two processes independently enriched the neutron-capture elements in the early Galaxy. One process increases both light and heavy neutron-capture elements and affects stars with [Fe/H]>~-3, while the other process contributes only to the light neutron-capture elements and affects most stars with [Fe/H]>~-3.5. Interestingly, the

  5. Microstructural examination of service exposed coal mill liner material

    SciTech Connect

    Venkateswarlu, K.; Chowdhury, S.G.; Pathak, L.C.; Ray, A.K.

    2007-10-15

    This study mainly focuses the microstructural characterisation of the service exposed coal liner. These liners are generally referred to as bull ring segments in the bowl mill of coal pulveriser systems. The failed bull ring segment was collected from a coal-fired power plant of Kolaghat thermal plant, West Bengal, India. The crack that has been observed in the middle of the liner was observed under SEM and detailed microstructural studies are made for the liner material. The hardness measurements are made and XRD is carried out to identify the phases present in the sample. The results suggest that the material confirms to high chromium cast iron and microstructural studies reveal that the cracks are mainly due to the heavy service exposed conditions where lumps of coal and silica sand falling on these liners causing severe impact and abrasion conditions. High abrasive studies on the liner material are carried out and it showed that increasing the abrasive size as well as load is responsible for higher wear loss. The results suggest that prolonged exposure to abrasion conditions results in the progressive removal of the matrix material and due to various phase transformations from austenite to martensite introduces surface volume changes and causes the generation of cracks and further lead to failure of the component.

  6. Spherically symmetric simulation of plasma liner driven magnetoinertial fusion

    SciTech Connect

    Samulyak, Roman; Parks, Paul; Wu Lingling

    2010-09-15

    Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets in the concept of the plasma jet driven magnetoinertial fusion have been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium-xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium-tritium targets compressed by Mach 60 deuterium liners. The most optimal setup for a given chamber size contained a target with the initial radius of 20 cm compressed by a 10 cm thick, Mach 60 xenon liner, achieving a fusion energy gain of 10 with 10 GJ fusion yield. Simulations also showed that composite deuterium-xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated.

  7. Cylindrical Liner Z-pinch Experiments on the MAGPIE Generator

    NASA Astrophysics Data System (ADS)

    Burdiak, Guy; Lebedev, Sergey V.; Harvey-Thompson, Adam J.; Swadling, George F.; Suzuki-Vidal, Francisco; Skidmore, Jonathan; Suttle, Lee; Khoory, Essa; Pickworth, Louisa; de Grouchy, Philip; Hall, Gareth N.; Bland, Simon N.; Weinwurm, Marcus; Chittenden, Jeremy P.

    2012-10-01

    Experimental data from gas-filled cylindrical liner z-pinch experiments is presented. The MAGPIE current (1.4 MA, 240 ns) is applied to a thin walled (80um) Al tube with a static gas-fill inside. The system is diagnosed axially using interferometry, optical streak photography and optical spectroscopy. We observe a series of cylindrically converging shock waves driven into the gas-fill from the inside liner surface. No bulk motion of the liner occurs. The timing of the shocks and their trajectories provide information on the shock launching mechanisms. This in turn allows a study of the response of the liner to the current pulse. Shock wave timing is compared to measurements of the liner resistance and optical images of the liner's outside surface. The system provides a useful, essentially 1D problem for testing MagLIF relevant MHD codes, particularly with regards to EOS, strength and resistivity models. This work may also be relevant to the study of shocks in astrophysical plasmas. The shocks launched into the gas radiatiate strongly; spatially resolved optical spectroscopy data and radial electron density profiles from interferometry images provide evidence for a radiative precursor ahead of the first shock. Instabilities are seen to develop in the downstream regions.

  8. Composite Liner, Multi-Megabar Shock Driver Development

    SciTech Connect

    Cochrane, J.C. Jr.; Bartsch, R.R.; Clark, D.A.; Morgan, D.V.; Anderson, W.E.; Lee, H.; Bowers, R.L.; Atchison, W.L.; Oona, H.; Stokes, J.L.; Veeser, L.R.; Broste, W.B.

    1998-10-18

    The multi-megabar shock driver development is a series of experiments in support of the Los Alamos High Energy Density Physics Experimental Program. Its purpose is to develop techniques to impact a uniform, stable, composite liner upon a high Z target to produce a multi-megabar shock for EOS studies. To date, experiments have been done on the Pegasus II capacitor bank with a current of {approximately}12MA driving the impactor liner. The driving field is {approximately}200 T at the target radius of 1cm. Data will be presented on the impactor liner. The driving field is {approximately}200 T at the target radius of 1 cm. Data will be presented on the stability and uniformity of the impactor liner when it impacts the target cylinder. Three experiments have been done with emphasis on liner development. Shock pressures greater than a megabar have been done with emphasis on liner development. Shock pressures greater than a megabar have been produced with an Al target cylinder. A Pt target cylinder should produce shock pressures in th e 5-megabar range.

  9. High Voltage Coaxial Vacuum Gap Breakdown for Pulsed Power Liners

    NASA Astrophysics Data System (ADS)

    Cordaro, Samuel; Bott-Suzuki, Simon; Caballero Bendixsen, Luis Sebastian

    2015-11-01

    The dynamics of Magnetized Liner Inertial Fusion (MagLIF)1, are presently under detailed study at Sandia National Laboratories. Alongside this, a comprehensive analysis of the influence of the specific liner design geometry in the MagLIF system on liner initiation is underway in the academic community. Recent work at UC San Diego utilizes a high voltage pulsed system (25kV, 150ns) to analyze the vacuum breakdown stage of liner implosion. Such experimental analyses are geared towards determining how the azimuthal symmetry of coaxial gap breakdown affect plasma initiation within the liner. The final aim of the experimental analysis is to assess to what scale symmetry remains important at high (MV) voltages. An analysis of the above will utilize plasma self-emission via optical MCP, current measurements, voltage measurements near the gap, exact location of breakdown via 2D b-dot probe triangulation, as well as measuring the evolution of the B-field along the length of the liner via b-dot array. Results will be discussed along with analytical calculations of breakdown mechanisms

  10. Effects of Flow Profile on Educed Acoustic Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie r.; Nark, Douglas M.

    2010-01-01

    This paper presents results of an investigation of the effects of shear flow profile on impedance eduction processes employed at NASA Langley. Uniform and 1-D shear-flow propagation models are used to educe the acoustic impedance of three test liners based on aeroacoustic data acquired in the Langley Grazing Flow Impedance Tube, at source levels of 130, 140 and 150 dB, and at centerline Mach numbers of 0.0, 0.3 and 0.5. A ceramic tubular, calibration liner is used to evaluate the propagation models, as this liner is expected to be insensitive to SPL, grazing flow Mach number, and flow profile effects. The propagation models are then used to investigate the effects of shear flow profile on acoustic impedances educed for two conventional perforate-over-honeycomb liners. Results achieved with the uniform-flow models follow expected trends, but those educed with the 1-D shear-flow model do not, even for the calibration liner. However, when the flow profile used with the shear-flow model is varied to increase the Mach number gradient near the wall, results computed with the shear-flow model are well matched to those achieved with the uniform-flow model. This indicates the effects of flow profile on educed acoustic liner impedance are small, but more detailed investigations of the flow field throughout the duct are needed to better understand these effects.

  11. The Nature of the Energy Source in LINER's

    NASA Technical Reports Server (NTRS)

    Colina, L.; Koratkar, Anuradha

    1996-01-01

    LINER's (low-ionization nuclear emission-line regions) are found in about 30% of all bright galaxies, including luminous infrared galaxies. They form a heterogeneous class powered by a variety of ionizing mechanisms such as low-luminosity AGNs (active galactic nuclei), starbursts, shocks, or any combination of these. In early-type spirals, LINER's are powered by a low-luminosity AGN, or by an AGN surrounded by circumnuclear star-forming regions. In luminous infrared galaxies, LINER's are powered by starbursts with associated wind-related extended shocks, and an AGN may play a minor role, if any. LINER's in some FR I radio galaxies show strong evidence for the presence of a massive central black hole, and there are indications for the existence of shocks in the nuclear disks of these galaxies. Yet, the dominant ionizing mechanism for LINER's in radio-quiet ellipticals and FR I host galaxies is still unclear. Multifrequency high spatial resolution imaging and spectroscopy are essential to discriminate among the different ionizing mechanisms present in LINER's.

  12. Floating junk bonnet protects liner top from debris

    SciTech Connect

    Telfer, G. ); Sweeney, D. )

    1994-09-12

    A new design of debris protection system, the floating junk bonnet, for liner tops prevents well debris from entering the liner top polished bore receptacle (PBR) and sticking the setting tools. The floating junk bonnet improves the recovery of liner setting tools from the well no matter how severe the debris problem is. Well debris (formation cuttings, fines, mud solids, cement solids, foreign bodies, etc) entering the linear top PBR during cementing operations has been a serious problem for many operators. In some cases, this problem has led to liner hanger setting tools sticking in the liner top PBR. The setting tool could then become cemented in place, resulting in an expensive fishing job or sidetrack. A prototype debris protection system was developed and tested prior to offshore application. The liner protection tool was subsequently successfully used on Nelson project development wells in the U.K. North Sea. The paper discusses debris accumulation, the junket basket, the floating junk bonnet design, test procedures, and field test results.

  13. Computer method for design of acoustic liners for turbofan engines

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Rice, E. J.

    1976-01-01

    A design package is presented for the specification of acoustic liners for turbofans. An estimate of the noise generation was made based on modifications of existing noise correlations, for which the inputs are basic fan aerodynamic design variables. The method does not predict multiple pure tones. A target attenuation spectrum was calculated which was the difference between the estimated generation spectrum and a flat annoyance-weighted goal attenuated spectrum. The target spectrum was combined with a knowledge of acoustic liner performance as a function of the liner design variables to specify the acoustic design. The liner design method at present is limited to annular duct configurations. The detailed structure of the liner was specified by combining the required impedance (which is a result of the previous step) with a mathematical model relating impedance to the detailed structure. The design procedure was developed for a liner constructed of perforated sheet placed over honeycomb backing cavities. A sample calculation was carried through in order to demonstrate the design procedure, and experimental results presented show good agreement with the calculated results of the method.

  14. Electric Plasma Arc-Lamp Combustor Liner Durability Test System Developed

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.; Halbig, Michael C.

    2000-01-01

    current. One of the special features of this configuration is the creation of hoop stress states within the cylinder, which up this point have not been obtainable in planar coupon tests. This facility will allow various operational modes, including accelerated tests of thermal transients simulating the effects of repeated engine ignition as well as prescribed thermal and mechanical histories to simulate various duty cycle profiles. Tests can now be performed on thermal-barrier-coated metallic liners and ceramic composite liners that require a combination of high heat flux and controlled mechanical stresses.

  15. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    DOE PAGESBeta

    Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; Cho, Kyung -Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2014-09-14

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η2:η2-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Inmore » conclusion, complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.« less

  16. X-Ray Emission Spectra and Electronic Structures of Red Phosphorus, 3d Transition-Metal Phosphides and III V Compounds

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara

    1995-07-01

    The P Kβ emission spectra in fluorescence from red amorphous phosphorus, 3d transition-metal phosphides TiP, CrP, FeP, Fe2P, Fe3P, CoP, Co2P, Ni5P4, Ni2P, Ni3P, Cu3P, ZnP2 (black) and Zn3P2, and the semiconducting phosphides of the III-V type, BP, AlP, GaP and InP are measured with a high-resolution two-crystal vacuum spectrometer equipped with Ge(111) crystals. The influence of the metal atoms appears distinctly on the P Kβ fluorescence emission spectra. The measured spectra are compared with available X-ray emission and XPS valence-band spectra and theoretical energy-band calculations on a common energy scale. It is shown that considerable p-d, s mixing occurs in the valence bands of the 3d transition-metal phosphides and the P 3p states mix fairly with the P 3s states in the valence bands of red phosphorus, Gap and InP

  17. Hydraulic conductivity of desiccated geosynthetic clay liners

    SciTech Connect

    Boardman, B.T.; Daniel, D.E.

    1996-03-01

    Large-scale tests were performed to determine the effect of a cycle of wetting and drying on the hydraulic conductivity of several geosynthetic clay liners (GCLs). The GCLs were covered with 0.6 m of pea gravel and permeated with water. After steady seepage had developed, the water was drained away, and the GCL was desiccated by circulating heated air through the overlying gravel. The drying caused severe cracking in the bentonite component of the GCLs. The GCLs were again permeated with water. As the cracked bentonite hydrated and swelled, the hydraulic conductivity slowly decreased from an initially high value. The long-term, steady value of hydraulic conductivity after the wetting and drying cycle was found to be essentially the same as the value for the undesiccated GCL. It is concluded that GCLs possess the ability to self-heal after a cycle of wetting and drying, which is important for applications in which there may be alternate wetting and drying of a hydraulic barrier (e.g. within a landfill final cover).

  18. Geosynthetic clay liners - slope stability field study

    SciTech Connect

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  19. Selectivity of the highly preorganized tetradentate ligand 2,9-di(pyrid-2-yl)-1,10-phenanthroline for metal ions in aqueous solution, including lanthanide(III) ions and the uranyl(VI) cation.

    PubMed

    Carolan, Ashley N; Cockrell, Gregory M; Williams, Neil J; Zhang, Gang; VanDerveer, Donald G; Lee, Hee-Seung; Thummel, Randolph P; Hancock, Robert D

    2013-01-01

    Some metal ion complexing properties of DPP (2,9-Di(pyrid-2-yl)-1,10-phenanthroline) are reported with a variety of Ln(III) (Lanthanide(III)) ions and alkali earth metal ions, as well as the uranyl(VI) cation. The intense π-π* transitions in the absorption spectra of aqueous solutions of 10(-5) M DPP were monitored as a function of pH and metal ion concentration to determine formation constants of the alkali-earth metal ions and Ln(III) (Ln = lanthanide) ions. It was found that log K(1)(DPP) for the Ln(III) ions has a peak at Ln(III) = Sm(III) in a plot of log K(1) versus 1/r(+) (r(+) = ionic radius for 8-coordination). For Ln(III) ions larger than Sm(III), there is a steady rise in log K(1) from La(III) to Sm(III), while for Ln(III) ions smaller than Sm(III), log K(1) decreases slightly to the smallest Ln(III) ion, Lu(III). This pattern of variation of log K(1) with varying size of Ln(III) ion was analyzed using MM (molecular mechanics) and DFT (density functional theory) calculations. Values of strain energy (∑U) were calculated for the [Ln(DPP)(H(2)O)(5)](3+) and [Ln(qpy)(H(2)O)(5)](3+) (qpy = quaterpyrdine) complexes of all the Ln(III) ions. The ideal M-N bond lengths used for the Ln(III) ions were the average of those found in the CSD (Cambridge Structural Database) for the complexes of each of the Ln(III) ions with polypyridyl ligands. Similarly, the ideal M-O bond lengths were those for complexes of the Ln(III) ions with coordinated aqua ligands in the CSD. The MM calculations suggested that in a plot of ∑U versus ideal M-N length, a minimum in ∑U occurred at Pm(III), adjacent in the series to Sm(III). The significance of this result is that (1) MM calculations suggest that a similar metal ion size preference will occur for all polypyridyl-type ligands, including those containing triazine groups, that are being developed as solvent extractants in the separation of Am(III) and Ln(III) ions in the treatment of nuclear waste, and (2) Am(III) is very

  20. Metal Accretion onto White Dwarfs. III. A Still Better Approach Based on the Coupling of Diffusion with Evolution

    NASA Astrophysics Data System (ADS)

    Brassard, Pierre; Fontaine, Gilles

    2015-06-01

    The accretion-diffusion picture is the model par excellence for describing the presence of planetary debris polluting the atmospheres of relatively cool white dwarfs. In the time-dependent approach used in Paper II of this series (Fontaine et al. 2014), the basic assumption is that the accreted metals are trace elements and do not influence the background structure, which may be considered static in time. Furthermore, the usual assumption of instantaneous mixing in the convection zone is made. As part of the continuing development of our local evolutionary code, diffusion in presence of stellar winds or accretion is now fully coupled to evolution. Convection is treated as a diffusion process, i.e., the assumption of instantaneous mixing is relaxed, and, furthermore, overshooting is included. This allows feedback on the evolving structure from the accreting metals. For instance, depending of its abundance, a given metal may contribute enough to the overall opacity (especially in a He background) to change the size of the convection zone as a function of time. Our better approach also allows to include in a natural way the mechanism of thermohaline convection, which we discuss at some length. Also, it is easy to consider sophisticated time-dependent models of accretion from circumstellar disks, such as those developed by Roman Rafikov at Princeton for instance. The current limitations of our approach are 1) the calculations are extremely computer-intensive, and 2) we have not yet developed detailed EOS megatables for metals beyond oxygen.

  1. Tokamak with liquid metal for inducing toroidal electrical field

    DOEpatents

    Ohkawa, Tihiro

    1981-01-01

    A tokamak apparatus includes a vessel for defining a reservoir and confining liquid therein. A toroidal liner disposed within said vessel defines a toroidal space within the liner confines gas therein. Liquid metal fills the reservoir outside the liner. A magnetic field is established in the liquid metal to develop magnetic flux linking the toroidal space. The gas is ionized. The liquid metal and the toroidal space are moved relative to one another transversely of the space to generate electric current in the ionized gas in the toroidal space about its major axis and thereby heat plasma developed in the toroidal space.

  2. Complexation of nitrogen and sulphur donor Schiff's base ligand to Cr(III) and Ni(II) metal ions: Synthesis, spectroscopic and antipathogenic studies

    NASA Astrophysics Data System (ADS)

    Sharma, Amit Kumar; Chandra, Sulekh

    2011-01-01

    2,6-Diacetyl pyridine based ligand was synthesized by the reaction of 2,6-diacetyl pyridine with thiocarbohydrazide in presence of acetic acid. The coordination compounds with Cr(III) and Ni(II) metal ions having [Cr(L)X]X 2 and [Ni(L)X]X compositions (where L = ligand and X = NO 3-, Cl - and CH 3COO -) were synthesized and characterized by physicochemical and spectral studies. The studies like elemental analyses, molar conductance measurements, magnetic susceptibility measurements, IR, UV-Vis, NMR, mass and EPR reveal that the complexes are octahedral. The compounds were examined against the pathogenic fungal and bacterial strains like Alternaria brassicae, Aspergillus niger, Fusarium oxysporum, Xanthomonas compestris and Pseudomonas aeruginosa. A. niger causes the diseases Apergillosis and Otomycosis in humans.

  3. Rational Design of Emissive NIR-Absorbing Chromophores: Rh(III) Porphyrin-Aza-BODIPY Conjugates with Orthogonal Metal-Carbon Bonds.

    PubMed

    Zhou, Jinfeng; Gai, Lizhi; Zhou, Zhikuan; Yang, Wu; Mack, John; Xu, Kejing; Zhao, Jianzhang; Zhao, Yue; Qiu, Hailin; Chan, Kin Shing; Shen, Zhen

    2016-09-01

    The facile synthesis of Group 9 Rh(III) porphyrin-aza-BODIPY conjugates that are linked through an orthogonal Rh-C(aryl) bond is reported. The conjugates combine the advantages of the near-IR (NIR) absorption and intense fluorescence of aza-BODIPY dyes with the long-lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge-transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the Rh(III) conjugates exhibit strong aza-BODIPY-centered fluorescence at around 720 nm (ΦF =17-34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet-oxygen quantum yield (ΦΔ =19-27 %, λex =690 nm) have been observed. Nanosecond pulsed time-resolved absorption spectroscopy confirms that relatively long-lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields. PMID:27516405

  4. MULTI-ELEMENT ABUNDANCE MEASUREMENTS FROM MEDIUM-RESOLUTION SPECTRA. III. METALLICITY DISTRIBUTIONS OF MILKY WAY DWARF SATELLITE GALAXIES

    SciTech Connect

    Kirby, Evan N.; Cohen, Judith G.; Lanfranchi, Gustavo A.; Simon, Joshua D.; Guhathakurta, Puragra

    2011-02-01

    We present metallicity distribution functions (MDFs) for the central regions of eight dwarf satellite galaxies of the Milky Way: Fornax, Leo I and II, Sculptor, Sextans, Draco, Canes Venatici I, and Ursa Minor. We use the published catalog of abundance measurements from the previous paper in this series. The measurements are based on spectral synthesis of iron absorption lines. For each MDF, we determine maximum likelihood fits for Leaky Box, Pre-Enriched, and Extra Gas (wherein the gas supply available for star formation increases before it decreases to zero) analytic models of chemical evolution. Although the models are too simplistic to describe any MDF in detail, a Leaky Box starting from zero metallicity gas fits none of the galaxies except Canes Venatici I well. The MDFs of some galaxies, particularly the more luminous ones, strongly prefer the Extra Gas Model to the other models. Only for Canes Venatici I does the Pre-Enriched Model fit significantly better than the Extra Gas Model. The best-fit effective yields of the less luminous half of our galaxy sample do not exceed 0.02 Z{sub sun}, indicating that gas outflow is important in the chemical evolution of the less luminous galaxies. We surmise that the ratio of the importance of gas infall to gas outflow increases with galaxy luminosity. Strong correlations of average [Fe/H] and metallicity spread with luminosity support this hypothesis.

  5. Nonlinear Color-Metallicity Relations of Globular Clusters. III. On the Discrepancy in Metallicity between Globular Cluster Systems and Their Parent Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Yoon, Suk-Jin; Lee, Sang-Yoon; Blakeslee, John P.; Peng, Eric W.; Sohn, Sangmo T.; Cho, Jaeil; Kim, Hak-Sub; Chung, Chul; Kim, Sooyoung; Lee, Young-Wook

    2011-12-01

    One of the conundrums in extragalactic astronomy is the discrepancy in observed metallicity distribution functions (MDFs) between the two prime stellar components of early-type galaxies—globular clusters (GCs) and halo field stars. This is generally taken as evidence of highly decoupled evolutionary histories between GC systems and their parent galaxies. Here we show, however, that new developments in linking the observed GC colors to their intrinsic metallicities suggest nonlinear color-to-metallicity conversions, which translate observed color distributions into strongly peaked, unimodal MDFs with broad metal-poor tails. Remarkably, the inferred GC MDFs are similar to the MDFs of resolved field stars in nearby elliptical galaxies and those produced by chemical evolution models of galaxies. The GC MDF shape, characterized by a sharp peak with a metal-poor tail, indicates a virtually continuous chemical enrichment with a relatively short timescale. The characteristic shape emerges across three orders of magnitude in the host galaxy mass, suggesting a universal process of chemical enrichment among various GC systems. Given that GCs are bluer than field stars within the same galaxy, it is plausible that the chemical enrichment processes of GCs ceased somewhat earlier than that of the field stellar population, and if so, GCs preferentially trace the major, vigorous mode of star formation events in galactic formation. We further suggest a possible systematic age difference among GC systems, in that the GC systems in more luminous galaxies are older. This is consistent with the downsizing paradigm whereby stars of brighter galaxies, on average, formed earlier than those of dimmer galaxies; this additionally supports the similar nature shared by GCs and field stars. Although the sample used in this study (the Hubble Space Telescope Advanced Camera for Surveys/Wide Field Channel, WFPC2, and WFC3 photometry for the GC systems in the Virgo galaxy cluster) confines our

  6. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. III. ON THE DISCREPANCY IN METALLICITY BETWEEN GLOBULAR CLUSTER SYSTEMS AND THEIR PARENT ELLIPTICAL GALAXIES

    SciTech Connect

    Yoon, Suk-Jin; Lee, Sang-Yoon; Cho, Jaeil; Kim, Hak-Sub; Chung, Chul; Kim, Sooyoung; Lee, Young-Wook; Blakeslee, John P.; Peng, Eric W.; Sohn, Sangmo T.

    2011-12-20

    One of the conundrums in extragalactic astronomy is the discrepancy in observed metallicity distribution functions (MDFs) between the two prime stellar components of early-type galaxies-globular clusters (GCs) and halo field stars. This is generally taken as evidence of highly decoupled evolutionary histories between GC systems and their parent galaxies. Here we show, however, that new developments in linking the observed GC colors to their intrinsic metallicities suggest nonlinear color-to-metallicity conversions, which translate observed color distributions into strongly peaked, unimodal MDFs with broad metal-poor tails. Remarkably, the inferred GC MDFs are similar to the MDFs of resolved field stars in nearby elliptical galaxies and those produced by chemical evolution models of galaxies. The GC MDF shape, characterized by a sharp peak with a metal-poor tail, indicates a virtually continuous chemical enrichment with a relatively short timescale. The characteristic shape emerges across three orders of magnitude in the host galaxy mass, suggesting a universal process of chemical enrichment among various GC systems. Given that GCs are bluer than field stars within the same galaxy, it is plausible that the chemical enrichment processes of GCs ceased somewhat earlier than that of the field stellar population, and if so, GCs preferentially trace the major, vigorous mode of star formation events in galactic formation. We further suggest a possible systematic age difference among GC systems, in that the GC systems in more luminous galaxies are older. This is consistent with the downsizing paradigm whereby stars of brighter galaxies, on average, formed earlier than those of dimmer galaxies; this additionally supports the similar nature shared by GCs and field stars. Although the sample used in this study (the Hubble Space Telescope Advanced Camera for Surveys/Wide Field Channel, WFPC2, and WFC3 photometry for the GC systems in the Virgo galaxy cluster) confines our

  7. Deep SDSS optical spectroscopy of distant halo stars. III. Chemical analysis of extremely metal-poor stars

    NASA Astrophysics Data System (ADS)

    Fernández-Alvar, E.; Allende Prieto, C.; Beers, T. C.; Lee, Y. S.; Masseron, T.; Schneider, D. P.

    2016-09-01

    Aims: We present the results of an analysis of 107 extremely metal-poor (EMP) stars with metallicities lower than [Fe/H] =- 3.0, identified in medium-resolution spectra in the Sloan Digital Sky Survey (SDSS). Our analysis provides estimates of the stellar effective temperatures and surface gravities, as well as iron, calcium, and magnesium abundances. Methods: We followed the same method as in previous papers of this series. The method is based on comparisons of the observed spectra with synthetic spectra. The abundances of Fe, Ca, and Mg were determined by fitting spectral regions that are dominated by lines of each element. In addition, we present a technique to determine upper limits for elements whose features are not detected in a given spectrum. We also analyzed our sample with the SEGUE stellar parameter pipeline to obtain additional determinations of the atmospheric parameters and iron and alpha-element abundances, which we thend compare with ours. In addition, we used these parameters to infer [C/Fe] ratios. Results: Ca is typically the only element in these spectra with a moderate to low signal-to-noise ratio and medium resolution in this metallicity regime with lines that are sufficiently strong to reliably measure its abundance. Fe and Mg exhibit weaker features that in most cases only provide upper limits. We measured [Ca/Fe] and [Mg/Fe] for EMP stars in the SDSS spectra and conclude that most of the stars exhibit the typical enhancement level for α-elements, ~+0.4, although some stars for which only [Fe/H] upper limits could be estimated indicate higher [α/Fe] ratios. We also find that 26% of the stars in our sample can be classified as carbon-enhanced metal-poor (CEMP) stars and that the frequency of CEMP stars also increases with decreasing metallicity, as has been reported for previous samples. We identify a rare, bright (g = 11.90) EMP star, SDSS J134144.61+474128.6, with [Fe/H] =- 3.27, [C/Fe] = + 0.95, and elevated magnesium ([Mg/Fe] =+ 0

  8. Metal-ligand interaction of lanthanides with coumarin derivatives. Part I. Complexation of 3-(1-aminoethylidene)-2H-chromene-2,4(3H)-dione with La(III), Ce(III), Nd(III) and Ho(III).

    PubMed

    Swiatek, Mirosława; Kufelnicki, Aleksander

    2012-01-01

    Solutions of lanthanum(III), cerium(III), neodymium(III) and holmium(III) nitrates with 3-(1-aminoethylidene)-2H-chromene-2,4(3H)-dione (1) in 10% v/v dioxane-water medium were used. Coordination modes of 1 with the selected lanthanides have been examined. Hydroxo-complexes with deprotonated water molecules from the inner coordination sphere have been stated in basic medium. Stability constants of the forming complex species were determined by potentiometric titrations using Superquad and Hyperquad2003 programs. The most stable complexes are formed with La(III). The UV-Vis spectra of the Nd(III)-1 system confirmed the L:M = 1:1 stoichiometry evaluated potentiometrically. PMID:23285658

  9. Structural and electronic properties of hetero-transition-metal Keggin anions: a DFT Study of alpha/beta-[XW12O40]n- (X = CrVI, VV, TiIV, FeIII, CoIII, NiIII, CoII, and ZnII) relative stability.

    PubMed

    Zhang, Fu-Qiang; Zhang, Xian-Ming; Wu, Hai-Shun; Jiao, Haijun

    2007-01-11

    Density functional theory calculations have been carried out to investigate the electronic structures and the alpha/beta relative stability of Keggin-typed [XW(12)O(40)]n- anions with transition metal as heteroatom X (X = Cr(VI), V(V), Ti(IV), Fe(III), Co(III), Ni(III), Co(II) and Zn(II)). Nice agreement in geometries between computation and experiment has been obtained, and the higher stability of the alpha isomer over the beta one has been confirmed. Structural parameter analysis reveals that the {M(3)O(13)} triads in both alpha and beta isomers contract considerably with the increase of the negative anionic charge, while the overall size of both isomers shrinks only slightly. Fragment molecular orbital analysis shows that except alpha/beta-[TiW(12)O(40)]4-, the electronic structures of Keggin anions can be described by the insertion of the e and/or t2 orbital of XO4n- into the frontier orbitals of W(12)O(36) cage, and this leads to the specific redox property, which is different from that of the Keggin anions with main-group elements as heteroatoms. Energy decomposition analysis shows that the enhanced intrinsic stability of the alpha isomer in Td arrangement of W(12)O(36) shell and the larger deformation of the alpha over the beta isomer are two dominating factors and contribute oppositely to the alpha/beta relative stability. PMID:17201398

  10. Advanced Computational and Experimental Techniques for Nacelle Liner Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.; Nark, Douglas

    2009-01-01

    The Curved Duct Test Rig (CDTR) has been developed to investigate sound propagation through a duct of size comparable to the aft bypass duct of typical aircraft engines. The axial dimension of the bypass duct is often curved and this geometric characteristic is captured in the CDTR. The semiannular bypass duct is simulated by a rectangular test section in which the height corresponds to the circumferential dimension and the width corresponds to the radial dimension. The liner samples are perforate over honeycomb core and are installed on the side walls of the test section. The top and bottom surfaces of the test section are acoustically rigid to simulate a hard wall bifurcation or pylon. A unique feature of the CDTR is the control system that generates sound incident on the liner test section in specific modes. Uniform air flow, at ambient temperature and flow speed Mach 0.275, is introduced through the duct. Experiments to investigate configuration effects such as curvature along the flow path on the acoustic performance of a sample liner are performed in the CDTR and reported in this paper. Combinations of treated and acoustically rigid side walls are investigated. The scattering of modes of the incident wave, both by the curvature and by the asymmetry of wall treatment, is demonstrated in the experimental results. The effect that mode scattering has on total acoustic effectiveness of the liner treatment is also shown. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation to the convected Helmholtz equation are reported. The spectra of attenuation produced by the analytic model are similar to experimental results for both walls treated, straight and curved flow path, with plane wave and higher order modes incident. The numerical model is used to define the optimized resistance and reactance of a liner that significantly improves liner attenuation in the frequency range 1900-2400 Hz. A

  11. Demonstration of a wireless, self-powered, electroacoustic liner system.

    PubMed

    Phipps, Alex; Liu, Fei; Cattafesta, Louis; Sheplak, Mark; Nishida, Toshikazu

    2009-02-01

    This paper demonstrates the system operation of a self-powered active liner for the suppression of aircraft engine noise. The fundamental element of the active liner system is an electromechanical Helmholtz resonator (EMHR), which consists of a Helmholtz resonator with one of its rigid walls replaced with a circular piezoceramic composite plate. For this system demonstration, two EMHR elements are used, one for acoustic impedance tuning and one for energy harvesting. The EMHR used for acoustic impedance tuning is shunted with a variable resistive load, while the EMHR used for energy harvesting is shunted to a flyback power converter and storage element. The desired acoustic impedance conditions are determined externally, and wirelessly transmitted to the liner system. The power for the receiver and the impedance tuning circuitry in the liner are supplied by the harvested energy. Tuning of the active liner is demonstrated at three different sound pressure levels (148, 151, and 153 dB) in order to show the robustness of the energy harvesting and storage system. An acoustic tuning range of approximately 200 Hz is demonstrated for each of the three available power levels. PMID:19206864

  12. Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage

    SciTech Connect

    Cherry, J.L.; Smith, J.A.

    1998-11-19

    Incidents of liner corrosion in nuclear power containment structures have been recorded. These incidents and concerns of other possible liner corrosion in containment have prompted an interest in determining g the capacity of a degraded containment. Finite element analyses of a typical pressurized water reactor (PWR) reinforced concrete containment with liner corrosion were conducted using the A13AQUS finite element code with the ANACAP-U nonlinear concrete constitutive model. The effect of liner corrosion on containment capacity was investigated. A loss of coolant accident was simulated by applying pressure and temperature changes to the structure without corrosion to determine baseline failure limits, followed by multiple analyses of the containment with corrosion at different locations and varying degrees of liner degradation. The corrosion locations were chosen at the base of the containment wall, near the equipment hatch, and at the midheight of the containment wall. Using a strain-based failure criterion the different scenarios were evaluated to prioritize their effect on containment capacity

  13. Hydrodynamic Modeling of the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Hsu, Scott; Witherspoon, Doug; Gilmore, Marc

    2009-11-01

    Implosions of plasma liners in cylindrically or spherically convergent geometries can produce high pressures and temperatures with a confinement or dwell time of the order of the rarefaction timescale of the liner. The Plasma Liner Experiment (PLX), to be built at LANL, will explore and demonstrate the feasibility of forming imploding plasma liners with the spherical convergence of hypersonic plasma jets. Modeling will be performed using SPHC and MACH2. According to preliminary 3D SPHC results, high Z plasma liners imploding on vacuum with ˜1.5MJ of initial stored energy will reach ˜100kbar, which is a main objective of the experimental program. Among the objectives of the theoretical PLX effort are to assist in the diagnostic analysis of the PLX, identify possible deleterious effects due to instabilities or asymmetries, identify departures from ideal behavior due to thermal and radiative transport, and help determine scaling laws for possible follow-on applications of ˜1 Mbar HEDP plasmas and magneto-inertial fusion. An overview of the plan to accomplish these objectives will be presented, and preliminary results will be summarized.

  14. Thermal energy conservation with draperies and a plastic window liner

    SciTech Connect

    Sloan, D.L.

    1984-01-01

    The contributions of draperies, a plastic window liner, and fabric properties to heat loss reduction were studied. Research questions were developed relative to the contribution of the following to heat loss reduction: properties of drapery fabrics, and the effectiveness of 1) a temporary plastic indoor window liner, and 2) combining draperies with a plastic window liner. Four fabrics (Malimo, Maliwatt, glass and coated) for the window treatments were selected from 12 fabrics on the basis of thermal resistance, in combination with air permeability and thickness. Density, weight, yarn count, fabric construction, and yarn construction were also determined. The draperies were tested sealed (Velcro tape and a three-sided cornice) and unsealed, and with and without a plastic window liner. The effectiveness of each treatment was determined by comparing the percentage of heat loss reduction to the heat loss at the bare window. Yarn count, thickness, density and air permeability accounted for 76% of the variability of the thermal resistance of the fabrics; mean values ranged from 0.95 ft/sup 2/ hr /sup 0/F/Btu (Maliwatt) to 0.66 ft/sup 2/ hr /sup 0/F/Btu (coated). The plastic window liner was the most effective in reducing heat loss (75%).

  15. Non-contact optical three dimensional liner metrology.

    SciTech Connect

    Sebring, R. J.; Anderson, W. E.; Bartos, J. J.; Garcia, F.; Randolph, B.; Salazar, M. A.; Edwards, J. M.

    2001-01-01

    We optically captured the 'as-built' liner geometry of NTLX (near term liner experiments) for Shiva Star using ultra-precision ranging lasers. We subsequently verified the resulting digitized geometry against the 3D CAD model of the part. The results confirmed that the Liner contours are within designed tolerances but revealed subtle fabrication artifacts that would typically go undetected. These features included centimeters long waviness and saddle and bulge regions of 1 micron or less in magnitude. The laser technology typically provided 10 micron spatial resolution with {+-}12 nanometer ranging precision. Atlas liners in the future may have to be diamond turned and will have the centimeter wavelength and 100 angstrom amplitude requirements. The advantages of using laser technology are (1) it avoids surface damage that may occur with conventional contact probes and (2) dramatically improves spatial resolution over CMM, capacitance and inductance type probes. Our work is the result of a perceived future need to develop precision, non-contact, liner inspection techniques to verify geometry, characterize machining artifacts and map wall thickness on delicate diamond turned surfaces. Capturing 'as-built' geometry in a non-contact way coupled with part-to-CAD verification software tools creates a new metrology competency for MST-7.

  16. Work of Adhesion of Thin Spray-On Liners

    NASA Astrophysics Data System (ADS)

    Ozturk, H.

    2012-11-01

    The interface property known as work of adhesion incorporates both adhesion and effective bond width, which are two important design parameters in thin spray-on liner (TSL) support design. The value of this parameter is yet to be recognized by the mining industry and liner manufacturers. The importance of this parameter is introduced in this study. A new methodology using pull-out load-displacement data was developed to calculate the work of adhesion between a TSL and a substrate. Tests were performed using Tekflex as a liner material, which was applied to concrete, granite or sandstone substrate. It was found that a Tekflex liner, when sprayed onto substrates, will likely have work of adhesion values around 777-973 N/m depending on the type of substrate. In addition, for the first time in TSL literature, an effective bond width calculation is introduced in this study. It was found that Tekflex has average effective bond width of 0.7 mm on different substrates. Liner manufacturers should measure and document work of adhesion for their products on a standard substrate.

  17. Migration and Growth of Protoplanetary Embryos. III. Mass and Metallicity Dependence for FGKM Main-sequence Stars

    NASA Astrophysics Data System (ADS)

    Liu, Beibei; Zhang, Xiaojia; Lin, Douglas N. C.

    2016-06-01

    Radial velocity and transit surveys have found that the fraction of FGKM stars with close-in super-Earth(s) (η ⊕) is around 30%–50%, independent of the stellar mass M * and metallicity Z *. In contrast, the fraction of solar-type stars harboring one or more gas giants (η J) with masses M p > 100 M ⊕ is nearly 10%–15%, and it appears to increase with both M * and Z *. Regardless of the properties of their host stars, the total mass of some multiple super-Earths systems exceeds the core mass of Jupiter and Saturn. We suggest that both super-Earths and supercritical cores of gas giants were assembled from a population of embryos that underwent convergent type I migration from their birthplaces to a transition location between viscously heated and irradiation-heated disk regions. We attribute the cause for the η ⊕–η J dichotomy to conditions required for embryos to merge and to acquire supercritical core mass ({M}{{c}}˜ 10 {M}\\oplus ) for the onset of efficient gaseous envelope accretion. We translate this condition into a critical disk accretion rate, and our analysis and simulation results show that it weakly depends on M * and decreases with metallicity of disk gas Z d. We find that embryos are more likely to merge into supercritical cores around relatively massive and metal-rich stars. This dependence accounts for the observed η J–M *. We also consider the {Z}{{d}}{--}{Z}* dispersed relationship and reproduce the observed η J–Z * correlation.

  18. Star formation in the first galaxies - III. Formation, evolution, and characteristics of the first metal-enriched stellar cluster

    NASA Astrophysics Data System (ADS)

    Safranek-Shrader, Chalence; Montgomery, Michael H.; Milosavljević, Miloš; Bromm, Volker

    2016-01-01

    We simulate the formation of a low-metallicity (10-2 Z⊙) stellar cluster at redshift z ˜ 14. Beginning with cosmological initial conditions, the simulation utilizes adaptive mesh refinement and sink particles to follow the collapse and evolution of gas past the opacity limit for fragmentation, thus resolving the formation of individual protostellar cores. A time- and location-dependent protostellar radiation field, which heats the gas by absorption on dust, is computed by integration of protostellar evolutionary tracks. The simulation also includes a robust non-equilibrium chemical network that self-consistently treats gas thermodynamics and dust-gas coupling. The system is evolved for 18 kyr after the first protostellar source has formed. In this time span, 30 sink particles representing protostellar cores form with a total mass of 81 M⊙. Their masses range from ˜0.1 to 14.4 M⊙ with a median mass ˜0.5-1 M⊙. Massive protostars grow by competitive accretion while lower mass protostars are stunted in growth by close encounters and many-body ejections. In the regime explored here, the characteristic mass scale is determined by the cosmic microwave background temperature floor and the onset of efficient dust-gas coupling. It seems unlikely that host galaxies of the first bursts of metal-enriched star formation will be detectable with the James Webb Space Telescope or other next-generation infrared observatories. Instead, the most promising access route to the dawn of cosmic star formation may lie in the scrutiny of metal-poor, ancient stellar populations in the Galactic neighbourhood. The observable targets corresponding to the system simulated here are ultra-faint dwarf satellite galaxies such as Boötes II and Willman I.

  19. Experimental and Theoretical Investigation of a Series of Novel Dimanganese(III) μ-Hydroxo Bisporphyrins: Magneto-Structural Correlation and Effect of Metal Spin on Porphyrin Core Deformation.

    PubMed

    Sil, Debangsu; Bhowmik, Susovan; Khan, Firoz Shah Tuglak; Rath, Sankar Prasad

    2016-04-01

    The synthesis, structure, and properties of a new family of five ethane-bridged dimanganese(III) μ-hydroxo bisporphyrins with the same core structure but different counteranions are reported here. Additions of 10% Brønsted acids such as HI, HBF4, HSbF6, HPF6, and HClO4 to a dichloromethane solution of the dichloro dimanganese(III) bisporphyrin produces complexes having a remarkably bent μ-hydroxo group with I3(-), BF4(-), SbF6(-), PF6(-), and ClO4(-) as counteranions, respectively. The X-ray structures of all complexes have been determined, which have revealed the presence of two equivalent high-spin manganese(III) centers with equally distorted porphyrin rings in the complexes, in sharp contrast with the case for the diiron(III) μ-hydroxo bisporphyrin analogues. (1)H NMR spectra have shown highly deshielded meso resonances, unlike the case for the diiron(III) analogues, where the meso resonances are highly shielded. The variable-temperature magnetic data have been subjected to a least-squares fit which provides a moderate antiferromagnetic coupling through the hydroxo bridge between two zero-field split Mn(III) centers with coupling constant (J) values ranging from -29.5 to -38.6 cm(-1). Fairly good correlations are observed for J with Mn-O(H) distances and Mn-O(H)-Mn angles for all the complexes except for that having an I3(-) counteranion. DFT calculations support the stabilization of two equivalent high-spin Mn(III) porphyrin cores in the complexes and have also explored the role of metal spin in controlling porphyrin ring deformation. Unlike diiron(III) μ-hydroxo bisporphyrin complexes, the dimanganese(III) analogues do not have easily accessible spin states of the metal attainable by subtle environmental perturbations and, therefore, can only stabilize the high-spin state with a variety of counteranions. PMID:27002790

  20. Impact of Iron-Reducing Bacteria on Metals and Radionuclides Adsorbed to Humic-Coated Iron(III) Oxides

    SciTech Connect

    Burgos, W. D.

    2005-02-01

    This is the final report for Grant No. DEFGO2-98ER62691 submitted to the DOE NABR Program. This research has focused on (1) the role of natural organic matter (NOM), quinines, and complexants in enhancing the biological reduction of solid-phase crystalline ferric oxides, (2) the effect of heavy metals (specifically zinc) and NOM on ferric oxide bioreduction, (3) the sorption of Me(II) [Cu(II), Fe(II), Mn(II) and Zn(II)] to ferric oxides and subsequent Me(II)-promoted phase transformations of the ferric oxides, and (4) the development of reaction-based biogeochemical models to numerically simulate our experimental results.

  1. Microbial Mineral Transformations at the Fe(II)/Fe(III) Redox Boundary for Solid Phase Capture of Strontium and Other Metal/Radionuclide Contaminants

    SciTech Connect

    F. G. Ferris; E. E. Roden

    2000-01-31

    The migration of {sup 90}Sr in groundwater is a significant environmental concern at former nuclear weapons production sites in the US and abroad. Although retardation of {sup 90}Sr transport relative to mean groundwater velocity is known to occur in contaminated aquifers, Sr{sup 2+} does not sorb as strongly to iron oxides and other mineral phases as do other metal-radionuclides contaminants. Thus, some potential exists for extensive {sup 90}Sr migration from sources of contamination. Chemical or biological processes capable of retarding or immobilizing Sr{sup 2+} in groundwater environments are of interest from the standpoint of understanding controls on subsurface Sr{sup 2+} migration. In addition, it may be possible to exploit such processes for remediation of subsurface Sr contamination. In this study the authors examined the potential for the solid phase sorption and incorporation of Sr{sup 2+} into carbonate minerals formed during microbial Fe(III) oxide reduction as a first step toward evaluating whether this process could be used to promote retardation of {sup 90}Sr migrations in anaerobic subsurface environments. The demonstration of Sr{sup 2+} capture in carbonate mineral phases formed during bacterial HFO reduction and urea hydrolysis suggests that microbial carbonate mineral formation could contribute to Sr{sup 2+} retardation in groundwater environments. This process may also provide a mechanism for subsurface remediation of Sr{sup 2+} and other divalent metal contaminants that form insoluble carbonate precipitates.

  2. Making a Metal-Lined Composite-Overwrapped Pressure Vessel

    NASA Technical Reports Server (NTRS)

    DeLay, Tom

    2005-01-01

    process has been devised for the fabrication of a pressure vessel that comprises a composite-material (matrix/fiber) shell with a metal liner on its inner surface. The use of the composite material makes it possible for the tank to be strong enough to withstand the anticipated operating pressure and yet weigh less than does an equivalent all-metal tank. The metal liner is used as a barrier against permeation: In the absence of such a barrier, the pressurized gas in the tank could leak by diffusing through the composite-material shell. The figure depicts workpieces at four key stages in the process, which consists of the following steps: 1. A mandrel that defines the size and shape of the pressure vessel is made by either molding or machining a piece of tooling wax. 2. Silver paint is applied to the surface of the mandrel to make it electrically conductive. 3. The ends of the mandrel are fitted with metal bosses. 4. The mandrel is put into a plating bath, wherein the metal liner is electrodeposited. Depending on the applications, the liner metal could be copper, nickel, gold, or an alloy. Typical liner thicknesses range from 1 to 10 mils (0.025 to 0.25 mm). 5. The wax is melted from within, leaving the thin metal liner. 6. A hollow shaft that includes holes and fittings through which the liner can be pressurized is sealed to both ends of the liner. The liner is pressurized to stiffen (and hence stabilize) it for the next step. 7. The pressurized liner is placed in a filament-winding machine, which is then operated to cover the liner with multiple layers of an uncured graphite-fiber/epoxy-matrix or other suitable composite material. 8. The composite-overwrapped liner is cured in an oven. 9. The pressure is relieved and the shaft is removed. The tank is then ready for use. The process as described above accommodates variations: a) The mandrel could be made of a wax that melts at a higher temperature and not removed until the tank is cured in the oven. b) The tank need

  3. 17O nuclear quadrupole coupling constants of water bound to a metal ion: A gadolinium(III) case study

    NASA Astrophysics Data System (ADS)

    Yazyev, Oleg V.; Helm, Lothar

    2006-08-01

    Rotational correlation times of metal ion aqua complexes can be determined from O17 NMR relaxation rates if the quadrupole coupling constant of the bound water oxygen-17 nucleus is known. The rotational correlation time is an important parameter for the efficiency of Gd3+ complexes as magnetic resonance imaging contrast agents. Using a combination of density functional theory with classical and Car-Parrinello molecular dynamics simulations we performed a computational study of the O17 quadrupole coupling constants in model aqua ions and the [Gd(DOTA)(H2O)]- complex used in clinical diagnostics. For the inner sphere water molecule in the [Gd(DOTA)(H2O)]- complex the determined quadrupole coupling parameter χ√1+η2/3 of 8.7MHz is very similar to that of the liquid water (9.0MHz ). Very close values were also predicted for the the homoleptic aqua ions of Gd3+ and Ca2+. We conclude that the O17 quadrupole coupling parameters of water molecules coordinated to closed shell and lanthanide metal ions are similar to water molecules in the liquid state.

  4. Globular cluster ages determined from the Oosterhoff period-metallicity effect using oxygen-enhanced isochrones. III

    NASA Astrophysics Data System (ADS)

    Sandage, Allan

    1993-08-01

    The new brighter calibration of absolute luminosities of RR Lyrae stars by about 0.25 mag as a function of metallicity via the Oosterhoff period effect gives a revised age of the Galactic globular cluster system as 14 Gyr when used with the oxygen-enhanced main-sequence termination models of Bergbush and VandenBerg (1992). There is no correlation of cluster age with metallicity. The presence or absence of age differences between any two clusters is neither proof nor disproof of the Eggen-Lynden Bell-Sandage model of the formation of the Galaxy by collapse. If there were different density regimes within the initial density fluctuation that was the protogalaxy, then there has been a hierarchy of collapse times for the various parts of the present Galaxy. The age of the universe is 15 Gyr, based on the age of the Galaxy at 14 Gyr, to which 1 Gyr is added for the gestation time of the galaxies. The ratio of this age to the inverse Hubble constant with H(0) about 45 km/s Mpc, based on a recent concordant determination using supernovae of type Ia, is close to the critical value of 2/3 required if the deceleration is caused by a mean density just equal to that needed for closure. For the first time, these new data give the possibility that Omega = 1 from this timing test.

  5. The effect of pH and temperature on the sorption of zinc(II), cadmium(II), and aluminum(III) onto new metal-ligand complexes of sporopollenin

    SciTech Connect

    Pehlivan, E.; Ersoz, M.; Pehlivan, M.; Yildiz, S.; Duncan, H.J.

    1995-03-15

    Sorption of metal ions from aqueous solution onto metal-ligand complexes of sporopollenin derivatives has been measured as a function of pH at several temperatures between 20 and 50 C. Novel metal-ligand exchange resins possessing oxime and carboxylic acid side arm functionality were prepared through the reaction of diaminosporopollenin with dichloro-antiglyoxime and bromoacetic acid. The pH dependencies and sorption isotherms of various metal ions such as Zn (II), Cd(II), and Al(III) on the resin were investigated from aqueous solution. The sorption behavior of these metal-ligand complexes of sporopollenin derivatives and the possibilities of selectively removing and recovering heavy metals are explained on the basis of their chemical nature and complex properties and the results are interpreted in terms of the variations of pH.

  6. Blood levels of the heavy metal, lead, and caries in children aged 24-72 months: NHANES III.

    PubMed

    Wiener, R Constance; Long, D Leann; Jurevic, Richard J

    2015-01-01

    Lead remains a significant pollutant. It has acute toxic and chronic effects on many tissues and accumulates in teeth and bones. The researchers for this study investigated the association of blood lead levels with the extent/severity of caries as measured by the number of decayed/filled teeth of children aged 24-72 months using data from NHANES III (the Third National Health and Nutrition Examination Survey), accounting for the excess zero caries in the analysis and using less than 2 µg/dl as the reference blood lead level (n = 3,127). Zero-inflated negative binomial regression models indicated unadjusted extent/severity mean ratios of 1.79, 1.88 and 1.94 for the number of decayed/filled teeth in children whose blood lead levels were 2-5, 5-10 and >10 µg/dl, respectively, compared with children having <2 µg/dl blood lead levels. The results did not attenuate when other variables were added to the model for the 5-10 and >10 µg/dl levels of exposure. The adjusted extent/severity mean ratios were 1.84, 2.14 and 1.91, respectively, for the categories. This study indicated a strong association of blood lead levels with increasing numbers of carious teeth in children aged 24-72 months. These findings support other studies in an innovative analysis handling cases of children with no caries. The findings may inform caries risk assessment. PMID:25358243

  7. Modeling, measuring, and mitigating instability growth in liner implosions on Z

    NASA Astrophysics Data System (ADS)

    Peterson, Kyle

    2015-11-01

    Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. In this talk, we will discuss the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. We present simulations that show electro-thermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent magneto-Rayleigh-Taylor (MRT) instability growth. We discuss measurement results from experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electro-thermal instability growth on well-characterized initially solid aluminum or beryllium rods driven with a 20 MA, 100 ns risetime current pulse. These measurements show good agreement with electro-thermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. Recent experiments have confirmed simulation predictions of dramatically reduced instability growth in solid metallic rods when thick dielectric coatings are used to mitigate density perturbations arising from the electro-thermal instability. These results provide further evidence that the inherent surface roughness of the target is not the dominant seed for the MRT instability, in contrast with most inertial confinement fusion approaches. These results suggest a new technique for substantially reducing the integral MRT growth in magnetically driven implosions. Indeed, recent results on the Z facility with 100 km/s Al and Be liner implosions show substantially reduced growth. These new results include axially magnetized, CH-coated beryllium liner radiographs in which the inner liner surface is observed to be remarkably straight and uniform at a radius of about 120 microns (convergence ratio ~20). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under

  8. Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

    SciTech Connect

    Bang, Suhee; Lee, Yong -Min; Hong, Seungwoo; Cho, Kyung -Bin; Nishida, Yusuke; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2014-09-14

    Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)–peroxo complexes that bind redox-inactive metal ions, (TMC)FeIII–(μ,η22-O2)–Mn+ (Mn+ = Sr2+, Ca2+, Zn2+, Lu3+, Y3+ and Sc3+; TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca2+ and Sr2+ complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. In conclusion, complexes that contain Ca2+ or Sr2+ ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. Furthermore, we discuss these results in the light of the functional role of the Ca2+ ion in the oxidation of water to dioxygen by the oxygen-evolving complex.

  9. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    SciTech Connect

    Melchior, S.

    1997-12-31

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m{sup 2} to 500 m{sup 2}. Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10{sup -10} m{sup 3} m{sup -2} s{sup -1} to 4 x 10{sup -8} m{sup 3} m{sup -2} s{sup -1}. Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates.

  10. Fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1975-01-01

    The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.

  11. Cast adrift: Gortex cast liners allow greater patient activity.

    PubMed

    Dubowitz, Gerald; Miller, Deborah M

    2003-01-01

    Extremity fractures are a common injury, with nearly 1.5 million cases reported in the United States in 1998. Treatment often involves lengthy periods of immobilization. This report outlines the use of a Gortex cast liner by a subject who was able to engage in swimming and scuba diving during the healing process. We report that a Gortex cast liner may be considered for an active patient who is keen to return to limited activities during fracture healing. Apparently because of a lack of knowledge of their existence, physicians currently are underutilizing this method of casting in active patients. The use of Gortex liners elsewhere has been reported to have higher patient and physician satisfaction in both use and performance, with no reported detrimental effects on outcome. PMID:14518627

  12. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  13. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  14. Transmissivity evolution through interface of composite liners under applied constraint.

    PubMed

    Diagne, M

    2011-08-01

    In landfill liners, geomembranes have defects that constitute preferential passages of leachate from rainwater percolation. Non-woven geotextiles are widely used in wastelandfills as materials having the functions of protection, separation, filtration and drainage. This study seeks to select geotextiles through an investigation conducted among landfill operators who commonly arise a geotextile in the geomembrane-clay interface to facilitate geomembrane welding and to prevent its puncture by angular materials. It also attempts to find out the influence of geotextile in a decimetric transmissivity cell size under 50 kPa stress and smooth ground surface. The results show that the transmissivity in composite liner interface is almost the same as the one calculated with the European standard EN ISO 12958. Transmissivity depends on the mechanical stress applied to the bottom liner, on the geotextile type in the interface and on the ground surface. PMID:20819848

  15. Optimization of a Ranchero driven high energy liner driver system

    SciTech Connect

    Atchison, Walter L; Kaul, Ann; Rousculp, Chris L; Watt, Robert G

    2008-01-01

    An experimental series is planned to implode a dense heavy liner to a velocity in excess of 1 cm/microsecond (10 mm/microsecond) using a RANCHERO coaxial explosive flux compression generator. The goal of this study is to choose the liner mass and starting radius that will deliver the greatest amount of kinetic energy to a target at 1 cm final radius. In this study we used the 1D-MHD simulation code RA YEN to search for the proper initial conditions. The results will be used as a starting point for 2-D simulations and preliminary designs for the first experiments planned in the 2009/2010 time frame. The preliminary results indicate that a liner velocity of 1.25 cm/microsecond and a kinetic energy of greater than 4 megajoules may be possible.

  16. Constraining the Accretion Mode in LINER 1.9s

    NASA Astrophysics Data System (ADS)

    Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie

    2016-01-01

    The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.

  17. Optimization of Microphone Locations for Acoustic Liner Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; June, J. C.

    2015-01-01

    Two impedance eduction methods are explored for use with data acquired in the NASA Langley Grazing Flow Impedance Tube. The first is an indirect method based on the convected Helmholtz equation, and the second is a direct method based on the Kumaresan and Tufts algorithm. Synthesized no-flow data, with random jitter to represent measurement error, are used to evaluate a number of possible microphone locations. Statistical approaches are used to evaluate the suitability of each set of microphone locations. Given the computational resources required, small sample statistics are employed for the indirect method. Since the direct method is much less computationally intensive, a Monte Carlo approach is employed to gather its statistics. A comparison of results achieved with full and reduced sets of microphone locations is used to determine which sets of microphone locations are acceptable. For the indirect method, each array that includes microphones in all three regions (upstream and downstream hard wall sections, and liner test section) provides acceptable results, even when as few as eight microphones are employed. The best arrays employ microphones well away from the leading and trailing edges of the liner. The direct method is constrained to use microphones opposite the liner. Although a number of arrays are acceptable, the optimum set employs 14 microphones positioned well away from the leading and trailing edges of the liner. The selected sets of microphone locations are also evaluated with data measured for ceramic tubular and perforate-over-honeycomb liners at three flow conditions (Mach 0.0, 0.3, and 0.5). They compare favorably with results attained using all 53 microphone locations. Although different optimum microphone locations are selected for the two impedance eduction methods, there is significant overlap. Thus, the union of these two microphone arrays is preferred, as it supports usage of both methods. This array contains 3 microphones in the upstream

  18. Assessment of damage to geomembrane liners by shredded scrap tires

    SciTech Connect

    Reddy, K.R.; Saichek, R.E.

    1998-12-01

    This paper presents the results of a field and laboratory study performed to assess damage to the geomembrane liner caused by using shredded scrap tires as a leachate drainage layer material in landfills. The field testing was performed to assess the damage that occurred to the geomembrane liner during construction and included nine tests conducted with different combinations of tire chip size and thickness, both with a geotextile and without a geotextile overlying the geomembrane, and under different loading conditions. The laboratory testing was performed to characterize the shredded tires, particularly their size distribution, hydraulic conductivity, compressibility, and chemical resistance. The laboratory testing also included performing simulation testing to determine the extent of damage that occurs to the geomembrane liner by the shredded tires under long-term waste-loading conditions. the damage that occurred to the geomembrane liners in both field tests and simulated laboratory tests was determined by visual observations as well as by conducting multi-axial tension tests, wide strip tension tests, and water vapor transmission tests on the exhumed geomembrane samples. Based on these results, a 0.46-m thick layer of secondary shred tire chips, with an average size of 7.6 cm, placed over a 543-g/m{sup 2} geotextile installed over a geomembrane liner using low-ground-pressure (<58 kPa) equipment was determined to provide adequate protection in the geomembrane liner during construction. The degree of protection offered under long-term loading conditions depends on the normal stress and the random orientation of the shredded tire chips at the geomembrane interface.

  19. Blood levels of the heavy metal, lead, and caries in children ages 24-72 months: NHANES III

    PubMed Central

    Wiener, RC; Long, DL; Jurevic, RJ

    2014-01-01

    Lead remains a significant pollutant. It has acute toxic and chronic effects on many tissues and accumulates in teeth and bones. The researchers for this study investigated the association of blood lead levels and the extent/severity of caries as measured by the number of decayed/filled teeth of children 24 to72 months using data from the Third National Health and Nutrition Examination Survey (NHANES III) accounting for the excess zero caries in the analysis and using less than 2 μg/dL as the reference blood lead level (N=3127). Zero-inflated negative binomial (ZINB) regression models indicated unadjusted extent/severity mean ratios of 1.79, 1.88, and 1.94 for the number of decayed/filled teeth in children whose blood lead levels were 2-5 μg/dL, 5-10 μg/dL, and >10 μg/dL, respectively when compared with children having less than 2 μg/dL blood lead levels. The results did not attenuate when other variables were added to the model for the 5-10 μg/dL, and >10 μg/dL levels of exposure. The adjusted extent/severity mean ratios were 1.84, 2.14, and 1.91, respectively for the categories. This study indicated a strong association of blood lead levels and increasing numbers of carious teeth in children 24 to72 months. These findings support other studies in an innovative analysis handling cases children with no caries. The findings may inform caries risk assessment. PMID:25358243

  20. Diagnosing magnetized liner inertial fusion experiments on Za)

    NASA Astrophysics Data System (ADS)

    Hansen, S. B.; Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Herrmann, M. C.; Hess, M. H.; Johns, O.; Lamppa, D. C.; Martin, M. R.; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, D. G.; Tomlinson, K.

    2015-05-01

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (˜1012 DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (˜10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ˜3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1-2 ns stagnation duration.

  1. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, S. B. Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H.; and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  2. Novel Processing of 81-mm Cu Shaped Charge Liners

    SciTech Connect

    Schwartz, A; Korzekwa, D

    2002-01-16

    A seven-step procedure was developed for producing shaped charge liner blanks by back extrusion at liquid nitrogen temperatures. Starting with a 38.1-mm diameter, 101.6-mm long cylinder at 77K, three forging steps with a flat-top die are required to produce the solid cone while maintaining low temperature. The solid cone is forged in four individual back extrusions at 77K to produce the rough liner blank. This procedure is capable of being run in batch processes to improve the time efficiency.

  3. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  4. Fracture Test Methods for Plastically Responding COPV Liners

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Lewis, Joseph C.

    2009-01-01

    An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.

  5. Wakefield and impedance studies of a liner using MAFIA

    NASA Astrophysics Data System (ADS)

    Chou, W.; Barts, T.

    1993-12-01

    The liner is a perforated beam tube which is coaxial with an outer bore tube. The 3D code MAFIA version 3.1 is used to study the wakefields, impedances, and resonances of this structure. The short range wakes and low frequency (below the cutoff) impedances are in agreement with the theoretical model. The long range wakes and high frequency resonances are associated with the distribution of the holes (or slots). The dependence of the impedance on the size, shape, and pattern of the holes (or slots) is studied. The impact of the liner impedance on the SSC impedance budget is discussed.

  6. Diagnosing magnetized liner inertial fusion experiments on Z

    DOE PAGESBeta

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; et al

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  7. Liner Optimization Studies Using the Ducted Fan Noise Prediction Code TBIEM3D

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Farassat, F.

    1998-01-01

    In this paper we demonstrate the usefulness of the ducted fan noise prediction code TBIEM3D as a liner optimization design tool. Boundary conditions on the interior duct wall allow for hard walls or a locally reacting liner with axially segmented, circumferentially uniform impedance. Two liner optimization studies are considered in which farfield noise attenuation due to the presence of a liner is maximized by adjusting the liner impedance. In the first example, the dependence of optimal liner impedance on frequency and liner length is examined. Results show that both the optimal impedance and attenuation levels are significantly influenced by liner length and frequency. In the second example, TBIEM3D is used to compare radiated sound pressure levels between optimal and non-optimal liner cases at conditions designed to simulate take-off. It is shown that significant noise reduction is achieved for most of the sound field by selecting the optimal or near optimal liner impedance. Our results also indicate that there is relatively large region of the impedance plane over which optimal or near optimal liner behavior is attainable. This is an important conclusion for the designer since there are variations in liner characteristics due to manufacturing imprecisions.

  8. Hard X-Ray Emission and the Ionizing Source in LINERs

    NASA Technical Reports Server (NTRS)

    Terashima, Y.; Ho, L. C.; Ptak, A. F.

    2004-01-01

    We report X-ray luminosities of 21 LINERs (low-ionization nuclear emission-line regions) and 17 low-luminosity Seyferts obtained with ASCA and discuss the ionizing source in LINERs. Most LINERs with broad H-alpha emission in their optical spectra (LINER 1s) have a compact hard X-ray source and their 2-10 keV X-ray luminosities (LX) are proportional to their H alpha luminosities (L-H-alpha). This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. Although some LINERs without broad H-alpha emission (LINER 2s) have X-ray properties similar to LINER 1s, the X-ray luminosities of many LINER 2s in our sample are lower than LINER 1s at a given H-alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H-alpha luminosities, suggesting that their primary ionizing source is something other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV. LINER 2s having small LX/LH-alpha occupy a localized region with small [OI]/H-alpha on the excitation diagram. Such LINER spectra can be reproduced by photoionization by very hot stars.

  9. Transition (LINER/HII) nuclei as evolved Composite (Seyfert 2/Starburst) nuclei

    NASA Astrophysics Data System (ADS)

    Storchi-Bergmann, Thaisa; Brandt, C. H.; Cid Fernandes, R.; Schmitt, H. R.; González Delgado, R.

    2004-11-01

    We compare the circumnuclear stellar population and environmental properies of Seyfert and Composite (Seyfert + Starburst) nuclei with those of LINERs and LINER/HII transition galaxies (TOs), and discuss evidence for evolution from Seyfert/Composite to LINER/TO nuclei.

  10. Failure assessment of aluminum liner based filament-wound hybrid riser subjected to internal hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Dikshit, Vishwesh; Seng, Ong Lin; Maheshwari, Muneesh; Asundi, A.

    2015-03-01

    The present study describes the burst behavior of aluminum liner based prototype filament-wound hybrid riser under internal hydrostatic pressure. The main objective of present study is to developed an internal pressure test rig set-up for filament-wound hybrid riser and investigate the failure modes of filament-wound hybrid riser under internal hydrostatic burst pressure loading. The prototype filament-wound hybrid riser used for burst test consists of an internal aluminum liner and outer composite layer. The carbon-epoxy composites as part of the filament-wound hybrid risers were manufactured with [±55o] lay-up pattern with total composite layer thickness of 1.6 mm using a CNC filament-winding machine. The burst test was monitored by video camera which helps to analyze the failure mechanism of the fractured filament-wound hybrid riser. The Fiber Bragg Grating (FBG) sensor was used to monitor and record the strain changes during burst test of prototype filament-wound hybrid riser. This study shows good improvements in burst strength of filament-wound hybrid riser compared to the monolithic metallic riser. Since, strain measurement using FBG sensors has been testified as a reliable method, we aim to further understand in detail using this technique.

  11. Filament wound metal lined propellant tanks for future Earth-to-orbit transports

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O.; Davis, Robert B.; Freeman, William T., Jr.

    1988-01-01

    For future Earth-to-orbit transport vehicles, reusability and lighter weights are sought for the main propellant tanks. To achieve this, a filament wound tank with a metal liner and an intermediate layer of foam-filled honeycomb is proposed. A hydrogen tank is used as an example. To accommodate mismatches in the expansion of liner and overwrap a design is proposed wherin the liner is configured so that the extension of the liner under pressure matches the expected contraction of the same liner due to the presence of a cryogen. In operation, the liner is pressurized at a rate such that the pressure strain matches the contraction due to decrease in temperature. As an alternate approach, compressive pre-stress is placed in the liner such that it will not separate from the overwrap. A finite element program is used to show stresses in the liner and overwrap for various tank pressures for the pre-stressed liner concept. A fracture mechanics analysis is made of the liners to determine tank life. The tank concept shown has a similar weight to the Shuttle external hydrogen tank, but the filament wound tank is expected to be reusable. Integration of the propellant tanks into a future transport vehicle is discussed.

  12. Retrospective Study of In-Service CIPP Liners

    EPA Science Inventory

    Cured-in-place pipe (CIPP) has been used for rehabilitation of deteriorating wastewater pipes for nearly 30 years in the US with much success. However, little quantitative data is available regarding the performance of these liners, to verify their estimated design life of 50 yea...

  13. Slope Stability of Geosynthetic Clay Liner Test Plots

    EPA Science Inventory

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  14. Fracture of the alumina-bearing couple delta ceramic liner.

    PubMed

    Taheriazam, Afshin; Mohajer, Mohammad Azizbaig; Aboulghasemian, Mansoour; Hajipour, Babak

    2012-01-01

    The fracture rate of third-generation ceramic liners is greatly reduced compared with first- and second-generation liners because of improvements in the design and manufacturing process. Fractures of the alumina-bearing couple are rare for the same reason.This article describes a case of a fracture of an alumina-bearing couple delta ceramic liner without trauma history that was treated with ceramic-on-polyethylene revision total hip arthroplasty. A 57-year-old man was admitted to the hip ward because of an alumina-bearing couple delta ceramic liner fracture. He underwent hip replacement by anterior approach 18 months previously in the same center because of left hip primary osteoarthritis. He received a 54×36-mm modular press-fit cup ceramic alumina-bearing couple delta insert. Probable causes of such fractures are manufacture production failure and edge loading based on cup inclination, but in our patient, inacceptable range of motion, failure of the locking mechanism during implantation insertion, or cracking were possible causes of fracture.Although the fracture rate of third-generation alumina-bearing couples is low, we believe that it may not be possible to eliminate the actual risk of alumina head fracture. Patients should be informed about the potential for this complication before receiving an alumina-bearing couple. PMID:22229622

  15. RESISTANCE OF FLEXIBLE MEMBRANE LINERS TO CHEMICALS AND WASTES

    EPA Science Inventory

    The function of flexible membrane liners (FML's) is to contain waste and leachates. FML's based on synthetic polymeric materials may be degraded and permeated by the fluids that must be contained. Qualitative and quantitative information on the chemical resistance of FML's materi...

  16. Conductivity and transit time estimates of a soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.H.; Herzog, B.L.

    1990-01-01

    A field-scale soil linear was built to assess the feasibilty of constructing a liner to meet the saturated hydraulic conductivity requirement of the U.S. EPA (i.e., less than 1 ?? 10-7 cm/s), and to determine the breakthrough and transit times of water and tracers through the liner. The liner, 8 ?? 15 ?? 0.9 m, was constructed in 15-cm compacted lifts using a 20,037-kg pad-foot compactor and standard engineering practices. Estimated saturated hydraulic conductivities were 2.4 ?? 10-9 cm/s, based on data from large-ring infiltrometers; 4.0 ?? 10-8 cm/s from small-ring infiltrometers; and 5.0 ?? 10-8 cm/s from a water-balance analysis. These estimates were derived from 1 year of monitoring water infiltration into the linear. Breakthrough of tracers at the base of the liner was estimated to be between 2 and 13 years, depending on the method of calculation and the assumptions used in the calculation.

  17. Examination of resistivity issues in solid liner z-pinches

    SciTech Connect

    Atchison, W.L.; Faehl, R.J.; Reinovsky, R.E.

    1999-07-01

    Experiments being conducted at the Los Alamos National lab Pegasus facility are examining driving an aluminum liner with a pulsed magnetic field. The Pegasus facility provides a current of 5 to 8 Mega-amps to compress a cylindrical liner. Liners of various size and thickness are used, depending on the specific experimental objectives. In several of these experiments, a B-dot probe has been used to measure the field diffused through the liners. This data has been compared to predictions of field penetrations using numerical simulations. These predictions were made with a 2D Eulerian and a 1D Lagrangian MHD code. The simulations were made with a wide variety of resistivity models including both SESAME tabular values and analytic models. the results of these comparisons show that the behavior of aluminum in the region from a few tenths of a eV to 1eV and densities from about .2 to 3.0 g/cc is not reproduced well. While this is understandable based on the back of conclusive data in the region, these experiments confirm the in-applicability of extrapolating existing models into this region where phase changes are drastically changing the behavior.

  18. Creep and stress relaxation behavior of two soft denture liners.

    PubMed

    Salloum, Alaa'a M

    2014-03-01

    Numerous investigators stated the indications of soft denture lining materials; but no one determined the indications of these materials according to their chemical structure. The purpose of this investigation was to evaluate the viscoelastic properties of acrylic and silicon lining materials. This study investigated and compared viscoelastic properties of two resilient denture lining materials. Tested materials were laboratory processed; one of them was silicone-based liner product (Molloplast-B), and the other was plasticized acrylic resin (Vertex™ Soft). Twenty cylindrical specimens (10-20 mm in length, 11.55 mm in diameter) were fabricated in an aluminum mold from each material for creep and stress relaxation testing (the study of viscoelastic properties). Tests were performed by using the universal testing machine DY-34. Collected data were analyzed with t test statistics for statistically significant differences at the 95 % confidence level. There was a clear difference in creep and stress relaxation behavior between acrylic and silicone liners. Statistical study of Young's moduli illustrated that Vertex™ Soft was softer than Molloplast-B. On the other hand, the results explained that the recovery of silicone material was better than of acrylic one. The creep test revealed that the plasticized acrylic resin lining material exhibited considerable creep, whereas silicone-based liner exhibited elastic behavior. Besides, the stress relaxation test showed that relaxation of the plasticized acrylic resin material was bigger than of the silicone-based liner. PMID:24605004

  19. Development of variable-rate sprayer for nursery liner applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensor-guided application technologies are needed to achieve constant spray deposition for the rapid growth of nursery liner trees during a growing season. An experimental real-time variable-rate sprayer that implemented 20 Hz ultrasonic sensors and pulse width modulation (PWM) solenoid valve-contro...

  20. Mesoscale Probing of Local Perturbations in PBX-driven Liners

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Guirguis, Raafat; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; ADAI, Univ of Coimbra; NSWC-IH Collaboration

    2013-06-01

    Efforts are aimed on experimental studies of how to improve a dynamic performance of the shaped charge jet. We postulated four basic elements to the problem: (1) The fluctuations in properties inherent in PBXs cause kinetic localizations in the detonation reaction zone (DRZ) structure, which cause (2) perturbations in the detonation products velocity and pressure, which induce (3) Perturbations in the response of the PBX-driven liner; and (4) Local perturbations/instabilities in liner are amplified during its collapse phase causing micro-fragmentations and ejected debris from the cumulative jet at initial stage, and then the incoherence and premature breakup of the resulting shaped charge jet. Spatially-resolved scenarios of each of phenomena (1-4) were obtained in experiments with copper-liners and HMX-based PBXs fabricated on maximum packing density of crystalline constituents, in which the DRZ-induced perturbations were recorded and quantitatively measured in the mesoscale range with application of the 96-channel optical analyzer MCOA-UC. Obtained experimental evidence is indicative that ejecta from the DRZ and ejecta-driven detonation cells are dominating in wide spectrum perturbations translated to a PBX-driven liner. This work was supported by the Office of Naval Research under the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and Shawn Thorne Program Managers.

  1. LINER MATERIALS EXPOSED TO TOXIC AND HAZARDOUS WASTES

    EPA Science Inventory

    This exploratory experimental research project was conducted (1975-1983) to assess the relative effectiveness and durability of a wide variety of liner materials when exposed to hazardous wastes under conditions that simulate different aspects of service in on-land waste storage ...

  2. LINER MATERIALS EXPOSED TO HAZARDOUS AND TOXIC WASTES

    EPA Science Inventory

    This exploratory experimental research project was conducted (1975-1983) to assess the relative effectiveness and durability of a wide variety of liner materials when exposed to hazardous wastes under conditions that simulate different aspects of service in on-land waste storage ...

  3. EFFECT OF FLUE GAS CLEANING SLUDGES ON SELECTED LINER MATERIALS

    EPA Science Inventory

    This project examines the effects of two flue gas desulfurization (FGD) sludges on 18 liner materials used to contain them. Seventy-two special test cells were constructed 1 ft. in diameter by 2 ft. high. Devices were installed to collect the leachate from each test cell for dete...

  4. Contoured-gap coaxial guns for imploding plasma liner experiments

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  5. FORENSIC INVESTIGATION OF A GENERATION OLD CIPP LINER

    EPA Science Inventory

    There is limited information regarding the in-situ performance of rehabilitation methods used for prolonging the service life of buried municipal pipeline systems. With some CIPP liners nearly 30 years in service, municipalities are expressing a strong interest in the collection ...

  6. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  7. 225-B Pool Cell 5 Liner Leak Investigation

    SciTech Connect

    Rasmussen, J.H., Westinghouse Hanford

    1996-06-07

    This document describes the actions taken to confirm and respond to a very small (0.046 ml/min) leak in the stainless steel liner of Hanford`s Waste Encapsulation and Storage Facility (WESF) storage pool cell 5 in Building 225-B. Manual level measurements confirmed a consistent weekly accumulation of 0.46 liters of water in the leak detection grid sump below the pool cell 5 liner. Video inspections and samples point to the capsule storage pool as the source of the water. The present leak rate corresponds to a decrease of only 0.002 inches per week in the pool cell water level, and consequently does not threaten any catastrophic loss of pool cell shielding and cooling water. The configuration of the pool cell liner, sump system, and associated risers will limit the short-term consequences of even a total liner breach to a loss of 1 inch in pool cell level. The small amount of demineralized pool cell water which has been in contact with the concrete structure is not enough to cause significant structural damage. However, ongoing water-concrete interaction increases. The pool cell leak detection sump instrumentation will be modified to improve monitoring of the leak rate in the future. Weekly manual sump level measurements continue in the interim. Contingency plans are in place to relocate the pool cell 5 capsules if the leak worsens.

  8. Risk assessment for the transportation of radioactive zeolite liners

    SciTech Connect

    Not Available

    1982-01-01

    The risk is estimated for the shipment of radioactive zeolite liners in support of the Zeolite Vitrification Demonstration Program currently underway at Pacific Northwest Laboratory under the sponsorship of the US Department of Energy. This program will establish the feasibility of zeolite vitrification as an effective means of immobilizing high-specific-activity wastes. In this risk assessment, it is assumed that two zeolite liners, each loaded around July 1, 1981 to 60,000 Ci, will be shipped by truck around January 1, 1982. However, to provide a measure of conservatism, each liner is assumed to initially hole 70,000 Ci, with the major radioisotopes as follow: /sup 90/Sr = 3000 Ci, /sup 134/Cs = 7000 Ci, /sup 137/Cs = 60,000 Ci. Should shipment take place with essentially no delay after initial loading (regardless of loading date), the shipment loading would be only 2.7% higher than that for the assumed six-month delay. This would negligibly affect the overall risk. As a result of this risk assessment, it is concluded that the transport of the radioactive zeolite liners from TMI to PNL by truck can be conducted at an insignificant level of risk to the public.

  9. Evaluation of a stack: A concrete chimney with brick liner

    SciTech Connect

    Joshi, J.R.; Amin, J.A.; Porthouse, R.A.

    1995-12-31

    A 200 ft. tall stack, consisting of a concrete chimney with an independent acid proof brick liner built in the 1950`s, serving the Separations facility at the Savannah River Site (SRS), was evaluated for the performance category 3 (PC3) level of Natural Phenomena Hazards (NPH) effects. The inelastic energy absorption capacity of the concrete chimney was considered in the evaluation of the earthquake resistance, in particular, to compute the F{sub {mu}} factor. The calculated value of F{sub {mu}} exceeded 3.0, while the seismic demand for the PC3 level, using an F{sub {mu}} value of 1.5, was found to be less than the capacity of the concrete chimney. The capacity formulation of ACI 307 was modified to incorporate the effect of an after design opening on the tension side. There are considerable uncertainties in determining the earthquake resistance of the independent brick liner. The critical liner section, located at the bottom of the breeching opening, does not meet the current recommendations. A discussion is provided for the possible acceptable values for the ``Moment Reduction Factor``, R{sub w} or F{sub {mu}} for the liner. Comments are provided on the comparison of stack demands using response spectra (RS) versus time history (TH) analysis, with and without soil structure interaction (SSI) effects.

  10. Wear resistance of the biocompatible phospholipid polymer-grafted highly cross-linked polyethylene liner against larger femoral head.

    PubMed

    Moro, Toru; Takatori, Yoshio; Kyomoto, Masayuki; Ishihara, Kazuhiko; Kawaguchi, Hiroshi; Hashimoto, Masami; Tanaka, Takeyuki; Oshima, Hirofumi; Tanaka, Sakae

    2015-07-01

    The use of larger femoral heads to prevent the dislocation of artificial hip joints has recently become more common. However, concerns about the subsequent use of thinner polyethylene liners and their effects on wear rate have arisen. Previously, we prepared and evaluated the biological and mechanical effects of a novel highly cross-linked polyethylene (CLPE) liner with a nanometer-scaled graft layer of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC). Our findings showed that the PMPC-grafted particles were biologically inert and caused no subsequent bone resorptive responses and that the PMPC-grafting markedly decreased wear in a hip joint simulator. However, the metal or ceramic femoral heads used in this previous study had a diameter of 26 mm. Here, we investigated the wear-resistance of the PMPC-grafted CLPE liner with a 40-mm femoral head during 10 × 10(6) cycles of loading in the hip joint simulator. The results provide preliminary evidence that the grafting markedly decreased gravimetric wear rate and the volume of wear particles, even when coupled with larger femoral heads. Thus, we believe the PMPC-grafting will prolong artificial hip joint longevity both by preventing aseptic loosening and by improving the stability of articular surface. PMID:25764495

  11. Water-free rare-earth-metal ionic liquids/ionic liquid crystals based on hexanitratolanthanate(III) anion.

    PubMed

    Ji, Shun-Ping; Tang, Meng; He, Ling; Tao, Guo-Hong

    2013-04-01

    The hexanitratolanthanate anion (La(NO(3))(6)(3-)) is an interesting symmetric anion suitable to construct the component of water-free rare-earth-metal ionic liquids. The syntheses and structural characterization of eleven lanthanum nitrate complexes, [C(n)mim](3)[La(NO(3))(6)] (n=1, 2, 4, 6, 8, 12, 14, 16, 18), including 1,3-dimethylimidazolium hexanitratolanthanate ([C(1)mim](3)[La(NO(3))(6)], 1), 1-ethyl-3-methylimidazolium hexanitratolanthanate ([C(2)mim](3)[La(NO(3))(6)], 2), 1-butyl-3-methylimidazolium hexanitratolanthanate ([C(4)mim](3)[La(NO(3))(6)], 3), 1-isobutyl-3-methylimidazolium hexanetratolanthanate ([isoC(4)mim](3)[La(NO(3))(6)], 4), 1-methyl-3-(3'-methylbutyl)imidazolium hexanitratolanthanate ([MC(4)mim](3)[La(NO(3))(6)], 5), 1-hexyl-3-methylimidazolium hexanitratolanthanate ([C(6)mim](3)[La(NO(3))(6)], 6), 1-methyl-3-octylimidazolium hexanitratolanthanate ([C(8)mim](3)[La(NO(3))(6)], 7), 1-dodecyl-3-methylimidazolium hexanitratolanthanate ([C(12)mim](3)[La(NO(3))(6)], 8), 1-methyl-3-tetradecylimidazolium hexanitratolanthanate ([C(14)mim](3)[La-(NO(3))(6)], 9), 1-hexadecyl-3-methylimid-azolium hexanitratolanthanum ([C(16)dmim](3)[La(NO(3))(6)], 10), and 1-methyl-3-octadecylimidazolium hexanitratolanthanate ([C(18)mim](3)[La(NO(3))(6)], 11) are reported. All new compounds were characterized by (1)H and (13)C NMR, and IR spectroscopy as well as elemental analysis. The crystal structure of compound 1 was determined by using single-crystal X-ray diffraction, giving the following crystallographic information: monoclinic; P2(1)/c; a=15.3170 (3), b=14.2340 (2), c=13.8954(2) Å; β=94.3453(15)°, V=3020.80(9) Å(3), Z=4, ρ=1.764 g cm(-3). The coordination polyhedron around the lanthanum ion is rationalized by six nitrate anions with twelve oxygen atoms. No hydrogen-bonding network or water molecule was found in 1. The thermodynamic stability of the new complexes was investigated by using thermogravimetric analysis (TGA). The water

  12. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-09-01

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al2O3 or HfO2 dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO2 based capacitors compared to Al2O3 based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density.

  13. The role of the substrate on the dispersion in accumulation in III-V compound semiconductor based metal-oxide-semiconductor gate stacks

    SciTech Connect

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe

    2015-09-07

    Dispersion in accumulation is a widely observed phenomenon in metal-oxide-semiconductor gate stacks based on III-V compound semiconductors. The physical origin of this phenomenon is attributed to border traps located in the dielectric material adjacent to the semiconductor. Here, we study the role of the semiconductor substrate on the electrical quality of the first layers at atomic layer deposited (ALD) dielectrics. For this purpose, either Al{sub 2}O{sub 3} or HfO{sub 2} dielectrics with variable thicknesses were deposited simultaneously on two technology important semiconductors—InGaAs and InP. Significantly larger dispersion was observed in InP based gate stacks compared to those based on InGaAs. The observed difference is attributed to a higher border trap density in dielectrics deposited on InP compared to those deposited on InGaAs. We therefore conclude that the substrate plays an important role in the determination of the electrical quality of the first dielectric monolayers deposited by ALD. An additional observation is that larger dispersion was obtained in HfO{sub 2} based capacitors compared to Al{sub 2}O{sub 3} based capacitors, deposited on the same semiconductor. This phenomenon is attributed to the lower conduction band offset rather than to a higher border trap density.

  14. High-temperature combustor liner tests in structural component response test facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Paul E.

    1988-01-01

    Jet engine combustor liners were tested in the structural component response facility at NASA Lewis. In this facility combustor liners were thermally cycled to simulate a flight envelope of takeoff, cruise, and return to idle. Temperatures were measured with both thermocouples and an infrared thermal imaging system. A conventional stacked-ring louvered combustor liner developed a crack at 1603 cycles. This test was discontinued after 1728 cycles because of distortion of the liner. A segmented or float wall combustor liner tested at the same heat flux showed no significant change after 1600 cycles. Changes are being made in the facility to allow higher temperatures.

  15. RQL Sector Rig Testing of SiC/SiC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Martin, Lisa C.; Brewer, David N.

    2002-01-01

    Combustor liners, manufactured from silicon carbide fiber-reinforced silicon carbide (SiC/SiC) were tested for 260 hr using a simulated gas turbine engine cycle. This report documents the results of the last 56 hr of testing. Damage occurred in one of the six different components that make up the combustor liner set, the rich zone liner. Cracks in the rich zone liner initiated at the leading edge due to stresses resulting from the component attachment configuration. Thin film thermocouples and fiber optic pyrometers were used to measure the rich zone liner's temperature and these results are reported.

  16. Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.

    2001-01-01

    Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.

  17. Liners and Low Luminosity AGN in the ROSAT Database

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; West, Donald K. (Technical Monitor)

    2003-01-01

    This program has led to a series of papers being written and published in the Astrophysical Journal. Together these papers try to explain major parts of the LINER and low luminosity AGN puzzle. One paper ('Accretion Disk Instabilities, Cold Dark Matter Models, and Their Role in Quasar Evolution', Hatziminaoglou E., Siemiginowska A., & Elvis M., 2001, ApJ, 547, 90) describes an analytical model for the evolution of the quasar luminosity function. By combining the Press-Schechter formalism for the masses of initial structures with the luminosity distribution for a population of single mass black holes given by an unstable accretion disk an almost complete end-to-end physics-based model of quasar evolution is produced. In this model black holes spend 75% of their time in a low accretion state (at L(Edd)). This low state population of black holes is likely to be observed as the LINER and low luminosity AGNs in the local universe. Another paper ('Broad Emission Line Regions in AGN: the Link with the Accretion Power', Nicastro F., 2000, ApJ Letters, 530, L65) gives a physical basis for why low state black holes appear as LINERS. By linking the Lightman-Eardley instability in an accretion disk to the ori.gin of a wind that contains the broad emission line cloud material this model explains the large widths seen in these lines as being the Keplerian velocity of the disk at the instability radius. For LINERS the key is that below an accretion rate of 10(exp -3)M(sub Edd)the Lightman-Eardley instability falls within the innermost stable orbit of the disk, and so leaves the entire disk stable. No wind occurs, and so no broad emission lines are seen. Most LINERS are likely to be black holes in this low state. Tests of this model are being considered.

  18. Template-assisted synthesis of III-nitride and metal-oxide nano-heterostructures using low-temperature atomic layer deposition for energy, sensing, and catalysis applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Biyikli, Necmi; Ozgit-Akgun, Cagla; Eren, Hamit; Haider, Ali; Uyar, Tamer; Kayaci, Fatma; Guler, Mustafa Ozgur; Garifullin, Ruslan; Okyay, Ali K.; Ulusoy, Gamze M.; Goldenberg, Eda

    2015-08-01

    Recent experimental research efforts on developing functional nanostructured III-nitride and metal-oxide materials via low-temperature atomic layer deposition (ALD) will be reviewed. Ultimate conformality, a unique propoerty of ALD process, is utilized to fabricate core-shell and hollow tubular nanostructures on various nano-templates including electrospun nanofibrous polymers, self-assembled peptide nanofibers, metallic nanowires, and multi-wall carbon nanotubes (MWCNTs). III-nitride and metal-oxide coatings were deposited on these nano-templates via thermal and plasma-enhanced ALD processes with thickness values ranging from a few mono-layers to 40 nm. Metal-oxide materials studied include ZnO, TiO2, HfO2, ZrO2, and Al2O3. Standard ALD growth recipes were modified so that precursor molecules have enough time to diffuse and penetrate within the layers/pores of the nano-template material. As a result, uniform and conformal coatings on high-surface area nano-templates were demonstrated. Substrate temperatures were kept below 200C and within the self-limiting ALD window, so that temperature-sensitive template materials preserved their integrity III-nitride coatings were applied to similar nano-templates via plasma-enhanced ALD (PEALD) technique. AlN, GaN, and InN thin-film coating recipes were optimized to achieve self-limiting growth with deposition temperatures as low as 100C. BN growth took place only for >350C, in which precursor decomposition occured and therefore growth proceeded in CVD regime. III-nitride core-shell and hollow tubular single and multi-layered nanostructures were fabricated. The resulting metal-oxide and III-nitride core-shell and hollow nano-tubular structures were used for photocatalysis, dye sensitized solar cell (DSSC), energy storage and chemical sensing applications. Significantly enhanced catalysis, solar efficiency, charge capacity and sensitivity performance are reported. Moreover, core-shell metal-oxide and III-nitride materials

  19. Development of a ceramic exhaust port liner

    SciTech Connect

    Miller, B.; Coblenz, W.; Paille, N., Jr.

    1988-01-01

    A numerical study was performed to rank various thermally insulating ceramics by their ability to withstand metal casting processes. The analysis revealed that aluminum titanate and zirconia would theoretically survive casting. Of these two, the former does not exhibit the low temperature or cooldown degradation problems generally associated with zirconia. It was therefore chosen as insulation against the exhaust stream of internal combustion engines. 7 references.

  20. Macron Formed Liner Compression as a Practical Method for Enabling Magneto-Inertial Fusion

    SciTech Connect

    Slough, John

    2011-12-10

    The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. The main impediment for current nuclear fusion concepts is the complexity and large mass associated with the confinement systems. To take advantage of the smaller scale, higher density regime of magnetic fusion, an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. The very compact, high energy density plasmoid commonly referred to as a Field Reversed Configuration (FRC) provides for an ideal target for this purpose. To make fusion with the FRC practical, an efficient method for repetitively compressing the FRC to fusion gain conditions is required. A novel approach to be explored in this endeavor is to remotely launch a converging array of small macro-particles (macrons) that merge and form a more massive liner inside the reactor which then radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target FRC plasmoid suppresses the thermal transport to the confining liner significantly lowering the imploding power needed to compress the target. With the momentum flux being delivered by an assemblage of low mass, but high velocity macrons, many of the difficulties encountered with the liner implosion power technology are eliminated. The undertaking to be described in this proposal is to evaluate the feasibility achieving fusion conditions from this simple and low cost approach to fusion. During phase I the design and testing of the key components for the creation of the macron formed liner have been successfully carried out. Detailed numerical calculations of the merging, formation and radial implosion of the Macron Formed Liner (MFL) were also performed. The phase II effort will focus on an experimental demonstration of the macron launcher at full power, and the demonstration

  1. A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2013-01-01

    A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube. The educed impedance of each liner is presented for forty-two test conditions (three Mach numbers and fourteen frequencies). In addition, the effects of moving the acoustic source from upstream to downstream and the refractive effects of the mean boundary layer on the wire mesh liner are investigated. The primary conclusions of the study are that: (1) more accurate results are obtained for the upstream source, (2) the uniform flow methods produce nearly identical impedance spectra at and below Mach 0.3 but significant scatter in the educed impedance occurs at the higher Mach number, (3) there is better agreement in educed impedance among the methods for the conventional liners than for the rigid-wall insert, ceramic, or wire mesh liner, and (4) the refractive effects of the mean boundary layer on the educed impedance of the wire mesh liner are generally small except at Mach 0.5.

  2. ACRIM III

    Atmospheric Science Data Center

    2015-12-30

    ACRIM III Data and Information Active Cavity Radiometer Irradiance ... the ACRIMSAT spacecraft on December 20, 1999. ACRIM III data are reprocessed every 90 days to utilize instrument recalibration.   ... ACRIM III Instrument Team Page ACRIM II Data Sets SCAR-B Block:  SCAR-B Products ...

  3. Consideration of liners and covers in performance assessments

    SciTech Connect

    Phifer, Mark A.; Seitz, Robert R.; Suttora, Linda C.

    2014-09-18

    On-site disposal cells are in use and being considered at several United States Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the U.S. Environmental Protection Agency under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management due to the radioactive waste. The USDOE-Environmental Management Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these CERCLA disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to CERCLA risk assessments and DOE Order 435.1 performance assessments in support of a Record of Decision and Disposal Authorization Statement, respectively. One of the issues considered by the working group, which is addressed in this report, was how to appropriately consider the performance of covers and liners/leachate collections systems in the context of a DOE Order 435.1 performance assessment (PA). This same information may be appropriate for consideration within CERCLA risk assessments for these facilities. These OSDCs are generally developed to meet hazardous waste (HW) disposal design standards under the Resource Conservation and Recovery Act (RCRA) as well as the DOE Order 435.1 performance based standards for disposal of radioactive waste. To meet the standards for HW, the facilities typically include engineered covers and liner/leachate collection systems. Thus, when considering such facilities in the context of a DOE Order 435.1 PA, there is a need to address the evolution of performance of covers and liner/leachate collection systems in the context of meeting a performance standard considering time

  4. Evidence for a conserved binding motif of the dinuclear metal site in mammalian and plant purple acid phosphatases: 1H NMR studies of the di-iron derivative of the Fe(III)Zn(II) enzyme from kidney bean.

    PubMed Central

    Battistuzzi, G; Dietrich, M; Löcke, R; Witzel, H

    1997-01-01

    The di-iron core of mammalian purple acid phosphatases has been reproduced in the plant enzyme from kidney bean (Mr 111000) upon insertion of an Fe(II) ion in place of the native zinc(II) in the dinuclear Fe(III)Zn(II) core. The shortening of the electronic relaxation time of the metal centre allows detection of hyperfine-shifted 1H NMR resonances, although severe broadening due to Curie relaxation prevents independent signal assignment. Nevertheless, comparison of the spectral features of the structurally characterized plant enzyme with those of the mammalian species, which were previously extensively assigned, is consistent with a close similarity of the metal-binding sites, also suggested by previous sequence-alignment studies. Some differences appear to be mainly localized at the M(II) site. Spectral comparison was also carried out on the Fe(III)Co(II) derivatives. PMID:9169589

  5. Unique anisotropic optical properties of a highly stable metal-organic framework based on trinuclear iron(iii) secondary building units linked by tetracarboxylic linkers with an anthracene core.

    PubMed

    Vinogradov, A V; Milichko, V A; Zaake-Hertling, H; Aleksovska, A; Gruschinski, S; Schmorl, S; Kersting, B; Zolnhofer, E M; Sutter, J; Meyer, K; Lönnecke, P; Hey-Hawkins, E

    2016-05-01

    A highly stable metal-organic framework, [{Fe3(ACTBA)2}X·6DEF]n (1; X = monoanion), based on trinuclear iron(iii) secondary building units connected by tetracarboxylates with an anthracene core, 2,6,9,10-tetrakis(p-carboxylatophenyl)anthracene (ACTBA), is reported. Depending on the direction of light polarisation, crystals of 1 exhibit anisotropic optical properties with birefringence Δn = 0.3 (λ = 590 nm). PMID:26906040

  6. Why Is There an “Inert” Metal Center in the Active Site of Nitrile Hydratase? Reactivity and Ligand Dissociation from a Five-Coordinate Co(III) Nitrile Hydratase Model

    PubMed Central

    Shearer, Jason; Kung, Irene Y.; Lovell, Scott; Kaminsky, Werner; Kovacs, Julie A.

    2015-01-01

    To determine how a substitutionally inert metal can play a catalytic role in the metalloenzyme nitrile hydratase (NHase), a reactive five-coordinate CoIII thiolate complex ([CoIII(S2Me2N3(Pr,Pr))](PF6) (1)) that resembles the active site of cobalt containing nitrile hydratase (Co NHase) was prepared. This was screened for reactivity, by using low-temperature electronic absorption spectroscopy, toward a number of biologically relevant “substrates”. It was determined 1 will react with azide, thiocyanate, and ammonia, but is unreactive toward nitriles, NO, and butyrate. Substrate-bound 1 has similar spectroscopic and structural properties as [CoIII(ADIT2)](PF6) (2). Complex 2 is a six-coordinate CoIII complex containing cis-thiolates and imine nitrogens, and has properties similar to the cobalt center of Co NHase. Substrate binding to 1 is reversible and temperature-dependent, allowing for the determination of the thermodynamic parameters of azide and thiocyanate binding and the rates of ligand dissociation. Azide and thiocyanate bind trans to a thiolate, and with similar entropies and enthalpies (thiocyanate: ΔH = −7.5 ± 1.1 kcal/mol, ΔS = −17.2 ± 3.2 eu; azide: ΔH = −6.5 ± 1.0 kcal/mol, ΔS = −12.6 ± 2.4 eu). The rates of azide and thiocyanate displacement from the metal center are also comparable to one another (kd = (7.22 ± 0.04) × 10−1 s−1 for thiocyanate and kd = 2.14 ± 0.50) × 10−2 s−1 for azide), and are considerably faster than one would expect for a low-spin d6 six-coordinate CoIII complex. These rates are comparable to those of an analogous Fe(III) complex, demonstrating that Co(III) and Fe(III) react at comparable rates when in this ligand environment. This study therefore indicates that ligand displacement from a low-spin CoIII center in a ligand environment that resembles NHase is not prohibitivly slow so as to disallow catalytic action in nonredox active cobalt metalloenzymes. PMID:11456548

  7. Innovative Liner Concepts: Experiments and Impedance Modeling of Liners Including the Effect of Bias Flow

    NASA Technical Reports Server (NTRS)

    Kelly, Jeff; Betts, Juan Fernando; Fuller, Chris

    2000-01-01

    The study of normal impedance of perforated plate acoustic liners including the effect of bias flow was studied. Two impedance models were developed by modeling the internal flows of perforate orifices as infinite tubes with the inclusion of end corrections to handle finite length effects. These models assumed incompressible and compressible flows, respectively, between the far field and the perforate orifice. The incompressible model was used to predict impedance results for perforated plates with percent open areas ranging from 5% to 15%. The predicted resistance results showed better agreement with experiments for the higher percent open area samples. The agreement also tended to deteriorate as bias flow was increased. For perforated plates with percent open areas ranging from 1% to 5%, the compressible model was used to predict impedance results. The model predictions were closer to the experimental resistance results for the 2% to 3% open area samples. The predictions tended to deteriorate as bias flow was increased. The reactance results were well predicted by the models for the higher percent open area, but deteriorated as the percent open area was lowered (5%) and bias flow was increased. A fit was done on the incompressible model to the experimental database. The fit was performed using an optimization routine that found the optimal set of multiplication coefficients to the non-dimensional groups that minimized the least squares slope error between predictions and experiments. The result of the fit indicated that terms not associated with bias flow required a greater degree of correction than the terms associated with the bias flow. This model improved agreement with experiments by nearly 15% for the low percent open area (5%) samples when compared to the unfitted model. The fitted model and the unfitted model performed equally well for the higher percent open area (10% and 15%).

  8. A Pegasus Dynamic Liner Friction Experiment

    SciTech Connect

    Hammerberg, J.E.; Kyrala, G.A.; Oro, D.M.; Fulton, R.D.; Anderson, W.E.; Obst, A.W.; Oona, H.; Stokes, J.; Wilke, M.D.

    1999-06-28

    The authors report on a pulsed power experiment performed at the Los Alamos National Laboratory Pegasus facility which was designed to measure material flow at metal interfaces driven to high relative velocities. Material motion at and near four flat Ta/Al(6061) interfaces was measured using flash radiographic techniques. A series of fine Pb wires (407 micron diameter) was implanted in the Al normal to the interfaces. The motion of these markers under shock loading provided a picture of material motion in the Al interfacial region. The surface roughness of the interfaces was varied between 32 and 125 micro-inches. The authors discuss the implications of these measurements for constitutive models of high speed friction and interfacial morphological change.

  9. Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2015-01-01

    A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.

  10. The evolution of instabilities during magnetically driven liner implosions.

    SciTech Connect

    Jennings, Christopher A.; Slutz, Stephen A.; Cuneo, Michael Edward; McBride, Ryan D.; Herrmann, Mark C.; Sinars, Daniel Brian

    2010-11-01

    Numerical simulations [S.A. Slutz et al Phys. Plasmas 17, 056303 (2010)] indicate that fuel magnetization and preheat could enable cylindrical liner implosions to become an efficient means to generate fusion conditions. A series of simulations has been performed to study the stability of magnetically driven liner implosions. These simulations exhibit the initial growth and saturation of an electro-thermal instability. The Rayleigh-Taylor instability further amplifies the resultant density perturbations developing a spectrum of modes initially peaked at short wavelengths. With time the spectrum of modes evolves towards longer wavelengths developing an inverse cascade. The effects of mode coupling, the radial dependence of the magnetic pressure, and the initial surface roughness will be discussed.

  11. Precision high energy liner implosion experiments PHELIX [1

    SciTech Connect

    Reass, William A; Baca, David M; Griego, Jeffrey R; Reinovsky, Robert E; Rousculp, Christopher L; Turchi, Peter J

    2009-01-01

    This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

  12. Skin friction on a flat perforated acoustic liner

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Brinich, P. F.

    1976-01-01

    The report concerns the measurement of friction coefficients of a typical perforated acoustic liner installed in the side of a wind tunnel. The results are compared with measured friction coefficients of a smooth hard wall for the same mean flow velocities in a wind tunnel. At a velocity of 61 m/sec, an increase in the local skin coefficient of only a few percent was observed, but at the highest velocity of 213 m/sec an increase of about 20% was obtained. This velocity is a realistic velocity for turbo-machinery components utilizing such liners, so a loss in performance is to be expected. Some tests were also performed to see if changes in the mean boundary layer induced by imposed noise would result in friction increase, but only at low velocity levels was such an increase in friction noted.

  13. Active Control of Liner Impedance by Varying Perforate Orifice Geometry

    NASA Technical Reports Server (NTRS)

    Ahuji, K. K.; Gaeta, R. J., Jr.

    2000-01-01

    The present work explored the feasibility of controlling the acoustic impedance of a resonant type acoustic liner. This was accomplished by translating one perforate over another of the same porosity creating a totally new perforate that had an intermediate porosity. This type of adjustable perforate created a variable orifice perforate whose orifices were non-circular. The key objective of the present study was to quantify, the degree of attenuation control that can be achieved by applying such a concept to the buried septum in a two-degree-of-freedom (2DOF) acoustic liner. An additional objective was to examine the adequacy of the existing impedance models to explain the behavior of the unique orifice shapes that result from the proposed silding perforate concept. Different orifice shapes with equivalent area were also examined to determine if highly non-circular orifices had a significant impact on the impedance.

  14. Composite-Material Tanks with Chemically Resistant Liners

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  15. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  16. Micro-beam friction liner and method of transferring energy

    DOEpatents

    Mentesana, Charles

    2007-07-17

    A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.

  17. Proposed ATLAS liner design fabricated for hydrodynamics experiments on Shiva Star

    SciTech Connect

    Anderson, W. E.; Adams, C. D.; Armijo, E. V.; Bartos, J. J.; Cameron, B. J.; Garcia, F.; Henneke, B.; Randolph, B.; Salazar, M. A.; Steckle, W. P. , Jr.; Turchi, Peter J.; Gale, D.

    2001-01-01

    An entirely new cylindrical liner system has been designed and fabricated for use on the Shiva Star capacitor bank. The design incorporates features expected to be applicable to a future power flow channel of the Atlas capacitor bank with the intention of keeping any required liner design modifications to a minimum when the power flow channel at Atlas is available. Four shots were successfully conducted at Shiva Star that continued a series of hydrodynamics physics experiments started on the Los Alamos Pegasus capacitor bank. Departures from the diagnostic suite that had previously been used at Pegasus required new techniques in the fabrication of the experiment insert package. We describe new fabrication procedures that were developed by the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division to fabricate the Shiva Star experiment loads. Continuing MST-7 development of interference fit processes for liner experiment applications, current joints at the glide planes were assembled by thermal shrink fit using liquid nitrogen as a coolant. The liner material was low strength, high conductance 1100 series aluminum. The liner glide plane electrodes were machined from full hard copper rod with a 10 ramp to maintain liner to glide plane contact as the liner was imploded. The parts were fabricated with 0.015 mm radial interference fit between the liner inside diameter (ID) and the glide plane outside diameter (OD). to form the static liner current joints. The liner was assembled with some axial clearance at each end to allow slippage if any axial force was generated as the liner assembly cassette was bolted into Shiva Star, a precaution to guard against buckling the liner during installation of the load cassette. Other unique or unusual processes were developed and are described. Minor adaptations of the liner design are now being fabricated for first Atlas experiments.

  18. X-ray variability in AGN: LINER vs. Seyfert 2

    NASA Astrophysics Data System (ADS)

    Hernandez-Garcia, Lorena; Masegosa, Josefa; Gonzalez-Martin, Omaira; Marquez, Isabel

    2015-09-01

    Although variability is a general property characterizing active galactic nuclei (AGN), it is not well stablished if the changes occur in the same way in every nuclei . The main purpose of this work is to study the X-ray variability pattern(s) in low luminosity AGN in a large sample, including 18 low ionization nuclear emission line regions (LINERs) and 26 type 2 Seyferts (Sy2), using the public archives in Chandra and/or XMM-Newton. Spectra of the same source gathered at different epochs were simultaneously fitted to study long term variations, whereas the variability patterns were studied allowing different parameters to vary during the spectral fit. Whenever possible, short term variations from the analysis of the light curves and long term UV flux variability were studied. Short term variations are not found at X-rays, but variations in timescales of months/years is very common in both families. The main driver of the long term X-ray variations seems to be related to changes in the nuclear power in both LINERs and Sy2, but other variability patterns cannot be discarded in a few cases, because changes of the column density or at soft energies are also found. The X-ray variations occur in the same way in LINERs and type 2 Seyferts, i.e., related to the nuclear continuum, but they might have different accretion mechanisms. As absorption variations and changing-look sources are not observed in LINERs, but UV nuclear variations are common, we speculate that the BLR and the torus might disappear in these sources.

  19. THE COMPATIBILITY OF DENTURE CLEANSERS AND RESILIENT LINERS

    PubMed Central

    Oliveira, Luciana Valadares; Mesquita, Marcelo Ferraz; Henriques, Guilherme Elias Pessanha; Consani, Rafael Leonardo Xediek; Fragoso, Wagner Sotero

    2006-01-01

    Purpose: Difficulty in cleaning resilient denture liners remains a material disadvantage. The purpose of the present study was to evaluate the effect of denture cleansers on hardness of resilient liner materials. Materials and Methods: Three resilient liners, Luci Sof® (Dentsply), Molloplast-B® (Dentax), and Sofreliner® (Tokuyama), and two denture cleansers, Efferdent® (Warner-Lamber), and 0.5% alkaline hypochlorite preparation were used. Twenty specimens of each material were prepared, measuring 25X15X3mm. Two denture cleansing approaches were used: 1) alkaline hypochlorite, for 20 minutes; 2) alkaline peroxide, for 30 minutes. This procedure was repeated 8 times a day, during 90 days. The specimens were evaluated before and after 360 and 720 cycles, to simulate 1 and 2 years of clinical cleaning procedures, respectively. The Shore A hardness was evaluated in a durometer (Teclock GS-709A), with a penetrating load of 10N for 1 second. Any macroscopic changes, such as loss of color or alteration in surface texture were recorded by one observer. All numeric data were subject to ANOVA with repeated measures followed by Tukey's test (α= 0.05). Results: All materials were significantly different, independently to time and treatment. Initially, Luci Sof® and Sofreliner® immersed in either hypochlorite or peroxide increased the hardness mean values significantly. These hardness mean values decreased significantly after 720 cycles. Molloplast-B® showed no significant difference after the treatments, in any time. Conclusions: Denture cleansers had no effect on hardness of the resilient denture liners evaluated after 2 years of in vivo simulated conditions of hygiene. Sofreliner® was the smoothest material before and after all treatments. PMID:19089278

  20. Reliability-based condition assessment of steel containment and liners

    SciTech Connect

    Ellingwood, B.; Bhattacharya, B.; Zheng, R.

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs.