Science.gov

Sample records for iii-nitride ternary semiconductors

  1. Carrier dynamics in III-nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Liu, Kai

    In the past decade, III-nitride semiconductors had a considerable impact in solid state lighting and high speed high power electronics. As technology develops, high Al content III-nitride semiconductors lead the edge of research. It opens the door to many applications especially portable ones: from homeland security, bio-analytical, medical diagnostic, air and water disinfection, sterilization, chemical sensing systems, non-line-of-sight (NLOS) communications, to high-density optical data storage. In this thesis, we first study GaN epilayers, as well as more complicate high Al content AlGaN/AlGaN MQW structures used as active media for deep UV LEDs. We theoretically study the photoluminescence (PL) dynamics in high quality GaN epilayers by establishing a new decay model. In our model, surface recombination, diffusion, and re-absorption are taken into account. Our model is in excellent agreement with experimental data obtained by time-resolved PL. Our results show that the carrier diffusion and surface recombination play key roles in the PL decay. For high Al content AlGaN/AlGaN MQW structures, we first present the investigation of built-in electric fields in AlxGa1-xN/Al yGa1-yN MQWs embedded into p-i-n structure by using photoluminescence experiments. By comparison of the Stark shifts induced by the p-i-n structure and by photo-excited free carrier screening, we evaluate the intrinsic electric field induced by piezoelectric and spontaneous polarizations. Furthermore we investigate carrier dynamics in sets of identically grown Al0.35Ga0.65N/Al 0.49Ga0.51N MQW structures with well widths varying from 1.65 to 5.0 nm by TR-PL and LITG techniques. We observed screening of the built-in electric field by free non-equilibrium carriers and localization governed PL kinetics at different decay stages. A decrease of carrier lifetime with increasing well width is observed and attributed to the carrier localization occurring due to well width fluctuations of the quantum well

  2. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOEpatents

    Hui, Rongqing; Jiang,Hong-Xing; Lin, Jing-Yu

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  3. Methods for improved growth of group III nitride semiconductor compounds

    DOEpatents

    Melnik, Yuriy; Chen, Lu; Kojiri, Hidehiro

    2015-03-17

    Methods are disclosed for growing group III-nitride semiconductor compounds with advanced buffer layer technique. In an embodiment, a method includes providing a suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. The method includes forming an AlN buffer layer by flowing an ammonia gas into a growth zone of the processing chamber, flowing an aluminum halide containing precursor to the growth zone and at the same time flowing additional hydrogen halide or halogen gas into the growth zone of the processing chamber. The additional hydrogen halide or halogen gas that is flowed into the growth zone during buffer layer deposition suppresses homogeneous AlN particle formation. The hydrogen halide or halogen gas may continue flowing for a time period while the flow of the aluminum halide containing precursor is turned off.

  4. Density Functional Theory Modeling of Low-Loss Electron Energy-Loss Spectroscopy in Wurtzite III-Nitride Ternary Alloys.

    PubMed

    Eljarrat, Alberto; Sastre, Xavier; Peiró, Francesca; Estradé, Sónia

    2016-06-01

    In the present work, the dielectric response of III-nitride semiconductors is studied using density functional theory (DFT) band structure calculations. The aim of this study is to improve our understanding of the features in the low-loss electron energy-loss spectra of ternary alloys, but the results are also relevant to optical and UV spectroscopy results. In addition, the dependence of the most remarkable features with composition is tested, i.e. applying Vegard's law to band gap and plasmon energy. For this purpose, three wurtzite ternary alloys, from the combination of binaries AlN, GaN, and InN, were simulated through a wide compositional range (i.e., Al x Ga1-x N, In x Al1-x N, and In x Ga1-x N, with x=[0,1]). For this DFT calculations, the standard tools found in Wien2k software were used. In order to improve the band structure description of these semiconductor compounds, the modified Becke-Johnson exchange-correlation potential was also used. Results from these calculations are presented, including band structure, density of states, and complex dielectric function for the whole compositional range. Larger, closer to experimental values, band gap energies are predicted using the novel potential, when compared with standard generalized gradient approximation. Moreover, a detailed analysis of the collective excitation features in the dielectric response reveals their compositional dependence, which sometimes departs from a linear behavior (bowing). Finally, an advantageous method for measuring the plasmon energy dependence from these calculations is explained. PMID:26868876

  5. ECR etching of group-III nitride binary and ternary films

    SciTech Connect

    Shul, R.J.; Howard, A.J.; Pearton, S.J.

    1995-10-01

    Due to their wide band gaps and high dielectric constants, the group III-nitrides have made significant impact on the compound semiconductor community as blue and ultraviolet light emitting diodes (LEDs) and for their potential use in laser structures and high temperature electronics. Processing of these materials, in particular wet and dry etching, has proven to be extremely difficult due to their inert chemical nature. We report electron cyclotron resonance (ECR) etch rates for GaN, InN, AlN, In{sub (x)}Ga{sub (1-x)}Ni and In{sub (x)}Al{sub (1-x)}N as a function of temperature, rf-power, pressure, and microwave power. Etch conditions are characterized for rate, profile, and sidewall and surface morphology. Atomic force microscopy (AFM) is used to quantify RMS roughness of the etched surfaces. We observe consistent trends for the InAlN films where the etch rates increase with increasing concentration of In. The trends are far less consistent for the InGaN with a general decrease in etch rate as the In concentration is increased.

  6. Electrical Characteristics and Interface Properties of III Nitride-Based Metal-Insulator-Semiconductor Structure

    SciTech Connect

    Mahyuddin, A.; Hassan, Z.; Yusof, Y.; Cheong, K. Y.

    2010-07-07

    In this work, III-Nitride based metal-insulator-semiconductor (MIS) structure has been studied using AlN/GaN heterostructures on Si (111) with AlN buffer layer grown by plasma-assisted molecular beam epitaxy (MBE). The structural and electrical characteristics of the films were studied through high resolution x-ray diffraction (HRXRD), capacitance-voltage (C-V) and current-voltage (I-V) measurements. The value of flat-band voltage was -0.7 V. A total fixed oxide charge density of 2.73x10{sup 11} cm{sup -2} was estimated. Terman's method was used to obtain the density of interface state in the MIS structure. The analysis showed low interface state density values of 3.66x10{sup 11} cm{sup -2} eV{sup -1}.

  7. Group III nitride semiconductors for short wavelength light-emitting devices

    NASA Astrophysics Data System (ADS)

    Orton, J. W.; Foxon, C. T.

    1998-01-01

    The group III nitrides (AlN, GaN and InN) represent an important trio of semiconductors because of their direct band gaps which span the range 1.95-6.2 eV, including the whole of the visible region and extending well out into the ultraviolet (UV) range. They form a complete series of ternary alloys which, in principle, makes available any band gap within this range and the fact that they also generate efficient luminescence has been the main driving force for their recent technological development. High brightness visible light-emitting diodes (LEDs) are now commercially available, a development which has transformed the market for LED-based full colour displays and which has opened the way to many other applications, such as in traffic lights and efficient low voltage, flat panel white light sources. Continuously operating UV laser diodes have also been demonstrated in the laboratory, exciting tremendous interest for high-density optical storage systems, UV lithography and projection displays. In a remarkably short space of time, the nitrides have therefore caught up with and, in some ways, surpassed the wide band gap II-VI compounds (ZnCdSSe) as materials for short wavelength optoelectronic devices. The purpose of this paper is to review these developments and to provide essential background material in the form of the structural, electronic and optical properties of the nitrides, relevant to these applications. We have been guided by the fact that the devices so far available are based on the binary compound GaN (which is relatively well developed at the present time), together with the ternary alloys AlGaN and InGaN, containing modest amounts of Al or In. We therefore concentrate, to a considerable extent, on the properties of GaN, then introduce those of the alloys as appropriate, emphasizing their use in the formation of the heterostructures employed in devices. The nitrides crystallize preferentially in the hexagonal wurtzite structure and devices have so

  8. Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials.

    PubMed

    Tang, Fengzai; Moody, Michael P; Martin, Tomas L; Bagot, Paul A J; Kappers, Menno J; Oliver, Rachel A

    2015-06-01

    Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of implantation damage induced by sample preparation. In the reconstructed InAlN layer Ga implantation was demonstrated for the standard "clean-up" voltage (5 kV), but this was significantly reduced by using a lower voltage (e.g., 1 kV). The characteristics of APT data from the desorption maps to the mass spectra and measured chemical compositions were examined within the GaN buffer layer underlying the InAlN layer in both pulsed laser and pulsed voltage modes. The measured Ga content increased monotonically with increasing laser pulse energy and voltage pulse fraction within the examined ranges. The best results were obtained at very low laser energy, with the Ga content close to the expected stoichiometric value for GaN and the associated desorption map showing a clear crystallographic pole structure. PMID:25926083

  9. Proposal for realizing high-efficiency III-nitride semiconductor tandem solar cells with InN/GaN superstructure magic alloys fabricated at raised temperature (SMART)

    NASA Astrophysics Data System (ADS)

    Kusakabe, Kazuhide; Yoshikawa, Akihiko

    2014-03-01

    We propose a plausible and realistic idea for realizing high-efficiency III-nitride semiconductor tandem solar cells which utilize nearly entire AM-1.5 solar spectrum conversion under a subcell photocurrent matching rule. For the sake of drastic improvement/suppression of pn-junction leakage current, each subcell in the proposed tandem solar cells is composed of superstructure InN/GaN magic alloys, i.e. coherently grown (InN)m/(GaN)n short-period superlattices with simple integer pairs of (m, n) <= 4 in monolayers, which solve lattice-mismatch and immiscible problems in a conventional InGaN ternary alloy system. The InN/GaN magic alloys are further applicable to band engineering that provides potential wells for a thermal/photo sensitization effect and graded-bandgap structures for efficient carrier collection under the same (m, n) ratio alloys or keeping the coherent structure. Theoretical maximum conversion efficiency is 51% (58% under 250-suns concentration) for a 4-tandem cell configuration.

  10. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays.

    PubMed

    Li, Huijie; Zhao, Guijuan; Kong, Susu; Han, Dongyue; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2015-10-21

    Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy characterization. It was found that the In droplets on top of the InN nanorods play a critical role in controlling the morphology of the nanotubes. By keeping or removing the In droplets, the obtained nanotubes exhibited both ends open or only one end open. And by varying the AlN deposition temperature, the In composition in the nanotubes can be changed from 0 to 0.29. The nanotube synthesis method is simple and can be applied to the formation of other III-nitride ternary (InGaN, and AlGaN) or quaternary (InAlGaN) alloy nanotube arrays. PMID:26395389

  11. TMAH wet etching of silicon micro- and nano-fins for selective sidewall epitaxy of III-Nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Liu, Lianci; Myasishchev, Denis; Kuryatkov, Vladimir; Nikishin, Sergey; Holtz, Mark; Harris, Rusty

    2011-10-01

    We describe formation of silicon micro- and nano-fins, with (111)-plane sidewall facets, for selective sidewall epitaxy of III-Nitride semiconductors. The fins are produced by wet etching (110)-oriented silicon wafers. Silicon dioxide is deposited using plasma enhanced chemical vapor deposition for producing a hard mask. The silicon dioxide is patterned using photo- and electron-beam lithography for micro- and nano-fins, respectively, followed by wet etching in hydrofluoric acid. Wet etching to produce the silicon fins is carried out using tetramethyl ammonium hydroxide (TMAH) diluted with isopropyl alcohol (IPA). Atomic force microscopy and scanning electron microscopy are used to determine morphology including the surface roughness of the area between fins and the etching rate of silicon. We tune the etching time, temperature, and percentage of IPA in order to get the best surface on both (111) and (110) planes. Adding IPA is found to alter the etch rate and improve the surface between the fins without adversely affecting the sidewall morphology.

  12. Morphology and composition controlled growth of polar c-axis and nonpolar m-axis well-aligned ternary III-nitride nanotube arrays

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Zhao, Guijuan; Kong, Susu; Han, Dongyue; Wei, Hongyuan; Wang, Lianshan; Chen, Zhen; Yang, Shaoyan

    2015-10-01

    Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy characterization. It was found that the In droplets on top of the InN nanorods play a critical role in controlling the morphology of the nanotubes. By keeping or removing the In droplets, the obtained nanotubes exhibited both ends open or only one end open. And by varying the AlN deposition temperature, the In composition in the nanotubes can be changed from 0 to 0.29. The nanotube synthesis method is simple and can be applied to the formation of other III-nitride ternary (InGaN, and AlGaN) or quaternary (InAlGaN) alloy nanotube arrays.Control over the nanostructure morphology and growth orientation is in high demand for fundamental research and technological applications. Herein we report a general strategy to fabricate polar c-axis and nonpolar m-axis well-aligned III-nitride ternary nanotube arrays with controllable morphologies and compositions. By depositing AlN on the InN nanorod array templates and thermally removing the InN templates, InAlN nanotubes can be obtained. Polar c-axis and nonpolar m-axis nanotubes were formed on the c- and r-plane sapphire substrates, respectively. The nanotubes are single crystalline and highly ordered on the substrates, as revealed by X-ray diffraction, electron microscopy, and selected area electron microscopy

  13. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    SciTech Connect

    Araujo, Rafael B. Almeida, J. S. de Ferreira da Silva, A.

    2013-11-14

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However, the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.

  14. Electronic properties of III-nitride semiconductors: A first-principles investigation using the Tran-Blaha modified Becke-Johnson potential

    NASA Astrophysics Data System (ADS)

    Araujo, Rafael B.; de Almeida, J. S.; Ferreira da Silva, A.

    2013-11-01

    In this work, we use density functional theory to investigate the influence of semilocal exchange and correlation effects on the electronic properties of III-nitride semiconductors considering zinc-blende and wurtzite crystal structures. We find that the inclusion of such effects through the use of the Tran-Blaha modified Becke-Johnson potential yields an excellent description of the electronic structures of these materials giving energy band gaps which are systematically larger than the ones obtained with standard functionals such as the generalized gradient approximation. The discrepancy between the experimental and theoretical band gaps is then significantly reduced with semilocal exchange and correlation effects. However, the effective masses are overestimated in the zinc-blende nitrides, but no systematic trend is found in the wurtzite compounds. New results for energy band gaps and effective masses of zinc-blende and wurtzite indium nitrides are presented.

  15. High Resolution X-ray Diffraction Characterization of III-Nitride Semiconductors: Bulk Crystals and Thin Films

    NASA Astrophysics Data System (ADS)

    Bobea, Milena Rebeca

    As III-nitrides continue to evolve into a homoepitaxial growth scenario, the development of non-traditional metrologies for the proper study of III-nitride single crystals and homoepitaxial thin films becomes critical. To this purpose, the work presented in this dissertation has focused on the development and application of suitable high resolution X-ray diffraction (HRXRD) methods, desirable for their sensitivity, accuracy and non-destructive nature. HRXRD techniques were explored and developed for the identification of polishing-induced damage in processed III-nitride single crystals, the structural analysis of non-polar AlN homoepitaxial films grown on AlN single crystals and the assessment of alloy film characteristics of AlxGa1-xN epilayers deposited on AlN substrates. AlN and GaN substrates were treated to various degrees of mechanical polishing and chemical mechanical polishing (CMP). Gross damage created from aggressive polishing was readily quantified using X-ray rocking curve (XRC) peak broadening and diffuse scatter intensity. However, once the wafers were exposed to CMP treatment, it was found that the use of line scanning methods was unable to distinguish the effects of CMP time exposure on the crystal surface. Alternatively, the analysis of surface-related diffraction features recorded from on- and off-axis high-resolution reciprocal space maps (RSMs) allowed the classification of remnant damage in CMP-treated substrates as a function of CMP exposure time. By comparing the crystal truncation rod intensity and the pole diffuse scatter magnitude, differences at the near-surface regions of CMP-processed wafers were qualitatively and quantitatively measured. For AlN, the mapping of the (101¯3) reflection, observable under grazing incidence conditions, was introduced as an effective HRXRD method to analyze the crystal surface of AlN substrates using a laboratory source. HRXRD methods were employed on high-quality non-polar homoepitaxial AlN films grown on

  16. Modulated Binary-Ternary Dual Semiconductor Heterostructures.

    PubMed

    Prusty, Gyanaranjan; Guria, Amit K; Mondal, Indranil; Dutta, Anirban; Pal, Ujjwal; Pradhan, Narayan

    2016-02-18

    A generic modular synthetic strategy for the fabrication of a series of binary-ternary group II-VI and group I-III-VI coupled semiconductor nano-heterostructures is reported. Using Ag2 Se nanocrystals first as a catalyst and then as sacrificial seeds, four dual semiconductor heterostructures were designed with similar shapes: CdSe-AgInSe2 , CdSe-AgGaSe2 , ZnSe-AgInSe2 , and ZnSe-AgGaSe2 . Among these, dispersive type-II heterostructures are further explored for photocatalytic hydrogen evolution from water and these are observed to be superior catalysts than the binary or ternary semi-conductors. Details of the chemistry of this modular synthesis have been studied and the photophysical processes involved in catalysis are investigated. PMID:26800297

  17. III-Nitride full-scale high-resolution microdisplays

    NASA Astrophysics Data System (ADS)

    Day, Jacob; Li, J.; Lie, D. Y. C.; Bradford, Charles; Lin, J. Y.; Jiang, H. X.

    2011-07-01

    We report the realization and properties of a high-resolution solid-state self-emissive microdisplay based on III-nitride semiconductor micro-size light emitting diodes (µLEDs) capable of delivering video graphics images. The luminance level of III-nitride microdisplays is several orders of magnitude higher than those of liquid crystal and organic-LED displays. The pixel emission intensity was almost constant over an operational temperature range from 100 to -100 °C. The outstanding performance is a direct attribute of III-nitride semiconductors. An energy efficient active drive scheme is accomplished by hybrid integration between µLED arrays and Si CMOS (complementary metal-oxide-semiconductor) active matrix integrated circuits. These integrated devices could play important roles in emerging fields such as biophotonics and optogenetics, as well as ultra-portable products such as next generation pico-projectors.

  18. Evidence of Type-II Band Alignment in III-nitride Semiconductors: Experimental and theoretical investigation for In0.17Al0.83N/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Wang, Jiaming; Xu, Fujun; Zhang, Xia; An, Wei; Li, Xin-Zheng; Song, Jie; Ge, Weikun; Tian, Guangshan; Lu, Jing; Wang, Xinqiang; Tang, Ning; Yang, Zhijian; Li, Wei; Wang, Weiying; Jin, Peng; Chen, Yonghai; Shen, Bo

    2014-10-01

    Type-II band alignment structure is coveted in the design of photovoltaic devices and detectors, since it is beneficial for the transport of photogenerated carriers. Regrettably, for group-III-nitride wide bandgap semiconductors, all existing devices are limited to type-I heterostructures, owing to the unavailable of type-II ones. This seriously restricts the designing flexibility for optoelectronic devices and consequently the relevant performance of this material system. Here we show a brandnew type-II band alignment of the lattice-matched In0.17Al0.83N/GaN heterostructure from the perspective of both experimental observations and first-principle theoretical calculations. The band discontinuity is dominated by the conduction band offset ΔEC, with a small contribution from the valence band offset ΔEV which equals 0.1 eV (with being above). Our work may open up new prospects to realize high-performance III-Nitrides optoelectronic devices based on type-II energy band engineering.

  19. III-Nitride nanowire optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  20. Intrinsic DX Centers in Ternary Chalcopyrite Semiconductors

    SciTech Connect

    Lany, S.; Zunger, A.

    2008-01-01

    In III-V and II-VI semiconductors, certain nominally electron-donating impurities do not release electrons but instead form deep electron-traps known as 'DX centers.' While in these compounds, such traps occur only after the introduction of foreign impurity atoms, we find from first-principles calculations that in ternary I-III-VI{sub 2} chalcopyrites like CuInSe{sub 2} and CuGaSe{sub 2}, DX-like centers can develop without the presence of any extrinsic impurities. These intrinsic DX centers are suggested as a cause of the difficulties to maintain high efficiencies in CuInSe{sub 2}-based thin-film solar-cells when the band gap is increased by addition of Ga.

  1. Design of Integrated III-Nitride/Non-III-Nitride Tandem Photovoltaic Devices

    SciTech Connect

    Toledo, N. G.; Friedman, D.J.; Farrell, R. M.; Perl, E. E.; Lin, C. T.; Bowers, J. E.; Speck, J. S.; Mishra, U. K.

    2012-03-01

    The integration of III-nitride and non-III-nitride materials for tandem solar cell applications can improve the efficiency of the photovoltaic device due to the added power contributed by the III-nitride top cell to that of high-efficiency multi-junction non-III-nitride solar cells if the device components are properly designed and optimized. The proposed tandem solar cell is comprised of a III-nitride top cell bonded to a non-III-nitride, series-constrained, multi-junction subcell. The top cell is electrically isolated, but optically coupled to the underlying subcell. The use of a III-nitride top cell is potentially beneficial when the top junction of a stand-alone non-III-nitride subcell generates more photocurrent than the limiting current of the non-III-nitride subcell. Light producing this excess current can either be redirected to the III-nitride top cell through high energy photon absorption, redirected to the lower junctions through layer thickness optimization, or a combination of both, resulting in improved total efficiency. When the non-III-nitride cell's top junction is the limiting junction, the minimum power conversion efficiency that the III-nitride top cell must contribute should compensate for the spectrum filtered from the multi-junction subcell for this design to be useful. As the III-nitride absorption edge wavelength, {lambda}{sub N}, increases, the performance of the multi-junction subcell decreases due to spectral filtering. In the most common spectra of interest (AM1.5G, AM1.5 D, and AM0), the technology to grow InGaN cells with {lambda}{sub N}<520 nm is found to be sufficient for III-nitride top cell applications. The external quantum efficiency performance, however, of state-of-the-art InGaN solar cells still needs to be improved. The effects of surface/interface reflections are also presented. The management of these reflection issues determines the feasibility of the integrated III-nitride/non-III-nitride design to improve overall cell

  2. Enhanced thermaly managed packaging for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Kudsieh, Nicolas

    In this Dissertation our work on `enhanced thermally managed packaging of high power semiconductor light sources for solid state lighting (SSL)' is presented. The motivation of this research and development is to design thermally high stable cost-efficient packaging of single and multi-chip arrays of III-nitrides wide bandgap semiconductor light sources through mathematical modeling and simulations. Major issues linked with this technology are device overheating which causes serious degradation in their illumination intensity and decrease in the lifetime. In the introduction the basics of III-nitrides WBG semiconductor light emitters are presented along with necessary thermal management of high power cingulated and multi-chip LEDs and laser diodes. This work starts at chip level followed by its extension to fully packaged lighting modules and devices. Different III-nitride structures of multi-quantum well InGaN/GaN and AlGaN/GaN based LEDs and LDs were analyzed using advanced modeling and simulation for different packaging designs and high thermal conductivity materials. Study started with basic surface mounted devices using conventional packaging strategies and was concluded with the latest thermal management of chip-on-plate (COP) method. Newly discovered high thermal conductivity materials have also been incorporated for this work. Our study also presents the new approach of 2D heat spreaders using such materials for SSL and micro LED array packaging. Most of the work has been presented in international conferences proceedings and peer review journals. Some of the latest work has also been submitted to well reputed international journals which are currently been reviewed for publication. .

  3. Electroluminescent Devices Using RE-Doped III-Nitrides

    NASA Astrophysics Data System (ADS)

    Wakahara, Akihiro

    The III-nitride semiconductors doped with RE atoms appear to be excellent materials for thin film optical device applications. The spectral coverage extends from UV to infrared and thus light-emitting devices suitable for full-color displays, solid-state lasers, and optical telecommunication fields are expected. This chapter reviews the current status of electrically pumped light-emitting devices based on RE-doped GaN, such as AC- and/or DC-biased electroluminescent (EL) devices and `p-n' junction based light-emitting diodes. The different excitation mechanisms are reviewed.

  4. Electroluminescent Devices Using RE-Doped III-Nitrides

    NASA Astrophysics Data System (ADS)

    Wakahara, Akihiro

    The III-nitride semiconductors doped with RE atoms appear to be excellent materials for thin film optical device applications. The spectral coverage extends from UV to infrared and thus light-emitting devices suitable for full-color displays, solid-state lasers, and optical telecommunication fields are expected. This chapter reviews the current status of electrically pumped light-emitting devices based on RE-doped GaN, such as AC- and/or DC-biased electroluminescent (EL) devices and 'p-n' junction based light-emitting diodes. The different excitation mechanisms are reviewed.

  5. Room-temperature ballistic transport in III-nitride heterostructures.

    PubMed

    Matioli, Elison; Palacios, Tomás

    2015-02-11

    Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT. PMID:25614931

  6. III-Nitride ion implantation and device processing

    SciTech Connect

    Zolper, J.C.; Shul, R.J.; Baca, A.G.; Pearton, S.J.; Abernathy, C.R.; Wilson, R.G.; Stall, R.A.; Shur, M.

    1996-06-01

    Ion implantation doping and isolation has played a critical role in realizing high performance photonic and electronic devices in all mature semiconductor materials; this is also expected for binary III-Nitride materials (InN, GaN, AlN) and their alloys as epitaxy improves and more advanced device structures fabricated. This paper reports on recent progress in ion implantation doping of III-Nitride materials that has led to the first demonstration of a GaN JFET (junction field effect transistor). The JFET was fabricated with all ion implantation doping; in particular, p-type doping of GaN with Ca has been demonstrated with an estimated acceptor ionization energy of 169 meV. O-implantation has also been studied and shown to yield n-type conduction with an ionization energy of {similar_to}29 meV. Neither Ca or O display measurable redistribution during a 1125 C, 15 s activation anneal which sets an upper limit on their diffusivity at this temperature of 2.7{times}10{sup {minus}13}cm{sup 2}/s.

  7. Polarity Control in Group-III Nitrides beyond Pragmatism

    NASA Astrophysics Data System (ADS)

    Mohn, Stefan; Stolyarchuk, Natalia; Markurt, Toni; Kirste, Ronny; Hoffmann, Marc P.; Collazo, Ramón; Courville, Aimeric; Di Felice, Rosa; Sitar, Zlatko; Vennéguès, Philippe; Albrecht, Martin

    2016-05-01

    Controlling the polarity of polar semiconductors on nonpolar substrates offers a wealth of device concepts in the form of heteropolar junctions. A key to realize such structures is an appropriate buffer-layer design that, in the past, has been developed by empiricism. GaN or ZnO on sapphire are prominent examples for that. Understanding the basic processes that mediate polarity, however, is still an unsolved problem. In this work, we study the structure of buffer layers for group-III nitrides on sapphire by transmission electron microscopy as an example. We show that it is the conversion of the sapphire surface into a rhombohedral aluminum-oxynitride layer that converts the initial N-polar surface to Al polarity. With the various AlxOyNz phases of the pseudobinary Al2O3 -AlN system and their tolerance against intrinsic defects, typical for oxides, a smooth transition between the octahedrally coordinated Al in the sapphire and the tetrahedrally coordinated Al in AlN becomes feasible. Based on these results, we discuss the consequences for achieving either polarity and shed light on widely applied concepts in the field of group-III nitrides like nitridation and low-temperature buffer layers.

  8. Molten-Salt-Based Growth of Group III Nitrides

    DOEpatents

    Waldrip, Karen E.; Tsao, Jeffrey Y.; Kerley, Thomas M.

    2008-10-14

    A method for growing Group III nitride materials using a molten halide salt as a solvent to solubilize the Group-III ions and nitride ions that react to form the Group III nitride material. The concentration of at least one of the nitride ion or Group III cation is determined by electrochemical generation of the ions.

  9. Fabrication and characterization of III-nitride nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Dahal, Rajendra Prasad

    III-nitride photonic devices such as photodetectors (PDs), light emitting diode (LEDs), solar cells and optical waveguide amplifiers were designed, fabricated and characterized. High quality AlN epilayers were grown on sapphire and n-SiC substrates by metal organic chemical vapor deposition and utilized as active deep UV (DUV) photonic materials for the demonstration of metal-semiconductor-metal (MSM) detectors, Schottky barrier detectors, and avalanche photodetectors (APDs). AlN DUV PDs exhibited peak responsivity at 200 nm with a very sharp cutoff wavelength at 207 nm and extremely low dark current (<10 fA), very high breakdown voltages, high responsivity, and more than four orders of DUV to UV/visible rejection ratio. AlN Schottky PDs grown on n-SiC substrates exhibited high zero bias responsivity and a thermal energy limited detectivity of about 1.0 x 1015 cm Hz 1/2 W-1. The linear mode operation of AlN APDs with the shortest cutoff wavelength (210 nm) and a photocurrent multiplication of 1200 was demonstrated. A linear relationship between device size and breakdown field was observed for AlN APDs. Photovoltaic operation of InGaN solar cells in wavelengths longer than that of previous attainments was demonstrated by utilizing In xGa1-xN/GaN MQWs as the active layer. InxGa1-xN/GaN MQWs solar cells with x =0.3 exhibited open circuit voltage of about 2 V, a fill factor of about 60% and external quantum efficiency of 40% at 420 nm and 10% at 450 nm. The performance of InxGa1-xN/GaN MQWs solar cell was found to be highly correlated with the crystalline quality of the InxGa 1-xN active layer. The possible causes of poorer PV characteristics for higher In content in InGaN active layer were explained. Photoluminescence excitation studies of GaN:Er and In0.06Ga 0.94N:Er epilayers showed that Er emission intensity at 1.54 mum increases significantly as the excitation energy is tuned from below to above the energy bandgap of these epilayers. Current-injected 1.54 mum LEDs

  10. Electronic and optical properties of the group-III nitrides, their heterostructures and alloys

    SciTech Connect

    Lambrecht, W.R.L.; Kim, K.; Rashkeev, S.N.; Segall, B.

    1996-11-01

    Various aspects of the electronic structure of the group III nitrides are discussed. The relation between band structures and optical response in the vacuum ultraviolet is analyzed for zincblende and wurtzite GaN and for wurtzite AlN and compared with available experimental data obtained from reflectivity and spectroscopic ellipsometry. The spin-orbit and crystal field splittings of the valence band edges and their relations to exciton fine structure are discussed including substrate induced biaxial strain effects. The band-offsets between the III-nitrides and some relevant semiconductor substrates obtained within the dielectric midgap energy model are presented and strain effects which may alter these values are discussed. The importance of lattice mismatch in bandgap bowing is exemplified by comparing Al{sub x}Ga{sub 1{minus}x}N and In{sub x}Ga{sub 1{minus}x}N.

  11. High efficiency III-nitride light-emitting diodes

    DOEpatents

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  12. Making Single-Source Precursors of Ternary Semiconductors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius; Banger, Kulbindre K.

    2007-01-01

    A synthesis route has been developed for the commercial manufacture of single- source precursors of chalcopyrite semiconductor absorber layers of thin-film solar photovoltaic cells. A closely related class of single-source precursors of these semiconductors, and their synthesis routes, were reported in "Improved Single-Source Precursors for Solar-Cell Absorbers" (LEW-17445-1), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 56. The present synthesis route is better suited to commercialization because it is simpler and involves the use of commercially available agents, yet offers the flexibility needed for synthesis of a variety of precursors. A single-source precursor of the type of interest here is denoted by the general formula L2M'(mu-ER)2M(ER)2, where L signifies a Lewis base; M signifies Al, In, or Ga; M' signifies Ag or Cu; R signifies an alkyl, aryl, silyl, or perfluorocarbon group; E signifies O, S, Se, or Te; and mu signifies a bridging ligand. This compound can be synthesized in a "one-pot" procedure from ingredients that are readily available from almost any chemical supplier. In a demonstration, the following synthesis was performed: Under anaerobic conditions, InCl3 was reacted with sodium ethanethiolate in methanol in a 1:4 molar ratio to afford the ionic stable intermediate compound Na+[In(SEt)4]- (where Et signifies ethyl group). After approximately 15 minutes, a heterogeneous solution of CuCl and the Lewis base PPh3 (where Ph signifies phenyl) in a 1:2 ratio in a mixture of CH3CN and CH2Cl2 was added directly to the freshly prepared Na+[In(SEt)4]-. After 24 hours, the reaction was essentially complete. The methanolic solution was concentrated, then the product was extracted with CH2Cl2, then the product was washed with dry ether and pentane. The product in its final form was a creamy white solid. Spectroscopic and elemental analysis confirmed that the product was (PPh3)2Cu(mu-SEt)2In(mu-SEt)2, which is known to be a precursor of the ternary

  13. MOCVD synthesis of group III-nitride heterostructure nanowires for solid-state lighting.

    SciTech Connect

    Wang, George T.; Creighton, James Randall; Talin, Albert Alec

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  14. Polarization Effects in Group III-Nitride Materials and Devices

    NASA Astrophysics Data System (ADS)

    Wei, Qiyuan

    Group III-nitride semiconductors have wide application in optoelectronic devices. Spontaneous and piezoelectric polarization effects have been found to be critical for electric and optical properties of group III-nitrides. In this dissertation, firstly, the crystal orientation dependence of the polarization is calculated and in-plane polarization is revealed. The in-plane polarization is sensitive to the lateral characteristic dimension determined by the microstructure. Specific semi-polar plane growth is suggested for reducing quantum-confined Stark effect. The macroscopic electrostatic field from the polarization discontinuity in the heterostructures is discussed, b ased on that, the band diagram of InGaN/GaN quantum well/barrier and AlGaN/GaN heterojunction is obtained from the self-consistent solution of Schrodinger and Poisson equations. New device design such as triangular quantum well with the quenched polarization field is proposed. Electron holography in the transmission electron microscopy is used to examine the electrostatic potential under polarization effects. The measured potential energy profiles of heterostructure are compared with the band simulation, and evidences of two-dimensional hole gas (2DHG) in a wurtzite AlGaN/ AlN/ GaN superlattice, as well as quasi two-dimensional electron gas (2DEG) in a zinc-blende AlGaN/GaN are found. The large polarization discontinuity of AlN/GaN is the main source of the 2DHG of wurtzite nitrides, while the impurity introduced during the growth of AlGaN layer provides the donor states that to a great extent balance the free electrons in zinc-blende nitrides. It is also found that the quasi-2DEG concentration in zinc-blende AlGaN/GaN is about one order of magnitude lower than the wurtzite AlGaN/GaN, due to the absence of polarization. Finally, the InAlN/GaN lattice-matched epitaxy, which ideally has a zero piezoelectric polarization and strong spontaneous polarization, is experimentally studied. The breakdown in

  15. A Unique Ternary Semiconductor-(Semiconductor/Metal) Nano-Architecture for Efficient Photocatalytic Hydrogen Evolution.

    PubMed

    Zhuang, Tao-Tao; Liu, Yan; Sun, Meng; Jiang, Shen-Long; Zhang, Ming-Wen; Wang, Xin-Chen; Zhang, Qun; Jiang, Jun; Yu, Shu-Hong

    2015-09-21

    It has been a long-standing demand to design hetero-nanostructures for charge-flow steering in semiconductor systems. Multi-component nanocrystals exhibit multifunctional properties or synergistic performance, and are thus attractive materials for energy conversion, medical therapy, and photoelectric catalysis applications. Herein we report the design and synthesis of binary and ternary multi-node sheath hetero-nanorods in a sequential chemical transformation procedure. As verified by first-principles simulations, the conversion from type-I ZnS-CdS heterojunction into type-II ZnS-(CdS/metal) ensures well-steered collections of photo-generated electrons at the exposed ZnS nanorod stem and metal nanoparticles while holes at the CdS node sheaths, leading to substantially improved photocatalytic hydrogen-evolution performance. PMID:26276905

  16. First-principles investigation of CO2 absorption on III-nitride surfaces

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chin; Guo, Hong

    2015-03-01

    Photon-induced chemical transformation of CO2 is a very interesting direction of green-house gas reduction. An accurate description of electronic structure at the interface between CO2 and the photocatalytics is important for understanding the process of artificial photosynthesis. In this work we report density functional theory (DFT) and many-body GW calculations to investigate CO2 adsorption on III-nitride semiconductor surface. The adsorption geometry is determined at the DFT level and the electronic structure is investigated at both DFT and GW levels. A detailed illustration of how the molecular orbital is renormalized is addressed.

  17. III-Nitride Vertical-Cavity Surface-Emitting Lasers

    NASA Astrophysics Data System (ADS)

    Leonard, John T.

    Vertical-cavity surface-emitting lasers (VCSELs) have a long history of development in GaAs-based and InP-based systems, however III-nitride VCSELs research is still in its infancy. Yet, over the past several years we have made dramatic improvements in the lasing characteristics of these highly complex devices. Specifically, we have reduced the threshold current density from ˜100 kA/cm2 to ˜3 kA/cm2, while simultaneously increasing the output power from ˜10 muW to ˜550 muW. These developments have primarily come about by focusing on the aperture design and intracavity contact design for flip-chip dual dielectric DBR III-nitride VCSELs. We have carried out a number of studies developing an Al ion implanted aperture (IIA) and photoelectrochemically etched aperture (PECA), while simultaneously improving the quality of tin-doped indium oxide (ITO) intracavity contacts, and demonstrating the first III-nitride VCSEL with an n-GaN tunnel junction intracavity contact. Beyond these most notable research fronts, we have analyzed numerous other parameters, including epitaxial growth, flip-chip bonding, substrate removal, and more, bringing further improvement to III-nitride VCSEL performance and yield. This thesis aims to give a comprehensive discussion of the relevant underlying concepts for nonpolar VCSELs, while detailing our specific experimental advances. In Section 1, we give an overview of the applications of VCSELs generally, before describing some of the potential applications for III-nitride VCSELs. This is followed by a summary of the different material systems used to fabricate VCSELs, before going into detail on the basic design principles for developing III-nitride VCSELs. In Section 2, we outline the basic process and geometry for fabricating flip-chip nonpolar VCSELs with different aperture and intracavity contact designs. Finally, in Section 3 and 4, we delve into the experimental results achieved in the last several years, beginning with a discussion on

  18. Nanowire-templated lateral epitaxial growth of non-polar group III nitrides

    DOEpatents

    Wang, George T.; Li, Qiming; Creighton, J. Randall

    2010-03-02

    A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

  19. Theory of gain in group-III nitride lasers

    SciTech Connect

    Chow, W.W.; Wright, A.F.; Girndt, A.

    1997-06-01

    A microscopic theory of gain in a group-III nitride quantum well laser is presented. The approach, which treats carrier correlations at the level of quantum kinetic theory, gives a consistent account of plasma and excitonic effects in an inhomogeneously broadened system.

  20. Methods for improved growth of group III nitride buffer layers

    DOEpatents

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  1. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  2. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Oh, Munsik; Jin, Won-Yong; Jun Jeong, Hyeon; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-09-01

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10-3 Ωcm2 was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters.

  3. Silver Nanowire Transparent Conductive Electrodes for High-Efficiency III-Nitride Light-Emitting Diodes

    PubMed Central

    Oh, Munsik; Jin, Won-Yong; Jun Jeong, Hyeon; Jeong, Mun Seok; Kang, Jae-Wook; Kim, Hyunsoo

    2015-01-01

    Silver nanowires (AgNWs) have been successfully demonstrated to function as next-generation transparent conductive electrodes (TCEs) in organic semiconductor devices owing to their figures of merit, including high optical transmittance, low sheet resistance, flexibility, and low-cost processing. In this article, high-quality, solution-processed AgNWs with an excellent optical transmittance of 96.5% at 450 nm and a low sheet resistance of 11.7 Ω/sq were demonstrated as TCEs in inorganic III-nitride LEDs. The transmission line model applied to the AgNW contact to p-GaN showed that near ohmic contact with a specific contact resistance of ~10−3 Ωcm2 was obtained. The contact resistance had a strong bias-voltage (or current-density) dependence: namely, field-enhanced ohmic contact. LEDs fabricated with AgNW electrodes exhibited a 56% reduction in series resistance, 56.5% brighter output power, a 67.5% reduction in efficiency droop, and a approximately 30% longer current spreading length compared to LEDs fabricated with reference TCEs. In addition to the cost reduction, the observed improvements in device performance suggest that the AgNWs are promising for application as next-generation TCEs, to realise brighter, larger-area, cost-competitive inorganic III-nitride light emitters. PMID:26333768

  4. Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

    DOE PAGESBeta

    Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal

    2014-08-25

    We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a newmore » class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.« less

  5. Optical Strong Coupling between near-Infrared Metamaterials and Intersubband Transitions in III-Nitride Heterostructures

    SciTech Connect

    Benz, Alexander; Campione, Salvatore; Moseley, Michael W.; Wierer, Jonathan J.; Allerman, Andrew A.; Wendt, Joel R.; Brener, Igal

    2014-08-25

    We present the design, realization, and characterization of optical strong light–matter coupling between intersubband transitions within a semiconductor heterostructures and planar metamaterials in the near-infrared spectral range. The strong light–matter coupling entity consists of a III-nitride intersubband superlattice heterostructure, providing a two-level system with a transition energy of ~0.8 eV (λ ~1.55 μm) and a planar “dogbone” metamaterial structure. Furthermore, as the bare metamaterial resonance frequency is varied across the intersubband resonance, a clear anticrossing behavior is observed in the frequency domain. We found that this strongly coupled entity could enable the realization of electrically tunable optical filters, a new class of efficient nonlinear optical materials, or intersubband-based light-emitting diodes.

  6. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared

    NASA Astrophysics Data System (ADS)

    Shubina, T. V.; Pozina, G.; Jmerik, V. N.; Davydov, V. Yu.; Hemmingsson, C.; Andrianov, A. V.; Kazanov, D. R.; Ivanov, S. V.

    2015-12-01

    Rapidly developing nanophotonics needs microresonators for different spectral ranges, formed by chip-compatible technologies. In addition, the tunable ones are much in demand. Here, we present site-controlled III-nitride monocrystal cup-cavities grown by molecular beam epitaxy. The cup-cavities can operate from ultraviolet to near-infrared, supporting quasi whispering gallery modes up to room temperature. Besides, their energies are identical in large ’ripened’ crystals. In these cavities, the refractive index variation near an absorption edge causes the remarkable effect of mode switching, which is accompanied by the spatial redistribution of electric field intensity with concentration of light into a subwavelength volume. Our results shed light on the mode behavior in semiconductor cavities and open the way for single-growth-run manufacturing the devices comprising an active region and a cavity with tunable mode frequencies.

  7. III-nitride tunable cup-cavities supporting quasi whispering gallery modes from ultraviolet to infrared

    PubMed Central

    Shubina, T. V.; Pozina, G.; Jmerik, V. N.; Davydov, V. Yu.; Hemmingsson, C.; Andrianov, A. V.; Kazanov, D. R.; Ivanov, S. V.

    2015-01-01

    Rapidly developing nanophotonics needs microresonators for different spectral ranges, formed by chip-compatible technologies. In addition, the tunable ones are much in demand. Here, we present site-controlled III-nitride monocrystal cup-cavities grown by molecular beam epitaxy. The cup-cavities can operate from ultraviolet to near-infrared, supporting quasi whispering gallery modes up to room temperature. Besides, their energies are identical in large ’ripened’ crystals. In these cavities, the refractive index variation near an absorption edge causes the remarkable effect of mode switching, which is accompanied by the spatial redistribution of electric field intensity with concentration of light into a subwavelength volume. Our results shed light on the mode behavior in semiconductor cavities and open the way for single-growth-run manufacturing the devices comprising an active region and a cavity with tunable mode frequencies. PMID:26656267

  8. Design of III-Nitride Hot Electron Transistors

    NASA Astrophysics Data System (ADS)

    Gupta, Geetak

    III-Nitride based devices have made great progress over the past few decades in electronics and photonics applications. As the technology and theoretical understanding of the III-N system matures, the limitations on further development are based on very basic electronic properties of the material, one of which is electron scattering (or ballistic electron effects). This thesis explores the design space of III-N based ballistic electron transistors using novel design, growth and process techniques. The hot electron transistor (HET) is a unipolar vertical device that operates on the principle of injecting electrons over a high-energy barrier (φBE) called the emitter into an n-doped region called base and finally collecting the high energy electrons (hot electrons) over another barrier (φBC) called the collector barrier. The injected electrons traverse the base in a quasi-ballistic manner. Electrons that get scattered in the base contribute to base current. High gain in the HET is thus achieved by enabling ballistic transport of electrons in the base. In addition, low leakage across the collector barrier (I BCleak) and low base resistance (RB) are needed to achieve high performance. Because of device attributes such as vertical structure, ballistic transport and low-resistance n-type base, the HET has the potential of operating at very high frequencies. Electrical measurements of a HET structure can be used to understand high-energy electron physics and extract information like mean free path in semiconductors. The III-Nitride material system is particularly suited for HETs as it offers a wide range of DeltaEcs and polarization charges which can be engineered to obtain barriers which can inject hot-electrons and have low leakage at room temperature. In addition, polarization charges in the III-N system can be engineered to obtain a high-density and high-mobility 2DEG in the base, which can be used to reduce base resistance and allow vertical scaling. With these

  9. Energy band engineering using polarization induced interface charges in MOCVD grown III-nitride heterojunction devices

    NASA Astrophysics Data System (ADS)

    Tripathi, Neeraj

    2011-12-01

    Characteristics of III-nitride based heterojunction devices are greatly influenced by the presence of high density of polarization induced interface charges. Research undertaken in the current doctoral thesis demonstrates the effect of presence of one, three and six sheets of polarization induced charges in three different III-nitride based devices, namely in a photocathode, a high electron mobility transistor (HEMT) and a hyperspectral detector structure. Through a systematic set of experiments and theoretical modeling an in-depth study of the interaction between multiple sheets of polarization induced charges and their impact on energy band profile was undertaken. Various device designs were studied and optimized using device simulations. Subsequently device structures were grown using metallorganic chemical vapor deposition (MOCVD). Growth conditions for III-nitride epilayers were optimized for pressure, temperature and V/III ratio. Devices were fabricated using photolithography and e-beam evaporation. Novel GaN and GaN/AlGaN photocathode structures were developed. First demonstration of effective negative electron affinity (ENEA) in a GaN photocathode without the use of Cs was made. Effect of polarization induced surface charges on photoemission characteristics was successfully explained using simulated energy band diagrams. AlGaN/GaN/AlGaN/SiO2 based back barrier HEMT structures were developed in which bandgap, thin film thicknesses and polarization induced charge density were engineered to demonstrate Normally OFF operation along with the ability to engineer turn ON voltage of the device. Further, AlGaN based tunable hyperspectral detector pixel with 6-heterojunctions, for application in wavelength spectrometry from UV to IR part of the spectrum, was developed. The novel device design used in the hyperspectral detector utilized voltage tunable internal photoemission (IPE) barriers to measure the energy of the incident photon. Detailed IPE measurements were

  10. Prospects of III-nitride optoelectronics grown on Si

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Wallis, D. J.; Humphreys, C. J.

    2013-10-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al2O3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures.

  11. Accurate treatment of spontaneous polarization in III-nitrides

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Janotti, Anderson; van de Walle, Chris G.

    2015-03-01

    The III-nitride compounds assume the wurtzite crystal structure in the ground state and therefore exhibit spontaneous and piezoelectric dipole moments in the c direction. Discontinuities in these moments at heterostructure interfaces result in electric fields in the layers, which can be detrimental because they separate electrons and holes in quantum wells. Accurate values for polarization differences are critical for understanding and engineering III-nitride heterostructures. Direct experimental measurement of spontaneous polarization has not been possible to date, and calculations are complicated by the necessity to choose a reference structure. The universal choice of reference structure for wurtzite has been zincblende; we demonstrate that this choice does not allow consistent determination of the differences of spontaneous polarizations between materials, which determine their physical manifestation. Using first-principles techniques based on hybrid density functional theory, we have determined polarization discontinuities using a consistent reference based on the hexagonal layered structure of these materials. We will discuss the results in light of available experimental data, and outline consequences for device simulations. Work supported by DOE.

  12. Prospects of III-nitride optoelectronics grown on Si.

    PubMed

    Zhu, D; Wallis, D J; Humphreys, C J

    2013-10-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al2O3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures. PMID:24088511

  13. Anisotropy of the nitrogen conduction states in the group III nitrides studied by polarized x-ray absorption

    SciTech Connect

    Lawniczak-Jablonska, K. |; Liliental-Weber, Z.; Gullikson, E.M.

    1997-04-01

    Group III nitrides (AlN, GaN, and InN) consist of the semiconductors which appear recently as a basic materials for optoelectronic devices active in the visible/ultraviolet spectrum as well as high-temperature and high-power microelectronic devices. However, understanding of the basic physical properties leading to application is still not satisfactory. One of the reasons consists in unsufficient knowledge of the band structure of the considered semiconductors. Several theoretical studies of III-nitrides band structure have been published but relatively few experimental studies have been carried out, particularly with respect to their conduction band structure. This motivated the authors to examine the conduction band structure projected onto p-states of the nitrogen atoms for AlN, GaN and InN. An additional advantage of their studies is the availability of the studied nitrides in two structures, hexagonal (wurtzite) and cubic (zincblende). This offers an opportunity to gain information about the role of the anisotropy of electronic band states in determining various physical properties.

  14. Bulk Modulus Calculations for Group-Iv Carbides and Group-Iii Nitrides

    NASA Astrophysics Data System (ADS)

    Mahmood, A.; Sansores, L. E.; Heiras, J.

    Wide band gap semiconductors such as group-IV carbides (SiC, GeC) and group-III nitrides (AlN, GaN and BN) are known to be important materials for novel semiconductor applications. They also have interesting mechanical properties such as having a particularly high value for their bulk modulus and are therefore potential candidates for hard coatings. In this paper we report the theoretical calculations for the bulk modulus for zincblende and wurzite polytypes of these materials. The Density Functional and Total-energy Pseudopotential Techniques in the Generalized Gradient approximation, an ab initio quantum mechanical method, is used to obtain the theoretical structure, from which equilibrium lattice parameters and volume of the cell versus pressure may be extracted. The Murnaghan's equation of state is then used to calculate bulk modulus under elastic deformation, which is related to the hardness of a material under certain conditions. The results for bulk modulus are compared with other theoretical and experimental values reported in the literature.

  15. Growth of III-Nitrides by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Tang, Liang

    Nitride compound materials are highly desirable for optoelectronic and power device applications due to their unique combinations of material properties. However due to the large lattice mismatches between AlN and GaN(2.5%), and between InN and GaN(11%), growth of nitride devices which contains lattice mismatched multiple quantum well (MQW) structures remains a challenge. In this work the growth of III-Nitride by the MBE method is investigated, covering the growth of AlGaN/GaN Resonant tunneling Diode, the growth of In0.18 Al0.82N that is lattice matched to GaN, and the fabrication of free standing GaN nanomembranes

  16. Role of defects in III-nitride based electronics

    SciTech Connect

    HAN,JUNG; MYERS JR.,SAMUEL M.; FOLLSTAEDT,DAVID M.; WRIGHT,ALAN F.; CRAWFORD,MARY H.; LEE,STEPHEN R.; SEAGER,CARLETON H.; SHUL,RANDY J.; BACA,ALBERT G.

    2000-01-01

    The LDRD entitled ``Role of Defects in III-Nitride Based Devices'' is aimed to place Sandia National Laboratory at the forefront of the field of GaN materials and devices by establishing a scientific foundation in areas such as material growth, defect characterization/modeling, and processing (metalization and etching) chemistry. In this SAND report the authors summarize their studies such as (1) the MOCVD growth and doping of GaN and AlGaN, (2) the characterization and modeling of hydrogen in GaN, including its bonding, diffusion, and activation behaviors, (3) the calculation of energetic of various defects including planar stacking faults, threading dislocations, and point defects in GaN, and (4) dry etching (plasma etching) of GaN (n- and p-types) and AlGaN. The result of the first AlGaN/GaN heterojunction bipolar transistor is also presented.

  17. Improvements to III-nitride light-emitting diodes through characterization and material growth

    NASA Astrophysics Data System (ADS)

    Getty, Amorette Rose Klug

    A variety of experiments were conducted to improve or aid the improvement of the efficiency of III-nitride light-emitting diodes (LEDs), which are a critical area of research for multiple applications, including high-efficiency solid state lighting. To enhance the light extraction in ultraviolet LEDs grown on SiC substrates, a distributed Bragg reflector (DBR) optimized for operation in the range from 250 to 280 nm has been developed using MBE growth techniques. The best devices had a peak reflectivity of 80% with 19.5 periods, which is acceptable for the intended application. DBR surfaces were sufficiently smooth for subsequent epitaxy of the LED device. During the course of this work, pros and cons of AlGaN growth techniques, including analog versus digital alloying, were examined. This work highlighted a need for more accurate values of the refractive index of high-Al-content AlxGa1-xNin the UV wavelength range. We present refractive index results for a wide variety of materials pertinent to the fabrication of optical III-nitride devices. Characterization was done using Variable-Angle Spectroscopic Ellipsometry. The three binary nitrides, and all three ternaries, have been characterized to a greater or lesser extent depending on material compositions available. Semi-transparent p-contact materials and other thin metals for reflecting contacts have been examined to allow optimization of deposition conditions and to allow highly accurate modeling of the behavior of light within these devices. Standard substrate materials have also been characterized for completeness and as an indicator of the accuracy of our modeling technique. We have demonstrated a new technique for estimating the internal quantum efficiency (IQE) of nitride light-emitting diodes. This method is advantageous over the standard low-temperature photoluminescence-based method of estimating IQE, as the new method is conducted under the same conditions as normal device operation. We have developed

  18. Electrical properties of dislocations in III-Nitrides

    SciTech Connect

    Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A.

    2014-02-21

    Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.

  19. Electrical properties of dislocations in III-Nitrides

    NASA Astrophysics Data System (ADS)

    Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A.

    2014-02-01

    Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.

  20. Electronic and total energy properties of ternary and quaternary semiconductor compounds, alloys and superlattices

    NASA Technical Reports Server (NTRS)

    Lambrecht, Walter R. L.

    1992-01-01

    This proposal was mainly concerned with the theoretical study of semiconductor compounds, alloys, and superlattices of interest for photovoltaic applications. In the last year (1991) a study was devoted to metal/graphite bonding in relation to use of graphite fiber reinforcement of Cu for high thermal conductivity applications. The main research topics addressed during the full period of the grant are briefly described: studies of the In-Ga-As ternary system; band-offsets at common anion and InAs/GaSb/AlSb heterojunctions; alloy theory (cluster variation method); and Cu/graphite bonding. Most of the work was described more extensively in previous yearly reports and renewal applications and in publications. The last topic is described more fully in a separate report attached. A list of publications resulting directly from this grant or from other grants but related to this work and of conference presentations is given at the end.

  1. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Burger, A.; Dudley, M.; Matyi, R.; Ramachandran, N.; Sha, Yi-Gao; Volz, M.; Shih, Hung-Dah

    1999-01-01

    Complete and systematic ground-based experimental and theoretical analyses on the Physical Vapor Transport (PVT) of ZnSe and related ternary compound semiconductors have been performed. The analyses included thermodynamics, mass flux, heat treatment of starting material, crystal growth, partial pressure measurements, optical interferometry, chemical analyses, photoluminescence, microscopy, x-ray diffraction and topography as well as theoretical, analytical and numerical analyses. The experimental results showed the influence of gravity orientation on the characteristics of: (1) the morphology of the as-grown crystals as well as the as-grown surface morphology of ZnSe and Cr doped ZnSe crystals; (2) the distribution of impurities and defects in ZnSe grown crystals; and (3) the axial segregation in ZnSeTe grown crystals.

  2. Electronic structure calculations of group III nitride clusters

    NASA Astrophysics Data System (ADS)

    Kandalam, Anil Kumar

    2002-04-01

    Group III nitrides have become materials of choice in the manufacturing of devices used in opto-electronic and high-temperature high-power electronic industries. Hence, these materials received wide attention and have become the focus of several theoretical and experimental studies. Though these materials are studied in bulk and thin film forms, research at the cluster level is still lacking. Hence, a first principles calculation, based on the Generalized Gradient Approximation (GGA) to Density Functional Theory (DFT) was initiated to study the structural and electronic properties of AlnN n, GanNn, and InnNn, (n = 1--6) clusters. The calculated results show that the small polyatomic nitride clusters (monomer, triatomic and dimer) have a strong tendency to form N-N multiple bonds leading to the weakening of any existent metal-N or metal-metal bonds. In the absence of the N-N bonds, the metal-nitrogen bond dominates, forming short bond-lengths and large force constants. However, the strength of these heteronuclear bonds decreases in going from Al to Ga and In, whereas the weak metal-metal bond increases its strength from Al to Ga to In in the nitride clusters. Starting from the trimers M3N3, a distinct structural difference between the lowest energy configurations of AlnNn and that of GanNn, and In nNn, clusters has been observed. For AlnNn, clusters, the metal-nitrogen bond is found to dominate the lowest energy configurations. As the cluster size is increased from Al3N3 to Al 6N6, a transition from planar ring structures towards a bulk-like three dimensional configurations is seen. However, in GanN n, and InnNn clusters, no such trend is observed and the lowest energy configurations are dominated either by N2 or (N3)- sub-units. The segregation of N atoms within the stoichiometric clusters indicates the possibility of N2 and N3 based defects in the thin-film deposition process which may affect the quality of the thin-film devices based on Group III nitrides.

  3. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, Robert F.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah

    2000-01-01

    Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths. In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors. With an energy gap of 2.7 eV at room temperature, and an efficient band- to-band transition, ZnSe has been studied extensively as the primary candidate for a blue light emitting diode for optical displays, high density recording, and military communications. By employing a ternary or quaternary system, the energy band gap of II-VI materials can be tuned to a specific range. While issues related to the compositional inhomogeneity and defect incorporation are still to be fully resolved, ZnSe bulk crystals and ZnSe-based heterostructures such as ZnSe/ZnSeS, ZnSe/ZnCdSe and ZnCdSe/ZnSeS have showed photopumped lasing capability in the blue-green region at a low threshold power and high temperatures. The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk H-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology.

  4. Impurity-induced disorder in III-nitride materials and devices

    SciTech Connect

    Wierer, Jr., Jonathan J; Allerman, Andrew A

    2014-11-25

    A method for impurity-induced disordering in III-nitride materials comprises growing a III-nitride heterostructure at a growth temperature and doping the heterostructure layers with a dopant during or after the growth of the heterostructure and post-growth annealing of the heterostructure. The post-growth annealing temperature can be sufficiently high to induce disorder of the heterostructure layer interfaces.

  5. Theoretical Study of Material and Device Properties of Group-III Nitrides

    NASA Astrophysics Data System (ADS)

    Yan, Qimin

    Group-III nitride semiconductors, including AlN, GaN, InN, and their alloys, are ideal materials for solid state lighting applications. Current research focuses on improving the efficiency by improvements in materials quality and novel device designs, for instance based on nonpolar and semipolar growth. The motivation for our work is to assist and guide the experimental development of high-performance solid state optoelectronic devices by performing computational studies. Our investigations range from basic structural and electronic properties of nitrides to the effects of device design on efficiency of light emission. In the area of fundamental properties, we performed a systematic study of strain effects on the electronic band structures of the group-III-nitrides (AlN, GaN and InN) using density-functional theory with an advanced hybrid functional as well as using the quasiparticle GW method. We present a complete set of deformation potentials that allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain conditions. We then employed the resulting first-principles deformation potentials to predict the effects of strain on transition energies and valence-band structures of c-plane, nonpolar, and semipolar InGaN alloy layers grown on GaN substrates, with particular attention to the role of strain in the polarized light emission. We also investigated the role of native defects in the optical properties of GaN and AlN, again using hybrid density-functional calculations. We established that complexes between Mg and nitrogen vacancies lead to the broad red luminescence that has often been observed in GaN. We find that isolated nitrogen vacancies can give rise to broad emission peaked at 2.18 eV. We show that isolated aluminum vacancies lead to an absorption peak at 3.43 eV and an emission peak at 2.73 eV. We also find that the complexes can give rise to absorption peaked at 3.97 eV and

  6. High-Modulation-Speed LEDs Based on III-Nitride

    NASA Astrophysics Data System (ADS)

    Chen, Hong

    III-nitride InGaN light-emitting diodes (LEDs) enable wide range of applications in solid-state lighting, full-color displays, and high-speed visible-light communication. Conventional InGaN quantum well LEDs grown on polar c-plane substrate suffer from quantum confined Stark effect due to the large internal polarization-related fields, leading to a reduced radiative recombination rate and device efficiency, which limits the performance of InGaN LEDs in high-speed communication applications. To circumvent these negative effects, non-trivial-cavity designs such as flip-chip LEDs, metallic grating coated LEDs are proposed. This oral defense will show the works on the high-modulation-speed LEDs from basic ideas to applications. Fundamental principles such as rate equations for LEDs/laser diodes (LDs), plasmonic effects, Purcell effects will be briefly introduced. For applications, the modal properties of flip-chip LEDs are solved by implementing finite difference method in order to study the modulation response. The emission properties of highly polarized InGaN LEDs coated by metallic gratings are also investigated by finite difference time domain method.

  7. III-nitride monolithic LED covering full RGB color gamut

    NASA Astrophysics Data System (ADS)

    El-Ghoroury, Hussein S.; Chuang, Chih-Li; Kisin, Mikhail V.

    2016-03-01

    We present numerical simulation of III-nitride monolithic multi-color LED covering full red-green-blue (RGB) color gamut. The RGB LED structure was grown at Ostendo Technologies Inc. and has been used in Ostendo proprietary Quantum Photonic Imager (QPI) device. Active region of our RGB LED incorporates specially designed intermediate carrier blocking layers (ICBLs) controlling transport of each type of carriers and subsequent carrier injection redistribution among the optically active quantum wells (QWs) with different emission wavelengths. ICBLs are proved to be essential elements of multi-color LED active region design requiring optimization both in material composition and doping level. Strong interdependence between ICBL parameters and active QW characteristics presents additional challenge to multi-color LED design. Combination of several effects was crucial for adequate simulation of RGB LED color control features. Standard drift-diffusion transport model has been appended with rate equations for dynamic QW-confined carrier populations which appear severely off-balanced from corresponding mobile carrier subsystems. QW overshoot and Auger-assisted QW depopulation were also included into the carrier kinetic model thus enhancing the non-equilibrium character of QW confined populations and supporting the mobile carrier transport across the MQW active region. For device simulation we use COMSOL-based program suit developed at Ostendo Technologies Inc.

  8. Low damage dry etch for III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Nedy, Joseph G.; Young, Nathan G.; Kelchner, Kathryn M.; Hu, Yanling; Farrell, Robert M.; Nakamura, Shuji; DenBaars, Steven P.; Weisbuch, Claude; Speck, James S.

    2015-08-01

    We have developed a dry etch process for the fabrication of lithographically defined features close to light emitting layers in the III-nitride material system. The dry etch was tested for its effect on the internal quantum efficiency of c-plane InGaN quantum wells using the photoluminescence of a test structure with two active regions. No change was observed in the internal quantum efficiency of the test active region when the etched surface was greater than 71 nm away. To demonstrate the application of the developed dry etch process, surface-etched air gaps were fabricated 275 nm away from the active region of an m-plane InGaN/GaN laser diode and served as the waveguide upper cladding. Electrically injected lasing was observed without the need for regrowth or recovery anneals. This dry etch opens up a new design tool that can be utilized in the next generation of GaN light emitters.

  9. Liquid phase electroepitaxial bulk growth of binary and ternary alloy semiconductors under external magnetic field

    NASA Astrophysics Data System (ADS)

    Sheibani, Hamdi

    2002-01-01

    Liquid Phase Electroepitaxy (LPEE) and is a relatively new, promising technique for producing high quality, thick compound semiconductors and their alloys. The main objectives are to reduce the adverse effect of natural convection and to determine the optimum growth conditions for reproducible desired crystals for the optoelectronic and electronic device industry. Among the available techniques for suppressing the adverse effect of natural convection, the application of an external magnetic field seems the most feasible one. The research work in this dissertation consists of two parts. The first part is focused on the design and development of a state of the art LPEE facility with a novel crucible design, that can produce bulk crystals of quality higher than those achieved by the existing LPEE system. A growth procedure was developed to take advantage of this novel crucible design. The research of the growth of InGaAs single crystals presented in this thesis will be a basis for the future LPEE growth of other important material and is an ideal vehicle for the development of a ternary crystal growth process. The second part of the research program is the experimental study of the LPEE growth process of high quality bulk single crystals of binary/ternary semiconductors under applied magnetic field. The compositional uniformity of grown crystals was measured by Electron Probe Micro-analysis (EPMA) and X-ray microanalysis. The state-of-the-art LPEE system developed at University of Victoria, because of its novel design features, has achieved a growth rate of about 4.5 mm/day (with the application of an external fixed magnetic field of 4.5 KGauss and 3 A/cm2 electric current density), and a growth rate of about 11 mm/day (with 4.5 KGauss magnetic field and 7 A/cm2 electric current density). This achievement is simply a breakthrough in LPEE, making this growth technique absolutely a bulk growth technique and putting it in competition with other bulk growth techniques

  10. Interdiffusion at the Mn-CdTe(110) interface and the formation of metastable ternary semimagnetic semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Wall, A.; Raisanen, A.; Haugstad, G.; Vanzetti, L.; Franciosi, A.

    1991-10-01

    Mn vacuum deposition at room temperature onto CdTe(110) surfaces cleaved in situ yields atomic interdiffusion for metal coverages Θ<=3 Å as a result of a partial Mn-Cd exchange reaction in the interface region. Synchrotron-radiation photoemission measurements show the reaction product to be a Cd1-xMnxTe semimagnetic semiconductor surface alloy. Large values of the average Mn concentration are achieved in such metastable interface reaction product. We use these results to explore the composition dependence of the electronic structure of ternary semimagnetic semiconductors.

  11. Surface properties and photocatalytic activity of KTaO3, CdS, MoS2 semiconductors and their binary and ternary semiconductor composites.

    PubMed

    Bajorowicz, Beata; Cybula, Anna; Winiarski, Michał J; Klimczuk, Tomasz; Zaleska, Adriana

    2014-01-01

    Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary and ternary combinations of the above semiconductors for phenol and toluene photocatalytic degradation and characterized by X-ray powder diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) specific surface area and porosity. The results showed that loading MoS2 onto CdS as well as loading CdS onto KTaO3 significantly enhanced absorption properties as compared with single semiconductors. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO3, CdS, MoS2 powders at the 10:5:1 molar ratio. Enhanced photoactivity could be related to the two-photon excitation in KTaO3-CdS-MoS2 composite under UV-Vis and/or to additional presence of CdMoO4 working as co-catalyst. PMID:25255249

  12. Vibrational and thermal properties of ternary semiconductors and their isotopic dependence: chalcopyrite CuGaS2

    NASA Astrophysics Data System (ADS)

    Romero, Aldo; Cardona, M.; Kremer, R.; Lauck, R.; Muñoz, A.

    2011-03-01

    The availability of ab initio electronic calculations and the concomitant techniques for deriving the corresponding lattice dynamics have been profusely used in the past decade for calculating thermodynamic and vibrational properties of semiconductors, as well as their dependence on isotopic masses. The latter have been compared with experimental data for elemental and binary semiconductors with different isotopic compositions. Here we present theoretical and experimental data for several vibronic and thermodynamic properties of a canonical ternary semiconductor of the chalcopyrite family: CuGaS2. Among these properties are the lattice parameters, the phonon dispersion relations and densities of states (projected on the Cu, Ga, and S constituents), the specific heat and the volume expansion coefficient. The calculations were performed with the ABINIT and VASP codes within the LDA approximation for exchange and correlation. Supported by CONACYT under projects J-59853-F and J-83247-F.

  13. A review of III-nitride research at the Center for Quantum Devices

    NASA Astrophysics Data System (ADS)

    Razeghi, M.; McClintock, R.

    2009-05-01

    In this paper, we review the history of the Center for Quantum Devices' (CQD) III-nitride research covering the past 15 years. We review early work developing III-nitride material growth. We then present a review of laser and light-emitting diode (LED) results covering everything from blue lasers to deep UV LEDs emitting at 250 nm. This is followed by a discussion of our UV photodetector research from early photoconductors all the way to current state of the art Geiger-mode UV single photon detectors.

  14. III-nitride quantum dots for ultra-efficient solid-state lighting: III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGESBeta

    Wierer, Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; Tsao, Jeffrey Y.

    2016-05-23

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. If constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  15. Determination of lattice parameters, strain state and composition in semipolar III-nitrides using high resolution X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Frentrup, Martin; Hatui, Nirupam; Wernicke, Tim; Stellmach, Joachim; Bhattacharya, Arnab; Kneissl, Michael

    2013-12-01

    In group-III-nitride heterostructures with semipolar or nonpolar crystal orientation, anisotropic lattice and thermal mismatch with the buffer or substrate lead to a complex distortion of the unit cells, e.g., by shearing of the lattice. This makes an accurate determination of lattice parameters, composition, and strain state under assumption of the hexagonal symmetry impossible. In this work, we present a procedure to accurately determine the lattice constants, strain state, and composition of semipolar heterostructures using high resolution X-ray diffraction. An analysis of the unit cell distortion shows that four independent lattice parameters are sufficient to describe this distortion. Assuming only small deviations from an ideal hexagonal structure, a linear expression for the interplanar distances dhkl is derived. It is used to determine the lattice parameters from high resolution X-ray diffraction 2ϑ-ω-scans of multiple on- and off-axis reflections via a weighted least-square fit. The strain and composition of ternary alloys are then evaluated by transforming the elastic parameters (using Hooke's law) from the natural crystal-fixed coordinate system to a layer-based system, given by the in-plane directions and the growth direction. We illustrate our procedure taking an example of (112¯2) AlκGa1-κN epilayers with Al-contents over the entire composition range. We separately identify the in-plane and out-of-plane strains and discuss origins for the observed anisotropy.

  16. Method for Improving Mg Doping During Group-III Nitride MOCVD

    DOEpatents

    Creighton, J. Randall; Wang, George T.

    2008-11-11

    A method for improving Mg doping of Group III-N materials grown by MOCVD preventing condensation in the gas phase or on reactor surfaces of adducts of magnesocene and ammonia by suitably heating reactor surfaces between the location of mixing of the magnesocene and ammonia reactants and the Group III-nitride surface whereon growth is to occur.

  17. Method to grow group III-nitrides on copper using passivation layers

    DOEpatents

    Li, Qiming; Wang, George T; Figiel, Jeffrey T

    2014-06-03

    Group III-nitride epilayers can be grown directly on copper substrates using intermediate passivation layers. For example, single crystalline c-plane GaN can be grown on Cu (110) substrates with MOCVD. The growth relies on a low temperature AlN passivation layer to isolate any alloying reaction between Ga and Cu.

  18. Comparing directed efficiency of III-nitride nanowire light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chesin, Jordan; Gradečak, Silvija

    2014-01-01

    III-nitride-based nanowires are a promising platform for solid-state lighting. III-nitride nanowires that act as natural waveguides to enhance directed extraction have previously been shown to be free of extended defects even on foreign substrates, such as silicon. While the efficiency of nanowire-based light-emitting diodes (LEDs) has been investigated, there has yet to be a comparison of heterostructures based on nanowires grown in different crystallographic directions. We compared the directed external quantum efficiency (EQE) of III-nitride LEDs on silicon based on axial and radial nanowire heterostructures, considering m- and c-directional nanowires. The directed extraction efficiency was calculated using photonic simulations, and the internal quantum efficiency (IQE) was estimated using the A-B-C model. We found that m-directional axial heterostructures have the highest directed extraction efficiency, due to the strong polarization anisotropy of III-nitrides, and display similar IQE as c-directional axial heterostructures. By combining IQE and directed extraction, a range of directed expected EQEs reveal that m-directional axial heterostructures have EQEs up to three times that of c-directional axial heterostructures, providing guidelines for the design of future nanowire-based LEDs.

  19. Near- and far-infrared intersubband transitions in polar and non-polar III-nitrides

    NASA Astrophysics Data System (ADS)

    Edmunds, Colin

    III-nitrides are promising materials for intersubband devices operating in the near- and far-infrared due to the large conduction band offset (> 1 eV), longitudinal-optical phonon energy (~ 90 meV), and fast intersubband relaxation time (~ 80 fs). However, several challenges impede progress towards the realization of high performance III-nitride optoelectronic devices. To address these challenges, this thesis investigates the optical properties of intersubband transitions in the III-nitrides. The studies were carried out across several III-nitride material combinations, including the relatively well developed c-axis AlGaN/GaN material system, the lattice-matched AlInN/GaN system, and the non-polar m-axis AlGaN/GaN system. The latter systems are relatively unexplored, and promise to alleviate specific material challenges, namely the lattice-mismatch and internal polarization fields associated with the well developed c-axis AlGaN/GaN material system. In the c-axis AlGaN/GaN material system, we study the impact of doping profile on the transition energy, linewidth and magnitude. An optimal doping profile is determined and the results are understood through band structure calculations that consider the influence of many-body effects, interface roughness, and the transition lifetime. We also demonstrate quantum well infrared photodetectors and electromodulators on low-defect GaN-on-sapphire and free-standing GaN substrates, proving the suitability of low-defect substrates for III-nitride devices. The optimization and theoretical understanding of the optical properties, along with the successful demonstration of intersubband devices, is an important contribution to the future design of III-nitride devices. For the lattice-matched AlInN/GaN system, we demonstrate direct intersubband absorption for the first time. However, we find the strength of the intersubband absorption to be much smaller than expected. The poor performance of AlInN/GaN superlattices is attributed to

  20. Growth and characterization of III-nitrides materials system for photonic and electronic devices by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yoo, Dongwon

    A wide variety of group III-Nitride-based photonic and electronic devices have opened a new era in the field of semiconductor research in the past ten years. The direct and large bandgap nature, intrinsic high carrier mobility, and the capability of forming heterostructures allow them to dominate photonic and electronic device market such as light emitters, photodiodes, or high-speed/high-power electronic devices. Avalanche photodiodes (APDs) based on group III-Nitrides materials are of interest due to potential capabilities for low dark current densities, high sensitivities and high optical gains in the ultraviolet (UV) spectral region. Wide-bandgap GaN-based APDs are excellent candidates for short-wavelength photodetectors because they have the capability for cut-off wavelengths in the UV spectral region (lambda < 290 nm). These intrinsically solar-blind UV APDs will not require filters to operate in the solar-blind spectral regime of lambda < 290 nm. For the growth of GaN-based heteroepitaxial layers on lattice-mismatched substrates, a high density of defects is usually introduced during the growth; thereby, causing a device failure by premature microplasma, which has been a major issue for GaN-based APDs. The extensive research on epitaxial growth and optimization of AlxGa 1-xN (0 ≤ x ≤ 1) grown on low dislocation density native bulk III-N substrates have brought UV APDs into realization. GaN and AlGaN UV p-i-n APDs demonstrated first and record-high true avalanche gain of > 10,000 and 50, respectively. The large stable optical gains are attributed to the improved crystalline quality of epitaxial layers grown on low dislocation density bulk substrates. GaN p-i-n rectifiers have brought much research interest due to its superior physical properties. The AIN-free full-vertical GaN p-i-n rectifiers on n-type 6H-SiC substrates by employing a conducting AIGaN:Si buffer layer provides the advantages of the reduction of sidewall damage from plasma etching and

  1. Enhanced non-radiative energy transfer in hybrid III-nitride structures

    SciTech Connect

    Smith, R. M.; Athanasiou, M.; Bai, J.; Liu, B.; Wang, T.

    2015-09-21

    The effect of surface states has been investigated in hybrid organic/inorganic white light emitting structures that employ high efficiency, nearfield non-radiative energy transfer (NRET) coupling. The structures utilize blue emitting InGaN/GaN multiple quantum well (MQW) nanorod arrays to minimize the separation with a yellow emitting F8BT coating. Surface states due to the exposed III-nitride surfaces of the nanostructures are found to reduce the NRET coupling rate. The surface states are passivated by deposition of a silicon nitride layer on the III-nitride nanorod surface leading to reduced surface recombination. A low thickness surface passivation is shown to increase the NRET coupling rate by 4 times compared to an un-passivated hybrid structure. A model is proposed to explain the increased NRET rate for the passivated hybrid structures based on the reduction in surface electron depletion of the passivated InGaN/GaN MQW nanorods surfaces.

  2. Quantum cascade emission in the III-nitride material system designed with effective interface grading

    SciTech Connect

    Song, Alex Y. Huang, Tzu-Yung; Zah, Chung-En; Gmachl, Claire F.; Bhat, Rajaram; Wang, Jie; Allerman, Andrew A.

    2015-09-28

    We report the realization of quantum cascade (QC) light emission in the III-nitride material system, designed with effective interface grading (EIG). EIG induces a continuous transition between wells and barriers in the quantum confinement, which alters the eigenstate system and even delocalizes the states with higher energy. Fully transverse-magnetic spontaneous emission is observed from the fabricated III-nitride QC structure, with a center wavelength of ∼4.9 μm and a full width at half maximum of ∼110 meV, both in excellent agreement with theoretical predictions. A multi-peak photo-response spectrum is also measured from the QC structure, which again agrees well with theoretical calculations and verifies the effects of EIG.

  3. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    SciTech Connect

    Leonard, J. T. Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2015-08-31

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (J{sub th}) of ∼3.5 kA/cm{sup 2}, compared to the ITO VCSEL J{sub th} of 8 kA/cm{sup 2}. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ∼550 μW, compared to ∼80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  4. Demonstration of a III-nitride vertical-cavity surface-emitting laser with a III-nitride tunnel junction intracavity contact

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Margalith, T.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-08-01

    We report on a III-nitride vertical-cavity surface-emitting laser (VCSEL) with a III-nitride tunnel junction (TJ) intracavity contact. The violet nonpolar VCSEL employing the TJ is compared to an equivalent VCSEL with a tin-doped indium oxide (ITO) intracavity contact. The TJ VCSEL shows a threshold current density (Jth) of ˜3.5 kA/cm2, compared to the ITO VCSEL Jth of 8 kA/cm2. The differential efficiency of the TJ VCSEL is also observed to be significantly higher than that of the ITO VCSEL, reaching a peak power of ˜550 μW, compared to ˜80 μW for the ITO VCSEL. Both VCSELs display filamentary lasing in the current aperture, which we believe to be predominantly a result of local variations in contact resistance, which may induce local variations in refractive index and free carrier absorption. Beyond the analyses of the lasing characteristics, we discuss the molecular-beam epitaxy (MBE) regrowth of the TJ, as well as its unexpected performance based on band-diagram simulations. Furthermore, we investigate the intrinsic advantages of using a TJ intracavity contact in a VCSEL using a 1D mode profile analysis to approximate the threshold modal gain and general loss contributions in the TJ and ITO VCSEL.

  5. Acceptor impurity activation in III-nitride light emitting diodes

    SciTech Connect

    Römer, Friedhard Witzigmann, Bernd

    2015-01-12

    In this work, the role of the acceptor doping and the acceptor activation and its impact on the internal quantum efficiency (IQE) of a Gallium Nitride (GaN) based multi-quantum well light emitting diode is studied by microscopic simulation. Acceptor impurities in GaN are subject to a high activation energy which depends on the presence of proximate dopant atoms and the electric field. A combined model for the dopant ionization and activation barrier reduction has been developed and implemented in a semiconductor carrier transport simulator. By model calculations, we demonstrate the impact of the acceptor activation mechanisms on the decay of the IQE at high current densities, which is known as the efficiency droop. A major contributor to the droop is the electron leakage which is largely affected by the acceptor doping.

  6. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

    SciTech Connect

    Wolf, Omri E-mail: ibrener@sandia.gov; Ma, Xuedan; Brener, Igal E-mail: ibrener@sandia.gov; Allerman, Andrew A.; Wendt, Joel R.; Shaner, Eric A.; Song, Alex Y.

    2015-10-12

    We use planar metamaterial resonators to enhance by more than two orders of magnitude the near infrared second harmonic generation obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators' cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a different class of sources for quantum photonics related phenomena.

  7. Enhanced optical nonlinearities in the near-infrared using III-nitride heterostructures coupled to metamaterials

    DOE PAGESBeta

    Wolf, Omri; Allerman, Andrew A.; Ma, Xuedan; Wendt, Joel R.; Song, Alex Y.; Shaner, Eric A.; Brener, Igal

    2015-10-15

    We use planar metamaterial resonators to enhance, by more than two orders of magnitude, the optical second harmonic generation, in the near infrared, obtained from intersubband transitions in III-Nitride heterostructures. The improvement arises from two factors: employing an asymmetric double quantum well design and aligning the resonators’ cross-polarized resonances with the intersubband transition energies. The resulting nonlinear metamaterial operates at wavelengths where single photon detection is available, and represents a new class of sources for quantum photonics related phenomena.

  8. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOEpatents

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  9. Selective layer disordering in III-nitrides with a capping layer

    DOEpatents

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  10. III-nitride quantum dots for ultra-efficient solid-state lighting

    DOE PAGESBeta

    Wierer, Jr., Jonathan J.; Tansu, Nelson; Fischer, Arthur J.; Tsao, Jeffrey Y.

    2016-05-01

    III-nitride light-emitting diodes (LEDs) and laser diodes (LDs) are ultimately limited in performance due to parasitic Auger recombination. For LEDs, the consequences are poor efficiencies at high current densities; for LDs, the consequences are high thresholds and limited efficiencies. Here, we present arguments for III-nitride quantum dots (QDs) as active regions for both LEDs and LDs, to circumvent Auger recombination and achieve efficiencies at higher current densities that are not possible with quantum wells. QD-based LDs achieve gain and thresholds at lower carrier densities before Auger recombination becomes appreciable. QD-based LEDs achieve higher efficiencies at higher currents because of highermore » spontaneous emission rates and reduced Auger recombination. The technical challenge is to control the size distribution and volume of the QDs to realize these benefits. In conclusion, if constructed properly, III-nitride light-emitting devices with QD active regions have the potential to outperform quantum well light-emitting devices, and enable an era of ultra-efficient solidstate lighting.« less

  11. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Burger, A.; Dudley, M.; Ramachandran, N.

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions.

  12. Novel optical study and application on iii-nitrides

    NASA Astrophysics Data System (ADS)

    Sun, Guan

    GaN and its heterostuctures have been intensively studied for wide applications. For example, InGaN/GaN quantum wells (QWs) have been used as active materials for light emitting diodes (LEDs) and laser diodes (LDs) from blue to green region while GaN/AlGaN QWs have been used for ultraviolet region. Meanwhile, nitrides are also very important materials for power electronic devices since such materials hold various advantage over competing semiconductor materials such as Si, GaAs, etc. Due to the above reasons, we believe GaN and its heterostructures will play crucial role for optics and electronics devices as silicon does for electronics. Thus, it is worthwhile to explore possibility of achieving different kinds of newapplications on GaN. This dissertation is focused on optical study on GaN based materials, including GaN thin film, InGaN/GaN QWs, InGaN dot-in-a-wire nanostructures, GaN/AlN QWs, etc. More specifically, in Chapter 2, we report efficient broadband terahertz (THz) generated in InGaN/GaN heterostructures due to spontaneous dipole radiation utilizing the strong internal field. Considering the normalized power, InGaN/GaN heterostructure is one of the most efficient materials for broadband THz generation. The correlated behavior between THz and photoluminescence (PL) has also been discussed. In Chapter 3, we present the study of PL upconversion from a free standing GaN and the mechanism has been attributed to phonon-assisted anti-Stokes photoluminescence (ASPL) if photon energy of pump laser is in the tail of absorption edge. The potential of laser cooling based on such phenomena has been explored. In Chapter 4, we have present detailed PL studies on different kind of nitrides materials including InGaN/GaN QWs, GaN/AlN QWs, GaN thin film and BN powders. In Chapter 5, we explore the possibility of nonlinear generation on GaN. A GaN/AlGaN multilayer waveguide has been designed to achieve transverse parametric conversion. The objective of this dissertation is

  13. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah

    1998-01-01

    Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths, In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors.The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk II-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology. The electrical and optical properties of semiconductor materials depend on the native point defects, (the deviation from stoichiometry), and the impurity or dopant distribution. To date, the bulk growth of ZnSe substrates has been plagued with problems related to defects such as non-uniform distributions of native defects, impurities and dopants, lattice strain, dislocations, grain boundaries, and second phase inclusions which greatly effect the device performance. In the bulk crystal growth of some technologically important semiconductors, such as ZnTe, CdS, ZnSe and ZnS, vapor growth techniques have significant advantages over melt growth techniques due to the high melting points of these materials.

  14. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. Significant effects of gravity vector orientation on the growth crystal morphology and point defect distribution were observed.

  15. Fabrication defects and grating couplers in III-nitride photonic crystal nanobeam lasers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rousseau, Ian; Sánchez Arribas, Irene; Carlin, Jean-François; Butté, Raphaël.; Grandjean, Nicolas

    2016-04-01

    We report a numerical and experimental investigation of fabrication tolerances and outcoupling in optically pumped III-nitride nanolasers operating near λ = 460 nm, in which feedback is provided by a one-dimensional photonic crystal nanobeam cavity and gain is supplied by a single InGaN/GaN quantum well. Using this platform, we and others previously demonstrated single-μW lasing thresholds due to the high βQ-product inherent to the nanobeam geometry (β is spontaneous emission coupling fraction into desired mode). In this work, we improved the fraction of emission emitted into our microscope's light cone by combining a redesigned photonic crystal cavity (c.f. [3]) with a cross-grating coupler with period approximately twice the photonic crystal lattice constant. The samples were fabricated in epitaxial III-nitride layers grown on (111) silicon substrates using metal organic vapor phase epitaxy. The photonic crystal and output couplers were patterned using a single electron beam lithography exposure and subsequently transferred to the underlying III-nitride layers using dry etching. The nanobeams were then suspended via vapor phase etching of silicon in XeF2. Scanning electron microscopy cross-sections revealed high-aspect ratio (>5), sub-70 nanometer diameter holes with near-vertical sidewalls. Fabrication-induced geometry errors were characterized by processing scanning electron micrographs with custom critical dimension software. Using UV micro-photoluminescence spectroscopy at room temperature, we measured the nanobeams' emission intensity, far-field profile, and quality factor. By comparing more than ten nominally identical nanobeams for each geometry with finite-difference time-domain simulations taking into account the geometrical deviations measured during fabrication, we characterized the role of fabrication-induced imperfections. Finally, we explored the trade-off between the quality factor and collected signal via lithographic variations of the output

  16. Carrier dynamics and Coulomb-enhanced capture in III-nitride quantum heterostructures

    NASA Astrophysics Data System (ADS)

    David, Aurelien; Hurni, Christophe A.; Young, Nathan G.; Craven, Michael D.

    2016-07-01

    A detailed study of the small-signal response of III-Nitride quantum well (QW) light-emitting diodes is presented, in which the electrical and optical responses are simultaneously measured. A complete transport-recombination model is introduced to account for measurements. This allows for a proper evaluation of the recombination lifetime and for the accurate quantification of thermionic carrier escape from the QW. Further, a yet-unreported carrier capture mechanism is identified and quantified; it increases with the carrier density in the QW and bears the signature of a Coulomb in-scattering process.

  17. A Stable, Non-Cesiated III-Nitride Photocathode for Ultraviolet Astronomy Application

    NASA Astrophysics Data System (ADS)

    Bell, Lloyd

    In this effort, we propose to develop a new type of cesium-free photocathode using III-nitride (III-N) materials (GaN, AlN, and their alloys) and to achieve highly efficient, solar blind, and stable UV response. Currently, detectors used in UV instruments utilize a photocathode to convert UV photons into electrons that are subsequently detected by microchannel plate or CCD. The performance of these detectors critically depends on the efficiency and stability of their photocathodes. In particular, photocathode instability is responsible for many of the fabrication difficulties commonly experienced with this class of detectors. In recent years, III-N (in particular GaN) photocathodes have been demonstrated with very high QE (>50%) in parts of UV spectral range. Moreover, due to the wide bandgaps of III-nitride materials, photocathode response can be tailored to be intrinsically solar-blind. However, these photocathodes still rely on cesiation for activation, necessitating all-vacuum fabrication and sealed-tube operation. The proposed photocathode structure will achieve activation through methods for band structure engineering such as delta-doping and polarization field engineering. Compared to the current state-of-the-art in flight-ready microchannel plate sealed tubes, photocathodes based on III-N materials will yield high QE and significantly enhance both fabrication yield and reliability, since they do not require cesium or other highly reactive materials for activation. This performance will enable a ~4 meter medium class UV spectroscopic and imaging mission that is of high scientific priority for NASA. This work will build on the success of our previous APRA-funded effort. In that work, we demonstrated III-nitride photocathode operation without the use of cesium and stable response with respect to time. These accomplishments represent major improvements to the state-of-the-art for photocathode technologies. In the proposed effort, we will implement III-nitride

  18. Near-infrared III-nitride-on-silicon nanophotonic platform with microdisk resonators.

    PubMed

    Roland, I; Zeng, Y; Checoury, X; El Kurdi, M; Sauvage, S; Brimont, C; Guillet, T; Gayral, B; Gromovyi, M; Duboz, J Y; Semond, F; de Micheli, M P; Boucaud, P

    2016-05-01

    We have developed a nanophotonic platform with microdisks using epitaxial III-nitride materials on silicon. The two-dimensional platform consists of suspended waveguides and mushroom-type microdisks as resonators side-coupled with a bus waveguide. Loaded quality factors up to 80000 have been obtained in the near-infrared spectral range for microdisk diameters between 8 and 15 μm. We analyze the dependence of the quality factors as a function of coupling efficiency. We have performed continuous-wave second harmonic generation experiments in resonance with the whispering gallery modes supported by the microdisks. PMID:27137573

  19. Swift-heavy-ion-induced damage formation in III-V binary and ternary semiconductors

    NASA Astrophysics Data System (ADS)

    Schnohr, C. S.; Kluth, P.; Giulian, R.; Llewellyn, D. J.; Byrne, A. P.; Cookson, D. J.; Ridgway, M. C.

    2010-02-01

    Damage formation in InP, GaP, InAs, GaAs, and the related ternary alloys Ga0.50In0.50P and Ga0.47In0.53As irradiated at room temperature with 185 MeV Au ions was studied using Rutherford backscattering spectroscopy in channeling configuration, transmission electron microscopy, and small-angle x-ray scattering. Despite nearly identical ion-energy loss in these materials, their behavior under swift-heavy-ion irradiation is strikingly different: InP and Ga0.50In0.50P are readily amorphized, GaP and GaAs remain almost undamaged and InAs and Ga0.47In0.53As exhibit intermediate behavior. A material-dependent combination of irradiation-induced damage formation and annealing is proposed to describe the different responses of the III-V materials to electronic energy loss.

  20. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility.

    PubMed

    Malasi, A; Taz, H; Farah, A; Patel, M; Lawrie, B; Pooser, R; Baddorf, A; Duscher, G; Kalyanaraman, R

    2015-01-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 10(4) S/m) and Hall mobility (>30 cm(2)/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned. PMID:26670421

  1. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    NASA Astrophysics Data System (ADS)

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, B.; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  2. Crystal growth of ZnSe and related ternary compound semiconductors by physical vapor transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1993-01-01

    The materials to be investigated are ZnSe and related ternary semiconducting alloys (e.g., ZnS(x)Se(1-x), ZnTe(x)Se(1-x), and Zn(1-x)Cd(x)Se). These materials are useful for opto-electronic applications such as high efficient light emitting diodes and low power threshold and high temperature lasers in the blue-green region of the visible spectrum. The recent demonstration of its optical bistable properties also makes ZnSe a possible candidate material for digital optical computers. The investigation consists of an extensive ground-based study followed by flight experimentation, and involves both experimental and theoretical work. The objectives of the ground-based work are to establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low gravity environment and to obtain the experimental data and perform the analyses required to define the optimum parameters for the flight experiments. During the six months of the Preliminary Definition Phase, the research efforts were concentrated on the binary compound ZnSe - the purification of starting materials of Se by zone refining, the synthesis of ZnSe starting materials, the heat treatments of the starting materials, the vapor transport rate measurements, the vapor partial pressure measurements of ZnSe, the crystal growth of ZnSe by physical vapor transport, and various characterization on the grown ZnSe crystals.

  3. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    DOE PAGESBeta

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, Benjamin; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergentmore » semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.« less

  4. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    PubMed Central

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, B.; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-01-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned. PMID:26670421

  5. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    SciTech Connect

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, Benjamin; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  6. Two Dimensional Effective Electron Mass at the Fermi Level in Quantum Wells of III-V, Ternary and Quaternary Semiconductors.

    PubMed

    Chakrabarti, S; Chatterjee, B; Debbarma, S; Ghatak, K P

    2015-09-01

    In this paper we study the influence of strong electric field on the two dimensional (2D)effective electron mass (EEM) at the Fermi level in quantum wells of III-V, ternary and quaternary semiconductors within the framework of k x p formalism by formulating a new 2D electron energy spectrum. It appears taking quantum wells of InSb, InAs, Hg(1-x)Cd(x)Te and In(1-x)Ga(x)As(1-y)P(y) lattice matched to InP as examples that the EEM increases with decreasing film thickness, increasing electric field and increases with increasing surface electron concentration exhibiting spikey oscillations because of the crossing over of the Fermi level by the quantized level in quantum wells and the quantized oscillation occurs when the Fermi energy touches the sub-band energy. The electric field makes the mass quantum number dependent and the oscillatory mass introduces quantum number dependent mass anisotropy in addition to energy. The EEM increases with decreasing alloy composition where the variations are totally band structure dependent. Under certain limiting conditions all the results for all the cases get simplified into the well-known parabolic energy bands and thus confirming the compatibility test. The content of this paper finds three applications in the fields of nano-science and technology. PMID:26716200

  7. Study of damage formation and annealing of implanted III-nitride semiconductors for optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Faye, D. Nd.; Fialho, M.; Magalhães, S.; Alves, E.; Ben Sedrine, N.; Rodrigues, J.; Correia, M. R.; Monteiro, T.; Boćkowski, M.; Hoffmann, V.; Weyers, M.; Lorenz, K.

    2016-07-01

    An n-GaN/n-AlGaN/p-GaN light emitting diode (LED) structure was implanted with Eu ions. High temperature high pressure annealing at 1400 °C efficiently decreases implantation damage and optically activates the Eu ions. However, the electrical properties of the p-n junction deteriorate possibly due to the formation of conducting paths along dislocations during the extreme annealing conditions.

  8. Comparison of nonpolar III-nitride vertical-cavity surface-emitting lasers with tunnel junction and ITO intracavity contacts

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Young, E. C.; Yonkee, B. P.; Cohen, D. A.; Shen, C.; Margalith, T.; Ng, T. K.; DenBaars, S. P.; Ooi, B. S.; Speck, J. S.; Nakamura, S.

    2016-02-01

    We report on the lasing of III-nitride nonpolar, violet, vertical-cavity surface-emitting lasers (VCSELs) with IIInitride tunnel-junction (TJ) intracavity contacts and ion implanted apertures (IIAs). The TJ VCSELs are compared to similar VCSELs with tin-doped indium oxide (ITO) intracavity contacts. Prior to analyzing device results, we consider the relative advantages of III-nitride TJs for blue and green emitting VCSELs. The TJs are shown to be most advantageous for violet and UV VCSELs, operating near or above the absorption edge for ITO, as they significantly reduce the total internal loss in the cavity. However, for longer wavelength III-nitride VCSELs, TJs primarily offer the advantage of improved cavity design flexibility, allowing one to make the p-side thicker using a thick n-type III-nitride TJ intracavity contact. This offers improved lateral current spreading and lower loss, compare to using ITO and p-GaN, respectively. These aspects are particularly important for achieving high-power CW VCSELs, making TJs the ideal intracavity contact for any III-nitride VCSEL. A brief overview of III-nitride TJ growth methods is also given, highlighting the molecular-beam epitaxy (MBE) technique used here. Following this overview, we compare 12 μm aperture diameter, violet emitting, TJ and ITO VCSEL experimental results, which demonstrate the significant improvement in differential efficiency and peak power resulting from the reduced loss in the TJ design. Specifically, the TJ VCSEL shows a peak power of ~550 μW with a threshold current density of ~3.5 kA/cm2, while the ITO VCSELs show peak powers of ~80 μW and threshold current densities of ~7 kA/cm2.

  9. High-Density Plasma Etching of Group-III Nitride Films for Device Application

    SciTech Connect

    Baca, A.G.; Crawford, M.H.; Han, J.; Lester, L.F.; Pearton, S.J.; Ren, F.; Shul, R.J.; Willison, C.G.; Zhang, L.; Zolper, J.C.

    1999-02-17

    As III-V nitride device structures become more complicated and design rules shrink, well-controlled etch processes are necessary. Due to limited wet chemical etch results for the group-III nitrides, a significant amount of effort has been devoted to the development of dry etch processing. Dry etch development was initially focused on mesa structures where high etch rates, anisotropic profiles, smooth sidewalls, and equi-rate etching of dissimilar materials were required. For example, commercially available LEDs and laser facets for GaN-based laser diodes have been patterned using reactive ion etching (RIE). With the recent interest in high power, high temperature electronic devices, etch characteristics may also require smooth surface morphology, low plasma-induced damage, and selective etching of one layer over another. The principal criteria for any plasma etch process is its utility in the fabrication of a device. In this study, we will report plasma etch results for the group-III nitrides and their application to device structures.

  10. Sources of Shockley-Read-Hall recombination in III-nitride light emitters

    NASA Astrophysics Data System (ADS)

    Dreyer, Cyrus E.; Alkauskas, Audrius; Lyons, John L.; Speck, James S.; van de Walle, Chris G.

    Group-III nitrides are the key materials for high efficiency light-emitting diodes in the blue part of the visible spectrum, and a large research effort is aimed at extending this success to the green and the yellow range, where nitride LEDs are significantly less efficient. Though it has been noted that the efficiency of III-nitride devices may be limited by Shockley-Read-Hall recombination at point defects, the microscopic mechanism and defects responsible are unknown. Based on first-principles calculations of defect formation energies, charge-state transition levels, and nonradiative capture coefficients, we describe a mechanism by which complexes between gallium vacancies and oxygen and/or hydrogen can act as efficient channels for nonradiative recombination in InGaN alloys. The dependence of these quantities on alloy composition is analyzed. We find that modest concentrations of the proposed defect complexes, around 1016cm-3, can give rise to Shockley-Read-Hall coefficients A = (107 -109) s-1. The resulting nonradiative recombination can significantly reduce the internal quantum efficiency of optoelectronic devices. This work was supported by DOE and by EU Marie Sklodowska-Curie Action.

  11. Transparent conducting oxide clad limited area epitaxy semipolar III-nitride laser diodes

    NASA Astrophysics Data System (ADS)

    Myzaferi, A.; Reading, A. H.; Cohen, D. A.; Farrell, R. M.; Nakamura, S.; Speck, J. S.; DenBaars, S. P.

    2016-08-01

    The bottom cladding design of semipolar III-nitride laser diodes is limited by stress relaxation via misfit dislocations that form via the glide of pre-existing threading dislocations (TDs), whereas the top cladding is limited by the growth time and temperature of the p-type layers. These design limitations have individually been addressed by using limited area epitaxy (LAE) to block TD glide in n-type AlGaN bottom cladding layers and by using transparent conducting oxide (TCO) top cladding layers to reduce the growth time and temperature of the p-type layers. In addition, a TCO-based top cladding should have significantly lower resistivity than a conventional p-type (Al)GaN top cladding. In this work, LAE and indium-tin-oxide cladding layers are used simultaneously in a ( 20 2 ¯ 1 ) III-nitride laser structure. Lasing was achieved at 446 nm with a threshold current density of 8.5 kA/cm2 and a threshold voltage of 8.4 V.

  12. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

    SciTech Connect

    Verma, Jai Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep

    2014-01-13

    Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365 nm (3.4 eV, the bulk bandgap) to below 240 nm (>5.2 eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

  13. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, Robert F.; Volz, Martin P.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin P.; Shih, Hung-Dah

    2001-01-01

    Crystal growth by vapor transport has several distinct advantages over melt growth techniques. Among various potential benefits from material processing in reduced gravity the followings two are considered to be related to crystal growth by vapor transport: (1) elimination of the crystal weight and its influence on the defect formation and (2) reduction of natural buoyancy-driven convective flows arising from thermally and/ or solutally induced density gradient in fluids. The previous results on vapor crystal growth of semiconductors showed the improvements in surface morphology, crystalline quality, electrical properties and dopant distribution of the crystals grown in reduced gravity as compared to the crystals grown on Earth. But the mechanisms, which are responsible for the improvements and cause the gravitational effects on the complicated and coupled processes of vapor mass transport and growth kinetics, are not well understood.

  14. Hetero- and homo-epitaxial growth of III-nitride based junctions and devices by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sampath, Anand Venktesh

    2002-01-01

    The family of III-Nitrides semiconductors (InN, GaN, AlN and their alloys) is an area of intense interest for the development of power electronic, optoelectronic and mico-electromechanical systems (MEMS) based devices due to the unique properties of these materials. Presently, light emitting diodes (LEDs) and lasers emitting in the blue part or the electromagnetic spectrum have become available based on these wide band gap materials. Further interest exists in the development of p-n and Schottky based junctions for application as solar-blind ultraviolet (UV) detector arrays and power rectifiers. Solar blind UV detectors require the growth of high quality AlxGa1-x N alloys containing up to 60% AlN mole fraction. Both devices require the development of high-quality p-type doped material. This dissertation addresses the growth of GaN and AlxGa1-xN alloys by molecular beam epitaxy (MBE) as well as the processing of these materials for the fabrication of optoelectronic and power devices. The growth of III-Nitrides materials by MBE requires the development of an appropriate source of active nitrogen due to the large binding energy of molecular nitrogen (9.5 eV). Two methods for producing active N are the cracking of molecular nitrogen using a plasma source and the catalytic decomposition of ammonia on a heated substrate. The first method is explored using a compact electron cyclotron resonance (ECR) plasma source, and it is found that smooth films are grown by this technique under group-III rich conditions. The second method is explored using ammonia gas that enters the MBE system through an ammonia injector. In contrast to the plasma-assisted technique, smooth films can be grown under N-rich conditions. Due to the lack of native substrates for these materials, these films are generally deposited heteroepitaxially on c-plane sapphire or (0001) Si-face 6H-silicon carbide (SiC) substrates. The polarity of films grown on the former was observed to be dependent on the

  15. Structural and electronic properties of amorphous ternary and quaternary oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Sanders, K. Nocona; Khanal, Rabi; Medvedeva, Julia E.

    Amorphous structures of several multi-cation wide-bandgap oxides (In-Ga-Zn-O, In-Sc-O, In-Y-O, and In-La-O) were obtained via first-principles molecular dynamics liquid-quench approach using different cooling rates and different oxygen and metal compositions. A detailed comparison of the structural properties, namely, the distribution of metal-oxygen (M-O) and metal-metal (M-M) distances, bond angles, and coordination, allows us to determine how the MO polyhedra network is affected by the crystalline-to-amorphous transition. Furthermore, the role of oxygen non-stoichiometry in defect formation is investigated. Specifically, local structural defects associated with severe distortions in the metal-oxygen polyhedra, such as under-coordinated metal and oxygen atoms, or M-M bonds, appear in the electronic band structure of amorphous oxides. Both carrier-generating defects and carrier trapping/scattering defects are identified. The results help determine the optimal composition and preparation conditions (i.e., oxygen partial pressure, deposition temperature) in order to achieve the desired properties of the technologically-appealing amorphous oxide semiconductors. NSF-MRSEC.

  16. Hydrazine-promoted sequential cation exchange: a novel synthesis method for doped ternary semiconductor nanocrystals with tunable emission.

    PubMed

    Shao, Haibao; Wang, Chunlei; Xu, Shuhong; Jiang, Yuan; Shao, Yujie; Bo, Fan; Wang, Zhuyuan; Cui, Yiping

    2014-01-17

    Using ZnSe nanocrystals (NCs) as starting material, Ag-doped or Cu-doped ZnCdSe ternary NCs were prepared by hydrazine-promoted sequential cation exchange in aqueous media. The composition of the NCs can be flexibly controlled by varying the amount of intermediate Ag or Cu cation addition, thus changing the emission of the ternary NCs while preserving the NC size. According to Vegard's law, the as-prepared ternary NCs possess an alloyed structure. In addition, the ternary NCs obtained have a high quantum yield, strong stability and a broad optical tuning range. PMID:24334495

  17. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, R. F.; Dudley, M.; Ramachandran, N.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows. ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, were grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals were characterized extensively to correlate the grown crystal properties with the growth conditions. The following are the research progress in the past two years. In-situ monitoring of partial pressure by optical absorption technique and visual observation of the growing crystal were performed during vapor growth of ZnSe. Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. Optical characterization was performed on wafers sliced from the grown crystals of ZnSe, ZnTe and ZnSe(1-x),Te(x), (0

  18. Effect of strain on low-loss electron energy loss spectra of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Palisaitis, J.; Hsiao, C.-L.; Junaid, M.; Birch, J.; Hultman, L.; Persson, P. O. Å.

    2011-12-01

    Thin films of AlN experiencing different strain states were investigated with a scanning transmission electron microscope (STEM) by low-loss electron energy loss spectroscopy (EELS). The results conclude that the low-loss properties and in particular, the plasmon peak position is shifted as a direct consequence of the inherent strain of the sample. The results reveal that strain, even minor levels, can be measured by STEM-EELS. These results were further corroborated by full potential calculations and expanded to include the similar III nitrides GaN and InN. It is found that a unit-cell volume change of 1% results in a bulk plasmon peak shift of 0.159, 0.168, and 0.079 eV for AlN, GaN, and InN, respectively, according to simulations. The AlN peak shift was experimentally corroborated with a corresponding peak shift of 0.156 eV. The unit-cell volume is used here since it is found that regardless of in- and out-of-plane lattice augmentation, the low-loss properties appear near identical for constant volume. These results have an impact on the interpretation of the plasmon energy and its applicability for determining and separating stress and composition. It is found that while the bulk plasmon energy can be used as a measure of the composition in a group-III nitride alloy for relaxed structures, the presence of strain significantly affects such a measurement. The strain is found to have a lower impact on the peak shift for Al1-xInxN (˜3% compositional error per 1% volume change) and In1-xGaxN alloys compared to significant variations for Al1-xGaxN (16% compositional error for 1% volume change). Hence a key understanding in low-loss studies of III nitrides is that strain and composition are coupled and affect one another.

  19. Effects of strain on the band structure of group-III nitrides

    NASA Astrophysics Data System (ADS)

    Yan, Qimin; Rinke, Patrick; Janotti, Anderson; Scheffler, Matthias; Van de Walle, Chris G.

    2014-09-01

    We present a systematic study of strain effects on the electronic band structure of the group-III-nitrides (AlN, GaN and InN) in the wurtzite phase. The calculations are based on density functional theory with band-gap-corrected approaches including the Heyd-Scuseria-Ernzerhof hybrid functional (HSE) and quasiparticle G0W0 methods. We study strain effects under realistic strain conditions, hydrostatic pressure, and biaxial stress. The strain-induced modification of the band structures is found to be nonlinear; transition energies and crystal-field splittings show a strong nonlinear behavior under biaxial stress. For the linear regime around the experimental lattice parameters, we present a complete set of deformation potentials (acz, act, D1, D2, D3, D4, D5, D6) that allows us to predict the band positions of group-III nitrides and their alloys (InGaN and AlGaN) under realistic strain conditions. The benchmarking G0W0 results for GaN agree well with the HSE data and indicate that HSE provides an appropriate description for the band structures of nitrides. We present a systematic study of strain effects on the electronic band structure of the group-III nitrides (AlN, GaN, and InN). We quantify the nonlinearity of strain effects by introducing a set of bowing parameters. We apply the calculated deformation potentials to the prediction of strain effects on transition energies and valence-band structures of InGaN alloys and quantum wells (QWs) grown on GaN, in various orientations (including c-plane, m-plane, and semipolar). The calculated band gap bowing parameters, including the strain effect for c-plane InGaN, agree well with the results obtained by hybrid functional alloy calculations. For semipolar InGaN QWs grown in (202¯1), (303¯1), and (303¯1¯) orientations, our calculated deformation potentials have provided results for polarization ratios in good agreement with the experimental observations, providing further confidence in the accuracy of our values.

  20. Lattice Dynamical Properties of Group-III Nitrides AN (A = B, Al, Ga and In) in Zinc-Blende Phase

    NASA Astrophysics Data System (ADS)

    Kushwaha, A. K.

    2016-03-01

    In the present paper, we have calculated the phonon dispersion relations, phonon density of states, Debye characteristic temperature and the zone boundary phonons for group-III nitrides AN (A = B, Al, Ga and In) using eleven-parameter three-body shell model with both the ions being polarizable. Our calculated results are in good agreement with experimental results available in the literature.

  1. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  2. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  3. Highly Transparent Conducting Polymer Top Contacts for Future III-Nitride Based Single Photon Emitters

    NASA Astrophysics Data System (ADS)

    Riess, Sally; Mikulics, Martin; Winden, Andreas; Adam, Roman; Marso, Michel; Grützmacher, Detlev; Hardtdegen, Hilde

    2013-08-01

    In this paper we report on a simple conductive polymer based contacting technology for III-nitride based nanostructures with respect to the electrical operation within the telecommunication wavelength range. Singularly addressable InN/GaN pyramidal nanostructures were selectively grown by metalorganic vapour phase epitaxy (MOVPE) and subsequently integrated into a high-frequency device layout for future ultrafast electro-optical operation. The employment of the p-conducting polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) is found to increase the light transmittance up to 89% at a wavelength of 1550 nm compared to 72% in the case of a conventional Ni/Au thin layer top contact. DC measurements using a quasi operation mode for 1000 h reveal no degradation and only a moderate increase of the dark currents. Thus, conducting polymer technology shows tremendous potential for future highly efficient and reliable room temperature operation of nitride based single photon emitters (SPEs).

  4. III-Nitride Blue Laser Diode with Photoelectrochemically Etched Current Aperture

    NASA Astrophysics Data System (ADS)

    Megalini, Ludovico

    Group III-nitride is a remarkable material system to make highly efficient and high-power optoelectronics and electronic devices because of the unique electrical, physical, chemical and structural properties it offers. In particular, InGaN-based blue Laser Diodes (LDs) have been successfully employed in a variety of applications ranging from biomedical and military devices to scientific instrumentation and consumer electronics. Recently their use in highly efficient Solid State Lighting (SSL) has been proposed because of their superior beam quality and higher efficiency at high input power density. Tremendous advances in research of GaN semi-polar and non-polar crystallographic planes have led both LEDs and LDs grown on these non-basal planes to rival with, and with the promise to outperform, their equivalent c-plane counterparts. However, still many issues need to be addressed, both related to material growth and device fabrication, including a lack of conventional wet etching techniques. GaN and its alloys with InN and AlN have proven resistant essentially to all known standard wet etching techniques, and the predominant etching methods rely on chlorine-based dry etching (RIE). These introduce sub-surface damage which can degrade the electrical properties of the epitaxial structure and reduce the reliability and lifetime of the final device. Such reasons and the limited effectiveness of passivation techniques have so far suggested to etch the LD ridges before the active region, although it is well-known that this can badly affect the device performance, especially in narrow stripe width LDs, because the gain guiding obtained in the planar configuration is weak and the low index step and high lateral current leakage result in devices with threshold current density higher than devices whose ridge is etched beyond the active region. Moreover, undercut etching of III-nitride layers has proven even more challenging, with limitations in control of the lateral etch

  5. Analysis of Nitrogen Incorporation in Group III-Nitride-Arsenide Materials Using a Magnetic Sector Secondary-Ion Mass Spectrometry (SIMS) Instrument: Preprint

    SciTech Connect

    Reedy, R. C.; Geisz, J. F.; Kurtz, S. R.; Adams, R. O.; Perkins, C. L.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Group III-nitride-arsenide materials were studied by SIMS, XRD, and Profiler to determine small amounts of nitrogen that can lower the alloys bandgap significantly.

  6. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    SciTech Connect

    Shervin, Shahab; Asadirad, Mojtaba; Kim, Seung-Hwan; Ravipati, Srikanth; Lee, Keon-Hwa; Bulashevich, Kirill; Ryou, Jae-Hyun

    2015-11-09

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  7. Strain-effect transistors: Theoretical study on the effects of external strain on III-nitride high-electron-mobility transistors on flexible substrates

    NASA Astrophysics Data System (ADS)

    Shervin, Shahab; Kim, Seung-Hwan; Asadirad, Mojtaba; Ravipati, Srikanth; Lee, Keon-Hwa; Bulashevich, Kirill; Ryou, Jae-Hyun

    2015-11-01

    This paper presents strain-effect transistors (SETs) based on flexible III-nitride high-electron-mobility transistors (HEMTs) through theoretical calculations. We show that the electronic band structures of InAlGaN/GaN thin-film heterostructures on flexible substrates can be modified by external bending with a high degree of freedom using polarization properties of the polar semiconductor materials. Transfer characteristics of the HEMT devices, including threshold voltage and transconductance, are controlled by varied external strain. Equilibrium 2-dimensional electron gas (2DEG) is enhanced with applied tensile strain by bending the flexible structure with the concave-side down (bend-down condition). 2DEG density is reduced and eventually depleted with increasing compressive strain in bend-up conditions. The operation mode of different HEMT structures changes from depletion- to enchantment-mode or vice versa depending on the type and magnitude of external strain. The results suggest that the operation modes and transfer characteristics of HEMTs can be engineered with an optimum external bending strain applied in the device structure, which is expected to be beneficial for both radio frequency and switching applications. In addition, we show that drain currents of transistors based on flexible InAlGaN/GaN can be modulated only by external strain without applying electric field in the gate. The channel conductivity modulation that is obtained by only external strain proposes an extended functional device, gate-free SETs, which can be used in electro-mechanical applications.

  8. Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong

    2009-09-01

    The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

  9. Hybrid tunnel junction contacts to III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Young, Erin C.; Yonkee, Benjamin P.; Wu, Feng; Oh, Sang Ho; DenBaars, Steven P.; Nakamura, Shuji; Speck, James S.

    2016-02-01

    In this work, we demonstrate highly doped GaN p-n tunnel junction (TJ) contacts on III-nitride heterostructures where the active region of the device and the top p-GaN layers were grown by metal organic chemical vapor deposition and highly doped n-GaN was grown by NH3 molecular beam epitaxy to form the TJ. The regrowth interface in these hybrid devices was found to have a high concentration of oxygen, which likely enhanced tunneling through the diode. For optimized regrowth, the best tunnel junction device had a total differential resistivity of 1.5 × 10-4 Ω cm2, including contact resistance. As a demonstration, a blue-light-emitting diode on a (20\\bar{2}\\bar{1}) GaN substrate with a hybrid tunnel junction and an n-GaN current spreading layer was fabricated and compared with a reference sample with a transparent conducting oxide (TCO) layer. The tunnel junction LED showed a lower forward operating voltage and a higher efficiency at a low current density than the TCO LED.

  10. Nanoscale investigation of the piezoelectric properties of perovskite ferroelectrics and III-nitrides

    NASA Astrophysics Data System (ADS)

    Rodriguez, Brian Joseph

    Nanoscale characterization of the piezoelectric and polarization related properties of III-Nitrides by piezoresponse force microscopy (PFM), electrostatic force microscopy (EFM) and scanning Kelvin probe microscopy (SKPM) resulted in the measurement of piezoelectric constants, surface charge and surface potential. Photo-electron emission microscopy (PEEM) was used to determine the local electronic band structure of a GaN-based lateral polarity heterostructure (GaN-LPH). Nanoscale characterization of the imprint and switching behavior of ferroelectric thin films by PFM resulted in the observation of domain pinning, while nanoscale characterization of the spatial variations in the imprint and switching behavior of integrated (111)-oriented PZT-based ferroelectric random access memory (FRAM) capacitors by PFM have revealed a significant difference in imprint and switching behavior between the inner and outer parts of capacitors. The inner regions of the capacitors are typically negatively imprinted and consequently tend to switch back after being poled by a positive bias, while regions at the edge of the capacitors tend to exhibit more symmetric hysteresis behavior. Evidence was obtained indicating that mechanical stress conditions in the central regions of the capacitors can lead to incomplete switching. A combination of vertical and lateral piezoresponse force microscopy (VPFM and LPFM, respectively) has been used to map the out-of-plane and in-plane polarization distribution, respectively, of integrated (111)-oriented PZT-based capacitors, which revealed poled capacitors are in a polydomain state.

  11. Nonpolar III-nitride vertical-cavity surface-emitting lasers incorporating an ion implanted aperture

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; Margalith, T.; Lee, S.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-07-01

    We report on our recent progress in improving the performance of nonpolar III-nitride vertical-cavity surface-emitting lasers (VCSELs) by using an Al ion implanted aperture and employing a multi-layer electron-beam evaporated ITO intracavity contact. The use of an ion implanted aperture improves the lateral confinement over SiNx apertures by enabling a planar ITO design, while the multi-layer ITO contact minimizes scattering losses due to its epitaxially smooth morphology. The reported VCSEL has 10 QWs, with a 3 nm quantum well width, 1 nm barriers, a 5 nm electron-blocking layer, and a 6.95- λ total cavity thickness. These advances yield a single longitudinal mode 406 nm nonpolar VCSEL with a low threshold current density (˜16 kA/cm2), a peak output power of ˜12 μW, and a 100% polarization ratio. The lasing in the current aperture is observed to be spatially non-uniform, which is likely a result of filamentation caused by non-uniform current spreading, lateral optical confinement, contact resistance, and absorption loss.

  12. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4 eV at a small forward bias larger than ∼2 V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a “universal” property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  13. Polarization of emission from non-polar III-nitride quantum wells: the influence of confinement

    NASA Astrophysics Data System (ADS)

    Arora, Ashish; Ghosh, Sandip

    2014-01-01

    Taking M-plane oriented GaN quantum wells (QW) as an example, it is shown that the finite out-of-plane crystal momentum arising from quantum confinement modifies valence band mixing in a way that can significantly alter the emission polarization properties of strained non-polar oriented wurtzite group III-nitride QWs. For certain values of strain, the emission polarization direction can rotate by 90° either within the QW plane, or from being out-of-plane to being in-plane which is desirable for light emission applications. The study based on a k · p type perturbation theory simultaneously accounts for the influence of anisotropic in-plane strain which arises in such QWs and also affects the optical polarization properties. An important practical implication of these results is that M-plane oriented AlxGa1-xN QWs under anisotropic in-plane tensile strain can work as efficient ultra-violet light emitters, unlike bulk AlxGa1-xN films with identical composition and strain. After including the influence of the out-of-plane crystal momentum, the emission polarization criterion allows for larger concentration of Al in such QW active layers if the well width is kept sufficiently small. These results are also applicable to A-plane oriented QWs.

  14. Strain Relaxation in Semipolar III-Nitrides for Light Emitting Diode Applications

    NASA Astrophysics Data System (ADS)

    Koslow, Ingrid Larson

    Light emitting diodes (LEDs) based on the III-nitride material system (Al,In,Ga)N have been utilized in a number of commercial applications, from small Christmas tree lights to high power lightbulbs and streetlamps. Until now, all commercially available GaN-based devices have been based on the conventional c-plane (polar) orientation of the Wurtzite crystal structure, and grown heteroepitaxially on foreign substrates such as sapphire. However, the recent availability of low defect density HVPE-grown GaN substrates have opened up new possibilities to study novel crystal orientations, known as nonpolar and semipolar. The (Al,In,Ga)N material system has bandgaps ranging from 0.7 eV in the infrared out to 6.3 eV in the deep UV---and LEDs with wavelengths from roughly 365 nm (near-UV) to 550 nm (green) are commercially available. However, although blue LEDs typically have an external quantum efficiency (EQE) > 60%, at emission wavelengths beyond 500 nm the EQE drops to ≤ 30%. Similarly, although red-emitting LEDs based on AlInGaP have high efficiency, their EQE is also reduced for yellow wavelengths. This phenomenon is known as the 'Green Gap'. Although there are likely to be numerous factors responsible for this reduction in efficiency with emission wavelength in III-nitrides, a leading candidate is mismatch strain between the active region of the LED---consisting of thin layers of InGaN with at least 30% indium---and the GaN substrate, which have a significant lattice constant mismatch of > 3%. In order to improve the efficiency of green-emitting LEDs, strain relaxation mechanisms on semipolar orientations have been studied. By growing relaxed InGaN buffer layers, it is possible to change the lattice constant from that of the GaN substrates, reducing the mismatch strain in the active region itself. Multiple slip systems have been observed and studied in semipolar nitrides, leading to several sets of misfit dislocations (MDs) that result in relaxation of InGaN layers

  15. Thermal Performance of III-Nitride Light Emitting Diodes and Developments in Laser Based White Lighting

    NASA Astrophysics Data System (ADS)

    Pfaff, Nathan Andrew

    Light emitting diodes, LEDs, have two distinct reductions in their efficiency. Efficiency droop which is a decrease in efficiency with increasing current density, and thermal droop, a reduction in efficiency with increasing temperature. Although there has been extensive work on efficiency droop and research into both the mitigation and causes of efficiency droop, comparably little research has been done on thermal droop. Since the early years of III-Nitride LEDs, have shown better performance than other materials systems used in visible light emitters when operated at increased temperatures. Due to the push for increased electrical efficiency thermal droop has been largely ignored or dealt with at a packaging level. Now LEDs are increasingly used in general illumination applications requiring high-current and high-flux operation resulting in elevated operating temperatures. In such high power applications LEDs can reach temperatures of over 100 °C where the performance can be significantly degraded. By altering the internal structure both below and within the active region the thermal droop of LEDs was reduced while preserving or enhancing electrical efficiency. Increased high temperature performance was observed on both blue c-plane and m-plane LEDs. Electrical droop which adversely affects LEDs in general illumination applications is difficult to mitigate. As an alternative to high-current, high-luminous flux LEDs for general illumination, phosphor converted laser, pc-LD, based white lighting is demonstrated. pc-LD shows virtually droop free performance over a wide range of high current densities with high luminous flux levels. The ability to achieve efficiencies on par with pc-LEDs, with significantly reduced substrate use and extremely high current operation, suggests that pc-LD white lighting has potential for entry into select white lighting applications in the near future. First demonstrations of pc-LD white lighting with general illumination level fluxes

  16. Growth and Carrier Transport Studies of III-Nitride Alloys by Ammonia Molecular Beam Epitaxy

    NASA Astrophysics Data System (ADS)

    Browne, David Alan

    The III-Nitride alloys span the entire visible spectrum and offer applications to LEDs, lasers, solar cells and power electronics. A detailed understanding of heterojunction growth is required for achieving high performance devices especially due to the large lattice mismatch in this alloy system. The wurtzite crystal system also lacks an inversion center which provides a polarization-induced electric field along the c direction that can be exploited in device design or reduced by growth on other substrate orientations. We present results on the growth of InGaN films by Ammonia MBE on polar gallium nitride substrates as well as on nonpolar and semipolar orientations. We show results from coloaded growth conditions and investigate the effect of substrate temperature, growth rate, and ammonia flow on indium incorporation and impurity uptake. We then present solar cell results from a high indium uptake semipolar orientation with fields in a favorable direction for a p-i-n device. We also investigate and understand the effect of relaxation via basal plane slip and unintentional impurity incorporation on device performance. Results are then be presented on electron transport through c plane InGaN/GaN multiple quantum well (MQW) active regions grown by NH3 MBE which have direct relevance to transport in MQW solar cells and LEDs. The presence of indium fluctuations in InGaN has been suspected and debated in the literature for some time, but there is still much that is not well understood. We present Atom Probe Tomography (APT) analysis of the quantum wells to explicitly examine the magnitude and length scale of these observed local alloy fluctuations. The discrepancy in current-voltage behavior between experiment and modeling using traditional 1D simulation software will be discussed. A 2D/3D drift-diffusion Schrodinger-Poisson solver developed by collaborators was used to input alloy fluctuation parameters to elucidate their direct effect on barrier heights and on

  17. Determination of polarization fields in group III-nitride heterostructures by capacitance-voltage-measurements

    NASA Astrophysics Data System (ADS)

    Rychetsky, Monir; Koslow, Ingrid; Avinc, Baran; Rass, Jens; Wernicke, Tim; Bellmann, Konrad; Sulmoni, Luca; Hoffmann, Veit; Weyers, Markus; Wild, Johannes; Zweck, Josef; Witzigmann, Bernd; Kneissl, Michael

    2016-03-01

    The polarization fields in wurtzite group III-nitrides strongly influence the optical properties of InAlGaN-based light emitters, e.g., the electron and hole wave function overlap in quantum wells. In this paper, we propose a new approach to determine these fields by capacitance-voltage measurements (CVM). Sheet charges generated by a change of the microscopic polarization at heterointerfaces influence the charge distribution in PIN junctions and therefore the depletion width and the capacitance. We show that it is possible to determine the strength and direction of the internal fields by comparing the depletion widths of two PIN junctions, one influenced by internal polarization fields and one without as a reference. For comparison, we conducted coupled Poisson/carrier transport simulations on the CVM of the polarization-influenced sample. We also demonstrate the feasibility and limits of the method by determining the fields in GaN/InGaN and GaN/AlGaN double heterostructures on (0001) c-plane grown by metal organic vapor phase epitaxy and compare both evaluation methods. The method yields (-0.50 ± 0.07) MV/cm for In0.08Ga0.92N/GaN, (0.90 ± 0.13) MV/cm for Al0.18Ga0.82N/GaN, and (2.0 ± 0.3) MV/cm for Al0.31Ga0.69N/GaN heterostructures.

  18. Group-III nitride based high electron mobility transistor (HEMT) with barrier/spacer layer

    DOEpatents

    Chavarkar, Prashant; Smorchkova, Ioulia P.; Keller, Stacia; Mishra, Umesh; Walukiewicz, Wladyslaw; Wu, Yifeng

    2005-02-01

    A Group III nitride based high electron mobility transistors (HEMT) is disclosed that provides improved high frequency performance. One embodiment of the HEMT comprises a GaN buffer layer, with an Al.sub.y Ga.sub.1-y N (y=1 or y 1) layer on the GaN buffer layer. An Al.sub.x Ga.sub.1-x N (0.ltoreq.x.ltoreq.0.5) barrier layer on to the Al.sub.y Ga.sub.1-y N layer, opposite the GaN buffer layer, Al.sub.y Ga.sub.1-y N layer having a higher Al concentration than that of the Al.sub.x Ga.sub.1-x N barrier layer. A preferred Al.sub.y Ga.sub.1-y N layer has y=1 or y.about.1 and a preferred Al.sub.x Ga.sub.1-x N barrier layer has 0.ltoreq.x.ltoreq.0.5. A 2DEG forms at the interface between the GaN buffer layer and the Al.sub.y Ga.sub.1-y N layer. Respective source, drain and gate contacts are formed on the Al.sub.x Ga.sub.1-x N barrier layer. The HEMT can also comprising a substrate adjacent to the buffer layer, opposite the Al.sub.y Ga.sub.1-y N layer and a nucleation layer between the Al.sub.x Ga.sub.1-x N buffer layer and the substrate.

  19. Epitaxial growth of group III-nitride films by pulsed laser deposition and their use in the development of LED devices

    NASA Astrophysics Data System (ADS)

    Li, Guoqiang; Wang, Wenliang; Yang, Weijia; Wang, Haiyan

    2015-11-01

    Recently, pulsed laser deposition (PLD) technology makes viable the epitaxial growth of group III-nitrides on thermally active substrates at low temperature. The precursors generated from the pulsed laser ablating the target has enough kinetic energy when arriving at substrates, thereby effectively suppressing the interfacial reactions between the epitaxial films and the substrates, and eventually makes the film growth at low temperature possible. So far, high-quality group III-nitride epitaxial films have been successfully grown on a variety of thermally active substrates by PLD. By combining PLD with other technologies such as laser rastering technique, molecular beam epitaxy (MBE), and metal-organic chemical vapor deposition (MOCVD), III-nitride-based light-emitting diode (LED) structures have been realized on different thermally active substrates, with high-performance LED devices being demonstrated. This review focuses on the epitaxial growth of group III-nitrides on thermally active substrates by PLD and their use in the development of LED devices. The surface morphology, interfacial property between film and substrate, and crystalline quality of as-grown group III-nitride films by PLD, are systematically reviewed. The corresponding solutions for film homogeneity on large size substrates, defect control, and InGaN films growth by PLD are also discussed in depth, together with introductions to some newly developed technologies for PLD in order to realize LED structures, which provides great opportunities for commercialization of LEDs on thermally active substrates.

  20. Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities

    SciTech Connect

    Tao, Renchun Kako, Satoshi; Arita, Munetaka; Arakawa, Yasuhiko

    2013-11-11

    Using the thermal decomposition technique, non-polar III-nitride air-gap distributed Bragg reflector (DBR) microcavities (MCs) with a single quantum well have been fabricated. Atomic force microscopy reveals a locally smooth DBR surface, and room-temperature micro-photoluminescence measurements show cavity modes. There are two modes per cavity due to optical birefringence in the non-polar MCs, and a systematic cavity mode shift with cavity thickness was also observed. Although the structures consist of only 3 periods (top) and 4 periods (bottom), a quality factor of 1600 (very close to the theoretical value of 2100) reveals the high quality of the air-gap DBR MCs.

  1. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  2. Growth and characterization of nonpolar and semipolar group-III nitrides-based heterostructures and devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Arpan

    measured. In summary, the result of the experiments described in this thesis reveals the potential of nonpolar and semipolar Group-III nitrides based devices, which are free of polarization-induced electric fields.

  3. Development of novel technologies to enhance performance and reliability of III-Nitride avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Suvarna, Puneet Harischandra

    Solar-blind ultraviolet avalanche photodiodes are an enabling technology for applications in the fields of astronomy, communication, missile warning systems, biological agent detection and particle physics research. Avalanche photodiodes (APDs) are capable of detecting low-intensity light with high quantum efficiency and signal-to-noise ratio without the need for external amplification. The properties of III-N materials (GaN and AlGaN) are promising for UV photodetectors that are highly efficient, radiation-hard and capable of visible-blind or solar-blind operation without the need for external filters. However, the realization of reliable and high performance III-N APDs and imaging arrays has several technological challenges. The high price and lack of availability of bulk III-N substrates necessitates the growth of III-Ns on lattice mismatched substrates leading to a high density of dislocations in the material that can cause high leakage currents, noise and premature breakdown in APDs. The etched sidewalls of III-N APDs and high electric fields at contact edges are also detrimental to APD performance and reliability. In this work, novel technologies have been developed and implemented that address the issues of performance and reliability in III-Nitride based APDs. To address the issue of extended defects in the bulk of the material, a novel pulsed MOCVD process was developed for the growth of AlGaN. This process enables growth of high crystal quality AlxGa1-xN with excellent control over composition, doping and thickness. The process has also been adapted for the growth of high quality III-N materials on silicon substrate for devices such as high electron mobility transistors (HEMTs). A novel post-growth defect isolation technique is also discussed that can isolate the impact of conductive defects from devices. A new sidewall passivation technique using atomic layer deposition (ALD) of dielectric materials was developed for III-N APDs that is effective in

  4. Lattice matched crystalline substrates for cubic nitride semiconductor growth

    SciTech Connect

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2015-02-24

    Disclosed embodiments include methods of fabricating a semiconductor layer or device and devices fabricated thereby. The methods include, but are not limited to, providing a substrate having a cubic crystalline surface with a known lattice parameter and growing a cubic crystalline group III-nitride alloy layer on the cubic crystalline substrate by coincident site lattice matched epitaxy. The cubic crystalline group III-nitride alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter of the substrate (a). The group III-nitride alloy may be a cubic crystalline In.sub.xGa.sub.yAl.sub.1-x-yN alloy. The lattice parameter of the In.sub.xGa.sub.yAl.sub.1-x-yN or other group III-nitride alloy may be related to the substrate lattice parameter by (a')= 2(a) or (a')=(a)/ 2. The semiconductor alloy may be prepared to have a selected band gap.

  5. Inductively Coupled Plasma and Electron Cyclotron Resonance Plasma Etching of InGaAlP Compound Semiconductor System

    SciTech Connect

    Abernathy, C.R.; Hobson, W.S.; Hong, J.; Lambers, E.S.; Pearton, S.J.; Shul, R.J.

    1998-11-04

    Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunction bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.

  6. Epitaxial growth of III-nitride nanostructures and applications for visible emitters and energy generation

    NASA Astrophysics Data System (ADS)

    Pantha, Bed Nidhi

    III-nitride nanostructures and devices were synthesized by metal organic chemical vapor deposition (MOCVD) for their applications in various photonic, optoelectronic, and energy devices such as deep ultraviolet (DUV) photodetectors, solar cells, visible emitters, thermometric (TE) power generators, etc. Structural and optical properties in thicker AlN epilayers were found to be better than those in thinner AlN epilayers. Full-width at half maxima (FWHM) of x-ray diffraction (XRD) rocking curves as small as 63 and 437 arcsec were measured at (002) and (102) reflections, respectively in a thick AlN epilayer (4 mum). The dark current of the fabricated AlN detectors decreases drastically as AlN epilayer thickness increases. DUV photoluminescence (PL) spectroscopy and x-ray diffraction (XRD) measurements were employed to study the effect of biaxial stress in AlN epilayers grown on different substrates. Stress-induced band gap shift of 45 meV/GPa was obtained in AlN epilayers. The potential of InGaN alloys as TE materials for thermopower generation has been investigated. It was found that as In content increases, thermal conductivity decreases and power factor increases, which leads to an increase in the TE figure of merit (ZT). The value of ZT was found to be 0.08 at 300 K and reached 0.23 at 450 K for In0.36Ga0.64N alloy, which is comparable to that of SiGe based alloys. Single phase InxGa1- xN alloys inside the theoretically predicted miscibility gap region (x = 0.4 to 0.7) were successfully synthesized. A single peak of XRD o-2theta scans of the (002) plane in InGaN alloys confirms that there is no phase separation. Electrical properties and surface morphologies were found to be reasonably good. It was found that growth rate should be high enough (>400 nm/hr) to achieve high quality and single phase InxGa1-xN alloys in this miscibility gap region. Mg-doped InxGa1- xN alloys were synthesized and characterized by Hall-effect and PL measurements for their application as

  7. Implementation of Strategies to Improve the Reliability of III-Nitride Photodetectors towards the Realization of Visible and Solar-Blind Imaging Arrays

    NASA Astrophysics Data System (ADS)

    Bulmer, John J.

    Ultraviolet (UV) radiation detectors are being heavily researched for applications in non-line-of-sight (NLOS) communication systems, flame monitoring, biological detection, and astronomical studies. These applications are currently being met by the use of Si-based photomultiplier tubes (PMTs), which are bulky, fragile, expensive and require the use of external filters to achieve true visible-blind and solar-blind operation. GaN and AlxGa1-xN avalanche photodiodes have been of great interest as a replacement for PMT technology. III-Nitride materials are radiation hard and have a wide, tunable bandgap that allows devices to operate in both visible and solar-blind regimes without the use of external filters. The high price and relative unavailability of bulk substrates demands heteroepitaxy of III-Nitride films on lattice-mismatched substrates, which leads to large dark current and premature breakdown in GaN and AlGaN avalanche photodiodes. While significant advances have been made towards the development of III-Nitride UV photodetectors using a variety of device designs, GaN-based avalanche photodiodes typically demonstrate poor device performance, low yield, and breakdown that results in permanent device damage. To address these challenges, a novel implantation technique was used to achieve edge termination and electric field redistribution at the contact edges in GaN and AlGaN p-i-n photodiode structures to enhance reliability. This process was successful at significantly reducing the levels of dark current over two orders of magnitude and resulted in improved device reliability. Further improvement in reliability of III-Nitride devices was also proposed and explored by a technique for isolation of electrically conductive structural defects. The large number of dislocations induced by the lattice and thermal mismatch with the substrate are known to be leakage current pathways and non-radiative recombination centers in III-Nitride films. This process selectively

  8. Looking for Auger signatures in III-nitride light emitters: A full-band Monte Carlo perspective

    SciTech Connect

    Bertazzi, Francesco Goano, Michele; Zhou, Xiangyu; Calciati, Marco; Ghione, Giovanni; Matsubara, Masahiko; Bellotti, Enrico

    2015-02-09

    Recent experiments of electron emission spectroscopy (EES) on III-nitride light-emitting diodes (LEDs) have shown a correlation between droop onset and hot electron emission at the cesiated surface of the LED p-cap. The observed hot electrons have been interpreted as a direct signature of Auger recombination in the LED active region, as highly energetic Auger-excited electrons would be collected in long-lived satellite valleys of the conduction band so that they would not decay on their journey to the surface across the highly doped p-contact layer. We discuss this interpretation by using a full-band Monte Carlo model based on first-principles electronic structure and lattice dynamics calculations. The results of our analysis suggest that Auger-excited electrons cannot be unambiguously detected in the LED structures used in the EES experiments. Additional experimental and simulative work are necessary to unravel the complex physics of GaN cesiated surfaces.

  9. Demonstration of a III-nitride edge-emitting laser diode utilizing a GaN tunnel junction contact.

    PubMed

    Yonkee, Benjamin P; Young, Erin C; Lee, Changmin; Leonard, John T; DenBaars, Steven P; Speck, James S; Nakamura, Shuji

    2016-04-01

    We demonstrate a III-nitride edge emitting laser diode (EELD) grown on a (2021) bulk GaN substrate with a GaN tunnel junction contact for hole injection. The tunnel junction was grown using a combination of metal-organic chemical-vapor deposition (MOCVD) and ammonia-based molecular-beam epitaxy (MBE) which allowed to be regrown over activated p-GaN. For a laser bar with dimensions of 1800 µm x 2.5 µm, without facet coatings, the threshold current was 284 mA (6.3 kA/cm2) and the single facet slope efficiency was 0.33 W/A (12% differential efficiency). A differential resistivity at high current density of 2.3 × 10-4 Ω cm2 was measured. PMID:27137064

  10. Nonpolar III-nitride vertical-cavity surface-emitting laser with a photoelectrochemically etched air-gap aperture

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Yonkee, B. P.; Cohen, D. A.; Megalini, L.; Lee, S.; Speck, J. S.; DenBaars, S. P.; Nakamura, S.

    2016-01-01

    We demonstrate a III-nitride nonpolar vertical-cavity surface-emitting laser (VCSEL) with a photoelectrochemically (PEC) etched aperture. The PEC lateral undercut etch is used to selectively remove the multi-quantum well (MQW) region outside the aperture area, defined by an opaque metal mask. This PEC aperture (PECA) creates an air-gap in the passive area of the device, allowing one to achieve efficient electrical confinement within the aperture, while simultaneously achieving a large index contrast between core of the device (the MQW within the aperture) and the lateral cladding of the device (the air-gap formed by the PEC etch), leading to strong lateral confinement. Scanning electron microscopy and focused ion-beam analysis is used to investigate the precision of the PEC etch technique in defining the aperture. The fabricated single mode PECA VCSEL shows a threshold current density of ˜22 kA/cm2 (25 mA), with a peak output power of ˜180 μW, at an emission wavelength of 417 nm. The near-field emission profile shows a clearly defined single linearly polarized (LP) mode profile (LP12,1), which is in contrast to the filamentary lasing that is often observed in III-nitride VCSELs. 2D mode profile simulations, carried out using COMSOL, give insight into the different mode profiles that one would expect to be displayed in such a device. The experimentally observed single mode operation is proposed to be predominantly a result of poor current spreading in the device. This non-uniform current spreading results in a higher injected current at the periphery of the aperture, which favors LP modes with high intensities near the edge of the aperture.

  11. Efficient visible-light photocatalytic activity by band alignment in mesoporous ternary polyoxometalate-Ag2S-CdS semiconductors

    NASA Astrophysics Data System (ADS)

    Kornarakis, I.; Lykakis, I. N.; Vordos, N.; Armatas, G. S.

    2014-07-01

    Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster anions with different reduction potentials, such as PW12O403-, SiW12O404- and PMo12O403-, were employed as electron acceptors in these ternary heterojunction photocatalysts. Characterization by small-angle X-ray scattering, X-ray diffraction, transmission electron microscopy and N2 physisorption measurements showed hexagonal arrays of POM-Ag2S-CdS hybrid nanorods with large internal BET surface areas and uniform mesopores. The Keggin structure of the incorporated POM clusters was also verified by elemental X-ray spectroscopy microanalysis, infrared and diffuse-reflectance ultraviolet-visible spectroscopy. These new porous materials were implemented as visible-light-driven photocatalysts, displaying exceptional high activity in aerobic oxidation of various para-substituted benzyl alcohols to the corresponding carbonyl compounds. Our experiments show that the spatial separation of photogenerated electrons and holes at CdS through the potential gradient along the CdS-Ag2S-POM interfaces is responsible for the increased photocatalytic activity.Porous multicomponent semiconductor materials show improved photocatalytic performance due to the large and accessible pore surface area and high charge separation efficiency. Here we report the synthesis of well-ordered porous polyoxometalate (POM)-Ag2S-CdS hybrid mesostructures featuring a controllable composition and high photocatalytic activity via a two-step hard-templating and topotactic ion-exchange chemical process. Ag2S compounds and polyoxometalate cluster

  12. Structural and thermal properties of ternary narrow-gap oxide semiconductor; wurtzite-derived β-CuGaO2.

    PubMed

    Nagatani, Hiraku; Suzuki, Issei; Kita, Masao; Tanaka, Masahiko; Katsuya, Yoshio; Sakata, Osami; Miyoshi, Shogo; Yamaguchi, Shu; Omata, Takahisa

    2015-02-16

    The crystal structure of the wurtzite-derived β-CuGaO2 was refined by Rietveld analysis of high-resolution powder diffraction data obtained from synchrotron X-ray radiation. Its structural characteristics are discussed in comparison with the other I-III-VI2 and II-VI oxide semiconductors. The cation and oxygen tetrahedral distortions of the β-CuGaO2 from an ideal wurtzite structure are small. The direct band-gap nature of the β-CuGaO2, unlike β-Ag(Ga,Al)O2, was explained by small cation and oxygen tetrahedral distortions. In terms of the thermal stability, the β-CuGaO2 irreversibly transforms into delafossite α-CuGaO2 at >460 °C in an Ar atmosphere. The transformation enthalpy was approximately -32 kJ mol(-1), from differential scanning calorimetry. This value is close to the transformation enthalpy of CoO from the metastable zincblende form to the stable rock-salt form. The monovalent copper in β-CuGaO2 was oxidized to divalent copper in an oxygen atmosphere and transformed into a mixture of CuGa2O4 spinel and CuO at temperatures >350 °C. These thermal properties indicate that β-CuGaO2 is stable at ≤300 °C in both reducing and oxidizing atmospheres while in its metastable form. Consequently, this material could be of use in optoelectronic devices that do not exceed 300 °C. PMID:25651414

  13. Ternary semiconductors NiZrSn and CoZrBi with half-Heusler structure: A first-principles study

    NASA Astrophysics Data System (ADS)

    Fiedler, Gregor; Kratzer, Peter

    2016-08-01

    The ternary semiconductors NiZrSn and CoZrBi with C 1b crystal structure are introduced by calculating their basic structural, electronic, and phononic properties using density functional theory. Both the gradient-corrected PBE functional and the hybrid functional HSE06 are employed. While NiZrSn is found to be a small-band-gap semiconductor (Eg=0.46 eV in PBE and 0.60 eV in HSE06), CoZrBi has a band gap of 1.01 eV in PBE (1.34 eV in HSE06). Moreover, effective masses and deformation potentials are reported. In both materials A B C , the intrinsic point defects introduced by species A (Ni or Co) are calculated. The Co-induced defects in CoZrBi are found to have a higher formation energy compared to Ni-induced defects in NiZrSn. The interstitial Ni atom (Nii) as well as the VNiNii complex introduce defect states in the band gap, whereas the Ni vacancy (VNi) only reduces the size of the band gap. While Nii is electrically active and may act as a donor, the other two types of defects may compensate extrinsic doping. In CoZrBi, only the VCoCoi complex introduces a defect state in the band gap. Motivated by the reported use of NiZrSn for thermoelectric applications, the Seebeck coefficient of both materials, both in the p -type and the n -type regimes, is calculated. We find that CoZrBi displays a rather large thermopower of up to 500 μ V /K when p doped, whereas NiZrSn possesses its maximum thermopower in the n -type regime. The reported difficulties in achieving p -type doping in NiZrSn could be rationalized by the unintended formation of Nii2 + in conjunction with extrinsic acceptors, resulting in their compensation. Moreover, it is found that all types of defects considered, when present in concentrations as large as 3%, tend to reduce the thermopower compared to ideal bulk crystals at T =600 K. For NiZrSn, the calculated thermodynamic data suggest that additional Ni impurities could be removed by annealing, leading to precipitation of a metallic Ni2ZrSn phase.

  14. Photodetectors based on intersubband transitions using III-nitride superlattice structures.

    PubMed

    Hofstetter, Daniel; Baumann, Esther; Giorgetta, Fabrizio R; Théron, Ricardo; Wu, Hong; Schaff, William J; Dawlaty, Jahan; George, Paul A; Eastman, Lester F; Rana, Farhan; Kandaswamy, Prem K; Leconte, Sylvain; Monroy, Eva

    2009-04-29

    We review our recent progress on the fabrication of near-infrared photodetectors based on intersubband transitions in AlN/GaN superlattice structures. Such devices were first demonstrated in 2003, and have since then seen a quite substantial development both in terms of detector responsivity and high speed operation. Nowadays, the most impressive results include characterization up to 3 GHz using a directly modulated semiconductor laser and up to 13.3 GHz using an ultra-short pulse solid state laser. PMID:21825412

  15. A charge inverter for III-nitride light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Hui; Zhang, Yonghui; Bi, Wengang; Geng, Chong; Xu, Shu; Demir, Hilmi Volkan; Sun, Xiao Wei

    2016-03-01

    In this work, we propose a charge inverter that substantially increases the hole injection efficiency for InGaN/GaN light-emitting diodes (LEDs). The charge inverter consists of a metal/electrode, an insulator, and a semiconductor, making an Electrode-Insulator-Semiconductor (EIS) structure, which is formed by depositing an extremely thin SiO2 insulator layer on the p+-GaN surface of a LED structure before growing the p-electrode. When the LED is forward-biased, a weak inversion layer can be obtained at the interface between the p+-GaN and SiO2 insulator. The weak inversion region can shorten the carrier tunnel distance. Meanwhile, the smaller dielectric constant of the thin SiO2 layer increases the local electric field within the tunnel region, and this is effective in promoting the hole transport from the p-electrode into the p+-GaN layer. Due to the improved hole injection, the external quantum efficiency is increased by 20% at 20 mA for the 350 × 350 μm2 LED chip. Thus, the proposed EIS holds great promise for high efficiency LEDs.

  16. Strong coupling in non-polar GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Tao, Renchun; Arita, Munetaka; Kako, Satoshi; Kamide, Kenji; Arakawa, Yasuhiko

    2015-09-01

    Strong coupling between excitons and photons is experimentally demonstrated in m-plane GaN/AlGaN microcavities (MCs) with air/AlGaN distributed Bragg reflectors (DBRs) at room temperature. Strong coupling is confirmed by momentum space spectroscopy, and a Rabi splitting (Ω) of 84 meV is estimated. A Rabi splitting of 84 meV is the largest value reported in a III-nitride DBR MC to date and is mainly attributed to the shortened effective cavity length resulting from the high index contrast in the air-gap DBRs used here. These results show that III-nitride air-gap DBR MCs have a high potential for realizing high Ω / κ systems (where κ is the cavity loss).

  17. Direct electro-optical pumping for hybrid CdSe nanocrystal/III-nitride based nano-light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Mikulics, M.; Arango, Y. C.; Winden, A.; Adam, R.; Hardtdegen, A.; Grützmacher, D.; Plinski, E.; Gregušová, D.; Novák, J.; Kordoš, P.; Moonshiram, A.; Marso, M.; Sofer, Z.; Lüth, H.; Hardtdegen, H.

    2016-02-01

    We propose a device concept for a hybrid nanocrystal/III-nitride based nano-LED. Our approach is based on the direct electro-optical pumping of nanocrystals (secondary excitation) by electrically driven InGaN/GaN nano-LEDs as the primary excitation source. To this end, a universal hybrid optoelectronic platform was developed for a large range of optically active nano- and mesoscopic structures. The advantage of the approach is that the emission of the nanocrystals can be electrically induced without the need of contacting them. The proof of principal was demonstrated for the electro-optical pumping of CdSe nanocrystals. The nano-LEDs with a diameter of 100 nm exhibit a very low current of ˜8 nA at 5 V bias which is several orders of magnitude smaller than for those conventionally used. The leakage currents in the device layout were typically in the range of 8 pA to 20 pA/cm2 at 5 V bias. The photon-photon down conversion efficiency was determined to be 27%. Microphotoluminescence and microelectroluminescence characterization demonstrate the potential for future optoelectronics and highly secure "green" information technology applications.

  18. III-nitride disk-in-nanowire 1.2 μm monolithic diode laser on (001)silicon

    SciTech Connect

    Hazari, Arnab; Aiello, Anthony; Bhattacharya, Pallab; Ng, Tien-Khee; Ooi, Boon S.

    2015-11-09

    III-nitride nanowire diode heterostructures with multiple In{sub 0.85}Ga{sub 0.15}N disks and graded InGaN mode confining regions were grown by molecular beam epitaxy on (001)Si substrates. The aerial density of the 60 nm nanowires is ∼3 × 10{sup 10} cm{sup −2}. A radiative recombination lifetime of 1.84 ns in the disks is measured by time-resolved luminescence measurements. Edge-emitting nanowire lasers have been fabricated and characterized. Measured values of J{sub th}, T{sub 0}, and dg/dn in these devices are 1.24 kA/cm{sup 2}, 242 K, and 5.6 × 10{sup −17} cm{sup 2}, respectively. The peak emission is observed at ∼1.2 μm.

  19. Mixed ternary heterojunction solar cell

    DOEpatents

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  20. Thermal conductance of the interfaces between the III-nitride materials and their substrates: Effects of intrinsic material properties and interface conditions

    NASA Astrophysics Data System (ADS)

    Kazan, M.; Bruyant, A.; Royer, P.; Masri, P.

    2010-04-01

    This review is intended to provide a critical and up-to-date survey of the analytical approximation methods that are encountered in interface thermal conductance. Because of the importance of the III-nitride materials for novel technological applications, these methods are applied to the thermal conductance of the interfaces between the III-nitride thin films and their commonly used substrates. The phonon behavior and the probability that a phonon transmits from the III-nitride film to the substrate are described first within the context of two limiting models for the interface thermal conductance. The acoustic mismatch model, which assumes that all the phonons incident to the interface are specularly transmitted or specularly reflected, and the diffuse mismatch model, which assumes that all the phonons incident to the interface are diffusively transmitted or diffusively reflected. We show that these two limiting models give very different results for the thermal conductance of the interface between the III-nitride films and their substrates. Next, a statistical model which describes the reflection of plane waves from rough surface is employed to discriminate between the specularly transmitted phonons and the diffusively transmitted phonons. This model predicts that a reflected plane wave leads to a plane wave in the direction of specular reflection and to a contribution with a finite angular spread about that direction depending on the tangential correlation of the surface asperities. Based upon this result, a new model for the interface thermal conductance, that interpolates between the acoustic mismatch model and the diffuse mismatch model and takes into account, instead the Debye approximation, the detailed phonon spectra of the materials in contact, is developed and applied to the interfaces GaN/Si, GaN/SiC, AlN/Si, AlN/SiC, InN/Si, and InN/SiC. In addition to the phonon wavevector, or alternatively, the phonon energy and the angles of incidence, the

  1. Arbitrary Multicolor Photodetection by Hetero-integrated Semiconductor Nanostructures

    PubMed Central

    Sang, Liwen; Hu, Junqing; Zou, Rujia; Koide, Yasuo; Liao, Meiyong

    2013-01-01

    The typical photodetectors can only detect one specific optical spectral band, such as InGaAs and graphene-PbS quantum dots for near-infrared (NIR) light detection, CdS and Si for visible light detection, and ZnO and III-nitrides for UV light detection. So far, none of the developed photodetector can achieve the multicolor detection with arbitrary spectral selectivity, high sensitivity, high speed, high signal-to-noise ratio, high stability, and simplicity (called 6S requirements). Here, we propose a universal strategy to develop multicolor photodetectors with arbitrary spectral selectivity by integrating various semiconductor nanostructures on a wide-bandgap semiconductor or an insulator substrate. Because the photoresponse of each spectral band is determined by each semiconductor nanostructure or the semiconductor substrate, multicolor detection satisfying 6S requirements can be readily satisfied by selecting the right semiconductors. PMID:23917790

  2. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    SciTech Connect

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for both LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.

  3. The potential of ill-nitride laser diodes for solid-state lighting [Advantages of III-Nitride Laser Diodes in Solid-State Lighting

    DOE PAGESBeta

    Wierer, Jonathan; Tsao, Jeffrey Y.

    2014-09-01

    III-nitride laser diodes (LDs) are an interesting light source for solid-state lighting (SSL). Modelling of LDs is performed to reveal the potential advantages over traditionally used light-emitting diodes (LEDs). The first, and most notable, advantage is LDs have higher efficiency at higher currents when compared to LEDs. This is because Auger recombination that causes efficiency droop can no longer grow after laser threshold. Second, the same phosphor-converted methods used with LEDs can also be used with LDs to produce white light with similar color rendering and color temperature. Third, producing white light from direct emitters is equally challenging for bothmore » LEDs and LDs, with neither source having a direct advantage. Lastly, the LD emission is directional and can be more readily captured and focused, leading to the possibility of novel and more compact luminaires. These advantages make LDs a compelling source for future SSL.« less

  4. The first quaternary lanthanide(III) nitride iodides: NaM{sub 4}N{sub 2}I{sub 7} (M=La-Nd)

    SciTech Connect

    Schurz, Christian M.; Schleid, Thomas

    2010-10-15

    In attempts to synthesize lanthanide(III) nitride iodides with the formula M{sub 2}NI{sub 3} (M=La-Nd), moisture-sensitive single crystals of the first quaternary sodium lanthanide(III) nitride iodides NaM{sub 4}N{sub 2}I{sub 7} (orthorhombic, Pna2{sub 1}; Z=4; a=1391-1401, b=1086-1094, c=1186-1211 pm) could be obtained. The dominating structural features are {sup 1}{sub {infinity}}{l_brace}[NM{sub 4/2}{sup e}]{sup 3+}{r_brace} chains of trans-edge linked [NM{sub 4}]{sup 9+} tetrahedra, which run parallel to the polar 2{sub 1}-axis [001]. Between the chains, direct bonding via special iodide anions generates cages, in which isolated [NaI{sub 6}]{sup 5-} octahedra are embedded. The IR spectrum of NaLa{sub 4}N{sub 2}I{sub 7} recorded from 100 to 1000 cm{sup -1} shows main bands at {upsilon}=337, 373 and 489 cm{sup -1}. With decreasing radii of the lanthanide trications these bands, which can be assigned as an influence of the vibrations of the condensed [NM{sub 4}]{sup 9+} tetrahedra, are shifted toward higher frequencies for the NaM{sub 4}N{sub 2}I{sub 7} series (M=La-Nd), following the lanthanide contraction. - Abstract: View at the main structural features of the NaM{sub 4}N{sub 2}I{sub 7} series (M=La-Nd): The {sup 1}{sub {infinity}}{l_brace}[NM{sub 4/2}{sup e}]{sup 3+}{r_brace} chains, consisting of trans-edge connected [NM{sub 4}]{sup 9+} tetrahedra, and the special kind of iodide anions, namely (I7){sup -}, form cages, in which isolated [NaI{sub 6}]{sup 5-} octahedra are embedded.

  5. Smooth e-beam-deposited tin-doped indium oxide for III-nitride vertical-cavity surface-emitting laser intracavity contacts

    NASA Astrophysics Data System (ADS)

    Leonard, J. T.; Cohen, D. A.; Yonkee, B. P.; Farrell, R. M.; DenBaars, S. P.; Speck, J. S.; Nakamura, S.

    2015-10-01

    We carried out a series of simulations analyzing the dependence of mirror reflectance, threshold current density, and differential efficiency on the scattering loss caused by the roughness of tin-doped indium oxide (ITO) intracavity contacts for 405 nm flip-chip III-nitride vertical-cavity surface-emitting lasers (VCSELs). From these results, we determined that the ITO root-mean-square (RMS) roughness should be <1 nm to minimize scattering losses in VCSELs. Motivated by this requirement, we investigated the surface morphology and optoelectronic properties of electron-beam (e-beam) evaporated ITO films, as a function of substrate temperature and oxygen flow and pressure. The transparency and conductivity were seen to increase with increasing temperature. Decreasing the oxygen flow and pressure resulted in an increase in the transparency and resistivity. Neither the temperature, nor oxygen flow and pressure series on single-layer ITO films resulted in highly transparent and conductive films with <1 nm RMS roughness. To achieve <1 nm RMS roughness with good optoelectronic properties, a multi-layer ITO film was developed, utilizing a two-step temperature scheme. The optimized multi-layer ITO films had an RMS roughness of <1 nm, along with a high transparency (˜90% at 405 nm) and low resistivity (˜2 × 10-4 Ω-cm). This multi-layer ITO e-beam deposition technique is expected to prevent p-GaN plasma damage, typically observed in sputtered ITO films on p-GaN, while simultaneously reducing the threshold current density and increasing the differential efficiency of III-nitride VCSELs.

  6. Mechanisms of Loss in Internal Quantum Efficiency in III-Nitride-based Blue-and Green-Light Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Huang, Li

    The overarching goals of the research conducted for this dissertation have been to understand the scientific reasons for the losses in the internal quantum efficiency (IQE) in Group III-nitride-based blue and especially green light-emitting diodes (LEDs) containing a multi-quantum well (MQW) active region and to simultaneously develop LED epitaxial structures to ameliorate these losses. The p-type AlGaN EBL was determined to be both mandatory and effective in the prevention of electron overflow from the MQW region into the p-type cladding layer and the resultant lowering of the IQE. The overflow phenomenon was partially due to the low concentration (˜ 5 x 1017 cm-3) and mobility (˜ 10 cm2/(V•s)) of the holes injected into the active region. Electroluminescence (EL) studies of LEDs without an EBL revealed a dominant emission from donor-acceptor pair recombination in the p-type GaN layer. The incorporation of a 90 nm compositionally graded In0-0.1 Ga1-0.9N buffer layer between each MQW and n-GaN cladding layer grown on an Al/SiC substrate resulted in an increase in the luminescence intensity and a blue-shift in the emission wavelength, as observed in photoluminescence (PL) spectra. The graded InGaN buffer layer reduced the stress and thus the piezoelectric field across the MQW; this improved the electron/hole overlap that, in turn, resulted in an enhanced radiative recombination rate and an increase in efficiency. A direct correlation was observed between an increase in the IQE measured in temperature-dependent PL (TDPL) and an increase in the roughness of all the upper InGaN QW/GaN barrier interfaces, as determined using cross-sectional transmission electron microscopy of the MQW. These results agreed in general with the average surface roughness values of the pit-free region on the top GaN barrier determined via atomic force microscopy and the average roughness values of all the interfaces in the MQW calculated from the FWHM of the emission peak in the PL

  7. Template-assisted synthesis of III-nitride and metal-oxide nano-heterostructures using low-temperature atomic layer deposition for energy, sensing, and catalysis applications (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Biyikli, Necmi; Ozgit-Akgun, Cagla; Eren, Hamit; Haider, Ali; Uyar, Tamer; Kayaci, Fatma; Guler, Mustafa Ozgur; Garifullin, Ruslan; Okyay, Ali K.; Ulusoy, Gamze M.; Goldenberg, Eda

    2015-08-01

    Recent experimental research efforts on developing functional nanostructured III-nitride and metal-oxide materials via low-temperature atomic layer deposition (ALD) will be reviewed. Ultimate conformality, a unique propoerty of ALD process, is utilized to fabricate core-shell and hollow tubular nanostructures on various nano-templates including electrospun nanofibrous polymers, self-assembled peptide nanofibers, metallic nanowires, and multi-wall carbon nanotubes (MWCNTs). III-nitride and metal-oxide coatings were deposited on these nano-templates via thermal and plasma-enhanced ALD processes with thickness values ranging from a few mono-layers to 40 nm. Metal-oxide materials studied include ZnO, TiO2, HfO2, ZrO2, and Al2O3. Standard ALD growth recipes were modified so that precursor molecules have enough time to diffuse and penetrate within the layers/pores of the nano-template material. As a result, uniform and conformal coatings on high-surface area nano-templates were demonstrated. Substrate temperatures were kept below 200C and within the self-limiting ALD window, so that temperature-sensitive template materials preserved their integrity III-nitride coatings were applied to similar nano-templates via plasma-enhanced ALD (PEALD) technique. AlN, GaN, and InN thin-film coating recipes were optimized to achieve self-limiting growth with deposition temperatures as low as 100C. BN growth took place only for >350C, in which precursor decomposition occured and therefore growth proceeded in CVD regime. III-nitride core-shell and hollow tubular single and multi-layered nanostructures were fabricated. The resulting metal-oxide and III-nitride core-shell and hollow nano-tubular structures were used for photocatalysis, dye sensitized solar cell (DSSC), energy storage and chemical sensing applications. Significantly enhanced catalysis, solar efficiency, charge capacity and sensitivity performance are reported. Moreover, core-shell metal-oxide and III-nitride materials

  8. The effect of lithium intercalation on the electronic structure of the ternary compound semiconductors ZrSe(2-x)S(x).

    PubMed

    Ghafari, A; Janowitz, C; Manzke, R

    2013-08-01

    The electronic properties of the lithium intercalated layered transition metal dichalcogenide semiconductors ZrS(x)Se(2-x) for x = 0-2 have been calculated by density functional theory (DFT) using the WIEN2k code. The calculations have been carried out by the PBE functional and the TB-MBJ potential as proposed by Tran and Blaha. The calculations have been performed with and without spin-orbit coupling and reveal that the intercalation of lithium causes the conduction bands of LiZrS(x)Se(2-x) to shift by about 2 eV towards lower binding energy. From this, a Fermi level crossing and metallic behavior in the three intercalated compounds result. Moreover, a number of trends can be observed. Due to the contributions of the dichalcogenide p-states in the valence band the inclusion of SO coupling in the calculations lifts the degeneracy at the points Γ and A of the Brillouin zone in the same way as in the parent compounds. With regard to crystal field effects for each compound the splitting is larger at the A point than at the Γ point and the absolute value of the splitting increases with the atomic number of the chalcogenide. In particular, the simple Fermi surface consisting solely of barrels centered along the LML line makes LiZrS(x)Se(2-x) a promising Fermi liquid reference compound. PMID:23838353

  9. The effect of lithium intercalation on the electronic structure of the ternary compound semiconductors ZrSe2-xSx

    NASA Astrophysics Data System (ADS)

    Ghafari, A.; Janowitz, C.; Manzke, R.

    2013-08-01

    The electronic properties of the lithium intercalated layered transition metal dichalcogenide semiconductors ZrSxSe2-x for x = 0-2 have been calculated by density functional theory (DFT) using the WIEN2k code. The calculations have been carried out by the PBE functional and the TB-MBJ potential as proposed by Tran and Blaha. The calculations have been performed with and without spin-orbit coupling and reveal that the intercalation of lithium causes the conduction bands of LiZrSxSe2-x to shift by about 2 eV towards lower binding energy. From this, a Fermi level crossing and metallic behavior in the three intercalated compounds result. Moreover, a number of trends can be observed. Due to the contributions of the dichalcogenide p-states in the valence band the inclusion of SO coupling in the calculations lifts the degeneracy at the points Γ and A of the Brillouin zone in the same way as in the parent compounds. With regard to crystal field effects for each compound the splitting is larger at the A point than at the Γ point and the absolute value of the splitting increases with the atomic number of the chalcogenide. In particular, the simple Fermi surface consisting solely of barrels centered along the LML line makes LiZrSxSe2-x a promising Fermi liquid reference compound.

  10. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  11. Microwave to millimeter-wave electrodynamic response and applications of semiconductor nanostructures: LDRD project 67025 final report.

    SciTech Connect

    Shaner, Eric Arthur; Lee, Mark; Averitt, R. D. (Los Alamos National Laboratory); Highstrete, Clark; Taylor, A. J.; Padilla, W. J. (Los Alamos National Laboratory); Reno, John Louis; Wanke, Michael Clement; Allen, S. James (University of California Santa Barbara)

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  12. Role of excited states in Shockley-Read-Hall recombination in wide-band-gap semiconductors

    NASA Astrophysics Data System (ADS)

    Alkauskas, Audrius; Dreyer, Cyrus E.; Lyons, John L.; Van de Walle, Chris G.

    2016-05-01

    Defect-assisted recombination is an important limitation on efficiency of optoelectronic devices. However, since nonradiative capture rates decrease exponentially with the energy of the transition, the mechanisms by which such recombination can take place in wide-band-gap materials are unclear. Using electronic structure calculations we uncover the crucial role of electronic excited states in nonradiative recombination processes. The impact is elucidated with examples for the group-III nitrides, for which accumulating experimental evidence indicates that defect-assisted recombination limits efficiency. Our work provides insights into the physics of nonradiative recombination, and the mechanisms are suggested to be ubiquitous in wide-band-gap semiconductors.

  13. Quantum band engineering of nitride semiconductors for infrared lasers

    NASA Astrophysics Data System (ADS)

    Malis, O.; Edmunds, C.; Li, D.; Shao, J.; Gardner, G.; Li, W.; Fay, P.; Manfra, M. J.

    2014-02-01

    The III-nitride semiconductors have been proposed as candidate materials for new quantum cascade lasers in the nearinfrared (1.5-3 μm), and far-infrared (30-60 μm), due to the large conduction-band offset between GaN and Alcontaining alloys (>1 eV), and the large longitudinal optical (LO) phonon energy (90 meV), respectively. The challenges of III-nitride intersubband devices are twofold: material and design related. Due to large electron effective mass, the nitride intersubband materials require the ability to fine-tune the atomic structure at an unprecedented sub-nanometer level. Moreover, the III-N materials exhibit built-in polarization fields that complicate the design of intersubband lasers. This paper presents recent results on c-plane nitride resonant-tunneling diodes that are important for the prospects of farinfrared nitride lasers. We also report near-infrared absorption and photocurrent measurements in nonpolar (m-plane) AlGaN/GaN superlattices.

  14. Atomic-scale theoretical investigations of compound semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Srivastava, G. P.

    2005-05-01

    Atomic-scale theoretical investigations of clean and covered low-index surfaces of compound semiconductors are presented. Particular emphasis is laid on the role of the electron counting rule (ECR) in governing plausible surface reconstructions. Trends are presented for the characeristic tilt of the topmost atomic layer and the highest localised phonon mode on nonpolar III-V(1 1 0) surfaces, including III-nitride compounds. Reconstructions and electronic properties of polar surfaces are explained in terms of dimer formation on (0 0 1), and trimer and/or chain formation on (1 1 1) faces. It is pointed out that some surface reconstructions stabilise as a result of a balance between the ECR and minimization of adsorbate-induced local distortion. This is demonstrated for the long-range ordered reconstruction on the Sb:GaAs(1 1 1)B surface.

  15. Polar semiconductor heterojunction structure energy band diagram considerations

    NASA Astrophysics Data System (ADS)

    Lin, Shuxun; Wen, Cheng P.; Wang, Maojun; Hao, Yilong

    2016-03-01

    The unique nature of built-in electric field induced positive/negative charge pairs of polar semiconductor heterojunction structure has led to a more realistic device model for hexagonal III-nitride HEMT. In this modeling approach, the distribution of charge carriers is dictated by the electrostatic potential profile instead of Femi statistics. The proposed device model is found suitable to explain peculiar properties of GaN HEMT structures, including: (1) Discrepancy in measured conventional linear transmission line model (LTLM) sheet resistance and contactless sheet resistance of GaN HEMT with thin barrier layer. (2) Below bandgap radiation from forward biased Nickel Schottky barrier diode on GaN HEMT structure. (3) GaN HEMT barrier layer doping has negligible effect on transistor channel sheet charge density.

  16. Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K. (Inventor); Hepp, Aloysius F. (Inventor); Harris, Jerry D. (Inventor); Jin, Michael Hyun-Chul (Inventor); Castro, Stephanie L. (Inventor)

    2006-01-01

    A single source precursor for depositing ternary I-III-VI.sub.2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI.sub.2 stoichiometry built into a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI.sub.2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500.degree. C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.

  17. Effect of Temperature on GaGdO/GaN Metal Oxide Semiconductor Field Effect Transistors

    SciTech Connect

    Abernathy, C.R.; Baca, A.; Chu, S.N.G.; Hong, M.; Lothian, J.R.; Marcus, M.A.; Pearton, S.J.; Ren, F.; Schurman, M.J.

    1998-10-14

    GaGdO was deposited on GaN for use as a gate dielectric in order to fabricate a depletion metal oxide semiconductor field effect transistor (MOSFET). This is the fmt demonstration of such a device in the III-Nitride system. Analysis of the effect of temperature on the device shows that gate leakage is significantly reduced at elevated temperature relative to a conventional metal semiconductor field effeet transistor (MESFET) fabricated on the same GaN layer. MOSFET device operation in fact improved upon heating to 400 C. Modeling of the effeet of temperature on contact resistance suggests that the improvement is due to a reduction in the parasitic resistances present in the device.

  18. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Ahn, Doyeol; Park, Seoung-Hwan

    2016-02-01

    In group-III nitrides in use for white light-emitting diodes (LEDs), optical gain, measure of luminous efficiency, is very low owing to the built-in electrostatic fields, low exciton binding energy, and high-density misfit dislocations due to lattice-mismatched substrates. Cuprous halides I-VII semiconductors, on the other hand, have negligible built-in field, large exciton binding energies and close lattice matched to silicon substrates. Recent experimental studies have shown that the luminescence of I-VII CuCl grown on Si is three orders larger than that of GaN at room temperature. Here we report yet unexplored potential of cuprous halides systems by investigating the optical gain of CuCl/CuI quantum wells. It is found that the optical gain and the luminescence are much larger than that of group III-nitrides due to large exciton binding energy and vanishing electrostatic fields. We expect that these findings will open up the way toward highly efficient cuprous halides based LEDs compatible to Si technology.

  19. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes

    PubMed Central

    Ahn, Doyeol; Park, Seoung-Hwan

    2016-01-01

    In group-III nitrides in use for white light-emitting diodes (LEDs), optical gain, measure of luminous efficiency, is very low owing to the built-in electrostatic fields, low exciton binding energy, and high-density misfit dislocations due to lattice-mismatched substrates. Cuprous halides I-VII semiconductors, on the other hand, have negligible built-in field, large exciton binding energies and close lattice matched to silicon substrates. Recent experimental studies have shown that the luminescence of I-VII CuCl grown on Si is three orders larger than that of GaN at room temperature. Here we report yet unexplored potential of cuprous halides systems by investigating the optical gain of CuCl/CuI quantum wells. It is found that the optical gain and the luminescence are much larger than that of group III-nitrides due to large exciton binding energy and vanishing electrostatic fields. We expect that these findings will open up the way toward highly efficient cuprous halides based LEDs compatible to Si technology. PMID:26880097

  20. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes.

    PubMed

    Ahn, Doyeol; Park, Seoung-Hwan

    2016-01-01

    In group-III nitrides in use for white light-emitting diodes (LEDs), optical gain, measure of luminous efficiency, is very low owing to the built-in electrostatic fields, low exciton binding energy, and high-density misfit dislocations due to lattice-mismatched substrates. Cuprous halides I-VII semiconductors, on the other hand, have negligible built-in field, large exciton binding energies and close lattice matched to silicon substrates. Recent experimental studies have shown that the luminescence of I-VII CuCl grown on Si is three orders larger than that of GaN at room temperature. Here we report yet unexplored potential of cuprous halides systems by investigating the optical gain of CuCl/CuI quantum wells. It is found that the optical gain and the luminescence are much larger than that of group III-nitrides due to large exciton binding energy and vanishing electrostatic fields. We expect that these findings will open up the way toward highly efficient cuprous halides based LEDs compatible to Si technology. PMID:26880097

  1. Phase relations and structural properties of the ternary narrow gap semiconductors Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}({delta}=0.15) and Zn{sub 9}Sb{sub 6}In{sub 2}

    SciTech Connect

    Wu Yang; Tenga, Andreas; Lidin, Sven; Haeussermann, Ulrich

    2010-07-15

    A systematic study of the Zn-rich corner of the ternary system Zn-Sb-In revealed the presence of two ternary compounds: stable Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}({delta}=0.15) and metastable Zn{sub 9}Sb{sub 6}In{sub 2} with closely related crystal structures. Their common motif is a tetragonal basic structure of 3{sup 2}434 nets formed by the Sb atoms. The nets are stacked in antiposition to yield layers of square antiprisms sharing edges plus intervening tetracapped tetrahedra (tetreadersterns). The majority of Zn atoms occupy peripheral tetrahedra of such tetraedersterns, which produces frameworks with a composition 'ZnSb'. These frameworks represent orthorhombic superstructures: (2x1x1) for Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}(Z=4) and (2x3x1) for Zn{sub 9}Sb{sub 6}In{sub 2} (Z=8) with respect to the tetragonal arrangement of Sb atoms. The In and remaining Zn atoms are distributed in the channels formed by the square antiprisms. Phase relations in the Zn-Sb-In system are complex. Crystals of metastable Zn{sub 9}Sb{sub 6}In{sub 2} are regularly intergrown with various amounts of Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}. Additionally, a monoclinic variant to orthorhombic Zn{sub 9}Sb{sub 6}In{sub 2} could be identified. Zn{sub 9}Sb{sub 6}In{sub 2} decomposes exothermically into a mixture of Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}, Zn{sub 4}Sb{sub 3} and elemental Zn at around 480 K. Both Zn{sub 5}Sb{sub 4}In{sub 2-{delta}}and Zn{sub 9}Sb{sub 6}In{sub 2} are poor metals with resistivity values that are characteristic of heavily doped or degenerate semiconductors (0.2-3 m {Omega} cm at room temperature). - Graphical abstract: A metastable intermetallic compound with the composition Zn{sub 9}Sb{sub 6}In{sub 2} has been identified in the ternary system Zn-Sb-In. Its structure relates to tetragonal CuAl{sub 2} in that it contains 3{sup 2}434 nets (formed by the Sb atoms) that are stacked in antiposition orientation.

  2. Ternary fission of superheavy elements

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, M.; Vijayaraghavan, K. R.; Manimaran, K.

    2016-01-01

    Ternary fission of superheavy nuclei is studied within the three-cluster model potential energy surfaces (PESs). Due to shell effects, the stability of superheavy nuclei has been predicted to be associated with Z =114 , 120, and 126 for protons and N =184 for neutrons. Taking some representative nuclei we have extended the ternary fission studies to superheavy nuclei. We adopted two minimization procedures to minimize the potential and considered different arrangements of the fragments. The PES from one-dimensional minimization reveals a strong cluster region favoring various ternary breakups for an arrangement in which the lightest fragment is kept at the center. The PES obtained from two-dimensional minimization reveals strong preference of ternary fragmentation in the true ternary fission region. Though the dominant decay mode of superheavy nuclei is α decay, the α -accompanied ternary breakup is found to be a nonfavorable one. Further, the prominent ternary combinations are found to be associated with the neutron magic number.

  3. Electromechanical phenomena in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Lew Yan Voon, L. C.; Willatzen, M.

    2011-02-01

    Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1-10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the

  4. Spinodal nanodecomposition in semiconductors doped with transition metals

    NASA Astrophysics Data System (ADS)

    Dietl, T.; Sato, K.; Fukushima, T.; Bonanni, A.; Jamet, M.; Barski, A.; Kuroda, S.; Tanaka, M.; Hai, Pham Nam; Katayama-Yoshida, H.

    2015-10-01

    This review presents the recent progress in computational materials design, experimental realization, and control methods of spinodal nanodecomposition under three- and two-dimensional crystal-growth conditions in spintronic materials, such as magnetically doped semiconductors. The computational description of nanodecomposition, performed by combining first-principles calculations with kinetic Monte Carlo simulations, is discussed together with extensive electron microscopy, synchrotron radiation, scanning probe, and ion beam methods that have been employed to visualize binodal and spinodal nanodecomposition (chemical phase separation) as well as nanoprecipitation (crystallographic phase separation) in a range of semiconductor compounds with a concentration of transition metal (TM) impurities beyond the solubility limit. The role of growth conditions, codoping by shallow impurities, kinetic barriers, and surface reactions in controlling the aggregation of magnetic cations is highlighted. According to theoretical simulations and experimental results the TM-rich regions appear in the form of either nanodots (the dairiseki phase) or nanocolumns (the konbu phase) buried in the host semiconductor. Particular attention is paid to Mn-doped group III arsenides and antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped group II chalcogenides, in which ferromagnetic features persisting up to above room temperature correlate with the presence of nanodecomposition and account for the application-relevant magneto-optical and magnetotransport properties of these compounds. Finally, it is pointed out that spinodal nanodecomposition can be viewed as a new class of bottom-up approach to nanofabrication.

  5. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  6. Clusterization in Ternary Fission

    NASA Astrophysics Data System (ADS)

    Kamanin, D. V.; Pyatkov, Y. V.

    This lecture notes are devoted to the new kind of ternary decay of low excited heavy nuclei called by us "collinear cluster tri-partition" (CCT) due to the features of the effect observed, namely, decay partners fly away almost collinearly and at least one of them has magic nucleon composition. At the early stage of our work the process of "true ternary fission" (fission of the nucleus into three fragments of comparable masses) was considered to be undiscovered for low excited heavy nuclei. Another possible prototype—three body cluster radioactivity—was also unknown. The most close to the CCT phenomenon, at least cinematically, stands so called "polar emission", but only very light ions (up to isotopes of Be) were observed so far.

  7. Ternary drop collisions

    NASA Astrophysics Data System (ADS)

    Hinterbichler, Hannes; Planchette, Carole; Brenn, Günter

    2015-10-01

    It has been recently proposed to use drop collisions for producing advanced particles or well-defined capsules, or to perform chemical reactions where the merged drops constitute a micro-reactor. For all these promising applications, it is essential to determine whether the merged drops remain stable after the collision, forming a single entity, or if they break up. This topic, widely investigated for binary drop collisions of miscible and immiscible liquid, is quite unexplored for ternary drop collisions. The current study aims to close this gap by experimentally investigating collisions between three equal-sized drops of the same liquid arranged centri-symmetrically. Three drop generators are simultaneously operated to obtain controlled ternary drop collisions. The collision outcomes are observed via photographs and compared to those of binary collisions. Similar to binary collisions, a regime map is built, showing coalescence and bouncing as well as reflexive and stretching separation. Significant differences are observed in the transitions between these regimes.

  8. Measurement and analysis of internal loss and injection efficiency for continuous-wave blue semipolar ( 20 2 ¯ 1 ¯ ) III-nitride laser diodes with chemically assisted ion beam etched facets

    NASA Astrophysics Data System (ADS)

    Becerra, Daniel L.; Kuritzky, Leah Y.; Nedy, Joseph; Saud Abbas, Arwa; Pourhashemi, Arash; Farrell, Robert M.; Cohen, Daniel A.; DenBaars, Steven P.; Speck, James S.; Nakamura, Shuji

    2016-02-01

    Continuous-wave blue semipolar ( 20 2 ¯ 1 ¯ ) III-nitride laser diodes were fabricated with highly vertical, smooth, and uniform mirror facets produced by chemically assisted ion beam etching. Uniform mirror facets are a requirement for accurate experimental determination of internal laser parameters, including internal loss and injection efficiency, which were determined to be 9 cm-1 and 73%, respectively, using the cavity length dependent method. The cavity length of the uncoated devices was varied from 900 μm to 1800 μm, with threshold current densities ranging from 3 kA/cm2 to 9 kA/cm2 and threshold voltages ranging from 5.5 V to 7 V. The experimentally determined internal loss was found to be in good agreement with a calculated value of 9.5 cm-1 using a 1D mode solver. The loss in each layer was calculated and in light of the analysis several modifications to the laser design are proposed.

  9. Engineering the Morphology and Configuration of Ternary Heterostructures for Improving Their Photocatalytic Activity.

    PubMed

    Li, Kui; Chen, Rong; Li, Shun-Li; Xie, Shuai-Lei; Cao, Xue-Li; Dong, Long-Zhang; Bao, Jian-Chun; Lan, Ya-Qian

    2016-02-01

    Heteronanomaterials composed of suitable semiconductors enable the direct conversion from solar power into clean and renewable energy. Ternary heterostructures with appropriate configuration and morphology possess rich and varied properties, especially for improving the photocatalytic activity and stability synchronously. However, suitable ternary heterostructure prototypes and facile while effective strategy for modulating their morphology and configuration are still scarce. Herein, various ternary ZnS-CdS-Zn(1-x)Cd(x)S heterostructures with tunable morphology (0 to 2 D) and semiconductor configurations (randomly distributed, interface mediated, and quantum dots sensitized core@shell heterostructures) were facilely synthesized via one-pot hydrothermal method resulting from the different molecular structures of the amine solvents. Semiconductor morphology, especially configuration of the ternary heterostructure, shows dramatic effect on their photocatalytic activity. The CdS sensitized porous Zn(1-x)CdxS@ZnS core@shell takes full advantage of ZnS, Zn(1-x)Cd(x)S and CdS and shows the maximal photocatalytic H2-production rate of 100.2 mmol/h/g and excellent stability over 30 h. This study provides some guidelines for the design and synthesis of high-performance ternary heterostructure via modulation of semiconductor configuration and morphology using one-pot method. PMID:26835705

  10. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    NASA Astrophysics Data System (ADS)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  11. Role of excited states in Shockley-Read-Hall recombination in wide band-gap semiconductors

    NASA Astrophysics Data System (ADS)

    Alkauskas, Audrius; Dreyer, Cyrus E.; Lyons, John L.; van de Walle, Chris G.

    Defect-assisted recombination is an important limitation on efficiency of optoelectronic devices. However, since nonradiative capture rates decrease exponentially with energy of the transition, the mechanisms by which such recombination can take place in wide-band-gap materials are unclear. We investigate the role of electronic excited states in the recombination process, focusing on group-III nitrides, for which accumulating experimental evidence indicates that defect-assisted recombination is an important limiting factor in efficiency. Based on first-principles electronic structure calculations, we show that excited states of gallium vacancy complexes make these defects very efficient recombination centers. Our work provides new insights into the physics of nonradiative recombination. The mechanism discussed in this work is suggested to be very critical and ubiquitous in wide-band-gap semiconductors. This work was supported by DOE and the European Union.

  12. New ternary praseodymium germanides

    SciTech Connect

    Fedyna, M.F.; Pecharskii, V.K.; Bodak, O.I.

    1987-09-01

    Using the powder method (DRON-2.0 diffractometer; Fe K/sub ..cap alpha../ radiation; theta/2theta recording method, sin theta/sub max//lambda = 5 nm/sup -1/), the crystal structure of the ternary compounds Pr/sub 1-x/(NiGe)/sub 13/ (x = 0.24), Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 1-x/(CoGe)/sub 13/ (x = 0.31), Pr/sub 2/Co/sub 3/Ge/sub 5/, and PrFe/sub 1-x/Ge/sub 3/ (x = 0.46) were determined. The germanides P/sub 1-x/(NiGe)/sub 13/ and Pr/sub 1-x/(NiGe)/sub 13/ belong to the structural type of CeNi/sub 8.5/Si/sub 4.5/ and the ternary compounds Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 2/Co/sub 3/Ge/sub 5/, and PrFe/sub 1-x/Ge/sub 3/ crystallize in the structural types of U/sub 3/Ni/sub 4/Si/sub 4/, U/sub 2/Co/sub 3/Si/sub 5/, and BaNiSn/sub 3/. During investigations of the equilibrium phase diagrams of the systems Pr-/Fe, Co, Ni/-Ge, new ternary compounds were discovered, viz., Pr/sub 1-x/(NiGe)/sub 13/ (X = 0.24), Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 1-x/(CoGe)/sub 13/ (x = 0.31), Pr/sub 2/Co/sub 3/Ge/sub 5/, PrFe/sub 1-x/Ge/sub 3/ (x = 0.46).

  13. Pulsed laser ablation growth and doping of epitaxial compound semiconductor films

    SciTech Connect

    Lowndes, D.H.; Rouleau, C.M.; Geohegan, D.B.; Budai, J.D.; Poker, D.B.; Puretzky, A.A.; Strauss, M.A.; Pedraza, A.J.; Park, J.W.

    1995-12-01

    Pulsed laser ablation (PLA) has several characteristics that are potentially attractive for the growth and doping of chemically complex compound semiconductors including (1) stoichiometric (congruent) transfer of composition from target to film, (2) the use of reactive gases to control film composition and/or doping via energetic-beam-induced reactions, and (3) low-temperature nonequilibrium phase formation in the laser-generated plasma ``plume.`` However, the electrical properties of compound semiconductors are far more sensitive to low concentrations of defects than are the oxide metals/ceramics for which PLA has been so successful. Only recently have doped epitaxial compound semiconductor films been grown by PLA. Fundamental studies are being carried out to relate film electrical and microstructural properties to the energy distribution of ablated species, to the temporal evolution of the ablation pulse in ambient gases, and to beam assisted surface and/or gas-phase reactions. In this paper the authors describe results of ex situ Hall effect, high-resolution x-ray diffraction, transmission electron microscopy, and Rutherford backscattering measurements that are being used in combination with in situ RHEED and time-resolved ion probe measurements to evaluate PLA for growth of doped epitaxial compound semiconductor films and heterostructures. Examples are presented and results analyzed for doped II-VI, I-III-VI, and column-III nitride materials grown recently in this and other laboratories.

  14. A novel ternary quantum-dot cell for solving majority voter gate problem

    NASA Astrophysics Data System (ADS)

    Tehrani, Mohammad A.; Bahrami, Safura; Navi, Keivan

    2014-03-01

    Since the complementary metal-oxide semiconductor (CMOS) technology has experienced many serious problems in fulfilling the need for more robust and efficient circuits, some emerging nanotechnologies have been introduced as the candidates for replacing CMOS. Quantum-dot cellular automata (QCA) is one of the promising nanotechnology candidates with majority function as its fundamental logic element. It has one implementation in binary QCA and several implantations in ternary QCA, but none of the ternary QCA implementations are as efficient as the binary one. In this paper, a new cell configuration for ternary QCA is proposed which works as well as previous cell configuration. Also, a new design for ternary QCA majority function is proposed which performs faster and occupies less area.

  15. Defect identification in semiconductors with positron annihilation: experiment and theory

    NASA Astrophysics Data System (ADS)

    Tuomisto, Filip

    2015-03-01

    Positron annihilation spectroscopy is a very powerful technique for the detection, identification and quantification of vacancy-type defects in semiconductors. In the past decades, it has been used to reveal the relationship between opto-electronic properties and specific defects in a wide variety of materials - examples include parasitic yellow luminescence in GaN, dominant acceptor defects in ZnO and broad-band absorption causing brown coloration in natural diamond. In typical binary compound semiconductors, the selective sensitivity of the technique is rather strongly limited to cation vacancies that possess significant open volume and suitable charge (negative of neutral). On the other hand, oxygen vacancies in oxide semiconductors are a widely debated topic. The properties attributed to oxygen vacancies include the inherent n-type conduction, poor p-type dopability, coloration (absorption), deep level luminescence and non-radiative recombination, while the only direct experimental evidence of their existence has been obtained on the crystal surface. We will present recent advances in combining state-of-the-art positron annihilation experiments and ab initio computational approaches. The latter can be used to model both the positron lifetime and the electron-positron momentum distribution - quantities that can be directly compared with experimental results. We have applied these methods to study vacancy-type defects in III-nitride semiconductors (GaN, AlN, InN) and oxides such as ZnO, SnO2, In2O3andGa2O3. We will show that cation-vacancy-related defects are important compensating centers in all these materials when they are n-type. In addition, we will show that anion (N, O) vacancies can be detected when they appear as complexes with cation vacancies.

  16. Effect of interface and bulk traps on the C–V characterization of a LPCVD-SiNx/AlGaN/GaN metal-insulator-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Bao, Qilong; Huang, Sen; Wang, Xinhua; Wei, Ke; Zheng, Yingkui; Li, Yankui; Yang, Chengyue; Jiang, Haojie; Li, Junfeng; Hu, Anqi; Yang, Xuelin; Shen, Bo; Liu, Xinyu; Zhao, Chao

    2016-06-01

    Silicon nitride (SiNx) film grown by low-pressure chemical vapor deposition (LPCVD) is utilized as a gate dielectric for AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistors (MIS-HEMTs). Trap distribution at the gate-dielectric/III-nitrides interface is characterized by a temperature-dependent ac-capacitance technique. The extracted interface state density D it decreases from 2.92 × 1013 to 1.59 × 1012 cm‑2 eV‑1 as the energy level depth (E C-E T) increases from 0.29 to 0.50 eV, and then levels off to E C-E T = 0.80 eV. Capacitance-mode deep level transient spectroscopy (C-DLTS) and energy band diagram simulations reveal that deep levels with E C-E T > 0. 83 eV are responsible for the dispersion of capacitances at high temperature (>125 °C) and low frequencies (<1 kHz). A high-resolution transmission electron microscope (TEM) reveals that re-oxidation of the RCA-treated AlGaN barrier surface may be responsible for the relatively high density of shallow states at the LPCVD-SiNx/III-nitride interface.

  17. Ternary complexes in analytical chemistry.

    PubMed

    Babko, A K

    1968-08-01

    Reactions between a complex AB and a third component C do not always proceed by a displacement mechanism governed by the energy difference of the chemical bonds A-B and A-C. The third component often becomes part of the complex, forming a mixed co-ordination sphere or ternary complex. The properties of this ternary complex ABC are not additive functions of the properties of AB and AC. Such reactions are important in many methods in analytical chemistry, particularly in photometric analysis, extractive separation, masking, etc. The general properties of the four basic types of ternary complex are reviewed and examples given. The four types comprise the systems (a) metal ion, electronegative ligand, organic base, (b) one metal ion, two different electronegative ligands, (c) ternary heteropoly acids, and (d) two different metal ions, one ligand. PMID:18960358

  18. Ternary boride product and process

    NASA Technical Reports Server (NTRS)

    Clougherty, Edward V. (Inventor)

    1976-01-01

    A hard, tough, strong ceramic body is formed by hot pressing a mixture of a powdered metal and a powdered metal diboride. The metal employed is zirconium, titanium or hafnium and the diboride is the diboride of a different member of the same group of zirconium, titanium or hafnium to form a ternary composition. During hot pressing at temperatures above about 2,000.degree.F., a substantial proportion of acicular ternary monoboride is formed.

  19. III nitride selective area growth and application

    NASA Astrophysics Data System (ADS)

    Ren, Dawei

    Exploiting advantages of both Selective Area Growth (SAG) and Lateral Epitaxial Overgrowth (LEO), this thesis work demonstrates forming stripe patterned non-planar GaN templates for buried heterostructure (BH) lasers fabrication, which consist of low dislocation density naturally grown GaN ridge mesas. Defect reduction is realized by introducing a two-step LEO growth procedure that utilizes dislocation bending in the formation of pyramidal mesas to eradicate the threading dislocations that originate from planar buffer. Anisotropic Mg incorporation was discovered in the growth of p type GaN on non-planar GaN substrate. As shown by cross-sectional Scanning Electron Microscopy and Cathodoluminescence spectroscopy, Mg doped GaN grown on mesa top facet of (0001) is believed to have higher Mg concentration than the counterpart grown on sidewalls of {112¯2}. This unique structure of Mg doped GaN provides a natural lateral current confinement that paves a promising path to fabricate InGaN/GaN BH laser on this non-planar substrate. Growth rate is found out to be strongly facet dependent during growth of InGaN on non-planar GaN substrate, due to the tendency of In and Ga to migrate to the mesa top facet. This anisotropic growth rate of InGaN can be utilized to form InGaN/GaN buried heterostructure. As revealed by local CL spectra study, InGaN/GaN BH is demonstrated when an InGaN single quantum well layer is selectively grown on mesa top followed by the subsequent growth of GaN cap layer. Study of CL imaging shows a marked improvement in the homogeneity of CL emission of InGaN grown on mesa top facet of non-planar substrate compared with on planar substrate. The reduction of InGaN phase separation is believed to relate with the low defect density of mesa top facet. This high quality InGaN/GaN BH can be further applied to fabricate InGaN BH laser diode, which performance will be significantly improved, due to the unique lateral mode confinement.

  20. Group-III Nitride Field Emitters

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak; Berishev, Igor

    2008-01-01

    Field-emission devices (cold cathodes) having low electron affinities can be fabricated through lattice-mismatched epitaxial growth of nitrides of elements from group III of the periodic table. Field emission of electrons from solid surfaces is typically utilized in vacuum microelectronic devices, including some display devices. The present field-emission devices and the method of fabricating them were developed to satisfy needs to reduce the cost of fabricating field emitters, make them compatible with established techniques for deposition of and on silicon, and enable monolithic integration of field emitters with silicon-based driving circuitry. In fabricating a device of this type, one deposits a nitride of one or more group-III elements on a substrate of (111) silicon or other suitable material. One example of a suitable deposition process is chemical vapor deposition in a reactor that contains plasma generated by use of electron cyclotron resonance. Under properly chosen growth conditions, the large mismatch between the crystal lattices of the substrate and the nitride causes strains to accumulate in the growing nitride film, such that the associated stresses cause the film to crack. The cracks lie in planes parallel to the direction of growth, so that the growing nitride film becomes divided into microscopic growing single-crystal columns. The outer ends of the fully-grown columns can serve as field-emission tips. By virtue of their chemical compositions and crystalline structures, the columns have low work functions and high electrical conductivities, both of which are desirable for field emission of electrons. From examination of transmission electron micrographs of a prototype device, the average column width was determined to be about 100 nm and the sharpness of the tips was determined to be characterized by a dimension somewhat less than 100 nm. The areal density of the columns was found to about 5 x 10(exp 9)/sq cm . about 4 to 5 orders of magnitude greater than the areal density of tips in prior field-emission devices. The electric field necessary to turn on the emission current and the current per tip in this device are both lower than in prior field-emission devices, such that it becomes possible to achieve longer operational lifetime. Moreover, notwithstanding the lower current per tip, because of the greater areal density of tips, it becomes possible to achieve greater current density averaged over the cathode area. The thickness of the grown nitride film (equivalently, the length of the columns) could lie between about 0.5 microns and a few microns; in any event, a thickness of about 1 micron is sufficient and costs less than do greater thicknesses. It may be possible to grow nitride emitter columns on glass or other substrate materials that cost less than silicon does. What is important in the choice of substrate material is the difference between the substrate and nitride crystalline structures. Inasmuch as the deposition process is nondestructive, an ability to grow emitter columns on a variety of materials would be advantageous in that it would facilitate the integration of field-emitter structures onto previously processed integrated circuits.

  1. Influence of cation choice on magnetic behavior of III-N dilute magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Frazier, Rachel Marian

    With the increasing interest in spintronics, many attempts have been made at incorporating spin-based functionality into existing semiconductor technology. One approach, utilizing dilute magnetic semiconductors (DMS) formed via introduction of transition metal ions into III-Nitride hosts, would allow for integration of spin based phenomena into current wide bandgap device technology. To accomplish such device structures, it is necessary to achieve single phase transition metal doped GaN and AlN which exhibit room temperature magnetic behavior. Ion implantation is an effective survey method for introduction of various transition metals into AlN. In ion implanted AlN, the Co and Cr doped films showed hysteresis at 300K while the Mn doped material did not. However, it is not a technique which will allow for the development of advanced spin based devices. Such devices will require epitaxial methods of the sort currently used for synthesis of III-Nitride optoelectronics. One such technique, Gas Source Molecular Beam Epitaxy (GSMBE), has been used to synthesize AlN films doped with Cr and Mn. Room temperature ferromagnetism has been observed for AlMnN and AlCrN grown by GSMBE. In both cases, the magnetic signal was found to depend on the flux of the dopant. The magnetization of the AlCrN was found to be an order of magnitude greater than in the AlMnN. The temperature dependent magnetic behavior of AlCrN was also superior to AlMnN; however, the AlCrN was not resistant to thermal degradation. An all-semiconductor tunneling magnetoresistive device (TMR) was grown with GaMnN as a spin injector and AlMnN as a spin filter. The resistance of the device should change with applied magnetic field depending on the magnetization of the injector and filter. However, due to the impurity bands found in the AlMnN, the resistance was found to change very little with magnetic field. To overcome such obstacles as found in the transition metal doped AlN, another dopant must be used. One

  2. Theoretical assessment of the electro-optical features of the group III nitrides (B12N12, Al12N12 and Ga12N12) and group IV carbides (C24, Si12C12 and Ge12C12) nanoclusters encapsulated with alkali metals (Li, Na and K)

    NASA Astrophysics Data System (ADS)

    Tahmasebi, Elham; Shakerzadeh, Ehsan; Biglari, Zeinab

    2016-02-01

    Density functional theory (DFT) calculations have been carried out to study the influence of alkali metals (Li, Na and K) encapsulation within the group III nitrides (B12N12, Al12N12 and Ga12N12) and the group IV carbides (C24, Si12C12and Ge12C12) nanoclusters. The encapsulation of Li, Na and K atoms is found to narrow the HOMO-LUMO gaps of the considered clusters. The electronic properties of these clusters, especially the group III nitrides nanoclusters, are strongly sensitive to interaction with the alkali metals. Moreover it is observed that the encapsulation of alkali metals enhances the first hyperpolarizabilities of B12N12 nanocluster. Surprisingly, due to the alkali metals encapsulation within B12N12 nanocluster, the first hyperpolarizability values are remarkably increased to 8505.49 and 122,503.76 a.u. for Na@B12N12 and K@B12N12, respectively. Also the TD-DFT calculations at both CAM-B3LYP/6-311+G(d) and PBE0/6-311+G(d) levels of theory are also performed to investigate the origin of first hyperpolarizabilities.

  3. Semiconductor photoelectrochemistry

    NASA Technical Reports Server (NTRS)

    Buoncristiani, A. M.; Byvik, C. E.

    1983-01-01

    Semiconductor photoelectrochemical reactions are investigated. A model of the charge transport processes in the semiconductor, based on semiconductor device theory, is presented. It incorporates the nonlinear processes characterizing the diffusion and reaction of charge carriers in the semiconductor. The model is used to study conditions limiting useful energy conversion, specifically the saturation of current flow due to high light intensity. Numerical results describing charge distributions in the semiconductor and its effects on the electrolyte are obtained. Experimental results include: an estimate rate at which a semiconductor photoelectrode is capable of converting electromagnetic energy into chemical energy; the effect of cell temperature on the efficiency; a method for determining the point of zero zeta potential for macroscopic semiconductor samples; a technique using platinized titanium dioxide powders and ultraviolet radiation to produce chlorine, bromine, and iodine from solutions containing their respective ions; the photoelectrochemical properties of a class of layered compounds called transition metal thiophosphates; and a technique used to produce high conversion efficiency from laser radiation to chemical energy.

  4. Semiconductor sensors

    NASA Technical Reports Server (NTRS)

    Gatos, Harry C. (Inventor); Lagowski, Jacek (Inventor)

    1977-01-01

    A semiconductor sensor adapted to detect with a high degree of sensitivity small magnitudes of a mechanical force, presence of traces of a gas or light. The sensor includes a high energy gap (i.e., .about. 1.0 electron volts) semiconductor wafer. Mechanical force is measured by employing a non-centrosymmetric material for the semiconductor. Distortion of the semiconductor by the force creates a contact potential difference (cpd) at the semiconductor surface, and this cpd is determined to give a measure of the force. When such a semiconductor is subjected to illumination with an energy less than the energy gap of the semiconductors, such illumination also creates a cpd at the surface. Detection of this cpd is employed to sense the illumination itself or, in a variation of the system, to detect a gas. When either a gas or light is to be detected and a crystal of a non-centrosymmetric material is employed, the presence of gas or light, in appropriate circumstances, results in a strain within the crystal which distorts the same and the distortion provides a mechanism for qualitative and quantitative evaluation of the gas or the light, as the case may be.

  5. Semiconductor processing

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The primary thrust of the semiconductor processing is outlined. The purpose is to (1) advance the theoretical basis for bulk growth of elemental and compound semiconductors in single crystal form, and (2) to develop a new experimental approaches by which semiconductor matrices with significantly improved crystalline and chemical perfection can be obtained. The most advanced approaches to silicon crystal growth is studied. The projected research expansion, directed toward the capability of growth of 4 inch diameter silicon crystals was implemented. Both intra and interdepartmental programs are established in the areas of process metallurgy, heat transfer, mass transfer, and systems control. Solutal convection in melt growth systems is also studied.

  6. Ternary generalization of Heisenberg's algebra

    NASA Astrophysics Data System (ADS)

    Kerner, Richard

    2015-06-01

    A concise study of ternary and cubic algebras with Z3 grading is presented. We discuss some underlying ideas leading to the conclusion that the discrete symmetry group of permutations of three objects, S3, and its abelian subgroup Z3 may play an important role in quantum physics. We show then how most of important algebras with Z2 grading can be generalized with ternary composition laws combined with a Z3 grading. We investigate in particular a ternary, Z3-graded generalization of the Heisenberg algebra. It turns out that introducing a non-trivial cubic root of unity, , one can define two types of creation operators instead of one, accompanying the usual annihilation operator. The two creation operators are non-hermitian, but they are mutually conjugate. Together, the three operators form a ternary algebra, and some of their cubic combinations generate the usual Heisenberg algebra. An analogue of Hamiltonian operator is constructed by analogy with the usual harmonic oscillator, and some properties of its eigenfunctions are briefly discussed.

  7. Reproducible bipolar resistive switching in entire nitride AlN/n-GaN metal-insulator-semiconductor device and its mechanism

    SciTech Connect

    Chen, Yiren; Song, Hang E-mail: lidb@ciomp.ac.cn; Jiang, Hong; Li, Zhiming; Zhang, Zhiwei; Sun, Xiaojuan; Li, Dabing E-mail: lidb@ciomp.ac.cn; Miao, Guoqing

    2014-11-10

    Reproducible bipolar resistive switching characteristics are demonstrated in entire nitride AlN/n-GaN metal-insulator-semiconductor devices. The mechanism involved confirms to trap-controlled space charge limited current theory and can be attributed to the nitrogen vacancies of AlN serving as electron traps that form/rupture electron transport channel by trapping/detrapping electrons. This study will lead to the development of in-situ growth of group-III nitrides by metal-organic chemical vapor deposition as a candidate for next-generation nonvolatile memory device. Moreover, it will be benefit to structure monolithic integrated one-transistor-one-resistor memory with nitride high electron mobility transistors.

  8. A survey of ohmic contacts to III-V compound semiconductors

    SciTech Connect

    Baca, A.G.; Zolper, J.C.; Briggs, R.D.; Ren, F.; Pearton, S.J.

    1997-04-01

    A survey of ohmic contact materials and properties to GaAs, InP, GaN will be presented along with critical issues pertaining to each semiconductor material. Au-based alloys (e.g., GeAuNi for n-type GaAs) are the most commonly used contacts for GaAs and InP materials for both n- and p-type contacts due to the excellent contact resistivity, reliability, and usefulness over a wide range of doping levels. Research into new contacting schemes for these materials has focused on addressing limitations of the conventional Au-alloys in thermal stability, propensity for spiking, poor edge definition, and new approaches for a non-alloyed contact. The alternative contacts to GaAs and InP include alloys with higher temperature stability, contacts based on solid phase regrowth, and contacts that react with the substrate to form lower bandgap semiconductors alloys at the interface. A new area of contact studies is for the wide bandgap group III-Nitride materials. At present, low resistivity ohmic contact to p-type GaN has not been obtained primarily due to the large acceptor ionization energy and the resultant difficulty in achieving high free hole concentrations at room temperature. For n-type GaN, however, significant progress has been reported with reactive Ti-based metalization schemes or the use of graded InGaN layers. The present status of these approaches will be reviewed.

  9. Ternary Fission Studies by Correlation Measurements with Ternary Particles

    NASA Astrophysics Data System (ADS)

    Mutterer, Manfred

    2011-10-01

    The rare ternary fission process has been studied mainly by inclusive measurements of the energy distributions and fractional yields of the light charged particles (LCPs) from fission, or by experiments on the angular and energy correlation between LCPs and fission fragments (FFs). The present contribution presents a brief overview of more elaborate correlation measurements that comprise the emission of neutrons and γ rays with LCPs and FFs, or the coincident registration of two LCPs. These measurements have permitted identification of new modes of particle-accompanied fission, such as the population of excited states in LCPs, the formation of neutron-unstable nuclei as short-lived intermediate LCPs, as well as the sequential decay of particle-unstable LCPs and quaternary fission. Furthermore, the neutron multiplicity numbers bar ν (A) and distributions of fragment masses A, measured for the ternary fission modes with various LCP isotopes, give a valuable hint of the role played by nuclear shell structure in the fission process near scission. Finally, two different hitherto unknown asymmetries in ternary α-particle emission with respect to the fission axis, called the TRI and ROT effect, were studied in fission reactions induced by polarised cold neutrons.

  10. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  11. Metal biosorption equilibria in a ternary system

    SciTech Connect

    Chong, K.H.; Volesky, B.

    1996-03-20

    Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data and with conclusions postulated from the three possible binary subsystems.

  12. Bandgap tunable colloidal Cu-based ternary and quaternary chalcogenide nanosheets via partial cation exchange

    NASA Astrophysics Data System (ADS)

    Ramasamy, Parthiban; Kim, Miri; Ra, Hyun-Soo; Kim, Jinkwon; Lee, Jong-Soo

    2016-04-01

    Copper based ternary and quaternary semiconductor nanostructures are of great interest for the fabrication of low cost photovoltaics. Although well-developed syntheses are available for zero dimensional (0D) nanoparticles, colloidal synthesis of two dimensional (2D) nanosheets remains a big challenge. Here we report, for the first time, a simple and reproducible cation exchange approach for 2D colloidal Cu2GeSe3, Cu2ZnGeSe4 and their alloyed Cu2GeSxSe3-x, Cu2ZnGeSxSe4-x nanosheets using pre-synthesized Cu2xSe nanosheets as a template. A mechanism for the formation of Cu2-xSe nanosheets has been studied in detail. In situ oxidation of Cu+ ions to form a CuSe secondary phase facilitates the formation of Cu2-xSe NSs. The obtained ternary and quaternary nanosheets have average lateral size in micrometers and thickness less than 5 nm. This method is general and can be extended to produce other important ternary semiconductor nanosheets such as CuIn1-xGaxSe2. The optical band gap of these nanosheets is tuned from 1 to 1.48 eV, depending on their composition.Copper based ternary and quaternary semiconductor nanostructures are of great interest for the fabrication of low cost photovoltaics. Although well-developed syntheses are available for zero dimensional (0D) nanoparticles, colloidal synthesis of two dimensional (2D) nanosheets remains a big challenge. Here we report, for the first time, a simple and reproducible cation exchange approach for 2D colloidal Cu2GeSe3, Cu2ZnGeSe4 and their alloyed Cu2GeSxSe3-x, Cu2ZnGeSxSe4-x nanosheets using pre-synthesized Cu2xSe nanosheets as a template. A mechanism for the formation of Cu2-xSe nanosheets has been studied in detail. In situ oxidation of Cu+ ions to form a CuSe secondary phase facilitates the formation of Cu2-xSe NSs. The obtained ternary and quaternary nanosheets have average lateral size in micrometers and thickness less than 5 nm. This method is general and can be extended to produce other important ternary

  13. Thermoelectric materials ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  14. Thermoelectric materials: ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  15. Phase transformations in ternary monotectic aluminum alloys

    NASA Astrophysics Data System (ADS)

    Gröbner, Joachim; Schmid-Fetzer, Rainer

    2005-09-01

    Monotectic aluminum alloys are of interest for the development of new alloys for technological applications such as self-lubricating bearings. In contrast to the well-known binary phase diagrams, many of the ternary systems are not well established. Moreover, in a ternary monotectic alloy one may encounter the four-phase equilibrium L‧+L″+solid1+solid2, whereas in a binary system only a three-phase equilibrium L‧+L″+solid1 is possible. This opens a window for generating entirely new monotectic microstructures. The basis for such developments is the knowledge of the ternary phase diagrams and the conditions under which such four-phase reactions or different extensions of the binary monotectic reactions may form. This work presents a systematic classification of monotectic ternary aluminum alloys, illustrated by real systems. The study employs thermodynamic calculations of the ternary phase diagrams.

  16. Semiconductor Cubing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Through Goddard Space Flight Center and Jet Propulsion Laboratory Small Business Innovation Research contracts, Irvine Sensors developed a three-dimensional memory system for a spaceborne data recorder and other applications for NASA. From these contracts, the company created the Memory Short Stack product, a patented technology for stacking integrated circuits that offers higher processing speeds and levels of integration, and lower power requirements. The product is a three-dimensional semiconductor package in which dozens of integrated circuits are stacked upon each other to form a cube. The technology is being used in various computer and telecommunications applications.

  17. Time-resolved nonlinear optical-holographic techniques for investigation of non-equilibrium carrier dynamics in semiconductors

    NASA Astrophysics Data System (ADS)

    Jarašiūnas, Kestutis

    2011-02-01

    A novel metrological approach bridges a dynamic holography and photoelectrical phenomena in semiconductors for monitoring the temporal and spatial non-equilibrium carrier dynamics. Light interference pattern of two coherent picosecond pulses was used to inject spatially modulated carrier pattern, modulate temporally the complex refractive index of a semiconductor, and thus create a light-induced transient diffraction grating (LITG). Recording of a thin grating at interband carrier generation with subsequent probing of spatial and temporal carrier dynamics by a delayed probe beam allowed investigation of various recombination mechanisms, covering linear, surface-limited, and nonlinear (bimolecular and Auger). Decay of LITG at its various spacings provided either the bipolar carrier mobility or minority one in heavily doped layers, diffusivity of degenerate plasma, as well revealed impact of carrier localization and band gap renormalization on carrier transport. Diffraction on thick Bragg gratings, recorded via deep impurity-assisted carrier generation revealed simultaneous index modulation by free-carriers, space-charge electric field, and recharged deep traps, thus enabling access to photoelectric parameters of the compensating centers. Grating decay in multiple quantum well structures (MQWS) provided carrier and spin relaxation rates, electron mobility, in-plane and cross-well transport. Spatial and temporal carrier dynamics in a wide excitation and temperature range is reviewed in a variety of III-nitride compounds (GaN, InGaN, AlGaN), GaAs, CdTe, InP, SiC, diamond films, and MQWS.

  18. Theory of band gap bowing of disordered substitutional II-VI and III-V semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Mourad, D.; Czycholl, G.

    2012-05-01

    For a wide class of technologically relevant compound III-V and II-VI semiconductor materials AC and BC mixed crystals (alloys) of the type A x B1- x C can be realized. As the electronic properties like the bulk band gap vary continuously with x, any band gap in between that of the pure AC and BC systems can be obtained by choosing the appropriate concentration x, granted that the respective ratio is miscible and thermodynamically stable. In most cases the band gap does not vary linearly with x, but a pronounced bowing behavior as a function of the concentration is observed. In this paper we show that the electronic properties of such A x B1- x C semiconductors and, in particular, the band gap bowing can well be described and understood starting from empirical tight-binding models for the pure AC and BC systems. The electronic properties of the A x B1- x C system can be described by choosing the tight-binding parameters of the AC or BC system with probabilities x and 1 - x, respectively. We demonstrate this by exact diagonalization of finite but large supercells and by means of calculations within the established coherent potential approximation (CPA) We apply this treatment to the II-VI system Cd x Zn1- x Se, to the III-V system In x Ga1- x As and to the III-nitride system Ga x Al1- x N.

  19. Bandgap tunable colloidal Cu-based ternary and quaternary chalcogenide nanosheets via partial cation exchange.

    PubMed

    Ramasamy, Parthiban; Kim, Miri; Ra, Hyun-Soo; Kim, Jinkwon; Lee, Jong-Soo

    2016-04-14

    Copper based ternary and quaternary semiconductor nanostructures are of great interest for the fabrication of low cost photovoltaics. Although well-developed syntheses are available for zero dimensional (0D) nanoparticles, colloidal synthesis of two dimensional (2D) nanosheets remains a big challenge. Here we report, for the first time, a simple and reproducible cation exchange approach for 2D colloidal Cu2GeSe3, Cu2ZnGeSe4 and their alloyed Cu2GeSxSe3-x, Cu2ZnGeSxSe4-x nanosheets using pre-synthesized Cu2xSe nanosheets as a template. A mechanism for the formation of Cu2-xSe nanosheets has been studied in detail. In situ oxidation of Cu(+) ions to form a CuSe secondary phase facilitates the formation of Cu2-xSe NSs. The obtained ternary and quaternary nanosheets have average lateral size in micrometers and thickness less than 5 nm. This method is general and can be extended to produce other important ternary semiconductor nanosheets such as CuIn1-xGaxSe2. The optical band gap of these nanosheets is tuned from 1 to 1.48 eV, depending on their composition. PMID:26744188

  20. Monolithically Integrated Metal/Semiconductor Tunnel Junction Nanowire Light-Emitting Diodes.

    PubMed

    Sadaf, S M; Ra, Y H; Szkopek, T; Mi, Z

    2016-02-10

    We have demonstrated for the first time an n(++)-GaN/Al/p(++)-GaN backward diode, wherein an epitaxial Al layer serves as the tunnel junction. The resulting p-contact free InGaN/GaN nanowire light-emitting diodes (LEDs) exhibited a low turn-on voltage (∼2.9 V), reduced resistance, and enhanced power, compared to nanowire LEDs without the use of Al tunnel junction or with the incorporation of an n(++)-GaN/p(++)-GaN tunnel junction. This unique Al tunnel junction overcomes some of the critical issues related to conventional GaN-based tunnel junction designs, including stress relaxation, wide depletion region, and light absorption, and holds tremendous promise for realizing low-resistivity, high-brightness III-nitride nanowire LEDs in the visible and deep ultraviolet spectral range. Moreover, the demonstration of monolithic integration of metal and semiconductor nanowire heterojunctions provides a seamless platform for realizing a broad range of multifunctional nanoscale electronic and photonic devices. PMID:26812264

  1. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  2. All-optical symmetric ternary logic gate

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  3. Hot Electron Effects in Semiconductors.

    NASA Astrophysics Data System (ADS)

    Moore, James Scott

    The high-field transport of electrons has been calculated for two semiconductor configurations: quasi -two-dimensional and bulk. All calculations are performed by solving the Boltzmann equation, assuming a displaced Maxwellian distribution function. In the case of quasi-two-dimensional semiconductors, this treatment is applied to a <100> inversion layer in silicon. Under a high electric field, energy levels become grouped into subbands, so that motion of carriers perpendicular to the surface becomes quantized; thus, the energy, momentum and population transfer relaxation rates appropriate to the individual levels must be considered in the calculations, along with their relation to velocity overshoot. Previous work was performed under the assumption that intervalley scattering is a local phenomenon, i.e., a function only of electron temperature of the initial valley. In the present work, this assumption has been relaxed, and the intervalley coupling of electron temperature is taken into account. dc and transient response characteristics for both uncoupled and coupled models are performed, and the results are compared. Due to the recent interest in GaAs/Al(,x)Ga(,1 -x)As superlattices, there exists a need for a theory of hot electron transport in these structures. Since GaAs is a polar semiconductor, a theory must first be derived for polar III-V compounds under inversion, the result then being easily extended to superlattices. In this work, such theory is derived but, due to the alignment of the subbands, the simultaneous balance equations cannot be solved numerically with the approach undertaken here (solution of the Boltzmann equation). A theory of transport in bulk III-V compounds is modified by some simplifying approximations to make the theory numerically tractable, this theory then being applied to model bulk III-V compounds (in particular dc and transient response characteristics), along with their ternary and quaternary alloys. These results are found to

  4. Utilizing Energy Transfer in Binary and Ternary Bulk Heterojunction Organic Solar Cells.

    PubMed

    Feron, Krishna; Cave, James M; Thameel, Mahir N; O'Sullivan, Connor; Kroon, Renee; Andersson, Mats R; Zhou, Xiaojing; Fell, Christopher J; Belcher, Warwick J; Walker, Alison B; Dastoor, Paul C

    2016-08-17

    Energy transfer has been identified as an important process in ternary organic solar cells. Here, we develop kinetic Monte Carlo (KMC) models to assess the impact of energy transfer in ternary and binary bulk heterojunction systems. We used fluorescence and absorption spectroscopy to determine the energy disorder and Förster radii for poly(3-hexylthiophene-2,5-diyl), [6,6]-phenyl-C61-butyric acid methyl ester, 4-bis[4-(N,N-diisobutylamino)-2,6-dihydroxyphenyl]squaraine (DIBSq), and poly(2,5-thiophene-alt-4,9-bis(2-hexyldecyl)-4,9-dihydrodithieno[3,2-c:3',2'-h][1,5]naphthyridine-5,10-dione). Heterogeneous energy transfer is found to be crucial in the exciton dissociation process of both binary and ternary organic semiconductor systems. Circumstances favoring energy transfer across interfaces allow relaxation of the electronic energy level requirements, meaning that a cascade structure is not required for efficient ternary organic solar cells. We explain how energy transfer can be exploited to eliminate additional energy losses in ternary bulk heterojunction solar cells, thus increasing their open-circuit voltage without loss in short-circuit current. In particular, we show that it is important that the DIBSq is located at the electron donor-acceptor interface; otherwise charge carriers will be trapped in the DIBSq domain or excitons in the DIBSq domains will not be able to dissociate efficiently at an interface. KMC modeling shows that only small amounts of DIBSq (<5% by weight) are needed to achieve substantial performance improvements due to long-range energy transfer. PMID:27456294

  5. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, Greg W.; Baldasaro, Paul F.; Nichols, Greg J.

    1998-01-01

    A thermophotovoltaic energy conversion device and a method for making the device. The device includes a substrate formed from a bulk single crystal material having a bandgap (E.sub.g) of 0.4 eVternary or quaternary III-V semiconductor active layers.

  6. Bulk single crystal ternary substrates for a thermophotovoltaic energy conversion system

    DOEpatents

    Charache, G.W.; Baldasaro, P.F.; Nichols, G.J.

    1998-06-23

    A thermophotovoltaic energy conversion device and a method for making the device are disclosed. The device includes a substrate formed from a bulk single crystal material having a bandgap (E{sub g}) of 0.4 eV < E{sub g} < 0.7 eV and an emitter fabricated on the substrate formed from one of a p-type or an n-type material. Another thermophotovoltaic energy conversion device includes a host substrate formed from a bulk single crystal material and lattice-matched ternary or quaternary III-V semiconductor active layers. 12 figs.

  7. Electrical transport properties of (BN)-rich hexagonal (BN)C semiconductor alloys

    SciTech Connect

    Uddin, M. R.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.; Ziemer, K. S.

    2014-08-15

    The layer structured hexagonal boron nitride carbon semiconductor alloys, h-(BN)C, offer the unique abilities of bandgap engineering (from 0 for graphite to ∼6.4 eV for h-BN) and electrical conductivity control (from semi-metal for graphite to insulator for undoped h-BN) through alloying and have the potential to complement III-nitride wide bandgap semiconductors and carbon based nanostructured materials. Epilayers of (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys were synthesized by metal-organic chemical vapor deposition (MOCVD) on (0001) sapphire substrates. Hall-effect measurements revealed that homogeneous (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys are naturally n-type. For alloys with x = 0.032, an electron mobility of about 20 cm{sup 2}/Vs at 650 °K was measured. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition and analyze chemical bonding states. Both composition and chemical bonding analysis confirm the formation of alloys. XPS results indicate that the carbon concentration in the alloys increases almost linearly with the flow rate of the carbon precursor (propane (C{sub 3}H{sub 8})) employed during the epilayer growth. XPS chemical bonding analysis showed that these MOCVD grown alloys possess more C-N bonds than C-B bonds, which possibly renders the undoped h-(BN){sub 1-x}(C{sub 2}){sub x} alloys n-type and corroborates the Hall-effect measurement results.

  8. Density Functional Theory of Structural and Electronic Properties of III-N Semiconductors

    SciTech Connect

    Guerel, H. Hakan; Akinci, Oezden; Uenlue, Hilmi

    2010-11-01

    In this wok, we present the density functional theory (DFT) calculations of cubic III-N based semiconductors by using the full potential linear augmented plane-wave method plus local orbitals as implemented in the WIEN2k code. Our aim is to predict the pressure effect on structural and electronic properties of III-N binaries and ternaries. Results are given for structural properties (e.g., lattice constant, elastic constants, bulk modulus, and its pressure derivative) and electronic properties (e.g., band structure, density of states, band gaps and band widths) of GaAs, GaN, AlN, and InN binaries and GaAsN ternaries. The proposed model uses GGA exchange-correlation potential to determine band gaps of semiconductors at {Gamma}, L and X high symmetry points of Brillouin zone. The results are found in good agreement with available experimental data for structural and electronic properties of these semiconductors.

  9. Optically enhanced oxidation of III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Fukuda, Mitsuo; Takahei, Kenichiro

    1985-01-01

    Oxidation of III-V compound semiconductor (110) cleaved surfaces under light irradiation is studied. The light irradiation enhanced the reaction rate of oxidation but the relationship between oxide growth and oxidation time under logarithmic law scarcely changed within this experimental range. The oxidation trend observed under light irradiation is similar to that of thermal oxidation for GaP, GaAs, InP, InAs, InGaAs, and InGaAsP. Semiconductors having As as the V element tend to be easily oxidized, while those of the above mentioned six kinds of materials having Ga as the III element are quickly oxidized in their initial stage. Ternary and quaternary compound semiconductors have less tendency to be oxidized compared to their constituent binary materials. off

  10. Property prediction of new semiconductors by computer modeling and simulation

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Lin, Guo Q.; Zeng, Yingzhi

    2002-11-01

    A new methodology of systematic design of new materials for various applications is presented in this paper. In particular, a large number of candidate compounds that are formed by all possible combinations of the targeted elements in the periodic table are first screened and shortlisted by artificial neural network techniques. Then the quantum mechanics computation is employed to evaluate the promising candidates selected from the first step. Finally experiments are performed to further examine the computation results. In the present work, we apply this methodology to the study of semiconductors of binary (III-V and II-VI) and ternary (I-III-VI2 and II-IV-V2) compounds. Firstly, we systematically study all possible binary and ternary compounds by using pattern recognition and perform prediction of two important properties, namely band gap energy and lattice constant, with the artificial neural network model. Candidate semiconductors are then selected. On the basis of the above study, we perform first principles quantum mechanics computation for some promising II-VI binary candidates. The first principles study of the ternary candidates will be conducted in the near future, and the experiment study of the binary compounds is ongoing. The model predicted new compounds as well as the developed design methodology may be of interest to general materials scientists including these of smart materials research.

  11. Ternary fission induced by polarized neutrons

    NASA Astrophysics Data System (ADS)

    Gönnenwein, Friedrich

    2013-12-01

    Ternary fission of (e,e) U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perpendicular and parallel to the fission axis at the saddle point of fission. Based on theoretical models the spectroscopic properties of the collective transitional states at the saddle point are inferred from experiment.

  12. Optimal Symmetric Ternary Quantum Encryption Schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yu-qi; She, Kun; Huang, Ru-fen; Ouyang, Zhong

    2016-07-01

    In this paper, we present two definitions of the orthogonality and orthogonal rate of an encryption operator, and we provide a verification process for the former. Then, four improved ternary quantum encryption schemes are constructed. Compared with Scheme 1 (see Section 2.3), these four schemes demonstrate significant improvements in term of calculation and execution efficiency. Especially, under the premise of the orthogonal rate ɛ as secure parameter, Scheme 3 (see Section 4.1) shows the highest level of security among them. Through custom interpolation functions, the ternary secret key source, which is composed of the digits 0, 1 and 2, is constructed. Finally, we discuss the security of both the ternary encryption operator and the secret key source, and both of them show a high level of security and high performance in execution efficiency.

  13. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  14. Photoelectrosynthesis at semiconductor electrodes

    SciTech Connect

    Nozik, A. J.

    1980-12-01

    The general principles of photoelectrochemistry and photoelectrosynthesis are reviewed and some new developments in photoelectrosynthesis are discussed. Topics include energetics of semiconductor-electrolyte interfaces(band-edge unpinning); hot carrier injection at illuminated semiconductor-electrolyte junctions; derivatized semiconductor electrodes; particulate photoelectrochemical systems; layered compounds and other new materials; and dye sensitization. (WHK)

  15. Photorefractive Semiconductors and Applications

    NASA Technical Reports Server (NTRS)

    Chen, Li-Jen; Luke, Keung L.

    1993-01-01

    Photorefractive semiconductors are attractive for information processing, becuase of fast material response, compatibility with semiconductor lasers, and availability of cross polarization diffraction for enhancing signal-to-noise ration. This paper presents recent experimental results on information processing using photorefractive GaAs, InP and CdTe, including image processing with semiconductor lasers.

  16. A New Commercializable Route for the Preparation of Single-Source Precursors for Bulk, Thin-Film, and Nanocrystallite I-III-IV Semiconductors

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K.; Jin, Michael H. C.; Harris, Jerry D.; Fanwick, Philip E.; Hepp, Aloysius F.

    2004-01-01

    We report a new simplified synthetic procedure for commercial manufacture of ternary single source precursors (SSP). This new synthetic process has been successfully implemented to fabricate known SSPs on bulk scale and the first liquid SSPs to the semiconductors CuInSe2 and AgIn(x)S(y). Single crystal X-ray determination reveals the first unsolvated ternary AgInS SSP. SSPs prepared via this new route have successfully been used in a spray assisted chemical vapor deposition (CVD) process to deposit polycrystalline thin films, and for preparing ternary nanocrystallites.

  17. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  18. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  19. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  20. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  1. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  2. Does Science Also Prefer a Ternary Pattern?

    ERIC Educational Resources Information Center

    Pogliani, L.; Klein, D. J.; Balaban, A. T.

    2006-01-01

    Through the importance of the number three in our culture and the strange preference for a ternary pattern of our nature one can perceive how and why number theory degraded to numerology. The strong preference of our minds for simple patterns can be read as the key to understanding not only the development of numerology, but also why scientists…

  3. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  4. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  5. Growth mechanism of nanowires: binary and ternary chalcogenides

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Coriell, S. R.; Su, Ching Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-05-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acoustooptical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  6. Phonons and electrons in chalcopyrite semiconductors

    NASA Astrophysics Data System (ADS)

    Cardona, M.; Kremer, R. K.; Lauck, R.; Romero, A. H.; Muñoz, A.; Burger, A.

    2012-12-01

    In recent years the phonons and the electron phonon interaction of binary tetrahedral semiconductors have been profusely investigated by ab initio techniques and compared with experimental results. Of particular interest have been binary compounds in which the cations contain semi-core d-electrons (CuCl, CuI, AgI) which display anomalies related to the semi-core d-states (3dCuCl, 4dAgI). Here we present the corresponding data and anomalies which have been observed in ternary compounds of chalcopyrite structure (e.g. CuGaS2, AgGaX2 (X = S, Se, Te)). We present new ab initio calculations of the phonon dispersion relations of AgGaS2 and compare them with available Raman and IR data. Anomalies in the temperature dependence of the electronic gaps, which have been found in the binary chalcogenides, are also hinted at by the results for the ternary compounds with chalcopyrite structure. In view of the large number of atomic combinations possible for these materials (AgGaS2, AgGaSe2, CuGaTe2, ...) we believe that a detailed investigation of the whole family of chalcopyrites should provide a clear picture of their properties and lattice anomalies.

  7. Design of a novel quantum reversible ternary up-counter

    NASA Astrophysics Data System (ADS)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  8. Cathodoluminescence nano-characterization of semiconductors

    NASA Astrophysics Data System (ADS)

    Edwards, Paul R.; Martin, Robert W.

    2011-06-01

    We give an overview of the use of cathodoluminescence (CL) in scanning electron microscopy (SEM) for the nano-scale characterization of semiconducting materials and devices. We discuss the technical aspects of the measurement, such as factors limiting the spatial resolution and design considerations for efficient collection optics. The advantages of more recent developments in the technique are outlined, including the use of the hyperspectral imaging mode and the combination of CL and other SEM-based measurements. We illustrate these points with examples from our own experience of designing and constructing CL systems and applying the technique to the characterization of III-nitride materials and nanostructures.

  9. The Physics of Semiconductors

    NASA Astrophysics Data System (ADS)

    Grundmann, Marius

    The historic development of semiconductor physics and technology began in the second half of the 19th century. Interesting discussions of the early history of the physics and chemistry of semiconductors can be found in treatises of G. Busch [2] and Handel [3]. The history of semiconductor industry can be followedin the text of Morris [4] and Holbrook et al. [5]. In 1947, the realization of the transistor was the impetus to a fast-paced development that created the electronics and photonics industries. Products founded on the basis of semiconductor devices such as computers (CPUs, memories), optical-storage media (lasers for CD, DVD), communication infrastructure (lasers and photodetectors for optical-fiber technology, high frequency electronics for mobile communication), displays (thin film transistors, LEDs), projection (laser diodes) and general lighting (LEDs) are commonplace. Thus, fundamental research on semiconductors and semiconductor physics and its offspring in the form of devices has contributed largely to the development of modern civilization and culture.

  10. III-V semiconductor solid solution single crystal growth

    NASA Technical Reports Server (NTRS)

    Gertner, E. R.

    1982-01-01

    The feasibility and desirability of space growth of bulk IR semiconductor crystals for use as substrates for epitaxial IR detector material were researched. A III-V ternary compound (GaInSb) and a II-VI binary compound were considered. Vapor epitaxy and quaternary epitaxy techniques were found to be sufficient to permit the use of ground based binary III-V crystals for all major device applications. Float zoning of CdTe was found to be a potentially successful approach to obtaining high quality substrate material, but further experiments were required.

  11. Semiconductor microcavity lasers

    SciTech Connect

    Gourley, P.L.; Wendt, J.R.; Vawter, G.A.; Warren, M.E.; Brennan, T.M.; Hammons, B.E.

    1994-02-01

    New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.

  12. Crystalline ternary rare earth oxide with capacitance equivalent thickness below 1 nm for high-K application

    SciTech Connect

    Laha, Apurba; Bugiel, E.; Osten, H.J.; Fissel, A.

    2006-04-24

    Ternary neodymium-gadolinium oxide (NGO) thin films were grown epitaxially on Si(001) substrates using modified molecular beam epitaxy. The electrical properties of NGO thin films demonstrate that this ternary oxide could be one of the most promising candidates to replace the conventionally used SiO{sub 2} or SiO{sub x}N{sub y} in complementary metal oxide semiconductor devices. The films were characterized with various methods. The capacitance equivalent oxide thickness of 4.5 nm thin films extracted from capacitance-voltage (C-V) characteristics was 0.9 nm. For such films, leakage current density and the density of interface traps were 2.6x10{sup -4} A/cm{sup 2} at vertical bar V{sub g}-V{sub FBV} vertical bar=1 V and 1.4x10{sup 12}/cm{sup 2} eV{sup -1}, respectively.

  13. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  14. Semiconductor bridge (SCB) detonator

    DOEpatents

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  15. Interconnected semiconductor devices

    DOEpatents

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  16. Plasmonic spectral tunability of conductive ternary nitrides

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Bellas, D. V.; Abadias, G.; Lidorikis, E.; Patsalas, P.

    2016-06-01

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as TixTa1-xN, TixZr1-xN, TixAl1-xN, and ZrxTa1-xN share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400-700 nm) and UVA (315-400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  17. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  18. Minimizing shadow losses in III-nitride solar cells

    NASA Astrophysics Data System (ADS)

    Melton, Andrew; Jampana, Balakrishnam; Opila, Robert; Honsberg, Christiana; Jamil, Muhammad; Ferguson, Ian

    2009-08-01

    In this work InGa0.85N p-n homojunction solar cells were grown by MOCVD on GaN/sapphire substrates and fabricated using standard techniques. When illuminated from the backside, these devices showed 65.9% improvement in JSC and 4.4% improvement in VOC as compared to identical illumination from the front. These improvements arise from removal of the losses from electrical contact shading on the front of the devices (11.7% of active area), as well as significant optical absorption by the top current spreading layer. These improvements can likely be further enhanced by utilizing double-side polished wafers, which would eliminate scattering losses on the back surface. In addition to improving electrical characteristics of single cells, backside illumination is necessary for the realization of monolithic tandem InGaN solar cells.

  19. Characterization and Extended Defect Control in III-Nitrides

    NASA Astrophysics Data System (ADS)

    Hussey, Lindsay Katherine

    The origin of inversion domains (IDs) in N-polar AlN grown on sapphire by metalorganic chemical vapor deposition (MOCVD) was studied by a combination of potassium hydroxide (KOH) and Transmission Electron Microscopy (TEM) techniques. It was found that the decomposition of sapphire at the AlN/sapphire interface is encouraged during AlN growth and that AlN grown above decomposed sapphire regions exhibited Alpolarity. Decomposition was found to occur in both Al-polar and N-polar AlN layers grown on sapphire, however, as the decomposition process encouraged Al-polar growth, IDs were only present in N-polar AlN material. The origin of the decomposition process during AlN growth on sapphire is discussed. Dislocation density reduction in N-polar GaN grown on sapphire by MOCVD was achieved for the first time by implementation of the lateral epitaxial overgrowth (LEO). For N-polar GaN LEO, a patterned dielectric mask was deposited on a smooth N-polar GaN template and the template was placed back into the reactor for N-polar GaN regrowth. Dislocations were observed by TEM to be reduced from ˜1010 cm-2 in standard N-polar GaN grown on sapphire to ˜107 cm-2 with the LEO technique. Lateral-to-vertical growth ratios were also determined for a single N-polar GaN LEO growth condition along two crystallographic directions. High Al-content AlGaN layers grown on single crystal AlN were observed by scanning TEM (STEM) to exhibit highly inhomogeneous properties dependent on the surface morphology of the underlying AlN homoepitaxial layer. Ga-rich streaks following the growth front of the AlGaN layer were observed in AlGaN layers grown on step-bunched AlN homoepitaxial layers. Additionally, a thin (˜ 50 nm), Al-rich AlGaN layer between the AlN homoepitaxial layer and the AlGaN film were observed in AlGaN grow on both step-bunched and step meandering AlN homoepitaxial layers. Atomic Force Microscopy (AFM) investigations of thin (< 10 nm) AlGaN on AlN homoepitaxial layers of varying surface morphology indicate relaxation of AlGaN by surface pitting in AlGaN grown on step-bunched and step meandering AlN. AlGaN grown on AlN homoepitaxy exhibiting bi-layer step morphology showed no signs of relaxation by pitting during initial AlGaN growth. These results suggest an influence of AlN homoepitaxial layer surface morphology on the initial strain state, and ultimately the compositional uniformity, of a subsequently deposited AlGaN layer.

  20. Wet Chemical Etching Survey of III-Nitrides

    SciTech Connect

    Abernathy, C.R.; Cho, H.; Hays, D.C.; MacKenzie, J.D.; Pearton, S.J.; Ren, F.; Shul, R.J.; Vartuli, C.B.; Zolper, J.C.

    1999-02-04

    Wet chemical etching of GaN, InN, AlN, InAlN and InGaN was investigated in various acid and base solutions at temperatures up to 75 C. Only KOH-based solutions were found to etch AlN and InAlN. No etchants were found for the other nitrides, emphasizing their extreme lack of chemical reactivity. The native oxide on most of the nitrides could be removed in potassium tetraborate at 75 C, or HCl/H{sub 2}O at 25 C.

  1. Theoretical study of group-III nitride alloys

    SciTech Connect

    Kim, K.; Limpijumnong, S.; Lambrecht, W.R.L.; Segall, B.

    1997-12-31

    Band gap bowing, structural relaxations, and energies of formation were calculated for the three pseudobinary nitride zincblende alloy systems Al-Ga, In-Ga and In-Al using the full-potential linearized muffin-tin orbital method. The cluster expansion and Connolly-Williams approaches were used to relate calculated band structures and energies of formation of ordered compounds to the behavior of disordered alloys. Effects of bond length and volume variation on those properties are discussed. An interpolation formula for the gap of the full pseudoternary Al{sub x}Ga{sub y}In{sub z}N system is proposed and tested by separate calculations. Extension of the results to the wurtzite alloys is discussed.

  2. Growth and Fabrication of III-Nitride Deep Ultraviolet Emitters

    NASA Astrophysics Data System (ADS)

    Tahtamouni, T. M. Al

    2005-03-01

    In recent years, there has been a great effort to develop AlGaN based compact deep ultraviolet (UV) light-emitting diodes (LEDs) (λ< 300 nm) for applications such as bio-chemical agent detection and medical research/health care. To obtain deep UV emission with λ< 300 nm, AlGaN quantum well (QW) based LED structures require an active layer with Al composition higher than 40%. As a result, the alloy composition for p- and n-cladding layers should be more than that of the active layer. The high Al composition introduces dislocations and leads to poor p- and n-type conductivity in the cladding layers, which limits current injection. We report here on the epitaxial growth of deep UV LEDs with operating wavelengths ranging from 300 nm to 270 nm by metal-organic chemical vapor deposition (MOCVD). Our UV LED structure was deposited on AlN/sapphire templates. We have achieved deep UV LEDs with an output power of 1.4 mW at 350 mA dc driving at 280 nm. The use of AlN epilayers as templates to reduce the dislocation density and enhance the LED performance will be discussed. Different device architectures for enhanced LED performances will also be presented.

  3. Impact of point defects on III-nitride tunnel devices

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Darshana; Lyons, John; van de Walle, Chris G.

    Heterostructures using GaN and InGaN are being pursued in designs of tunnel field-effect-transistors (TFETs) to enable low-power switching devices. Point defects and impurities in these heterostructures can adversely affect the performance of these devices through Shockley-Read-Hall (SRH) and Trap-Assisted-Tunneling (TAT) processes. Using first-principles calculations based on a hybrid functional, we calculate the thermodynamic and charge-state switching levels as well as nonradiative recombination rates of point defects and impurities in GaN and InGaN. Gallium vacancies and their complexes, in particular, are found to be potentially detrimental centers. We then investigate how these defects can contribute to SRH and TAT processes in a nitride TFET device. This work was supported by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  4. High pressure phase transition in group III nitrides compounds

    NASA Astrophysics Data System (ADS)

    Soni, Shubhangi; Verma, S.; Kaurav, Netram; Choudhary, K. K.

    2016-05-01

    Using an effective interionic interaction potential (EIOP), the pressure induced structural phase transformation from ZnS-type (B3) to NaCl-type (B1) structure in group III Post-Transition Metal Nitrides [TMN; TM=Ga and Tl] were investigated. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.

  5. Theoretical investigation of extended defects in group-III nitrides

    SciTech Connect

    Wright, A.F.

    1997-12-01

    The authors have investigated two types of extended defects commonly found in AlN, GaN and InN films using density-functional techniques. First, basal-plane stacking faults have been studied for all three compounds. Stacking-fault energies were found to be largest in AlN and smallest in GaN consistent with density-functional results for their wurtzite/zinc-blende energy differences. In addition, the 4H and 6H structures were found to have lower energies than zinc blende for all three compounds. Secondly, the authors have investigated the electronic structure and formation energy for an edge dislocation in AlN. The full-core dislocation structure was found to have a filled electronic level approximately 0.55 eV above the valence-band edge and an empty level 1.4 eV below the conduction-band edge. An open-core structure was found to have filled and empty electronic levels closer to the middle of the energy gap. Formation energies for these two geometries suggest that the full-core structure would be expected to form in p-type material whereas both are expected in n-type material.

  6. Microstructures of mixed group III-nitride epitaxial layers

    NASA Astrophysics Data System (ADS)

    Westmeyer, Andrew Nathan

    InGaN and AlGaN epitaxial layers were deposited by metalorganic chemical vapor deposition on sapphire substrates with GaN buffer layers. For the growth of InGaN at a given temperature, the trimethylgallium flow rate has the greatest influence on the In incorporation, whereas the trimethylindium flow rate has little influence. These effects are attributed to the suppression of In desorption by increasing the growth rate and the saturation of the surface with In adatoms, respectively. If the growth temperature is increased by 2.4°C, then the In content is lowered by 1% for the investigated temperature range of 785--845°C. For the growth of AlGaN, the solid fraction of Al has a sub-linear dependence on the gas composition. This was attributed to the composition pulling effect, in which incoming species are rejected in order to reduce the strain with the underlying buffer layer. A strain analysis was performed on all samples by X-ray diffraction in order to determine the composition and degree of relaxation. These values were compared to those obtained by Rutherford backscattering spectroscopy. By this method the varied reported values for elastic constants were evaluated to ascertain which set provided the best correlation. Transmission electron microscopy was performed. Plan-view images of InGaN contain domains differing in the direction of the modulations. Zone-axis diffraction patterns reveal sidebands adjacent to several Bragg reflections. These observations can be explained by diffraction effects resulting from periodic composition modulations, which are an intermediate stage in the process of phase separation. Since Young's modulus for the nitrides is isotropic in the (0001) plane, no particular direction is favored for the modulations based on strain energy considerations. In the case of AlGaN, periodic composition modulations are observed not in the growth plane (0001) but in the growth direction [0001]. Satellites in diffraction patterns are aligned in this direction. The films exhibit lateral homogeneity due to the high diffusion rates at the growth temperature, but a vertical periodicity due to competition for incorporation between Al and Ga species. The existence of ordering was investigated by both electron and X-ray diffraction, and was not detected in any sample.

  7. Fermi level stabilization energy in group III-nitrides

    SciTech Connect

    Li, S.X.; Yu, K.M.; Wu, J.; Jones, R.E.; Walukiewicz, W.; AgerIII, J.W.; Shan, W.; Haller, E.E.; Lu, Hai; Schaff, William J.

    2005-01-07

    Energetic particle irradiation is used to systematically introduce point defects into In{sub 1-x}Ga{sub x}N alloys over the entire composition range. Three types of energetic particles (electrons, protons, and {sup 4}He{sup +}) are used to produce a displacement damage dose spanning five decades. In InN and In-rich InGaN the free electron concentration increases with increasing irradiation dose but saturates at a sufficiently high dose. The saturation is due to Fermi level pinning at the Fermi Stabilization Energy (E{sub FS}), which is located at 4.9 eV below the vacuum level. Electrochemical capacitance-voltage (ECV) measurements show that the pinning of the surface Fermi energy at E{sub FS} is also responsible for the surface electron accumulation in as-grown InN and In-rich InGaN alloys. The results are in agreement with the amphoteric defect model that predicts that the same type of native defects are responsible for the Fermi level pinning in both cases.

  8. Fermi-level stabilization energy in group III nitrides

    SciTech Connect

    Li, S.X.; Jones, R.E.; Haller, E.E.; Yu, K.M.; Wu, J.; Walukiewicz, W.; Ager, J.W. III; Shan, W.; Lu Hai; Schaff, William J.

    2005-04-15

    Energetic particle irradiation is used to systematically introduce point defects into In{sub 1-x}Ga{sub x}N alloys over the entire composition range. Three types of energetic particles (electrons, protons, and {sup 4}He{sup +}) are used to produce a displacement damage dose spanning five decades. In InN and In-rich InGaN the free electron concentration increases with increasing irradiation dose but saturates at a sufficiently high dose. The saturation is due to Fermi level pinning at the Fermi stabilization energy (E{sub FS}), which is located at 4.9 eV below the vacuum level. Electrochemical capacitance-voltage (ECV) measurements show that the pinning of the surface Fermi energy at E{sub FS} is also responsible for the surface electron accumulation in as-grown InN and In-rich InGaN alloys. The results are in agreement with the amphoteric defect model that predicts that the same type of native defects are responsible for the Fermi level pinning in both cases.

  9. Spin injection into semiconductors

    NASA Astrophysics Data System (ADS)

    Oestreich, M.; Hübner, J.; Hägele, D.; Klar, P. J.; Heimbrodt, W.; Rühle, W. W.; Ashenford, D. E.; Lunn, B.

    1999-03-01

    The injection of spin-polarized electrons is presently one of the major challenges in semiconductor spin electronics. We propose and demonstrate a most efficient spin injection using diluted magnetic semiconductors as spin aligners. Time-resolved photoluminescence with a Cd0.98Mn0.02Te/CdTe structure proves the feasibility of the spin-alignment mechanism.

  10. Templated growth of II-VI semiconductor optical fiber devices and steps towards infrared fiber lasers

    NASA Astrophysics Data System (ADS)

    Sazio, Pier J. A.; Sparks, Justin R.; He, Rongrui; Krishnamurthi, Mahesh; Fitzgibbons, Thomas C.; Chaudhuri, Subhasis; Baril, Neil F.; Peacock, Anna C.; Healy, Noel; Gopalan, Venkatraman; Badding, John V.

    2015-02-01

    ZnSe and other zinc chalcogenide semiconductor materials can be doped with divalent transition metal ions to create a mid-IR laser gain medium with active function in the wavelength range 2 - 5 microns and potentially beyond using frequency conversion. As a step towards fiberized laser devices, we have manufactured ZnSe semiconductor fiber waveguides with low (less than 1dB/cm at 1550nm) optical losses, as well as more complex ternary alloys with ZnSxSe(1-x) stoichiometry to potentially allow for annular heterostructures with effective and low order mode corecladding waveguiding.

  11. Electrochemical photovoltaic cell having ternary alloy film

    DOEpatents

    Russak, Michael A.

    1984-01-01

    A thin film compound semiconductor electrode comprising CdSe.sub.1-x Te.sub.x (0.ltoreq.x.ltoreq.1) is deposited on a transparent conductive substrate. An electrolyte contacts the film to form a photoactive site. The semiconductor material has a narrow energy bandgap permitting high efficiency for light conversion. The film may be fabricated by: (1) co-evaporation of two II-VI group compounds with a common cation, or (2) evaporation of three elements, concurrenty.

  12. Balanced ternary addition using a gated silicon nanowire

    NASA Astrophysics Data System (ADS)

    Mol, J. A.; van der Heijden, J.; Verduijn, J.; Klein, M.; Remacle, F.; Rogge, S.

    2011-12-01

    Ternary logic has the lowest cost of complexity, here, we demonstrate a CMOS hardware implementation of a ternary adder using a silicon metal-on-insulator single electron transistor. Gate dependent rectifying behavior of a single electron transistor (SET) results in a robust three-valued output as a function of the potential of the single electron transistor island. Mapping logical, ternary inputs to the three gates controlling the potential of the single electron transistor island allows us to perform complex, inherently ternary operations, on a single transistor.

  13. Polytypic Nanocrystals of Cu-Based Ternary Chalcogenides: Colloidal Synthesis and Photoelectrochemical Properties.

    PubMed

    Wu, Liang; Chen, Shi-You; Fan, Feng-Jia; Zhuang, Tao-Tao; Dai, Chen-Min; Yu, Shu-Hong

    2016-05-01

    Heterocrystalline polytype nanostructured semiconductors have been attracting more and more attention in recent years due to their novel structures and special interfaces. Up to now, controlled polytypic nanostructures are mostly realized in II-VI and III-V semiconductors. Herein, we report the synthesis and photoelectrochemical properties of Cu-based ternary I-III-VI2 chalcogenide polytypic nanocrystals, with a focus on polytypic CuInS2 (CIS), CuInSe2 (CISe), and CuIn(S0.5Se0.5)2 alloy nanocrystals. Each obtained polytypic nanocrystal is constructed with a wurtzite hexagonal column and a zinc blende/chalcopyrite cusp, regardless of the S/Se ratio. The growth mechanisms of polytypic CIS and CISe nanocrystals have been studied by time-dependent experiments. The polytypic nanocrystals are solution-deposited on indium-tin oxide glass substrate and used as a photoelectrode, thus showing stable photoelectrochemical activity in aqueous solution. Density functional theory calculation was used to study the electronic structure and the band gap alignment. This versatile synthetic method provides a new route for synthesis of novel polytypic nanostructured semiconductors with unique properties. PMID:27063512

  14. Semiconductor materials: From gemstone to semiconductor

    NASA Astrophysics Data System (ADS)

    Nebel, Christoph E.

    2003-07-01

    For diamond to be a viable semiconductor it must be possible to change its conductivity by adding impurities - known as dopants. With the discovery of a new dopant that generates electron conductivity at room temperature, diamond emerges as an electronic-grade material.

  15. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.

    1982-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  16. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  17. Neutron Damage and MAX Phase Ternary Compounds

    SciTech Connect

    Barsoum, Michael; Hoffman, Elizabeth; Sindelar, Robert; Garcua-Duaz, Brenda; Kohse, Gordon

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  18. Ternary logic and mass quantum numbers

    SciTech Connect

    Sheppeard, M. D.

    2010-06-15

    Koide's prediction of the tau mass may be formulated as a condition on the three eigenvalues of a quantum Fourier series, using simple parameters, and similar triplets have been found for neutrino and hadron masses [2]. Assuming these parameters arise from quantum gravity, one would like to understand them from the more abstract context of category theory. In particular, whereas the logic of lepton spin is a linear analogue of the ordinary Boolean logic of the category of sets, mass triplets suggest an analogous ternary logic, requiring higher dimensional categorical structures.

  19. Ternary and Quaternary Composition Diagrams: An Overview of the Subject.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1983-01-01

    Reviews graphical methods for representing ternary and quaternary systems, focusing on use of triangular composition diagrams. Examines some of the relevant geometry of triangles in general, showing that right isosceles triangles possess some very advantageous features for representing ternary systems. (JN)

  20. Normal state properties of the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.

    1978-01-01

    By making a large number of normal state and superconducting properties measurements, all on the same ternary molybdenum sulfide samples, we obtain values for Fermi surface and superconducting parameters. From these we conclude that sputtered ternary molybdenum sulfides are not completely in the dirty superconductor limit, and that they are d-band metals with a high electron carrier density.

  1. Electronic structure and electrical transport in ternary Al-Mg-B films prepared by magnetron sputtering

    SciTech Connect

    Yan, C.; Qian, J. C.; He, B.; Ng, T. W.; Zhang, W. J.; Bello, I.; Jha, S. K.; Zhou, Z. F.; Li, K. Y.; Klemberg-Sapieha, J. E.; Martinu, L.

    2013-03-25

    Nanostructured ternary Al-Mg-B films possess high hardness and corrosion resistance. In the present work, we study their electronic structure and electrical transport. The films exhibit semiconducting characteristics with an indirect optical-bandgap of 0.50 eV, as deduced from the Tauc plots, and a semiconductor behavior with a Fermi level of {approx}0.24 eV below the conduction band. Four-probe and Hall measurements indicated a high electrical conductivity and p-type carrier mobility, suggesting that the electrical transport is mainly due to hole conduction. Their electrical properties are explained in terms of the film nanocomposite microstructure consisting of an amorphous B-rich matrix containing AlMgB{sub 14} nanoparticles.

  2. Isotopically controlled semiconductors

    SciTech Connect

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  3. Silicate formation and thermal stability of ternary rare earth oxides as high-k dielectrics

    SciTech Connect

    Elshocht, S. van; Adelmann, C.; Conard, T.; Delabie, A.; Franquet, A.; Nyns, L.; Richard, O.; Lehnen, P.; Swerts, J.; Gendt, S. de

    2008-07-15

    Hf-based dielectrics are currently being introduced into complementary metal oxide semiconductor transistors as replacement for SiON to limit gate leakage current densities. Alternative materials such as rare earth based dielectrics are of interest to obtain proper threshold voltages as well as to engineer a material with a high thermal stability. The authors have studied rare earth based dielectrics such as Dy{sub 2}O{sub 3}, DyHfO{sub x}, DyScO{sub x}, La{sub 2}O{sub 3}, HfLaO{sub x}, and LaAlO{sub x} by means of ellipsometry, time of flight secondary ion mass spectroscopy x-ray diffraction, and x-ray photoelectron spectroscopy. The authors show that ellipsometry is an easy and powerful tool to study silicate formation. For ternary rare earth oxides, this behavior is heavily dependent on the composition of the deposited layer and demonstrates a nonlinear dependence. The system evolves to a stable composition that is controlled by the thermal budget and the rare earth content of the layer. It is shown that silicate formation can lead to a severe overestimation of the thermal stability of ternary rare earth oxides.

  4. Structure, electronic, mechanical and optical properties of ternary YAl3C3 carbide

    NASA Astrophysics Data System (ADS)

    Hussain, Altaf; Javed, Athar; Mehmood, Salman; Rasool, M. Nasir; Khan, Muhammad Azhar; Iqbal, Faisal

    2016-05-01

    The electronic structure, mechanical and optical properties of ternary yttrium aluminum carbide (YAl3C3) has been studied by first principles approach. The crystal structure and elastic properties are studied by using Vienna ab initio simulation package (VASP). An orthogonalized linear combination of atomic orbitals (OLCAO) method based on the density functional theory (DFT) is implemented to elucidate the electronic structure and optical properties of ternary YAl3C3 carbide. The YAl3C3 carbide exhibits a narrow indirect band gap, Eg=0.12 eV which shows its poor metallic and/or semiconductor behavior. The effective charge (Q*) calculation reveals more charge transfer from Al-sites as compared to Y-sites which indicates dominant ionic character of Al-sites. The analysis of structure and bond order (BO) calculations show that the Al-C bonds in the basal plane are much stronger as compared to Al-C bonds along the c-axis. The Al-C bonds lying in the basal plane have main contribution into the overall stiffness of YAl3C3 carbide. The effective mass of charge carriers (electrons and holes) and inter-band optical properties (complex dielectric function and optical conductivity) are also studied which show high degree of anisotropy in YAl3C3.

  5. Equal area rule methods for ternary systems

    SciTech Connect

    Shyu, G.S.; Hanif, N.S.M.; Alvarado, J.F.J.; Hall, K.R.; Eubank, P.T.

    1995-12-01

    The phase equilibrium behavior of fluid mixtures is an important design consideration for both chemical processes and oil production. Eubank and Hall have recently shown the equal area rule (EAR) applies to the composition derivative of the Gibbs energy of a binary system at fixed pressure and temperature regardless of derivative continuity. A sufficient condition for equilibria, EAR is faster and simpler than either the familiar tangent-line method or the area method of Eubank et al. Here, the authors show that EAR can be extended to ternary systems exhibiting one, two, or three phases at equilibrium. A single directional vector is searched in composition space; at equilibrium, this vector is the familiar tie line. A sensitive criterion for equilibrium under EAR is equality of orthogonal derivatives such as ({partial_derivative}g/{partial_derivative}x{sub 1}){sub x{sub 2}P,T} at the end points ({alpha} and {beta}), where g {equivalent_to} ({Delta}{sub m}G/RT). Repeated use of the binary algorithm published in the first reference allows rapid, simple solution of ternary problems, even with hand-held calculations for cases where the background model is simple (e.g., activity coefficient models) and the derivative continuous.

  6. Symmetric weak ternary quantum homomorphic encryption schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  7. The superconductivity of certain ternary molybdenum compounds

    NASA Technical Reports Server (NTRS)

    Odermatt, R.

    1978-01-01

    The objectives of this work were to measure the superconductivity and critical fields of (Cu1.5Mo4.5), (SmMo5S6), and (Pb0.9Mo5.1S6) in order to reproduce the published results, and by introduction of magnetic impurities into these semiconductors, observe the compensation effect.

  8. Photoelectrochemical cells based on ternary compounds CuIn{sub 2n+1}Se{sub 3n+2} (n = 3-6)

    SciTech Connect

    Rud, V. Yu. Rud, Yu. V.; Bodnar, I. V.; Gorbachev, D. V.; Ushakova, T. N.

    2009-03-15

    Single crystals of ternary CuIn{sub 2n+1}Se{sub 3n+2} semiconductors with the composition index n = 3, 5, 6 were grown for the first time using the direct crystallization method. It was shown that these crystals have hexagonal symmetry and close unit cell parameters. Photoelectrochemical cells based on CuIn{sub 2n+1}Se{sub 3n+2} and In{sub 2}Se{sub 3} single crystals were fabricated. Their photosensitivity spectra were measured for the first time, which were used to determine the nature of interband transitions and the band gap. The weak dependence of the parameters of the band's spectrum and unit cell of these semiconductors at n {>=} 2 was attributed to the features of the interatomic interaction in such phases. It was concluded that new CuIn{sub 2n+1}Se{sub 3n+2} semiconductors can be used in broadband photoconverters of optical radiations.

  9. [Construction of Three-Dimensional Isobologram for Ternary Pollutant Mixtures].

    PubMed

    2015-12-01

    Tongji University, Shanghai 200092, China) Isobolographic analysis was widely used in the interaction assessment of binary mixtures. However, how to construct a three-dimensional (3D) isobologram for the assessment of toxicity interaction within ternary mixtures is still not reported up to date. The main purpose of this paper is to develop a 3D isobologram where the relative concentrations of three components are acted as three coordinate axes in 3D space to examine the toxicity interaction within ternary mixtures. Taking six commonly used pesticides in China, including three herbicides (2, 4-D, desmetryne and simetryn) and three insecticides ( dimethoate, imidacloprid and propoxur) as the mixture components, the uniform design ray procedure (UD-Ray) was used to rationally design the concentration composition of various components in the ternary mixtures so that effectively and comprehensively reflected the variety of actual environmental concentrations. The luminescent inhibition toxicities of single pesticides and their ternary mixtures to Vibrio fischeri at various concentration levels were determined by the microplate toxicity analysis. Selecting concentration addition (CA) as the addition reference, 3D isobolograms were constructed to study the toxicity interactions of various ternary mixtures. The results showed that the 3D isobologram could clearly and directly exhibit the toxicity interactions of ternary mixtures, and extend the use of isobolographic analysis into the ternary mixtures. PMID:27011996

  10. Method of doping a semiconductor

    DOEpatents

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  11. Nucleation and interfacial adsorption in ternary systems.

    PubMed

    Philippe, T

    2015-03-01

    Nucleation is studied in incompressible ternary fluids by examining the topology of the overall landscape of the energy surface. Minimum free energy paths for nucleation (MFEPs) of a single nucleus in an infinite matrix are computed with the string method in the framework of the continuum theory of nucleation for the regular solution. Properties of the critical nucleus are compared with the predictions of the classical nucleation theory. MFEPs are found to exhibit complex nucleation pathways with non-monotonic variations of compositions in the interfacial region, specifically adsorption of a component. In the symmetric regular solution, the minority component is found to segregate at the interface during nucleation with a concomitant depletion of the nucleus core, resulting in unpredicted partition of the non-selective component. Despite increasing the gradient energy, such inhomogeneity in composition is shown to lower the nucleation barrier. PMID:25747088

  12. True ternary fission of superheavy nuclei

    SciTech Connect

    Zagrebaev, V. I.; Karpov, A. V.; Greiner, Walter

    2010-04-15

    True ternary fission with formation of a heavy third fragment is quite possible for superheavy nuclei because of the strong shell effects leading to a three-body clusterization with the two doubly magic tinlike cores. The simplest way to discover this phenomenon in the decay of excited superheavy nuclei is a detection of two tinlike clusters with appropriate kinematics in low-energy collisions of medium-mass nuclei with actinide targets. The three-body quasi-fission process could be even more pronounced for giant nuclear systems formed in collisions of heavy actinide nuclei. In this case a three-body clusterization might be proved experimentally by the detection of two coincident leadlike fragments in low-energy U + U collisions.

  13. Photoluminescence quantum efficiency of various ternary II VI semiconductor solid solutions

    NASA Astrophysics Data System (ADS)

    Westphäling, R.; Bauer, S.; Klingshirn, C.; Reznitstsky, A.; Verbin, S.

    1998-02-01

    As a result of the spatial localization of excitons in II-VI mixed crystals the external luminescence quantum efficiency η lum is expected to be remarkably higher than in the corresponding binary compounds. To investigate this assumption we built a new experimental setup with a miniature integrating sphere fitted into a cryostat. At low temperatures in the binary systems CdS and CdSe we always found η lum ⩽ 25% in the main luminescence bands (arising from bound excitons (D 0X, A 0X) and donor—acceptor pair recombination). For the free-exciton luminescence η lum was more than two orders of magnitude less. In contrast, CdS 1- xSe x mixed crystals show η lum up to 70% in the luminescence from localized states, indicating that the nonradiative recombination is strongly suppressed for localized excitons. Other II-VI alloys (ZnSe 1- xTe x Zn 1- xCd xS and Zn 1- xCd xSe) show partly considerably lower values for η lum. The temperature dependence of η lum gives information about various activation processes to nonradiative recombination channels.

  14. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Cushman, Paula P.

    1997-01-01

    Preliminary definition of all of the necessary materials, labor, services, and facilities necessary to provide science requirement definition, initiate hardware development activities, and provide an update flight program proposal consistent with the NRA selection letter. The major tasks identified in this SOW are in the general category of science requirements determination, instrument definition, and updated flight program proposal. The Contractor shall define preliminary management, technical and integration requirements for the program, including improved cost/schedule estimates. The Contractor shall identify new technology requirements, define experiment accommodations and operational requirements and negotiate procurement of any long lead items, if required, with the government.

  15. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    1997-01-01

    Preliminary definition of all of the necessary materials, labor, services, and facilities necessary to provide science requirement definition, initiate hardware development activities, and provide an updated flight program proposal consistent with the NRA selection letter. The major tasks identified in this SOW are in the general category of science requirements determination, instrument definition, and updated flight program proposal. The Contractor shall define preliminary management, technical and integration requirements for the program, including improved cost/schedule estimates. The Contractor shall identify new technology requirements, define experiment accommodations and operational requirements and negotiate procurement of any long lead items, if required, with the government.

  16. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  17. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  18. Designing thin film materials — Ternary borides from first principles

    PubMed Central

    Euchner, H.; Mayrhofer, P.H.

    2015-01-01

    Exploiting the mechanisms responsible for the exceptional properties of aluminum based nitride coatings, we apply ab initio calculations to develop a recipe for designing functional thin film materials based on ternary diborides. The combination of binary diborides, preferring different structure types, results in supersaturated metastable ternary systems with potential for phase transformation induced effects. For the exemplary cases of MxW1 − xB2 (with M = Al, Ti, V) we show by detailed ab initio calculations that the respective ternary solid solutions are likely to be experimentally accessible by modern depositions techniques. PMID:26082562

  19. Superconducting state parameters of ternary amorphous superconductors

    NASA Astrophysics Data System (ADS)

    Vora, Aditya M.

    2008-11-01

    The theoretical investigations of the superconducting state parameters (SSP) viz. electron-phonon coupling strength λ, Coulomb pseudopotential μ∗, transition temperature TC, isotope effect exponent α and effective interaction strength N0V of five Nb xTa yMo z ( x = 0.15, 0.30, 0.30, 0.40, 0.45; y = 0.15, 0.30, 0.30, 0.40, 0.45 and z = 0.10, 0.30, 0.30, 0.40, 0.70) ternary amorphous superconductors viz. Nb 0.45Ta 0.45Mo 0.10, Nb 0.30Ta 0.40Mo 0.30, Nb 0.40Ta 0.30Mo 0.30, Nb 0.30Ta 0.30Mo 0.40 and Nb 0.15Ta 0.15Mo 0.70 have been reported for the first time using Ashcroft’s empty core (EMC) model potential. Five local field correction functions proposed by Hartree (H), Taylor (T), Ichimaru-Utsumi (IU), Farid et al. (F) and Sarkar et al. (S) are used in the present investigation to study the screening influence on the aforesaid properties. The TC obtained from Hartree (H) local field correction function are found an excellent agreement with available theoretical data. Quadratic TC equation has been proposed, which provide successfully the TC values of ternary amorphous alloys under consideration. Also, the present results are found in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the superconductors.

  20. GUARD RING SEMICONDUCTOR JUNCTION

    DOEpatents

    Goulding, F.S.; Hansen, W.L.

    1963-12-01

    A semiconductor diode having a very low noise characteristic when used under reverse bias is described. Surface leakage currents, which in conventional diodes greatly contribute to noise, are prevented from mixing with the desired signal currents. A p-n junction is formed with a thin layer of heavily doped semiconductor material disposed on a lightly doped, physically thick base material. An annular groove cuts through the thin layer and into the base for a short distance, dividing the thin layer into a peripheral guard ring that encircles the central region. Noise signal currents are shunted through the guard ring, leaving the central region free from such currents. (AEC)

  1. Superconductivity in doped semiconductors

    NASA Astrophysics Data System (ADS)

    Bustarret, E.

    2015-07-01

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  2. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  3. Positron annihilation lifetime study of interfaces in ternary polymer blends

    NASA Astrophysics Data System (ADS)

    Meghala, D.; Ramya, P.; Pasang, T.; Raj, J. M.; Ranganathaiah, C.; Williams, J. F.

    2013-06-01

    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (αij) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, αeff, was introduced to predict the overall miscibility of ternary blends.

  4. Amorphous semiconductor solar cell

    DOEpatents

    Dalal, Vikram L.

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  5. Kansas Advanced Semiconductor Project

    SciTech Connect

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  6. Chemically Derivatized Semiconductor Photoelectrodes.

    ERIC Educational Resources Information Center

    Wrighton, Mark S.

    1983-01-01

    Deliberate modification of semiconductor photoelectrodes to improve durability and enhance rate of desirable interfacial redox processes is discussed for a variety of systems. Modification with molecular-based systems or with metals/metal oxides yields results indicating an important role for surface modification in devices for fundamental study…

  7. Physics of Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Brütting, Wolfgang

    2004-05-01

    Organic semiconductors are of steadily growing interest as active components in electronics and optoelectronics. Due to their flexibility, low cost and ease-of-production they represent a valid alternative to conventional inorganic semiconductor technology in a number of applications, such as flat panel displays and illumination, plastic integrated circuits or solar energy conversion. Although first commercial applications of this technology are being realized nowadays, there is still the need for a deeper scientific understanding in order to achieve optimum device performance.This special issue of physica status solidi (a) tries to give an overview of our present-day knowledge of the physics behind organic semiconductor devices. Contributions from 17 international research groups cover various aspects of this field ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in different devices like organic field-effect transistors, photovoltaic cells and organic light-emitting diodes.Putting together such a special issue one soon realizes that it is simply impossible to fully cover the whole area of organic semiconductors. Nevertheless, we hope that the reader will find the collection of topics in this issue useful for getting an up-to-date review of a field which is still developing very dynamically.

  8. Thermodynamic Reassessment of the Nd-Fe-B Ternary System

    NASA Astrophysics Data System (ADS)

    Zhou, G. J.; Luo, Y.; Zhou, Y.

    2016-01-01

    The Nd-B binary system and Nd-Fe-B ternary system were thermodynamically reassessed with the aim of obtaining more reasonable thermodynamic parameters and more accurate phase relations. Based on the metastable experimental information, a reasonable, self-consistent, and comprehensive thermodynamic description of the Nd-Fe-B ternary system considering the metastable phases Fe3B, Fe23Nd2B3, and Fe17Nd2B has been developed.

  9. Ion distribution preferences in ternary crystals ZnxCd1-xTe, Zn1-xHgxTe and Cd1-xHgxTe

    NASA Astrophysics Data System (ADS)

    Robouch, B. V.; Kutcherenko, I. V.; Cestelli Guidi, M.; Kisiel, A.; Marcelli, A.; Robouch, P.; Piccinini, M.; Nucara, A.; Triboulet, R.; Burattini, E.; Cebulski, J.; Sheregii, E. M.; Polit, J.

    2011-11-01

    Similar ternary semiconductors are sometimes associated with widely different structures characterized by different site occupation preferences. We have used far-infrared (FIR) spectra to determine the site occupation preference coefficients for three ternary semiconductor alloys: ZnCdTe, ZnHgTe and CdHgTe and, in the case of ZnHgTe, have validated it by X-ray absorption fine structure (EXAFS) analysis. While ZnCdTe spectra exhibit the canonical configuration with eight phonon lines free of vibrational defect lines and only a slight departure from a random ion distribution, CdHgTe spectra show the eight canonical phonon modes plus an additional vibrational defect line and constant preference coefficients. In contrast, two defect lines and only four modes characterize ZnHgTe spectra, as extreme preferences prevent the formation of two of the five expected tetrahedral configuration arrangements. Moreover, for this system, comparison with EXAFS data points out the vibrational nature of both the extra lines. The analysis clearly shows that assuming a Bernoulli distribution of the component configurations of semiconductors may lead to wrong assessments of the evolution of its properties with relative content.

  10. New Layered Ternary Transition-Metal Tellurides

    NASA Astrophysics Data System (ADS)

    Mar, Arthur

    Several new ternary transition-metal tellurides, a class of compounds hitherto largely unexplored, have been synthesized and characterized. These are layered materials whose structures have been determined by single -crystal X-ray diffraction methods. The successful preparation of the compound TaPtTe_5 was crucial in developing an understanding of the MM'Te_5 (M = Nb, Ta; M' = Ni, Pd, Pt) series of compounds, which adopt either of two possible closely-related layered structures. Interestingly, the compound TaPdTe _5 remains unknown. Instead, the compound Ta_4Pd_3Te _{16} has been prepared. Its structure is closely related to that of the previously prepared compound Ta_3Pd _3Te_{14}. The physical properties of these compounds have been measured and correlated with the metal substitutions and interlayer separations. A new series of compounds, MM'Te _4 (M = Nb, Ta; M' = Ru, Os, Rh, Ir), has been discovered. The structure of NbIrTe_4 serves as a prototype: it is an ordered variant of the binary telluride WTe_2. Electronic band-structure calculations have been performed in order to rationalize the trends in metal-metal and tellurium -tellurium bonding observed in WTe_2 and the MM'Te_4 phases. Extension of these studies to include main-group metals has resulted in the synthesis of the new layered ternary germanium tellurides TiGeTe_6, ZrGeTe_4 , and HfGeTe_4. Because germanium can behave ambiguously in its role as a metalloid element, it serves as an anion by capping the metal-centered trigonal prisms and also as a cation in being coordinated in turn by other tellurium atoms in a trigonal pyramidal fashion. Structural relationships among these compounds are illustrated through the use of bicapped trigonal prisms and trigonal pyramids as the basic structural building blocks. The electrical and magnetic properties of these compounds have been measured. Insight into the unusual bonding and physical properties of these germanium-containing compounds has been gained through

  11. Pattern selection in ternary mushy layers

    NASA Astrophysics Data System (ADS)

    Guba, Peter; Anderson, Daniel

    2015-11-01

    We consider finite-amplitude convection in a mushy layer during the primary solidification of a ternary alloy. A previous linear theory identified, for the case of vanishing latent heat, solute rejection and background solidification, a direct mode of convective instability when all the individual stratifying agencies (thermal and two solutal) were statically stabilizing. The physical mechanism behind this instability was attributed to the local-phase-change effect on the net solute balance through the liquid-phase solutal diffusivity. A weakly nonlinear development of this instability is investigated in detail. We examine the stability of two-dimensional roll, and three-dimensional square and hexagonal convection patterns. The amplitude evolution equations governing roll/square and roll/hexagon competition are derived. We find that any of rolls, squares or hexagons can be nonlinearly stable, depending on the relative importance of a number of physical effects as reflected in the coefficients of the amplitude equations. The results for a special case are found to isolate a purely double-diffusive phase-change mechanism of pattern selection. Subcritical behaviour is identified inside the domain of individual static stability.

  12. Lunar granites with unique ternary feldspars

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Marvin, U. B.; Bower, J. F.

    1975-01-01

    An unusually high concentration of granitic fragments, with textures ranging from holocrystalline to glassy, occurs throughout Boulder 1, a complex breccia of highland rocks from Apollo 17, Station 2. Among the minerals included in the granites are enigmatic K-Ca-rich feldspars that fall in the forbidden region of the ternary diagram. The great variability in chemistry and texture is probably the result of impact degradation and melting of a granitic source-rock. Studies of the breccia matrix suggest that this original granitic source-rock may have contained more pyroxenes and phosphates than most of the present clasts contain. Petrographic observations on Apollo 15 KREEP basalts indicate that granitic liquids may be produced by differentiation without immiscibility, and the association of the granites with KREEP-rich fragments in the boulder suggests that the granites represent a residual liquid from the plutonic fractional crystallization of a KREEP-rich magma. Boulder 1 is unique among Apollo 17 samples in its silica-KREEP-rich composition. We conclude that the boulder represents a source-rock unlike the bedrock of South Massif.

  13. Semiconductor radiation detector

    DOEpatents

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  14. Doped semiconductor nanocrystal junctions

    NASA Astrophysics Data System (ADS)

    Borowik, Ł.; Nguyen-Tran, T.; Roca i Cabarrocas, P.; Mélin, T.

    2013-11-01

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (ND≈1020-1021cm-3) silicon nanocrystals (NCs) in the 2-50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as ND-1/3, and depleted charge linearly increasing with the NC diameter and varying as ND1/3. We thus establish a "nanocrystal counterpart" of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  15. Light amplification using semiconductors

    SciTech Connect

    Dupuis, R.D.

    1987-06-01

    During the summer of 1953, John von Neumann discussed his ideas concerning light amplification using semiconductors with Edward Teller. In September of that year, von Neumann sent a manuscript containing his ideas and calculations on this subject to Teller for his comments. To the best of our knowledge, von Neumann did not take time to work further on these ideas, and the manuscript remained unpublished. These previously unpublished writings of John von Neumann on the subject of light amplification in semiconductors are printed as a service to the laser community. While von Neumann's original manuscript and his letter to Teller are available to anyone who visits the Library of Congress, it is much more convenient to have this paper appear in an archival journal.

  16. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  17. Tunable semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)

    2006-01-01

    Tunable semiconductor lasers are disclosed requiring minimized coupling regions. Multiple laser embodiments employ ring resonators or ring resonator pairs using only a single coupling region with the gain medium are detailed. Tuning can be performed by changing the phase of the coupling coefficient between the gain medium and a ring resonator of the laser. Another embodiment provides a tunable laser including two Mach-Zehnder interferometers in series and a reflector coupled to a gain medium.

  18. Semiconductor Ion Implanters

    SciTech Connect

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  19. Semiconductor Ion Implanters

    NASA Astrophysics Data System (ADS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-06-01

    In 1953 the Raytheon CK722 transistor was priced at 7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at 6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing `only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around 2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  20. The optical spectrum of ternary alloy BBi1‑xAsx

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.; Aslan, M.; Ozcan, M. H.; Rahnamaye Aliabad, H. A.

    2016-06-01

    Among the III–V semiconductors, boron BBi and BAs as well as their alloys have attracted both scientific and technological interest in recent years. We present a calculation of the structural, electronic and optical properties of ternary alloy BBi1‑xAsx by means of the WIEN2k software package. The exchange–correlation potential is treated by the generalized gradient approximation (GGA) within the schema of Wu and Cohen. Also, we have used the modified Becke–Johnson (mBJ) formalism to improve the band gap results. All the calculations have been performed after geometry optimization. In this study, we have investigated structural properties such as the lattice constant (a0), bulk modulus (B0) and its pressure derivative (B‧), and calculated the electronic band structures of the studied materials. Accurate calculation of linear optical properties, such as real (ε 1) and imaginary (ε 2) dielectric functions, reflectivity (R), electron energy loss spectrum, absorption coefficient (α), refractive index (n) and sum rule (Neff) are investigated. Our obtained results for studied binary compounds, BBi and BAs, fairly coincide with other theoretical calculations and experimental measurements. According to the best of our knowledge, no experimental or theoretical data are presently available for the studied ternary alloy BBi1‑xAsx (0 < x < 1). The role of electronic band structure calculation with regards to the linear optical properties of BBi1‑xAsx is discussed. The effect of the spin–orbit interaction (SOI) is also investigated and found to be quite small.

  1. Photoelectrochemical salt water splitting using ternary silver-tin-selenide photoelectrodes

    NASA Astrophysics Data System (ADS)

    Cheng, Kong-Wei; Wu, Yu-Hsiang; Chiu, Ting-Hsuan

    2016-03-01

    Ternary AgSnSe2 and Ag8SnSe6 semiconductor photoelectrodes are prepared on various substrates via the selenization of thermally evaporation of silver-tin metal precursors. The structural, optical and electrical properties of ternary AgSnSe2 and Ag8SnSe6 samples are investigated as a function of the [Ag]/[Ag + Sn] molar ratio in the metal precursors. X-ray diffraction patterns of samples show that the phases of samples change from cubic AgSnSe2 to cubic Ag8SnSe6 phase at a selenization temperature of 410 °C when the molar ratio of [Ag]/[Ag + Sn] in silver-tin metal precursors increase from 0.51 to 0.68. The images obtained from a field-emission scanning electron microscopy show that the surface microstructures of samples change from plate-like microstructures with some pinholes to polygonal microstructures with increasing [Ag]/[Ag + Sn] molar ratios in samples. The energy bang gaps, carrier concentrations and mobilities of the samples are in the ranges of 0.86-1.19 eV, 1.27 × 1011-2.39 × 1012 cm-3 and 238-655 cm2 V-1 s-1, respectively. The highest photo-enhanced current densities of the samples in aqueous Na2S + K2SO3 and NaCl solutions are 3.34 and 0.61 mA cm-2 at an applied voltage of 0 and + 0.4 V vs. an Ag/AgCl electrode under 100 mW cm-2 light illumination from a Xe lamp source, respectively.

  2. Thin film reactions on alloy semiconductor substrates

    SciTech Connect

    Olson, D.A.

    1990-11-01

    The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

  3. Diffuse interface simulation of ternary fluids in contact with solid

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Yu; Ding, Hang; Gao, Peng; Wu, Yan-Ling

    2016-03-01

    In this article we developed a geometrical wetting condition for diffuse-interface simulation of ternary fluid flows with moving contact lines. The wettability of the substrate in the presence of ternary fluid flows is represented by multiple contact angles, corresponding to the different material properties between the respective fluid and the substrate. Displacement of ternary fluid flows on the substrate leads to the occurrence of moving contact point, at which three moving contact lines meet. We proposed a weighted contact angle model, to replace the jump in contact angle at the contact point by a relatively smooth transition of contact angle over a region of 'diffuse contact point' of finite size. Based on this model, we extended the geometrical formulation of wetting condition for two-phase flows with moving contact lines to ternary flows with moving contact lines. Combining this wetting condition, a Navier-Stokes solver and a ternary-fluid model, we simulated two-dimensional spreading of a compound droplet on a substrate, and validated the numerical results of the drop shape at equilibrium by comparing against the analytical solution. We also checked the convergence rate of the simulation by investigating the axisymmetric drop spreading in a capillary tube. Finally, we applied the model to a variety of applications of practical importance, including impact of a circular cylinder into a pool of two layers of different fluids and sliding of a three-dimensional compound droplet in shear flows.

  4. Metallic Ternary Telluride with Sphalerite Superstructure.

    PubMed

    Adhikary, Amit; Mohapatra, Sudip; Lee, Seng Huat; Hor, Yew San; Adhikari, Puja; Ching, Wai-Yim; Choudhury, Amitava

    2016-03-01

    A new ternary compound with composition Cu5Sn2Te7 has been synthesized using the stoichiometric reaction of Cu, Sn, and Te. The compound crystallizes in C2 space group with unit cell parameters of a = 13.549(2) Å, b = 6.0521(11) Å, c = 9.568(2) Å, and β = 98.121(2)°. Cu5Sn2Te7 is a superstructure of sphalerite and exhibits tetrahedral coordination of Cu, Sn, and Te atoms, containing a unique adamantane-like arrangement. The compound is formally mixed valent with a high electrical conductivity of 9.8 × 10(5) S m(-1) at 300 K and exhibits metallic behavior having p-type charge carriers as indicated from the positive Seebeck coefficient. Hall effect measurements further confirm holes as charge carriers with a carrier density of 1.39 × 10(21) cm(-3) and Hall mobility of 4.5 cm(2) V(-1) s(-1) at 300 K. The electronic band structure calculations indicate the presence of a finite density of states around the Fermi level and agree well with the p-type metallic conductivity. Band structure analysis suggests that the effective mass of the hole state is small and could be responsible for high electronic conductivity and Hall mobility. The high thermal conductivity of 15.1 W m(-1) K(-1) at 300 K coupled with the low Seebeck coefficient results in a poor thermoelectric figure of merit (ZT) for this compound. Theoretical calculations indicate that if Cu5Sn2Te7 is turned into a valence precise compound by substituting one Cu by a Zn, a semiconducting material, Cu4ZnSn2Te7, with a direct band gap of ∼ 0.5 eV can be obtained. PMID:26890202

  5. Zone leveling and solution growth of complex compound semiconductors in space

    NASA Technical Reports Server (NTRS)

    Bachmann, K. J.

    1986-01-01

    A research program on complex semiconducting compounds and alloys was completed that addressed the growth of single crystals of CdSe(y)Te(1-y), Zn(x)Cd(1-x)Te, Mn(x)Cd(1-x)Te, InP(y)As(1-y) and CuInSe2 and the measurement of fundamental physico-chemical properties characterizing the above materials. The purpose of this ground based research program was to lay the foundations for further research concerning the growth of complex ternary compound semiconductors in a microgravity environment.

  6. Theory of hydrogen in semiconductors

    SciTech Connect

    Walle, C.G. van de

    1998-12-31

    This paper treats the subject of hydrogen in semiconductors from various perspectives. First, a brief historical overview is given. Then, some basic principles governing the interaction between hydrogen and semiconductors are outlined. Finally, specific examples will emphasize the impact of hydrogen on technological applications. While the general treatment applies to interactions of hydrogen with any semiconductor, the applications will focus mainly on hydrogen interacting with silicon.

  7. New developments in power semiconductors

    NASA Technical Reports Server (NTRS)

    Sundberg, G. R.

    1983-01-01

    This paper represents an overview of some recent power semiconductor developments and spotlights new technologies that may have significant impact for aircraft electric secondary power. Primary emphasis will be on NASA-Lewis-supported developments in transistors, diodes, a new family of semiconductors, and solid-state remote power controllers. Several semiconductor companies that are moving into the power arena with devices rated at 400 V and 50 A and above are listed, with a brief look at a few devices.

  8. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  9. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  10. Completed Local Ternary Pattern for Rotation Invariant Texture Classification

    PubMed Central

    Rassem, Taha H.

    2014-01-01

    Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP) and the Completed Local Binary Count (CLBC), have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP) drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP) is proposed to be more robust to noise than LBP, however, the latter's weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP) operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP) scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors. PMID:24977193

  11. Semiconductor nanorod liquid crystals

    SciTech Connect

    Li, Liang-shi; Walda, Joost; Manna, Liberato; Alivisatos, A. Paul

    2002-01-28

    Rodlike molecules form liquid crystalline phases with orientational order and positional disorder. The great majority of materials in which liquid crystalline phases have been observed are comprised of organic molecules or polymers, even though there has been continuing and growing interest in inorganic liquid crystals. Recent advances in the control of the sizes and shapes of inorganic nanocrystals allow for the formation of a broad class of new inorganic liquid crystals. Here we show the formation of liquid crystalline phases of CdSe semiconductor nanorods. These new liquid crystalline phases may have great importance for both application and fundamental study.

  12. Semiconductor cooling apparatus

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor); Gaier, James R. (Inventor)

    1993-01-01

    Gas derived graphite fibers generated by the decomposition of an organic gas are joined with a suitable binder. This produces a high thermal conductivity composite material which passively conducts heat from a source, such as a semiconductor, to a heat sink. The fibers may be intercalated. The intercalate can be halogen or halide salt, alkaline metal, or any other species which contributes to the electrical conductivity improvement of the graphite fiber. The fibers are bundled and joined with a suitable binder to form a high thermal conductivity composite material device. The heat transfer device may also be made of intercalated highly oriented pyrolytic graphite and machined, rather than made of fibers.

  13. Semiconductor superlattice photodetectors

    NASA Technical Reports Server (NTRS)

    Chuang, S. L.; Hess, K.; Coleman, J. J.; Leburton, J. P.

    1984-01-01

    A superlattice photomultiplier and a photodetector based on the real space transfer mechanism were studied. The wavelength for the first device is of the order of a micron or flexible corresponding to the bandgap absorption in a semiconductor. The wavelength for the second device is in the micron range (about 2 to 12 microns) corresponding to the energy of the conduction band edge discontinuity between an Al/(sub x)Ga(sub 1-x)As and GaAs interface. Both devices are described.

  14. Semiconductor structure and devices

    NASA Technical Reports Server (NTRS)

    Dinkel, Nancy A. (Inventor); Goldstein, Bernard (Inventor); Ettenberg, Michael (Inventor)

    1987-01-01

    Semiconductor devices such as lasers which include a substrate with a channel therein with a clad layer overlying the substrate and filling the channel exhibit irregularities such as terraces in the surface of the clad layer which are detrimental to device performance. These irregularities are substantially eliminated by forming the channel in a surface of a buffer layer greater than about 4 micrometers thick on the substrate and forming the clad layer over the buffer layer and the channel. CW lasers incorporating the principles of the invention exhibit the highest output power in a single spatial mode and maximum output power which have been observed to date.

  15. Isotopically controlled semiconductors

    SciTech Connect

    Haller, Eugene E.

    2001-12-21

    Semiconductor bulk crystals and multilayer structures with controlled isotopic composition have attracted much scientific and technical interest in the past few years. Isotopic composition affects a large number of physical properties, including phonon energies and lifetimes, bandgaps, the thermal conductivity and expansion coefficient and spin-related effects. Isotope superlattices are ideal media for self-diffusion studies. In combination with neutron transmutation doping, isotope control offers a novel approach to metal-insulator transition studies. Spintronics, quantum computing and nanoparticle science are emerging fields using isotope control.

  16. Layered semiconductor neutron detectors

    DOEpatents

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  17. Composite Semiconductor Substrates

    NASA Technical Reports Server (NTRS)

    Nouhi, Akbar; Radhakrishnan, Gouri; Katz, Joseph; Koliwad, Kris

    1989-01-01

    Epitaxial structure of three semiconductor materials - silicon, gallium arsenide, and cadmium telluride - makes possible integrated monolithic focal-plane arrays of photodectors. Silicon layer contains charge-coupled devices, gallium arsenide layer contains other fast electronic circuitry, and cadmium telluride layer serves as base for array of mercury cadmium telluride infrared sensors. Technique effectively combines two well-established techniques; metalorganic chemical-vapor deposition (MOCVD) and molecular-beam epitaxy (MBE). Multilayer structure includes HgCdTe light sensors with Si readout devices and GaAs signal-processing circuits. CdTe layer provides base for building up HgCdTe layer.

  18. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells

    NASA Astrophysics Data System (ADS)

    Lefrançois, Aurélie; Luszczynska, Beata; Pepin-Donat, Brigitte; Lombard, Christian; Bouthinon, Benjamin; Verilhac, Jean-Marie; Gromova, Marina; Faure-Vincent, Jérôme; Pouget, Stéphanie; Chandezon, Frédéric; Sadki, Saïd; Reiss, Peter

    2015-01-01

    Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA).

  19. Enhanced Charge Separation in Ternary P3HT/PCBM/CuInS2 Nanocrystals Hybrid Solar Cells

    PubMed Central

    Lefrançois, Aurélie; Luszczynska, Beata; Pepin-Donat, Brigitte; Lombard, Christian; Bouthinon, Benjamin; Verilhac, Jean-Marie; Gromova, Marina; Faure-Vincent, Jérôme; Pouget, Stéphanie; Chandezon, Frédéric; Sadki, Saïd; Reiss, Peter

    2015-01-01

    Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA). PMID:25588811

  20. Diffusion Research in BCC Ti-Al-Mo Ternary Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Tang, Bin; Xu, Guanglong; Wang, Chuanyun; Kou, Hongchao; Li, Jinshan; Cui, Yuwen

    2014-04-01

    Interdiffusion in Ti-Al-Mo β solid solution was investigated at 1523 K (1250 °C) by analyzing diffusion couples. From the concentration profiles analytically represented by error function expansion (ERFEX), the ternary interdiffusion coefficients and impurity diffusivity were extracted by the Whittle-Green and generalized Hall methods. A comparison of the diffusion in five Ti-Al-X (Co, Cr, Fe, Mo, and V) ternaries reveals Ti-Al-Mo is comparably like Ti-Al-(Cr, V) while Ti-Al-(Co, Fe) are predominantly of interstitial nature.

  1. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    SciTech Connect

    Prutskij, T.; Percino, J.; Orlova, T.; Vavilova, L.

    2013-12-04

    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  2. Application of quaternary phase diagrams to compound semiconductor processing. Progress report, April 1, 1988--December 31, 1988

    SciTech Connect

    Schwartzman, A.

    1988-12-31

    This paper considers the application of quaternary phase diagrams to understanding and predicting the behavior of II-VI thin film interfaces in photovoltaic devices under annealing conditions. Examples, listed in a table, include semiconductor/insulator/semiconductor (SIS) layered structures, II-VI/II-VI and III-V/II-VI epitaxial heterojunctions and oxidation of ternary compounds. Solid solubility is taken into account for quaternary phase diagrams of semiconductor systems. Using free energies of formation, a method to calculate the quaternary phase diagrams was developed. The Ga-As-II-VI and Cd-Te-Zn-O phase diagrams are reviewed as examples of quaternary phase diagrams without and with solid solubility.

  3. Constructing a novel carbon nitride/polyaniline/ZnO ternary heterostructure with enhanced photocatalytic performance using exfoliated carbon nitride nanosheets as supports.

    PubMed

    Pandiselvi, Kannusamy; Fang, Huaifang; Huang, Xiubo; Wang, Jingyu; Xu, Xiaochan; Li, Tao

    2016-08-15

    Graphitic carbon nitride (CN) is an emerging photocatalyst with promising prospect, but presently it still falls short on photocatalytic efficiency and photoresponsive range. We herein constructed a novel ternary heterostructure by hybridization of conducting polymer and semiconductor with CN. The exfoliated two dimension CN nanosheets (CN-NSs) are superior to bulk CN as both catalysts and supporting materials. Most recently, there are few reports involving the construction of heterojunction photocatalysts using CN-NSs as supports. The improvement of charge separation efficiency, specific surface area and visible light harvesting is simultaneously achieved in such a novel ternary heterostructure due to the synergetic effect of polyaniline (PANI) and ZnO coupling. As a result, the CN-NS/PANI/ZnO photocatalyst possesses excellent visible photocatalytic performance for MB and 4-CP degradation with a rate constant of 0.026 and 0.0049min(-1), which is about 3.6 and 3.3 times of CN, respectively. The enhanced mechanism is proposed based on the confirmation of OH and h(+) as main oxidative species. Overall, this work can not only yield high-efficient visible photocatalysts but also provide deeper insight into the enhanced mechanisms of CN-NS-based ternary heterostructure. PMID:27107237

  4. The Kingdom of Semiconductors

    NASA Astrophysics Data System (ADS)

    Bellac, Michel Le

    2014-11-01

    In this chapter, we move on to the case of fermions, and we shall find out that fermions are no less interesting than bosons! In practice, electrons are the most important example of fermions, because they are responsible for electrical conductivity in metals and semiconductors. It is impossible to understand a phenomenon as familiar as electrical conductivity without appealing to quantum physics. Two properties play a fundamental role: first the propagation of electron waves in crystal lattices, and second the Pauli exclusion principle, which is a consequence of the fermionic character of the electrons. In Section 6.1, we introduce electron wave propagation in crystals which gives rise to the phenomenon of energy bands, and we describe the filling of these bands according to the Pauli principle. These results will be used in Section 6.2 to describe the electronic properties of semiconductors, on which almost all our modern technology (laser diodes, optical fiber communication, computers, smartphones and so forth) is grounded. Finally, in Sections 6.3 and 6.4, we shall describe the principles of light emitting diodes (LEDs) and laser diodes.

  5. Doped semiconductor nanocrystal junctions

    SciTech Connect

    Borowik, Ł.; Mélin, T.; Nguyen-Tran, T.; Roca i Cabarrocas, P.

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  6. Doping semiconductor nanocrystals.

    PubMed

    Erwin, Steven C; Zu, Lijun; Haftel, Michael I; Efros, Alexander L; Kennedy, Thomas A; Norris, David J

    2005-07-01

    Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated. PMID:16001066

  7. Semiconductor cylinder fiber laser

    NASA Astrophysics Data System (ADS)

    Sandupatla, Abhinay; Flattery, James; Kornreich, Philipp

    2015-12-01

    We fabricated a fiber laser that uses a thin semiconductor layer surrounding the glass core as the gain medium. This is a completely new type of laser. The In2Te3 semiconductor layer is about 15-nm thick. The fiber laser has a core diameter of 14.2 μm, an outside diameter of 126 μm, and it is 25-mm long. The laser mirrors consist of a thick vacuum-deposited aluminum layer at one end and a thin semitransparent aluminum layer deposited at the other end of the fiber. The laser is pumped from the side with either light from a halogen tungsten incandescent lamp or a blue light emitting diode flash light. Both the In2Te3 gain medium and the aluminum mirrors have a wide bandwidth. Therefore, the output spectrum consists of a pedestal from a wavelength of about 454 to 623 nm with several peaks. There is a main peak at 545 nm. The main peak has an amplitude of 16.5 dB above the noise level of -73 dB.

  8. Isotopically engineered semiconductors

    NASA Astrophysics Data System (ADS)

    Haller, E. E.

    1995-04-01

    Scientific interest, technological promise, and increased availability of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This review of mostly recent activities begins with an introduction to some past classical experiments which have been performed on isotopically controlled semiconductors. A review of the natural isotopic composition of the relevant elements follows. Some materials aspects resulting in part from the high costs of enriched isotopes are discussed next. Raman spectroscopy studies with a number of isotopically pure and deliberately mixed Ge bulk crystals show that the Brillouin-zone-center optical phonons are not localized. Their lifetime is almost independent of isotopic disorder, leading to homogeneous Raman line broadening. Studies with short period isotope superlattices consisting of alternating layers of n atomic planes of 70Ge and 74Ge reveal a host of zone-center phonons due to Brillouin-zone folding. At n≳40 one observes two phonon lines at frequencies corresponding to the bulk values of the two isotopes. In natural diamond, isotope scattering of the low-energy phonons, which are responsible for the thermal conductivity, is very strongly affected by small isotope disorder. Isotopically pure 12C diamond crystals exhibit thermal conductivities as high as 410 W cm-1 K-1 at 104 K, leading to projected values of over 2000 W cm-1 K-1 near 80 K. The changes in phonon properties with isotopic composition also weakly affect the electronic band structures and the lattice constants. The latter isotope dependence is most relevant for future standards of length based on crystal lattice constants. Capture of thermal neutrons by isotope nuclei followed by nuclear decay produces new elements, resulting in a very large number of possibilities for isotope selective doping of semiconductors. This neutron transmutation of isotope nuclei, already used

  9. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.

    1987-08-31

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.

  10. Semiconductor devices incorporating multilayer interference regions

    DOEpatents

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  11. Lattice thermal expansion for normal tetrahedral compound semiconductors

    SciTech Connect

    Omar, M.S. . E-mail: dr_m_s_omar@yahoo.com

    2007-02-15

    The cubic root of the deviation of the lattice thermal expansion from that of the expected value of diamond for group IV semiconductors, binary compounds of III-V and II-VI, as well as several ternary compounds from groups I-III-VI{sub 2}, II-IV-V{sub 2} and I-IV{sub 2}V{sub 3} semiconductors versus their bonding length are given straight lines. Their slopes were found to be 0.0256, 0.0210, 0.0170, 0.0259, 0.0196, and 0.02840 for the groups above, respectively. Depending on the valence electrons of the elements forming these groups, a formula was found to correlate all the values of the slopes mentioned above to that of group IV. This new formula which depends on the melting point and the bonding length as well as the number of valence electrons for the elements forming the compounds, will gives best calculated values for lattice thermal expansion for all compounds forming the groups mentioned above. An empirical relation is also found between the mean ionicity of the compounds forming the groups and their slopes mentioned above and that gave the mean ionicity for the compound CuGe{sub 2}P{sub 3} in the range of 0.442.

  12. Enabling iron pyrite (FeS2) and related ternary pyrite compounds for high-performance solar energy applications

    NASA Astrophysics Data System (ADS)

    Caban Acevedo, Miguel

    The success of solar energy technologies depends not only on highly efficient solar-to-electrical energy conversion, charge storage or chemical fuel production, but also on dramatically reduced cost, to meet the future terawatt energy challenges we face. The enormous scale involved in the development of impactful solar energy technologies demand abundant and inexpensive materials, as well as energy-efficient and cost-effective processes. As a result, the investigation of semiconductor, catalyst and electrode materials made of earth-abundant and sustainable elements may prove to be of significant importance for the long-term adaptation of solar energy technologies on a larger scale. Among earth-abundant semiconductors, iron pyrite (cubic FeS2) has been considered the most promising solar energy absorber with the potential to achieve terawatt energy-scale deployment. Despite extensive synthetic progress and device efforts, the solar conversion efficiency of iron pyrite has remained below 3% since the 1990s, primarily due to a low open circuit voltage (V oc). The low photovoltage (Voc) of iron pyrite has puzzled scientists for decades and limited the development of cost-effective solar energy technologies based on this otherwise promising semiconductor. Here I report a comprehensive investigation of the syntheses and properties of iron pyrite materials, which reveals that the Voc of iron pyrite is limited by the ionization of a high density of intrinsic bulk defect states despite high density surface states and strong surface Fermi level pinning. Contrary to popular belief, bulk defects most-likely caused by intrinsic sulfur vacancies in iron pyrite must be controlled in order to enable this earth-abundant semiconductor for cost-effective and sustainable solar energy conversion. Lastly, the investigation of iron pyrite presented here lead to the discovery of ternary pyrite-type cobalt phosphosulfide (CoPS) as a highly-efficient earth-abundant catalyst material for

  13. Fibre ring cavity semiconductor laser

    SciTech Connect

    Duraev, V P; Medvedev, S V

    2013-10-31

    This paper presents a study of semiconductor lasers having a polarisation maintaining fibre ring cavity. We examine the operating principle and report main characteristics of a semiconductor ring laser, in particular in single- and multiple-frequency regimes, and discuss its application areas. (lasers)

  14. Process for producing chalcogenide semiconductors

    DOEpatents

    Noufi, R.; Chen, Y.W.

    1985-04-30

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  15. Process for producing chalcogenide semiconductors

    DOEpatents

    Noufi, Rommel; Chen, Yih-Wen

    1987-01-01

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  16. Variable temperature semiconductor film deposition

    DOEpatents

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  17. Variable temperature semiconductor film deposition

    DOEpatents

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  18. Physics with isotopically controlled semiconductors

    SciTech Connect

    Haller, E. E.

    2010-07-15

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  19. Growth Mechanism of Nanowires: Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Hopkins, R. H.; Su, Ching Hua; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    In the past two decades there has been a large rise in the investment and expectations for nanotechnology use. Almost every area of research has projected improvements in sensors, or even a promise for the emergence of some novel device technologies. For these applications major focuses of research are in the areas of nanoparticles and graphene. Although there are some near term applications with nanowires in photodetectors and other low light detectors, there are few papers on the growth mechanism and fabrication of nanowire-based devices. Semiconductor nanowires exhibit very favorable and promising optical properties, including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here an overview of the mechanism of nanowire growth from the melt, and some preliminary results for the thallium arsenic selenide material system. Thallium arsenic selenide (TAS) is a multifunctional material combining excellent acousto-optical, nonlinear and radiation detection properties. We observed that small units of (TAS) nanocubes arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. In some cases very long wires (less than mm) are formed. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places.

  20. Ternary forecast of heavy snowfall in the Honam area, Korea

    NASA Astrophysics Data System (ADS)

    Sohn, Keon Tae; Lee, Jeong Hyeong; Cho, Young Seuk

    2009-03-01

    The objective of this study is to improve the statistical modeling for the ternary forecast of heavy snowfall in the Honam area in Korea. The ternary forecast of heavy snowfall consists of one of three values, 0 for less than 50 mm, 1 for an advisory (50-150 mm), and 2 for a warning (more than 150 mm). For our study, the observed daily snow amounts and the numerical model outputs for 45 synoptic factors at 17 stations in the Honam area during 5 years (2001 to 2005) are used as observations and potential predictors respectively. For statistical modeling and validation, the data set is divided into training data and validation data by cluster analysis. A multi-grade logistic regression model and neural networks are separately applied to generate the probabilities of three categories based on the model output statistic (MOS) method. Two models are estimated by the training data and tested by the validation data. Based on the estimated probabilities, three thresholds are chosen to generate ternary forecasts. The results are summarized in 3×3 contingency tables and the results of the three-grade logistic regression model are compared to those of the neural networks model. According to the model training and model validation results, the estimated three-grade logistic regression model is recommended as a ternary forecast model for heavy snowfall in the Honam area.

  1. Electrical properties of ternary Si-C-N ceramics

    SciTech Connect

    Haluschka, C.; Engel, C.; Riedel, R.

    1996-12-31

    Ternary Si-C-N ceramics were derived from silicon containing polymers by thermally induced hybrid processing. These silicon carbonitrides were investigated by impedance spectroscopy depending on the synthesis conditions. The electrical behavior correlates with the solid state reactions and phase transformations, which take place during the processing. It has also been shown that the electrical properties can be controlled in a wide range.

  2. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  3. Application of Analytic Geometry to Ternary and Quaternary Diagrams.

    ERIC Educational Resources Information Center

    MacCarthy, Patrick

    1986-01-01

    Advantages of representing ternary and quaternary composition diagrams by means of rectangular coordinates were pointed out in a previous paper (EJ 288 693). A further advantage of that approach is that analytic geometry, based on rectangular coordinates, is directly applicable as demonstrated by the examples presented. (JN)

  4. Theoretical studies of defects in binary and ternary oxides

    SciTech Connect

    Ching, W.Y.; Ellis, D.E.; Lam, D.J.

    1986-01-01

    This paper presents some preliminary results of electronic structure of substitutional defects and vacancy in binary and ternary cubic zirconium oxides obtained by the embedded molecular-cluster model calculation. The importance of electronic charge redistribution in the solids where the defect is introduced into the perfect lattice is highlighted and the effect of electron polarization of the surrounding ions of the defect discussed.

  5. Quantum description of T-odd correlations in ternary fission

    SciTech Connect

    Bunakov, V. E.; Kadmensky, S. G.

    2008-07-15

    A quantum version of a unified description of two T-odd effects recently observed in the ternary fission of nuclei that is induced by polarized neutrons is considered. These effects are explained by the effect of the Coriolis interaction of the rotating fissile system on the angular distributions of light charged particles in the interior and exterior regions of the nucleus.

  6. Making Ternary Quantum Dots From Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Banger, Kulbinder; Castro, Stephanie; Hepp, Aloysius

    2007-01-01

    A process has been devised for making ternary (specifically, CuInS2) nanocrystals for use as quantum dots (QDs) in a contemplated next generation of high-efficiency solar photovoltaic cells. The process parameters can be chosen to tailor the sizes (and, thus, the absorption and emission spectra) of the QDs.

  7. Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc

    DOE PAGESBeta

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2016-01-11

    Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determinedmore » by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. Zn was determined to interdiffuse the fastest, followed by Mg and Al. Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.« less

  8. [Use of ternary algebra in the analysis of medical data].

    PubMed

    Bernard, M J

    1976-01-01

    Logical methods are most valuable in the field of Medicine. They are usually based on Boolean algebra and can thus only deal with binary data) (Present)/(Absent)). Use of ternary algebra opens the way to treatment of the triple-state variables ((Present)/(absent)/(Don't know)) frequently encountered in medical context. PMID:816530

  9. A Simple Refraction Experiment for Probing Diffusion in Ternary Mixtures

    ERIC Educational Resources Information Center

    Coutinho, Cecil A.; Mankidy, Bijith D.; Gupta, Vinay K.

    2010-01-01

    Diffusion is a fundamental phenomenon that is vital in many chemical processes such as mass transport in living cells, corrosion, and separations. We describe a simple undergraduate-level experiment based on Weiner's Method to probe diffusion in a ternary aqueous mixture of small molecular-weight molecules. As an illustration, the experiment…

  10. Stoichiometry determined exchange interactions in amorphous ternary transition metal oxides: Theory and experiment

    SciTech Connect

    Hu, Shu-jun; Yan, Shi-shen Zhang, Yun-peng; Zhao, Ming-wen; Kang, Shi-shou; Mei, Liang-mo

    2014-07-28

    Amorphous transition metal oxides exhibit exotic transport and magnetic properties, while the absence of periodic structure has long been a major obstacle for the understanding of their electronic structure and exchange interaction. In this paper, we have formulated a theoretical approach, which combines the melt-quench approach and the spin dynamic Monte-Carlo simulations, and based on it, we explored amorphous Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} ternary transition metal oxides. Our theoretical results reveal that the microstructure, the magnetic properties, and the exchange interactions of Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} are strongly determined by the oxygen stoichiometry. In the oxygen-deficient sample (y > 0), we have observed the long-range ferromagnetic spin ordering which is associated with the non-stoichiometric cobalt-rich region rather than metallic clusters. On the other hand, the microstructure of stoichiometric sample takes the form of continuous random networks, and no long-range ferromagnetism has been observed in it. Magnetization characterization of experimental synthesized Co{sub 0.61}Zn{sub 0.39}O{sub 1−y} films verifies the relation between the spin ordering and the oxygen stoichiometry. Furthermore, the temperature dependence of electrical transport shows a typical feature of semiconductors, in agreement with our theoretical results.

  11. Dispersion of nonresonant third-order nonlinearities in GeSiSn ternary alloys.

    PubMed

    De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A; Passaro, Vittorio M N

    2016-01-01

    Silicon (Si), tin (Sn), and germanium (Ge) alloys have attracted research attention as direct band gap semiconductors with applications in electronics and optoelectronics. In particular, GeSn field effect transistors can exhibit very high performance in terms of power reduction and operating speed because of the high electron drift mobility, while the SiGeSn system can be constructed using CMOS-compatible techniques to realize lasers, LED, and photodetectors. The wide Si, Ge and Sn transparencies allow the use of binary and ternary alloys extended to mid-IR wavelengths, where nonlinearities can also be employed. However, neither theoretical or experimental predictions of nonlinear features in SiGeSn alloys are reported in the literature. For the first time, a rigorous and detailed physical investigation is presented to estimate the two photon absorption (TPA) coefficient and the Kerr refractive index for the SiGeSn alloy up to 12 μm. The TPA spectrum, the effective TPA wavelength cut-off, and the Kerr nonlinear refractive index have been determined as a function of alloy compositions. The promising results achieved can pave the way to the demonstration of on-chip nonlinear-based applications, including mid-IR spectrometer-on-a-chip, all-optical wavelength down/up-conversion, frequency comb generation, quantum-correlated photon-pair source generation and supercontinuum source creation, as well as Raman lasing. PMID:27622979

  12. Long-range structural correlations in amorphous ternary In-based oxides

    NASA Astrophysics Data System (ADS)

    Khanal, Rabi; Medvedeva, Julia

    2015-03-01

    In recent years, there is an increasing shift towards the use of oxide semiconductor materials in their amorphous form owing to several technological advantages and the fact that amorphous oxides exhibit similar or even superior properties than their crystalline counterparts. In this work we have systemically investigated the effect of chemical composition and oxygen stoichiometry on the local and long-range structure of ternary amorphous oxides, namely In-X-O with X =Sn, Zn, Ga, Cd, Ge, Sc, Y, or La, by means of ab-initio molecular dynamics. The results reveal that the local MO structure remains nearly intact upon amorphization and exhibit weak dependence on the composition. In marked contrast, the structural characteristics of the metal-metal shell, namely, the M-M distances and M-O-M angles that determine how MO polyhedra are connected into a network, are affected by the presence of X. Complex interplay between several factors such as the cation ionic size, metal-oxygen bond strength, as well as the natural preference for edge, corner, or face-sharing between the MO polyhedra, leads to a correlated behavior in the long-range structure. These findings highlight the mechanisms of the amorphous structure formation as well as the species of the carrier transport in these oxides.

  13. Ternary Self-Assembly of Ordered Metal Oxide-Graphene Nanocomposites for Electrochemical Energy Storage

    SciTech Connect

    Wang, Donghai; Kou, Rong; Choi, Daiwon; Yang, Zhenguo; Nie, Zimin; Li, Juan; Saraf, Laxmikant V.; Hu, Dehong; Zhang, Jiguang; Graff, Gordon L.; Liu, Jun; Pope, Michael A.; Aksay, Ilhan A.

    2010-02-25

    Surfactant or polymer directed self-assembly has been widely investigated to prepare nanostructured metal oxides, semiconductors and polymers, but this approach is mostly limited to two-phase materials, organic/inorganic hybrids, and nanoparticle or polymer-based nanocomposites. Self-assembled nanostructures from more complex, multiscale and multiphase building blocks have been explored with limited success. Here, we demonstrate a ternary self-assembly approach using graphene as fundamental building blocks to construct metal oxide-graphene nanocomposites. A new class of layered nanocomposites is formed containing stable, ordered alternating layers of nanocrystalline metal oxides with graphene/graphene stacks. Alternatively, the graphene material can be incorporated into liquid-crystal-templated nanoporous structures to form high surface area, conductive networks. The self-assembly method can be also used to fabricate free standing, flexible metal oxide-graphene nanocomposite films and electrodes. We investigate the Li-ion insertion properties of the self-assembled electrodes for energy storage and show that the SnO2-graphene nanocomposite films can achieve near theoretical specific energy density without a significant charge/discharge degradation.

  14. Band gap characterization of ternary BBi1-xNx (0≤x≤1) alloys using modified Becke-Johnson (mBJ) potential

    NASA Astrophysics Data System (ADS)

    Yalcin, Battal G.

    2015-04-01

    The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi1-xNx (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi1-xNx structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew-Burke-Ernzerhof (PBE). For electronic properties the modified Becke-Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi1-xNx almost perfectly matches with Vegard's law. The spin-orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations.

  15. Functionalization of Semiconductor Nanoparticles

    NASA Astrophysics Data System (ADS)

    Baraton, M.-I.

    Functionalization of nanoparticles surface by attachment of organic entities is used to achieve and tailor many new properties, such as lubrication, optical response, chemical sensing, or biocompatibility. But because at the nanometer scale the surface properties significantly contribute to the overall properties, the consequences of the surface modifications have to be thoroughly evaluated. This paper demonstrates the relevance of Fourier transform infrared spectroscopy to the study of the surface reactions leading to the functionalization, and of the stability of the functionalized surface under the expected working conditions. In the case of semiconductor nanoparticles, this technique additionally allows the analysis of the impact of the functionalization on the electrical properties. This will be illustrated by the case study of tin oxide nanoparticles for chemical gas sensors. The correlation between surface chemistry and electrical properties is critical to optimize the nanoparticles functionalization for the targeted properties.

  16. Hydrogen on semiconductor surfaces

    SciTech Connect

    Schaefer, J.A.; Balster, T.; Polyakov, V.; Rossow, U.; Sloboshanin, S.; Starke, U.; Tautz, F.S.

    1998-12-31

    The authors review structural and electronic aspects of the reaction of hydrogen with semiconductor surfaces. Among others, they address the Si(100), Ge{sub x}Si{sub 1{minus}x}(100), GaAs(100), InP(100), SiC(100), SiC(0001) and SiC(000{bar 1}) surfaces. It is demonstrated that high resolution electron energy loss spectroscopy (HREELS) in conjunction with a number of other surface sensitive techniques like low energy electron diffraction (LEED) and photoelectron spectroscopy (XPS/UPS) can yield important information about the surface atomic structure, the effects of hydrogen passivation and etching and on electronic properties of the surfaces. 67 refs., 7 figs., 3 tabs.

  17. Photocatalysis Using Semiconductor Nanoclusters

    SciTech Connect

    Thurston, T.R.; Wilcoxon,J.P.

    1999-01-21

    We report on experiments using nanosize MoS{sub 2} to photo-oxidize organic pollutants in water using visible light as the energy source. We have demonstrated that we can vary the redox potentials and absorbance characteristics of these small semiconductors by adjusting their size, and our studies of the photooxidation of organic molecules have revealed that the rate of oxidation increases with increasing bandgap (i.e. more positive valence band and more negative conduction band potentials). Because these photocatalysis reactions can be performed with the nanoclusters fully dispersed and stable in solution, liquid chromatography can be used to determine both the intermediate reaction products and the state of the nanoclusters during the reaction. We have demonstrated that the MoS{sub 2} nanoclusters remain unchanged during the photooxidation process by this technique. We also report on studies of MoS{sub 2} nanoclusters deposited on TiO{sub 2} powder.

  18. Semiconductor nanowire lasers

    NASA Astrophysics Data System (ADS)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  19. Semiconductor radiation detector

    DOEpatents

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  20. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  1. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

    PubMed Central

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A.; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-01-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications. PMID:27325228

  2. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis

    NASA Astrophysics Data System (ADS)

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A.; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-06-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications.

  3. Recent Developments in p-Type Oxide Semiconductor Materials and Devices.

    PubMed

    Wang, Zhenwei; Nayak, Pradipta K; Caraveo-Frescas, Jesus A; Alshareef, Husam N

    2016-05-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented. PMID:26879813

  4. Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis.

    PubMed

    Hinuma, Yoyo; Hatakeyama, Taisuke; Kumagai, Yu; Burton, Lee A; Sato, Hikaru; Muraba, Yoshinori; Iimura, Soshi; Hiramatsu, Hidenori; Tanaka, Isao; Hosono, Hideo; Oba, Fumiyasu

    2016-01-01

    Nitride semiconductors are attractive because they can be environmentally benign, comprised of abundant elements and possess favourable electronic properties. However, those currently commercialized are mostly limited to gallium nitride and its alloys, despite the rich composition space of nitrides. Here we report the screening of ternary zinc nitride semiconductors using first-principles calculations of electronic structure, stability and dopability. This approach identifies as-yet-unreported CaZn2N2 that has earth-abundant components, smaller carrier effective masses than gallium nitride and a tunable direct bandgap suited for light emission and harvesting. High-pressure synthesis realizes this phase, verifying the predicted crystal structure and band-edge red photoluminescence. In total, we propose 21 promising systems, including Ca2ZnN2, Ba2ZnN2 and Zn2PN3, which have not been reported as semiconductors previously. Given the variety in bandgaps of the identified compounds, the present study expands the potential suitability of nitride semiconductors for a broader range of electronic, optoelectronic and photovoltaic applications. PMID:27325228

  5. The stochastic model for ternary and quaternary alloys: Application of the Bernoulli relation to the phonon spectra of mixed crystals

    SciTech Connect

    Marchewka, M. Woźny, M.; Polit, J.; Sheregii, E. M.; Kisiel, A.; Robouch, B. V.; Marcelli, A.

    2014-03-21

    To understand and interpret the experimental data on the phonon spectra of the solid solutions, it is necessary to describe mathematically the non-regular distribution of atoms in their lattices. It appears that such description is possible in case of the strongly stochastically homogenous distribution which requires a great number of atoms and very carefully mixed alloys. These conditions are generally fulfilled in case of high quality homogenous semiconductor solid solutions of the III–V and II–VI semiconductor compounds. In this case, we can use the Bernoulli relation describing probability of the occurrence of one n equivalent event which can be applied, to the probability of finding one from n configurations in the solid solution lattice. The results described in this paper for ternary HgCdTe and GaAsP as well as quaternary ZnCdHgTe can provide an affirmative answer to the question: whether stochastic geometry, e.g., the Bernoulli relation, is enough to describe the observed phonon spectra.

  6. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    SciTech Connect

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  7. Rays of Small Integer Solutions of Homogeneous Ternary Quadratic Equations

    NASA Astrophysics Data System (ADS)

    Mishra, Sudhakara

    1991-02-01

    We have dealt with the general ternary quadratic equation: ax2 + by^ {2} + cz2 + dxy + exz + fyz = 0 with integer coefficients. After giving a matrix-reduction formula for a quadratic equation in any number of variables, of which the reduction of the above ternary equation is an easy consequence, we have devoted our attention to the reduced equation: ax^ {2} + by2 + cz^{2 } = 0. We have devised an algorithm for reducing Dirichlet's possibly larger solutions to this prescribed range of Holzer's. Then we have generalized Holzer's theorem to the case of the ternary equation: ax^{2 } + by2 + cz2 + dxy + exz + fyz = 0, giving in this context a new range called the CM-range, of which the Holzer's range is a particular case when d = e = f = 0. We have described an algorithm for getting a solution of the general ternary within this CM-range. After that we have devised an algorithm for getting all the solutions of the Legendre's equation ax 2 + by2 + cz^ {2} = 0 within the Holzer's range--and have shown that if we regard this Legendre's equation as a double cone, these solutions within the Holzer's range lie along some definite rays, here called the CM-rays, which are completely determined by the prime factors of the coefficients a, b and c. After giving an algorithm for detecting these CM-rays of the reduced equation: ax^2 + by^2 + cz^2 = 0, we have shown how one can produce some similar rays of solutions of the above general ternary quadratic equation: ax2 + by2 + cz2 + dxy + exz + fyz = 0. Note that apart from the method of exhausting all the possibilities, so far there has been no precisely stated algorithm to find the minimum solutions of the above ternary equations. Towards the end, observing in the context of our main result an inequality involving two functions, namely C and PCM from doubz_sp{*} {3} to doubz_+, and simultaneously presenting some tables of these positive CM-rays or PCM-rays lying in the positive octant, we have concluded this work with a number of

  8. Semiconductor technology program. Progress briefs

    NASA Technical Reports Server (NTRS)

    Bullis, W. M.

    1980-01-01

    Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.

  9. Metal-Insulator-Semiconductor Photodetectors

    PubMed Central

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III–V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows. PMID:22163382

  10. Semiconductor crystal high resolution imager

    NASA Technical Reports Server (NTRS)

    Levin, Craig S. (Inventor); Matteson, James (Inventor)

    2011-01-01

    A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).

  11. Impurity gettering in semiconductors

    DOEpatents

    Sopori, B.L.

    1995-06-20

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device is disclosed. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500 C to about 700 C for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal. 1 fig.

  12. Impurity gettering in semiconductors

    DOEpatents

    Sopori, Bhushan L.

    1995-01-01

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  13. Semiconductor film Cherenkov lasers

    NASA Astrophysics Data System (ADS)

    Walsh, John E.

    1994-12-01

    The technical achievements for the project 'Semiconductor Film Cherenkov Lasers' are summarized. Described in the fourteen appendices are the operation of a sapphire Cherenkov laser and various grating-coupled oscillators. These coherent radiation sources were operated over the spectral range extending from 3 mm down to 400 micrometers. The utility of various types of open, multi-grating resonators and mode-locked operation were also demonstrated. In addition to these experiments, which were carried out with a 10-100 kV pulse generator, a low-energy (3-3.6 MeV) Van de Graaff generator and a low-energy RF linac (2.8 MeV) were used to investigate the properties of continuum incoherent Smith-Purcell radiation. It was shown that levels of intensity comparable to the infrared beam lines on a synchrotron could be obtained and thus that grating-coupled sources are potentially an important new source for Fourier transform spectroscopy. Finally, a scanning electron microscope was adapted for investigating mu-electron-beam-driven far-infrared sources. At the close of the project, spontaneous emission over the 288-800 micrometers band had been observed. Intensity levels were in accord with expectations based on theory. One or more of the Appendices address these topics in detail.

  14. Survey of cryogenic semiconductor devices

    SciTech Connect

    Talarico, L.J.; McKeever, J.W.

    1996-04-01

    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  15. EDITORIAL: Oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Kawasaki, M.; Makino, T.

    2005-04-01

    Blue or ultraviolet semiconducting light-emitting diodes have the potential to revolutionize illumination systems in the near-future. Such industrial need has propelled the investigation of several wide-gap semiconducting materials in recent years. Commercial applications include blue lasers for DVD memory and laser printers, while military applications are also expected. Most of the material development has so far been focused on GaN (band gap 3.5 eV at 2 K), and ZnSe (2.9 eV) because these two representative direct transition semiconductors are known to be bright emitting sources. GaN and GaN-based alloys are emerging as the winners in this field because ZnSe is subject to defect formation under high current drive. On the other hand, another II-VI compound, ZnO, has also excited substantial interest in the optoelectronics-oriented research communities because it is the brightest emitter of all, owing to the fact that its excitons have a 60 meV binding energy. This is compared with 26 meV for GaN and 20 meV for ZnSe. The stable excitons could lead to laser action based on their recombination even at temperatures well above room temperature. ZnO has additional major properties that are more advantageous than other wide-gap materials: availability of large area substrates, higher energy radiation stability, environmentally-friendly ingredients, and amenability to wet chemical etching. However, ZnO is not new to the semiconductor field as exemplified by several studies made during the 1960s on structural, vibrational, optical and electrical properties (Mollwo E 1982 Landolt-Boernstein New Series vol 17 (Berlin: Springer) p 35). In terms of devices, the luminescence from light-emitting diode structures was demonstrated in which Cu2O was used as the p-type material (Drapak I T 1968 Semiconductors 2 624). The main obstacle to the development of ZnO has been the lack of reproducible p-type ZnO. The possibility of achieving epitaxial p-type layers with the aid of thermal

  16. Ternary Z3 -graded generalization of Heisenberg's algebra

    NASA Astrophysics Data System (ADS)

    Kerner, Richard

    2015-04-01

    We investigate a ternary, Z3-graded generalization of the Heisenberg algebra. It turns out that introducing a non-trivial cubic root of unity, j = e 2πi/3, one can define two types of creation operators instead of one, accompanying the usual annihilation operator. The two creation operators are non-hermitian, but they are mutually conjugate. Together, the three operators form a ternary algebra, and some of their cubic combinations generate the usual Heisenberg algebra. A cubic analogue of Hamiltonian operator is constructed by analogy with the usual harmonic oscillator. A set of eigenstates in coordinate representation is constructed in terms of functions satisfying linear differential equation of third order.

  17. Reconfigurable ternary optical processor based on row operation unit

    NASA Astrophysics Data System (ADS)

    Kai, SONG; LiPing, YAN

    2015-09-01

    In order to eliminate the difference between the data bits and the pixel bits of the processors in the logic operation of Ternary Optical Computer (TOC), and to make the reconfiguration of the processors more convenient and efficient, while extending the research ideas of TOC, the paper presents a new typical optical component, which is row operation unit (ROU). The features, circuit implementations, and commands for the reconfiguration of ROU are also discussed in detail. On this basis, the reconfigurable ternary optical processor (RTOP) was designed and achieved, which reduces the complexity of the processor management software. Finally, the experiments of reconfigurable ROU are performed, which shows that the principles of RTOP are correct, and all 81 commands for the reconfiguration are effective. Each of the two-input, tri-valued logic operations with thousands of data bits can be concurrently achieved in RTOP.

  18. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    SciTech Connect

    Choi, B. William; Chiu, Ing L.

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  19. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    SciTech Connect

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-12-17

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. As a result, the active site architecture shows clear evidence of having arisen by convergent evolution.

  20. Applications of ternary systems in specific cosmetic formulations.

    PubMed

    Comelles, F; Megias, V; Sánchez, J; Parra, J L; Coll, J; Balaguer, F; Pelejero, C

    1989-02-01

    Synopsis The study of ternary systems leads to the understanding of the physico-chemical aspect and allows the contribution of the different components to a cosmetic formulation to be developed. The present investigation was centred in the zone of transparent get belonging to a previously studied ternary system containing a broad variety of different structural compositions. The possibility of including an active sunscreen as well as the ability to increase the water content of the gel was studied. The microscopical study of the compositions with polarized light allowed us to assign the corresponding different structures. A correlation between these structures and their physico-chemical properties, with special emphasis to rheology, has been established. PMID:19456930

  1. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    PubMed Central

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-01-01

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution. PMID:26673816

  2. A New Multifunctional Sensor for Measuring Concentrations of Ternary Solution

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Shida, Katsunori

    This paper presents a multifunctional sensor with novel structure, which is capable of directly sensing temperature and two physical parameters of solutions, namely ultrasonic velocity and conductivity. By combined measurement of these three measurable parameters, the concentrations of various components in a ternary solution can be simultaneously determined. The structure and operation principle of the sensor are described, and a regression algorithm based on natural cubic spline interpolation and the least square method is adopted to estimate the concentrations. The performances of the proposed sensor are experimentally tested by the use of ternary aqueous solution of sodium chloride and sucrose, which is widely involved in food and beverage industries. This sensor could prove valuable as a process control sensor in industry fields.

  3. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    NASA Astrophysics Data System (ADS)

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-12-01

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.

  4. Synthesis and Characterization of Ternary Al-C-N Compound

    NASA Astrophysics Data System (ADS)

    Jiang, N.; Xu, S.; Ostrikov, K. N.; Tsakadze, E. L.; Long, J. D.; Chai, J. W.; Tsakadze, Z. L.

    An attempt for modification of carbon nitride material by introduction of Al to form a ternary Al-C-N compound in a thin film deposited using inductively coupled plasma (ICP) assisted DC magnetron sputtering is reported. Optical emission spectroscopy (OES) is used for in-situ observation and identification of reactive species. The films were characterized using x-ray photoelectron spectroscopy (XPS) and x-ray diffraction spectroscopy (XRD). The results indicate that C-N bond is formed in the plasma. The XPS narrow scam spectra confirm the existence of C-Al, sp2C-N and sp3C-N bonds. Elemental proportion of carbon increases with the CH4/N2 flow rate ratio, and has a tendency to saturate. The film is dominated by c-AlN (111), mixed with Al4C3 and AlCN ternary compound.

  5. Ternary and quaternary antimonide devices for thermophotovoltaic applications

    SciTech Connect

    Hitchcock, C.W.; Gutmann, R.J.; Ehsani, H.; Bhat, I.B.; Wang, C.A.; Freeman, M.J.; Charache, G.W.

    1998-06-01

    Thermophotovoltaic (TPV) devices have been fabricated using epitaxial ternary and quaternary layers grown on GaSb substrates. GaInSb ternary devices were grown by metalorganic vapor phase epitaxy (MOVPE) with buffer layers to accommodate the lattice mismatch, and GaInAsSb lattice-matched quaternaries were grown by MOVPE and by liquid phase epitaxy (LPE). Improved devices are obtained when optical absorption occurs in the p-layer due to the longer minority carrier diffusion length. Thick emitter p/n devices are limited by surface recombination, with highest quantum efficiency and lowest dark current being achieved with epitaxially grown surface passivation layers on lattice-matched MOVPE quaternaries. Thin emitter/thick base n/p devices are very promising, but require improved shallow high-quality n-type ohmic contacts.

  6. Do aqueous ternary complexes influence the TALSPEAK process?

    SciTech Connect

    Leggett, C. j.; Liu, G.; Jensen, M. P.; Chemical Sciences and Engineering Division

    2010-01-01

    The aqueous speciation of trivalent lanthanide and actinide cations in solutions containing DTPA (diethylenetriamine-N,N,N',N',N'-pentaacetic acid) and lactic acid were studied under conditions representative of the TALSPEAK process. Spectrophotometric titrations, fluorescence spectroscopy, and thermometric titrations were used to search for indications of ternary metal-DTPA-lactate complexes. The addition of lactate anions to metal-DTPA complexes was undetectable by any of these techniques, even at free lactate concentrations of 0.75 M. Although lactic acid is necessary for the optimal performance of the TALSPEAK process, we find that the fractions of aqueous ternary Ln3+/An3+-DTPA-lactate complexes are far too low to account for the observed acid dependence of TALSPEAK metal extraction.

  7. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOEpatents

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  8. Thermodynamic Description of the Ternary Sb-Sn-Zn System

    NASA Astrophysics Data System (ADS)

    Gierlotka, Wojciech

    2016-04-01

    The ternary Sb-Sn-Zn system is important for two reasons: the first one is that antimony-tin-zinc alloys are promising lead-free solders, the second one is, that zinc antimonides show thermoelectric properties. Based on available literature information, the Sb-Sn-Zn system was thermodynamically described using the Calphad approach. A good agreement between calculation and experimental information was found.

  9. Electroless ternary NiCeP coatings: Preparation and characterisation

    NASA Astrophysics Data System (ADS)

    Balaraju, J. N.; Chembath, Manju

    2012-10-01

    Electroless ternary NiCeP deposits were prepared from alkaline citrate bath containing nickel sulphate, cerium chloride and sodium hypophosphite. Concentration of rare earth cerium was varied from 1 to 2 g/L to obtain ternary deposits containing variable Ce and P contents. The influence of cerium on the deposit properties was analysed. The deposit exhibited a maximum cerium content of 6.2 ± 0.1 wt.% when the cerium chloride concentration was 2 g/L. The result of the Pd stability test showed that the stability of the bath was reduced due to Ce salt addition. The microhardness measurements made on both as-plated and heat treated samples exhibited a peak hardness of 1006 ± 11 VHN for cerium concentration of 1.5 g/L. The concept of kinetic strength analysis was proved to be applicable only for binary and not for ternary alloys due to multistep deposition mechanism with different kinetic energies. X-ray diffraction (XRD) patterns of as-plated and heat treated samples revealed peaks corresponding to Ni (1 1 1) and nickel phosphide (Ni3P). Higher amount of Ce incorporation in NiP matrix increased the crystallisation temperature of the deposit which could be due to the suppression of nickel crystallisation prior to Ni3P compound formation and thus increasing the activation energy for the formation of stable phases. Surface compositional analysis using X-ray photoelectron spectroscopy (XPS) carried out on as-plated NiCeP-2 deposit showed a prominent peak of P existing in +1 oxidation state as higher alkalinity favoured hypophosphite deposition in the ternary alloy coating. It was observed that the co-deposition of Ce in NiP matrix improved the continuous salt spray exposure for 168 h.

  10. Nicral ternary alloy having improved cyclic oxidation resistance

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Lowell, C. E.; Khan, A. S.

    1982-01-01

    NiCrAl alloys are improved by the addition of zirconium. These alloys are in the Beta or gamma/gamma' + Beta region of the ternary system. Zirconium is added in a very low amount between 0.06 and 0.20 weight percent. There is a narrow optimum zirconium level at the low value of 0.13 weight percent. Maximum resistance to cyclic oxidation is achieved when the zirconium addition is at the optimum value.

  11. Wide-Bandgap Semiconductors

    SciTech Connect

    Chinthavali, M.S.

    2005-11-22

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  12. Optical pumping in semiconductors

    NASA Astrophysics Data System (ADS)

    Hermann, C.; Lampel, G.; Safarov, V. I.

    Optical Pumping in Semiconductors (OPS) arises from the transfer of angular momentum from light to the localized states of a semiconductor. Spin polarized electrons are thus excited in the conduction band; their polarization is convenient measured through the circular polarization of photoluminescence. This review gives an insight of the various studies based on OPS. After describing the first OPS experiment, we show that this technique allows the determination of band structure properties, and the optical detection of conduction electron spin resonance. The nuclei are polarized by hyperfine interaction, which permits the optical detection of nuclear resonance. A magnetic field transverse to the direction of light propagation produces an electronic depolarization analogous to the Hanle effect. The electron lifetime and spin relaxation time are measured under steady-state conditions by comparison to their Larmor frequency in this transverse field. By activation to Negative Electron Affinity of a GaAs surface, electrons oriented by OPS can be photoemitted into vacuum, leading to a highly spin-polarized beam : we describe a collision experiment in which such a beam transfers angular momentum to atoms. Le Pompage Optique dans les semiconducteurs (POS) provient du transfert de moment angulaire de la lumière vers les états délocalisés d'un semiconducteur. On excite ainsi dans la bande de conduction des électrons polarisés de spin, dont on mesure commodément la polarisation à partir de la polarisation circulaire de la photoluminescence. Cet article de revue présente un aperçu des différentes études fondées sur le POS. Après avoir décrit la première expérience de POS, nous montrons que par cette technique on peut déterminer des propriétés liées à la structure de bande, et détecter optiquement la résonance de spin des électrons de conduction. Les noyaux sont polarisés grâce au couplage hyperfin qui permet également la détection optique de la r

  13. Multi-scale modeling of ternary-component lipid bilayers

    NASA Astrophysics Data System (ADS)

    Tumaneng, Paul

    The connection between membrane inhomogeneity and the structural basis of lipid rafts has sparked interest in the lateral organization of model lipid bilayers of two and three components. In an effort to investigate lateral organization in mixed bilayers, a self-consistent mean-field theoretical model is presented and applied to two important three-component bilayer mixtures. The model utilizes molecular dynamics simulations to estimate interaction parameters and to construct chain conformation libraries for utilization in a statistical mechanical treatment. The first application is to dipalmitoylphosphatidylcholine (DOPC) - stearoyl sphingomyelin (SSM) - cholesterol mixtures. The compositional dependence of lateral organization in these mixtures is mapped onto a ternary plot. It is found that at some concentration ratios the bilayers separate spatially into regions of higher and lower chain order coinciding with areas enriched with SSM and DOPC respectively. In the second application, ternary mixtures of palmitoyloleoylphosphatidylcholine (POPC) - palmitoyl sphingomyelin (PSM) - cholesterol are investigated. Again, results are organized onto a ternary plot. To examine the effect of the asymmetric chain structure of POPC on bilayer lateral inhomogeneity, POPC-POPC interactions with and without angular dependence are considered. Results are compared with experimental data and with results from the DOPC - SSM - cholesterol mixtures.

  14. Ternary Ag/epoxy adhesive with excellent overall performance.

    PubMed

    Ji, Yan-Hong; Liu, Yu; Huang, Gui-Wen; Shen, Xiao-Jun; Xiao, Hong-Mei; Fu, Shao-Yun

    2015-04-22

    Excellent electrical conductivity (EC) generally conflicts with high lap shear strength (LSS) for electrically conductive adhesives (ECAs) since EC increases while LSS decreases with increasing conductive filler content. In this work, the ECAs with the excellent overall performance are developed based on the ternary hybrid of Ag microflakes (Ag-MFs), Ag nanospheres (Ag-NSs), and Ag nanowires (Ag-NWs). First, a low silver content adhesive system is determined. Then, the effects of the relative contents of Ag fillers on the EC and the LSS are studied. It is shown that a small amount of Ag-NSs or Ag-NWs can dramatically improve the EC for the Ag-MF/epoxy adhesives. The Ag-NSs and Ag-NWs with appropriate contents have a synergistic effect in improving the EC. Meanwhile, the LSS of the as-prepared adhesive with the appropriate Ag contents reaches an optimal value. Both the EC and the LSS of the as-prepared ternary hybrid ECA with a low content of 40 wt % Ag are higher than those of the commercial ECAs filled with the Ag-MF content over 60 wt %. Finally, the ternary hybrid ECA with the optimal formulation is shown to be promising for printing the radio frequency identification tag antennas as an immediate application example. PMID:25835391

  15. Temperature sequences for categorizing all ternary distillation boundary maps

    SciTech Connect

    Peterson, E.J.; Partin, L.R.

    1997-05-01

    Temperature sequences are formulated as a complete method of categorizing the feasible distillation boundary maps (DBMs) for ternary systems which commonly have unique binary and ternary azeotropes. DBMs are simplified versions of residue curve maps. The method requires the boiling temperatures at system pressure of pure components and azeotropes, if they exist. Seven position numbers are assigned to the pure components (three) and azeotropes (three binary, one ternary). The boiling temperatures are sorted to rank the position numbers. The temperature sequence is defined as the ranking of position numbers. The position numbers of missing azeotropes are excluded from the sequence. An algorithm searches all possible temperature sequences for feasible DBMs. The result is a complete listing of 125 DBMs, 307 temperature sequences, and 382 [temperature sequence, DBM] pairs. Lookup tables simplify the procedure for finding the DBM(s) for a temperature sequence or finding the temperature sequences for a DBM. Example applications are presented for applying the technique in the initial screening for distillation system synthesis.

  16. Development and application of high strength ternary boride base cermets

    SciTech Connect

    Takagi, Ken-ichi . E-mail: u4381@toyokohan.co.jp

    2006-09-15

    Reaction boronizing sintering is a novel strategy to form a ternary boride coexisting with a metal matrix in a cermet during liquid phase sintering. This new sintering technique has successfully developed world first ternary boride base cermets with excellent mechanical properties such as Mo{sub 2}FeB{sub 2}, Mo{sub 2}NiB{sub 2} and WCoB base ones. In these cermets Mo{sub 2}FeB{sub 2} and Mo{sub 2}NiB{sub 2} base ones consist of a tetragonal M {sub 3}B{sub 2} (M: metal)-type complex boride as a hard phase and a transition metal base matrix. The cermets have already been applied to wear resistant applications such as injection molding machine parts, can making tools, and hot copper extruding dies, etc. This paper focuses on the characteristics, effects of the additional elements on the mechanical properties and structure, and practical applications of the ternary boride base cermets. - Graphical abstract: TRS and hardness of Ni-5B-51Mo-17.5Cr and Ni-5B-51Mo-12.5Cr-5V-xMn mass% cermets as functions of Mn content (Fig. 17)

  17. RNA polymerase II ternary transcription complexes generated in vitro.

    PubMed Central

    Ackerman, S; Bunick, D; Zandomeni, R; Weinmann, R

    1983-01-01

    Ternary transcription complexes have been formed with a HeLa cell extract, a specific DNA template, and nucleoside triphosphates. The assay depends on the formation of sarkosyl-resistant initiation complexes which contain RNA polymerase II, template DNA, and radioactive nucleoside triphosphates. Separation from the other elements in the in vitro reaction is achieved by electrophoresis in agarose - 0.25% sarkosyl gels. The mobility of the ternary complexes in this system cannot be distinguished from naked DNA. Formation of this complex is dependent on all parameters necessary for faithful in vitro transcription. Complexes are formed with both the plasmid vector and the specific adenovirus DNA insert containing a eucaryotic promoter. The formation of the complex on the eucaryotic DNA is sequence-dependent. An undecaribonucleotide predicted from the template DNA sequence remains associated with the DNA in the ternary complex and can be isolated if the chain terminator 3'-0-methyl GTP is used, or after T1 ribonuclease treatment of the RNA, or if exogenous GTP is omitted from the in vitro reaction. This oligonucleotide is not detected in association with the plasmid vector. Phosphocellulose fractionation of the extract indicates that at least one of the column fractions required for faithful runoff transcription is required for complex formation. A large molar excess of abortive initiation events was detected relative to the level of productive transcription events, indicating a 40-fold higher efficiency of transcription initiation vs. elongation. Images PMID:6193489

  18. Formation of a Ternary Complex for Selenocysteine Biosynthesis in Bacteria.

    PubMed

    Silva, Ivan R; Serrão, Vitor H B; Manzine, Livia R; Faim, Lívia M; da Silva, Marco T A; Makki, Raphaela; Saidemberg, Daniel M; Cornélio, Marinônio L; Palma, Mário S; Thiemann, Otavio H

    2015-12-01

    The synthesis of selenocysteine-containing proteins (selenoproteins) involves the interaction of selenocysteine synthase (SelA), tRNA (tRNA(Sec)), selenophosphate synthetase (SelD, SPS), a specific elongation factor (SelB), and a specific mRNA sequence known as selenocysteine insertion sequence (SECIS). Because selenium compounds are highly toxic in the cellular environment, the association of selenium with proteins throughout its metabolism is essential for cell survival. In this study, we demonstrate the interaction of SPS with the SelA-tRNA(Sec) complex, resulting in a 1.3-MDa ternary complex of 27.0 ± 0.5 nm in diameter and 4.02 ± 0.05 nm in height. To assemble the ternary complex, SPS undergoes a conformational change. We demonstrated that the glycine-rich N-terminal region of SPS is crucial for the SelA-tRNA(Sec)-SPS interaction and selenoprotein biosynthesis, as revealed by functional complementation experiments. Taken together, our results provide new insights into selenoprotein biosynthesis, demonstrating for the first time the formation of the functional ternary SelA-tRNA(Sec)-SPS complex. We propose that this complex is necessary for proper selenocysteine synthesis and may be involved in avoiding the cellular toxicity of selenium compounds. PMID:26378233

  19. Ternary fission of 466, 476 184X formed in U + U collisions

    NASA Astrophysics Data System (ADS)

    Karthikraj, C.; Subramanian, S.; Selvaraj, S.

    2016-06-01

    Recently, the very rare process of nuclear ternary fission has been of great interest in nuclear dynamics. Based on the statistical theory of fission, we discuss here the ternary-fission mass distribution of 466, 476 184X formed in low-energy U + U collisions for different heavy third fragments at T = 1 and 2MeV. The expected ternary configurations 208 Pb + 208 Pb + 50 Ca and 204 Hg + 204 Hg + 58 Cr are obtained from the ternary fission of 466 184X at T = 2 MeV. In addition, for both the systems, various possible ternary modes are listed for different heavy third fragments. Our results clearly indicate that the favored ternary configurations have either proton and/or neutron shell closure nucleus as one of their partners.

  20. Hydrogen in semiconductors and metals

    SciTech Connect

    Nickel, N.H.; Jackson, W.B.; Bowman, R.C.; Leisure, R.G.

    1998-12-31

    Major highlights of the conference include further understanding of the structure of extended hydrogen clusters in semiconductors, switchable optical properties of metal-hydride films, reversible changes in the magnetic coupling in metallic superlattices, and increased lifetime of integrated circuits due to deuterium device passivation. Continued progress has also been achieved in understanding hydrogenation of defects in compound semiconductors and on surfaces. Total energy calculations in semiconductors have progressed sufficiently to predict energetics and vibration frequencies as measured by experiment. Similarly, electronic structure calculations of hydrogen-metal systems provide a deeper understanding of stability, bonding, and phase changes. Various nuclear techniques have been refined to yield important information regarding the concentration and transport of hydrogen in condensed matter. Finally, the interaction of hydrogen to create thermal donors has been used to create deep p-n junctions without the need for deep diffusion of dopants. The volume has been organized along the order of presentation within the conference. Similar methods and subjects have been grouped together. The authors have attempted to keep similar metal and semiconductor papers together in order to further promote cross-fertilization between the fields. Major categories include hydrogen on surfaces, theory and thermodynamics, hydrogen transport phenomena, nuclear characterization techniques, compound semiconductors, metal bulk, devices and applications, bulk silicon, and carbon and carbon-like materials. Separate abstracts were prepared for most papers.

  1. Nonlinear optical interactions in semiconductors

    NASA Astrophysics Data System (ADS)

    Salour, M. M.

    1985-12-01

    The optical pumping technique in GaAs has led to the development of a novel and highly sensitive optical temperature sensor. Completed is the experiment on two photon optical pumping in ZnO. An external cavity semiconductor laser involving ZnO as a gain medium was demonstrated under two-photon excitation. This laser should have a major impact on the development of tunable blue-green radiation for submarine communication. Completed is a paper on heat buildup in semiconductor platelets. New lasers are used to explore elementary excitation in optical thin film layers of semiconductors. This has led to the first demonstration of the feasibility of room temperature operation of a tunable coherent source involving multiple quantum well material. Completed is the construction of a simple remote (non-contact) temperature sensor to directly measure heat buildup in semiconductor materials as a result of high power optical laser excitation. Finally, an experiment involving optical frequency mixing to probe electrodynamics in the GaAlAs multiple quantumwell and superlattice structures, utilizing two recently constructed tunabel laser systems,has been successful. Attempts were focused on observing a number of new optical effects including nonlinear absorption and transmission phenomena, enhanced spontaneous and stimulated light scattering processes, etc. The construction of an external cavity semiconductor HgCdTe has been successful.

  2. Distinct effects of the UvrD helicase on topoisomerase-quinolone-DNA ternary complexes.

    PubMed

    Shea, M E; Hiasa, H

    2000-05-12

    Quinolone antibacterial drugs target both DNA gyrase (Gyr) and topoisomerase IV (Topo IV) and form topoisomerase-quinolone-DNA ternary complexes. The formation of ternary complexes results in the inhibition of DNA replication and leads to the generation of double-strand breaks and subsequent cell death. Here, we have studied the consequences of collisions between the UvrD helicase and the ternary complexes formed with either Gyr, Topo IV, or a mutant Gyr, Gyr (A59), which does not wrap the DNA strand around itself. We show (i) that Gyr-norfloxacin (Norf)-DNA and Topo IV-Norf-DNA, but not Gyr (A59)-Norf-DNA, ternary complexes inhibit the UvrD-catalyzed strand-displacement activity, (ii) that a single-strand break is generated at small portions of the ternary complexes upon their collisions with UvrD, and (iii) that the majority of Topo IV-Norf-DNA ternary complexes become nonreversible when UvrD collides with the Topo IV-Norf-DNA ternary complexes, whereas the majority of Gyr-Norf-DNA ternary complexes remain reversible after their collision with the UvrD helicase. These results indicated that different DNA repair mechanisms might be involved in the repair of Gyr-Norf-DNA and Topo IV-Norf-DNA ternary complexes. PMID:10799552

  3. A Thermodynamic Approach to Predict Formation Enthalpies of Ternary Systems Based on Miedema's Model

    NASA Astrophysics Data System (ADS)

    Mousavi, Mahbubeh Sadat; Abbasi, Roozbeh; Kashani-Bozorg, Seyed Farshid

    2016-05-01

    A novel modification to the thermodynamic semi-empirical Miedema's model has been made in order to provide more precise estimations of formation enthalpy in ternary alloys. The original Miedema's model was modified for ternary systems based on surface concentration function revisions. The results predicted by the present model were found to be in excellent agreement with the available experimental data of over 150 ternary intermetallic compounds. The novel proposed model is capable of predicting formation enthalpies of ternary intermetallics with small discrepancies of ≤20 kJ/mol as well as providing reliable enthalpy variations.

  4. A Thermodynamic Approach to Predict Formation Enthalpies of Ternary Systems Based on Miedema's Model

    NASA Astrophysics Data System (ADS)

    Mousavi, Mahbubeh Sadat; Abbasi, Roozbeh; Kashani-Bozorg, Seyed Farshid

    2016-07-01

    A novel modification to the thermodynamic semi-empirical Miedema's model has been made in order to provide more precise estimations of formation enthalpy in ternary alloys. The original Miedema's model was modified for ternary systems based on surface concentration function revisions. The results predicted by the present model were found to be in excellent agreement with the available experimental data of over 150 ternary intermetallic compounds. The novel proposed model is capable of predicting formation enthalpies of ternary intermetallics with small discrepancies of ≤20 kJ/mol as well as providing reliable enthalpy variations.

  5. Aluminum nitride, Scandium nitride, and Aluminum-Scandium-Nitride ternary alloys : Structural, optical, and electrical properties

    NASA Astrophysics Data System (ADS)

    Deng, Ruopeng

    is ideal for shear mode electromechanical coupling, which is maximized at 48°. And this developing bi-axial texture is attributed to evolutionary competitive growth mode which selects out-of-plane and in-plane orientation by nuclei growth rates. In order to determine electronic band structure of ScN, simulation and experimental results are combined. First-principle simulation with HSE exchange function suggests rock-salt ScN to be indirect semiconductor with indirect gap of 0.92 eV and direct gap of 2.02 eV at X point, as well as electron transport effective mass of 0.33+/-0.05 m0 at conduction band bottom. In experiment, epitaxial ScN thin films deposited on single-crystal MgO 001 substrates by reactive sputtering are found unintentionally doped to be degenerate n-type semiconductor with electron density between 1.12x10 20 and 12.8x1020 cm-3. Direct bandgap determined by optic absorption method is observed decreasing with carrier concentration due to Bursten-Moss effect in a roughly linear trend, yielding an extrapolated intrinsic gap value of 2.1 eV at zero carrier density. Electron transport effective mass is also calculated from fitted plasma frequency, which is 0.40+/-0.02 m0. The overall great agreement between simulation and experiment can be concluded in regard of bandgap and effective mass, as well as optic reflectance level. Al-Sc-N ternary alloys can be categorized into two regions: Al-rich wurtizte Al1-xScxN and Sc-rich rock-salt Sc1-xAlxN. For Al1-xScxN, multiple phenomena are observed in experiment as Sc concentration x increases, from epitaxial samples deposited on sapphire 0001 substrates at 850°C: (1) Anisotropic lattice expansion with a = 3.111+0.744x A while c remains at 4.989+/-0.005 A, implying elongation of bond lengths as well as decrease in bond angle from 108.2° towards ~90° corresponding to meta-stable h-ScN. (2) Dielectric constant increases with Sc concentration as epsiloninfinity = 4.15 + 3.2x, correlated to the almost linear

  6. High mobility emissive organic semiconductor.

    PubMed

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J

    2015-01-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm(2) V(-1) s(-1). Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m(-2) and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics. PMID:26620323

  7. High mobility emissive organic semiconductor

    PubMed Central

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.

    2015-01-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V−1 s−1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m−2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics. PMID:26620323

  8. High mobility emissive organic semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.

    2015-12-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V-1 s-1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m-2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics.

  9. Selenium semiconductor core optical fibers

    SciTech Connect

    Tang, G. W.; Qian, Q. Peng, K. L.; Wen, X.; Zhou, G. X.; Sun, M.; Chen, X. D.; Yang, Z. M.

    2015-02-15

    Phosphate glass-clad optical fibers containing selenium (Se) semiconductor core were fabricated using a molten core method. The cores were found to be amorphous as evidenced by X-ray diffraction and corroborated by Micro-Raman spectrum. Elemental analysis across the core/clad interface suggests that there is some diffusion of about 3 wt % oxygen in the core region. Phosphate glass-clad crystalline selenium core optical fibers were obtained by a postdrawing annealing process. A two-cm-long crystalline selenium semiconductor core optical fibers, electrically contacted to external circuitry through the fiber end facets, exhibit a three times change in conductivity between dark and illuminated states. Such crystalline selenium semiconductor core optical fibers have promising utility in optical switch and photoconductivity of optical fiber array.

  10. Device Concepts in Semiconductor Spintronics

    NASA Astrophysics Data System (ADS)

    Molenkamp, Laurens W.

    Semiconductor spintronics has now reached a stage where the basic physical mechanisms controlling spin injection and detection are understood. Moreover, some critical technological issues involved in the growth and lithography of the magnetic semiconductors have been solved. This has allowed us to explore the physics of meanwhile quite complex spintronic devices. The lectures will start with an introduction to spin transport in metals and semiconductors. Building upon this, I will discuss various simple devices that demonstrate this basic physics in action. Subsequently, more advanced devices will be covered. For example, I will discuss resonant tunneling diodes (RTDs) fabricated from paramagnetic II-VI semiconductors that can be operated as a voltage controlled spin-switch. A quantum dot version of these RTDs exhibits, unexpectedly, remanent magnetism at zero external field, which we interpret as resulting from tunneling through a single magnetic polaron. In the ferromagnetic semiconductor (Ga, Mn)As we have observed a very large spin valve effect due to domain wall pinning at sub-10 nm sized constrictions. Furthermore, we have found a novel magnetoresistance effect in this material, dubbed tunnel anisotropic magnetoresistance (TAMR), which is due to the strongly (magneto-)anisotropic density of states in a ferromagnetic semiconductor. The effect leads to the observation of a spin valve-like behavior in tunnel structures containg a single ferromagnetic layer and also dominates the spin-valve signal obtained from structures containing two (Ga, Mn)As layers, where the effect may cause resistance changes of five orders of magnitude. Note from Publisher: This article contains the abstract only.

  11. Exciton Transport in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Menke, Stephen Matthew

    Photovoltaic cells based on organic semiconductors are attractive for their use as a renewable energy source owing to their abundant feedstock and compatibility with low-cost coating techniques on flexible substrates. In contrast to photovoltaic cells based traditional inorganic semiconductors, photon absorption in an organic semiconductor results in the formation of a coulombically bound electron-hole pair, or exciton. The transport of excitons, consequently, is of critical importance as excitons mediate the interaction between charge and light in organic photovoltaic cells (OPVs). In this dissertation, a strong connection between the fundamental photophysical parameters that control nanoscopic exciton energy transfer and the mesoscopic exciton transport is established. With this connection in place, strategies for enhancing the typically short length scale for exciton diffusion (L D) can be developed. Dilution of the organic semiconductor boron subphthalocyanine chloride (SubPc) is found to increase the LD for SubPc by 50%. In turn, OPVs based on dilute layers of SubPc exhibit a 30% enhancement in power conversion efficiency. The enhancement in power conversion efficiency is realized via enhancements in LD, optimized optical spacing, and directed exciton transport at an exciton permeable interface. The role of spin, energetic disorder, and thermal activation on L D are also addressed. Organic semiconductors that exhibit thermally activated delayed fluorescence and efficient intersystem and reverse intersystem crossing highlight the balance between singlet and triplet exciton energy transfer and diffusion. Temperature dependent measurements for LD provide insight into the inhomogeneously broadened exciton density of states and the thermal nature of exciton energy transfer. Additional topics include energy-cascade OPV architectures and broadband, spectrally tunable photodetectors based on organic semiconductors.

  12. A brief history of ... semiconductors

    NASA Astrophysics Data System (ADS)

    Jenkins, Tudor

    2005-09-01

    The development of studies in semiconductor materials is traced from its beginnings with Michael Faraday in 1833 to the production of the first silicon transistor in 1954, which heralded the age of silicon electronics and microelectronics. Prior to the advent of band theory, work was patchy and driven by needs of technology. However, the arrival of this successful quantum theory of solids, together with a concentration on the growth of pure silicon and germanium and an understanding of their properties, saw an explosion in activity in semiconductor studies that has continued to this day.

  13. Wide band gap semiconductor templates

    SciTech Connect

    Arendt, Paul N.; Stan, Liliana; Jia, Quanxi; DePaula, Raymond F.; Usov, Igor O.

    2010-12-14

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  14. Thermoelectric performance of granular semiconductors.

    SciTech Connect

    Glatz, A.; Beloborodov, I. S.; Materials Science Division; California State Univ.

    2009-01-01

    We study the effects of doping and confinement on the thermoelectric properties of nanocrystalline semiconductors. We calculate the thermopower and figure of merit for temperatures less than the charging energy. For weakly coupled semiconducting grains it is shown that the figure of merit is optimized for grain sizes of order 5 nm for typical materials, and that its value can be larger than one. Using the similarities between granular semiconductors and electron or Coulomb glasses allows for a quantitative description of inhomogeneous semiconducting thermoelectrics.

  15. Chemical vapor deposition of ternary refractory nitrides for diffusion barrier applications

    SciTech Connect

    Smith, P.M.; Custer, J.S.; Fleming, J.G.; Roherty-Osmun, E.; Cohn, M.; Jones, R.V.

    1996-06-01

    As semiconductor device dimensions shrink, new diffusion barriers will be required. Amorphous refractory ternaries have been identified as promising barrier candidates; because sputtering may not be suitable, we have developed chemical vapor deposition processes for these materials. Acceptable deposition rates are found for each of these processes at 350 C, with all depositions performed between 300 and 450 C. The first process produces a range of Ti-Si-N compositions from Ti organometallic, SiH{sub 4}, and NH{sub 3}. Resistivity of the Ti-Si-N films changes with Si content from >1{Omega}-cm at 25 at.% Si down to that of TiN (200{mu}{Omega}-cm). Step coverage obtained is better than 80% on 0.5 {mu}m features with aspect ratios of >1.6. The second CVD process produces a range of W-Si-N film compositions from WF{sub 6}, Si{sub 2}H{sub 6}, and NH{sub 3}. Resistivities vary with composition from 350 to 20,000 {mu}{Omega}-cm. Step coverage obtained is 100% on reentrant 0.25 {mu}m features with aspect ratios of 4.0. The third process employs WF{sub 6}(reduced by SiH{sub 4}), B{sub 2}H{sub 6}, and NH{sub 3} to produce W-B-N films with a range of compositions. Resistivities range from 200 to 20,000 {mu}{Omega}-cm. Step coverage obtained is {approx}40% on 1.5 {mu}m features with aspect ratios of 5.5.

  16. Zn(5)Sb(4)In(2-delta) - a ternary derivative of thermoelectric zinc antimonides.

    PubMed

    Wu, Yang; Lidin, Sven; Groy, Thomas L; Newman, N; Häussermann, Ulrich

    2009-07-01

    Zn(5)Sb(4)In(2-delta) (delta = 0.15(3)) was synthesized in the form of millimeter-sized crystals from reaction mixtures containing excess zinc. The ternary intermetallic compound is temperature polymorphic, and at room temperature it crystallizes with a new structure type in the orthorhombic space group Pbcn, where a = 7.1619(2), b = 17.1562(4), c = 8.6887(4) A, V = 1067.6(1) A(3), and Z = 4. The structure features 3(2)434 nets of Sb atoms that are stacked in antiposition to yield layers of square antiprisms sharing edges plus intervening tetracapped tetrahedra (tetreadersterns). The majority of Zn atoms occupy peripheral tetrahedra of such tetraedersterns, and attain at the same time the peculiar five-coordination by one like atom and four Sb atoms typical for the structures of binary zinc antimonides. The In and remaining Zn atoms are distributed in the tetragonal channels formed by the square antiprisms and display some disorder. At temperatures below 200 K Zn(5)Sb(4)In(2-delta) undergoes a phase transition into a more ordered structure with monoclinic symmetry (P2(1)/c) without any change of the unit cell. The thermoelectric properties of Zn(5)Sb(4)In(2-delta) were measured between 10 and 350 K. Exceptionally low thermal conductivity values (1 W/mK range) were obtained in the whole temperature range. Resistivity and thermopower values are characteristic of a heavily doped or degenerate semiconductor (2.5 mOmega cm and 160 muV/K, respectively, at room temperature) and show a discontinuity around 220 K. The thermoelectric figure of merit of Zn(5)Sb(4)In(2-delta) is higher than that of Zn(4)Sb(3) in the investigated temperature range. PMID:19476316

  17. Method of preparing nitrogen containing semiconductor material

    DOEpatents

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  18. Semiconductor Reliability--Another Field for Physicists.

    ERIC Educational Resources Information Center

    Derman, Samuel; Anderson, Wallace T.

    1994-01-01

    Stresses that an important industrial area is product reliability, especially for semiconductors. Suggests that physics students would benefit from training in semiconductors: the many modes of failure, radiation effects, and electrical contact problems. (MVL)

  19. Seebeck Coefficient Measurements on Micron-Size Single-Crystal Zinc Germanium Nitride Rods

    NASA Astrophysics Data System (ADS)

    Dyck, J. S.; Colvin, J. R.; Quayle, P. C.; Peshek, T. J.; Kash, K.

    2016-06-01

    II-IV-nitride compounds are tetrahedrally bonded, heterovalent ternary semiconductors that have recently garnered attention for their potential technological applications. These materials are derived from the parent III-nitride compounds; ZnGeN2 is the II-IV-nitride analogue to the III-nitride GaN. Very little is known about the transport properties of ZnGeN2. In this work, we present Seebeck coefficient ( S) data on 3-micron-diameter, 70-micron-long, single-crystal ZnGeN2 rods, employing a novel measurement approach. The measurements of S show that the majority free carriers are electrons, and imply that the carrier gas is degenerate. Within a single-band model for the conduction band, a carrier concentration of order 1019 cm-3 was estimated for a measured S = -90 μV/K. Together with electrical transport measurements, a lower limit for the electron mobility is estimated to be ˜20 cm2/V-s. A discussion of this material as a thermoelectric is presented. The background level of free electrons in this unintentionally doped ZnGeN2 is very near the predicted optimum value for maximum thermoelectric performance.

  20. Seebeck Coefficient Measurements on Micron-Size Single-Crystal Zinc Germanium Nitride Rods

    NASA Astrophysics Data System (ADS)

    Dyck, J. S.; Colvin, J. R.; Quayle, P. C.; Peshek, T. J.; Kash, K.

    2016-01-01

    II-IV-nitride compounds are tetrahedrally bonded, heterovalent ternary semiconductors that have recently garnered attention for their potential technological applications. These materials are derived from the parent III-nitride compounds; ZnGeN2 is the II-IV-nitride analogue to the III-nitride GaN. Very little is known about the transport properties of ZnGeN2. In this work, we present Seebeck coefficient (S) data on 3-micron-diameter, 70-micron-long, single-crystal ZnGeN2 rods, employing a novel measurement approach. The measurements of S show that the majority free carriers are electrons, and imply that the carrier gas is degenerate. Within a single-band model for the conduction band, a carrier concentration of order 1019 cm-3 was estimated for a measured S = -90 μV/K. Together with electrical transport measurements, a lower limit for the electron mobility is estimated to be ˜20 cm2/V-s. A discussion of this material as a thermoelectric is presented. The background level of free electrons in this unintentionally doped ZnGeN2 is very near the predicted optimum value for maximum thermoelectric performance.

  1. Semiconductor electrode with improved photostability characteristics

    DOEpatents

    Frank, Arthur J.

    1987-01-01

    An electrode is disclosed for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode includes a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  2. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  3. Semiconductor electrode with improved photostability characteristics

    DOEpatents

    Frank, A.J.

    1985-02-19

    An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  4. Diode having trenches in a semiconductor region

    DOEpatents

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  5. Semiconductor devices having a recessed electrode structure

    SciTech Connect

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  6. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  7. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  8. Orbital-frustration-induced ordering in semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Yin, Wanjian; Chen, Shiyou; Gong, X. G.; Wei, S.-H.; Xiang, H. J.

    2016-05-01

    It is well known that ternary zinc-blende semiconductors are always more stable in the chalcopyrite (CH) structure than the Cu-Au (CA) structure because the CH structure has a large Coulomb interaction and a reduced strain energy. Surprisingly, an experimental study showed that the ZnFeS e2 alloy takes the CA order as the ground-state structure, which is consistent with our density functional theory calculations showing that the CA order has lower energy than the CH order for ZnFeS e2 . We reveal that the orbital degree of freedom of a high-spin F e2 + ion (d6) in the tetrahedral crystal field plays a key role in stabilizing the CA order. First, the spin-minority d electron of the F e2 + ion tends to occupy the dx2-y2-like orbital instead of the d3 z2-r2-like orbital because of its large negative Coulomb energy. Second, for a nearest-neighboring F e2 + pair, two spin-minority d electrons with occupied dx2-y2-like orbitals on the plane containing the Fe-Fe bond have lower electronic kinetic energies. Both conditions can be satisfied in the CA ordered ZnFeS e2 alloy, whereas there is an orbital frustration in the CH structure. Our results suggest that the orbital degree of freedom provides a new way to manipulate the structure and properties of alloys.

  9. Modeling of Ternary Element Site Substitution in NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    2000-01-01

    It is well recognized that ternary alloying additions can have a dramatic impact on the behavior of ordered intermetallic alloys such as nickel aluminides. Properties as diverse as yield strength, fracture strength, fracture mode, cyclic oxidation resistance, creep strength, and thermal and electrical diffusivity can change by orders of magnitude when a few percent or less of a ternary element is added. Yet our understanding of the resulting point defect structures and the simple site preferences of ternary alloying additions is poor because these are extremely difficult characteristics to determine. This disconnection between the understanding of the structure and properties in ordered alloys is at least in part responsible for the limited development and commercialization of these materials. Theoretical methods have provided useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. In an effort to overcome these limitations, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed. After a brief description of this approximate quantum mechanical approach, we use BFS to investigate the energetics of Si, Ti, V, Cr, Fe, Co, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W additions to B2-ordered, stoichiometric NiAl. In addition to determining the site preference for these alloying additions over a range of compositions, we include results for the concentration dependence of the lattice parameter. In this introductory paper, we performed our analyses in the absence of constitutional and thermal vacancies for alloys of the form Ni50(Al,X)50. Where data exist, a comparison between experimental, theoretical, and BFS results is also included.

  10. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    SciTech Connect

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G.; Posadas, Agham; Demkov, Alexander A.

    2015-12-15

    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al{sub 2}O{sub 3} and HfO{sub 2}. However, there has been much effort to deposit ternary oxides, such as perovskites (ABO{sub 3}), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.

  11. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Sha, Yi-Gao

    1995-01-01

    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  12. Plutonium microstructures. Part 2. Binary and ternary alloys

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

  13. Infrared target recognition based on improved joint local ternary pattern

    NASA Astrophysics Data System (ADS)

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  14. Theoretical investigations of the ternary compound LaUN3

    NASA Astrophysics Data System (ADS)

    Potzel, Oliver

    2016-01-01

    We perform first-principles density functional calculations on the yet unknown ternary compound lanthanum uranium trinitride LaUN3. Therefore, we evaluate the physical properties of the basic binary compounds LaN and UN2 such as total energies, elastic constants and band structures. These results were compared to those of the predicted structure of LaUN3. We used the USPEX code in order to find the structure of LaUN3 with the lowest total energy. We furthermore discuss the structure and the properties of LaUN3 and predict its thermodynamic stability.

  15. 3D Synchrotron Imaging of a Directionally Solidified Ternary Eutectic

    NASA Astrophysics Data System (ADS)

    Dennstedt, Anne; Helfen, Lukas; Steinmetz, Philipp; Nestler, Britta; Ratke, Lorenz

    2016-03-01

    For the first time, the microstructure of directionally solidified ternary eutectics is visualized in three dimensions, using a high-resolution technique of X-ray tomography at the ESRF. The microstructure characterization is conducted with a photon energy, allowing to clearly discriminate the three phases Ag2Al, Al2Cu, and α-Aluminum solid solution. The reconstructed images illustrate the three-dimensional arrangement of the phases. The Ag2Al lamellae perform splitting and merging as well as nucleation and disappearing events during directional solidification.

  16. Nanomechanical properties and nanotribology of ternary metal nitrides nanocomposite

    NASA Astrophysics Data System (ADS)

    Mihut, Dorina M.

    Ternary metal nitride nanocomposite thin films have great potential as hard protective coatings for applications where high hardness, good wear resistance, high corrosion resistance and low surface roughness are required. The aim of the present research was to investigate nanocomposite thin films of Metal-BN and Metal-ZrN types (e.g. Cr-BN, Ti-BN, Cr-ZrN, Nb-ZrN and Inconel-ZrN), to explore their deposition conditions, nanomechanical properties and nanotribological behavior. Ternary metal nitride nanocomposite thin films were produced by DC unbalanced magnetron sputtering. Nanomechanical and nanotribological properties of thin films were characterized using a Hysistron Triboscope in conjunction with an atomic force microscope. The study aims to provide a better understanding of the correlation between static nanomechanical properties (nanohardness (H), elastic modulus (E), H/E and H3/E2 ratio) and dynamic properties (resulting from nanoscratch and nanowear measurements) for three groups of Metal-ZrN thin films (Inconel-ZrN, Cr-ZrN and Nb-ZrN) and monolayer polycrystalline ZrN thin films. It was demonstrated for the first time that elastic recovery after nanoscratching may be a better predictor of wear-resistance than conventional static nanoindentation testing, H/E and H3/E2 ratio evaluations that are currently used in the area of thin films, especially wear coatings. In order to predict the best ternary metal nitride thin film compositions for abrasive wear resistant applications (dry and lubricated contacts), the nanotribological performances for three groups of Metal-ZrN: Inconel-ZrN, Cr-ZrN, Nb-ZrN and ZrN thin films have been correlated with surface energy evaluation. Additionally, the chemical composition and microstructure of Me-BN and Me-ZrN thin films were investigated using X-ray diffraction, X-ray photoelectron spectroscopy and Auger electron spectroscopy, as well as analyzing their optical properties using spectroscopic ellipsometry. The chemical

  17. Density functional for ternary non-additive hard sphere mixtures.

    PubMed

    Schmidt, Matthias

    2011-10-19

    Based on fundamental measure theory, a Helmholtz free energy density functional for three-component mixtures of hard spheres with general, non-additive interaction distances is constructed. The functional constitutes a generalization of the previously given theory for binary non-additive mixtures. The diagrammatic structure of the spatial integrals in both functionals is of star-like (or tree-like) topology. The ternary diagrams possess a higher degree of complexity than the binary diagrams. Results for partial pair correlation functions, obtained via the Ornstein-Zernike route from the second functional derivatives of the excess free energy functional, agree well with Monte Carlo simulation data. PMID:21946780

  18. Crystal chemistry and chemical order in ternary quasicrystals and approximants

    NASA Astrophysics Data System (ADS)

    Gómez, Cesar Pay; Tsai, An Pang

    2014-01-01

    In this work we review our current understanding of structure, stability and formation of icosahedral quasicrystals and approximants. The work has special emphasis on Cd-Yb type phases, but several concepts are generalized to other families of icosahedral quasicrystals and approximants. The paper handles topics such as chemical order and site preference at the cluster level for ternary phases, valence electron concentration and its influence on formation and composition, fundamental building blocks and cluster linkages, and the similarities and differences between different families of icosahedral quasicrystals and approximants.

  19. (Magnetic properties of doped semiconductors)

    SciTech Connect

    Not Available

    1990-01-01

    Research continued on the transport behavior of doped semiconductors on both sides of the metal-insulator transition, and the approach to the transition from both the insulating and the metallic side. Work is described on magneto resistance of a series of metallic Si:B samples and CdSe. (CBS)

  20. Conductive Container for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Rice, J. T.

    1986-01-01

    Container for semiconductor components not only protects them against mechanical damage but ensures they are not harmed by electrostatic discharges. Container holds components in fixed positions so they can be serialized and identified from their locations. Suitable for holding components during both storing and shipping. Originally developed for microwave diodes, container concept readily adaptable to transistors and integrated circuits.

  1. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  2. Electronic spectra of semiconductor nanocrystals

    SciTech Connect

    Alivisatos, A.P.

    1993-12-31

    Semiconductor nanocrystals smaller than the bulk exciton show substantial quantum confinement effects. Recent experiments including Stark effect, resonance Raman, valence band photoemission, and near edge X-ray adsorption will be used to put together a picture of the nanocrystal electronic states.

  3. Semiconductor technology program: Progress briefs

    NASA Technical Reports Server (NTRS)

    Galloway, K. F.; Scace, R. I.; Walters, E. J.

    1981-01-01

    Measurement technology for semiconductor materials, process control, and devices, is discussed. Silicon and silicon based devices are emphasized. Highlighted activities include semiinsulating GaAs characterization, an automatic scanning spectroscopic ellipsometer, linewidth measurement and coherence, bandgap narrowing effects in silicon, the evaluation of electrical linewidth uniformity, and arsenicomplanted profiles in silicon.

  4. Mechanical scriber for semiconductor devices

    DOEpatents

    Lin, Peter T.

    1985-01-01

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.

  5. Mechanical scriber for semiconductor devices

    DOEpatents

    Lin, P.T.

    1985-03-05

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

  6. A Brief History of ... Semiconductors

    ERIC Educational Resources Information Center

    Jenkins, Tudor

    2005-01-01

    The development of studies in semiconductor materials is traced from its beginnings with Michael Faraday in 1833 to the production of the first silicon transistor in 1954, which heralded the age of silicon electronics and microelectronics. Prior to the advent of band theory, work was patchy and driven by needs of technology. However, the arrival…

  7. 2010 Defects in Semiconductors GRC

    SciTech Connect

    Shengbai Zhang

    2011-01-06

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  8. Semiconductor ac static power switch

    NASA Technical Reports Server (NTRS)

    Vrancik, J.

    1968-01-01

    Semiconductor ac static power switch has long life and high reliability, contains no moving parts, and operates satisfactorily in severe environments, including high vibration and shock conditions. Due to their resistance to shock and vibration, static switches are used where accidental switching caused by mechanical vibration or shock cannot be tolerated.

  9. Electron beam pumped semiconductor laser

    NASA Technical Reports Server (NTRS)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  10. Optical bistability in semiconductor microcavities

    SciTech Connect

    Baas, A.; Karr, J.Ph.; Giacobino, E.; Eleuch, H.

    2004-02-01

    We report the observation of polaritonic bistability in semiconductor microcavities in the strong-coupling regime. The origin of bistability is the polariton-polariton interaction, which gives rise to a Kerr-like nonlinearity. The experimental results are in good agreement with a simple model taking transverse effects into account.

  11. Semiconductor alloys - Structural property engineering

    NASA Technical Reports Server (NTRS)

    Sher, A.; Van Schilfgaarde, M.; Berding, M.; Chen, A.-B.

    1987-01-01

    Semiconductor alloys have been used for years to tune band gaps and average bond lengths to specific applications. Other selection criteria for alloy composition, and a growth technique designed to modify their structural properties, are presently considered. The alloys Zn(1-y)Cd(y)Te and CdSe(y)Te(1-y) are treated as examples.

  12. Amphoteric native defects in semiconductors

    SciTech Connect

    Walukiewicz, W.

    1989-05-22

    We show that a new concept of amphoteric native defects with strongly Fermi level dependent defect formation energy provides the basis for a unified explanation of a large variety of phenomena in semiconductors. Formation of Schottky barriers, particle irradiation induced compensation, doping-induced superlattice intermixing, and limits of free-carrier concentration find for the first time a common simple explanation.

  13. Semiconductor films on flexible iridium substrates

    DOEpatents

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  14. Advanced Semiconductor Devices

    NASA Astrophysics Data System (ADS)

    Shur, Michael S.; Maki, Paul A.; Kolodzey, James

    2007-06-01

    I. Wide band gap devices. Wide-Bandgap Semiconductor devices for automotive applications / M. Sugimoto ... [et al.]. A GaN on SiC HFET device technology for wireless infrastructure applications / B. Green ... [et al.]. Drift velocity limitation in GaN HEMT channels / A. Matulionis. Simulations of field-plated and recessed gate gallium nitride-based heterojunction field-effect transistors / V. O. Turin, M. S. Shur and D. B. Veksler. Low temperature electroluminescence of green and deep green GaInN/GaN light emitting diodes / Y. Li ... [et al.]. Spatial spectral analysis in high brightness GaInN/GaN light emitting diodes / T. Detchprohm ... [et al.]. Self-induced surface texturing of Al2O3 by means of inductively coupled plasma reactive ion etching in Cl2 chemistry / P. Batoni ... [et al.]. Field and termionic field transport in aluminium gallium arsenide heterojunction barriers / D. V. Morgan and A. Porch. Electrical characteristics and carrier lifetime measurements in high voltage 4H-SiC PiN diodes / P. A. Losee ... [et al.]. Geometry and short channel effects on enhancement-mode n-Channel GaN MOSFETs on p and n- GaN/sapphire substrates / W. Huang, T. Khan and T. P. Chow. 4H-SiC Vertical RESURF Schottky Rectifiers and MOSFETs / Y. Wang, P. A. Losee and T. P. Chow. Present status and future Directions of SiGe HBT technology / M. H. Khater ... [et al.]Optical properties of GaInN/GaN multi-quantum Wells structure and light emitting diode grown by metalorganic chemical vapor phase epitaxy / J. Senawiratne ... [et al.]. Electrical comparison of Ta/Ti/Al/Mo/Au and Ti/Al/Mo/Au Ohmic contacts on undoped GaN HEMTs structure with AlN interlayer / Y. Sun and L. F. Eastman. Above 2 A/mm drain current density of GaN HEMTs grown on sapphire / F. Medjdoub ... [et al.]. Focused thermal beam direct patterning on InGaN during molecular beam epitaxy / X. Chen, W. J. Schaff and L. F. Eastman -- II. Terahertz and millimeter wave devices. Temperature-dependent microwave performance of

  15. Quantitative Analysis of Ternary Vapor Mixtures Using a Microcantilever-Based Electronic Nose

    SciTech Connect

    Pinnaduwage, Lal A; Zhao, Weichang; Gehl, Anthony C; Allman, Steve L

    2007-01-01

    The authors report the identification and quantification of the components of a ternary vapor mixture using a microcantilever-based electronic nose. An artificial neural network was used for pattern recognition. Dimethyl methyl phosphonate vapor in ppb concentrations and water and ethanol vapors in ppm concentrations were quantitatively identified either individually or in binary and ternary mixtures at varying concentrations.

  16. The Various Collinear Ternary Fission Decays in 252Cf(sf)

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.; Pyatkov, Yu. V.; Kamanin, D. V.

    2015-06-01

    The collinear cluster decay in 252Cf(sf,fff), with three cluster fragments of different masses (e.g.132Sn,52-48Ca,68-72Ni), which has been observed by the FOBOS group in JINR, has established a new decay mode, the CCT (Collinear Cluster Tri-partition) of heavy nuclei. The same type of ternary fission decay has been observed in the reaction 235U(nth,fff). This collinear "true ternary fission" of heavy nuclei has been predicted many times in theoretical works during the last decades. In the present contribution we show that other ternary decay modes occur, in particular the symmetric ternary fission (FFF) into three fragments of almost equal size (e.g. Z=98→Zi = 32, 34, 32) in the same system. The different ternary fission channels are predicted with potential energy (PES) calculations for two mass parameters, M1(A1) and M3(A3). The deeper valleys point to the favored decay channels. An important aspect for the probability of the ternary decay modes are the internal barriers, which are presented here. The PES's show pronounced minima for several choices for favored ternary fragmentations. With these predictions, a variety of collinear ternary fission modes in the experimental data have been established.

  17. Multicomponent ternary cocrystals of the sulfonamide group with pyridine-amides and lactams.

    PubMed

    Bolla, Geetha; Nangia, Ashwini

    2015-11-01

    SMBA was selected as a bifunctional sulfa drug to design ternary cocrystals with pyridine amides and lactam coformers. Supramolecular assembly of five ternary cocrystals of p-sulfonamide benzoic acid with nicotinamide and 2-pyridone is demonstrated and reproducible heterosynthons are identified for crystal engineering. PMID:26355724

  18. Using a Ternary Diagram to Display a System's Evolving Energy Distribution

    ERIC Educational Resources Information Center

    Brazzle, Bob; Tapp, Anne

    2016-01-01

    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory…

  19. Formation of III–V ternary solid solutions on GaAs and GaSb plates via solid-phase substitution reactions

    SciTech Connect

    Vasil’ev, V. I.; Gagis, G. S. Kuchinskii, V. I.; Danil’chenko, V. G.

    2015-07-15

    Processes are considered in which ultrathin layers of III–V ternary solid solutions are formed via the delivery of Group-V element vapors to GaAs and GaSb semiconductor plates, with solid-phase substitution reactions occurring in the surface layers of these plates. This method can form defect-free GaAs{sup 1–x}P{sup x}, GaAs{sup x}Sb{sup 1–x}, and GaP{sup x}Sb{sup 1–x} layers with thicknesses of 10–20 nm and a content x of the embedded components of up to 0.04.

  20. Measurements of second-order susceptibility at λ=1.5 μm in CdTe-based ternary alloys for efficient wavelength conversion

    NASA Astrophysics Data System (ADS)

    Zappettini, Andrea; Pietralunga, Silvia M.; Milani, Antonella; Martinelli, Mario; Mycielski, Andrzej

    2000-10-01

    We have characterized the second-order optical nonlinear response of II-VI semiconductor ternary compounds Cd0.8Zn0.2Te and Cd0.78Mn0.22Te at λ=1.5 μm. A spectrally resolved phase-mismatch second-harmonic generation (SHG) technique has been used on bulk single crystals, exploiting 10-13 s optical pulses and multichannel detection. The nonlinear d coefficient has been measured and chromatic dispersion parameters have been validated. By normalizing SHG results in view of applications to all-optical wavelength conversion, the tested compounds prove to be interesting alternatives to more renowned AlxGa1-xAs.

  1. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  2. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  3. Optical Properties of Wurtzite Semiconductors Studied Using Cathodoluminescence Imaging and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Juday, Reid

    The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on

  4. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  5. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE PAGESBeta

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  6. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes.

    PubMed

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-01-01

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs. PMID:26041586

  7. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    PubMed Central

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-01-01

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs. PMID:26041586

  8. Indirect-to-direct band gap transition in relaxed and strained Ge{sub 1−x−y}Si{sub x}Sn{sub y} ternary alloys

    SciTech Connect

    Attiaoui, Anis; Moutanabbir, Oussama

    2014-08-14

    Sn-containing group IV semiconductors create the possibility to independently control strain and band gap thus providing a wealth of opportunities to develop an entirely new class of low dimensional systems, heterostructures, and silicon-compatible electronic and optoelectronic devices. With this perspective, this work presents a detailed investigation of the band structure of strained and relaxed Ge{sub 1−x−y}Si{sub x}Sn{sub y} ternary alloys using a semi-empirical second nearest neighbors tight binding method. This method is based on an accurate evaluation of the deformation potential constants of Ge, Si, and α-Sn using a stochastic Monte-Carlo approach as well as a gradient based optimization method. Moreover, a new and efficient differential evolution approach is also developed to accurately reproduce the experimental effective masses and band gaps. Based on this, we elucidated the influence of lattice disorder, strain, and composition on Ge{sub 1−x−y}Si{sub x}Sn{sub y} band gap energy and directness. For 0 ≤ x ≤ 0.4 and 0 ≤ y ≤ 0.2, we found that tensile strain lowers the critical content of Sn needed to achieve a direct band gap semiconductor with the corresponding band gap energies below 0.76 eV. This upper limit decreases to 0.43 eV for direct gap, fully relaxed ternary alloys. The obtained transition to direct band gap is given by y > 0.605 × x + 0.077 and y > 1.364 × x + 0.107 for epitaxially strained and fully relaxed alloys, respectively. The effects of strain, at a fixed composition, on band gap directness were also investigated and discussed.

  9. Fermi level dependent native defect formation: Consequences for metal--semiconductor and semiconductor--semiconductor interfaces

    SciTech Connect

    Walukiewicz, W.

    1988-07-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration.

  10. Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces

    SciTech Connect

    Walukiewicz, W.

    1988-02-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration. 33 refs., 6 figs.

  11. Preservation of surface features on semiconductor surfaces

    SciTech Connect

    Wilt, D.P.

    1989-02-14

    A semiconductor laser is described comprising a Group III-V compound semiconductor body having a major surface, p1 an optical grating on the major surface, a protective coating on the grating, the coating including a transition metal, a Group III-V compound semiconductor heterostructure formed on the coating, the heterostructure having the shape of a mesa and including a Group III-V compound semiconductor active layer, a current-blocking Group III-V compound semiconductor structure laterally adjacent the mesa and effective to direct the primary flow of current through the mesa during operation of the laser, and means forming electrical contact to the laser.

  12. Kinetics of radiation-induced segregation in ternary alloys. [LMFBR

    SciTech Connect

    Lam, N.Q.; Kumar, A.; Wiedersich, H.

    1982-01-01

    Model calculations of radiation-induced segregation in ternary alloys have been performed, using a simple theory. The theoretical model describes the coupling between the fluxes of radiation-induced defects and alloying elements in an alloy A-B-C by partitioning the defect fluxes into those occurring via A-, B-, and C-atoms, and the atom fluxes into those taking place via vacancies and interstitials. The defect and atom fluxes can be expressed in terms of concentrations and concentration gradients of all the species present. With reasonable simplifications, the radiation-induced segregation problem can be cast into a system of four coupled partial-differential equations, which can be solved numerically for appropriate initial and boundary conditions. Model calculations have been performed for ternary solid solutions intended to be representative of Fe-Cr-Ni and Ni-Al-Si alloys under various irradiation conditions. The dependence of segregation on both the alloy properties and the irradiation variables, e.g., temperature and displacement rate, was calculated. The sample calculations are in good qualitative agreement with the general trends of radiation-induced segregation observed experimentally.

  13. Breast mass classification on mammograms using radial local ternary patterns.

    PubMed

    Muramatsu, Chisako; Hara, Takeshi; Endo, Tokiko; Fujita, Hiroshi

    2016-05-01

    Textural features can be useful in differentiating between benign and malignant breast lesions on mammograms. Unlike previous computerized schemes, which relied largely on shape and margin features based on manual contours of masses, textural features can be determined from regions of interest (ROIs) without precise lesion segmentation. In this study, therefore, we investigated an ROI-based feature, namely, radial local ternary patterns (RLTP), which takes into account the direction of edge patterns with respect to the center of masses for classification of ROIs for benign and malignant masses. Using an artificial neural network (ANN), support vector machine (SVM) and random forest (RF) classifiers, the classification abilities of RLTP were compared with those of the regular local ternary patterns (LTP), rotation invariant uniform (RIU2) LTP, texture features based on the gray level co-occurrence matrix (GLCM), and wavelet features. The performance was evaluated with 376 ROIs including 181 malignant and 195 benign masses. The highest areas under the receiver operating characteristic curves among three classifiers were 0.90, 0.77, 0.78, 0.86, and 0.83 for RLTP, LTP, RIU2-LTP, GLCM, and wavelet features, respectively. The results indicate the usefulness of the proposed texture features for distinguishing between benign and malignant lesions and the superiority of the radial patterns compared with the conventional rotation invariant patterns. PMID:27015322

  14. Convective instabilities of ternary mixtures in thermogravitational columns

    NASA Astrophysics Data System (ADS)

    Zebib, Abdelfattah

    2007-11-01

    Convective instabilities in side heated infinite vertical slots containing a single fluid are stationary, shear driven when the Prandtl number Pr<12.5 while they are oscillatory, buoyancy dominated with Pr>12.5 due to the diminished influence of the thermal diffusivity with increasing Pr. Here we examine the influence of the concentration field generated by thermodiffusion in a ternary mixture of otherwise uniform concentration on this phenomenon. We first derive expressions and calculate the basic steady one-dimensional flow taking into account the vertical concentration gradients caused by thermodiffusion. Linear stability of this basic state is performed and the critical Rayleigh number, wavenumber, frequency, and vertical concentration gradients are determined as function of the two separation ratios, ratio of thermal expansivities, four Lewis numbers, and Pr. The results are in agreement with the base flow of the ternary mixture considered by Leahy-Dios et al., J. Chem. Phys. (2005). Stability results are in agreement with those from a simplified model in the long wave approximation as well as when restricted to binary mixtures. Stability restrictions on the operation of the thermogravitational column will be discussed.

  15. Finding new ternary transition metal selenides and sulphides

    NASA Astrophysics Data System (ADS)

    Narayan, Awadhesh; Bhutani, Ankita; Eckstein, James N.; Shoemaker, Daniel P.; Wagner, Lucas K.

    The transition metal oxides exhibit many interesting physical properties, and have been explored in detail over time. Recently, the transition metal chalchogenides including selenium and sulfur have been of interest because of their correlated electron properties, as seen in the iron based superconductors and the layered transition metal dichalchogenides. However, the chalchogenides are much less explored than the oxides, and there is an open question of whether there may be new materials heretofore undiscovered. We perform a systematic combined theoretical and experimental search over ternary phase diagrams that are empty in the Inorganic Crystal Structure Database containing cations, transition metals, and one of selenium or sulfur. In these 27 ternary systems, we use a probabilistic model to reduce the likelihood of false negative predictions, which results in a list of 24 candidate materials. We then conduct a variety of synthesis experiments to check the candidate materials for stability. While the prediction method did obtain compositions that are stable, none of the candidate materials formed in our experiments. We come to the conclusion that these phase diagrams are either truly empty or have unusual structures or synthesis requirements. This work was supported by the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088.

  16. Enhancement of the anomalous Hall effect in ternary alloys

    NASA Astrophysics Data System (ADS)

    Tauber, Katarina; Hönemann, Albert; Fedorov, Dmitry V.; Gradhand, Martin; Mertig, Ingrid

    2015-06-01

    We consider ternary alloys of the composition Cu(Mn 1 -wTw) , where T corresponds to different nonmagnetic impurities. As was discovered by Fert et al. [J. Magn. Magn. Mater. 24, 231 (1981)], 10.1016/0304-8853(81)90079-2, the anomalous Hall effect (AHE) in the binary Cu(Mn) alloy can be significantly enhanced by means of codoping using 5 d impurities. Moreover, they attempted to quantify the spin Hall effect (SHE) in Cu (T ) binary alloys via the AHE measured in the related ternary alloys. Here, we present a theoretical study serving as a detailed background of the experimental findings by clarifying the conditions required for a maximal enhancement of the AHE as well as the relations between both Hall effects. Based on the proposed approach, we perform first-principles calculations for several Cu(Mn 1 -wTw)[T = Au, Bi, Ir, Lu, Sb, or Ta] alloys, which are underpinned by theoretical investigations via Matthiessen's rule.

  17. Binding Energy Calculations for Novel Ternary Ionic Lattices

    NASA Astrophysics Data System (ADS)

    Rodríguez-Mijangos, Ricardo; Vazquez-Polo, Gustavo

    2002-03-01

    Theoretical calculations for the binding energy between metalic ions and negative ions on a novel ternary ionic lattice is carried out for several solid solutions prepared with different concentrations and characterized recently (1). The ternary lattices that reach a good miscibility are: KCl(x)KBr(y)RbCl(z) in three different concentrations: (x=y=z=0.33), (x=0.5, y=0.25, z=0.25) and (x=0.33, y=0.07, z=0.60). The binding energy for these novel structures is calculated from the lattice constants obtained by X ray diffractometry analysis performed on the samples and the Vegard law (2). For the repulsive force exponent m, an average of the m values was considered. The energy values obtained by the Born´expression are compared with corresponding energy values from the lattice with more complex expressions, such as the Born Mayer, Born-Van der Walls. There is a good aggreement between all these calculations. (1)R. R. Mijangos, A. Cordero-Borboa, E. Alvarez, M. Cervantes, Physics Letters A 282 (2001) 195-200. (2) G. Vazquez-Polo, R. R. Mijangos et al. Revista Mexicana de Fisica, 47, Diciembre 2001. In Press.

  18. Thermodiffusion in binary and ternary nonpolar hydrocarbon + alcohol mixtures

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Saghir, M. Ziad

    2012-12-01

    Thermodiffusion in complex mixtures, such as associating, molten metal, and polymer mixtures is difficult to model usually owing to the occurrence of a sign change in the thermodiffusion coefficient when the mixture concentration and temperature change. A mixture comprised of a nonpolar hydrocarbon and an alcohol is a complex and highly non-ideal mixture. In this paper an existing binary non-equilibrium thermodynamics model (Eslamian and Saghir, Physical Review E 80, 061201, 2009) developed for aqueous mixtures of alcohols is examined against the experimental data of binary nonpolar hydrocarbon and alcohol mixtures. For ternary mixtures, non-equilibrium thermodynamic expressions developed by the authors for aqueous mixtures of alcohols (Eslamian and Saghir, Canadian Journal of Chemical Engineering, DOI 10.1002/cjce.20581) is used to predict thermodiffusion coefficients of ternary nonpolar hydrocarbon and alcohol mixtures. The rationale behind the sign change is elucidated and attributed to an anomalous change in the molecular structure and therefore viscosity of such mixtures. Model predictions of thermodiffusion coefficients of binary mixtures predict a sign change consistent with the experimental data although the model is still too primitive to capture all structural complexities. For instance, in the methanol-benzene mixture where the model predictions are poorest, the viscosity data show that when concentration varies, the mixture's molecular structure experiences a severe change twice, the first major change leading to a maximum in the thermodiffusion coefficient, whereas the second change causes a sign change.

  19. Percolation in binary and ternary mixtures of patchy colloids.

    PubMed

    Seiferling, Felix; de Las Heras, Daniel; Telo da Gama, Margarida M

    2016-08-21

    We investigate percolation in binary and ternary mixtures of patchy colloidal particles theoretically and using Monte Carlo simulations. Each particle has three identical patches, with distinct species having different types of patch. Theoretically we assume tree-like clusters and calculate the bonding probabilities using Wertheim's first-order perturbation theory for association. For ternary mixtures, we find up to eight fundamentally different percolated states. The states differ in terms of the species and pairs of species that have percolated. The strongest gel is a trigel or tricontinuous gel, in which each of the three species has percolated. The weakest gel is a mixed gel in which all of the particles have percolated, but none of the species percolates by itself. The competition between entropy of mixing and internal energy of bonding determines the stability of each state. Theoretical and simulation results are in very good agreement. The only significant difference is the temperature at the percolation threshold, which is overestimated by the theory due to the absence of correlations between bonds in the theoretical description. PMID:27544122

  20. Thermodynamic measurement of aluminum-nickel-X ternary systems

    NASA Astrophysics Data System (ADS)

    Hu, Rongxiang

    Al, Ni based alloys are of interest for applications such as high temperature structural materials for gas turbines. A thorough knowledge of the thermodynamic properties and phase equilibria in the ternary and higher order alloy systems is required for developing this kind of alloys. Thermodynamic modeling of phase diagrams provides a more efficient manner to evaluate alloy phase equilibria aspects for alloy development than extensive experimentally studies. This modeling needs precise determination of thermodynamic properties, especially enthalpy of formation. In this work, high temperature calorimeters were used to obtain the enthalpy of formation and heat capacity of compounds in the Al-Ni-X (X: Co, Cu, Cr, Ti, Ir, Pd and Pt) ternary systems with the third element generally either a transition metal or rare earth. Lattice parameters of Al-Ni-X compounds were also studied with x-ray diffractometry. The phase diagram of the Al-Pt binary system was calculated using Thermo-Calc. The work is aimed at populating databases for computational thermodynamics, developing an understanding of alloying and clarifying phase equilibria.