Science.gov

Sample records for il-1 receptor antagonism

  1. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. PMID:26002078

  2. Expression of an IL-1 receptor antagonist during mouse hepatocarcinogenesis demonstrated by differential display analysis.

    PubMed

    Yamada, Y; Karasaki, H; Matsushima, K; Lee, G H; Ogawa, K

    1999-09-01

    The differential display technique was applied for identification of genes that have altered expression in mouse hepatocellular carcinomas relative to normal liver. Three genes were identified. The IL-1 receptor antagonist (IL-1ra) was expressed in hepatocellular carcinomas, whereas the major urinary protein (MUP) and cytochrome P-450 naphthalene hydroxylase (cyp2F2) genes were down-regulated. Because IL-1ra is a natural antagonist of IL-1, and because the latter has been reported to suppress the growth of hepatic cells, we also studied the expression of IL-1ra in hepatocarcinogenesis. IL-1ra was immunohistochemically detected in tumor cells in approximately 70% of hepatocellular adenomas and carcinomas, whereas early preneoplastic hepatocytic foci, as well as normal hepatocytes surrounding the lesions, were negative. In addition, 20% of human hepatocellular carcinomas were also partly positive for IL-1ra. RT-PCR analysis demonstrated that mouse hepatic tumors contain both secreted and intracellular forms of IL-1ra. On the other hand, there were no differences in levels of IL-1alpha and IL-1beta between hepatic tumors and normal liver in mice, suggesting that the majority of tumors create a microenvironment that inhibits the actions of IL-1. Furthermore, IL-1ra-positive adenomas contained more proliferating cell nuclear antigen-positive cells than IL-1ra-negative adenomas, indicating a link with high proliferation activity, although this was no longer evident in carcinomas. The observed altered gene expression may be related to biological phenotypes of hepatic tumors, and IL-1ra in particular may positively influence tumor cell growth through its antagonism of IL-1. PMID:10496524

  3. Spontaneous secretion of interleukin 1 receptor antagonist (IL-1ra) by cells isolated from herniated lumbar discal tissue after discectomy.

    PubMed

    Koch, H; Reinecke, J A; Meijer, H; Wehling, P

    1998-09-01

    In the study presented, cells of a herniated lumbar disc were cultivated in vitro and analysed for interleukin 1beta (IL-1beta) and interleukin 1 receptor antagonist (IL-1Ra) production. The objective of this study was the detection of IL-1beta and IL-1Ra secreted by herniated lumbar discal cells after discectomy. The involvement of cytokines in the degeneration of intervertebral discs and in the pathophysiology of radiculopathy is established. Antagonizing proteins, e.g. IL-1Ra are thought to have considerable therapeutic potential. In the present study, a 51-year-old male with massive sequestrated lumbar disc herniation at L5/S1 was treated by microsurgical discectomy. Discal cells were isolated, cultures and culture supernatants immunochemically analysed for IL-1beta and IL-1Ra secretion. Spontaneous secretion of IL-1Ra was found. IL-1beta was not detected. Our findings might contradict recent studies on the role of IL-1beta and IL-1Ra. A possible therapeutic role of exogenous IL-1Ra in disc degeneration needs further research. PMID:9770331

  4. Targeting Imbalance between IL-1β and IL-1 Receptor Antagonist Ameliorates Delayed Epithelium Wound Healing in Diabetic Mouse Corneas.

    PubMed

    Yan, Chenxi; Gao, Nan; Sun, Haijing; Yin, Jia; Lee, Patrick; Zhou, Li; Fan, Xianqun; Yu, Fu-Shin

    2016-06-01

    Patients with diabetes mellitus often develop corneal complications and delayed wound healing. How diabetes might alter acute inflammatory responses to tissue injury, leading to delayed wound healing, remains mostly elusive. Using a streptozotocin-induced type I diabetes mellitus mice and corneal epithelium-debridement wound model, we discovered that although wounding induced marked expression of IL-1β and the secreted form of IL-1 receptor antagonist (sIL-1Ra), diabetes suppressed the expressions of sIL-1Ra but not IL-1β in healing epithelia and both in whole cornea. In normoglycemic mice, IL-1β or sIL-1Ra blockade delayed wound healing and influenced each other's expression. In diabetic mice, in addition to delayed reepithelization, diabetes weakened phosphatidylinositol 3-kinase-Akt signaling, caused cell apoptosis, diminished cell proliferation, suppressed neutrophil and natural killer cell infiltrations, and impaired sensory nerve reinnervation in healing mouse corneas. Local administration of recombinant IL-1Ra partially, but significantly, reversed these pathological changes in the diabetic corneas. CXCL10 was a downstream chemokine of IL-1β-IL-1Ra, and exogenous CXCL10 alleviated delayed wound healing in the diabetic, but attenuated it in the normal corneas. In conclusion, the suppressed early innate/inflammatory responses instigated by the imbalance between IL-1β and IL-1Ra is an underlying cause for delayed wound healing in the diabetic corneas. Local application of IL-1Ra accelerates reepithelialization and may be used to treat chronic corneal and potential skin wounds of diabetic patients. PMID:27109611

  5. Properties of a specific interleukin 1 (IL 1) receptor on human Epstein Barr virus-transformed B lymphocytes. Identity of receptor for IL 1-. cap alpha. and IL 1-. beta

    SciTech Connect

    Matsushima, K.; Akahoshi, T.; Yamada, M.; Furutani, Y.; Oppenheim, J.J.

    1986-01-01

    The properties of specific human interleukin 1 (IL 1) receptors on human Epstein Barr virus-transformed B lymphocytes (EBV-B) were studied. Purified human IL 1-..beta.. from a myelomonocytic cell line (THP-1) was labeled with /sup 125/I. Among four EBV-B cell lines tested, a pre-B cell type (VDS-O) specifically bound the highest amount of /sup 125/I-IL 1-..beta... The binding of /sup 125/I-IL 1-..beta.. to VDS-O cells was inhibited by F(ab)'/sub 2/ fragments of anti-human IL 1 and recombinant human IL 1-..cap alpha.., as well as by unlabeled human IL 1-..beta.. but not by recombinant lymphotoxin, recombinant tumor necrosis factor, or phorbol myristic acid, suggesting that IL 1-..cap alpha.. and IL 1-..beta.. bind specifically to the same receptor. The m.w. of IL 1 receptor on human EBV-B cells was estimated to be 60,000 by both the chemical cross-linking method and high pressure liquid chromatography (HPLC). The isoelectric point of solubilized human IL 1 receptor was 7.3 on HPLC chromatofocusing. The evidence of existence of IL 1 receptor on human EBV-B cells additionally supports the hypothesis that IL 1 may be an autocrine signal for these cells.

  6. Decoys and Regulatory “Receptors” of the IL-1/Toll-Like Receptor Superfamily

    PubMed Central

    Garlanda, Cecilia; Riva, Federica; Bonavita, Eduardo; Gentile, Stefania; Mantovani, Alberto

    2013-01-01

    Members of the IL-1 family play a key role in innate and adaptive immunity and in the pathogenesis of diverse diseases. Members of IL-1R like receptor (ILR) family include signaling molecules and negative regulators. The latter include decoy receptors (IL-1RII; IL-18BP) and “receptors” with regulatory function (TIR8/SIGIRR; IL-1RAcPb; DIGIRR). Structural considerations suggest that also TIGIRR-1 and IL-1RAPL may have regulatory function. The presence of multiple pathways of negative regulation of members of the IL-1/IL-1R family emphasizes the need for a tight control of members of this fundamental system. PMID:23847621

  7. Inhibition of Histone Deacetylases Antagonized FGF2 and IL-1β Effects on MMP Expression in Human Articular Chondrocytes

    PubMed Central

    Wang, Xibin; Song, Yingjie; Jacobi, Jennifer L.; Tuan, Rocky S.

    2013-01-01

    Fibroblast growth factor – 2 (FGF2) and interleukin – 1β IL-1β) stimulate the expression of matrix metalloproteinases (MMPs) in articular chondrocytes, which may contribute to cartilage degradation and development of osteoarthritis. Histone deacetylases (HDACs) have recently been implicated in the regulation of MMP gene expression. To investigate the functional involvement of HDACs in the signaling pathway of FGF2 and IL-1β, we examined the effects of HDAC inhibition on activities of FGF2 or IL-1β on gene expression of MMP-1, MMP-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs – 5 (ADAMTS5), collagen type II, and aggrecan. Human articular chondrocyte cultures were treated with FGF2 or IL-1β in the presence or absence of HDAC inhibitor (trichostatin A, TSA). Gene expression levels after treatments were assessed using quantitative real time PCR. Results showed that FGF2 and IL-1β both increased MMP-1 and -13 expression, while IL-1βalso increased MMP-3 mRNA levels. These effects were attenuated in the presence of TSA in a dose dependent manner. In contrast to the effects on MMPs, FGF2 decreased mRNA levels of ADAMTS–5, which was not affected by HDAC inhibition. FGF2, IL-1β, and TSA inhibited expression of aggrecan, while TSA also decreased mRNA levels of collagen type II. These findings showed that HDAC inhibition antagonized FGF2 and IL-1β induced MMP expression. Combination of FGF2 and the HDAC inhibitor decreases both anabolic and catabolic genes, which may slow the cartilage turnover and be beneficial for maintaining cartilage integrity. PMID:19107653

  8. Interleukin (IL)-1 in rat parturition: IL-1 receptors 1 and 2 and accessory proteins abundance in pregnant rat uterus at term - regulation by progesterone.

    PubMed

    Ishiguro, Tomohito; Takeda, Jun; Fang, Xin; Bronson, Heather; Olson, David M

    2016-07-01

    The role of interleukin-1 (IL-1), a pro-inflammatory cytokine, in parturition is typically noted by changes in its concentrations. Studying the expression of its receptor family, IL-1 receptor (IL-1R) 1, IL-1R2, IL-1R accessory protein (IL-1RAcP), and its predominantly brain isoform, IL-1RAcPb, during late gestation in the uterus in the Long-Evans rat is another. We assessed changes in their mRNA and protein relative abundance in the uterus and compared IL-1RAcP and IL-1RAcPb mRNA abundance in uterus, cervix, ovaries, placenta, and whole blood of Long-Evans rats during late gestation or in RU486 and progesterone-treated dams using quantitative real-time PCR and western immunoblotting. IL-1R1, IL-1RAcP, and IL-1RAcPb mRNA abundance significantly increased in the uterus at delivery whereas IL-1R2 mRNA abundance significantly decreased. IL-1R1 protein increased at term and IL-1R2 protein decreased at term compared to nonpregnant uteri. IL1-RAcPb mRNA abundance was less than IL-1RAcP, but in the lower uterine segment it was the highest of all tissues examined. RU486 stimulated preterm delivery and an increase in IL-1R1 mRNA abundance whereas progesterone administration extended pregnancy and suppressed the increase in IL-1R1. These data suggest that changes in uterine sensitivity to IL-1 occur during late gestation and suggest another level of regulation for the control of delivery. The roles for IL-1RAcP and IL-1RAcPb need to be determined, but may relate to different intracellular signaling pathways. PMID:27440742

  9. Molecular and functional characterization of an IL-1β receptor antagonist in grass carp (Ctenopharyngodon idella).

    PubMed

    Yao, Fuli; Yang, Xiao; Wang, Xinyan; Wei, He; Zhang, Anying; Zhou, Hong

    2015-04-01

    In the present study, we discovered a novel IL-1 family member (nIL-1F) from grass carp that possessed the ability to bind with grass carp IL-1β receptor type 1 (gcIL-1R1) and attenuate grass carp IL-1β activity in head kidney leukocytes (HKLs), suggesting that it may function as an IL-1β receptor antagonist. Grass carp nIL-1F transcript was constitutively expressed with the highest levels in some lymphoid organs, including head kidney, spleen and intestine, implying its potential in grass carp immunity. In agreement with this notion, in vitro and in vivo studies showed that nIL-1F mRNA was inductively expressed in grass carp with a rapid kinetics, indicating that it may be an early response gene during immune challenges. In addition, recombinant grass carp IL-1β (rgcIL-1β) induced nIL-1F mRNA expression via NF-κB and MAPK (JNK, p38 and p42/44) signaling pathways in HKLs. Particularly, the orthologs of nIL-1F found in other fish species, including zebrafish, pufferfish and rainbow trout are not homologous to mammalian IL-1β receptor antagonist (IL-1Ra), indicating that fish nIL-1F and mammalian IL-1Ra may not share a common evolutionary ancestor. Taken together, our data suggest the existence of a naturally occurring fish nIL-1F, which may function like mammalian IL-1Ra, being beneficial to understand the auto-regulatory mechanism of IL-1β activity in fish immunity. PMID:25475961

  10. Properties of an EBV-B cell line derived interleukin 1 (IL 1) receptor

    SciTech Connect

    Matsushima, K.; Akahoshi, T.; Yamada, M.; Furutani, Y.; Oppenheim, J.J.

    1986-03-01

    The properties of an human IL 1 receptor on a human EBV-B line were studied. Purified human IL 1-..beta.. produced by a myelomonocytic cell line (THP-1) was labeled with /sup 125/I by the Bolton-Hunter method without loss of biological activity. Among four EBV-B cell lines tested, a pre-B cell type (VDS-O) specifically bound the most /sup 125/I IL-..beta... Maximal binding was reached within 20 min at 4/sup 0/C. Scatchard analysis of the binding of /sup 125/I-IL 1-..beta.. to VDS-O cells yielded a Kd of 2.4-5.9 x 10/sup -00/ M with 110 to 220 binding (receptor) sites/cell. The binding of /sup 125/I-IL 1-..beta.. to VDS-O cells was inhibited by anti-human IL 1 antibody, natural and recombinant human IL 1-..cap alpha.. as well as IL 1-..beta.., but not by IFN-..cap alpha.., TNF, or LT, suggesting that IL 1-..cap alpha.. and IL 1-..beta.. specifically bind to the same receptor. The mw of the IL 1 receptor on human EBV-B cells was estimated to be 60 Kd both by a chemical crosslinking method and by HPLC gel filtration analysis of solubilized receptor extracted from membranes by a nonionic detergent (CHAPS). The pI of solubilized human IL 1 receptor was 7.3 by HPLC chromatofocusing. Data showing that VDS-O cells proliferate in response to exogenously added IL 1, express IL 1 receptors and also produce IL 1 all support the hypothesis that IL 1 may function as an autocrine signal for B lymphocytes.

  11. Regulatory effects of interleukin (IL)-1, interferon-beta, and IL-4 on the production of IL-1 receptor antagonist by human adipose tissue.

    PubMed

    Juge-Aubry, Cristiana E; Somm, Emmanuel; Chicheportiche, Rachel; Burger, Danielle; Pernin, Agnès; Cuénod-Pittet, Brigitte; Quinodoz, Pierre; Giusti, Vittorio; Dayer, Jean-Michel; Meier, Christoph A

    2004-06-01

    Adipose tissue is the source of production and site of action of several pro- and antiinflammatory cytokines. We have recently shown that white adipose tissue (WAT) is a major producer of the antiinflammatory IL-1 receptor antagonist (IL-1Ra). Because IL-1Ra serum levels are elevated 7-fold in human obesity and an excess of this protein has been implicated in the acquired resistance to leptin and insulin, we investigated the regulation of IL-1Ra in human WAT. We demonstrate that IL-1Ra is mainly produced by adipocytes, rather than the stromal fraction of WAT, and that IL-1alpha and beta, as well as interferon-beta (IFN-beta), strongly up-regulate the expression and secretion of IL-1Ra in WAT. Moreover, human WAT expresses the receptors and proteins known to be required for the action of IL-1 (IL-1 receptor type I, IL-1 receptor accessory protein) and IFN-beta (IFN-alpha/beta receptor subunits 1 and 2). Finally, human WAT actively secretes these regulatory cytokines, suggesting that they up-regulate IL-1Ra through a local autocrine/paracrine action, which is hypothesized to play a regulatory role in adipogenesis and metabolism. PMID:15181037

  12. IL-1 signaling modulates STAT activation to antagonize retinoic acid signaling and control Th17–iTreg balance

    PubMed Central

    Basu, Rajatava; Whitley, Sarah K.; Bhaumik, Suniti; Zindl, Carlene L.; Schoeb, Trenton R.; Benveniste, Etty N.; Pear, Warren S.; Hatton, Robin D.; Weaver, Casey T.

    2016-01-01

    Interleukin 17 (IL-17)-producing helper (TH17) and inducible regulatory CD4+ T (iTreg) cells emerge from an overlapping developmental program. In the intestines, the vitamin A metabolite retinoic acid (RA) is produced at steady state and acts as an important cofactor to induce iTreg cell development while potently inhibiting TH17 development. Here, we found that IL-1 was required to fully override RA-mediated Foxp3 expression and induce protective TH17 responses. Through induction of an NF-κB-dependent repression of SOCS3 expression, IL-1 increased the amplitude and duration of STAT3 phosphorylation induced by TH17-polarizing cytokines, leading to an altered balance of STAT3–STAT5 binding to shared consensus sequences in developing T cells. Thus, IL-1 signaling differentially modulated STAT activation downstream of cytokine receptors to control TH17–iTreg developmental fate. PMID:25642823

  13. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice

    PubMed Central

    Vezzani, A.; Moneta, D.; Conti, M.; Richichi, C.; Ravizza, T.; De Luigi, A.; De Simoni, M. G.; Sperk, G.; Andell-Jonsson, S.; Lundkvist, J.; Iverfeldt, K.; Bartfai, T.

    2000-01-01

    IL-1β and its endogenous receptor antagonist (IL-1Ra) are rapidly induced by seizures in the rodent hippocampus. Exogenously applied IL-1β prolongs seizures in an IL-1R type I-mediated manner. This effect depends on N-methyl-d-aspartate receptor activation. We report here that intrahippocampal application of recombinant IL-1Ra or its selective endogenous overexpression in astrocytes under the control of glial acidic fibrillary protein promoter potently inhibits motor and electroencephalographic seizures induced by bicuculline methiodide in mice. Accordingly, transgenic mice show a reduced seizure-related c-fos mRNA expression in various forebrain areas compared with their wild-type littermates. Recombinant IL-1Ra was ineffective in mice deficient in IL-1R type I, having per se a delayed onset to generalized convulsions. These results demonstrate that IL-1Ra mediates potent anticonvulsant effects acting on IL-1R type I and suggest that the balance between brain IL-1β and IL-1Ra represents a crucial mechanism to control seizure generalization. PMID:11016948

  14. Detection of high affinity receptor sites for IL 1. beta. on a human B lymphoblastoid line which fail to recognize IL 1. cap alpha

    SciTech Connect

    Chin, J.; Cameron, P.; Sigal, N.H.; Schmidt, J.A.

    1986-03-05

    A large number of EBV-transformed human B lines were screened for their ability to bind human pI 6.8 IL 1 (IL 1..beta..) which was labeled to high specific radioactivity with Bolton-Hunter reagent. One of these, designated 2C2, bound (/sup 125/)I-IL 1 in a saturable dose-dependent fashion. Scatchard analysis of direct binding data obtained at equilibrium suggested a single family of receptor sites, at approx. 10,000 sites per cell, with a K/sub d/ = 1.5 +/- 0.2 (+SD) nM. Competition experiments with cold pI 6.8 IL 1 gave a K/sub i/ = 1.0 +/- 0.3 nM. No competition was seen with a 20-fold molar excess of human IL 2, human gamma-INF, or the pI 5.2 and pI 5.4 species of human IL 1. These anionic species of IL 1 have recently been purified to homogeneity by us from monocyte culture supernatants. Amino acid sequence analysis of the pI 5.4 species demonstrates that it is encoded by the recently reported IL 1..cap alpha.. cDNA. Cross linking of pI 6.8 (/sup 125/)I-IL 1 to intact 2C2 cells with increasing amounts of cross linker revealed a single band with a MW congruent to 80,000. Cross-linking was totally abolished by excess unlabeled pI 6.8 IL 1 but not by excess pI 5.4 IL 1. These results show that the receptor for IL 1..beta.. on 2C2 cells is highly specific for one species of human IL 1 and raises the possibility that IL 1..cap alpha.. and IL 1..beta.., though very similar in their biological properties, have separate receptor sites.

  15. Identification and mechanism of ABA receptor antagonism

    SciTech Connect

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy; Zhou, X. Edward; Soon, Fen-Fen; Chinnusamy, Viswanathan; Suino-Powell, Kelly M; Kovach, Amanda; Tham, Fook S.; Cutler, Sean R.; Li, Jun; Yong, Eu-Leong; Zhu, Jian-Kang; Xu, H. Eric

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.

  16. IL-1RT1 signaling antagonizes IL-11 induced STAT3 dependent cardiac and antral stomach tumor development through myeloid cell enrichment.

    PubMed

    Buzzelli, Jon N; Pavlic, Dan I; Chalinor, Heather V; O'Connor, Louise; Menheniott, Trevelyan R; Giraud, Andrew S; Judd, Louise M

    2015-01-20

    IL-1 is key driver of gastric tumorigenesis and is a downstream target of IL-11 signaling. Recently, IL-1 cytokines, particularly IL-1β, have been flagged as therapeutic targets for gastric cancer treatment. Here, we assess the requirement for IL-1 signaling in gastric tumorigenesis. gp130757FF xIL-1RT1-/- mice were generated to determine the pathological consequence of ablated IL-1 signaling in the IL-11 dependent gp130757FF mouse model of gastric tumorigenesis. Gastric lesions in gp130757FF xIL-1RT1-/- mice were increased in incidence and size compared to gp130757FF mice. Proximal gastric lesions originated from the cardiac region and were associated with elevated STAT3 activation, loss of specialized gastric cells and a modulated immune response including increased expression of TNF-α and MDSC associated genes. Administration of IL-11 to IL-1RT1-/- mice showed similar changes to gp130757FF xIL-1RT1-/- mice. Spleens from IL-11 treated wildtype mice showed an enrichment of MDSC and gp130757FF xIL-1RT1-/- mice had increased MDSCs in the stomach compared to gp130757FF mice. Furthermore, crossing TNF-α-/- to gp130757FF mice resulted in reduced lesion size. We conclude that IL-1 signaling antagonizes IL-11/STAT3 mediated pathology and the genetic deletion of IL-1RT1 results in increased tumor burden. We provide evidence that a likely mechanism is due to IL-11/STAT3 dependent enrichment of MDSCs. PMID:25528766

  17. Effect of the IL-1 Receptor Antagonist Kineret® on Disease Phenotype in mdx Mice

    PubMed Central

    Benny Klimek, Margaret E.; Sali, Arpana; Rayavarapu, Sree; Van der Meulen, Jack H.; Nagaraju, Kanneboyina

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by mutations in the dystrophin gene. The pathology of DMD manifests in patients with progressive muscle weakness, loss of ambulation and ultimately death. One of the characteristics of DMD is muscle inflammation, and dystrophin-deficient skeletal muscles produce higher levels of the pro-inflammatory cytokine interleukin 1β (IL-1β) in response to toll like receptor (TLR) stimulation compared to controls; therefore, blocking the IL-1β pathway could improve the disease phenotype in mdx mice, a mouse model of DMD. Kineret® or IL-1Ra is a recombinant IL-1 receptor antagonist approved by the FDA for treating rheumatoid arthritis. To determine the efficacy of IL-1Ra in a DMD model, we administered subcutaneous injections of saline control or IL-1Ra (25 mg/kg/day) to mdx mice daily for 45 days beginning at 5 weeks of age. Functional and histological parameters were measured at the conclusion of the study. IL-1Ra only partially inhibited this signaling pathway in this study; however, there were still interesting observations to be noted. For example, although not significantly changed, splenocytes from the IL-1Ra-treated group secreted less IL-1β after LPS stimulation compared to control mice indicating a blunted response and incomplete inhibition of the pathway (37% decrease). In addition, normalized forelimb grip strength was significantly increased in IL-1Ra-treated mice. There were no changes in EDL muscle-specific force measurements, histological parameters, or motor coordination assessments in the dystrophic mice after IL-1Ra treatment. There was a significant 27% decrease in the movement time and total distance traveled by the IL-1Ra treated mice, correlating with previous studies examining effects of IL-1 on behavior. Our studies indicate partial blocking of IL-1β with IL-1Ra significantly altered only a few behavioral and strength related disease parameters; however, treatment with

  18. Effect of the IL-1 Receptor Antagonist Kineret® on Disease Phenotype in mdx Mice.

    PubMed

    Benny Klimek, Margaret E; Sali, Arpana; Rayavarapu, Sree; Van der Meulen, Jack H; Nagaraju, Kanneboyina

    2016-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked muscle disease caused by mutations in the dystrophin gene. The pathology of DMD manifests in patients with progressive muscle weakness, loss of ambulation and ultimately death. One of the characteristics of DMD is muscle inflammation, and dystrophin-deficient skeletal muscles produce higher levels of the pro-inflammatory cytokine interleukin 1β (IL-1β) in response to toll like receptor (TLR) stimulation compared to controls; therefore, blocking the IL-1β pathway could improve the disease phenotype in mdx mice, a mouse model of DMD. Kineret® or IL-1Ra is a recombinant IL-1 receptor antagonist approved by the FDA for treating rheumatoid arthritis. To determine the efficacy of IL-1Ra in a DMD model, we administered subcutaneous injections of saline control or IL-1Ra (25 mg/kg/day) to mdx mice daily for 45 days beginning at 5 weeks of age. Functional and histological parameters were measured at the conclusion of the study. IL-1Ra only partially inhibited this signaling pathway in this study; however, there were still interesting observations to be noted. For example, although not significantly changed, splenocytes from the IL-1Ra-treated group secreted less IL-1β after LPS stimulation compared to control mice indicating a blunted response and incomplete inhibition of the pathway (37% decrease). In addition, normalized forelimb grip strength was significantly increased in IL-1Ra-treated mice. There were no changes in EDL muscle-specific force measurements, histological parameters, or motor coordination assessments in the dystrophic mice after IL-1Ra treatment. There was a significant 27% decrease in the movement time and total distance traveled by the IL-1Ra treated mice, correlating with previous studies examining effects of IL-1 on behavior. Our studies indicate partial blocking of IL-1β with IL-1Ra significantly altered only a few behavioral and strength related disease parameters; however, treatment with

  19. Inducible HSP70 Antagonizes IL-1β Cytocidal Effects through Inhibiting NF-kB Activation via Destabilizing TAK1 in HeLa Cells

    PubMed Central

    Cao, Xiang; Yue, Ling; Song, JiYun; Wu, Qiuyue; Li, Na; Luo, Lan; Lan, Lei; Yin, Zhimin

    2012-01-01

    Background Despite several reports describing the HSP70-mediated cytoprotection against IL-1, the precise mechanism for this phenomenon remains to be determined. Methods/Principal Findings Here we used HeLa cells, a human epithelial carcinoma cell line, to evaluate the role of inducible HSP70 in response of IL-1β stimulation. We found that inducible HSP70 antagonized the cytotoxicity of IL-1β and improved the survival of HeLa cells. Further investigation demonstrated that increased expression level of inducible HSP70 reduced the complex of TAK1 and HSP90, and promoted the degradation of TAK1 protein via proteasome pathway. By overexpression and RNAi knockdown, we showed that inducible HSP70 modulated the NF-kB but not MAPKs signalings through influencing the stability of TAK1 protein in HeLa cells. Moreover, overexpression of HSP70 attenuated the production of iNOS upon IL-1β stimulation, validating that inducible HSP70 serves as a cytopretective factor to antagonize the cytocidal effects of IL-1β in HeLa cells. Conclusions/Significance Our observations provide evidence for a novel signaling mechanism involving HSP70, TAK1, and NF-κB in the response of IL-1β cytocidal effects. This research also provides insight into mechanisms by which HSP70 exerts its cytoprotective action upon toxic stimuli in tumor cells. PMID:23185533

  20. Mutant Cells That Do Not Respond to Interleukin-1 (IL-1) Reveal a Novel Role for IL-1 Receptor-Associated Kinase

    PubMed Central

    Li, Xiaoxia; Commane, Mairead; Burns, Carmel; Vithalani, Kalpa; Cao, Zhaodan; Stark, George R.

    1999-01-01

    Mutagenized human 293 cells containing an interleukin-1 (IL-1)-regulated herpes thymidine kinase gene, selected in IL-1 and gancyclovir, have yielded many independent clones that are unresponsive to IL-1. The four clones analyzed here carry recessive mutations and represent three complementation groups. Mutant A in complementation group I1 lacks IL-1 receptor-associated kinase (IRAK), while the mutants in the other two groups are defective in unknown components that function upstream of IRAK. Expression of exogenous IRAK in I1A cells (I1A-IRAK) restores their responsiveness to IL-1. Neither NFκB nor Jun kinase is activated in IL-1-treated I1A cells, but these responses are restored in I1A-IRAK cells, indicating that IRAK is required for both. To address the role of the kinase activity of IRAK in IL-1 signaling, its ATP binding site was mutated (K239A), completely abolishing kinase activity. In transfected I1A cells, IRAK-K239A was still phosphorylated upon IL-1 stimulation and, surprisingly, still complemented all the defects in the mutant cells. Therefore, IRAK must be phosphorylated by a different kinase, and phospho-IRAK must play a role in IL-1-mediated signaling that does not require its kinase activity. PMID:10373513

  1. Expression density of receptors to IL-1β in atopic dermatitis.

    PubMed

    Alshevskaya, Alina A; Lopatnikova, Julia A; Krugleeva, Olga L; Nepomnyschih, Vera M; Lukinov, Vitaliy L; Karaulov, Aleksander V; Sennikov, Sergey V

    2016-07-01

    Interleukin 1 (IL-1 β) and the system for regulation of its biological effects play an important role in the development and behavior of inflammatory processes in atopic dermatitis. Notably, cells that are actively involved in the pathological process have altered expression of cytokine receptors. However, standard evaluation of cells by flow cytometry measures only the percentage of cells expressing the appropriate marker, which is not enough for a full assessment of these changes. The aim of this study was to investigate changes in the expression of IL-1β cytokine receptors in patients with atopic dermatitis by both percentage of cells with receptors in various subsets and the absolute number of membrane-bound receptors themselves. It was found that an increase or decrease in the percentage of cells expressing the receptors in subsets of immune cells in patients with atopic dermatitis was not associated with a change in the number of receptors on the cell surface. Moreover, the changes in the percentage of cells and the number of receptors may occur in different directions, as shown for IL-1R2 expression on B cells and IL-1R1 expression for monocytes. Changes in the parameters of IL-1β receptor expressions are associated with disease severity index SCORAD in atopic dermatitis. These findings underline the importance of studying the density of cytokine receptor expression in the pathology. PMID:27267269

  2. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types.

    PubMed Central

    McMahan, C J; Slack, J L; Mosley, B; Cosman, D; Lupton, S D; Brunton, L L; Grubin, C E; Wignall, J M; Jenkins, N A; Brannan, C I

    1991-01-01

    cDNA clones corresponding to an Mr approximately 80,000 receptor (type I receptor) for interleukin-1 (IL-1) have been isolated previously by mammalian expression. Here, we report the use of an improved expression cloning method to isolate human and murine cDNA clones encoding a second type (Mr approximately 60,000) of IL-1 receptor (type II receptor). The mature type II IL-1 receptor consists of (i) a ligand binding portion comprised of three immunoglobulin-like domains; (ii) a single transmembrane region; and (iii) a short cytoplasmic domain of 29 amino acids. This last contrasts with the approximately 215 amino acid cytoplasmic domain of the type I receptor, and suggests that the two IL-1 receptors may interact with different signal transduction pathways. The type II receptor is expressed in a number of different tissues, including both B and T lymphocytes, and can be induced in several cell types by treatment with phorbol ester. Both IL-1 receptors appear to be well conserved in evolution, and map to the same chromosomal location. Like the type I receptor, the human type II IL-1 receptor can bind all three forms of IL-1 (IL-1 alpha, IL-1 beta and IL-1ra). Vaccinia virus contains an open reading frame bearing strong resemblance to the type II IL-1 receptor. Images PMID:1833184

  3. Synovial macrophage-derived IL-1β regulates the calcitonin receptor in osteoarthritic mice.

    PubMed

    Takano, S; Uchida, K; Miyagi, M; Inoue, G; Aikawa, J; Fujimaki, H; Minatani, A; Sato, M; Iwabuchi, K; Takaso, M

    2016-01-01

    Recent studies have reported that calcitonin gene-related peptide (CGRP) contributes to joint pain. However, regulation of the CGRP/CGRP receptor signalling in osteoarthritis (OA) is not fully understood. To investigate the regulation of CGRP/CGRP receptor signalling by macrophages in the synovial tissue (ST) of OA joints, we characterized the gene expression profiles of CGRP and CGRP receptors in the ST of OA mice (STR/Ort). In addition, we examined whether macrophage depletion by the systemic injection of clodronate-laden liposomes affected the expression of CGRP and CGRP receptors in ST. CD11c(+) macrophages in the ST of STR/Ort and C57BL/6J mice were analysed by flow cytometry. Real-time polymerase chain reaction (PCR) was used to evaluate the expression of interleukin (IL)-1β, CGRP, calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) in F4/80(+) and F4/80(-) cells. The effects of IL-1β on the expression of CGRP and CLR by cultured synovial cells were also examined. The percentage of CD11c(+) macrophages in the ST of STR/Ort was higher than that in C57/BL6J mice. Notably, the F4/80(+) cell fraction expressed IL-1β highly, whereas the F4/80(-) cell fraction expressed CGRP, CLR, and RAMP1 highly. In addition, expression of the IL-1β and CLR genes was increased in ST, but was decreased upon macrophage depletion, and the IL-1β treatment of cultured synovial cells up-regulated CLR. Taken together, the present findings suggest that synovial macrophages are the major producers of IL-1β and regulators of CLR in OA mice. Therefore, macrophages and IL-1β may be suitable therapeutic targets for treating OA pain. PMID:26400621

  4. Proinsulin Shares a Motif with Interleukin-1α (IL-1α) and Induces Inflammatory Cytokine via Interleukin-1 Receptor 1*

    PubMed Central

    Lee, Siyoung; Kim, Eunsom; Jhun, Hyunjhung; Hong, Jaewoo; Kwak, Areum; Jo, Seunghyun; Bae, Suyoung; Lee, Jongho; Kim, Busun; Lee, Jungmin; Youn, Sulah; Kim, Somi; Kim, Miyeon; Kim, Hyunwoo; Lee, Youngmin; Choi, Dong-Ki; Kim, Yong-Sung; Kim, Soohyun

    2016-01-01

    Although it has been established that diabetes increases susceptibility to infections, the role of insulin (INS) in the immune response is unknown. Here, we investigated the immunological function of INS. Proinsulin dimer (pINSd) was a potent immune stimulus that induced inflammatory cytokines, but mature INS was unable to induce an immune response. An affinity-purified rabbit polyclonal antibody raised against mature IL-1α recognized IL-1α and pINS but failed to detect mature INS and IL-1β. Analysis of the pINS sequence revealed the existence of an INS/IL-1α motif in the C-peptide of pINS. Surprisingly, the INS/IL-1α motif was recognized by monoclonal antibody raised against IL-1α. Deleting the INS/IL-1α motif in pINSd and IL-1α changed their activities. To investigate the pINSd receptor, the reconstitution of IL-1 receptor 1 (IL-1R1) in Wish cells restored pINSd activity that was reversed by an IL-1R antagonist. These data suggested that pINSd needs IL-1R1 for inflammatory cytokine induction. Mouse embryo fibroblast cells of IL-1R1-deficient mice further confirmed that pINSd promotes immune responses through IL-1R1. PMID:27226621

  5. Proinsulin Shares a Motif with Interleukin-1α (IL-1α) and Induces Inflammatory Cytokine via Interleukin-1 Receptor 1.

    PubMed

    Lee, Siyoung; Kim, Eunsom; Jhun, Hyunjhung; Hong, Jaewoo; Kwak, Areum; Jo, Seunghyun; Bae, Suyoung; Lee, Jongho; Kim, Busun; Lee, Jungmin; Youn, Sulah; Kim, Somi; Kim, Miyeon; Kim, Hyunwoo; Lee, Youngmin; Choi, Dong-Ki; Kim, Yong-Sung; Kim, Soohyun

    2016-07-01

    Although it has been established that diabetes increases susceptibility to infections, the role of insulin (INS) in the immune response is unknown. Here, we investigated the immunological function of INS. Proinsulin dimer (pINSd) was a potent immune stimulus that induced inflammatory cytokines, but mature INS was unable to induce an immune response. An affinity-purified rabbit polyclonal antibody raised against mature IL-1α recognized IL-1α and pINS but failed to detect mature INS and IL-1β. Analysis of the pINS sequence revealed the existence of an INS/IL-1α motif in the C-peptide of pINS. Surprisingly, the INS/IL-1α motif was recognized by monoclonal antibody raised against IL-1α. Deleting the INS/IL-1α motif in pINSd and IL-1α changed their activities. To investigate the pINSd receptor, the reconstitution of IL-1 receptor 1 (IL-1R1) in Wish cells restored pINSd activity that was reversed by an IL-1R antagonist. These data suggested that pINSd needs IL-1R1 for inflammatory cytokine induction. Mouse embryo fibroblast cells of IL-1R1-deficient mice further confirmed that pINSd promotes immune responses through IL-1R1. PMID:27226621

  6. The human interleukin-1 receptor antagonist (IL1RN) gene is located in the chromosome 2q14 region

    SciTech Connect

    Patterson, D.; Jones, C.; Hart, I.; Bleskan, J.; Berger, R.; Geyer, D. ); Eisenberg, S.P. ); Smith, M.F. Jr.; Arend, W.P. )

    1993-01-01

    The gene for human interleukin-1 receptor antagonist (IL1RN) has been assigned to chromosome 2 on the basis of Southern blot analysis of a series of human-Chinese hamster cell hybrids. Using a yeast artificial chromosome containing the IL1RN gene as a probe, the human IL1RN gene was localized to the long arm of chromosome 2 at band 2q14.2 by fluorescence in situ hybridization. This site is near the positions of genes for human IL-l[alpha], IL-1[beta], and types I and II IL-1 receptors, as reported by other laboratories. 23 refs., 1 fig., 1 tab.

  7. PROXIMAL GUT MUCOSAL EPITHELIAL HOMEOSTASIS IN AGED IL-1 TYPE I RECEPTOR KNOCKOUT MICE AFTER STARVATION

    PubMed Central

    Song, Juquan; Wolf, Steven E.; Wu, Xiao-Wu; Finnerty, Celeste C.; Herndon, David N.; Jeschke, Marc G.

    2010-01-01

    Background Previous studies have shown that starvation induces small bowel atrophy, and that atrophy diminishes with aging. In this experiment, we assessed whether starvation-induced atrophy of proximal gut mucosa is associated with the Interleukin-1 receptor (IL-1R) signaling pathway in aged mice. Materials and Methods Thirty 26-month-old IL-1R knockout mice and age-matched wild-type C57BL/6 mice were randomly divided into two groups: ad libitum fed and fasted. Mice were euthanized 12 or 48 hours after starvation. The proximal small bowel was harvested for morphologic analysis. Gut epithelial cell proliferation was detected using immunohistochemical staining for proliferating cell nuclear antigen (PCNA), and apoptosis was identified using terminal deoxyuridine nick-end labeling (TUNEL) staining. Results Aged IL-1R knockout mice were larger than aged-matched wild-type mice (p<0.05). Proximal gut mucosal height and mucosal cell number were not different between aged IL-1R knockout and wild-type groups. The apoptosis index in gut epithelial cells was higher in fed IL-1R knockout versus wild-type mice (p<0.05), while no significant difference in cell proliferation between both groups. Mucosal atrophy was induced in both aged IL-1R knockout and wild-type groups by starvation (p<0.05), however, aged IL-1R knockout mice experienced greater losses in proximal gut weight, mucosal length, and corresponding cell number than did wild-type mice at the 12-hour time point (p<0.05). The apoptosis index in gut epithelial cells significantly increased in both groups after starvation (p<0.05). Starvation decreased cell proliferation in IL-1R knockout mice (p<0.05), but not in wild-type mice. Conclusions The response in aged IL-1R knockout mice differs from wild-type mice in that starvation increases atrophy and is associated with decreased cell proliferation rather than increased apoptosis. PMID:20605606

  8. Association between Interleukin-1 Receptor Antagonist (IL1RN) Variable Number of Tandem Repeats (VNTR) Polymorphism and Pulmonary Tuberculosis.

    PubMed

    Hashemi, Mohammad; Naderi, Mohammad; Ebrahimi, Mahboubeh; Amininia, Shadi; Bahari, Gholamreza; Taheri, Mohsen; Eskandari-Nasab, Ebrahim; Ghavami, Saeid

    2015-02-01

    Macrophages and T-lymphocytes are involved in immune response to Mycobacterium tuberculosis. Macrophage produces interleukin (IL)-1 as an inflammatory mediator. IL-1 receptor antagonist (IL1-Ra) is a natural antagonist of IL-1 receptors. In this study we aimed to examine the possible association between the variable number of tandem repeats (VNTR) of the IL-1 receptor antagonist (IL1RN) gene and pulmonary tuberculosis (TB) in a sample of Iranian population. Our study is a case-control study and we examined the VNTR of the IL1RN gene in 265 PTB and 250 healthy subjects by PCR. Neither the overall chi-square comparison of PTB and control subjects nor the logistic regression analysis indicated any association between VNTR IL1RN polymorphism and PTB. Our data suggest that VNTR IL1RN polymorphism may not be associated with the risk of PTB in a sample of Iranian population. Larger studies with different ethnicities are needed to find out the impact of IL1RN VNTR polymorphism on risk of developing TB. PMID:25530139

  9. Novel multimeric IL-1 receptor antagonist for the treatment of rheumatoid arthritis.

    PubMed

    Pasi, Shweta; Kant, Ravi; Gupta, Sarika; Surolia, Avadhesha

    2015-02-01

    Protein therapeutics targeting inflammatory mediators have shown great promise for the treatment of autoimmunities such as rheumatoid arthritis (RA). However, a significant challenge in this area has been their low in vivo stability and consequently their severely compromised therapeutic efficacy. One such therapeutic molecule IL-1 receptor antagonist (IL-1ra), used in the treatment of rheumatoid arthritis, has displayed only modest efficacy in human clinical trials owing to its short biological half-life. Herein, we report a novel approach to conglomerate individual protein entities into a drug depot by incorporation of an amyloidogenic motif Lys-Phe-Phe-Glu (KFFE) thereby dramatically improving their systemic persistence and in turn their therapeutic efficacy in a mice model of autoimmune arthritis. PMID:25542800

  10. Involvement of IL-6 and IL-1 receptor antagonist on intellectual disability.

    PubMed

    Aureli, A; Sebastiani, P; Del Beato, T; Marimpietri, A E; Graziani, A; Sechi, E; Di Loreto, S

    2014-11-01

    Imbalances in the regulation of pro-inflammatory cytokines have been increasingly correlated with several neurodevelopmental disorders and their role in neuronal development is being investigated. To assess the possible influence of cytokines on the onset of intellectual disability (ID), we studied the polymorphisms of thirteen proinflammatory cytokine genes in 81 patients and 61 healthy controls. We demonstrated a significant association of interleukin-6 (IL-6) single-nucleotide polymorphism (SNP) (-174 G/C and nt565 G/A), and interleukin-1 receptor antagonist (IL-1RA) (Mspa-I 11100) SNP with ID. Moreover, the IL-6 SNPs is an unfavorable genetic predisposition for females. The evaluation of circulating levels of IL-6 and IL-1RA showed that the serum concentrations of IL-6 were significantly higher in ID patients than in controls. These data suggest that functional cytokine gene polymorphisms may influence the development of ID. PMID:25124963

  11. The Inflammasome and the Epidermal Growth Factor Receptor (EGFR) Are Involved in the Staphylococcus aureus-Mediated Induction of IL-1alpha and IL-1beta in Human Keratinocytes

    PubMed Central

    Schröder, Lena; Gläser, Regine; Harder, Jürgen

    2016-01-01

    Staphylococcus (S.) aureus is an important pathogen causing various infections including those of the skin. Keratinocytes are able to sense invading S. aureus and to initiate a fast defense reaction by the rapid release of innate defense mediators such as antimicrobial peptides and cytokines. There is increasing evidence that the cytokines IL-1alpha and IL-1beta, which both signal through the IL-1 receptor, play an important role in cutaneous defense against S. aureus. The aim of this study was to gain more insight into the underlying mechanisms leading to the S. aureus-induced IL-1alpha and IL-1beta expression in keratinocytes. Infection of human primary keratinocytes with S. aureus led to the induction of gene expression and protein secretion of IL-1alpha and IL-1beta. Full S. aureus-induced IL-1 protein release required the inflammasome components caspase-1 and ASC (apoptosis-associated speck-like protein containing a CARD) whereas gene induction of IL-1alpha and IL-beta by S. aureus was not dependent on caspase-1 and ASC. Since patients receiving anti-cancer therapy by inhibition of the epidermal growth factor receptor (EGFR) often suffer from skin infections caused by S. aureus we additionally evaluated whether the EGFR pathway may be involved in the IL-1alpha and IL-1beta induction by S. aureus. Inactivation of the EGFR with a blocking antibody decreased the S. aureus-mediated IL-1alpha and IL-1beta induction in primary keratinocytes. Moreover, the use of siRNA experiments revealed that ADAM17 (A Disintegrin and A Metalloprotease 17), a metalloproteinase known to mediate the shedding and release of EGFR ligands, was required for full induction of IL-1alpha and IL-1beta in keratinocytes infected with S. aureus. A failure of keratinocytes to adequately upregulate IL-1alpha and IL-1beta may promote S. aureus skin infections. PMID:26808616

  12. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  13. IL-1β production is dependent on the activation of purinergic receptors and NLRP3 pathway in human macrophages.

    PubMed

    Gicquel, Thomas; Robert, Sacha; Loyer, Pascal; Victoni, Tatiana; Bodin, Aude; Ribault, Catherine; Gleonnec, Florence; Couillin, Isabelle; Boichot, Elisabeth; Lagente, Vincent

    2015-10-01

    The Nod-like receptor family protein 3 (NLRP3)-inflammasome pathway is known to be activated by danger signals such as monosodium urate (MSU). We investigated the role of P2 purinergic receptors in the activation of NLRP3-inflammasome pathway after MSU treatment of primary human monocyte-derived macrophages (MDMs). After initial stimulation with a low concentration of LPS (0.1 µg/ml), a 6 h treatment with MSU crystals (250, 500, and 1000 µg/ml) induced the MDMs to release IL-1β, IL-1α, and IL-6 in a dose-dependent manner. Moreover, the caspase 1 inhibitor Z-YVAD-FMK and the cathepsin B inhibitor CA-074Me reduced production of IL-1β in a dose-dependent manner after LPS + MSU treatment. We used real-time reverse transcription-quantitative PCR to show that treatment with LPS and MSU (500 µg/ml) induced significantly greater expression of NLRP3 and IL-1β than after treatment with LPS. We also found that MSU treatment induced P2X purinergic receptor 7 (P2X7R) mRNA and protein expression. Furthermore, addition of the P2X7 purinergic receptor antagonist A-740003 significantly impeded IL-1β production and pro-IL-1β cleavage after treatment with LPS + MSU. Remarkably, RNA silencing of P2X7R (but not P2X4R) inhibited the release of IL-1β and other M1 macrophage cytokines (such as IL-1α, IL-6, and TNF-α) from MDMs stimulated with LPS + MSU. Taken as a whole, our results show that P2 purinergic receptors and the NLRP3 inflammasome pathway are involved in the secretion of IL-1β from MSU-stimulated human macrophages. This pathway may constitute a novel therapeutic target for controlling the inflammatory process in several associated pathologies. PMID:26116704

  14. Interleukin (IL) 1β, IL-1 receptor antagonist, IL-10, and IL-13 gene expression in the central nervous system and anterior pituitary during systemic inflammation: Pathophysiological implications

    PubMed Central

    Wong, Ma-Li; Bongiorno, Peter B.; Rettori, Valeria; McCann, Samuel M.; Licinio, Julio

    1997-01-01

    The pathophysiology of systemic inflammation and sepsis involves peripheral organs, causing gastrointestinal, renal, and cardiovascular alterations, as well as the central nervous system (CNS), affecting sleep, temperature regulation, behavior, and neuroendocrine function. The molecular basis of the CNS effects of systemic inflammation are not fully elucidated. Here we show that the CNS responds to systemic inflammation with pronounced IL-1β gene expression and limited IL-1 receptor antagonist (IL-1ra), IL-10, and IL-13 gene expression. This pattern occurs throughout the CNS, including areas such as the subfornical organ, pineal gland, neurohypophysis, and hypothalamus. In contrast, in the anterior pituitary, we found limited IL-1β gene expression but marked induction of the mRNA encoding for the secreted isoform of IL-1ra, secreted IL-1ra. We conclude that the central manifestations of peripheral inflammation are mediated by endogenous brain IL-1β synthesized during systemic inflammation in the context of limited central cytokine counter regulation of IL-1. As IL-1β is a potent stimulus for inducible nitric oxide synthase expression and activity, these findings explain our previous observation that systemic inflammation promotes inducible nitric oxide synthase gene expression in the brain and the spillover of NO metabolites into cerebrospinal fluid. The CNS transcription of the HIV-1 replication factor IL-1β in the context of limited transcription of the IL-1 replication inhibitors IL-1ra, IL-10, and IL-13 might help explain the negative impact of systemic inflammation on the clinical course of AIDS. In addition, we propose that IL-1ra may be secreted by the anterior pituitary as a systemic anti-inflammatory hormone that is released in response to IL-1β originated from multiple sources. PMID:8990190

  15. Corticotropin releasing factor-1 receptor antagonism alters the biochemical, but not behavioral effects of repeated interleukin-1β administration

    PubMed Central

    Wilhelm, Clare J.; Murphy-Crews, Aaron; Menasco, Daniel J.; Huckans, Marilyn S.; Loftis, Jennifer M.

    2011-01-01

    Activation of the immune system via administration of cytokines is used for the treatment of chronic viral infections such as hepatitis C and for cancers resistant to radiotherapy. Cytokine-based treatments induce a range of “sickness” behaviors (e.g. depression, anxiety, pain, anorexia, and fatigue). Activation of the hypothalamic pituitary-adrenal axis via the induction of corticotropin releasing factor (CRF) may underlie these unwanted side effects. This study used repeated systemic injections of the pro-inflammatory cytokine interleukin-1β (IL-1β) to model the sickness behaviors and biochemical effects of immune system activation. We assessed the ability of CRF type I receptor (CRF1) antagonism to reduce biochemical and behavioral signs of sickness induced by IL-1β treatment. Forty Wistar rats were assigned to one of four groups: 1) saline + vehicle; 2) saline + DMP904 (CRF1 antagonist); 3) IL-1β + vehicle; 4) IL-1β + DMP904. Rats received intraperitoneal injections of either DMP904 or vehicle and of IL-1β or saline for six days. Sickness behavior was evaluated using body weight assessments and forced swim testing (FST). Blood and brain samples were collected to measure cytokine, p38 mitogen activated protein kinase (MAPK), and phospho-p38 MAPK levels using multiplex techniques. There were significant reductions in body weights and FST immobility times associated with IL-1β administration. Rats administered IL-1β had significantly higher serum levels of IL-10, but not interferon-γ. Within the hippocampus, IL-1β reduced levels of p38 MAPK, but had no impact on levels of phospho-p38 MAPK except in the presence of DMP904. When administered alone, DMP904 had no significant effect on p38 MAPK or phospho-p38 MAPK in the hippocampus, but when given with IL-1β led to increased phosphorylation of p38 MAPK. IL-1β and DMP904 reduced levels of p38 MAPK within the hypothalamus, while co-administration of IL-1β and DMP904 abolished the effects of either drug

  16. Corticotropin releasing factor-1 receptor antagonism alters the biochemical, but not behavioral effects of repeated interleukin-1β administration.

    PubMed

    Wilhelm, Clare J; Murphy-Crews, Aaron; Menasco, Daniel J; Huckans, Marilyn S; Loftis, Jennifer M

    2012-01-01

    Activation of the immune system via administration of cytokines is used for the treatment of chronic viral infections such as hepatitis C and for cancers resistant to radiotherapy. Cytokine-based treatments induce a range of "sickness" behaviors (e.g. depression, anxiety, pain, anorexia, and fatigue). Activation of the hypothalamic pituitary-adrenal axis via the induction of corticotropin releasing factor (CRF) may underlie these unwanted side effects. This study used repeated systemic injections of the pro-inflammatory cytokine interleukin-1β (IL-1β) to model the sickness behaviors and biochemical effects of immune system activation. We assessed the ability of CRF type I receptor (CRF(1)) antagonism to reduce biochemical and behavioral signs of sickness induced by IL-1β treatment. Forty Wistar rats were assigned to one of four groups: 1) saline+vehicle; 2) saline+DMP904 (CRF(1) antagonist); 3) IL-1β+vehicle; 4) IL-1β+DMP904. Rats received intraperitoneal injections of either DMP904 or vehicle and of IL-1β or saline for six days. Sickness behavior was evaluated using body weight assessments and forced swim testing (FST). Blood and brain samples were collected to measure cytokine, p38 mitogen-activated protein kinase (MAPK), and phospho-p38 MAPK levels using multiplex techniques. There were significant reductions in body weights and FST immobility times associated with IL-1β administration. Rats administered IL-1β had significantly higher serum levels of IL-10, but not interferon-γ. Within the hippocampus, IL-1β reduced levels of p38 MAPK, but had no impact on levels of phospho-p38 MAPK except in the presence of DMP904. When administered alone, DMP904 had no significant effect on p38 MAPK or phospho-p38 MAPK in the hippocampus, but when given with IL-1β led to increased phosphorylation of p38 MAPK. IL-1β and DMP904 reduced levels of p38 MAPK within the hypothalamus, while co-administration of IL-1β and DMP904 abolished the effects of either drug alone

  17. Purinergic signaling via P2X7 receptor mediates IL-1β production in Kupffer cells exposed to silica nanoparticle.

    PubMed

    Kojima, Shuji; Negishi, Yusuke; Tsukimoto, Mitsutoshi; Takenouchi, Takato; Kitani, Hiroshi; Takeda, Ken

    2014-07-01

    There is extensive evidence that nanoparticles (NPs) cause adverse effects in multiple organs, including liver, though the mechanisms involved remain to be fully established. Kupffer cells are macrophages resident in the liver, and play important roles in liver inflammation induced by various toxic agents, including lipopolysaccharide (LPS). Interleukin-1 (IL-1) family members IL-1α,β are released from LPS-primed macrophages exposed to NPs, including silica NPs (SNPs), via activation of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasomes. Here, we investigated the mechanism of production of IL-1β via activation of inflammasomes in mouse Kupffer cell line KUP5, focusing on the role of purinergic signaling via P2X7 receptor. IL-1β production by LPS-primed KUP5 cells exposed to SNPs was increased dose-dependently, and was greatest in response to SNPs with a diameter of 30 nm (SNP30), as compared with 70-nm and 300-nm SNPs (SNP70 and SNP300). ATP release was also highest in cells exposed to SNP30. Treatment of LPS-primed KUP5 cells with ATP also induced a high level of IL-1β production, similar to that induced by SNP30. IL-1β production was significantly inhibited by apyrase (an ecto-nucleotidase) and A438079 (a P2X7 antagonist/ATP-release inhibitor). Production of reactive oxygen species (ROS) was confirmed in cells exposed to SNP30. In conclusion, ATP released from P2X7 receptor in response to stimulation of KUP5 cells with SNP30 induces ROS production via cell-membrane NADPH oxidase. The ROS causes activation of inflammasomes, leading to caspase-1-dependent processing of IL-1β. PMID:24685903

  18. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals

    PubMed Central

    Chen, Chun-Jen; Shi, Yan; Hearn, Arron; Fitzgerald, Kate; Golenbock, Douglas; Reed, George; Akira, Shizuo; Rock, Kenneth L.

    2006-01-01

    While it is known that monosodium urate (MSU) crystals cause the disease gout, the mechanism by which these crystals stimulate this inflammatory condition has not been clear. Here we find that the Toll/IL-1R (TIR) signal transduction adaptor myeloid differentiation primary response protein 88 (MyD88) is required for acute gouty inflammation. In contrast, other TIR adaptor molecules, TIRAP/Mal, TRIF, and TRAM, are not required for this process. The MyD88-dependent TLR1, -2, -4, -6, -7, -9, and -11 and IL-18 receptor (IL-18R) are not essential for MSU-induced inflammation. Moreover, MSU does not stimulate HEK cells expressing TLR1–11 to activate NF-κB. In contrast, mice deficient in the MyD88-dependent IL-1R showed reduced inflammatory responses, similar to those observed in MyD88-deficient mice. Similarly, mice treated with IL-1 neutralizing antibodies also showed reduced MSU-induced inflammation, demonstrating that IL-1 production and IL-1R activation play essential roles in MSU-triggered inflammation. IL-1R deficiency in bone marrow–derived cells did not affect the inflammatory response; however, it was required in non–bone marrow–derived cells. These results indicate that IL-1 is essential for the MSU-induced inflammatory response and that the requirement of MyD88 in this process is primarily through its function as an adaptor molecule in the IL-1R signaling pathway. PMID:16886064

  19. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein.

    PubMed

    Järås, Marcus; Johnels, Petra; Hansen, Nils; Agerstam, Helena; Tsapogas, Panagiotis; Rissler, Marianne; Lassen, Carin; Olofsson, Tor; Bjerrum, Ole Weis; Richter, Johan; Fioretos, Thoas

    2010-09-14

    Chronic myeloid leukemia (CML) is genetically characterized by the Philadelphia (Ph) chromosome, formed through a reciprocal translocation between chromosomes 9 and 22 and giving rise to the constitutively active tyrosine kinase P210 BCR/ABL1. Therapeutic strategies aiming for a cure of CML will require full eradication of Ph chromosome-positive (Ph(+)) CML stem cells. Here we used gene-expression profiling to identify IL-1 receptor accessory protein (IL1RAP) as up-regulated in CML CD34(+) cells and also in cord blood CD34(+) cells as a consequence of retroviral BCR/ABL1 expression. To test whether IL1RAP expression distinguishes normal (Ph(-)) and leukemic (Ph(+)) cells within the CML CD34(+)CD38(-) cell compartment, we established a unique protocol for conducting FISH on small numbers of sorted cells. By using this method, we sorted cells directly into drops on slides to investigate their Ph-chromosome status. Interestingly, we found that the CML CD34(+)CD38(-)IL1RAP(+) cells were Ph(+), whereas CML CD34(+)CD38(-)IL1RAP(-) cells were almost exclusively Ph(-). By performing long-term culture-initiating cell assays on the two cell populations, we found that Ph(+) and Ph(-) candidate CML stem cells could be prospectively separated. In addition, by generating an anti-IL1RAP antibody, we provide proof of concept that IL1RAP can be used as a target on CML CD34(+)CD38(-) cells to induce antibody-dependent cell-mediated cytotoxicity. This study thus identifies IL1RAP as a unique cell surface biomarker distinguishing Ph(+) from Ph(-) candidate CML stem cells and opens up a previously unexplored avenue for therapy of CML. PMID:20805474

  20. Cutting Edge: IL-1 Receptor Signaling is Critical for the Development of Autoimmune Uveitis.

    PubMed

    Wan, Chi-Keung; He, Chang; Sun, Lin; Egwuagu, Charles E; Leonard, Warren J

    2016-01-15

    IL-1β is a proinflammatory cytokine important for local and systemic immunity. However, aberrant production of this cytokine is implicated in pathogenic mechanisms of a number of inflammatory diseases, including Behçet's disease and age-related macular degeneration. In this study, we report the increased secretion of IL-1β in the retina by neutrophils, macrophages, and dendritic cells during ocular inflammation and show that loss of IL-1R signaling confers protection from experimental autoimmune uveitis. Moreover, the amelioration of experimental autoimmune uveitis in Il1r-deficient mice was associated with reduced infiltration of inflammatory cells into the retina and decreased numbers of uveitogenic Th17 cells that mediate uveitis. These findings indicate the possible utility of IL-1R-blocking agents for the treatment of ocular inflammatory diseases. PMID:26643477

  1. The IL-1β Receptor Antagonist SER140 Postpones the Onset of Diabetes in Female Nonobese Diabetic Mice

    PubMed Central

    Cucak, Helena; Hansen, Gitte; Vrang, Niels; Skarsfeldt, Torben; Steiness, Eva; Jelsing, Jacob

    2016-01-01

    The cytokine interleukin-1β (IL-1β) is known to stimulate proinflammatory immune responses and impair β-cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1β activated pathways. PMID:26953152

  2. Photo-antagonism of the GABAA receptor.

    PubMed

    Mortensen, Martin; Iqbal, Favaad; Pandurangan, Arun P; Hannan, Saad; Huckvale, Rosemary; Topf, Maya; Baker, James R; Smart, Trevor G

    2014-01-01

    Neurotransmitter receptor trafficking is fundamentally important for synaptic transmission and neural network activity. GABAA receptors and inhibitory synapses are vital components of brain function, yet much of our knowledge regarding receptor mobility and function at inhibitory synapses is derived indirectly from using recombinant receptors, antibody-tagged native receptors and pharmacological treatments. Here we describe the use of a set of research tools that can irreversibly bind to and affect the function of recombinant and neuronal GABAA receptors following ultraviolet photoactivation. These compounds are based on the competitive antagonist gabazine and incorporate a variety of photoactive groups. By using site-directed mutagenesis and ligand-docking studies, they reveal new areas of the GABA binding site at the interface between receptor β and α subunits. These compounds enable the selected inactivation of native GABAA receptor populations providing new insight into the function of inhibitory synapses and extrasynaptic receptors in controlling neuronal excitation. PMID:25072879

  3. IL-1 receptor antagonist (IL-1Ra) does not inhibit the production of C-reactive protein or serum amyloid A protein by human primary hepatocytes. Differential regulation in normal and tumour cells.

    PubMed Central

    Gabay, C; Genin, B; Mentha, G; Iynedjian, P B; Roux-Lombard, P; Guerne, P A

    1995-01-01

    The synthesis of some class 1 acute-phase proteins (APP), including C-reactive protein (CRP) and serum amyloid A (SAA) protein is completely blocked by the IL-1 receptor antagonist (IL-1Ra), whereas the production of fibrinogen, a class 2 APP, is increased by IL-1Ra in hepatoma cells, but this has never been tested in human hepatocytes in primary culture. Since previous studies on the contributions of cytokine inhibitors in connective tissues diseases suggested that IL-1 and tumour necrosis factor-alpha (TNF-alpha) might play an important role in the regulation of CRP, we decided to examine in more detail the respective roles of IL-1 beta, IL-6, and TNF-alpha and their inhibitors in the production of APP by human primary hepatocytes versus the hepatoma cell line PLC/PRF/5. In the hepatoma cell line, IL-1 beta and/or TNF-alpha had synergistic effects with IL-6 on the production of CRP and SAA. In contrast, these cytokines were devoid of effect in normal hepatocytes. The production of fibrinogen was increased by IL-6 and decreased by IL-1 (and TNF-alpha) in both cell types. The secretion of CRP and SAA by primary hepatocytes incubated with a cytokine-rich mononuclear cell-conditioned medium was totally unaffected by IL-1Ra or anti-TNF-alpha antibodies. In contrast, the addition of IL-1Ra increased the production of fibrinogen by both hepatoma cells and primary hepatocytes incubated with the mononuclear cell-conditioned medium. We therefore conclude that IL-1 beta and TNF-alpha do not exert any significant effect on the synthesis of CRP and SAA by human primary hepatocytes. Images Fig. 6 PMID:7743670

  4. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis

    PubMed Central

    Iannitti, Rossana G.; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A.; van de Veerdonk, Frank L.; Romani, Luigina

    2016-01-01

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurrs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF. PMID:26972847

  5. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis.

    PubMed

    Iannitti, Rossana G; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A; van de Veerdonk, Frank L; Romani, Luigina

    2016-01-01

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF. PMID:26972847

  6. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  7. Noncompetitive, Voltage-Dependent NMDA Receptor Antagonism by Hydrophobic Anions

    PubMed Central

    Linsenbardt, Andrew J.; Chisari, Mariangela; Yu, Andrew; Shu, Hong-Jin; Zorumski, Charles F.

    2013-01-01

    NMDA receptor (NMDAR) antagonists are dissociative anesthetics, drugs of abuse, and are of therapeutic interest in neurodegeneration and neuropsychiatric disease. Many well-known NMDAR antagonists are positively charged, voltage-dependent channel blockers. We recently showed that the hydrophobic anion dipicrylamine (DPA) negatively regulates GABAA receptor function by a mechanism indistinguishable from that of sulfated neurosteroids. Because sulfated neurosteroids also modulate NMDARs, here we examined the effects of DPA on NMDAR function. In rat hippocampal neurons DPA inhibited currents gated by 300 µM NMDA with an IC50 of 2.3 µM. Neither onset nor offset of antagonism exhibited dependence on channel activation but exhibited a noncompetitive profile. DPA antagonism was independent of NMDAR subunit composition and was similar at extrasynaptic and total receptor populations. Surprisingly, similar to cationic channel blockers but unlike sulfated neurosteroids, DPA antagonism was voltage dependent. Onset and offset of DPA antagonism were nearly 10-fold faster than DPA-induced increases in membrane capacitance, suggesting that membrane interactions do not directly explain antagonism. Furthermore, voltage dependence did not derive from association of DPA with a site on NMDARs directly accessible to the outer membrane leaflet, assessed by DPA translocation experiments. Consistent with the expected lack of channel block, DPA antagonism did not interact with permeant ions. Therefore, we speculate that voltage dependence may arise from interactions of DPA with the inherent voltage dependence of channel gating. Overall, we conclude that DPA noncompetitively inhibits NMDA-induced current by a novel voltage-dependent mechanism and represents a new class of anionic NMDAR antagonists. PMID:23144238

  8. IL-1 binds to high affinity receptors on human osteosarcoma cells and potentiates prostaglandin E2 stimulation of cAMP production

    SciTech Connect

    Rodan, S.B.; Wesolowski, G.; Chin, J.; Limjuco, G.A.; Schmidt, J.A.; Rodan, G.A. )

    1990-08-15

    IL-1 is a potent bone resorbing agent. Its mechanism of action is unknown, but the presence of osteoblasts was shown to be necessary for IL-1 stimulation of bone resorption by isolated osteoclasts. This study examines the presence of IL-1R and IL-1 effects in osteoblastic cells from a clonal human osteosarcoma cell line, Saos-2/B-10. We found that the binding affinity and the number of binding sites increases substantially during the postconfluent stage. Scatchard and curve-fitting analysis revealed one class of high affinity binding sites, with Kd/Ki's of 40 +/- 17 pM (mean +/- SD) for IL-1 alpha (n = 5) and 9 +/- 7 pM for IL-1 beta (n = 5) and 2916 +/- 2438 (n = 6) receptors/cell. Incubation of the cells with 125I-IL-1 alpha (100 pM) at 4 degrees C, followed by incubation at 37 degrees C up to 4 h, revealed internalization of receptor-bound IL-1 alpha. Chemical cross-linking studies showed that the IL-1R in Saos-2/B-10 cells had a molecular mass of approximately 80 kDa. To assess the biologic effect of IL-1 in Saos-2/B-10 cells, we determined PGE2 content and adenylate cyclase activity. Although IL-1 had no effect on PGE2 synthesis, both IL-1 alpha and IL-1 beta enhanced PGE2 stimulation of adenylate cyclase two- to four-fold in a dose-dependent manner. The half-maximal effect for IL-1 alpha was seen at 8 to 10 pM and for IL-1 beta at 0.6 to 1.8 pM. IL-1 did not enhance basal adenylate cyclase or stimulation by parathyroid hormone, isoproterenol, or forskolin. IL-1 enhancement of PGE2-stimulated adenylate cyclase was detected between 1 to 2 h, was maximal at 4 to 5 h, was not prevented by cycloheximide treatment, and was seen in membranes from IL-1 pretreated cells. These data show effects of IL-1 on a human osteoblast-like cell line that are mediated by high affinity receptors. These IL-1 effects could contribute to the biologic action of IL-1 on bone.

  9. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans.

    PubMed

    de Luca, Antonella; Smeekens, Sanne P; Casagrande, Andrea; Iannitti, Rossana; Conway, Kara L; Gresnigt, Mark S; Begun, Jakob; Plantinga, Theo S; Joosten, Leo A B; van der Meer, Jos W M; Chamilos, Georgios; Netea, Mihai G; Xavier, Ramnik J; Dinarello, Charles A; Romani, Luigina; van de Veerdonk, Frank L

    2014-03-01

    Patients with chronic granulomatous disease (CGD) have a mutated NADPH complex resulting in defective production of reactive oxygen species; these patients can develop severe colitis and are highly susceptible to invasive fungal infection. In NADPH oxidase-deficient mice, autophagy is defective but inflammasome activation is present despite lack of reactive oxygen species production. However, whether these processes are mutually regulated in CGD and whether defective autophagy is clinically relevant in patients with CGD is unknown. Here, we demonstrate that macrophages from CGD mice and blood monocytes from CGD patients display minimal recruitment of microtubule-associated protein 1 light chain 3 (LC3) to phagosomes. This defect in autophagy results in increased IL-1β release. Blocking IL-1 with the receptor antagonist (anakinra) decreases neutrophil recruitment and T helper 17 responses and protects CGD mice from colitis and also from invasive aspergillosis. In addition to decreased inflammasome activation, anakinra restored autophagy in CGD mice in vivo, with increased Aspergillus-induced LC3 recruitment and increased expression of autophagy genes. Anakinra also increased Aspergillus-induced LC3 recruitment from 23% to 51% (P < 0.01) in vitro in monocytes from CGD patients. The clinical relevance of these findings was assessed by treating CGD patients who had severe colitis with IL-1 receptor blockade using anakinra. Anakinra treatment resulted in a rapid and sustained improvement in colitis. Thus, inflammation in CGD is due to IL-1-dependent mechanisms, such as decreased autophagy and increased inflammasome activation, which are linked pathological conditions in CGD that can be restored by IL-1 receptor blockade. PMID:24550444

  10. AN IL-1 RECEPTOR ANTAGONIST BLOCKS A MORPHINE-INDUCED ATTENUATION OF LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY

    PubMed Central

    Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.

    2010-01-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  11. IL-1β: a key modulator in asthmatic airway smooth muscle hyper-reactivity.

    PubMed

    Liao, Zhi; Xiao, Hong-tao; Zhang, Yuan; Tong, Rong-Sheng; Zhang, Li-Juan; Bian, Yuan; He, Xia

    2015-08-01

    Asthma is a chronic inflammatory disorder of the airway. It is characterized by airway hyper-reactivity, which can be attributed to the chronically inflamed airway. However, the molecular mechanism is still under investigation. In this article, we have shown that IL-1β is a key molecule that can orchestrate both Toll-like receptor and muscarinic receptor pathways, and that antagonizing the function of IL-1β has a promising future as a potential drug target for asthma treatment. IL-1β can activate NF-κB pathways via Toll-like receptors, and NF-κB will eventually transactivate the genes of cytokines, chemokines, proteins of the complement system, adhesion molecules and immune receptors involved in inflammation. IL-1β can activate eosinophils, which can release major basic protein (MBP) to antagonize the M2 receptors leading to excessive acetylcholine release. Acetylcholine has an effect on M3 receptors, which are related to airway smooth muscle contraction and mucus production. IL-1β is reported to activate COX-2 resulting in heterologous desensitization of adenylate cyclase and impairs relaxation of the ASM. IL-1β is involved in mediation of neutrophilic inflammation. Identification of the prominent role of IL-1β in asthma could lead to successful use of anti-IL1β agents. PMID:26134749

  12. Opium Addiction Increases Interleukin 1 Receptor Antagonist (IL-1Ra) in the Coronary Artery Disease Patients

    PubMed Central

    Saadat, Habibollah; Ziai, Seyed Ali; Ghanemnia, Maryam; Namazi, Mohammad Hasan; Safi, Morteza; Vakili, Hosein; Dabbagh, Ali; Gholami, Omid

    2012-01-01

    Background There is evidence that opium addiction has immunosuppressant effects. Coronary artery disease (CAD) is a condition resulted from atherosclerosis which is dependent on the immune response. Purpose To evaluate plasma levels of interleukin-6 and interleukin-1Ra in 30 patients with three-vessel coronary artery disease, ejection fraction of more than 35% and to evaluate their changes after prognostic treadmill test in 15 opium addicted and 15 non-addicted patients. Methods The participants underwent prognostic treadmill test and plasma levels of interleukin-6 (IL-6) and interleukin-1Ra (IL-1Ra) were evaluated with ELISA method before, just after and 4 hours after the test. Results IL-1Ra (2183 pg/ml) tended to decrease over time in the opium addicted group (1372 pg/ml after prognostic treadmill test and 1034 pg/ml 4 hours after that), although such decrease did not reach the statistical significance. IL-1Ra levels were significantly higher in opium addicted than in non addicted patients. Opium addiction had no significant effect on IL-6 changes. Conclusion Consumption of opium in CAD patients is associated with higher IL-1Ra levels. PMID:23028694

  13. Prostaglandins and prostaglandin receptor antagonism in migraine.

    PubMed

    Antonova, Maria

    2013-05-01

    Human models of headache may contribute to understanding of prostaglandins' role in migraine pathogenesis. The current thesis investigated the migraine triggering effect of prostaglandin E2 (PGE2) in migraine patients without aura, the efficacy of a novel EP4 receptor antagonist, BGC20-1531, in prevention of PGE2-induced headache and the ability of prostaglandin F2α (PGF2α) to trigger headache without any vasodilatation in healthy volunteers. All studies were designed as double-blind, placebo-controlled, cross-over experiments, where PGE2/PGF2α or saline were infused over 20-25 min. In the study with EP4 receptor antagonist healthy volunteers were pre-treated with two different doses of BGC20-1531 or placebo followed by PGE2 infusion over 25 min. The headache data were collected during the whole study day, whereas the possible vascular changes were measured during the in-hospital phase of 1.5 h. The infusion of PGE2 caused the immediate migraine-like attacks and vasodilatation of the middle cerebral artery in migraine patients without aura. The highly specific and potent EP4 receptor antagonist, BGC20-1531, was not able to attenuate PGE2-induced headache and vasodilatation of both intra- and extra-cerebral arteries. The intravenous infusion of PGF2α did not induce headache or statistically significant vasoconstriction of cerebral arteries in healthy volunteers. Novel data on PGE2-provoked immediate migraine-like attacks suggest that PGE2 may be one of the important final products in the pathogenesis of migraine. The lack of efficacy of EP4 receptor antagonist suggests that a single receptor blockade is not sufficient to block PGE2 responses, hence EP2 receptor should be investigated as a potential drug target for the treatment of migraine. The absence of headache during the PGF2α infusion demonstrates that vasodilating properties are necessary for the induction of headache and migraine. PMID:23673269

  14. Association study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Wilkosc, Monika; Frydecka, Dorota; Groszewska, Agata; Narozna, Beata; Dmitrzak-Weglarz, Monika; Czerski, Piotr; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Leszczynska-Rodziewicz, Anna; Slopien, Agnieszka; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2015-12-01

    Schizophrenia has been associated with a large range of autoimmune diseases, with a history of any autoimmune disease being associated with a 45% increase in risk for the illness. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. In particular, increases or imbalance in cytokine before birth or during the early stages of life may affect neurodevelopment and produce vulnerability to the disease. A total of 27 polymorphisms of IL1N gene: rs1800587, rs17561; IL1B gene: rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627; IL1RN gene: rs419598, rs315952, rs9005, rs4251961; IL6 gene: rs1800795, rs1800797; IL6R gene: rs4537545, rs4845617, rs2228145, IL10 gene: rs1800896, rs1800871, rs1800872, rs1800890, rs6676671; IL10RA gene: rs2229113, rs3135932; TGF1B gene: rs1800469, rs1800470; each selected on the basis of molecular evidence for functionality, were investigated in this study. Analysis was performed on a group of 621 patients with diagnosis of schizophrenia and 531 healthy controls in Polish population. An association of rs4848306 in IL1B gene, rs4251961 in IL1RN gene, rs2228145 and rs4537545 in IL6R with schizophrenia have been observed. rs6676671 in IL10 was associated with early age of onset. Strong linkage disequilibrium was observed between analyzed polymorphisms in each gene, except of IL10RA. We observed that haplotypes composed of rs4537545 and rs2228145 in IL6R gene were associated with schizophrenia. Analyses with family history of schizophrenia, other psychiatric disorders and alcohol abuse/dependence did not show any positive findings. Further studies on larger groups along with correlation with circulating protein levels are needed. PMID:26481614

  15. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition.

    PubMed

    Hubers, Scott A; Brown, Nancy J

    2016-03-15

    Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension. PMID:26976916

  16. Role of IL-1 beta and 5-HT2 receptors in midbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat.

    PubMed

    Bhatt, Suresh; Bhatt, Rekha; Zalcman, Steven S; Siegel, Allan

    2008-02-01

    Feline defensive rage, a form of aggressive behavior that occurs in response to a threat can be elicited by electrical stimulation of the medial hypothalamus or midbrain periaqueductal gray (PAG). Our laboratory has recently begun a systematic examination of the role of cytokines in the regulation of rage and aggressive behavior. It was shown that the cytokine, interleukin-2 (IL-2), differentially modulates defensive rage when microinjected into the medial hypothalamus and PAG by acting through separate neurotransmitter systems. The present study sought to determine whether a similar relationship exists with respect to interleukin 1-beta (IL-1 beta), whose receptor activation in the medial hypothalamus potentiates defensive rage. Thus, the present study identified the effects of administration of IL-1 beta into the PAG upon defensive rage elicited from the medial hypothalamus. Microinjections of IL-1 beta into the dorsal PAG significantly facilitated defensive rage behavior elicited from the medial hypothalamus in a dose and time dependent manner. In addition, the facilitative effects of IL-1 beta were blocked by pre-treatment with anti-IL-1 beta receptor antibody, while IL-1 beta administration into the PAG had no effect upon predatory attack elicited from the lateral hypothalamus. The findings further demonstrated that IL-1 beta's effects were mediated through 5-HT(2) receptors since pretreatment with a 5-HT(2C) receptors antagonist blocked the facilitating effects of IL-1 beta. An extensive pattern of labeling of IL-1 beta and 5-HT(2C) receptors in the dorsal PAG supported these findings. The present study demonstrates that IL-beta in the dorsal PAG, similar to the medial hypothalamus, potentiates defensive rage behavior and is mediated through a 5-HT(2C) receptor mechanism. PMID:17890051

  17. Cutting Edge: Il-1 Receptor-Associated Kinase 4 Structures Reveal Novel Features And Multiple Conformations

    SciTech Connect

    Kuglstatter, A.; Villasenor, A.G.; Shaw, D.; Lee, S.W.; Tsing, S.; Niu, L.; Song, K.W.; Barnett, J.W.; Browner, M.F.

    2007-07-09

    L-1R-associated kinase (IRAK)4 plays a central role in innate and adaptive immunity, and is a crucial component in IL-1/TLR signaling. We have determined the crystal structures of the apo and ligand-bound forms of human IRAK4 kinase domain. These structures reveal several features that provide opportunities for the design of selective IRAK4 inhibitors. The N-terminal lobe of the IRAK4 kinase domain is structurally distinctive due to a loop insertion after an extended N-terminal helix. The gatekeeper residue is a tyrosine, a unique feature of the IRAK family. The IRAK4 structures also provide insights into the regulation of its activity. In the apo structure, two conformations coexist, differing in the relative orientation of the two kinase lobes and the position of helix C. In the presence of an ATP analog only one conformation is observed, indicating that this is the active conformation.

  18. Selective Brain-Targeted Antagonism of p38 MAPKα Reduces Hippocampal IL-1β Levels and Improves Morris Water Maze Performance in Aged Rats

    PubMed Central

    Alam, John J.

    2015-01-01

    Abstract Background: P38 mitogen activated protein kinase (MAPK) α modulates microglia-mediated inflammatory responses and a number of neuronal physiological processes. Objective: To evaluate pre-clinically the pharmacological effects in the brain of p38 MAPKα inhibition with a brain-penetrant specific chemical antagonist. Methods: VX-745, a blood-brain barrier penetrant, highly selective p38 MAPKα inhibitor, and clinical stage investigational drug, was utilized. Initially, a pilot study in 26-month-old Tg2576 mice was conducted. Subsequently, a definitive dose-response study was conducted in aged (20–22 months) rats with identified cognitive deficits; n = 15 per group: vehicle, 0.5, 1.5, and 4.5 mg/kg VX-745 by oral gavage twice daily for 3 weeks. Assessments in aged rats included IL-1β, PSD-95, TNFα protein levels in hippocampus; and Morris water maze (MWM) test for cognitive performance. Results: Drug effect could not be assessed in Tg2576 mice, as little inflammation was evident. In cognitively-impaired aged rats, VX-745 led to significantly improved performance in the MWM and significant reduction in hippocampal IL-1β protein levels, though the effects were dissociated as the MWM effect was evident at a lower dose level than that required to lower IL-1β. Drug concentration-effect relationships and predicted human doses were determined. Conclusions: Selective inhibition of p38 MAPKα with VX-745 in aged rats reduces hippocampal IL-1β levels and improves performance in the MWM. As the two effects occur at different dose levels, the behavioral effect appears to be via a mechanism that is independent of reducing cytokine production. The predicted human doses should minimize risks of systemic toxicity. PMID:26401942

  19. An interleukin 1 receptor antagonist blocks the IL-1-induced IL-6 paracrine production through a prostaglandin E2-related mechanism in multiple myeloma.

    PubMed

    Lu, Z Y; Bataille, R; Poubelle, P; Rapp, M J; Harousseau, J L; Klein, B

    1995-08-01

    By analogy with the model of pristane-induced mouse plasmacytomas, we have wondered about the putative role of prostaglandin E2 (PGE2) in the human multiple myeloma (MM) cytokine network, involving interleukin 6 (IL-6) and interleukin 1 (IL-1) as essential myeloma cell growth factors and inducing cofactors respectively. We show that PGE2 is produced in short-term cultures of bone marrow cells of patients with MM, concomitantly with both IL-6 and IL-1. Indomethacin, a potent inhibitor of cyclo-oxygenase and of PGE2 synthesis, significantly inhibits IL-6 production (but not IL-1 production) by 35% to 90% depending on the different MM patients studied and concurrently to that of PGE2. Exogenous PGE2 reverses this inhibition or even stimulates IL-6 production. An IL-1 receptor antagonist (IL-1RA) also significantly inhibits PGE2, IL-6 production and myeloma cell growth. The inhibition of IL-6 production is reversed by adding exogenous PGE2. These results show that induction of IL-6 by IL-1 is related to PGE2 in the bone marrow of patients with MM. Inhibition of PGE2 synthesis (as obtained with indomethacin and the IL-1RA) might be helpful to inhibit myeloma cell proliferation by reducing IL-1-induced endogenous IL-6 production not only in vitro (as demonstrated here) but also in vivo. PMID:8520508

  20. Receptor antagonism/agonism can be uncoupled from pharmacoperone activity.

    PubMed

    Janovick, Jo Ann; Spicer, Timothy P; Smith, Emery; Bannister, Thomas D; Kenakin, Terry; Scampavia, Louis; Conn, P Michael

    2016-10-15

    Pharmacoperones rescue misrouted mutants of the vasopressin receptor type 2 (V2R) and enable them to traffic to the correct biological locus where they function. Previously, a library of nearly 645,000 structures was interrogated with a high throughput screen; pharmacoperones were identified for V2R mutants with a view toward correcting the underlying mutational defects in nephrogenic diabetes insipidus. In the present study, an orthologous assay was used to evaluate hits from the earlier study. We found no consistent relation between antagonism or agonism and pharmacoperone activity. Active pharmacoperones were identified which had minimal antagonistic activity. This increases the therapeutic reach of these drugs, since virtually all pharmacoperone drugs reported to date were selected from peptidomimetic antagonists. Such mixed-activity drugs have a complex pharmacology limiting their therapeutic utility and requiring their removal prior to stimulation of the receptor with agonist. PMID:27389877

  1. Aryl hydrocarbon receptor antagonism and its role in rheumatoid arthritis

    PubMed Central

    Nguyen, Nam Trung; Nakahama, Taisuke; Nguyen, Chi Hung; Tran, Trang Thu; Le, Van Son; Chu, Hoang Ha; Kishimoto, Tadamitsu

    2015-01-01

    Although rheumatoid arthritis (RA) is the most common autoimmune disease, affecting approximately 1% of the population worldwide, its pathogenic mechanisms are poorly understood. Tobacco smoke, an environmental risk factor for RA, contains several ligands of aryl hydrocarbon receptor (Ahr), also known as dioxin receptor. Ahr plays critical roles in the immune system. We previously demonstrated that Ahr in helper T-cells contributes to development of collagen-induced arthritis, a mouse model of RA. Other studies have shown that cigarette smoke condensate and pure Ahr ligands exacerbate RA by altering bone metabolism and inducing proinflammatory responses in fibroblast-like synoviocytes. Consistent with these findings, several Ahr antagonists such as α-naphthoflavone, resveratrol, and GNF351 reverse the effect of Ahr ligands in RA pathogenesis. In this review, we summarize the current knowledge of Ahr function in the immune system and the potential clinical benefits of Ahr antagonism in treating RA. PMID:27186143

  2. Structural Basis for Simvastatin Competitive Antagonism of Complement Receptor 3.

    PubMed

    Jensen, Maria Risager; Bajic, Goran; Zhang, Xianwei; Laustsen, Anne Kjær; Koldsø, Heidi; Skeby, Katrine Kirkeby; Schiøtt, Birgit; Andersen, Gregers R; Vorup-Jensen, Thomas

    2016-08-12

    The complement system is an important part of the innate immune response to infection but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor 3 (CR3) have been widely sought, but a structural basis for their mode of action is not available. We report here on the structure of the human CR3 ligand-binding I domain in complex with simvastatin. Simvastatin targets the metal ion-dependent adhesion site of the open, ligand-binding conformation of the CR3 I domain by direct contact with the chelated Mg(2+) ion. Simvastatin antagonizes I domain binding to the complement fragments iC3b and C3d but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15-25 μm simvastatin reduced adhesion by K562 cells expressing recombinant CR3 and by primary human monocytes, with an endogenous expression of this receptor. Application of force to adhering monocytes potentiated the effects of simvastatin where only a 50-100 nm concentration of the drug reduced the adhesion by 20-40% compared with untreated cells. The ability of simvastatin to target CR3 in its ligand binding-activated conformation is a novel mechanism to explain the known anti-inflammatory effects of this compound, in particular because this CR3 conformation is found in pro-inflammatory environments. Our report points to new designs of CR3 antagonists and opens new perspectives and identifies druggable receptors from characterization of the ligand binding kinetics in the presence of antagonists. PMID:27339893

  3. IL-1 receptor signaling in the basolateral amygdala modulates binge-like ethanol consumption in male C57BL/6J mice.

    PubMed

    Marshall, S Alex; Casachahua, John D; Rinker, Jennifer A; Blose, Allyson K; Lysle, Donald T; Thiele, Todd E

    2016-01-01

    Proinflammatory cytokines have been implicated in alcohol-induced neurodegeneration, but the role of the neuroimmune system in alcohol related behaviors has only recently come to the forefront. Herein, the effects of binge-like drinking on IL-1β mRNA and immunoreactivity within the amygdala were measured following the "drinking in the dark" (DID) paradigm, a model of binge-like ethanol drinking in C57BL/6J mice. Moreover, the role of IL-1 receptor signaling in the amygdala on ethanol consumption was assessed. Results indicated that a history of binge-like ethanol drinking promoted a significant increase of IL-1β mRNA expression within the amygdala, and immunohistochemistry analyses revealed that the basolateral amygdala (BLA), but not central amygdala (CeA), exhibited significantly increased IL-1β immunoreactivity. However, Fluoro-Jade® C labeling indicated that multiple cycles of the DID paradigm were not sufficient to elicit neuronal death. Bilateral infusions of IL-1 receptor antagonist (IL-1Ra) reduced ethanol consumption when infused into the BLA but not the CeA. These observations were specific to ethanol drinking as the IL-1Ra did not alter either sucrose drinking or open-field locomotor activity. The current findings highlight a specific role for IL-1 receptor signaling in modulating binge-like ethanol consumption and indicate that proinflammatory cytokines can be induced prior to dependence or any evidence of neuronal cell death. These findings provide a framework in which to understand how neuroimmune adaptations may alter ethanol consumption and therein contribute to alcohol abuse. PMID:26365025

  4. The Use of IL-1 Receptor Antagonist (Anakinra) in Idiopathic Recurrent Pericarditis: A Narrative Review

    PubMed Central

    Baskar, Shankar; Klein, Allan L.; Zeft, Andrew

    2016-01-01

    Recurrent pericarditis is a complication of acute pericarditis in 20–30% of the patients and is usually idiopathic in nature. The underlying pathogenesis of this condition remains unclear, although immune-mediated mechanisms seem likely. A subgroup of these patients with refractory symptoms can be challenging to manage, and multiple immunosuppressive medications have been used without consistent benefit. Anakinra, an interleukin-1 receptor antagonist, has been used in treatment of rheumatoid arthritis and autoinflammatory syndromes. Preliminary evidence suggests that anakinra could be a promising therapy for idiopathic recurrent pericarditis. In this narrative review, we summarize the current understanding of the etiopathogenesis of idiopathic recurrent pericarditis, mechanism of action of anakinra, and the preliminary evidence, supporting the use of anakinra in pericarditis. PMID:26942035

  5. Development of a cell-based qualitative assay for detection of neutralizing anti-human interleukin-1 receptor antagonist (hIL-1Ra) antibodies in rats.

    PubMed

    Gao, Jin; Li, Jingjing; Yang, Minmin; Wu, Mingyuan; Tu, Ping; Yu, Yan; Han, Wei

    2015-01-01

    To determine the incidence of the positive neutralizing anti-human interleukin receptor antagonist (anti-IL-1Ra), a novel assay based on the proliferation of human melanoma A375.S2 cells was developed and validated. In the presence of a growth-limiting concentration of IL-1β, A375.S2 cells were able to regain proliferation following the addition of IL-1Ra in a concentration-dependent manner. This dose-response effect enabled the validation of a standard curve for calculation of the concentration of IL-1Ra or, inversely, the concentration of neutralizing anti-IL-1Ra antibodies in cell culture medium or sera. The assay used CCK-8 as an indicator of proliferation. The dose-response relationship between rhIL-1Ra (dose range of 5-75 ng/ml rhIL-1Ra) and A375.S2 cell proliferation was sigmoidal and fitted a four-parameter logistic model. The percent coefficients of variation (%CVs) of quality control samples were 12.5 and 11.9% for intra-assay repeatability and 14.5 and 19.5% for inter-assay repeatability, while the total accuracy was in the range of 97.2-103.6%. For the neutralization assay, the optimal sample dilution factor was found to be 40-fold and the reasonable standard for positive and negative decision was calculated to be 59.4% neutralization rate. The %CVs of quality control samples were 12.7 and 24.0% for intra-assay repeatability and 11.6 and 30.0% for inter-assay repeatability. Analysis using the assay showed that rats could produce neutralizing anti-IL-1Ra antibodies after repeated intramuscular injection with rhIL-1Ra, and this response was not significantly dependent on the dose injected. PMID:26153108

  6. The structure of interleukin-33 and its interaction with the ST2 and IL-1RAcP receptors – insight into the arrangement of heterotrimeric interleukin-1 signaling complexes

    PubMed Central

    Lingel, Andreas; Weiss, Thomas M.; Niebuhr, Marc; Pan, Borlan; Appleton, Brent A.; Wiesmann, Christian; Bazan, J. Fernando; Fairbrother, Wayne J.

    2009-01-01

    Summary Members of the interleukin-1 (IL-1) family of cytokines play major roles in host defense and immune system regulation in infectious and inflammatory diseases. IL-1 cytokines trigger a biological response in effector cells by assembling a heterotrimeric signaling complex with two IL-1 receptor chains, a high-affinity primary receptor and a low-affinity co-receptor. To gain insights into the signaling mechanism of the novel IL-1-like cytokine IL-33, we first solved its solution structure and then performed a detailed biochemical and structural characterization of the interaction between IL-33, its primary receptor ST2 and the co-receptor IL-1RAcP. Using NMR data, we obtained a model of the IL-33/ST2 complex in solution that is validated by small-angle X-ray scattering (SAXS) data and is similar to the IL-1β/IL-1R1 complex. We extended our SAXS analysis to the IL-33/ST2/IL-1RAcP and IL-1β/IL-1R1/IL-1RAcP complexes and propose a general model of the molecular architecture of IL-1 ternary signaling complexes. PMID:19836339

  7. Antagonism of sigma-1 receptors blocks compulsive-like eating.

    PubMed

    Cottone, Pietro; Wang, Xiaofan; Park, Jin Won; Valenza, Marta; Blasio, Angelo; Kwak, Jina; Iyer, Malliga R; Steardo, Luca; Rice, Kenner C; Hayashi, Teruo; Sabino, Valentina

    2012-11-01

    Binge eating disorder is an addiction-like disorder characterized by episodes of rapid and excessive food consumption within discrete periods of time which occur compulsively despite negative consequences. This study was aimed at determining whether antagonism of Sigma-1 receptors (Sig-1Rs) blocked compulsive-like binge eating. We trained male wistar rats to obtain a sugary, highly palatable diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day under fixed ratio 1 operant conditioning. Following intake stabilization, we evaluated the effects of the selective Sig-1R antagonist BD-1063 on food responding. Using a light/dark conflict test, we also tested whether BD-1063 could block the time spent and the food eaten in an aversive, open compartment, where the palatable diet was offered. Furthermore, we measured Sig-1R mRNA and protein expression in several brain areas of the two groups, 24 h after the last binge session. Palatable rats rapidly developed binge-like eating, escalating the 1 h intake by four times, and doubling the eating rate and the regularity of food responding, compared to Chow rats. BD-1063 dose-dependently reduced binge-like eating and the regularity of food responding, and blocked the increased eating rate in Palatable rats. In the light/dark conflict test, BD-1063 antagonized the increased time spent in the aversive compartment and the increased intake of the palatable diet, without affecting motor activity. Finally, Palatable rats showed reduced Sig-1R mRNA expression in prefrontal and anterior cingulate cortices, and a two-fold increase in Sig-1R protein expression in anterior cingulate cortex compared to control Chow rats. These findings suggest that the Sig-1R system may contribute to the neurobiological adaptations driving compulsive-like eating, opening new avenues of investigation towards pharmacologically treating binge eating disorder. PMID:22713906

  8. Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing.

    PubMed

    Descamps, Delphyne; Le Gars, Mathieu; Balloy, Viviane; Barbier, Diane; Maschalidi, Sophia; Tohme, Mira; Chignard, Michel; Ramphal, Reuben; Manoury, Bénédicte; Sallenave, Jean-Michel

    2012-01-31

    A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5(-/-) AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1(-/-) and AEP(-/-) mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation. PMID:22307620

  9. Toll-like receptor 5 (TLR5), IL-1β secretion, and asparagine endopeptidase are critical factors for alveolar macrophage phagocytosis and bacterial killing

    PubMed Central

    Descamps, Delphyne; Le Gars, Mathieu; Balloy, Viviane; Barbier, Diane; Maschalidi, Sophia; Tohme, Mira; Chignard, Michel; Ramphal, Reuben; Manoury, Bénédicte; Sallenave, Jean-Michel

    2012-01-01

    A deficit in early clearance of Pseudomonas aeruginosa (P. aeruginosa) is crucial in nosocomial pneumonia and in chronic lung infections. Few studies have addressed the role of Toll-like receptors (TLRs), which are early pathogen associated molecular pattern receptors, in pathogen uptake and clearance by alveolar macrophages (AMs). Here, we report that TLR5 engagement is crucial for bacterial clearance by AMs in vitro and in vivo because unflagellated P. aeruginosa or different mutants defective in TLR5 activation were resistant to AM phagocytosis and killing. In addition, the clearance of PAK (a wild-type P. aeruginosa strain) by primary AMs was causally associated with increased IL-1β release, which was dramatically reduced with PAK mutants or in WT PAK-infected primary TLR5−/− AMs, demonstrating the dependence of IL-1β production on TLR5. We showed that this IL-1β production was important in endosomal pH acidification and in inducing the killing of bacteria by AMs through asparagine endopeptidase (AEP), a key endosomal cysteine protease. In agreement, AMs from IL-1R1−/− and AEP−/− mice were unable to kill P. aeruginosa. Altogether, these findings demonstrate that TLR5 engagement plays a major role in P. aeruginosa internalization and in triggering IL-1β formation. PMID:22307620

  10. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer

    PubMed Central

    Kroon, Jan; Puhr, Martin; Buijs, Jeroen T; van der Horst, Geertje; Hemmer, Daniëlle M; Marijt, Koen A; Hwang, Ming S; Masood, Motasim; Grimm, Stefan; Storm, Gert; Metselaar, Josbert M; Meijer, Onno C; Culig, Zoran; van der Pluijm, Gabri

    2016-01-01

    Resistance to docetaxel is a major clinical problem in advanced prostate cancer (PCa). Although glucocorticoids (GCs) are frequently used in combination with docetaxel, it is unclear to what extent GCs and their receptor, the glucocorticoid receptor (GR), contribute to the chemotherapy resistance. In this study, we aim to elucidate the role of the GR in docetaxel-resistant PCa in order to improve the current PCa therapies. GR expression was analyzed in a tissue microarray of primary PCa specimens from chemonaive and docetaxel-treated patients, and in cultured PCa cell lines with an acquired docetaxel resistance (PC3-DR, DU145-DR, and 22Rv1-DR). We found a robust overexpression of the GR in primary PCa from docetaxel-treated patients and enhanced GR levels in cultured docetaxel-resistant human PCa cells, indicating a key role of the GR in docetaxel resistance. The capability of the GR antagonists (RU-486 and cyproterone acetate) to revert docetaxel resistance was investigated and revealed significant resensitization of docetaxel-resistant PCa cells for docetaxel treatment in a dose- and time-dependent manner, in which a complete restoration of docetaxel sensitivity was achieved in both androgen receptor (AR)-negative and AR-positive cell lines. Mechanistically, we demonstrated down-regulation of Bcl-xL and Bcl-2 upon GR antagonism, thereby defining potential treatment targets. In conclusion, we describe the involvement of the GR in the acquisition of docetaxel resistance in human PCa. Therapeutic targeting of the GR effectively resensitizes docetaxel-resistant PCa cells. These findings warrant further investigation of the clinical utility of the GR antagonists in the management of patients with advanced and docetaxel-resistant PCa. PMID:26483423

  11. Novel Toll/IL-1 Receptor Homologous Region Adaptors Act as Negative Regulators in Amphioxus TLR Signaling.

    PubMed

    Peng, Jian; Tao, Xin; Li, Rui; Hu, Jingru; Ruan, Jie; Wang, Ruihua; Yang, Manyi; Yang, Rirong; Dong, Xiangru; Chen, Shangwu; Xu, Anlong; Yuan, Shaochun

    2015-10-01

    Studies have shown that the basal chordate amphioxus possesses an extraordinarily complex TLR system, including 39 TLRs and at least 40 Toll/IL-1R homologous region (TIR) adaptors. Besides homologs to MyD88 and TIR domain-containing adaptor molecule (TICAM), most amphioxus TIR adaptors exhibit domain architectures that are not observed in other species. To reveal how these novel TIR adaptors function in amphioxus Branchiostoma belcheri tsingtauense (bbt), four representatives, bbtTIRA, bbtTIRB, bbtTIRC, and bbtTIRD, were selected for functional analyses. We found bbtTIRA to show a unique inhibitory role in amphioxus TICAM-mediated pathway by interacting with bbtTICAM and bbt receptor interacting protein 1b, whereas bbtTIRC specifically inhibits the amphioxus MyD88-dependent pathway by interacting with bbtMyD88 and depressing the polyubiquitination of bbt TNFR-associated factor 6. Although both bbtTIRB and bbtTIRD are located on endosomes, the TIR domain of bbtTIRB can interact with bbtMyD88 in the cytosol, whereas the TIR domain of bbtTIRD is enclosed in endosome, suggesting that bbtTIRD may be a redundant gene in amphioxus. This study indicated that most expanded TIR adaptors play nonredundant regulatory roles in amphioxus TLR signaling, adding a new layer to understanding the diversity and complexity of innate immunity at basal chordate. PMID:26324776

  12. TRAF6 Mediates IL-1β/LPS-Induced Suppression of TGF-β Signaling through Its Interaction with the Type III TGF-β Receptor

    PubMed Central

    Lim, Seunghwan; Bae, Eunjin; Kim, Hae-Suk; Kim, Tae-Aug; Byun, Kyunghee; Kim, Byungchul; Hong, Suntaek; Im, Jong Pil; Yun, Chohee; Lee, Bona; Lee, Bonghee; Park, Seok Hee; Letterio, John; Kim, Seong-Jin

    2012-01-01

    Transforming growth factor-β1 (TGF-β1) is an important anti-inflammatory cytokine that modulates and resolves inflammatory responses. Recent studies have demonstrated that inflammation enhances neoplastic risk and potentiates tumor progression. In the evolution of cancer, pro-inflammatory cytokines such as IL-1β must overcome the anti-inflammatory effects of TGF-β to boost pro-inflammatory responses in epithelial cells. Here we show that IL-1β or Lipopolysaccharide (LPS) suppresses TGF-β-induced anti-inflammatory signaling in a NF-κB-independent manner. TRAF6, a key molecule in IL-1β signaling, mediates this suppressive effect through interaction with the type III TGF-β receptor (TβRIII), which is TGF-β-dependent and requires type I TGF-β receptor (TβRI) kinase activity. TβRI phosphorylates TβRIII at residue S829, which promotes the TRAF6/TβRIII interaction and consequent sequestration of TβRIII from the TβRII/TβRI complex. Our data indicate that IL-1β enhances the pro-inflammatory response by suppressing TGF-βsignaling through TRAF6-mediated sequestration of TβRIII, which may be an important contributor to the early stages of tumor progression. PMID:22427868

  13. The use of an IL-1 receptor antagonist peptide to control inflammation in the treatment of corneal limbal epithelial stem cell deficiency.

    PubMed

    Fok, E; Sandeman, S R; Guildford, A L; Martin, Y H

    2015-01-01

    Corneal limbal stem cell deficiency (LSCD) may be treated using ex vivo limbal epithelial stem cells (LESCs) derived from cadaveric donor tissue. However, continuing challenges exist around tissue availability, inflammation, and transplant rejection. Lipopolysaccharide (LPS) or recombinant human IL-1β stimulated primary human keratocyte and LESC models were used to investigate the anti-inflammatory properties of a short chain, IL-1 receptor antagonist peptide for use in LESC sheet growth to control inflammation. The peptide was characterized using mass spectroscopy and high performance liquid chromatography. Peptide cytotoxicity, patterns of cell cytokine expression in response to LPS or IL-1β stimulation, and peptide suppression of this response were investigated by MTS/LDH assays, ELISA, and q-PCR. Cell differences in LPS stimulated toll-like receptor 4 expression were investigated using immunocytochemistry. A significant reduction in rIL-1β stimulated inflammatory cytokine production occurred following LESC and keratocyte incubation with anti-inflammatory peptide and in LPS stimulated IL-6 and IL-8 production following keratocyte incubation with peptide (1 mg/mL) (P < 0.05). LESCs produced no cytokine response to LPS stimulation and showed no TLR4 expression. The peptide supported LESC growth when adhered to a silicone hydrogel contact lens indicating potential use in improved LESC grafting through suppression of inflammation. PMID:25705668

  14. Serotonin 2B Receptor Antagonism Prevents Heritable Pulmonary Arterial Hypertension

    PubMed Central

    Schroer, Alison K.; Chen, Peter; Ryzhova, Larisa M.; Gladson, Santhi; Shay, Sheila; Hutcheson, Joshua D.; Merryman, W. David

    2016-01-01

    Serotonergic anorexigens are the primary pharmacologic risk factor associated with pulmonary arterial hypertension (PAH), and the resulting PAH is clinically indistinguishable from the heritable form of disease, associated with BMPR2 mutations. Both BMPR2 mutation and agonists to the serotonin receptor HTR2B have been shown to cause activation of SRC tyrosine kinase; conversely, antagonists to HTR2B inhibit SRC trafficking and downstream function. To test the hypothesis that a HTR2B antagonist can prevent BMRP2 mutation induced PAH by restricting aberrant SRC trafficking and downstream activity, we exposed BMPR2 mutant mice, which spontaneously develop PAH, to a HTR2B antagonist, SB204741, to block the SRC activation caused by BMPR2 mutation. SB204741 prevented the development of PAH in BMPR2 mutant mice, reduced recruitment of inflammatory cells to their lungs, and reduced muscularization of their blood vessels. By atomic force microscopy, we determined that BMPR2 mutant mice normally had a doubling of vessel stiffness, which was substantially normalized by HTR2B inhibition. SB204741 reduced SRC phosphorylation and downstream activity in BMPR2 mutant mice. Gene expression arrays indicate that the primary changes were in cytoskeletal and muscle contractility genes. These results were confirmed by gel contraction assays showing that HTR2B inhibition nearly normalizes the 400% increase in gel contraction normally seen in BMPR2 mutant smooth muscle cells. Heritable PAH results from increased SRC activation, cellular contraction, and vascular resistance, but antagonism of HTR2B prevents SRC phosphorylation, downstream activity, and PAH in BMPR2 mutant mice. PMID:26863209

  15. Do Cyclosporine A, an IL-1 Receptor Antagonist, Uridine Triphosphate, Rebamipide, and/or Bimatoprost Regulate Human Meibomian Gland Epithelial Cells?

    PubMed Central

    Kam, Wendy R.; Liu, Yang; Ding, Juan; Sullivan, David A.

    2016-01-01

    Purpose Researchers have hypothesized that treatment with cyclosporine A (CyA), interleukin-1 receptor antagonists (IL-1RA; e.g., anakinra), P2Y2 receptor agonists (e.g., uridine triphosphate; UTP), and rebamipide may alleviate human meibomian gland dysfunction (MGD) and/or dry eye disease. Investigators have also proposed that prostaglandin analogues (e.g., bimatoprost) may induce MGD. Our goal was to determine whether these compounds directly influence human meibomian gland epithelial cell (HMGEC) function. Methods Multiple concentrations of each compound were tested for effects on immortalized (I) HMGEC morphology and survival. Nontoxic dosages were used for our studies. Immortalized HMGEC were cultured in the presence of vehicle, CyA, IL-1RA, UTP, rebamipide, or bimatoprost for up to 6 days in various media. Experiments included positive controls for proliferation (epidermal growth factor and bovine pituitary extract), differentiation (azithromycin), and signaling pathway activation (insulin-like growth factor 1). Cells were analyzed for neutral lipid staining, lysosome accumulation, lipid composition, and phosphatidylinositol-3-kinase/Akt (AKT), phosphorylation. Results Our findings demonstrate that CyA, IL-1RA, UTP, rebamipide, and bimatoprost had no effect on the proliferation; neutral lipid content; lysosome number; or levels of free cholesterol, triglycerides, or phospholipids in IHMGECs. Cylosporine A, IL-1RA, rebamipide, and bimatoprost significantly reduced the phosphorylation of AKT, as compared to control. Of interest, tested doses of CyA above 8 nM killed the IHMGECs. Conclusions Our results show that CyA, IL-1RA, UTP, rebamipide, and bimatoprost do not influence the proliferation or differentiation of IHMGEC. However, with the exception of UTP, these compounds do decrease the activity of the AKT signaling pathway, which is known to promote cell survival. PMID:27552406

  16. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    PubMed

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities. PMID:23852933

  17. The effect of anakinra, an IL1 receptor antagonist, in patients with sporadic inclusion body myositis (sIBM): a small pilot study.

    PubMed

    Kosmidis, Michalis L; Alexopoulos, Harry; Tzioufas, Athanasios G; Dalakas, Marinos C

    2013-11-15

    In sIBM, an inflammatory process mediated by cytotoxic T cells and cytokines in conjunction with a degenerative process, deposits of beta amyloid and misfolded proteins appear to be the main culprits in disease pathogenesis. IL-1β may play a key role because it is upregulated in sIBM myofibers, co-localizes with Amyloid Precursor Protein (APP) and promotes the production of APP and amyloid deposits. We performed a small, pilot study to examine whether anakinra, an IL1 receptor antagonist could benefit sIBM patients. Four patients with biopsy-proven sIBM received anakinra for a mean period of 7.7 months. No improvement in muscle strength or stabilization was noted in any of the patients based on grip strength and MRC measurements. The treatment failure may be due to insufficiency of anakinra to suppress the intramuscular IL1, the short study period, or the irrelevance of IL1 in the disease process. PMID:23998706

  18. Of Inflammasomes and Alarmins: IL-1β and IL-1α in Kidney Disease.

    PubMed

    Anders, Hans-Joachim

    2016-09-01

    Kidney injury implies danger signaling and a response by the immune system. The inflammasome is a central danger recognition platform that triggers local and systemic inflammation. In immune cells, inflammasome activation causes the release of mature IL-1β and of the alarmin IL-1α Dying cells release IL-1α also, independently of the inflammasome. Both IL-1α and IL-1β ligate the same IL-1 receptor (IL-1R) that is present on nearly all cells inside and outside the kidney, further amplifying cytokine and chemokine release. Thus, the inflammasome-IL-1α/IL-β-IL-1R system is a central element of kidney inflammation and the systemic consequences. Seminal discoveries of recent years have expanded this central paradigm of inflammation. This review gives an overview of arising concepts of inflammasome and IL-1α/β regulation in renal cells and in experimental kidney disease models. There is a pipeline of compounds that can interfere with the inflammasome-IL-1α/IL-β-IL-1R system, ranging from recently described small molecule inhibitors of NLRP3, a component of the inflammasome complex, to regulatory agency-approved IL-1-neutralizing biologic drugs. Based on strong theoretic and experimental rationale, the potential therapeutic benefits of using such compounds to block the inflammasome-IL-1α/IL-β-IL-1R system in kidney disease should be further explored. PMID:27516236

  19. Lack of IL-1 Receptor-Associated Kinase-4 Leads to Defective Th1 Cell Responses and Renders Mice Susceptible to Mycobacterial Infection.

    PubMed

    Marinho, Fábio V; Fahel, Júlia S; Scanga, Charles A; Gomes, Marco Tulio R; Guimarães, Gabriela; Carvalho, Gabrielle R M; Morales, Stefanny V; Báfica, André; Oliveira, Sergio Costa

    2016-09-01

    The Toll-like and IL-1 family receptors play critical roles in innate and adaptive immunity against intracellular pathogens. Although previous data demonstrated the importance of TLRs and IL-1R signaling events for the establishment of an effective immune response to mycobacteria, the possible function of the adaptor molecule IL-1R-associated kinase (IRAK)-4 against this pathogen has not been addressed. In this study, we determined the role of IRAK-4 in signaling pathways responsible for controlling mycobacterial infections. This kinase is important for the production of IL-12 and TNF-α by macrophages and dendritic cells exposed to mycobacteria. Moreover, Mycobacterium bovis-infected IRAK-4-knockout macrophages displayed impaired MAPK and NF-κB activation. IL-1β secretion and caspase-1 activation were also dependent on IRAK-4 signaling. Mice lacking IRAK-4 showed increased M. bovis burden in spleen, liver, and lungs and smaller liver granulomas during 60 d of infection compared with wild-type mice. Furthermore, 80% of IRAK-4(-/-) mice succumbed to virulent M. tuberculosis within 100 d following low-dose infection. This increased susceptibility to mycobacteria correlated with reduced IFN-γ/TNF-α recall responses by splenocytes, as well as fewer IL-12p70-producing APCs. Additionally, we observed that IRAK-4 is also important for the production of IFN-γ by CD4(+) T cells from infected mice. Finally, THP-1 cells treated with an IRAK-4 inhibitor and exposed to M. bovis showed reduced TNF-α and IL-12, suggesting that the results found in mice can be extended to humans. In summary, these data demonstrate that IRAK-4 is essential for innate and adaptive immunity and necessary for efficient control of mycobacterial infections. PMID:27439514

  20. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP

    PubMed Central

    Karmakar, Mausita; Katsnelson, Michael A.; Dubyak, George R.; Pearlman, Eric

    2016-01-01

    Although extracellular ATP is abundant at sites of inflammation, its role in activating inflammasome signalling in neutrophils is not well characterized. In the current study, we demonstrate that human and murine neutrophils express functional cell-surface P2X7R, which leads to ATP-induced loss of intracellular K+, NLRP3 inflammasome activation and IL-1β secretion. ATP-induced P2X7R activation caused a sustained increase in intracellular [Ca2+], which is indicative of P2X7R channel opening. Although there are multiple polymorphic variants of P2X7R, we found that neutrophils from multiple donors express P2X7R, but with differential efficacies in ATP-induced increase in cytosolic [Ca2+]. Neutrophils were also the predominant P2X7R-expressing cells during Streptococcus pneumoniae corneal infection, and P2X7R was required for bacterial clearance. Given the ubiquitous presence of neutrophils and extracellular ATP in multiple inflammatory conditions, ATP-induced P2X7R activation and IL-1β secretion by neutrophils likely has a significant, wide ranging clinical impact. PMID:26877061

  1. ENDOTHELIN-A RECEPTOR ANTAGONISM IN EMBRYO CULTURE: WINDOW OF SENSITIVITY AND TIMING OF DEFECT

    EPA Science Inventory

    BRANNEN, K.C., J.M. ROGERS, and E.S. HUNTER, Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina, and Reproductive Toxicology Division, NHEERL, U.S. EPA, Research Triangle Park, North Carolina. Endothelin-A receptor antagonism in embryo culture: w...

  2. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  3. Metabotropic glutamate receptor subtype 5 antagonism in learning and memory

    PubMed Central

    Simonyi, Agnes; Schachtman, Todd R.; Christoffersen, Gert R. J.

    2010-01-01

    Summary The role of the metabotropic glutamate receptor 5 (mGlu5 receptor) in learning and memory and other behaviors are reviewed by examining the influence of selective antagonists and genetic knockout on performance. This receptor is involved in spatial learning, contextual fear conditioning, inhibitory avoidance, fear potentiated startle, and conditioned taste aversion. However, mGlu5 receptor antagonists have proven to be ineffective in other learning tasks, such as the delayed-match-to-position test and a three-hole spatial learning task. Locomotion is often decreased by mGlu5 receptor antagonists; and other behaviors such as social interaction and consummatory responses can also be affected. In mGlu5 receptor knockout mice, performance in contextual fear conditioning and spatial water maze tasks is impaired. Although the available evidence is suggestive of an important contribution of mGlu5 receptors to cognitive functions, further studies are needed, particularly those with in vivo evaluation of the role of mGlu5 receptors in selective brain regions in different stages of memory formation. PMID:20363219

  4. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice.

    PubMed

    Savignac, Helene M; Couch, Yvonne; Stratford, Michael; Bannerman, David M; Tzortzis, George; Anthony, Daniel C; Burnet, Philip W J

    2016-02-01

    The manipulation of the enteric microbiota with specific prebiotics and probiotics, has been shown to reduce the host's inflammatory response, alter brain chemistry, and modulate anxiety behaviour in both rodents and humans. However, the neuro-immune and behavioural effects of prebiotics on sickness behaviour have not been explored. Here, adult male CD1 mice were fed with a specific mix of non-digestible galacto-oligosaccharides (Bimuno®, BGOS) for 3 weeks, before receiving a single injection of lipopolysaccharide (LPS), which induces sickness behaviour and anxiety. Locomotor and marble burying activities were assessed 4h after LPS injection, and after 24h, anxiety in the light-dark box was assessed. Cytokine expression, and key components of the serotonergic (5-Hydroxytryptamine, 5-HT) and glutamatergic system were evaluated in the frontal cortex to determine the impact of BGOS administration at a molecular level. BGOS-fed mice were less anxious in the light-dark box compared to controls 24h after the LPS injection. Elevated cortical IL-1β concentrations in control mice 28 h after LPS were not observed in BGOS-fed animals. This significant BGOS×LPS interaction was also observed for 5HT2A receptors, but not for 5HT1A receptors, 5HT, 5HIAA, NMDA receptor subunits, or other cytokines. The intake of BGOS did not influence LPS-mediated reductions in marble burying behaviour, and its effect on locomotor activity was equivocal. Together, our data show that the prebiotic BGOS has an anxiolytic effect, which may be related to the modulation of cortical IL-1β and 5-HT2A receptor expression. Our data suggest a potential role for prebiotics in the treatment of neuropsychiatric disorders where anxiety and neuroinflammation are prominent clinical features. PMID:26476141

  5. Human mesenchymal stem cells overexpressing the IL-33 antagonist soluble IL-1 receptor-like-1 attenuate endotoxin-induced acute lung injury.

    PubMed

    Martínez-González, Itziar; Roca, Oriol; Masclans, Joan R; Moreno, Rafael; Salcedo, Maria T; Baekelandt, Veerle; Cruz, Maria J; Rello, Jordi; Aran, Josep M

    2013-10-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by pulmonary edema attributable to alveolar epithelial-interstitial-endothelial injury, associated with profound inflammation and respiratory dysfunction. The IL-33/IL-1 receptor-like-1 (ST2) axis plays a key role in the development of immune-inflammatory responses in the lung. Cell-based therapy has been recently proposed as an effective alternative for the treatment of ALI and ARDS. Here, we engineered human adipose tissue-derived mesenchymal stem cells (hASCs) overexpressing soluble IL-1 receptor-like-1 (sST2), a decoy receptor for IL-33, in order to enhance their immunoregulatory and anti-inflammatory properties when applied in a murine ALI model. We administered both hASCs and hASC-sST2 systemically at 6 hours after intranasal LPS instillation, when pathological changes had already occurred. Bioluminescence imaging, immunohistochemistry, and focused transcriptional profiling confirmed the increased presence of hASCs in the injured lungs and the activation of an immunoregulatory program (CXCR-4, tumor necrosis factor-stimulated gene 6 protein, and indoleamine 2,3-dioxygenase up-regulation) in these cells, 48 hours after endotoxin challenge. A comparative evaluation of hASCs and the actions of hASC-sST2 revealed that local sST2 overproduction by hASC-sST2 further prevented IL-33, Toll-like receptor-4, IL-1β, and IFN-γ induction, but increased IL-10 expression in the injured lungs. This synergy caused a substantial decrease in lung airspace inflammation and vascular leakage, characterized by significant reductions in protein content, differential neutrophil counts, and proinflammatory cytokine (TNF-α, IL-6, and macrophage inflammatory protein 2) concentrations in bronchoalveolar lavage fluid. In addition, hASC-sST2-treated ALI lungs showed preserved alveolar architecture, an absence of apoptosis, and minimal inflammatory cell infiltration. These results suggest that h

  6. Inflammasome activation and IL-1β target IL-1α for secretion as opposed to surface expression

    PubMed Central

    Fettelschoss, Antonia; Kistowska, Magdalena; LeibundGut-Landmann, Salomé; Beer, Hans-Dietmar; Johansen, Pål; Senti, Gabriela; Contassot, Emmanuel; Bachmann, Martin F.; French, Lars E.; Oxenius, Annette; Kündig, Thomas M.

    2011-01-01

    Interleukin-1α (IL-1α) and -β both bind to the same IL-1 receptor (IL-1R) and are potent proinflammatory cytokines. Production of proinflammatory (pro)–IL-1α and pro–IL-1β is induced by Toll-like receptor (TLR)-mediated NF-κB activation. Additional stimulus involving activation of the inflammasome and caspase-1 is required for proteolytic cleavage and secretion of mature IL-1β. The regulation of IL-1α maturation and secretion, however, remains elusive. IL-1α exists as a cell surface-associated form and as a mature secreted form. Here we show that both forms of IL-1α, the surface and secreted form, are differentially regulated. Surface IL-1α requires NF-κB activation only, whereas secretion of mature IL-1α requires additional activation of the inflammasome and caspase-1. Surprisingly, secretion of IL-1α also required the presence of IL-1β, as demonstrated in IL-1β–deficient mice. We further demonstrate that IL-1β directly binds IL-1α, thus identifying IL-1β as a shuttle for another proinflammatory cytokine. These results have direct impact on selective treatment modalities of inflammatory diseases. PMID:22006336

  7. Automation of [(18) F]fluoroacetaldehyde synthesis: application to a recombinant human interleukin-1 receptor antagonist (rhIL-1RA).

    PubMed

    Morris, Olivia; McMahon, Adam; Boutin, Herve; Grigg, Julian; Prenant, Christian

    2016-06-15

    [(18) F]Fluoroacetaldehyde is a biocompatible prosthetic group that has been implemented pre-clinically using a semi-automated remotely controlled system. Automation of radiosyntheses permits use of higher levels of [(18) F]fluoride whilst minimising radiochemist exposure and enhancing reproducibility. In order to achieve full-automation of [(18) F]fluoroacetaldehyde peptide radiolabelling, a customised GE Tracerlab FX-FN with fully programmed automated synthesis was developed. The automated synthesis of [(18) F]fluoroacetaldehyde is carried out using a commercially available precursor, with reproducible yields of 26% ± 3 (decay-corrected, n = 10) within 45 min. Fully automated radiolabelling of a protein, recombinant human interleukin-1 receptor antagonist (rhIL-1RA), with [(18) F]fluoroacetaldehyde was achieved within 2 h. Radiolabelling efficiency of rhIL-1RA with [(18) F]fluoroacetaldehyde was confirmed using HPLC and reached 20% ± 10 (n = 5). Overall RCY of [(18) F]rhIL-1RA was 5% ± 2 (decay-corrected, n = 5) within 2 h starting from 35 to 40 GBq of [(18) F]fluoride. Specific activity measurements of 8.11-13.5 GBq/µmol were attained (n = 5), a near three-fold improvement of those achieved using the semi-automated approach. The strategy can be applied to radiolabelling a range of peptides and proteins with [(18) F]fluoroacetaldehyde analogous to other aldehyde-bearing prosthetic groups, yet automation of the method provides reproducibility thereby aiding translation to Good Manufacturing Practice manufacture and the transformation from pre-clinical to clinical production. PMID:27061216

  8. Reconstitution of ST2 (IL-1R4) specific for IL-33 activity; no suppression by IL-1Ra though a common chain IL-1R3 (IL-1RAcP) shared with IL-1.

    PubMed

    Jo, Seunghyun; Kim, Eunsom; Kwak, Areum; Lee, Jungmin; Hong, Jaewoo; Lee, Jongho; Youn, Sulah; Bae, Suyoung; Kim, Busun; Ryoo, Soyoon; Kang, Tae-Bong; Her, Erk; Choi, Dong-Ki; Kim, Yong-Sung; Lee, Youngmin; Jhun, Hyunjhung; Kim, Soohyun

    2016-07-01

    Interleukin-33 (IL-33) receptors are composed of ST2 (also known as IL-1R4), a ligand binding chain, and IL-1 receptor accessory protein (IL-1RAcP, also known as IL-1R3), a signal transducing chain. IL-1R3 is a common receptor for IL-1α, and IL-1β, IL-33, and three IL-36 isoforms. A549 human lung epithelial cells are highly sensitive to IL-1α and IL-1β but not respond to IL-33. The lack of responsiveness to IL-33 is due to ST2 expression. ST2 was stably transfected into A549 cells to reconstitute its activity. RT-PCR and FACS analysis confirmed ST2 expression on the cell surface of A549/ST2 cells. Upon IL-33 stimulation, A549/ST2 cells induced IL-8 and IL-6 production in a dose dependent manner while A549/mock cells remained unresponsive. There was no difference in IL-1α and IL-1β activity in A549/ST2 cells compared to A549/mock cells despite the fact that IL-33 shares IL-1R3 with IL-1α/β. IL-33 activated inflammatory signaling molecules in a time- and dose-dependent manner. Anti-ST2 antibody and soluble recombinant ST2-Fc abolished IL-33-induced IL-6 and IL-8 production in A549/ST2 cells but the IL-1 receptor antagonist failed to block IL-33-induced cytokines. This result demonstrates for the first time the reconstitution of ST2 in A549 human lung epithelial cell line and verified its function in IL-33-mediated cytokine production and signal transduction. PMID:27031441

  9. Regiospecific Methylation of a Dietary Flavonoid Scaffold Selectively Enhances IL-1β Production following Toll-like Receptor 2 Stimulation in THP-1 Monocytes*

    PubMed Central

    Lim, Eng-Kiat; Mitchell, Paul J.; Brown, Najmeeyah; Drummond, Rebecca A.; Brown, Gordon D.; Kaye, Paul M.; Bowles, Dianna J.

    2013-01-01

    It is now recognized that innate immunity to intestinal microflora plays a significant role in mediating immune health, and modulation of microbial sensing may underpin the impact of plant natural products in the diet or when used as nutraceuticals. In this context, we have examined five classes of plant-derived flavonoids (flavonols, flavones, flavanones, catechins, and cyanidin) for their ability to regulate cytokine release induced by the Toll-like receptor 2 (TLR2) agonist Pam3CSK4. We found that the flavonols selectively co-stimulated IL-1β secretion but had no impact on the secretion of IL-6. Importantly, this costimulation of TLR2-induced cytokine secretion was dependent on regiospecific methylation of the flavonol scaffold with a rank order of quercetin-3,4′-dimethylether > quercetin-3-methylether > casticin. The mechanism underpinning this costimulation did not involve enhanced inflammasome activation. In contrast, the methylated flavonols enhanced IL-1β gene expression through transcriptional regulation, involving mechanisms that operate downstream of the initial NF-κB and STAT1 activation events. These studies demonstrate an exquisite level of control of scaffold bioactivity by regiospecific methylation, with important implications for understanding how natural products affect innate immunity and for their development as novel immunomodulators for clinical use. PMID:23760261

  10. Peripheral endothelin A receptor antagonism attenuates carcinoma-induced pain.

    PubMed

    Schmidt, Brian L; Pickering, Victoria; Liu, Stanley; Quang, Phuong; Dolan, John; Connelly, S Thaddeus; Jordan, Richard C K

    2007-05-01

    In this study we investigated the role of endothelin-1 (ET-1) and its peripheral receptor (ET-A) in carcinoma-induced pain in a mouse cancer pain model. Tumors were induced in the hind paw of female mice by local injection of cells derived from a human oral squamous cell carcinoma (SCC). Significant pain, as indicated by reduction in withdrawal thresholds in response to mechanical stimulation, began at four days after SCC inoculation and lasted to 28 days, the last day of measurement. Intra-tumor expression of both ET-1 mRNA and ET-1 protein were significantly upregulated compared to normal tissue, and local administration of the ET-A receptor selective antagonist, BQ-123 (100 microM) significantly elevated withdrawal thresholds, indicating the induction of an antinociceptive effect. These findings support the suggestion that ET-1 and ET-A receptors contribute to the severity of carcinoma-induced soft tissue cancer pain. PMID:16807013

  11. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man

    PubMed Central

    Gotter, Anthony L.; Forman, Mark S.; Harrell, Charles M.; Stevens, Joanne; Svetnik, Vladimir; Yee, Ka Lai; Li, Xiaodong; Roecker, Anthony J.; Fox, Steven V.; Tannenbaum, Pamela L.; Garson, Susan L.; Lepeleire, Inge De; Calder, Nicole; Rosen, Laura; Struyk, Arie; Coleman, Paul J.; Herring, W. Joseph; Renger, John J.; Winrow, Christopher J.

    2016-01-01

    Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism. PMID:27256922

  12. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man.

    PubMed

    Gotter, Anthony L; Forman, Mark S; Harrell, Charles M; Stevens, Joanne; Svetnik, Vladimir; Yee, Ka Lai; Li, Xiaodong; Roecker, Anthony J; Fox, Steven V; Tannenbaum, Pamela L; Garson, Susan L; Lepeleire, Inge De; Calder, Nicole; Rosen, Laura; Struyk, Arie; Coleman, Paul J; Herring, W Joseph; Renger, John J; Winrow, Christopher J

    2016-01-01

    Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism. PMID:27256922

  13. Exploring new scaffolds for angiotensin II receptor antagonism.

    PubMed

    Kritsi, Eftichia; Matsoukas, Minos-Timotheos; Potamitis, Constantinos; Karageorgos, Vlasios; Detsi, Anastasia; Magafa, Vasilliki; Liapakis, George; Mavromoustakos, Thomas; Zoumpoulakis, Panagiotis

    2016-09-15

    Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities. PMID:27480029

  14. Il-1β and prostaglandin E2 attenuate the hypercapnic as well as the hypoxic respiratory response via prostaglandin E receptor type 3 in neonatal mice.

    PubMed

    Siljehav, Veronica; Shvarev, Yuri; Herlenius, Eric

    2014-11-01

    Prostaglandin E2 (PGE2) serves as a critical mediator of hypoxia, infection, and apnea in term and preterm babies. We hypothesized that the prostaglandin E receptor type 3 (EP3R) is the receptor responsible for PGE2-induced apneas. Plethysmographic recordings revealed that IL-1β (ip) attenuated the hypercapnic response in C57BL/6J wild-type (WT) but not in neonatal (P9) EP3R(-/-) mice (P < 0.05). The hypercapnic responses in brain stem spinal cord en bloc preparations also differed depending on EP3R expression whereby the response was attenuated in EP3R(-/-) preparations (P < 0.05). After severe hypoxic exposure in vivo, IL-1β prolonged time to autoresuscitation in WT but not in EP3R(-/-) mice. Moreover, during severe hypoxic stress EP3R(-/-) mice had an increased gasping duration (P < 0.01) as well as number of gasps (P < 0.01), irrespective of intraperitoneal treatment, compared with WT mice. Furthermore, EP3R(-/-) mice exhibited longer hyperpneic breathing efforts when exposed to severe hypoxia (P < 0.01). This was then followed by a longer period of secondary apnea before autoresuscitation occurred in EP3R(-/-) mice (P < 0.05). In vitro, EP3R(-/-) brain stem spinal cord preparations had a prolonged respiratory burst activity during severe hypoxia accompanied by a prolonged neuronal arrest during recovery in oxygenated medium (P < 0.05). In conclusion, PGE2 exerts its effects on respiration via EP3R activation that attenuates the respiratory response to hypercapnia as well as severe hypoxia. Modulation of the EP3R may serve as a potential therapeutic target for treatment of inflammatory and hypoxic-induced detrimental apneas and respiratory disorders in neonates. PMID:25213632

  15. MINERALOCORTICOID RECEPTOR ANTAGONISM CONFERS CARDIOPROTECTION IN HEART FAILURE

    PubMed Central

    Seawell, Michael R.; Darazi, Fahed Al; Farah, Victor; Ramanathan, Kodangudi B.; Newman, Kevin P.; Bhattacharya, Syamal K.; Weber, Karl T.

    2012-01-01

    The symptoms and signs constituting the congestive heart failure (CHF) syndrome have their pathophysiologic origins rooted in a salt-avid renal state mediated by effector hormones of the renin-angiotensin-aldosterone and adrenergic nervous systems. Controlled clinical trials, conducted over the past decade in patients having minimally to markedly severe symptomatic heart failure, have demonstrated the efficacy of a pharmacologic regimen that interferes with these hormones, including aldosterone receptor binding with either spironolactone or eplerenone. Potential pathophysiologic mechanisms which have not hitherto been considered involved for the salutary responses and cardioprotection provided by these mineralocorticoid receptor antagonists are reviewed herein. In particular, we focus on the less well-recognized impact of catecholamines and aldosterone on mono- and divalent cation dyshomeostasis which leads to hypokalemia, hypomagnesemia, ionized hypocalcemia with secondary hyperparathyroidism and hypozincemia. Attendant adverse cardiac consequences include a delay in myocardial repolarization with increased propensity for supra- and ventricular arrhythmias and compromised antioxidant defenses with increased susceptibility to nonischemic cardiomyocyte necrosis. PMID:23114591

  16. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    PubMed Central

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  17. in Silico investigation of the structural requirements for the AMPA receptor antagonism by quinoxaline derivatives

    PubMed Central

    Azam, Faizul; Abugrain, Ismaiel Mohamed; Sanalla, Mohamed Hussin; Elnaas, Radwan Fatahalla; Rajab, Ibrahim Abdassalam Ibn

    2013-01-01

    Glutamate receptors have been implicated in various neurological disorders and their antagonism offers a suitable approach for the treatment of such disorders. The field of drug design and discovery aims to find best medicines to prevent, treat and cure diseases quickly and efficiently. In this regard, computational tools have helped medicinal chemists modify and optimize molecules to potent drug candidates with better pharmacokinetic profiles, and guiding biologists and pharmacologists to explore new disease genes as well as novel drug targets. In the present study, to understand the structural requirements for AMPA receptor antagonism, molecular docking study was performed on 41 structurally diverse antagonists based on quinoxaline nucleus. Lamarckian genetic algorithm methodology was employed for docking simulations using AutoDock 4.2 program. The results obtained signify that the molecular docking approach is reliable and produces a good correlation coefficient (r2 = 0.6) between experimental and docking predicted AMPA receptor antagonistic activity. The aromatic moiety of quinoxaline core has been proved to be vital for hydrophobic contacts exhibiting - interactions in docked conformations. However, polar moieties such as carboxylic group and 1,2,4-triazole moieties were noted to be sites for hydrophilic interactions in terms of hydrogen bonding with the receptor. These analyses can be exploited to design and develop novel AMPA receptor antagonists for the treatment of different neurological disorders. PMID:24250113

  18. Competition of IL-1 and IL-1ra determines lymphocyte response to delayed stimulation with PHA.

    PubMed Central

    Dabrowski, M P; Stankiewicz, W; Płusa, T; Chciałowski, A; Szmigielski, S

    2001-01-01

    BACKGROUND: Human peripheral blood mononuclear cells (PBMC) left in microcultures for 24h without mitogen do not respond to subsequent stimulation with PHA. They regain reactivity if the native culture medium is absorbed with other party lymphocytes or partially replaced with the medium from a PHA-stimulated culture. The observations suggest that, during the incubation, some inhibitory agent had accumulated in the culture medium. AIM: The study was performed to determine the nature of the observed phenomenon in respect of the possible role of monocytes and their products IL-1 and IL-1 receptor antagonist (IL-1ra), and to test for immunodiagnostic purposes the significance of quantifying the lymphocyte response to delayed stimulation with PHA in patients suffering from inflammatory prosesses. METHODS: Lymphocyte response to delayed stimulation with PHA, calculated as the lymphocyte-monokine interaction (LM) index, was determined in the microcultures of PBMC isolated from the blood of healthy donors or of patients with acute tonsilitis. The values of LM indices were compared with the ratios of IL-1ra/IL-1beta concentration estimated by enzyme-linked immunosorbent assay method in the culture supernatants. The influences of exogenous IL-1beta, IL-1ra, anti-IL1ra antibodies and antibiotic cefaclor on the monokine concentrations and on the values of LM index were tested. RESULTS AND CONCLUSIONS: The results show that the level of lymphocyte response to delayed stimulation with PHA (LM index) is inversely proportional to the ratio of IL-1ra/IL-1beta concentration in the culture. The low LM values at high IL-1ra/IL-1beta ratios in PBMC cultures from healthy donors, reversed proportions found in patients' PBMC (acute tonsilitis), and the cefaclor-induced reduction of LM value with correlated increase of the IL-1ra/IL-1beta ratio suggest that the LM assay may prove to be useful for immunodiagnostic purposes. PMID:11545246

  19. Antagonism of human formyl peptide receptor 1 with natural compounds and their synthetic derivatives.

    PubMed

    Schepetkin, Igor A; Khlebnikov, Andrei I; Kirpotina, Liliya N; Quinn, Mark T

    2016-08-01

    Formyl peptide receptor 1 (FPR1) regulates a wide variety of neutrophil functional responses and plays an important role in inflammation and the pathogenesis of various diseases. To date, a variety of natural and synthetic molecules have been identified as FPR1 ligands. Here, we review current knowledge on natural products and natural product-inspired small molecules reported to antagonize and/or inhibit the FPR1-mediated responses. Based on this literature, additional screening of selected commercially available natural compounds for their ability to inhibit fMLF-induced Ca(2+) mobilization in human neutrophils and FPR1 transfected HL-60 cells, and pharmacophore modeling, natural products with potential as FPR1 antagonists are considered and discussed in this review. The identification and characterization of natural products that antagonize FPR1 activity may have potential for the development of novel therapeutics to limit or alter the outcome of inflammatory processes. PMID:26382576

  20. IL-1 receptor antagonist affects the plasma protein response of Hep 3B cells to conditioned medium from lipopolysaccharide-stimulated monocytes.

    PubMed

    Damtew, B; Rzewnicki, D; Lozanski, G; Kushner, I

    1993-05-01

    The availability of the IL-1R antagonist (IL-1ra) has made it possible to assess the specific contributions of IL-1 to the acute phase changes induced by complex mixtures of cytokines. We utilized IL-1ra to define the contribution of IL-1 to the effects of conditioned medium from LPS-stimulated monocytes on production of the positive acute phase proteins C-reactive protein, serum amyloid A, fibrinogen, alpha 1-protease inhibitor, complement component C3, alpha 1-antichymotrypsin, alpha 1-acid glycoprotein, and ceruloplasmin and the negative acute phase proteins albumin and transferrin in Hep 3B cells. Induction of C-reactive protein and serum amyloid A was essentially abolished, induction of complement component C3 and alpha 1-acid glycoprotein was moderately decreased and induction of fibrinogen was enhanced. In contrast, there was no significant effect of IL-1ra on induction by conditioned medium of alpha 1-protease inhibitor, alpha 1-antichymotrypsin, or ceruloplasmin. IL-1ra partially blocked the down-regulatory effects of conditioned medium on both of the negative acute phase proteins we studied--albumin and transferrin. These findings enhance our understanding of the contribution of IL-1 to the acute phase response. In addition, they indicate that IL-1ra in vivo may influence synthesis of both positive and negative acute phase proteins. PMID:7682588

  1. Mycoplasma bovis-derived lipid-associated membrane proteins activate IL-1β production through the NF-κB pathway via toll-like receptor 2 and MyD88.

    PubMed

    Wang, Yang; Liu, Suli; Li, Yuan; Wang, Qi; Shao, Jiari; Chen, Ying; Xin, Jiuqing

    2016-02-01

    Mycoplasma bovis causes pneumonia, otitis media, and arthritis in young calves, resulting in economic losses to the cattle industry worldwide. M. bovis pathogenesis results in part from excessive immune responses. Lipid-associated membrane proteins (LAMPs) can potently induce host innate immunity. However, interactions between M. bovis-derived LAMPs and Toll-like receptors (TLRs), or signaling pathways eliciting active inflammation and NF-κB activation, are incompletely understood. Here, we found that IL-1β expression was induced in embryonic bovine lung (EBL) cells stimulated with M. bovis-derived LAMPs. Subcellular-localization analysis revealed nuclear p65 translocation following EBL cell stimulation with M. bovis-derived LAMPs. An NF-κB inhibitor reversed M. bovis-derived LAMP-induced IL-1β expression. TLR2 and myeloid differentiation primary response gene 88 (MyD88) overexpression increased LAMP-dependent IL-1β induction. TLR2-neutralizing antibodies reduced IL-1β expression during LAMP stimulation. LAMPs also inhibited IL-1β expression following overexpression of a dominant-negative MyD88 protein. These results suggested that M. bovis-derived LAMPs activate IL-1β production through the NF-κB pathway via TLR2 and MyD88. PMID:26499291

  2. Mechanism of Androgen Receptor Antagonism by Bicalutamide in the Treatment of Prostate Cancer

    PubMed Central

    Osguthorpe, D.J.; Hagler, A.T.

    2011-01-01

    The androgen receptor (AR) plays a key role in a regulating gene expression in a variety of tissues, including the prostate. In the latter role it is one of the primary targets in the development of new chemotherapeutics for treatment of prostate cancer, as well as being the target of the most widely prescribed current drug, bicalutamide (Bcu), for this disease. In view of it’s importance, and the absence of a crystal structure for any antagonist-AR complex, we have carried out a series of molecular dynamics based simulations of the AR-Bcu complex and quantum mechanical (QM) calculations of Bcu, to elucidate the structural basis for antagonism of this key target. The structures which emerge show that bicalutamide antagonizes AR by accessing an additional binding pocket (B-site) adjacent to the hormone binding site (HBS), induced by displacing helix 12. This distorts the coactivator binding site and results in the inactivation of transcription. An alternative equienergetic conformational state of bicalutamide was found to bind in an expanded hormone pocket without materially perturbing either helix 12 or the coactivator binding site. Thus both the structural basis of antagonism and the mechanism underlying agonist properties displayed by bicalutamide in different environments may be rationalized in terms of these structures. In addition the antagonist structure and especially the induced second site (B-site) provides a structural framework for the design of novel antiandrogens. PMID:21466228

  3. Reverse Translation of Clinical Electrophysiological Biomarkers in Behaving Rodents under Acute and Chronic NMDA Receptor Antagonism

    PubMed Central

    Sullivan, Elyse M; Timi, Patricia; Hong, L Elliot; O'Donnell, Patricio

    2015-01-01

    Electroencephalogram (EEG) stands out as a highly translational tool for psychiatric research, yet rodent and human EEG are not typically obtained in the same way. In this study we developed a tool to record skull EEG in awake-behaving rats in a similar manner to how human EEG are obtained and then used this technique to test whether acute NMDA receptor antagonism alters rodent EEG signals in a similar manner as in humans. Acute MK-801 treatment elevated gamma power and reduced beta band power, which closely mirrored EEG data from healthy volunteers receiving acute ketamine. To explore the mechanisms behind these oscillatory changes, we examined the effects of GABA-A receptor blockade, finding that picrotoxin (PTX) recapitulated the decrease in sound-evoked beta oscillations observed with acute MK-801, but did not produce changes in gamma band power. Chronic treatment with either PTX or MK-801 did not affect frequency-specific oscillatory activity when tested 24 h after the last drug injection, but decreased total broadband oscillatory power. Overall, this study validated a novel platform for recording rodent EEG and demonstrated similar oscillatory changes after acute NMDA receptor antagonism in both humans and rodents, suggesting that skull EEG may be a powerful tool for further translational studies. PMID:25176166

  4. Ivermectin Antagonizes Ethanol Inhibition in Purinergic P2X4 Receptors

    PubMed Central

    Popova, Maya; Perkins, Daya; Trudell, James R.; Alkana, Ronald L.; Davies, Daryl L.

    2010-01-01

    ATP-gated purinergic P2X4 receptors (P2X4Rs) are expressed in the central nervous system and are sensitive to ethanol at intoxicating concentrations. P2XRs are trimeric; each subunit consists of two transmembrane (TM) α-helical segments, a large extracellular domain, and intracellular amino and carboxyl terminals. Recent work indicates that position 336 (Met336) in the TM2 segment is critical for ethanol modulation of P2X4Rs. The anthelmintic medication ivermectin (IVM) positively modulates P2X4Rs and is believed to act in the same region as ethanol. The present study tested the hypothesis that IVM can antagonize ethanol action. We investigated IVM and ethanol effects in wild-type and mutant P2X4Rs expressed in Xenopus oocytes by using a two-electrode voltage clamp. IVM antagonized ethanol-induced inhibition of P2X4Rs in a concentration-dependent manner. The size and charge of substitutions at position 336 affected P2X4R sensitivity to both ethanol and IVM. The first molecular model of the rat P2X4R, built onto the X-ray crystal structure of zebrafish P2X4R, revealed a pocket formed by Asp331, Met336, Trp46, and Trp50 that may play a role in the actions of ethanol and IVM. These findings provide the first evidence for IVM antagonism of ethanol effects in P2X4Rs and suggest that the antagonism results from the ability of IVM to interfere with ethanol action on the putative pocket at or near position 336. Taken with the building evidence supporting a role for P2X4Rs in ethanol intake, the present findings suggest that the newly identified alcohol pocket is a potential site for development of medication for alcohol use disorders. PMID:20543096

  5. Impact of IL-1 signalling on experimental uveitis and arthritis

    PubMed Central

    Planck, Stephen R; Woods, April; Clowers, Jenna S; Nicklin, Martin J; Rosenbaum, James T; Rosenzweig, Holly L

    2012-01-01

    Background Uveitis, or inflammatory eye disease, is a common extra-articular manifestation of many systemic autoinflammatory diseases involving the joints. Anakinra (recombinant interleukin (IL)-1 receptor antagonist (Ra)) is an effective therapy in several arthritic diseases; yet, few studies have investigated the extent to which IL-1 signalling or IL-1Ra influences the onset and/or severity of uveitis. Objective To seek possible links between arthritis and uveitis pathogenesis related to IL-1 signalling. Methods The eyes of IL-1Ra-deficient BALB/c mice were monitored histologically and by intravital videomicroscopy to determine if uveitis developed along with the expected spontaneous arthritis in ankles and knees. Expression levels of IL-1R and its negative regulators (IL-1Ra, IL-1RII, IL-1RAcP and single Ig IL-1R-related molecule) in eye and joint tissues were compared. Differences in uveitis induced by intraocular injection of lipopolysaccharide (LPS) in mice lacking IL-1R or IL-1Ra were assessed. Results Deficiency in IL-1Ra predisposes to spontaneous arthritis, which is exacerbated by previous systemic LPS exposure. The eye, however, does not develop inflammatory disease despite the progressive arthritis or LPS exposure. Organ-specific expression patterns for IL-1Ra and negative regulators of IL-1 activity were observed that appear to predict predisposition to inflammation in each location in IL-1Ra knockout mice. The eye is extremely sensitive to locally administered LPS, and IL-1Ra deficiency markedly exacerbates the resulting uveitis. Conclusion This study demonstrates that IL-1Ra plays an important role in suppressing local responses in eyes injected with LPS and that there is discordance between murine eyes and joints in the extent to which IL-1Ra protects against spontaneous inflammation. PMID:22267332

  6. IL-1 Receptor Regulates microRNA-135b Expression in a Negative Feedback Mechanism during Cigarette Smoke–Induced Inflammation

    PubMed Central

    Nikota, Jake; Wu, Dongmei; Williams, Andrew; Yauk, Carole L.; Stampfli, Martin

    2013-01-01

    Although microRNA-135b (miR-135b) is known to be associated with cancer, with recent work showing that it is massively induced in the pulmonary tissues of mice challenged with nanoparticles suggests a critical role for this microRNA in mediating inflammatory response. In this study, we investigated the expression and function of miR-135b in mice exposed to cigarette smoke or nontypeable Haemophilus influenzae (NTHi). Exposure to both cigarette smoke and NTHi elicited robust lung inflammation, but increased miR-135b expression was observed only in the lungs of cigarette smoke–exposed mice. Using IL-1R 1 knockout mice, we show that miR-135b expression is IL-1R1 dependent. A series of in vitro experiments confirmed the role of IL-1R1 in regulating miR-135b expression. In vitro activation of the IL-1R1 pathway in mouse embryonic fibroblast (NIH3T3) and lung epithelial (FE1) cells resulted in increased miR-135b, which was blocked by IL-1R1 antagonists or small interfering RNA–mediated silencing of IL-1R1 expression. Overexpression of mature miR-135b in NIH3T3 cells (pEGP-mmu-mir-135b) resulted in the suppression of endogenous levels of IL-1R1 expression. pEGP-mmu-miR-135b cells transiently transfected with luciferase reporter vector containing the 3′UTR of mouse IL-1R1 showed reduced luciferase activity. Finally, we demonstrate that miR-135b targets IL-1–stimulated activation of Caspase-1, the IL-1R1 downstream activator of IL-1β leading to suppressed synthesis of the active form of IL-1β protein. These results suggest that miR-135b expression during cigarette smoke–induced inflammation is regulated by IL-1R1 in a regulatory feedback mechanism to resolve inflammation. PMID:23440414

  7. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism.

    PubMed

    Dugovic, Christine; Shelton, Jonathan E; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T; Lovenberg, Timothy W

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  8. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    PubMed Central

    Dugovic, Christine; Shelton, Jonathan E.; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  9. Histamine H4 receptor antagonism reduces hapten-induced scratching behaviour but not inflammation.

    PubMed

    Rossbach, Kristine; Wendorff, Stephanie; Sander, Kerstin; Stark, Holger; Gutzmer, Ralf; Werfel, Thomas; Kietzmann, Manfred; Bäumer, Wolfgang

    2009-01-01

    Effects of the histamine H(4) receptor antagonist JNJ 7777120 (1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine) were tested in two models of allergic contact dermatitis. Dermatitis was induced by 2,4-dinitrochlorobenzene and toluene-2,4-diisocyanate, which differ in their Th1-Th2 profile in that way that 2,4-dinitrochlorobenzene is a classical contact allergen with a pronounced Th1-mediated inflammation, while the respiratory chemical allergen toluene-2,4-diisocyanate induces a Th2-dominated inflammation. JNJ 7777120 (15 mg/kg) administered 2 h and 30 min before and 1 h after challenge did not reduce the hapten-induced ear swelling determined 24 h after challenge. This was confirmed by histological evaluation of the ear skin. A repeated administration of the haptens to the rostral part of the back of sensitized animals resulted in a frequent scratching behaviour. An administration of JNJ 7777120 (15 mg/kg) 30 min before challenge reduced this hapten-induced scratching significantly. The H(1) receptor antagonist cetirizine also reduced the scratching bouts in sensitized mice. A combination of H(1) and H(4) receptor antagonists resulted in the strongest inhibition of scratching behaviour associated with allergic dermatitis. These results indicate that H(4) receptor antagonism fails to reduce the allergic inflammatory response but strongly inhibits allergen-induced itch. Thus, a combination of H(4) and H(1) receptor antagonism might be a new strategy to treat pruritus related to allergic diseases like atopic dermatitis. PMID:18647342

  10. Fasting Induces IL-1 Resistance and Free-Fatty Acid-Mediated Up-Regulation of IL-1R2 and IL-1RA

    PubMed Central

    Joesting, Jennifer J.; Moon, Morgan L.; Gainey, Stephen J.; Tisza, Brittany L.; Blevins, Neil A.; Freund, Gregory G.

    2014-01-01

    Objective: Weight-loss is a near societal obsession and many diet programs use significant calorie restriction including fasting/short term starvation to generate rapid effects. Fasting is also a well-recognized cause of immunosuppression especially within the innate immune system. In this study, we sought to determine if the IL-1 arm of the neuroimmune system was down-regulated by a 24 h fast and how fasting might generate this effect. Design: Mice were allowed ad libitum access to food or had food withheld for 24 h. Expression of the endogenous IL-1 antagonists, IL-1 receptor type 2 (IL-1R2), and IL-1 receptor antagonist (IL-1RA) was determined as were sickness behaviors before and after IL-1β administration. Results: Fasting markedly increased gene expression of IL-1R2 (83-fold in adipose tissue, 9.5-fold in liver) and IL-1RA (68-fold in liver). Fasted mice were protected from IL-1β-induced weight-loss, hypoglycemia, loss of locomotor, and social anxiety. These protections were coupled to a large positive interaction of fasting and IL-1β on IL-1R2 gene expression in adipose tissue and liver (2.6- and 1.6-fold, respectively). Fasting not only increased IL-1RA and IL-1R2 protein 2.5- and 3.2-fold, respectively, in liver but also increased IL-1R2 1.8-fold in adipose tissue. Fasting, in turn, triggered a 2.4-fold increase in plasma free-fatty acids (FFAs) and a 2.1-fold increase in plasma corticosterone. Inhibition, of glucocorticoid action with mifepristone did not impact fasting-dependent IL-1R2 or IL-1RA gene expression. Administration of the FFA, palmitate, to mice increased liver IL-1R2 and IL-1RA gene expression by 14- and 11-fold, respectively. Conclusion: These findings indicate that fasting augments expression of endogenous IL-1 antagonists inducing IL-1 resistance. Fasting-induced increases in plasma FFAs appears to be a signal that drives immunosuppression during fasting/short term starvation. PMID:25071776

  11. Neuromedin B receptor antagonism inhibits migration, invasion, and epithelial-mesenchymal transition of breast cancer cells.

    PubMed

    Park, Hyun-Joo; Kim, Mi-Kyoung; Choi, Kyu-Sil; Jeong, Joo-Won; Bae, Soo-Kyung; Kim, Hyung Joon; Bae, Moon-Kyoung

    2016-09-01

    Neuromedin B (NMB) acts as an autocrine growth factor and a pro-angiogenic factor. Its receptor, NMB receptor (NMB-R), is overexpressed in solid tumors. In the present study, we showed that an NMB-R antagonist, PD168368, suppresses migration and invasion of the human breast cancer cell line MDA-MB-231. In addition, PD168368 reduced epithelial-mesenchymal transition (EMT) of breast cancer cells by E-cadherin upregulation and vimentin downregulation. Moreover, we found that PD168368 potently inhibits in vivo metastasis of breast cancer. Taken together, these findings suggest that NMB-R antagonism may be an alternative approach to prevent breast cancer metastasis, and targeting NMB-R may provide a novel therapeutic strategy for breast cancer treatment. PMID:27571778

  12. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    PubMed Central

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  13. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells.

    PubMed

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  14. Combined mesenchymal stem cell transplantation and interleukin-1 receptor antagonism after partial hepatectomy

    PubMed Central

    Sang, Jian-Feng; Shi, Xiao-Lei; Han, Bing; Huang, Xu; Huang, Tao; Ren, Hao-Zhen; Ding, Yi-Tao

    2016-01-01

    AIM: To study the therapeutic effects of mesenchymal stem cells (MSCs) and an interleukin-1 receptor antagonist (IL-1Ra) in acute liver failure. METHODS: Chinese experimental miniature swine (15 ± 3 kg, 5-8 mo) were obtained from the Laboratory Animal Centre of the Affiliated Drum Tower Hospital of Nanjing University Medical School. Acute liver failure was induced via 85% hepatectomy, and animals were treated by MSC transplantation combined with IL-1Ra injection. Blood samples were collected for hepatic function analysis, and the living conditions and survival time were recorded. Liver injury was histologically analyzed. Hepatic cell regeneration and apoptosis were studied by Ki67 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. The levels of protein kinase B and nuclear factor-κB expression were analyzed by Western blotting. RESULTS: MSCs were infected with a lentivirus for expression of green fluorescent protein (GFP) for subsequent identification; 97.3% of the MSCs were positive for GFP as assessed by flow cytometry. Additional flow cytometric analysis of cell surface marker expression demonstrated that > 90% of GFP-expressing MSCs were also positive for CD29, CD44, and CD90, indicating that most of these cells expressed typical markers of MSCs, and the population of MSCs was almost pure. Transplantation of MSCs in combination with 2 mg/kg IL-1Ra therapy significantly improved survival time compared to the acute liver failure model group (35.3 ± 6.7 d vs 17.3 ± 5.5 d, P < 0.05). Combined therapy also promoted improvement in serum inflammatory cytokines and biochemical conditions. The observed hepatic histopathologic score was significantly lower in the group with combined therapy than in the model group (3.50 ± 0.87 vs 8.17 ± 1.26, P < 0.01). In addition, liver cell apoptosis in the combined therapy group was significantly inhibited (18.1 ± 2.1% vs 70.8 ± 3.7%, P < 0.01), and hepatic cell regeneration

  15. Pair Bond Formation is Impaired by VPAC Receptor Antagonism in the Socially Monogamous Zebra Finch

    PubMed Central

    Kingsbury, Marcy A.; Goodson, James L.

    2014-01-01

    A variety of recent data demonstrate that vasoactive intestinal polypeptide (VIP) and VPAC receptors (which bind VIP, and to a lesser extent, pituitary adenylatecyclase activating peptide) are important for numerous social behaviors in songbirds, including grouping and aggression, although VIP relates to these behaviors in a site-specific manner. In order to determine the global effects of central VPAC receptor activation on social behavior, we here infused a VPAC receptor antagonist or vehicle twice daily into the lateral ventricle of colony-housed male and female zebra finches and quantified a wide range of behaviors. Aggressive behaviors were not altered by ventricular infusions, consistent with known opposing, site-specific relationships of VIP innervation to aggression. Courtship and self-maintenance behaviors were likewise not altered. However, VPAC antagonism produced significant deficits in pair bonding. Antagonist subjects took longer to form a pair bond and were paired for significantly fewer observation sessions relative to control subjects (median 1.5 of 6 observation sessions for antagonist subjects versus 4 for control subjects). Antagonist subjects were also significantly less likely to be paired in the final observation session. Based on the known distribution of VPAC receptors in finches and other vertebrates, we propose that VPAC receptors may mediate pair bonding via a variety of brain areas that are known to be important for the establishment of partner preferences in voles, including the lateral septum, ventral tegmental area, nucleus accumbens and ventral pallidum. PMID:25014003

  16. Dopamine D2/3 receptor antagonism reduces activity-based anorexia.

    PubMed

    Klenotich, S J; Ho, E V; McMurray, M S; Server, C H; Dulawa, S C

    2015-01-01

    Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex pharmacological profile of olanzapine reduces ABA. Mice received 5-HT(2A/2C), 5-HT3, dopamine D1-like, D2, D3 or D2/3 antagonist treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D2/3 receptor antagonists eticlopride and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D3 receptor antagonist SB277011A or D2 receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall, selective antagonism of D2 and/or D3 receptors robustly reduces ABA. Studies investigating the mechanisms by which D2 and/or D3 receptors regulate ABA, and the efficacy for D2/3 and/or D3 antagonists to treat AN, are warranted. PMID:26241351

  17. Dopamine D2/3 receptor antagonism reduces activity-based anorexia

    PubMed Central

    Klenotich, S J; Ho, E V; McMurray, M S; Server, C H; Dulawa, S C

    2015-01-01

    Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex pharmacological profile of olanzapine reduces ABA. Mice received 5-HT2A/2C, 5-HT3, dopamine D1-like, D2, D3 or D2/3 antagonist treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D2/3 receptor antagonists eticlopride and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D3 receptor antagonist SB277011A or D2 receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall, selective antagonism of D2 and/or D3 receptors robustly reduces ABA. Studies investigating the mechanisms by which D2 and/or D3 receptors regulate ABA, and the efficacy for D2/3 and/or D3 antagonists to treat AN, are warranted. PMID:26241351

  18. Expression of IL-1Rrp2 by human myelomonocytic cells is unique to DCs and facilitates DC maturation by IL-1F8 and IL-1F9.

    PubMed

    Mutamba, Shilla; Allison, Asher; Mahida, Yashwant; Barrow, Paul; Foster, Neil

    2012-03-01

    We report for the first time that expression of the novel IL-1 cytokine receptor IL-1Rrp2 (IL-1R6) is unique to DCs within the human myelomonocytic lineage. IL-1Rrp2 was expressed by monocyte-derived dendritic cells (MDDCs) which was dose-dependently increased by IL-4 and correlated with increased numbers of differentiated MDDCs. Human plasmacytoid DCs also express IL-1Rrp2 but the receptor is not expressed by either myeloid DC type 1 (mDC1) or mDC2 cells. We also show that IL-1F8 or IL-1F9 cytokines, which signal through IL-1Rrp2, induce maturation of MDDCs, as measured by increased expression of HLA-DR and CD83 and decreased expression of CD1a. Furthermore, IL-1F8 stimulated increased CD40 and CD80 expression and IL-18 and IL-12 p70 production by MDDCs, which induced proliferation of IFN-γ-producing CD3(+) lymphocytes (indicative of inflammatory Th1 subsets). IL-1F8 and IL-1F2 were equipotent in their ability to stimulate IL-18 secretion from MDDCs but IL-1F8 was not as potent as IL-1F2 in stimulating secretion of IL-12p70 from MDDCs or inducing lymphocyte proliferation Therefore, IL-1Rrp2 expression by some DC subsets may have an important function in the human immune response in vivo via its role in differentiation of inflammatory Th1 lymphocytes. PMID:22144259

  19. Kinin B1 receptor antagonism is equally efficient as angiotensin receptor 1 antagonism in reducing renal fibrosis in experimental obstructive nephropathy, but is not additive

    PubMed Central

    Huart, Antoine; Klein, Julie; Gonzalez, Julien; Buffin-Meyer, Bénédicte; Neau, Eric; Delage, Christine; Calise, Denis; Ribes, David; Schanstra, Joost P.; Bascands, Jean-Loup

    2015-01-01

    Background: Renal tubulointerstitial fibrosis is the pathological hallmark of chronic kidney disease (CKD). Currently, inhibitors of the renin–angiotensin system (RAS) remain the sole therapy in human displaying antifibrotic properties. Further antifibrotic molecules are needed. We have recently reported that the delayed blockade of the bradykinin B1 receptor (B1R) reduced the development of fibrosis in two animal models of renal fibrosis. The usefulness of new drugs also resides in outperforming the gold standards and eventually being additive or complementary to existing therapies. Methods: In this study we compared the efficacy of a B1R antagonist (B1Ra) with that of an angiotensin type 1 receptor antagonist (AT1a) in the unilateral ureteral obstruction (UUO) model of renal fibrosis and determined whether bi-therapy presented higher efficacy than any of the drugs alone. Results: B1R antagonism was as efficient as the gold-standard AT1a treatment. However, bitherapy did not improve the antifibrotic effects at the protein level. We sought for the reason of the absence of this additive effect by studying the expression of a panel of genes involved in the fibrotic process. Interestingly, at the molecular level the different drugs targeted different players of fibrosis that, however, in this severe model did not result in improved reduction of fibrosis at the protein level. Conclusions: As the B1R is induced specifically in the diseased organ and thus potentially displays low side effects it might be an interesting alternative in cases of poor tolerability to RAS inhibitors. PMID:25698969

  20. Frondoside A inhibits breast cancer metastasis and antagonizes prostaglandin E receptors EP4 and EP2

    PubMed Central

    Ma, Xinrong; Kundu, Namita; Collin, Peter D; Goloubeva, Olga; Fulton, Amy

    2013-01-01

    Frondoside A, derived from the sea cucumber Cucumaria frondosa has demonstrable anticancer activity in several models, however, the ability of Frondoside A to affect tumor metastasis has not been reported. Using a syngeneic murine model of metastatic breast cancer, we now show that Frondoside A has potent antimetastatic activity. Frondoside A given i.p. to mice bearing mammary gland implanted mammary tumors, inhibits spontaneous tumor metastasis to the lungs. The elevated Cyclooxygenase -2 activity in many malignancies promotes tumor growth and metastasis by producing high levels of PGE2 which acts on the prostaglandin E receptors, chiefly EP4 and EP2. We examined the ability of Frondoside A to modulate the functions of these EP receptors. We now show that Frondoside A antagonizes the prostaglandin E receptors EP2 and EP4. 3H-PGE2 binding to recombinant EP2 or EP4-expressing cells was inhibited by Frondoside A at low μM concentrations. Likewise, EP4 or EP2-linked activation of intracellular cAMP as well as EP4-mediated ERK1/2 activation were also inhibited by Frondoside A. Consistent with the antimetastatic activity observed in vivo, migration of tumor cells in vitro in response to EP4 or EP2 agonists was also inhibited by Frondoside A. These studies identify a new function for an agent with known antitumor activity, and show that the antimetastatic activity may be due in part to a novel mechanism of action. These studies add to the growing body of evidence that Frondoside A may be a promising new agent with potential to treat cancer and may also represent a potential new modality to antagonize EP4. PMID:21761157

  1. Frondoside A inhibits breast cancer metastasis and antagonizes prostaglandin E receptors EP4 and EP2.

    PubMed

    Ma, Xinrong; Kundu, Namita; Collin, Peter D; Goloubeva, Olga; Fulton, Amy M

    2012-04-01

    Frondoside A, derived from the sea cucumber Cucumaria frondosa has demonstrable anticancer activity in several models, however, the ability of Frondoside A to affect tumor metastasis has not been reported. Using a syngeneic murine model of metastatic breast cancer, we now show that Frondoside A has potent antimetastatic activity. Frondoside A given i.p. to mice bearing mammary gland-implanted mammary tumors, inhibits spontaneous tumor metastasis to the lungs. The elevated Cyclooxygenase-2 activity in many malignancies promotes tumor growth and metastasis by producing high levels of PGE(2) which acts on the prostaglandin E receptors, chiefly EP4 and EP2. We examined the ability of Frondoside A to modulate the functions of these EP receptors. We now show that Frondoside A antagonizes the prostaglandin E receptors EP2 and EP4. (3)H-PGE(2) binding to recombinant EP2 or EP4-expressing cells was inhibited by Frondoside A at low μM concentrations. Likewise, EP4 or EP2-linked activation of intracellular cAMP as well as EP4-mediated ERK1/2 activation were also inhibited by Frondoside A. Consistent with the antimetastatic activity observed in vivo, migration of tumor cells in vitro in response to EP4 or EP2 agonists was also inhibited by Frondoside A. These studies identify a new function for an agent with known antitumor activity, and show that the antimetastatic activity may be due in part to a novel mechanism of action. These studies add to the growing body of evidence that Frondoside A may be a promising new agent with potential to treat cancer and may also represent a potential new modality to antagonize EP4. PMID:21761157

  2. The Multifaceted Effects of Polysaccharides Isolated from Dendrobium huoshanense on Immune Functions with the Induction of Interleukin-1 Receptor Antagonist (IL-1ra) in Monocytes

    PubMed Central

    Lin, Juway; Chang, Ya-Jen; Yang, Wen-Bin; Yu, Alice L.; Wong, Chi-Huey

    2014-01-01

    Dendrobium huoshanense is a valuable and versatile Chinese herbal medicine with the anecdotal claims of cancer prevention and anti-inflammation. However, its immunological activities are limited to in vitro studies on a few cytokines and immune cell functions. First, we investigated the effects of polysaccharides isolated from DH (DH-PS) on inducing a panel of cytokines/chemokines in mice in vivo and human in vitro. We found that DH polysaccharides (DH-PS) induced TH1, TH2, inflammatory cytokines and chemokines in mouse in vivo and human cells in vitro. Secondly, we demonstrated that DH-PS expanded mouse splenocytes in vivo including CD4+ T cells, CD8+ T cells, B cells, NK cells, NKT cells, monocytes/macrophages, granulocytes and regulatory T cells. Notably, DH-PS induced an anti-inflammatory molecule, IL-1ra, in mouse and human immune cells, especially monocytes. The serum level of IL-1ra elicited by the injection of DH-PS was over 10 folds of IL-1β, suggesting that DH-PS-induced anti-inflammatory activities might over-ride the inflammatory ones mediated by IL-1β. The signaling pathways of DH-PS-induced IL-1ra production was shown to involve ERK/ELK, p38 MAPK, PI3K and NFκB. Finally, we observed that IL-1ra level induced by DH-PS was significantly higher than that by F3, a polysaccharide extract isolated from another popular Chinese herbal medicine, Ganoderma lucidum. These results indicated that DH-PS might have potential applications for ameliorating IL-1-induced pathogenic conditions. PMID:24705413

  3. Endogenous IL-1 in cognitive function and anxiety: a study in IL-1RI-/- mice.

    PubMed

    Murray, Carol L; Obiang, Pauline; Bannerman, David; Cunningham, Colm

    2013-01-01

    Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI(-/-) mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI(-/-) animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI(-/-) mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI(-/-) mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI(-/-) mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI(-/-) mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI(-/-) mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI(-/-) mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in hippocampal and limbic

  4. IL-1 Blockade in Autoinflammatory Syndromes1

    PubMed Central

    Jesus, Adriana A.; Goldbach-Mansky, Raphaela

    2014-01-01

    Monogenic autoinflammatory syndromes present with excessive systemic inflammation including fever, rashes, arthritis, and organ-specific inflammation and are caused by defects in single genes encoding proteins that regulate innate inflammatory pathways. Pathogenic variants in two interleukin-1 (IL-1)–regulating genes, NLRP3 and IL1RN, cause two severe and early-onset autoinflammatory syndromes, CAPS (cryopyrin associated periodic syndromes) and DIRA (deficiency of IL-1 receptor antagonist). The discovery of the mutations that cause CAPS and DIRA led to clinical and basic research that uncovered the key role of IL-1 in an extended spectrum of immune dysregulatory conditions. NLRP3 encodes cryopyrin, an intracellular “molecular sensor” that forms a multimolecular platform, the NLRP3 inflammasome, which links “danger recognition” to the activation of the proinflammatory cytokine IL-1β. The success and safety profile of drugs targeting IL-1 in the treatment of CAPS and DIRA have encouraged their wider use in other autoinflammatory syndromes including the classic hereditary periodic fever syndromes (familial Mediterranean fever, TNF receptor–associated periodic syndrome, and hyperimmunoglobulinemia D with periodic fever syndrome) and additional immune dysregulatory conditions that are not genetically well defined, including Still’s, Behcet’s, and Schnitzler diseases. The fact that the accumulation of metabolic substrates such as monosodium urate, ceramide, cholesterol, and glucose can trigger the NLRP3 inflammasome connects metabolic stress to IL-1β-mediated inflammation and provides a rationale for therapeutically targeting IL-1 in prevalent diseases such as gout, diabetes mellitus, and coronary artery disease. PMID:24422572

  5. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor

    PubMed Central

    Hennen, Stephanie; Kodra, János T.; Soroka, Vladyslav; Krogh, Berit O.; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G.; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S.; Reedtz-Runge, Steffen

    2016-01-01

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors. PMID:27196125

  6. Structural insight into antibody-mediated antagonism of the Glucagon-like peptide-1 Receptor.

    PubMed

    Hennen, Stephanie; Kodra, János T; Soroka, Vladyslav; Krogh, Berit O; Wu, Xiaoai; Kaastrup, Peter; Ørskov, Cathrine; Rønn, Sif G; Schluckebier, Gerd; Barbateskovic, Silvia; Gandhi, Prafull S; Reedtz-Runge, Steffen

    2016-01-01

    The Glucagon-like peptide-1 receptor (GLP-1R) is a member of the class B G protein-coupled receptor (GPCR) family and a well-established target for the treatment of type 2 diabetes. The N-terminal extracellular domain (ECD) of GLP-1R is important for GLP-1 binding and the crystal structure of the GLP-1/ECD complex was reported previously. The first structure of a class B GPCR transmembrane (TM) domain was solved recently, but the full length receptor structure is still not well understood. Here we describe the molecular details of antibody-mediated antagonism of the GLP-1R using both in vitro pharmacology and x-ray crystallography. We showed that the antibody Fab fragment (Fab 3F52) blocked the GLP-1 binding site of the ECD directly and thereby acts as a competitive antagonist of native GLP-1. Interestingly, Fab 3F52 also blocked a short peptide agonist believed to engage primarily the transmembrane and extracellular loop region of GLP-1R, whereas functionality of an allosteric small-molecule agonist was not inhibited. This study has implications for the structural understanding of the GLP-1R and related class B GPCRs, which is important for the development of new and improved therapeutics targeting these receptors. PMID:27196125

  7. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer.

    PubMed

    Singhal, Hari; Greene, Marianne E; Tarulli, Gerard; Zarnke, Allison L; Bourgo, Ryan J; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G; Raj, Ganesh V; Hickey, Theresa E; Tilley, Wayne D; Greene, Geoffrey L

    2016-06-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER(+) (estrogen receptor-positive)/PR(+) human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER(+)/PR(+) breast cancers should be explored. PMID:27386569

  8. Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells.

    PubMed

    Chustz, Regina T; Nagarkar, Deepti R; Poposki, Julie A; Favoreto, Silvio; Avila, Pedro C; Schleimer, Robert P; Kato, Atsushi

    2011-07-01

    The IL-1 family of cytokines, which now includes 11 members, is well known to participate in inflammation. Although the most recently recognized IL-1 family cytokines (IL-1F5-11) have been shown to be expressed in airway epithelial cells, the regulation of their expression and function in the epithelium has not been extensively studied. We investigated the regulation of IL-1F5-11 in primary normal human bronchial epithelial cells. Messenger (m)RNAs for IL-1F6 and IL-1F9, but not IL-1F5, IL-1F8 or IL-1F10, were significantly up-regulated by TNF, IL-1β, IL-17 and the Toll-like receptor (TLR)3 ligand double-stranded (ds)RNA. mRNAs for IL-1F7 and IL-1F11 (IL-33) were weakly up-regulated by some of the cytokines tested. Notably, mRNAs for IL-1F6 and IL-1F9 were synergistically enhanced by the combination of TNF/IL-17 or dsRNA/IL-17. IL-1F9 protein was detected in the supernatant following stimulation with dsRNA or a combination of dsRNA and IL-17. IL-1F6 protein was detected in the cell lysate but was not detected in the supernatant. We screened for the receptor for IL-1F9 and found that lung fibroblasts expressed this receptor. We found that IL-1F9 activated mitogen-activated protein kinases and the transcription factor NF-κB in primary normal human lung fibroblasts. IL-1F9 also stimulated the expression of the neutrophil chemokines IL-8 and CXCL3 and the Th17 chemokine CCL20 in lung fibroblasts. These results suggest that epithelial activation by TLR3 (e.g., by respiratory viral infection) and exposure to cytokines from Th17 cells (IL-17) and inflammatory cells (TNF) may amplify neutrophilic inflammation in the airway via induction of IL-1F9 and activation of fibroblasts. PMID:20870894

  9. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload

    PubMed Central

    Voss, Bryan M.; Pavliv, Leo; de Caestecker, Mark; Hemnes, Anna R.; Carrier, Erica J.

    2016-01-01

    Abstract Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling. PMID:27252848

  10. Antagonism of the thromboxane-prostanoid receptor is cardioprotective against right ventricular pressure overload.

    PubMed

    West, James D; Voss, Bryan M; Pavliv, Leo; de Caestecker, Mark; Hemnes, Anna R; Carrier, Erica J

    2016-06-01

    Right ventricular (RV) failure is the primary cause of death in pulmonary arterial hypertension (PAH) and is a significant cause of morbidity and mortality in other forms of pulmonary hypertension. There are no approved therapies directed at preserving RV function. F-series and E-series isoprostanes are increased in heart failure and PAH, correlate to the severity of disease, and can signal through the thromboxane-prostanoid (TP) receptor, with effects from vasoconstriction to fibrosis. The goal of these studies was to determine whether blockade of the TP receptor with the antagonist CPI211 was beneficial therapeutically in PAH-induced RV dysfunction. Mice with RV dysfunction due to pressure overload by pulmonary artery banding (PAB) were given vehicle or CPI211. Two weeks after PAB, CPI211-treated mice were protected from fibrosis with pressure overload. Gene expression arrays and immunoblotting, quantitative histology and morphometry, and flow cytometric analysis were used to determine the mechanism of CPI211 protection. TP receptor inhibition caused a near normalization of fibrotic area, prevented cellular hypertrophy while allowing increased RV mass, increased expression of antifibrotic thrombospondin-4, and blocked induction of the profibrotic transforming growth factor β (TGF-β) pathway. A thromboxane synthase inhibitor or low-dose aspirin failed to replicate these results, which suggests that a ligand other than thromboxane mediates fibrosis through the TP receptor after pressure overload. This study suggests that TP receptor antagonism may improve RV adaptation in situations of pressure overload by decreasing fibrosis and TGF-β signaling. PMID:27252848

  11. The Role of IL-1 Family Members and Kupffer Cells in Liver Regeneration

    PubMed Central

    Tan, Quanhui; Hu, Jianjun; Yu, Xiaolan; Guan, Wen; Lu, Huili; Yu, Yan; Yu, Yongsheng; Zang, Guoqiang; Tang, Zhenghao

    2016-01-01

    Interleukin-1 (IL-1) family and Kupffer cells are linked with liver regeneration, but their precise roles remain unclear. IL-1 family members are pleiotropic factors with a range of biological roles in liver diseases, inducing hepatitis, cirrhosis, and hepatocellular carcinoma, as well as liver regeneration. Kupffer cells are the main source of IL-1 and IL-1 receptor antagonist (IL-1Ra), the key members of IL-1 family. This systemic review highlights a close association of IL-1 family members and Kupffer cells with liver regeneration, although their specific roles are inconclusive. Moreover, IL-1 members are proposed to induce effects on liver regeneration through Kupffer cells. PMID:27092311

  12. Neurokinin-1 receptor antagonism attenuates neuronal activity triggered by stress-induced reinstatement of alcohol seeking.

    PubMed

    Schank, J R; Nelson, B S; Damadzic, R; Tapocik, J D; Yao, M; King, C E; Rowe, K E; Cheng, K; Rice, K C; Heilig, M

    2015-12-01

    Substance P (SP) and its cognate neurokinin-1 receptor (NK1R) are involved in alcohol-related behaviors. We have previously reported that NK1R antagonism attenuates stress-induced reinstatement of alcohol seeking and suppresses escalated alcohol self-administration, but does not affect primary reinforcement or cue-induced reinstatement. Here, we administered an NK1R antagonist or vehicle prior to footshock-induced reinstatement of alcohol seeking, and mapped the resulting neuronal activation using Fos immunohistochemistry. As expected, vehicle treated animals exposed to footshock showed induction of Fos immunoreactivity in several regions of the brain stress circuitry, including the amygdala (AMG), nucleus accumbens (NAC), dorsal raphe nucleus (DR), prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST). NK1R antagonism selectively suppressed the stress-induced increase in Fos in the DR and NAC shell. In the DR, Fos-induction by stress largely overlapped with tryptophan hydroxylase (TrpH), indicating activation of serotonergic neurons. Of NAC shell neurons activated during stress-induced reinstatement of alcohol seeking, about 30% co-expressed dynorphin (DYN), while 70% co-expressed enkephalin (ENK). Few (<1%) activated NAC shell neurons coexpressed choline acetyltransferase (ChAT), which labels the cholinergic interneurons of this region. Infusion of the NK1R antagonist L822429 into the NAC shell blocked stress-induced reinstatement of alcohol seeking. In contrast, L822429 infusion into the DR had no effect, suggesting that the influence of NK1R signaling on neuronal activity in the DR is indirect. Taken together, our results outline a potential pathway through which endogenous NK1R activation mediates stress-induced alcohol seeking. PMID:26188146

  13. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  14. Antagonism of sphingosine-1-phosphate receptors by FTY720 inhibits angiogenesis and tumor vascularization.

    PubMed

    LaMontagne, Kenneth; Littlewood-Evans, Amanda; Schnell, Christian; O'Reilly, Terence; Wyder, Lorenza; Sanchez, Teresa; Probst, Beatrice; Butler, Jeannene; Wood, Alexander; Liau, Gene; Billy, Eric; Theuer, Andreas; Hla, Timothy; Wood, Jeanette

    2006-01-01

    FTY720, a potent immunomodulator, becomes phosphorylated in vivo (FTY-P) and interacts with sphingosine-1-phosphate (S1P) receptors. Recent studies showed that FTY-P affects vascular endothelial growth factor (VEGF)-induced vascular permeability, an important aspect of angiogenesis. We show here that FTY720 has antiangiogenic activity, potently abrogating VEGF- and S1P-induced angiogenesis in vivo in growth factor implant and corneal models. FTY720 administration tended to inhibit primary and significantly inhibited metastatic tumor growth in a mouse model of melanoma growth. In combination with a VEGFR tyrosine kinase inhibitor PTK787/ZK222584, FTY720 showed some additional benefit. FTY720 markedly inhibited tumor-associated angiogenesis, and this was accompanied by decreased tumor cell proliferation and increased apoptosis. In transfected HEK293 cells, FTY-P internalized S1P1 receptors, inhibited their recycling to the cell surface, and desensitized S1P receptor function. Both FTY720 and FTY-P apparently failed to impede VEGF-produced increases in mitogen-activated protein kinase activity in human umbilical vascular endothelial cells (HUVEC), and unlike its activity in causing S1PR internalization, FTY-P did not result in a decrease of surface VEGFR2 levels in HUVEC cells. Pretreatment with FTY720 or FTY-P prevented S1P-induced Ca2+ mobilization and migration in vascular endothelial cells. These data show that functional antagonism of vascular S1P receptors by FTY720 potently inhibits angiogenesis; therefore, this may provide a novel therapeutic approach for pathologic conditions with dysregulated angiogenesis. PMID:16397235

  15. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats.

    PubMed

    Gowen, M; Stroup, G B; Dodds, R A; James, I E; Votta, B J; Smith, B R; Bhatnagar, P K; Lago, A M; Callahan, J F; DelMar, E G; Miller, M A; Nemeth, E F; Fox, J

    2000-06-01

    Parathyroid hormone (PTH) is an effective bone anabolic agent, but it must be administered parenterally. An orally active anabolic agent would provide a valuable alternative for treating osteoporosis. NPS 2143 is a novel, selective antagonist (a "calcilytic") of the parathyroid cell Ca(2+) receptor. Daily oral administration of NPS 2143 to osteopenic ovariectomized (OVX) rats caused a sustained increase in plasma PTH levels, provoking a dramatic increase in bone turnover but no net change in bone mineral density. Concurrent oral administration of NPS 2143 and subcutaneous infusion of 17beta-estradiol also resulted in increased bone turnover. However, the antiresorptive action of estrogen decreased the extent of bone resorption stimulated by the elevated PTH levels, leading to an increase in bone mass compared with OVX controls or to either treatment alone. Despite the sustained stimulation to the parathyroid gland, parathyroid cells did not undergo hyperplasia. These data demonstrate that an increase in endogenous PTH secretion, induced by antagonism of the parathyroid cell Ca(2+) receptor with a small molecule, leads to a dramatic increase in bone turnover, and they suggest a novel approach to the treatment of osteoporosis. PMID:10841518

  16. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats

    PubMed Central

    Gowen, Maxine; Stroup, George B.; Dodds, Robert A.; James, Ian E.; Votta, Bart J.; Smith, Brian R.; Bhatnagar, Pradip K.; Lago, Amparo M.; Callahan, James F.; DelMar, Eric G.; Miller, Michael A.; Nemeth, Edward F.; Fox, John

    2000-01-01

    Parathyroid hormone (PTH) is an effective bone anabolic agent, but it must be administered parenterally. An orally active anabolic agent would provide a valuable alternative for treating osteoporosis. NPS 2143 is a novel, selective antagonist (a “calcilytic”) of the parathyroid cell Ca2+ receptor. Daily oral administration of NPS 2143 to osteopenic ovariectomized (OVX) rats caused a sustained increase in plasma PTH levels, provoking a dramatic increase in bone turnover but no net change in bone mineral density. Concurrent oral administration of NPS 2143 and subcutaneous infusion of 17β-estradiol also resulted in increased bone turnover. However, the antiresorptive action of estrogen decreased the extent of bone resorption stimulated by the elevated PTH levels, leading to an increase in bone mass compared with OVX controls or to either treatment alone. Despite the sustained stimulation to the parathyroid gland, parathyroid cells did not undergo hyperplasia. These data demonstrate that an increase in endogenous PTH secretion, induced by antagonism of the parathyroid cell Ca2+ receptor with a small molecule, leads to a dramatic increase in bone turnover, and they suggest a novel approach to the treatment of osteoporosis. PMID:10841518

  17. Hypocretin Receptor 2 Antagonism Dose-Dependently Reduces Escalated Heroin Self-Administration in Rats

    PubMed Central

    Schmeichel, Brooke E; Barbier, Estelle; Misra, Kaushik K; Contet, Candice; Schlosburg, Joel E; Grigoriadis, Dimitri; Williams, John P; Karlsson, Camilla; Pitcairn, Caleb; Heilig, Markus; Koob, George F; Vendruscolo, Leandro F

    2015-01-01

    The hypocretin/orexin (HCRT) system has been associated with both positive and negative drug reinforcement, implicating HCRT receptor 1 (HCRT-R1) signaling in drug-related behaviors for all major drug classes, including opioids. However, to date there are limited studies investigating the role of HCRT receptor 2 (HCRT-R2) signaling in compulsive-like drug seeking. Escalation of drug intake with extended access has been suggested to model the transition from controlled drug use to compulsive-like drug seeking/taking. The current study examined the effects of a HCRT-R2 antagonist, NBI-80713, on heroin self-administration in rats allowed short- (1 h; ShA) or long- (12 h; LgA) access to intravenous heroin self-administration. Results indicate that systemically administered NBI-80713 dose-dependently decreased heroin self-administration in LgA, but not in ShA, animals. Quantitative PCR analyses showed an increase in Hcrtr2 mRNA levels in the central amygdala, a stress-related brain region, of LgA rats. These observations suggest a functional role for HCRT-R2 signaling in compulsive-like heroin self-administration associated with extended access and indicate HCRT-R2 antagonism as a potential pharmacological target for the treatment of heroin dependence. PMID:25367502

  18. Felbamate antagonizes isoniazid- and FG 7142-induced reduction of GABAA receptor function in mouse brain.

    PubMed

    Serra, M; Ghiani, C A; Spano, S; Biggio, G

    1994-11-24

    Injection of the antiepileptic drug, felbamate (2-phenyl-1,3-propanediol dicarbamate), into mice reduced in a dose-dependent manner (150-300 mg/kg i.p.) the isoniazid (200 mg/kg s.c.)-induced increase in ex vivo binding of t-[35S]butylbicyclophosphorothionate ([35S]TBPS) to cerebral cortical and hippocampal membranes. The same doses of felbamate reduced significantly the number of mice exhibiting isoniazid-induced seizures. A dose of felbamate (50 mg/kg) ineffective in isoniazid-treated mice completely antagonized the increase of [35S]TBPS binding elicited by FG 7142 (N-methyl-beta-carboline-3-carboxamide), a benzodiazepine receptor inverse agonist. The above effects of felbamate resembled those of diazepam. Accordingly, the combination of ineffective doses of felbamate (50 mg/kg) and diazepam (0.2 mg/kg) elicited a marked decrease of [35S]TBPS binding. The results indicate that facilitation of gamma-aminobutyric acid type A (GABAA) receptor function may play a role in the anticonvulsant action of felbamate. PMID:7875235

  19. Cyclic, nonequilibrium models of glucocorticoid antagonism: role of activation, nuclear binding and receptor recycling.

    PubMed

    Munck, A; Holbrook, N J

    1988-10-01

    Quantitative models that have been proposed to date to explain mechanisms of glucocorticoid antagonism have generally been of the equilibrium type, involving hypothetical allosteric equilibria between active and inactive states of the receptor or the steroid-receptor complex. We describe here the agonist-antagonist relationships predicted by a nonequilibrium cyclic model that we have recently devised to account for the kinetic behavior of glucocorticoid-receptor complexes in intact rat thymus cells. This model simulates quantitatively most kinetic and steady state results that have been obtained so far. It postulates the existence of only well-established receptor species, and its kinetic parameters can in principle be determined by receptor measurements with intact cells. To calculate the steady state agonist-antagonist properties it is assumed that biological activity is proportional to the total amount of nuclear-bound complex, whether formed by agonist or antagonist. The agonist activity of a steroid is determined by the steady state ratio of nuclear-bound to total complexes it forms. This ratio varies from 0 for a pure antagonist to 1 for a pure agonist. It turns out to be independent of agonist and antagonist concentrations, and a function only of the rate constants for the reactions of the complexes formed by a steroid. Analysis of the dependence of the ratio on each rate constant shows quantitatively how each reaction in the cyclic model--activation of the nonactivated complex, nuclear binding of the activated complexes, and dissociation and recycling of activated and nuclear-bound complexes--affects antagonist properties. Steady state interactions of agonists with antagonists are found to be determined by equations that are identical to those for competition in simple equilibrium systems. Predicted dose-response relations agree qualitatively with experimentally observed relations. They are similar to those predicted by two-state allosteric models, although

  20. A ternary complex comprising FAK, PTPα and IP3 receptor 1 functionally engages focal adhesions and the endoplasmic reticulum to mediate IL-1-induced Ca2+ signalling in fibroblasts.

    PubMed

    Wang, Qin; Wang, Yongqiang; Downey, Gregory P; Plotnikov, Sergey; McCulloch, Christopher A

    2016-02-15

    Ca(2+) release is tightly sequestered in eukaryotic cells to enable fine spatio-temporal control of signalling but how Ca(2+) release from the endoplasmic reticulum (ER) is linked to cell adhesions is not defined. We examined the spatial restriction of Ca(2+) release through the inositol 1,4,5-triphosphate receptor 1 (IP3R1) in response to interleukin-1 (IL-1) and the functions of the adhesion-associated proteins, focal adhesion kinase (FAK) and protein tyrosine phosphatase-α (PTPα). In cultured fibroblasts IL-1 treatment promoted co-localization of PTPα and FAK with the ER and increased association of IP3R1 with PTPα and FAK at focal adhesions (FAs). GST pull-down assays of purified proteins demonstrated that PTPα and FAK directly interacted with IP3R1. These interactions depended on the focal adhesion-targeting (FAT) and band4.1-ezrin-radixin-moesin (FERM) domains of FAK. PTPα was required for the association of IP3R1 with Src, which mediated IP3R1 phosphorylation and consequently ER Ca(2+) release. Collectively, these data indicate that PTPα and FAK, which are enriched in FAs, interact with IP3R1 at adjacent ER sites to spatially sequester IL-1-induced Ca(2+) signalling. PMID:26611753

  1. Antagonism of protease-activated receptor 2 protects against experimental colitis.

    PubMed

    Lohman, Rink-Jan; Cotterell, Adam J; Suen, Jacky; Liu, Ligong; Do, Anh T; Vesey, David A; Fairlie, David P

    2012-02-01

    Many trypsin-like serine proteases such as β-tryptase are involved in the pathogenesis of colitis and inflammatory bowel diseases. Inhibitors of individual proteases show limited efficacy in treating such conditions, but also probably disrupt digestive and defensive functions of proteases. Here, we investigate whether masking their common target, protease-activated receptor 2 (PAR2), is an effective therapeutic strategy for treating acute and chronic experimental colitis in rats. A novel PAR2 antagonist (5-isoxazoyl-Cha-Ile-spiro[indene-1,4'-piperidine]; GB88) was evaluated for the blockade of intracellular calcium release in colonocytes and anti-inflammatory activity in acute (PAR2 agonist-induced) versus chronic [2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced] models of colitis in Wistar rats. Disease progression (disease activity index, weight loss, and mortality) and postmortem colonic histopathology (inflammation, bowel wall thickness, and myeloperoxidase) were measured. PAR2 and tryptase colocalization were investigated by using immunohistochemistry. GB88 was a more potent antagonist of PAR2 activation in colonocytes than another reported compound, N¹-3-methylbutyryl-N⁴-6-aminohexanoyl-piperazine (ENMD-1068) (IC₅₀ 8 μM versus 5 mM). Acute colonic inflammation induced in rats by the PAR2 agonist SLIGRL-NH₂ was inhibited by oral administration of GB88 (10 mg/kg) with markedly reduced edema, mucin depletion, PAR2 receptor internalization, and mastocytosis. Chronic TNBS-induced colitis in rats was ameliorated by GB88 (10 mg/kg/day p.o.), which reduced mortality and pathology (including colon obstruction, ulceration, wall thickness, and myeloperoxidase release) more effectively than the clinically used drug sulfasalazine (100 mg/kg/day p.o.). These disease-modifying properties for the PAR2 antagonist in both acute and chronic experimental colitis strongly support a pathogenic role for PAR2 and PAR2-activating proteases and therapeutic potential for

  2. Anthraquinone emodin inhibits human cancer cell invasiveness by antagonizing P2X7 receptors.

    PubMed

    Jelassi, Bilel; Anchelin, Monique; Chamouton, Julie; Cayuela, María Luisa; Clarysse, Lucie; Li, Junying; Goré, Jacques; Jiang, Lin-Hua; Roger, Sébastien

    2013-07-01

    The adenosine 5'-triphosphate (ATP)-gated Ca(2+)-permeable channel P2X7 receptor (P2X7R) is strongly upregulated in many tumors and cancer cells, and has an important role in cancer cell invasion associated with metastases. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is an anthraquinone derivative originally isolated from Rheum officinale Baill known for decades to possess anticancer properties. In this study, we examined the effects of emodin on P2X7R-dependent Ca(2+) signaling, extracellular matrix degradation, and in vitro and in vivo cancer cell invasiveness using highly aggressive human cancer cells. Inclusion of emodin at doses ≤10 µM in cell culture had no or very mild effect on the cell viability. ATP elicited increases in intracellular Ca(2+) concentration were reduced by 35 and 60% by 1 and 10 µM emodin, respectively. Emodin specifically inhibited P2X7R-mediated currents with an IC50 of 3 µM and did not inhibit the currents mediated by the other human P2X receptors heterologously expressed in human embryonic kidney (HEK293T) cells. ATP-induced increase in gelatinolytic activity, in cancer cell invasiveness in vitro and in cell morphology changes were prevented by 1 µM emodin. Furthermore, such ATP-evoked effects and inhibition by emodin were almost completely ablated in cancer cells transfected with P2X7R-specific small interfering RNA (siRNA) but not with scrambled siRNA. Finally, the in vivo invasiveness of the P2X7R-positive MDA-MB-435s breast cancer cells, assessed using a zebrafish model of micrometastases, was suppressed by 40 and 50% by 1 and 10 µM emodin. Taken together, these results provide consistent evidence to indicate that emodin inhibits human cancer cell invasiveness by specifically antagonizing the P2X7R. PMID:23524196

  3. Antibodies targeting human IL1RAP (IL1R3) show therapeutic effects in xenograft models of acute myeloid leukemia

    PubMed Central

    Ågerstam, Helena; Karlsson, Christine; Hansen, Nils; Sandén, Carl; Askmyr, Maria; von Palffy, Sofia; Högberg, Carl; Rissler, Marianne; Wunderlich, Mark; Juliusson, Gunnar; Richter, Johan; Sjöström, Kjell; Bhatia, Ravi; Mulloy, James C.; Järås, Marcus; Fioretos, Thoas

    2015-01-01

    Acute myeloid leukemia (AML) is associated with a poor survival rate, and there is an urgent need for novel and more efficient therapies, ideally targeting AML stem cells that are essential for maintaining the disease. The interleukin 1 receptor accessory protein (IL1RAP; IL1R3) is expressed on candidate leukemic stem cells in the majority of AML patients, but not on normal hematopoietic stem cells. We show here that monoclonal antibodies targeting IL1RAP have strong antileukemic effects in xenograft models of human AML. We demonstrate that effector-cell–mediated killing is essential for the observed therapeutic effects and that natural killer cells constitute a critical human effector cell type. Because IL-1 signaling is important for the growth of AML cells, we generated an IL1RAP-targeting antibody capable of blocking IL-1 signaling and show that this antibody suppresses the proliferation of primary human AML cells. Hence, IL1RAP can be efficiently targeted with an anti-IL1RAP antibody capable of both achieving antibody-dependent cellular cytotoxicity and blocking of IL-1 signaling as modes of action. Collectively, these results provide important evidence in support of IL1RAP as a target for antibody-based treatment of AML. PMID:26261316

  4. Prenatal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neurons in the Prefrontal Cortex

    PubMed Central

    Toriumi, Kazuya; Mouri, Akihiro; Narusawa, Shiho; Aoyama, Yuki; Ikawa, Natsumi; Lu, Lingling; Nagai, Taku; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2012-01-01

    N-methyl--aspartate (NMDA) receptor is a glutamate receptor which has an important role on mammalian brain development. We have reported that prenatal treatment with phencyclidine (PCP), a NMDA receptor antagonist, induces long-lasting behavioral deficits and neurochemical changes. However, the mechanism by which the prenatal antagonism of NMDA receptor affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that prenatal NMDA receptor antagonism impaired the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and the subventricular zone. Furthermore, using a PCR array focused on neurogenesis and neuronal stem cells, we evaluated changes in gene expression causing the impairment of neuronal progenitor proliferation and found aberrant gene expression, such as Notch2 and Ntn1, in prenatal PCP-treated mice. Consequently, the density of glutamatergic neurons in the prefrontal cortex was decreased, probably resulting in glutamatergic hypofunction. Prenatal PCP-treated mice displayed behavioral deficits in cognitive memory and sensorimotor gating until adulthood. These findings suggest that NMDA receptors regulate the proliferation and maturation of progenitor cells for glutamatergic neuron during neurodevelopment, probably via the regulation of gene expression. PMID:22257896

  5. Novel arylsulfonamide derivatives with 5-HT₆/5-HT₇ receptor antagonism targeting behavioral and psychological symptoms of dementia.

    PubMed

    Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Pawłowski, Maciej; Mitka, Katarzyna; Jaśkowska, Jolanta; Kowalski, Piotr; Kazek, Grzegorz; Siwek, Agata; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw

    2014-06-12

    In order to target behavioral and psychological symptoms of dementia (BPSD), we used molecular modeling-assisted design to obtain novel multifunctional arylsulfonamide derivatives that potently antagonize 5-HT(6/7/2A) and D2 receptors, without interacting with M1 receptors and hERG channels. In vitro studies confirmed their antagonism of 5-HT(7/2A) and D2 receptors and weak interactions with key antitargets (M1R and hERG) associated with side effects. Marked 5-HT6 receptor affinities were also observed, notably for 6-fluoro-3-(piperidin-4-yl)-1,2-benzoxazole derivatives connected by a 3-4 unit alkyl linker with mono- or bicyclic, lipophilic arylsulfonamide moieties. N-[4-[4-(6-Fluoro-1,2-benzoxazol-3-yl)piperidin-1-yl]butyl]benzothiophene-2-sulfonamide (72) was characterized in vitro on 14 targets and antitargets. It displayed dual blockade of 5-HT6 and D2 receptors and negligible interactions at hERG and M1 receptors. Unlike reference antipsychotics, 72 displayed marked antipsychotic and antidepressant activity in rats after oral administration, in the absence of cognitive or motor impairment. This profile is particularly attractive when targeting a fragile, elderly BPSD patient population. PMID:24805037

  6. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice

    PubMed Central

    Roundtree, Harrison M.; Simeone, Timothy A.; Johnson, Chaz; Matthews, Stephanie A.; Samson, Kaeli K.; Simeone, Kristina A.

    2016-01-01

    other epilepsy models. Citation: Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin receptor antagonism improves sleep and reduces seizures in Kcna1-null mice. SLEEP 2016;39(2):357–368. PMID:26446112

  7. Hippocampal distribution of IL-1β and IL-1RI following lithium-pilocarpine-induced status epilepticus in the developing rat.

    PubMed

    Álvarez-Croda, Dulce-Mariely; Santiago-García, Juan; Medel-Matus, Jesús S; Martínez-Quiroz, Joel; Puig-Lagunes, Angel A; Beltrán-Parrazal, Luis; López-Meraz, María-Leonor

    2016-01-01

    The contribution of Interleukin-1β (IL-1β) to neuronal injury induced by status epilepticus (SE) in the immature brain remains unclear. The goal of this study was to determine the hippocampal expression of IL-1β and its type 1 receptor (IL-1RI) following SE induced by the lithium-pilocarpine model in fourteen-days-old rat pups; control animals were given an equal volume of saline instead of the convulsant. IL-1β and IL-1RI mRNA hippocampal levels were assessed by qRT-PCR 6 and 24 h after SE or control conditions. IL-1β and IL-1RI expression was detected in the dorsal hippocampus by immunohistochemical procedures; Fluoro-Jade B staining was carried out in parallel sections in order to detect neuronal cell death. IL-1β mRNA expression was increased 6 h following SE, but not at 24 h; however IL-1RI mRNA expression was unaffected when comparing with the control group. IL-1β and IL-1RI immunoreactivity was not detected in control animals. IL-1β and IL-1RI were expressed in the CA1 pyramidal layer, the dentate gyrus granular layer and the hilus 6 h after SE, whereas injured cells were detected 24 h following seizures. Early expression of IL-1β and IL-1RI in the hippocampus could be associated with SE-induced neuronal cell death mechanisms in the developing rat. PMID:27168372

  8. Understanding the implications of dissolved organic carbon when assessing antagonism in vitro: An example with an estrogen receptor assay.

    PubMed

    Neale, Peta A; Escher, Beate I; Leusch, Frederic D L

    2015-09-01

    Both estrogenic and anti-estrogenic activity has been observed in water samples. Some studies have suggested that dissolved organic carbon (DOC), which can be co-extracted during sample enrichment, contributes to the apparent antagonistic effect. DOC has a high sorption capacity for the estrogen receptor (ER) agonist 17β-estradiol, which may reduce the available 17β-estradiol concentration in the antagonist testing mode and potentially lead to apparent antagonism. The aim of the study was to determine the influence of DOC when assessing antagonism in an ER reporter gene assay. The presence of DOC shifted the 17β-estradiol concentration-effect curve to higher concentrations, increasing the nominal EC50 value by up to 0.3 log units. However, this shift was within the usual variability associated with repeated measurements of concentration-effect curves. This shift was not due to DOC being an antagonist itself or interfering with fluorescence measurements, but was due to DOC reducing the bioavailability of 17β-estradiol. This was demonstrated by modelling the DOC sorption corrected 17β-estradiol concentration using experimental DOC-water partition coefficients (KDOC). While the shift in the 17β-estradiol concentration-effect curve was minor, sorption of 17β-estradiol to DOC can have an impact when assessing antagonism. At the EC50 agonist concentration, both modelled and experimental results showed that DOC at concentrations similar to that co-extracted in water samples caused suppression of the agonist at levels that would be classified as antagonism. The suppression was less pronounced at the EC80 agonist concentration, hence this is recommended when assessing antagonism of DOC rich samples, such as surface water and wastewater. PMID:25978675

  9. NMDA Receptor Agonism and Antagonism within the Amygdaloid Central Nucleus Suppresses Pain Affect: Differential Contribution of the Ventrolateral Periaqueductal Gray

    PubMed Central

    Spuz, Catherine A.; Tomaszycki, Michelle L.; Borszcz, George S.

    2015-01-01

    The amygdala contributes to the generation of pain affect and the amygdaloid central nucleus (CeA) receives nociceptive input that is mediated by glutamatergic neurotransmission. The present study compared the contribution of N-methyl-D-aspartate (NMDA) receptor agonism and antagonism in CeA to generation of the affective response of rats to an acute noxious stimulus. Vocalizations that occur following a brief tail shock (vocalization afterdischarges) are a validated rodent model of pain affect, and were preferentially suppressed, in a dose dependent manner, by bilateral injection into CeA of NMDA (.1 µg, .25 µg, .5 µg, or 1 µg/side), or the NMDA receptor antagonist D-2-amino-5-phosphonovalerate (AP5, 1 µg, 2 µg, or 4 µg/side). Vocalizations that occur during tail shock were suppressed to a lesser degree, whereas, spinal motor reflexes (tail flick and hind limb movements) were unaffected by injection of NMDA or AP5 into CeA. Injection of NMDA, but not AP5, into CeA increased c-Fos immunoreactivity in the ventrolateral periaqueductal gray (vlPAG), and unilateral injection of the µ-opiate receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP, 0.25 µg) into vlPAG prevented the antinociception generated by injection of NMDA into CeA. These findings demonstrate that although NMDA receptor agonism and antagonism in CeA produce similar suppression of pain behaviors they do so via different neurobiological mechanisms. Perspective The amygdala contributes to production of the emotional dimension of pain. NMDA receptor agonism and antagonism within the central nucleus of the amygdala suppressed rats’ emotional response to acute painful stimulation. Understanding the neurobiology underlying emotional responses to pain will provide insights into new treatments for pain and its associated affective disorders. PMID:25261341

  10. Glucocorticoid receptor antagonism as a novel therapy for triple-negative breast cancer

    PubMed Central

    Skor, Maxwell N.; Wonder, Erin L.; Kocherginsky, Masha; Goyal, Anju; Hall, Ben A.; Cai, Yi; Conzen, Suzanne D.

    2013-01-01

    Purpose: Triple-negative breast cancer (TNBC) accounts for 10-20% of newly diagnosed invasive breast cancer. Finding effective targets for chemotherapy-resistant TNBC has proven difficult in part because of TNBC’s molecular heterogeneity. We have previously reported that, likely because of GR’s anti-apoptotic activity in ER-negative breast epithelial and cancer cells, high glucocorticoid receptor (GR) expression/activity in early-stage TNBC significantly correlates with chemotherapy-resistance and increased recurrence. We hypothesized that pre-treatment with mifepristone, a (GR)-antagonist, would potentiate the efficacy of chemotherapy in GR+ TNBC by inhibiting GR’s anti-apoptotic signaling pathways and increasing the cytotoxic efficiency of chemotherapy. Experimental Design: TNBC cell apoptosis was examined in the context of physiological glucocorticoid concentrations, chemotherapy, and/or pharmacologic concentrations of mifepristone. We used high-throughput live microscopy with continuous recording to measure apoptotic cells stained with a fluorescent dye, and Western analysis to detect caspase-3 and PARP cleavage. The effect of mifepristone on GR-mediated gene expression was also measured. TNBC xenograft studies were performed in female severe combined immunodeficient (SCID) mice and tumors were measured following treatment with vehicle, paclitaxel or mifepristone/paclitaxel. Results: We found that although mifepristone treatment alone had no significant effect on TNBC cell viability or clonogenicity in the absence of chemotherapy, the addition of mifepristone to dexamethasone/paclitaxel treatment significantly increased cytotoxicity and caspase-3/PARP cleavage. Mifepristone also antagonized GR-induced SGK1 and MKP1/DUSP1 gene expression, while significantly augmenting paclitaxel-induced GR+ MDA-MB-231 xenograft tumor shrinkage in vivo. Conclusions: These results suggest that mifepristone pre-treatment could be a useful strategy for increasing tumor cell

  11. Farnesoid X receptor antagonizes JNK signaling pathway in liver carcinogenesis by activating SOD3.

    PubMed

    Wang, Yan-Dong; Chen, Wei-Dong; Li, Cunbao; Guo, Cong; Li, Yanyan; Qi, Hui; Shen, Hailing; Kong, Jing; Long, Xuecheng; Yuan, Frank; Wang, Xichun; Huang, Wendong

    2015-02-01

    The farnesoid X receptor (FXR) is a key metabolic and homeostatic regulator in the liver. In the present work, we identify a novel role of FXR in antagonizing c-Jun N-terminal kinase (JNK) signaling pathway in liver carcinogenesis by activating superoxide dismutase 3 (SOD3) transcription. Compared with wild-type mouse liver, FXR(-/-) mouse liver showed elevated JNK phosphorylation. JNK1 deletion suppressed the increase of diethylnitrosamine-induced tumor number in FXR(-/-) mice. These results suggest that JNK1 plays a key role in chemical-induced liver carcinogenesis in FXR(-/-) mice. We found that ligand-activated FXR was able to alleviate H₂O₂or tetradecanoylphorbol acetate-induced JNK phosphorylation in human hepatoblastoma (HepG2) cells or mouse primary hepatocytes. FXR ligand decreased H₂O₂-induced reactive oxygen species (ROS) levels in wild-type but not FXR(-/-) mouse hepatocytes. FXR knockdown abolished the inhibition of 3-[2-[2-chloro-4-[[3-(2,6-dichlorophenyl)-5-(1-methylethyl)-4-isoxazolyl]methoxy]phenyl]ethenyl]-Benzoic acid (GW4064) on JNK phosphorylation and ROS production induced by H₂O₂in HepG2 cells. The gene expression of SOD3, an antioxidant defense enzyme, was increased by FXR activation in vitro and in vivo. An FXR-responsive element, inverted repeat separated by 1 nucleotide in SOD3 promoter, was identified by a combination of transcriptional reporter assays, EMSAs, and chromatin immunoprecipitation assays, which indicated that SOD3 could be a direct FXR target gene. SOD3 knockdown abolished the inhibition of GW4064 on JNK phosphorylation induced by H₂O₂in HepG2 cells. In summary, FXR may regulate SOD3 expression to suppress ROS production, resulting in decreasing JNK activity. These results suggest that FXR, as a novel JNK suppressor, may be an attractive therapeutic target for liver cancer treatment. PMID:25496033

  12. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine.

    PubMed

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na(+) current (INa), and is known to reduce the Na(+)-dependent Ca(2+) overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na(+) channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca(2+) calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  13. Antagonism of Nav channels and α1-adrenergic receptors contributes to vascular smooth muscle effects of ranolazine

    PubMed Central

    Virsolvy, Anne; Farah, Charlotte; Pertuit, Nolwenn; Kong, Lingyan; Lacampagne, Alain; Reboul, Cyril; Aimond, Franck; Richard, Sylvain

    2015-01-01

    Ranolazine is a recently developed drug used for the treatment of patients with chronic stable angina. It is a selective inhibitor of the persistent cardiac Na+ current (INa), and is known to reduce the Na+-dependent Ca2+ overload that occurs in cardiomyocytes during ischemia. Vascular effects of ranolazine, such as vasorelaxation,have been reported and may involve multiple pathways. As voltage-gated Na+ channels (Nav) present in arteries play a role in contraction, we hypothesized that ranolazine could target these channels. We studied the effects of ranolazine in vitro on cultured aortic smooth muscle cells (SMC) and ex vivo on rat aortas in conditions known to specifically activate or promote INa. We observed that in the presence of the Nav channel agonist veratridine, ranolazine inhibited INa and intracellular Ca2+ calcium increase in SMC, and arterial vasoconstriction. In arterial SMC, ranolazine inhibited the activity of tetrodotoxin-sensitive voltage-gated Nav channels and thus antagonized contraction promoted by low KCl depolarization. Furthermore, the vasorelaxant effects of ranolazine, also observed in human arteries and independent of the endothelium, involved antagonization of the α1-adrenergic receptor. Combined α1-adrenergic antagonization and inhibition of SMCs Nav channels could be involved in the vascular effects of ranolazine. PMID:26655634

  14. Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ-IL1RAPL1/IL-1RAcP for synaptic differentiation

    NASA Astrophysics Data System (ADS)

    Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya

    2015-04-01

    Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as `splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.

  15. Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ–IL1RAPL1/IL-1RAcP for synaptic differentiation

    PubMed Central

    Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya

    2015-01-01

    Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as ‘splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP. PMID:25908590

  16. Endogenous IL-1 in Cognitive Function and Anxiety: A Study in IL-1RI−/− Mice

    PubMed Central

    Murray, Carol L.; Obiang, Pauline; Bannerman, David; Cunningham, Colm

    2013-01-01

    Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI−/− mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI−/− animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI−/− mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI−/− mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI−/− mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI−/− mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI−/− mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI−/− mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in

  17. Vascular Endothelial Growth Factor Receptor Type 1 Signaling Prevents Delayed Wound Healing in Diabetes by Attenuating the Production of IL-1β by Recruited Macrophages.

    PubMed

    Okizaki, Shin-Ichiro; Ito, Yoshiya; Hosono, Kanako; Oba, Kazuhito; Ohkubo, Hirotoki; Kojo, Ken; Nishizawa, Nobuyuki; Shibuya, Masabumi; Shichiri, Masayoshi; Majima, Masataka

    2016-06-01

    The persistence of proinflammatory macrophages, which are recruited to the granulation tissue, impairs the healing of diabetic wounds. Herein, we examined the role of vascular endothelial growth factor receptor type 1 (VEGFR1) signaling in streptozotocin (STZ)-induced diabetic wound healing. Angiogenesis, lymphangiogenesis, and the healing of full-thickness skin wounds were impaired in STZ-treated wild-type (WT) mice compared with vehicle-treated WT mice, with attenuated recruitment of VEGFR1-positive macrophages expressing vascular endothelial growth factor (VEGF)-A, VEGF-C, and VEGF-D to the wound granulation tissue. These phenomena were even more prevalent in STZ-treated VEGFR1 tyrosine kinase knockout mice (VEGFR1 TK(-/-) mice). STZ-treated WT mice, but not STZ-treated VEGFR1 TK(-/-) mice, showed accelerated wound healing when treated with placenta growth factor. Compared with that of STZ-treated WT mice, the wound granulation tissue of STZ-treated VEGFR1 TK(-/-) mice contained more VEGFR1-positive cells expressing IL-1β [a classic (M1) activated macrophage marker] and fewer VEGFR1-positive cells expressing the mannose receptor [CD206; an alternatively activated (M2) macrophage marker]. Treatment of STZ-treated VEGFR1 TK(-/-) mice with an IL-1β-neutralizing antibody restored impaired wound healing and angiogenesis/lymphangiogenesis and induced macrophages in the wound granulation tissue to switch to an M2 phenotype. Taken together, these results suggest that VEGFR1 signaling plays a role in regulating the balance between macrophage phenotypes in STZ-induced diabetic wounds, prevents impaired diabetic wound healing, and promotes angiogenesis/lymphangiogenesis. PMID:27085138

  18. Sedation and histamine H1-receptor antagonism: studies in man with the enantiomers of chlorpheniramine and dimethindene.

    PubMed Central

    Nicholson, A. N.; Pascoe, P. A.; Turner, C.; Ganellin, C. R.; Greengrass, P. M.; Casy, A. F.; Mercer, A. D.

    1991-01-01

    1. The effects of 10 mg (+)- and (-)-chlorpheniramine and 5 mg (+)- and (-)-dimethindene on daytime sleep latencies, digit symbol substitution and subjective assessments of mood and well-being were studied in 6 healthy young adult humans. Each subject also took 5 mg triprolidine hydrochloride as an active control and two placebos. 2. Daytime sleep latencies were reduced with triprolidine, (+)-chlorpheniramine and (-)-dimethindene, and subjects also reported that they felt more sleepy after (+)-chlorpheniramine and (-)-dimethindene. Performance on digit symbol substitution was impaired with (+)-chlorpheniramine. 3. Changes in measures with (-)-chlorpheniramine and (+)-dimethindene were not different from changes with placebo. 4. In the present study, changes in measures of drowsiness and performance were limited to the enantiomers with high affinity for the histamine H1-receptor. These findings strongly suggest that sedation can arise from H1-receptor antagonism alone, and provide further support for the belief that the histaminergic system is concerned with the regulation of alertness in man. PMID:1686208

  19. Mercaptoacetate blocks fatty acid-induced GLP-1 secretion in male rats by directly antagonizing GPR40 fatty acid receptors.

    PubMed

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Simasko, Steve M; Ritter, Sue

    2016-04-15

    Mercaptoacetate (MA) is an orexigenic agent reported to block fatty acid (FA) oxidation. Recently, however, we reported evidence from isolated nodose ganglion neurons that MA antagonizes the G protein-coupled long- and medium-chain FA receptor GPR40. GPR40 mediates FA-induced secretion of the satietogenic incretin peptide glucagon-like peptide 1 (GLP-1), by enteroendocrine L cells, as well as FA-induced enhancement of glucose-stimulated insulin secretion. Our results in cultured nodose neurons suggest that MA would also block GPR40 in enteroendocrine cells controlling GLP-1 secretion. If so, this would suggest an alternative mechanism by which MA increases food intake. We tested the hypothesis that MA blocks FA-induced GLP-1 secretion in vitro using cultured STC-1 cells (a murine enteroendocrine cell line) and in vivo in adult male rats. In vitro, MA blocked the increase in both cytosolic Ca(2+)and GLP-1 release stimulated by FAs and also reduced (but less effectively) the response of STC-1 cells to grifolic acid, a partial agonist of the GPR120 FA receptor. In vivo, MA reduced GLP-1 secretion following olive oil gavage while also increasing glucose and decreasing insulin levels. The carnitine palmatoyltransferase 1 antagonist etomoxir did not alter these responses. Results indicate that MA's actions, including its orexigenic effect, are mediated by GPR40 (and possibly GPR120) receptor antagonism and not by blockade of fat oxidation, as previously believed. Analysis of MA's interaction with GPR40 may facilitate understanding of the multiple functions of this receptor and the manner in which FAs participate in the control of hunger and satiety. PMID:26791830

  20. New functional activity of aripiprazole revealed: Robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling.

    PubMed

    Brust, Tarsis F; Hayes, Michael P; Roman, David L; Watts, Val J

    2015-01-01

    The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, "third generation" antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution. PMID:25449598

  1. TLR4-Upregulated IL-1β and IL-1RI Promote Alveolar Macrophage Pyroptosis and Lung Inflammation through an Autocrine Mechanism

    PubMed Central

    He, Xingying; Qian, Yongbing; Li, Zhigang; Fan, Erica K.; Li, Yuehua; Wu, Liang; Billiar, Timothy R.; Wilson, Mark A.; Shi, Xueyin; Fan, Jie

    2016-01-01

    Acute lung injury (ALI) is a major component of multiple organ dysfunction syndrome (MODS) following pulmonary infection. Alveolar macrophages (AM) are at the center of the pathogenesis of the development of ALI. Interleukin-1β (IL-1β) is one of the key pro-inflammatory mediators, and its maturation is tightly controlled by the formation and activation of the inflammasome. The biological effects of IL-1β are mediated through IL-1 receptor (IL-1R). In this study, we investigated the influence of LPS-induced IL-1β release and IL-1RI upregulation on the development of lung inflammation. We demonstrated that in AM, LPS-TLR4 signaling not only activates Nlrp3 inflammasome activation and subsequent release of IL-1β, but also up-regulates IL-1RI expression on AM surface through MyD88 and NF-κB dependent signaling. The upregulated IL-1RI, therefore, sensitizes AM to IL-1β and results in pyroptosome formation, which in turn leads to AM pyroptosis, a type of caspase-1-dependent inflammatory cell death. We further showed that AM pyroptosis exaggerates lung inflammation. The present study demonstrates a novel mechanism underlying LPS-induced innate immunity; that is, a secondary upregulation of IL-1β-IL-1RI signaling is responsible for AM pyroptosis and augmented lung injury in response to LPS. PMID:27526865

  2. NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex.

    PubMed

    Makeham, John M; Goodchild, Ann K; Pilowsky, Paul M

    2005-06-01

    The effects of activation and blockade of the neurokinin 1 (NK1) receptor in the rostral ventrolateral medulla (RVLM) on arterial blood pressure (ABP), splanchnic sympathetic nerve activity (sSNA), phrenic nerve activity, the somato-sympathetic reflex, baroreflex, and chemoreflex were studied in urethane-anesthetized and artificially ventilated Sprague-Dawley rats. Bilateral microinjection of either the stable substance P analog (pGlu5, MePhe8, Sar9)SP(5-11) (DiMe-SP) or the highly selective NK1 agonist [Sar9, Met (O(2))11]SP into the RVLM resulted in an increase in ABP, sSNA, and heart rate and an abolition of phrenic nerve activity. The effects of [Sar9, Met (O(2))11]SP were blocked by the selective nonpeptide NK1 receptor antagonist WIN 51708. NK1 receptor activation also dramatically attenuated the somato-sympathetic reflex elicited by tibial nerve stimulation, while leaving the baroreflex and chemoreflex unaffected. This effect was again blocked by WIN 51708. NK1 receptor antagonism in the RVLM, with WIN 51708 significantly attenuated the sympathoexcitatory response to hypoxia but had no effect on baseline respiratory function. Our findings suggest that substance P and the NK1 receptor play a significant role in the cardiorespiratory reflexes integrated within the RVLM. PMID:15731401

  3. Activated Microglia-Induced Deficits in Excitatory Synapses Through IL-1β: Implications for Cognitive Impairment in Sepsis.

    PubMed

    Moraes, Carolina A; Santos, Gabriel; de Sampaio e Spohr, Tania Cristina Leite; D'Avila, Joana C; Lima, Flávia Regina Souza; Benjamim, Claudia Farias; Bozza, Fernando A; Gomes, Flávia Carvalho Alcantara

    2015-08-01

    Recent clinical studies have shown that sepsis survivors may develop long-term cognitive impairments. The cellular and molecular mechanisms involved in these events are not well understood. This study investigated synaptic deficits in sepsis and the involvement of glial cells in this process. Septic animals showed memory impairment and reduced numbers of hippocampal and cortical excitatory synapses, identified by synaptophysin/PSD-95 co-localization, 9 days after disease onset. The behavioral deficits and synaptophysin/PSD-95 co-localization were rescued to normal levels within 30 days post-sepsis. Septic mice presented activation of microglia and reactive astrogliosis, which are hallmarks of brain injury and could be involved in the associated synaptic deficits. We treated neuronal cultures with conditioned medium derived from cultured astrocytes (ACM) and microglia (MCM) that were either non-stimulated or stimulated with lipopolysaccharide (LPS) to investigate the molecular mechanisms underlying synaptic deficits in sepsis. ACM and MCM increased the number of synapses between cortical neurons in vitro, and these effects were antagonized by LPS stimulation. LPS-MCM reduced the number of synapses by 50%, but LPS-ACM increased the number of synapses by 500%. Analysis of the composition of these conditioned media revealed increased levels of IL-1β in LPS-MCM. Furthermore, inhibition of IL-1β signaling through the addition of a soluble IL-1β receptor antagonist (IL-1 Ra) fully prevented the synaptic deficit induced by LPS-MCM. These results suggest that sepsis induces a transient synaptic deficit associated with memory impairments mediated by IL-1β secreted by activated microglia. PMID:25257696

  4. Study of the association of IL-1β and IL-1RA gene polymorphisms with occurrence and severity of Familial Mediterranean fever.

    PubMed

    Ibrahim, José-Noel; Chouery, Eliane; Lecron, Jean-Claude; Mégarbané, André; Medlej-Hashim, Myrna

    2015-12-01

    Familial Mediterranean fever (FMF) is a recessive autoinflammatory disorder. The balance between the pro-inflammatory cytokine IL-1β and its receptor antagonist IL-1RA plays an important role in the development of FMF. In order to determine a possible association of polymorphisms in IL-1β and IL-1RA genes with occurrence and/or severity of the disease, 42 genetically confirmed FMF patients and 42 controls were genotyped for IL-1β(-511C/T), IL-1β(-31T/C), IL1-1β(+3954T/C) and IL-1RA VNTR polymorphisms. IL-1β and IL-1RA levels were evaluated by multiplex ELISA in supernatants of PBMC cultures of 30 FMF patients with and without 24h stimulation of monocytes by LPS. The CC genotype and C allele at positions -31 and + 3954 of IL-1β gene were more frequent in FMF patients than in controls. FMF patients carriers of IL-1β(-31) CC genotype were associated with a 2-fold increase in LPS-induced IL-1β secretion as well as a higher disease severity score (11.2 ± 2.9) when compared to patients carrying the TC and TT genotypes (6.1 ± 2.1 and 4.5 ± 2.4, respectively). These results indicate that IL-1β gene polymorphisms at positions -31 and + 3954 may be associated with an increased risk for FMF. IL-1β(-31) contributes also to the severity of the disease, probably by modulating IL-1β synthesis. PMID:26585190

  5. Design, Synthesis, and Biological Evaluation of Novel Nonsteroidal Farnesoid X Receptor (FXR) Antagonists: Molecular Basis of FXR Antagonism.

    PubMed

    Huang, Huang; Si, Pei; Wang, Lei; Xu, Yong; Xu, Xin; Zhu, Jin; Jiang, Hualiang; Li, Weihua; Chen, Lili; Li, Jian

    2015-07-01

    Farnesoid X receptor (FXR) plays an important role in the regulation of cholesterol, lipid, and glucose metabolism. Recently, several studies on the molecular basis of FXR antagonism have been reported. However, none of these studies employs an FXR antagonist with nonsteroidal scaffold. On the basis of our previously reported FXR antagonist with a trisubstituted isoxazole scaffold, a novel nonsteroidal FXR ligand was designed and used as a lead for structural modification. In total, 39 new trisubstituted isoxazole derivatives were designed and synthesized, which led to pharmacological profiles ranging from agonist to antagonist toward FXR. Notably, compound 5s (4'-[(3-{[3-(2-chlorophenyl)-5-(2-thienyl)isoxazol-4-yl]methoxy}-1H-pyrazol-1-yl)methyl]biphenyl-2-carboxylic acid), containing a thienyl-substituted isoxazole ring, displayed the best antagonistic activity against FXR with good cellular potency (IC50 =12.2 ± 0.2 μM). Eventually, this compound was used as a probe in a molecular dynamics simulation assay. Our results allowed us to propose an essential molecular basis for FXR antagonism, which is consistent with a previously reported antagonistic mechanism; furthermore, E467 on H12 was found to be a hot-spot residue and may be important for the future design of nonsteroidal antagonists of FXR. PMID:25982493

  6. Structure and function of chicken interleukin-1 beta mutants: uncoupling of receptor binding and in vivo biological activity

    PubMed Central

    Chen, Wen-Ting; Huang, Wen-Yang; Chen, Ting; Salawu, Emmanuel Oluwatobi; Wang, Dongli; Lee, Yi-Zong; Chang, Yuan-Yu; Yang, Lee-Wei; Sue, Shih-Che; Wang, Xinquan; Yin, Hsien-Sheng

    2016-01-01

    Receptor-binding and subsequent signal-activation of interleukin-1 beta (IL-1β) are essential to immune and proinflammatory responses. We mutated 12 residues to identify sites important for biological activity and/or receptor binding. Four of these mutants with mutations in loop 9 (T117A, E118K, E118A, E118R) displayed significantly reduced biological activity. Neither T117A nor E118K mutants substantially affected receptor binding, whereas both mutants lack the IL-1β signaling in vitro but can antagonize wild-type (WT) IL-1β. Crystal structures of T117A, E118A, and E118K revealed that the secondary structure or surface charge of loop 9 is dramatically altered compared with that of wild-type chicken IL-1β. Molecular dynamics simulations of IL-1β bound to its receptor (IL-1RI) and receptor accessory protein (IL-1RAcP) revealed that loop 9 lies in a pocket that is formed at the IL-1RI/IL-1RAcP interface. This pocket is also observed in the human ternary structure. The conformations of above mutants in loop 9 may disrupt structural packing and therefore the stability in a chicken IL-1β/IL-1RI/IL-1RAcP signaling complex. We identify the hot spots in IL-1β that are essential to immune responses and elucidate a mechanism by which IL-1β activity can be inhibited. These findings should aid in the development of new therapeutics that neutralize IL-1 activity. PMID:27278931

  7. Structure and function of chicken interleukin-1 beta mutants: uncoupling of receptor binding and in vivo biological activity.

    PubMed

    Chen, Wen-Ting; Huang, Wen-Yang; Chen, Ting; Salawu, Emmanuel Oluwatobi; Wang, Dongli; Lee, Yi-Zong; Chang, Yuan-Yu; Yang, Lee-Wei; Sue, Shih-Che; Wang, Xinquan; Yin, Hsien-Sheng

    2016-01-01

    Receptor-binding and subsequent signal-activation of interleukin-1 beta (IL-1β) are essential to immune and proinflammatory responses. We mutated 12 residues to identify sites important for biological activity and/or receptor binding. Four of these mutants with mutations in loop 9 (T117A, E118K, E118A, E118R) displayed significantly reduced biological activity. Neither T117A nor E118K mutants substantially affected receptor binding, whereas both mutants lack the IL-1β signaling in vitro but can antagonize wild-type (WT) IL-1β. Crystal structures of T117A, E118A, and E118K revealed that the secondary structure or surface charge of loop 9 is dramatically altered compared with that of wild-type chicken IL-1β. Molecular dynamics simulations of IL-1β bound to its receptor (IL-1RI) and receptor accessory protein (IL-1RAcP) revealed that loop 9 lies in a pocket that is formed at the IL-1RI/IL-1RAcP interface. This pocket is also observed in the human ternary structure. The conformations of above mutants in loop 9 may disrupt structural packing and therefore the stability in a chicken IL-1β/IL-1RI/IL-1RAcP signaling complex. We identify the hot spots in IL-1β that are essential to immune responses and elucidate a mechanism by which IL-1β activity can be inhibited. These findings should aid in the development of new therapeutics that neutralize IL-1 activity. PMID:27278931

  8. Epithelial IL-1R2 acts as a homeostatic regulator during remission of ulcerative colitis

    PubMed Central

    Mora-Buch, R; Dotti, I; Planell, N; Calderón-Gómez, E; Jung, P; Masamunt, M C; Llach, J; Ricart, E; Batlle, E; Panés, J; Salas, A

    2016-01-01

    Ulcerative colitis (UC) is a chronic intestinal inflammatory disease that may undergo periods of activity followed by remission. We aimed to identify the endogenous regulatory mechanisms that may promote disease remission. Transcriptional and protein analysis of the intestinal mucosa revealed that the IL-1 decoy receptor, interleukin-1 receptor type 2 (IL1R2), was upregulated in remission compared with active UC and controls. We identified epithelial cells as being responsible for increased IL-1R2 production during remission. Expression of IL1R2 was negatively regulated by Wnt/beta-catenin signals in colonic crypts or epithelial stem cell cultures; accordingly, epithelial stem cells upregulated IL-1R2 upon differentiation. Blocking IL-1R2 in isolated colonic crypt cultures of UC patients in remission and T-cell cultures stimulated with biopsy supernatant from UC patients in remission boosted IL-1β-dependent production of inflammation-related cytokines. Finally, IL1R2 transcription was significantly lower in patients that relapsed during a 1-year follow-up period compared with those in endoscopic remission. Collectively, our results reveal that the IL-1/IL-1R2 axis is differentially regulated in the remitting intestinal mucosa of UC patients. We hypothesize that IL-1R2 in the presence of low concentrations of IL-1β may act locally as a regulator of intestinal homeostasis. PMID:26530134

  9. Endothelial IL-1R1 is a critical mediator of EAE pathogenesis

    PubMed Central

    Li, Qiming; Powell, Nicole; Zhang, Hao; Belevych, Natalya; Ching, San; Chen, Qun; Sheridan, John; Whitacre, Caroline; Quan, Ning

    2010-01-01

    Interleukin-1 (IL-1) has been implicated in the disease progression of multiple sclerosis (MS). In the animal model of MS, experimental autoimmune encephalomyelitis (EAE), the induction of disease is significantly attenuated in mice lacking the type I IL-1 receptor (IL-1R1). In this study, we created a transgenic mouse (eIL-1R1 kd) in which IL-1R1 expression is knocked down specifically in endothelial cells. Induction of EAE in eIL-1R1 kd mice results in a decrease in incidence, severity and delayed onset of EAE. In addition, eIL-1R1 kd mice show significant decrease in VCAM-1 expression and diminished CD45+ and CD3+ infiltrating leukocytes in the spinal cord in animals challenged with EAE. Further, IL-1 and IL-23 stimulate IL-17 production by splenocytes from both wild type and the eIL-1R1 kd animals. Similarly, IL-1 and IL-23 synergistically stimulate splenocytes proliferation in these two strains of animals. After immunization with MOG79–96, although eIL-1R1 kd mice displayed greatly reduced clinical scores, their splenocytes produced IL-17 and proliferated in response to a second MOG challenge, similar to wild type animals. These findings indicate a critical role for endothelial IL-1R1 in mediating the pathogenesis of EAE, and describe a new model that can be used to study endothelial IL-1R1. PMID:20854891

  10. The role of IL-1 gene cluster in longevity: a study in Italian population.

    PubMed

    Cavallone, Luca; Bonafè, Massimiliano; Olivieri, Fabiola; Cardelli, Maurizio; Marchegiani, Francesca; Giovagnetti, Simona; Di Stasio, Grazia; Giampieri, Claudia; Mugianesi, Elena; Stecconi, Rosalia; Sciacca, Francesca; Grimaldi, Luigi Maria; De Benedictis, Giovanna; Lio, Domenico; Caruso, Calogero; Franceschi, Claudio

    2003-04-01

    In this study, we analysed the polymorphic variants of IL-1alpha (C-T transition at position -889), IL-1beta (C-T transition at position -511) and IL-1 receptor antagonist (Ra) (86-bp repeated sequence in intron 2) in 1131 subjects (453 females and 678 males) from Northern and Central Italy, including 134 centenarians, to evaluate whether IL-1 cluster alleles might be differently represented in people selected for longevity. In addition, IL-1Ra and IL-1beta plasma levels were quantified by ELISA in 130 randomly selected subjects. No significant differences in the genotype and allele frequency distributions were observed between young, elderly and centenarian subjects. IL-1Ra plasma levels showed an age-related increase, whereas IL-1beta plasma levels did not show any detectable age-related trend. Neither IL-1Ra nor IL-1beta plasma levels showed any relationship with genotypes of the three IL-1 genes. These results suggest that no one particular polymorphism in the IL-1 gene cluster yields an advantage for survival in the last decades of life, and that the age-related increase in plasma levels of IL-1Ra seems not to be genetically regulated but a likely safeguard mechanism to buffer the age-associated increased inflammatory state. PMID:12714264

  11. The IL-1 Pathway in Type 2 Diabetes and Cardiovascular Complications.

    PubMed

    Herder, Christian; Dalmas, Elise; Böni-Schnetzler, Marianne; Donath, Marc Y

    2015-10-01

    Patients with type 2 diabetes (T2D) exhibit chronic activation of the innate immune system in pancreatic islets, in insulin-sensitive tissues, and at sites of diabetic complications. This results from a pathological response to overnutrition and physical inactivity seen in genetically predisposed individuals. Processes mediated by the proinflammatory cytokine interleukin-1 (IL-1) link obesity and dyslipidemia and have implicated IL-1β in T2D and related cardiovascular complications. Epidemiological, molecular, and animal studies have now assigned a central role for IL-1β in driving tissue inflammation during metabolic stress. Proof-of-concept clinical studies have validated IL-1β as a target to improve insulin production and action in patients with T2D. Large ongoing clinical trials will address the potential of IL-1 antagonism to prevent cardiovascular and other related complications. PMID:26412156

  12. GABAA receptor antagonism at the hypoglossal motor nucleus increases genioglossus muscle activity in NREM but not REM sleep.

    PubMed

    Morrison, Janna L; Sood, Sandeep; Liu, Hattie; Park, Eileen; Nolan, Philip; Horner, Richard L

    2003-04-15

    The pharyngeal muscles, such as the genioglossus (GG) muscle of the tongue, are important for effective lung ventilation since they maintain an open airspace. Rapid-eye-movement (REM) sleep, however, recruits powerful neural mechanisms that can abolish GG activity, even during strong reflex respiratory stimulation by elevated CO2. In vitro studies have demonstrated the presence of GABAA receptors on hypoglossal motoneurons, and these and other data have led to the speculation that GABAA mechanisms may contribute to the suppression of hypoglossal motor outflow to the GG muscle in REM sleep. We have developed an animal model that allows us to chronically manipulate neurotransmission at the hypoglossal motor nucleus using microdialysis across natural sleep-wake states in rats. The present study tests the hypothesis that microdialysis perfusion of the GABAA receptor antagonist bicuculline into the hypoglossal motor nucleus will prevent the suppression of GG muscle activity in REM sleep during both room-air and CO2-stimulated breathing. Ten rats were implanted with electroencephalogram and neck muscle electrodes to record sleep-wake states, and GG and diaphragm electrodes for respiratory muscle recording. Microdialysis probes were implanted into the hypoglossal motor nucleus for perfusion of artificial cerebrospinal fluid (ACSF) or 100 microM bicuculline during room-air and CO2-stimulated breathing (7 % inspired CO2). GABAA receptor antagonism at the hypoglossal motor nucleus increased respiratory-related GG activity during both room-air (P = 0.01) and CO2-stimulated breathing (P = 0.007), indicating a background inhibitory GABA tone. However, the effects of bicuculline on GG activity depended on the prevailing sleep-wake state (P < 0.005), with bicuculline increasing GG activity in non-REM (NREM) sleep and wakefulness both in room air and hypercapnia (P < 0.01), but GG activity was effectively abolished in those REM periods without phasic twitches in the GG muscle

  13. Thromboxane-A(2)/prostaglandin-H(2) receptors Characterization and antagonism.

    PubMed

    Morinelli, T A; Halushka, P V

    1991-01-01

    Thromboxane A(2) (TXA(2)) is a potent vasoconstrictor and platelet aggregator whose synthesis is increased in a variety of cardiovascular diseases. TXA(2) receptor antagonists have been used to (a) establish a pathophysiologic role for TXA(2) in a variety of cardiovascular diseases, (b) subtype platelet and vascular receptors, (c) elucidate structural characteristics of the receptor, and (d) aid in its purification. However, much still remains to be learned about the structure and function of TXA(2) receptors. PMID:21239318

  14. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  15. Dual Allosteric Effect in Glycine/NMDA Receptor Antagonism: A Comparative QSAR Approach

    PubMed Central

    Sharma, Manish; Gupta, Vipin B.

    2010-01-01

    A comparative Hansch type QSAR study was conducted using multiple regression analysis on various sets of quinoxalines, quinoxalin-4-ones, quinazoline-2-carboxylates, 4-hydroxyquinolin-2(1H)-ones, 2-carboxytetrahydroquinolines, phenyl-hydroxy-quinolones, nitroquinolones and 4-substituted-3-phenylquinolin-2(1H)-ones as selective glycine/NMDA site antagonists. Ten statistically validated equations were developed, which indicated the importance of CMR, Verloop’s sterimol L1 and ClogP parameters in contributing towards biological activity. Interestingly, normal and inverse parabolic relationships were found with CMR in different series, indicating a dual allosteric binding mode in glycine/NMDA antagonism. Equations reveal an optimum CMR of 10 ± 10% is required for good potency of antagonists. Other equations indicate the presence of anionic functionality at 4-position of quinoline/quinolone ring system is not absolutely required for effective binding. The observations are laterally validated and in accordance with previous studies.

  16. Blockade of CD47 ameliorates autoimmune inflammation in CNS by suppressing IL-1-triggered infiltration of pathogenic Th17 cells.

    PubMed

    Gao, Qiangguo; Zhang, Yi; Han, Chaofeng; Hu, Xiang; Zhang, Hua; Xu, Xiongfei; Tian, Jun; Liu, Yiqi; Ding, Yuanyuan; Liu, Juan; Wang, Chunmei; Guo, Zhenhong; Yang, Yongguang; Cao, Xuetao

    2016-05-01

    The migration of Th17 cells into central nervous system (CNS) tissue is the key pathogenic step in experimental autoimmune encephalomyelitis (EAE) model. However, the mechanism underlying the pathogenic Th17 cell migration remains elusive. Here we report that blockade of CD47 with CD47-Fc fusion protein is effective in preventing and curing EAE by impairing infiltration of Th17 cells into CNS. However, CD47 deficiency does not directly impair the migration of Th17 cells. Mechanistic studies showed that CD47 deficiency inhibited degradation of inducible nitric oxide synthase (iNOS) in proteasome of macrophages by Src activation and led to the increased nitric oxide (NO) production. Then NO suppressed inflammasome activation-induced IL-1β production. This lower IL-1β reduces the expression of IL-1R1 and migration-related chemokine receptors on CD47(-/-) Th17 cells, inhibiting the ability of Th17 cells to infiltrate into the CNS of CD47(-/-) mice and therefore suppressing EAE development. In vivo administration of exogenous IL-1β indeed promoted the infiltration CD47(-/-) Th17 cells into CNS and antagonized the protective role of CD47 deficiency in EAE pathogenesis. Our results demonstrate a potential preventive and therapeutic application of CD47 blockade in controlling EAE development. PMID:26994903

  17. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) suppresses gastric cancer cell proliferation and migration through antagonizing STAT3 signaling pathway

    PubMed Central

    Guo, Cong; Su, Jia; Li, Zhijun; Xiao, Rui; Wen, Jianxun; Li, Yanyan; Zhang, Meng; Zhang, Xueting; Yu, Donna; Huang, Wendong

    2015-01-01

    Gpbar1 (TGR5), a membrane-bound bile acid receptor, is well known for its roles in regulation of energy homeostasis and glucose metabolism. Here we show that TGR5 is a suppressor of gastric cancer cell proliferation and migration through antagonizing STAT3 signaling pathway. We firstly show that TGR5 activation greatly inhibited proliferation and migration of human gastric cancer cells and strongly induced gastric cancer cell apoptosis. We then found that TGR5 activation antagonized STAT3 signaling pathway through suppressing the phosphorylation of STAT3 and its transcription activity induced by lipopolysaccharide (LPS) or interleukin-6. TGR5 overexpression with ligand treatment inhibited gene expression mediated by STAT3. It suggests that TGR5 antagonizes gastric cancer proliferation and migration at least in part by inhibiting STAT3 signaling. These findings identify TGR5 as a suppressor of gastric cancer cell proliferation and migration that may serve as an attractive therapeutic tool for human gastric cancer. PMID:26417930

  18. Selective expression of latency-associated peptide (LAP) and IL-1 receptor type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T cells allows for their purification from expansion cultures

    PubMed Central

    Andersson, John; Hardwick, Donna; Bebris, Lolita; Illei, Gabor G.

    2009-01-01

    Although adoptive transfer of regulatory T cells (Foxp3+ Tregs) has proven to be efficacious in the prevention and treatment of autoimmune diseases and graft-versus-host disease in rodents, a major obstacle for the use of Treg immunotherapy in humans is the difficulty of obtaining a highly purified preparation after ex vivo expansion. We have identified latency-associated peptide (LAP) and IL-1 receptor type I and II (CD121a/CD121b) as unique cell-surface markers that distinguish activated Tregs from activated FOXP3− and FOXP3+ non-Tregs. We show that it is feasible to sort expanded FOXP3+ Tregs from non-Tregs with the use of techniques for magnetic bead cell separation based on expression of these 3 markers. After separation, the final product contains greater than 90% fully functional FOXP3+ Tregs. This novel protocol should facilitate the purification of Tregs for both cell-based therapies as well as detailed studies of human Treg function in health and disease. PMID:19299332

  19. Soluble IL-1RII and IL-18 are associated with incipient upper extremity soft tissue disorders.

    PubMed

    Rechardt, Martti; Shiri, Rahman; Matikainen, Sampsa; Viikari-Juntura, Eira; Karppinen, Jaro; Alenius, Harri

    2011-05-01

    Previous studies suggest a role for IL-1β in the pathophysiology of upper extremity soft tissue disorders (UESTDs). We studied the levels of interleukin-1 family members in patients with incipient UESTDs and compared them with healthy controls. In this case control study, we included 163 patients with UESTDs and symptom duration shorter than 1 month and 42 healthy controls matched for age and gender at the group level. Serum levels of cytokines IL-1α, IL-1β, IL-1Ra, IL-6, IL-8, IL-18, IL-33, TNFα and sensitized C-reactive protein as well as IL-1 family soluble receptors sIL-1RII and sST2 were assessed. We used unconditional logistic regression models to study the associations between cytokines and UESTDs. After adjustment for potential confounders, the serum levels of sIL-1RII (p<0.001) and sST2 (p=0.014) were higher in the patients than the controls. The level of IL-18 was lower in the patients than the controls (p=0.005). There were no significant differences between the patients and controls regarding the levels of IL-1α, IL-1β, IL-1Ra, IL-33, IL-6, IL-8, TNFα, or sensitized C-reactive protein. The levels of circulating sIL-1RII and IL-18 are associated with incipient UESTDs, suggesting an important role for these IL-1 family members in the early course of UESTDs. PMID:21371906

  20. Inflammation-Related IL1β/IL1R Signaling Promotes the Development of Asbestos-Induced Malignant Mesothelioma.

    PubMed

    Kadariya, Yuwaraj; Menges, Craig W; Talarchek, Jacqueline; Cai, Kathy Q; Klein-Szanto, Andres J; Pietrofesa, Ralph A; Christofidou-Solomidou, Melpo; Cheung, Mitchell; Mossman, Brooke T; Shukla, Arti; Testa, Joseph R

    2016-05-01

    Exposure to asbestos is causally associated with the development of malignant mesothelioma, a cancer of cells lining the internal body cavities. Malignant mesothelioma is an aggressive cancer resistant to all current therapies. Once inhaled or ingested, asbestos causes inflammation in and around tissues that come in contact with these carcinogenic fibers. Recent studies suggest that inflammation is a major contributing factor in the development of many types of cancer, including malignant mesothelioma. The NALP3/NLRP3 inflammasome, including the component ASC, is thought to be an important mediator of inflammation in cells that sense extracellular insults, such as asbestos, and activate a signaling cascade resulting in release of mature IL1β and recruitment of inflammatory cells. To determine if inflammasome-mediated inflammation contributes to asbestos-induced malignant mesothelioma, we chronically exposed Asc-deficient mice and wild-type littermates to asbestos and evaluated differences in tumor incidence and latency. The Asc-deficient mice showed significantly delayed tumor onset and reduced malignant mesothelioma incidence compared with wild-type animals. We also tested whether inflammation-related release of IL1β contributes to tumor development in an accelerated mouse model of asbestos-induced malignant mesothelioma. Nf2(+/-);Cdkn2a(+/-) mice exposed to asbestos in the presence of anakinra, an IL1 receptor (IL1R) antagonist, showed a marked delay in the median time of malignant mesothelioma onset compared with similarly exposed mice given vehicle control (33.1 weeks vs. 22.6 weeks, respectively). Collectively, these studies provide evidence for a link between inflammation-related IL1β/IL1R signaling and the development of asbestos-induced malignant mesothelioma. Furthermore, these findings provide rationale for chemoprevention strategies targeting IL1β/IL1R signaling in high-risk, asbestos-exposed populations. Cancer Prev Res; 9(5); 406-14. ©2016 AACR

  1. Histamine H2 receptor antagonism by T-593: studies on cAMP generation in Hepa cells expressing histamine H2 receptor.

    PubMed

    Tashiro, T; Ono, K; Watanabe, T; Inoie, M; Arai, H; Kimura, S; Kurokawa, K

    1999-07-01

    Histamine H2 receptor antagonism by T-593 was investigated in Hepa cells expressing canine histamine H2 receptors. T-593 inhibited generation of cAMP in Hepa cells stimulated by 10(-5) mol/l histamine with an IC50 value of 2.3 x 10(-6) mol/l, (S)-(-)-T-593, one of the enantiomers comprising racemic T-593, inhibited cAMP generation with an IC50 value of 6.1 x 10(-7) mol/l. On the other hand, the other enantiomer (R)-(+)-T-593 exhibited only a negligible effect. Incubation of the cell with (S)-(-)-T-593 for 60 min depressed the maximal response of the concentration-response curve of histamine with a nonparallel rightward shift. The slope of a Schild plot was 1.27. In contrast, (S)-(-)-T-593 caused a parallel rightward shift of the curve, with a Schild plot slope that did not significantly differ from unity, by treating the cells for 15 min. The H2 receptor-blocking action of (S)-(-)-T-593 remained almost unaffected after washing out the drug, whereas the effect of ranitidine was reversible after washing. These results suggest that T-593 possesses a time-dependent insurmountable antagonistic action against histamine H2 receptor. T-593 may interact with the histamine H2 receptor molecule in a slowly associable and dissociable manner. PMID:10352421

  2. NK1 receptor antagonism lowers occupancy requirement for antidepressant-like effects of SSRIs in the gerbil forced swim test.

    PubMed

    Lelas, Snjezana; Li, Yu-Wen; Wallace-Boone, Tanya L; Taber, Matthew T; Newton, Amy E; Pieschl, Rick L; Davis, Carl D; Molski, Thaddeus F; Newberry, Kimberly S; Parker, Michael F; Gillman, Kevin W; Bronson, Joanne J; Macor, John E; Lodge, Nicholas J

    2013-10-01

    The known interactions between the serotonergic and neurokinin systems suggest that serotonin reuptake inhibitor (SSRIs) efficacy may be improved by neurokinin-1 receptor (NK1R) antagonism. In the current studies combination of a subeffective dose of an SSRI (0.3 mg/kg fluoxetine or 0.03 mg/kg citalopram) with a subeffective dose of an NK1R antagonist (0.3 mg/kg aprepitant or 1 mg/kg CP-122,721) produced efficacy in the gerbil forced swim test (FST). Serotonin transporter (SERT) occupancy produced by 1 mg/kg fluoxetine (lowest efficacious dose) was 52 ± 5% and was reduced to 29 ± 4% at 0.3 mg/kg, a dose that was efficacious in combination with 0.3 mg/kg aprepitant or 1 mg/kg CP-122,721; the corresponding NK1R occupancies were 79 ± 4% and 61 ± 4% for aprepitant and CP-122,721, respectively. For citalopram, SERT occupancy at the lowest efficacious dose (0.1 mg/kg) was 50 ± 4% and was reduced to 20 ± 5% at 0.03 mg/kg, a dose that was efficacious when combined with aprepitant (0.3 mg/kg). Aprepitant (10 mg/kg) augmented the serotonin elevation produced by fluoxetine (1 or 10 mg/kg) in the gerbil prefrontal cortex; i.e. NK1R antagonism can modulate serotonin responses. A novel orally-available dual-acting NK1R antagonist/SERT inhibitor BMS-795176 is described; gerbil Ki = 1.4 and 1 nM at NK1R and SERT, respectively. BMS-795176 was efficacious in the gerbil FST; efficacy was observed with 35 ± 3% SERT occupancy and 73 ± 3% NK1R occupancy. The interaction between NK1R antagonism and SERT inhibition to lower the SERT occupancy required for antidepressant-like efficacy suggests that BMS-795176 has the potential to improve efficacy with a reduction in SSRI-associated side effects. PMID:23770339

  3. Differential regulation of peripheral IL-1β-induced mechanical allodynia and thermal hyperalgesia in rats.

    PubMed

    Kim, Min J; Lee, Sang Y; Yang, Kui Y; Nam, Soon H; Kim, Hyun J; Kim, Young J; Bae, Yong C; Ahn, Dong K

    2014-04-01

    This study examined the differential mechanisms of mechanical allodynia and thermal hyperalgesia after injection of interleukin (IL) 1β into the orofacial area of male Sprague-Dawley rats. The subcutaneous administration of IL-1β produced both mechanical allodynia and thermal hyperalgesia. Although a pretreatment with iodoresiniferatoxin (IRTX), a transient receptor potential vanilloid 1 (TRPV1) antagonist, did not affect IL-1β-induced mechanical allodynia, it significantly abolished IL-1β-induced thermal hyperalgesia. On the other hand, a pretreatment with D-AP5, an N-methyl-d-aspartate (NMDA) receptor antagonist, and NBQX, an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, blocked IL-1β-induced mechanical allodynia. Pretreatment with H89, a protein kinase A (PKA) inhibitor, blocked IL-1β-induced mechanical allodynia but not thermal hyperalgesia. In contrast, pretreatment with chelerythrine, a protein kinase C (PKC) inhibitor, inhibited IL-1β-induced thermal hyperalgesia. Subcutaneous injections of 2% lidocaine, a local anesthetic agent, blocked IL-1β-induced thermal hyperalgesia but not IL-1β-induced mechanical allodynia. In the resiniferatoxin (RTX)-pretreated rats, a subcutaneous injection of IL-1β did not produce thermal hyperalgesia due to the depletion of TRPV1 in the primary afferent fibers. Double immunofluorescence revealed the colocalization of PKA with neurofilament 200 (NF200) and of PKC with the calcitonin gene-related peptide (CGRP) in the trigeminal ganglion. Furthermore, NMDA receptor 1 (NR1) and TRPV1 predominantly colocalize with PKA and PKC, respectively, in the trigeminal ganglion. These results suggest that IL-1β-induced mechanical allodynia is mediated by sensitized peripheral NMDA/AMPA receptors through PKA-mediated signaling in the large-diameter primary afferent nerve fibers, whereas IL-1β-induced thermal hyperalgesia is mediated by sensitized peripheral TRPV1 receptors through PKC

  4. Redundancy of IL-1 Isoform Signaling and Its Implications for Arterial Remodeling

    PubMed Central

    Beltrami-Moreira, Marina; Vromman, Amélie; Sukhova, Galina K.; Folco, Eduardo J.; Libby, Peter

    2016-01-01

    Aims Mice deficient in IL-1 receptor 1 (hence unresponsive to both IL-1 isoforms α and β) have impaired expansive arterial remodeling due to diminished expression of matrix-degrading enzymes, especially MMP-3. Emergence of IL-1 as a target in cardiovascular disease prompted the investigation of the redundancy of IL-1α and IL-1β in the induction of MMP-3 and other matrix-remodeling enzymes in human cells. Methods and Results Human primary vascular smooth muscle cells (VSMCs) and carotid endarterectomy specimens were stimulated with equimolar concentrations of IL-1α or IL-1β and analyzed protease expression by immunoblot and ELISA. Either IL-1α or IL-1β increased the expression of pro-MMP-3 in VSMCs, facilitated VSMC migration through Matrigel, and induced MMP-3 production in specimens from atheromatous plaques. VSMCs also secreted MMP-1 and Cathepsin S (CatS) upon stimulation with IL-1α or IL-1β. IL-1 isoforms similarly increased MMP-1 and MMP-9 expression in carotid endarterectomy specimens. We examined the expression of MMP-3 and IL-1 isoforms by immunostaining of carotid atheromata, calculated the % positive areas, and tested associations by linear regression. MMP-3 colocalized with IL-1 isoforms in atheromata. MMP-3+ area in plaques positively associated with IL-1α+ (R2 = 0.61, P<0.001) and with IL-1β + areas (R2 = 0.68, P<0.001). MMP-3+ area within atheroma also associated with CD68+ area, but not with α-smooth muscle actin area. Conclusions Either IL-1α or IL-1β can induce the expression of enzymes implicated in remodeling of the arterial extracellular matrix, and facilitate human VSMC migration in vitro. Human atheromata contain both IL-1 isoforms in association with immunoreactive MMP-3. This redundancy of IL-1 isoforms suggests that selective blocking of one IL-1 isoform should not impair expansive arterial remodeling, a finding with important clinical implications for therapeutic targeting of IL-1 in atherosclerosis. PMID:27032103

  5. Type 2 Interleukin-4 Receptor Signaling in Neutrophils Antagonizes Their Expansion and Migration during Infection and Inflammation.

    PubMed

    Woytschak, Janine; Keller, Nadia; Krieg, Carsten; Impellizzieri, Daniela; Thompson, Robert W; Wynn, Thomas A; Zinkernagel, Annelies S; Boyman, Onur

    2016-07-19

    Neutrophils are the first immune cells recruited to sites of inflammation and infection. However, patients with allergic disorders such as atopic dermatitis show a paucity of skin neutrophils and are prone to bacterial skin infections, suggesting that allergic inflammation curtails neutrophil responses. Here we have shown that the type 2 cell signature cytokine interleukin-4 (IL-4) hampers neutrophil expansion and migration by antagonizing granulocyte colony-stimulating factor (G-CSF) and chemokine receptor-mediated signals. Cutaneous bacterial infection in mice was exacerbated by IL-4 signaling and improved with IL-4 inhibition, each outcome inversely correlating with neutrophil migration to skin. Likewise, systemic bacterial infection was worsened by heightened IL-4 activity, with IL-4 restricting G-CSF-induced neutrophil expansion and migration to tissues by affecting CXCR2-CXCR4 chemokine signaling in neutrophils. These effects were dependent on IL-4 acting through type 2 IL-4 receptors on neutrophils. Thus, targeting IL-4 might be beneficial in neutropenic conditions with increased susceptibility to bacterial infections. PMID:27438770

  6. AT1 receptor antagonism before ischemia prevents the transition of acute kidney injury to chronic kidney disease.

    PubMed

    Rodríguez-Romo, Roxana; Benítez, Kenia; Barrera-Chimal, Jonatan; Pérez-Villalva, Rosalba; Gómez, Arturo; Aguilar-León, Diana; Rangel-Santiago, Jesús F; Huerta, Sara; Gamba, Gerardo; Uribe, Norma; Bobadilla, Norma A

    2016-02-01

    Despite clinical recovery of patients from an episode of acute kidney injury (AKI), progression to chronic kidney disease (CKD) is possible on long-term follow-up. However, mechanisms of this are poorly understood. Here, we determine whether activation of angiotensin-II type 1 receptors during AKI triggers maladaptive mechanisms that lead to CKD. Nine months after AKI, male Wistar rats develop CKD characterized by renal dysfunction, proteinuria, renal hypertrophy, glomerulosclerosis, tubular atrophy, and tubulointerstitial fibrosis. Renal injury was associated with increased oxidative stress, inflammation, α-smooth muscle actin expression, and activation of transforming growth factor β; the latter mainly found in epithelial cells. Although administration of losartan prior to the initial ischemic insult did not prevent or reduce AKI severity, it effectively prevented eventual CKD. Three days after AKI, renal dysfunction, tubular structural injury, and elevation of urinary biomarkers were present. While the losartan group had similar early renal injury, renal perfusion was completely restored as early as day 3 postischemia. Further, there was increased vascular endothelial growth factor expression and an early activation of hypoxia-inducible factor 1 α, a transcription factor that regulates expression of many genes that help reduce renal injury. Thus, AT1 receptor antagonism prior to ischemia prevented AKI to CKD transition by improving early renal blood flow recovery, lesser inflammation, and increased hypoxia-inducible factor 1 α activity. PMID:26509589

  7. The role of CB1 receptors in sweet versus fat reinforcement: effect of CB1 receptor deletion, CB1 receptor antagonism (SR141716A) and CB1 receptor agonism (CP-55940).

    PubMed

    Ward, S J; Dykstra, L A

    2005-09-01

    It is well established that Cannabis sativa can increase appetite, particularly for sweet and palatable foods. In laboratory animals, cannabinoid CB1 receptor antagonism decreases motivation for palatable foods, and most recently, the CB1 receptor antagonist SR141716A, or rimonabant (Acomplia), was reported to produce weight loss in obese human subjects. Indeed, the endocannabinoid system plays a select role in the rewarding properties of palatable foods, and this is well characterized in laboratory animals with sweet sucrose solutions. In the present study, CB1 knockout mice (CB1 KO) and wild-type littermate mice (WT) were trained to respond for a complex sweet as well as a pure fat reinforcer under a progressive ratio (PR) schedule, to determine whether motivation to consume different palatable foods is tonically regulated by CB1 receptors. To assess sweet reinforcement, several concentrations of the liquid nutritional drink, Ensure, were presented under the PR schedule. For fat reinforcement, several concentrations of corn oil (emulsified in 3% xanthan gum) were made available. Additionally, to compare the result of genetic invalidation of the CB1 receptor to antagonism of the CB1 receptor system, the effect of SR141716A (3.0 mg/kg) on responding for Ensure and corn oil were also assessed using the PR schedule. We also assessed the effect of the CB1 agonist CP-55940 (30 microg/kg) on responding for Ensure and corn oil. CB1 KOs took significantly longer to acquire operant responding maintained by Ensure, and responding for Ensure under the PR schedule was significantly reduced in CB1 KOs as well as in WTs pretreated with SR141716A, as compared to WT controls. Additionally, pretreatment with the CB1 agonist CP-55940 increased responding for Ensure. In contrast, responding for corn oil during acquisition and under the PR schedule was not significantly different in CB1 KOs versus wild-type mice. However, SR141716A did reduce responding for corn oil in WTs, and CP

  8. NAAG fails to antagonize synaptic and extrasynaptic NMDA receptors in cerebellar granule neurons.

    PubMed

    Losi, G; Vicini, S; Neale, J

    2004-03-01

    The peptide transmitter N-acetylaspartylglutamate (NAAG) selectively activates the group II metabotropic glutamate receptors. Several reports also suggest that this peptide acts as a partial agonist at N-methyl-D-aspartate (NMDA) receptors but its putative antagonist effects have not been directly tested. To do this, we used whole cell recordings from cerebellar granule cells (CGC) in culture that allow the highest possible resolution of NMDA channel activation. When CGC were activated with equimolar concentrations of NMDA and NAAG, the peptide failed to alter the peak current elicited by NMDA. Very high concentrations of NAAG (100-200 microM) did not significantly reduce the current elicited by 10 microM NMDA or 0.1 microM glutamate, while 400 microM NAAG produced only a very small (less than 15%) reduction in these whole cell currents. Similarly, NAAG (400 microM) failed to significantly alter the average decay time constant or the peak amplitude of NMDA receptor-mediated miniature excitatory post-synaptic currents (mEPSCs). We conclude that high concentrations of the peptide do not exert physiologically relevant antagonist actions on synaptic NMDA receptor activation following vesicular release of glutamate. As an agonist, purified NAAG was found to be at least 10,000-fold less potent than glutamate in increasing "background" current via NMDA receptors on CGC. Inasmuch as it is difficult to confirm that NAAG preparations are completely free from contamination with glutamate at the 0.01% level, the peptide itself appears unlikely to have a direct agonist activity at the NMDA receptor subtypes found in CGC. Recent reports indicate that enhancing the activity of endogenous NAAG may be an important therapeutic approach to excitotoxicity and chronic pain perception. These effects are likely mediated by group II mGluRs, not NMDA receptors. PMID:14975672

  9. PASS Syndrome: An IL-1-Driven Autoinflammatory Disease.

    PubMed

    Leuenberger, Mathieu; Berner, Jeanne; Di Lucca, Julie; Fischer, Lara; Kaparos, Nikolaos; Conrad, Curdin; Hohl, Daniel; So, Alexander; Gilliet, Michel

    2016-01-01

    PASS syndrome is a rare inflammatory disease characterized by a chronic-relapsing course of pyoderma gangrenosum, acne vulgaris, hidradenitis suppurativa and ankylosing spondylitis. Here, we describe a case of a patient with spontaneously recurrent purulent skin lesions along with seronegative spondylarthritis consistent with the PASS syndrome. During his disease exacerbation, the patient displayed episodes of fever along with elevated serum levels of interleukin (IL)-1β. Skin lesions were characterized by sterile neutrophilic infiltrates and showed a rapid response to the IL-1 receptor antagonist anakinra (Kineret®) consistent with the autoinflammatory nature of this disease. However, unlike other autoinflammatory diseases such as PAPA and PAPASH, we did not find mutations in the gene PSTPIP1, raising the possibility that other specific mutations in the IL-1 pathway may be involved. PMID:26919742

  10. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  11. Using prepulse inhibition to detect functional D3 receptor antagonism: effects of WC10 and WC44.

    PubMed

    Weber, Martin; Chang, Wei-Li; Durbin, John P; Park, Paula E; Luedtke, Robert R; Mach, Robert H; Swerdlow, Neal R

    2009-08-01

    Prepulse inhibition of startle (PPI) is an operational measure of sensorimotor gating that is impaired in schizophrenia. Treatment with mixed dopamine D2/D3 antagonists diminishes schizophrenia symptoms, and opposes dopamine agonist-induced PPI deficits in rats. There are reasons to believe that functional D3 receptor antagonists might offer more favorable therapeutic profiles compared to current antipsychotics. However, D3-related drug discovery is hampered by the absence of assays sensitive to D3-mediated (antipsychotic) properties in vivo. Here, we characterized two putative D3-active compounds - WC10 and WC44 - in a PPI-based screening assay, comparing the sensitivity of test compounds to oppose PPI deficits induced by the mixed D1/D2-like agonist apomorphine vs. the preferential D3 agonist pramipexole in rats. WC10, WC44 (0, 1, 3, 10 mg/kg, each), and the preferential D2 antagonist L741,626 (0, 1 mg/kg) were studied, in combination with apomorphine (0, 0.5 mg/kg), or pramipexole (0, 1 mg/kg). L741,626 prevented apomorphine-, but not pramipexole-induced PPI deficits. WC10, but not WC44, prevented apomorphine-induced PPI deficits; both compounds opposed pramipexole-induced PPI deficits, suggesting functional D3 and D1/D2 antagonist profiles for WC10, and functional D3 receptor antagonism for WC44. This assay may be valuable for detecting predominantly D3 vs. D2 receptor-linked mechanisms of action in vivo. PMID:19426754

  12. Differential Modulation of Reinforcement Learning by D2 Dopamine and NMDA Glutamate Receptor Antagonism

    PubMed Central

    Klein, Tilmann A.; Ullsperger, Markus

    2014-01-01

    The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select (“approach”) rewarding and to reject (“avoid”) punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not. PMID:25253860

  13. Differential modulation of reinforcement learning by D2 dopamine and NMDA glutamate receptor antagonism.

    PubMed

    Jocham, Gerhard; Klein, Tilmann A; Ullsperger, Markus

    2014-09-24

    The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select ("approach") rewarding and to reject ("avoid") punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not. PMID:25253860

  14. Influence of melatonin on IL-1Ra gene and IL-1 expression in rats with liver ischemia reperfusion injury

    PubMed Central

    ZHOU, HONG; JIANG, CHUNHUI; GU, LEI; LIU, YE; SUN, LONGCI; XU, QING

    2016-01-01

    The aim of the present study was to explore the influence of melatonin (MT) on rats with liver ischemia reperfusion injury (IRI) and its mechanism. A total of 66 male Sprague-Dawley rats were randomly divided into 3 groups: i) Normal control group, ii) ischemia reperfusion group (IR group) and iii) melatonin treatment group (MT group). Rats in the MT group were administered an intraperitoneal injection of MT (10 mg/kg, 1 ml) at 70 and 35 min before ischemia, early reperfusion, and 1 and 2 h after reperfusion, respectively. Blood was removed at the normal time-point (prior to any processes), 35 min before ischemia, 2, 4, 8 and 24 h after reperfusion. Subsequently the rats were sacrificed. The pathological changes of liver tissues, interleukin-1 receptor antagonist (IL-1Ra) gene and IL-1 expression levels were detected. There were no evident differences between the immediate reperfusion and 2 h IR group and MT group. The liver structure injury of the 4, 8 and 24 h MT groups were improved to various differences compared to the corresponding IR group; liver IL-1β of the MT group at 35 min after ischemia, and 2, 4, 8 and 24 h after reperfusion was evidently lower than that of the IR group (P<0.05); IL-1Ra mRNA expression in the 2 h MT group was higher compared to the 2 h IR group by 4.85-fold; and IL-1Ra mRNA expression in the 4 h MT group was higher compared to the 4 h IR group by 9.34-fold. Differences between two groups at other time-points were <2-fold. In conclusion, MT can upregulate IL-1Ra gene expression by reducing generation of IL-1 thus reducing IRI. PMID:27284404

  15. Angiotensin and mineralocorticoid receptor antagonism attenuates cardiac oxidative stress in angiotensin II-infused rats.

    PubMed

    Minas, Jacqueline N; Thorwald, Max A; Conte, Debra; Vázquez-Medina, Jose-Pablo; Nishiyama, Akira; Ortiz, Rudy M

    2015-11-01

    Angiotensin II (Ang II) and aldosterone contribute to hypertension, oxidative stress and cardiovascular damage, but the contributions of aldosterone during Ang II-dependent hypertension are not well defined because of the difficulty to assess each independently. To test the hypothesis that during Ang II infusion, oxidative and nitrosative damage is mediated through both the mineralocorticoid receptor (MR) and angiotensin type 1 receptor (AT1), five groups of Sprague-Dawley rats were studied: (i) control; (ii) Ang II infused (80 ng/min × 28 days); (iii) Ang II + AT1 receptor blocker (ARB; 10 mg losartan/kg per day × 21 days); (iv) Ang II + mineralocorticoid receptor (MR) antagonist (Epl; 100 mg eplerenone/day × 21 days); and (v) Ang II + ARB + Epl (Combo; × 21 days). Both ARB and combination treatments completely alleviated the Ang II-induced hypertension, whereas eplerenone treatment only prolonged the onset of the hypertension. Eplerenone treatment exacerbated the Ang II-mediated increase in plasma and heart aldosterone 2.3- and 1.8-fold, respectively, while ARB treatment reduced both. Chronic MR blockade was sufficient to ameliorate the AT1-mediated increase in oxidative damage. All treatments normalized protein oxidation (nitrotyrosine) levels; however, only ARB and Combo treatments completely reduced lipid peroxidation (4-hydroxynonenal) to control levels. Collectively, these data suggest that receptor signalling, and not the elevated arterial blood pressure, is the principal culprit in the oxidative stress-associated cardiovascular damage in Ang II-dependent hypertension. PMID:26234762

  16. Fibroblast and endothelial outgrowth from human Tenon's explants: inhibition of fibroblast growth by 5HT receptor antagonism.

    PubMed

    Mullaney, P; Curren, B; Collum, L; Kilfeather, S

    1991-11-01

    Tenon's layer capsule is a major source of fibroplasia associated with post-traumatic wound healing in the external eye and failure of filtration surgery for glaucoma (trabeculectomy). We have investigated the cell types involved in outgrowth from human Tenon's layer explants in culture. Outgrowth from explants maintained in fetal bovine serum (5%) and fibroblast conditioned medium (25%) consisted of endothelial cells exhibiting factor VIII antibody staining and were located to sectioned capillary ends. In media supplemented with human serum (10%), fibroblast outgrowth was observed from the entire perimeter of explants. The mitogenic stimulus of human serum on fibroblasts, monitored by 3H-thymidine uptake, was dose-dependent and accompanied by a 200% increase in inositol phosphate production. 5HT induced a significant increase in fibroblast proliferation and 5HT receptor antagonism with methysergide (20 microM) reduced serum-induced mitogenesis by 30%. These findings support the role of fibroblasts in failure of filtration surgery for glaucoma and suggest a role for 5HT in serum-derived Tenon's fibroplasia. PMID:1811281

  17. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B

    2013-01-01

    Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http

  18. Grape powder attenuates the negative effects of GLP-1 receptor antagonism by exendin-3 (9-39) in a normoglycemic mouse model.

    PubMed

    Haufe, T C; Gilley, A D; Goodrich, K M; Ryan, C M; Smithson, A T; Hulver, M W; Liu, D; Neilson, A P

    2016-06-15

    Prediabetes is a condition affecting 35% of US adults and about 50% of US adults age 65+. Foods rich in polyphenols, including flavanols and other flavonoids, have been studied for their putative beneficial effects on many different health conditions including type 2 diabetes mellitus and prediabetes. Studies have shown that some flavanols increase glucagon-like peptide 1 (GLP-1) secretion. GLP-1 is a feeding hormone that increases insulin secretion after carbohydrate consumption, and increased GLP-1 secretion may be responsible for some of the beneficial effects on glycemic control after flavanol consumption. The present study explored the effects of grape powder consumption on metrics of glycemic health in normoglycemic and prediabetic C57BL/6J mice; additionally, the mechanism of action of grape powder polyphenols was investigated. Grape powder significantly reduced (p < 0.01) blood glucose levels following oral glucose gavage after GLP-1 receptor antagonism by exendin-3 (9-39) compared to sugar-matched control, indicating that it was able to attenuate the hyperglycemic effects of GLP-1 receptor antagonism. Grape powder was employed in acute (1.6 g grape powder per kg bodyweight) and long-term high fat diet (grape powder incorporated into treatment diets at 5% w/w) feeding studies in normoglycemic and prediabetic (diet-induced obesity) mice; grape powder did not impove glycemic control in these studies versus sugar-matched control. The mechanisms by which grape powder ameliorates the deleterious effects of GLP-1 receptor antagonism warrant further study. PMID:27189193

  19. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease

    PubMed Central

    Takahashi, Hiroto; Xia, Peng; Cui, Jiankun; Talantova, Maria; Bodhinathan, Karthik; Li, Wenjun; Holland, Emily A.; Tong, Gary; Piña-Crespo, Juan; Zhang, Dongxian; Nakanishi, Nobuki; Larrick, James W.; McKercher, Scott R.; Nakamura, Tomohiro; Wang, Yuqiang; Lipton, Stuart A.

    2015-01-01

    Stroke and vascular dementia are leading causes of morbidity and mortality. Neuroprotective therapies have been proposed but none have proven clinically tolerated and effective. While overstimulation of N-methyl-d-aspartate-type glutamate receptors (NMDARs) is thought to contribute to cerebrovascular insults, the importance of NMDARs in physiological function has made this target, at least in the view of many in ‘Big Pharma,’ ‘undruggable’ for this indication. Here, we describe novel NitroMemantine drugs, comprising an adamantane moiety that binds in the NMDAR-associated ion channel that is used to target a nitro group to redox-mediated regulatory sites on the receptor. The NitroMemantines are both well tolerated and effective against cerebral infarction in rodent models via a dual allosteric mechanism of open-channel block and NO/redox modulation of the receptor. Targeted S-nitrosylation of NMDARs by NitroMemantine is potentiated by hypoxia and thereby directed at ischemic neurons. Allosteric approaches to tune NMDAR activity may hold therapeutic potential for cerebrovascular disorders. PMID:26477507

  20. Antagonism of Neuronal Prostaglandin E2 Receptor Subtype 1 Mitigates Amyloid β Neurotoxicity In Vitro

    PubMed Central

    Li, Xianwu; Rose, Shannon; Montine, Kathleen; Keene, C. Dirk; Montine, Thomas J.

    2013-01-01

    Multiple lines of evidence indicate that regional brain eicosanoid signaling is important in initiation and progression of neurodegenerative conditions that have a neuroinflammatory pathologic component, such as AD. We hypothesized that PGE2 receptor subtype 1 (EP1) signaling (linked to intracellular Ca2+ release) regulates Aβ peptide neurotoxicity and tested this in two complementary in vitro models: a human neuroblastoma cell line (MC65) producing Aβ1-40 through conditional expression of the APP C-terminal portion, and murine primary cortical neuron cultures exposed to Aβ1-42. In MC65 cells, EP1 receptor antagonist SC-51089 reduced Aβ neurotoxicity ~50% without altering high molecular weight Aβ immunoreactive species formation. Inositol-3-phosphate receptor antagonist 2-aminoethoxy-diphenyl borate offered similar protection. SC-51089 largely protected the neuron cultures from synthetic Aβ1-42 neurotoxicity. Nimodipine, a Ca2+ channel blocker, was completely neuroprotective in both models. Based on these data, we conclude that suppressing neuronal EP1 signaling may represent a promising therapeutic approach to ameliorate Aβ peptide neurotoxicity. PMID:22718277

  1. GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1β/IL1R1 response

    PubMed Central

    De Marco, Paola; Lappano, Rosamaria; Francesco, Ernestina Marianna De; Cirillo, Francesca; Pupo, Marco; Avino, Silvia; Vivacqua, Adele; Abonante, Sergio; Picard, Didier; Maggiolini, Marcello

    2016-01-01

    Cancer-associated fibroblasts (CAFs) contribute to the malignant aggressiveness through secreted factors like IL1β, which may drive pro-tumorigenic inflammatory phenotypes mainly acting via the cognate receptor named IL1R1. Here, we demonstrate that signalling mediated by the G protein estrogen receptor (GPER) triggers IL1β and IL1R1 expression in CAFs and breast cancer cells, respectively. Thereby, ligand-activation of GPER generates a feedforward loop coupling IL1β induction by CAFs to IL1R1 expression by cancer cells, promoting the up-regulation of IL1β/IL1R1 target genes such as PTGES, COX2, RAGE and ABCG2. This regulatory interaction between the two cell types induces migration and invasive features in breast cancer cells including fibroblastoid cytoarchitecture and F-actin reorganization. A better understanding of the mechanisms involved in the regulation of pro-inflammatory cytokines by GPER-integrated estrogen signals may be useful to target these stroma-cancer interactions. PMID:27072893

  2. Central V1b receptor antagonism in lactating rats: impairment of maternal care but not of maternal aggression.

    PubMed

    Bayerl, D S; Klampfl, S M; Bosch, O J

    2014-12-01

    Maternal behaviour in rodents is mediated by the central oxytocin and vasopressin systems, amongst others. The role of vasopressin, acting via the V1a receptor (V1aR), on maternal care and maternal aggression has recently been described. However, a potential involvement of the V1b receptor (V1bR) in maternal behaviour has only been demonstrated in knockout mice. The present study aimed to examine the effects of central pharmacological manipulation of the V1bR on maternal behaviour in lactating Wistar rats. On pregnancy day 18, female rats were implanted with a guide cannula targeting the lateral ventricle. After parturition, dams received an acute central infusion of a specific V1bR agonist (d[Leu4,Lys8]VP) or V1bR antagonist (SSR149415) once daily, followed by observations of maternal care [lactation day (LD) 1], maternal motivation in the pup retrieval test (LD 2), anxiety-related behaviour on the elevated plus-maze (LD 3) and maternal aggression in the maternal defence test followed by maternal care monitoring (LD 4). Our data demonstrate that, under nonstress conditions, the V1bR antagonist decreased the occurrence of both nursing and mother-pup interaction, whereas the V1bR agonist did not affect either parameter. Under stress conditions (i.e. after the maternal defence test), mother-pup interaction was decreased by infusion of the V1bR antagonist. During the maternal defence test, neither treatment affected aggressive or non-aggressive behaviour. Finally, neither treatment altered maternal motivation or anxiety. In conclusion, central V1bR antagonism modulates aspects of maternal care but not of maternal aggression or maternal motivation in lactating rats. These findings further extend our knowledge on the vasopressin system as a vital mediator of maternal behaviour. PMID:25283607

  3. Subgingival Plaque in Periodontal Health Antagonizes at Toll-Like Receptor 4 and Inhibits E-Selectin Expression on Endothelial Cells

    PubMed Central

    Gümüş, Pinar; Nizam, Nejat; Buduneli, Nurcan

    2015-01-01

    The ability of the subgingival microbial community to induce an inappropriate inflammatory response ultimately results in the destruction of bone and gingival tissue. In this study, subgingival plaque samples from both healthy and diseased sites in the same individual were obtained from adults with chronic periodontitis and screened for their ability to either activate Toll-like receptor 2 (TLR2) or TLR4 and to antagonize TLR4-specific activation by agonist, Fusobacterium nucleatum LPS. Subgingival plaque from diseased sites strongly activated TLR4, whereas matched plaque samples obtained from healthy sites were significantly more variable, with some samples displaying strong TLR4 antagonism, while others were strong TLR4 agonists when combined with F. nucleatum LPS. Similar results were observed when TLR4 dependent E-selectin expression by endothelial cells was determined. These results are the first to demonstrate TLR4 antagonism from human plaque samples and demonstrate that healthy but not diseased sites display a wide variation in TLR4 agonist and antagonist behavior. The results have identified a novel characteristic of clinically healthy sites and warrant further study on the contribution of TLR4 antagonism in the progression of a healthy periodontal site to a diseased one. PMID:26483407

  4. Selective antagonism of the GABAA receptor by ciprofloxacin and biphenylacetic acid

    PubMed Central

    Green, M A; Halliwell, R F

    1997-01-01

    Previous studies have shown that ciprofloxacin and biphenylacetic acid (BPAA) synergistically inhibit γ-aminobutyric acid (GABA)A receptors. In the present study, we have investigated the actions of these two drugs on other neuronal ligand-gated ion channels. Agonist-evoked depolarizations were recorded from rat vagus and optic nerves in vitro by use of an extracellular recording technique. GABA (50 μM)-evoked responses, in the vagus nerve in vitro, were inhibited by bicuculline (0.3–10 μM) and picrotoxin (0.3–10 μM), with IC50 values and 95% confidence intervals (CI) of 1.2 μM (1.1–1.4) and 3.6 μM (3.0–4.3), respectively, and were potentiated by sodium pentobarbitone (30 μM) and diazepam (1 μM) to (mean±s.e.mean) 168±18% and 117±4% of control, respectively. 5-Hydroxytryptamine (5-HT; 0.5 μM)-evoked responses were inhibited by MDL 72222 (1 μM) to 10±4% of control; DMPP (10 μM)-evoked responses were inhibited by hexamethonium (100 μM) to 12±5% of control, and αbMeATP (30 μM)-evoked responses were inhibited by PPADS (10 μM) to 21±5% of control. Together, these data are consistent with activation of GABAA, 5-HT3, nicotinic ACh and P2X receptors, respectively. Ciprofloxacin (10–3000 μM) inhibited GABAA-mediated responses in the vagus nerve with an IC50 (and 95% CI) of 202 μM (148–275). BPAA (1–1000 μM) had little or no effect on the GABAA-mediated response but concentration-dependently potentiated the effects of ciprofloxacin by up to 33,000 times. Responses mediated by 5-HT3, nicotinic ACh and P2X receptors in the vagus nerve and strychnine-sensitive glycine receptors in the optic nerve were little or unaffected by ciprofloxacin (100 μM), BPAA (100 μM) or the combination of these drugs (both at 100 μM). GABA (1 mM)-evoked responses in the optic nerve were inhibited by bicuculline with an IC50 of 3.6 μM (2.8–4.5), a value not significantly different from that determined in the vagus

  5. Selective antagonism of the GABA(A) receptor by ciprofloxacin and biphenylacetic acid.

    PubMed

    Green, M A; Halliwell, R F

    1997-10-01

    1. Previous studies have shown that ciprofloxacin and biphenylacetic acid (BPAA) synergistically inhibit y-aminobutyric acid (GABA)A receptors. In the present study, we have investigated the actions of these two drugs on other neuronal ligand-gated ion channels. 2. Agonist-evoked depolarizations were recorded from rat vagus and optic nerves in vitro by use of an extracellular recording technique. 3. GABA (50 microM)-evoked responses, in the vagus nerve in vitro, were inhibited by bicuculline (0.3-10 microM) and picrotoxin (0.3-10 microM), with IC50 values and 95% confidence intervals (CI) of 1.2 microM (1.1-1.4) and 3.6 microM (3.0-4.3), respectively, and were potentiated by sodium pentobarbitone (30 microM) and diazepam (1 microM) to (mean+/-s.e.mean) 168+/-18% and 117+/-4% of control, respectively. 5-Hydroxytryptamine (5-HT; 0.5 microM)-evoked responses were inhibited by MDL 72222 (1 microM) to 10+/-4% of control; DMPP (10 microM)-evoked responses were inhibited by hexamethonium (100 microM) to 12+/-5% of control, and alphabetaMeATP (30 microM)-evoked responses were inhibited by PPADS (10 microM) to 21+/-5% of control. Together, these data are consistent with activation of GABA(A), 5-HT3, nicotinic ACh and P2X receptors, respectively. 4 Ciprofloxacin (10-3000 microM) inhibited GABA(A)-mediated responses in the vagus nerve with an IC50 (and 95% CI) of 202 microM (148-275). BPAA (1-1000 microM) had little or no effect on the GABA(A)-mediated response but concentration-dependently potentiated the effects of ciprofloxacin by up to 33,000 times. 5. Responses mediated by 5-HT3, nicotinic ACh and P2X receptors in the vagus nerve and strychnine-sensitive glycine receptors in the optic nerve were little or unaffected by ciprofloxacin (100 microM), BPAA (100 microM) or the combination of these drugs (both at 100 microM). 6. GABA (1 mM)-evoked responses in the optic nerve were inhibited by bicuculline with an IC50 of 3.6 microM (2.8-4.5), a value not significantly different

  6. Interleukin-1 (IL-1) system gene expression in granulosa cells: kinetics during terminal preovulatory follicle maturation in the mare

    PubMed Central

    Martoriati, Alain; Gérard, Nadine

    2003-01-01

    Background A growing body of evidences suggests that the ovary is a site of inflammatory reactions, and thus, ovarian cells could represent sources and targets of the interleukin-1 (IL-1) system. The purpose of this study was to examine the IL-1 system gene expressions in equine granulosa cells, and to study the IL-1β content in follicular fluid during the follicle maturation. For this purpose, granulosa cells and follicular fluids were collected from the largest follicle at the early dominance stage (diameter 24 ± 3 mm) or during the preovulatory maturation phase, at T0 h, T6 h, T12 h, T24 h and T34 h after induction of ovulation. Cells were analysed by RT-PCR and follicular fluids were studied by gel electrophoresis and immunoblotting. Results We demonstrated that interleukin-1β (IL-1β), interleukin-1 receptor 2 (IL-1R2) and interleukin-1 receptor antagonist (IL-1RA) genes are expressed in equine granulosa cells. We observed that the IL-1β and IL-1RA mRNA content changed in granulosa cells during the terminal follicular maturation whereas IL-1R2 mRNA did not vary. In follicular fluid, IL-1β content fluctuated few hours after induction of ovulation. Conclusions The expression of IL-1β gene in granulosa cells and the follicular fluid IL-1β content seem to be regulated by gonadotropins suggesting that IL-1β could be an intermediate paracrine factor involved in ovulation. PMID:12803652

  7. IL-1α Counteract TGF-β Regulated Genes and Pathways in Human Fibroblasts.

    PubMed

    Koskela von Sydow, Anita; Janbaz, Chris; Kardeby, Caroline; Repsilber, Dirk; Ivarsson, Mikael

    2016-07-01

    Dysregulated wound healing is commonly associated with excessive fibrosis. Connective tissue growth factor (CTGF/CCN2) is characteristically overexpressed in fibrotic diseases and stimulated by transforming growth factor-β (TGF-β) in dermal fibroblasts. We previously showed that interleukin-1 (IL-1α) counteracts TGF-β-stimulated CTGF mRNA and protein expression in these cells. The aim of this study was to explore the effects of IL-1α on further genes and pathways in TGF-β regulated fibroblasts. Transcriptional microarray and multiple comparison analysis showed that the antagonizing effects of IL-1α was much more prominent than the synergistic effects, both with respect to number of genes and extent of changes in gene expression. Moreover, comparing canonical pathways by gene set enrichment analysis and the Ingenuity Pathway Analysis tool revealed that IL-1α counteracted TGF-β in the top six most confident pathways regulated by both cytokines. Interferon and IL-1 signaling, as well as two pathways involved in apoptosis signaling were suppressed by TGF-β and activated by IL-1α. Pathways involving actin remodeling and focal adhesion dynamics were activated by TGF-β and suppressed by IL-1α. Analyzing upstream regulators in part corroborate the comparison of canonical pathways and added cell cycle regulators as another functional group regulated by IL-1α. Finally, gene set enrichment analysis of fibrosis-related genes indicated that IL-1 moderately counteracts the collective effect of TGF-β on these genes. Microarray results were validated by qPCR. Taken together, the results indicate prominent antagonistic effects of IL-1α on TGF-β regulated interferon signaling, as well as on a wide variety of other genes and pathways in fibroblasts. J. Cell. Biochem. 117: 1622-1632, 2016. © 2015 Wiley Periodicals, Inc. PMID:26629874

  8. Inflammatory responses of airway smooth muscle cells and effects of endothelin receptor antagonism.

    PubMed

    Knobloch, Jürgen; Lin, Yingfeng; Konradi, Jürgen; Jungck, David; Behr, Juergen; Strauch, Justus; Stoelben, Erich; Koch, Andrea

    2013-07-01

    Endothelin receptor antagonists (ETRAs), authorized for pulmonary hypertension, have failed to prove their utility in chronic lung diseases with corticosteroid-resistant airway inflammation when applied at late disease stages with emphysema/fibrosis. Earlier administration might prove effective by targeting the interaction between airway inflammation and tissue remodeling. We hypothesized that human airway smooth muscle cells (HASMCs) participate in linking inflammation with remodeling and that associated genes become differentially suppressed by ambrisentan (A-receptor selective ETRA) and bosentan (nonselective/dual ETRA). Inflammatory responses of ex vivo-cultivated HASMCs to TNF-α were investigated by whole-genome microarray analyses. qRT-PCR and ELISA were used to test inflammatory and remodeling genes for sensitivity to bosentan and ambrisentan and to investigate differential sensitivities mechanistically. ETRA and corticosteroid effects were compared in HASMCs from patients with chronic obstructive pulmonary disease. TNF-α induced the expression of 18 cytokines/chemokines and five tissue remodeling genes involved in severe, corticosteroid-insensitive asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and/or pulmonary hypertension. Thirteen cytokines/chemokines, MMP13, and WISP1 were suppressed by ETRAs. Eight genes had differential sensitivity to bosentan and ambrisentan depending on the endothelin-B receptor impact on transcriptional regulation and mRNA stabilization. Chemokine (C-C motif) ligands 2 and 5, granulocyte macrophage colony-stimulating factor, and MMP13 had increased sensitivity to bosentan or bosentan/dexamethasone combination versus dexamethasone alone. Suppression of cytokine and remodeling gene expression by ETRAs was confirmed in TNF-α-activated human bronchial epithelial cells. HASMCs and human bronchial epithelial cells participate in the interaction of inflammation and tissue remodeling. This interaction is

  9. Growth hormone receptor antagonism suppresses tumour regrowth after radiotherapy in an endometrial cancer xenograft model.

    PubMed

    Evans, Angharad; Jamieson, Stephen M F; Liu, Dong-Xu; Wilson, William R; Perry, Jo K

    2016-08-28

    Human GH expression is associated with poor survival outcomes for endometrial cancer patients, enhanced oncogenicity of endometrial cancer cells and reduced sensitivity to ionising radiation in vitro, suggesting that GH is a potential target for anticancer therapy. However, whether GH receptor inhibition sensitises to radiotherapy in vivo has not been tested. In the current study, we evaluated whether the GH receptor antagonist, pegvisomant (Pfizer), sensitises to radiotherapy in vivo in an endometrial tumour xenograft model. Subcutaneous administration of pegvisomant (20 or 100 mg/kg/day, s.c.) reduced serum IGF1 levels by 23% and 68%, respectively, compared to vehicle treated controls. RL95-2 xenografts grown in immunodeficient NIH-III mice were treated with vehicle or pegvisomant (100 mg/kg/day), with or without fractionated gamma radiation (10 × 2.5 Gy over 5 days). When combined with radiation, pegvisomant significantly increased the median time tumours took to reach 3× the pre-radiation treatment volume (49 days versus 72 days; p = 0.001). Immunohistochemistry studies demonstrated that 100 mg/kg pegvisomant every second day was sufficient to abrogate MAP Kinase signalling throughout the tumour. In addition, treatment with pegvisomant increased hypoxic regions in irradiated tumours, as determined by immunohistochemical detection of pimonidazole adducts, and decreased the area of CD31 labelling in unirradiated tumours, suggesting an anti-vascular effect. Pegvisomant did not affect intratumoral staining for HIF1α, VEGF-A, CD11b, or phospho-EGFR. Our results suggest that blockade of the human GH receptor may improve the response of GH and/or IGF1-responsive endometrial tumours to radiation. PMID:27241667

  10. i-bodies, Human Single Domain Antibodies That Antagonize Chemokine Receptor CXCR4.

    PubMed

    Griffiths, Katherine; Dolezal, Olan; Cao, Benjamin; Nilsson, Susan K; See, Heng B; Pfleger, Kevin D G; Roche, Michael; Gorry, Paul R; Pow, Andrew; Viduka, Katerina; Lim, Kevin; Lu, Bernadine G C; Chang, Denison H C; Murray-Rust, Thomas; Kvansakul, Marc; Perugini, Matthew A; Dogovski, Con; Doerflinger, Marcel; Zhang, Yuan; Parisi, Kathy; Casey, Joanne L; Nuttall, Stewart D; Foley, Michael

    2016-06-10

    CXCR4 is a G protein-coupled receptor with excellent potential as a therapeutic target for a range of clinical conditions, including stem cell mobilization, cancer prognosis and treatment, fibrosis therapy, and HIV infection. We report here the development of a fully human single-domain antibody-like scaffold termed an "i-body," the engineering of which produces an i-body library possessing a long complementarity determining region binding loop, and the isolation and characterization of a panel of i-bodies with activity against human CXCR4. The CXCR4-specific i-bodies show antagonistic activity in a range of in vitro and in vivo assays, including inhibition of HIV infection, cell migration, and leukocyte recruitment but, importantly, not the mobilization of hematopoietic stem cells. Epitope mapping of the three CXCR4 i-bodies AM3-114, AM4-272, and AM3-523 revealed binding deep in the binding pocket of the receptor. PMID:27036939

  11. Bradykinin B2, but not B1, receptor antagonism has a neuroprotective effect after brain injury.

    PubMed

    Görlach, C; Hortobágyi, T; Hortobágyi, S; Benyó, Z; Relton, J; Whalley, E T; Wahl, M

    2001-08-01

    The aim of the present study was to measure the therapeutic effects of bradykinin antagonists on lesion volume and brain swelling induced by cold injury in the parietal cortex of rat and mouse, respectively. Cold lesion was induced by application of a precooled (-78 degrees C) copper cylinder (3 mm diameter) to the intact dura of rat and mouse for 6 and 30 sec, respectively. At 24 h after the injury, the brains were removed and lesion volume was determined by the triphenyltetrazolium chloride method in rats. In the mouse, brain swelling was expressed as percentage increase in weight of the injured hemisphere which is compared to the contralateral side. After a subcutaneous priming dose of 18 microg/kg, a 1-h pretreatment and 24-h posttreatment using osmotic minipumps (300 ng/kg x min) was applied. Hoe140, a bradykinin receptor 2 antagonist, revealed a 19% reduction of lesion volume (p < 0.05) in the rat and a 14% diminution of brain swelling (p < 0.05) in the mouse. In contrast, the bradykinin receptor 1 antagonist, B 9858, had no effect on lesion volume compared to sham treated rats. When B 9858 was given in combination with Hoe140, a significant reduction in lesion volume was seen which was equivalent to and not different from that seen with Hoe140 alone in the rat. We conclude that brain injury after cold lesion is partially mediated by bradykinin and can be successfully treated with B2 antagonists. PMID:11526989

  12. The role of CD4-Lck in T-cell receptor antagonism: evidence for negative signaling.

    PubMed Central

    Racioppi, L; Matarese, G; D'Oro, U; De Pascale, M; Masci, A M; Fontana, S; Zappacosta, S

    1996-01-01

    Small changes in the complex between a peptide and a molecule of the major histocompatibility complex generate ligands able to partially activate (partial agonist) or even inhibit (antagonist) T-cell functions. T-cell receptor engagement of antagonist complex results in a partial zeta chain phosphorylation without activation of the associated ZAP-70 kinase. Herein we show that, despite a strong inhibition of both inositol phospholipid hydrolysis and extracellular increasing antagonist concentrations increased the activity of the CD4-Lck kinase. Addition of anti-CD4 antibody to culture medium prevented inhibitory effects induced by antagonist ligand. We propose that CD4-Lck activation triggered by antagonist complexes may act in a dominant negative mode, thus overriding stimulatory signals coming from agonist ligand. These findings identify a new T-cell signaling profile that may explain the ability of some T-cell receptor variant ligands to inhibit specific biological activities or trigger alternative activation programs. Images Fig. 3 Fig. 4 PMID:8816805

  13. alpha1-noradrenergic receptor antagonism blocks dependence-induced increases in responding for ethanol.

    PubMed

    Walker, Brendan M; Rasmussen, Dennis D; Raskind, Murray A; Koob, George F

    2008-03-01

    The purpose of this study was to test the hypothesis that blockade of alpha1-adrenergic receptors may suppress the excessive ethanol consumption associated with acute withdrawal in ethanol-dependent rats. Following the acquisition and stabilization of operant ethanol self-administration in male Wistar rats, dependence was induced in half the animals by subjecting them to a 4-week intermittent vapor exposure period in which animals were exposed to ethanol vapor for 14h/day. Subsequent to dependence induction, the effect of alpha1-noradrenergic receptor antagonist prazosin (0.0, 0.25, 0.5, 1, 1.5, and 2.0mg/kg IP) was tested on operant responding for ethanol in vapor-exposed and control rats during acute withdrawal. In ethanol-dependent animals, prazosin significantly suppressed responding at the 1.5 and 2.0mg/kg doses, whereas only the 2.0mg/kg dose was effective in nondependent animals, identifying an increase in the sensitivity to prazosin in dependent animals. Conversely, at the lowest dose tested (0.25mg/kg), prazosin increased responding in nondependent animals, which is consistent with the effect of anxiolytics on ethanol self-administration in nondependent animals. None of the doses tested reliably affected concurrent water self-administration. These results suggest the involvement of the noradrenergic system in the excessive alcohol drinking seen during acute withdrawal in ethanol-dependent rats. PMID:18358987

  14. IL-1α and inflammasome-independent IL-1β promote neutrophil infiltration following alum vaccination.

    PubMed

    Oleszycka, Ewa; Moran, Hannah B T; Tynan, Graham A; Hearnden, Claire H; Coutts, Graham; Campbell, Matthew; Allan, Stuart M; Scott, Christopher J; Lavelle, Ed C

    2016-01-01

    Despite its long record of successful use in human vaccines, the mechanisms underlying the immunomodulatory effects of alum are not fully understood. Alum is a potent inducer of interleukin-1 (IL-1) secretion in vitro in dendritic cells and macrophages via Nucleotide-binding domain and leucine-rich repeat-containing (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome activation. However, the contribution of IL-1 to alum-induced innate and adaptive immune responses is controversial and the role of IL-1α following alum injection has not been addressed. This study shows that IL-1 is dispensable for alum-induced antibody and CD8 T cell responses to ovalbumin. However, IL-1 is essential for neutrophil infiltration into the injection site, while recruitment of inflammatory monocytes and eosinophils is IL-1 independent. Both IL-1α and IL-1β are released at the site of injection and contribute to the neutrophil response. Surprisingly, these effects are NLRP3-inflammasome independent as is the infiltration of other cell populations. However, while NLRP3 and caspase 1 were dispensable, alum-induced IL-1β at the injection site was dependent on the cysteine protease cathepsin S. Overall, these data demonstrate a previously unreported role for cathepsin S in IL-1β secretion, show that inflammasome formation is dispensable for alum-induced innate immunity and reveal that IL-1α and IL-1β are both necessary for alum-induced neutrophil influx in vivo. PMID:26536497

  15. The Androgen Receptor Antagonizes Wnt/β-Catenin Signaling in Epidermal Stem Cells

    PubMed Central

    Kretzschmar, Kai; Cottle, Denny L; Schweiger, Pawel J; Watt, Fiona M

    2015-01-01

    Activation of Wnt/β-catenin signaling in adult mouse epidermis leads to expansion of the stem cell compartment and redirects keratinocytes in the interfollicular epidermis and sebaceous glands (SGs) to differentiate along the hair follicle (HF) lineages. Here we demonstrate that during epidermal development and homeostasis there is reciprocal activation of the androgen receptor (AR) and β-catenin in cells of the HF bulb. AR activation reduced β-catenin-dependent transcription, blocked β-catenin-induced induction of HF growth, and prevented β-catenin-mediated conversion of SGs into HFs. Conversely, AR inhibition enhanced the effects of β-catenin activation, promoting HF proliferation and differentiation, culminating in the formation of benign HF tumors and a complete loss of SG identity. We conclude that AR signaling has a key role in epidermal stem cell fate selection by modulating responses to β-catenin in adult mouse skin. PMID:26121213

  16. Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex.

    PubMed

    Molina, Leonardo A; Skelin, Ivan; Gruber, Aaron J

    2014-01-01

    Antagonists of N-methyl-D-aspartate receptors (NMDAR) have psychotomimetic effects in humans and are used to model schizophrenia in animals. We used high-density electrophysiological recordings to assess the effects of acute systemic injection of an NMDAR antagonist (MK-801) on ensemble neural processing in the medial prefrontal cortex of freely moving rats. Although MK-801 increased neuron firing rates and the amplitude of gamma-frequency oscillations in field potentials, the synchronization of action potential firing decreased and spike trains became more Poisson-like. This disorganization of action potential firing following MK-801 administration is consistent with changes in simulated cortical networks as the functional connections among pyramidal neurons become less clustered. Such loss of functional heterogeneity of the cortical microcircuit may disrupt information processing dependent on spike timing or the activation of discrete cortical neural ensembles, and thereby contribute to hallucinations and other features of psychosis induced by NMDAR antagonists. PMID:24465743

  17. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

    PubMed Central

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-01-01

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic-clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic-clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic-clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABAA receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists are more likely to be effective in treating TMDT poisoning. PMID:23022509

  18. Antagonism of mGlu receptors and potentiation of EPSCs at rat spinal motoneurones in vitro.

    PubMed

    Cao, C Q; Tse, H W; Jane, D E; Evans, R H; Headley, P M

    1997-03-01

    The patch-clamp technique has been used to record synaptic responses, elicited by electrical stimulation of dorsal roots, in 28 single motoneurones of in vitro spinal cord preparations from neonate (P5 to P8) rats. The effects of (RS)-alpha-methyl-4-phosphonophenylglycine (MPPG) (200 microM), a potent antagonist at L-2-amino-4-phosphonobutanoate (AP4)-sensitive receptors, and (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG) (500 microM), which is a less selective antagonist of mGluRs, were tested on EPSCs alone and as antagonists of AP4-induced depression of EPSCs. The EC50 for depression of EPSCs by AP4 (1.16 +/- 0.12 microM, n = 8) was increased to 18.9 +/- 0.7 microM (n = 6) by MPPG. MCPG (500 microM) had no significant effect on the depressant potency of AP4. Under control conditions, EPSCs had mean peak amplitudes of 983 pA +/- 64 SEM and mean charge transferred of 306 +/- 37 pC (n = 28). These values were increased significantly (p < 0.05) to 1168 +/- 68 pA and 363 +/- 39 pC by MPPG (n = 6), and 1150 +/- 54 pA and 358 +/- 33 pC (n = 6) by MCPG. There was no significant difference between the enhancement of the initial peak of the EPSCs (mean latency from stimulus artifact 5.9 +/- 0.3 ms) and later components, suggesting mGluRs to be present on primary afferent terminals presynaptic to motoneurones as well as in pathways via interneurones. These results are consistent with the presence of at least two types of presynaptic mGluR that modulate release of glutamate in segmental pathways convergent onto motoneurones. These receptors appear to be activated by interstitial glutamate tonically present in the present preparations. PMID:9175609

  19. Pharmacologic antagonism of thromboxane A2 receptors by trimetoquinol analogs in vitro and in vivo

    SciTech Connect

    Shin, Y.; Romstedt, K.J.; Doyle, K.; Harrold, M.W.; Gerhardt, M.A.; Miller, D.D.; Patil, P.N.; Feller, D.R. )

    1991-01-01

    Although (-)-(S)-trimetoquinol (1-(3,4,5-trimethoxy-benzyl)- 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TMQ) is recognized as a potent bronchodilator, (+)-(R)-TMQ is a selective antagonist of human platelet aggregation and serotonin secretion induced by thromboxane A2 (TXA2) agonists. To confirm the pharmacological actions of TMQ analogs, the interaction of the drugs with TXA2 receptors was examined in human platelets and in a mouse sudden death model. The inhibitory potencies of TMQ analogs (pIC50 values) for displacement of (3H)SQ 29,548 binding to platelets showed excellent correlation with the respective pIC50 (-log IC50) values for U46619-induced aggregation (r = 0.99, P less than 0.01) and serotonin secretion (r = 0.99, P less than 0.01) in human platelet-rich plasma and for whole blood aggregation (r = 0.99, P less than 0.01). In each system, the rank order of inhibitory potencies was rac-iodoTMQ greater than or equal to (+)-(R)-TMQ greater than rac-TMQ much greater than (-)-(S)-TMQ. Antithrombotic effects of TMQ analogs were evaluated in a mouse sudden death model. In vivo antithrombotic potencies of these compounds were consistent with the in vitro potencies as TXA2 receptor antagonists in platelet systems. Administration of rac-iodoTMQ, (+)-(R)-TMQ and rac-TMQ 15 min before the injection of U46619 (800 micrograms/kg, iv) protected mice against U46619-induced sudden death. On the other hand, (-)-(S)-TMQ did not protect animals against death. Protection of U46619-induced cardiopulmonary thrombosis by TMQ analogs was seen at doses of 3-100 mg/kg.

  20. CB1 receptor antagonism prevents long-term hyperexcitability after head injury by regulation of dynorphin-KOR system and mGluR5 in rat hippocampus.

    PubMed

    Wang, Xiu; Wang, Yao; Zhang, Chao; Liu, Chang; Zhao, Baotian; Wei, Naili; Zhang, Jian-Guo; Zhang, Kai

    2016-09-01

    Both endocannabinoids and dynorphin are feedback messengers in nervous system that act at the presynaptic nerve terminal to inhibit transmitter release. Many studies showed the cannabinoid-opioid cross-modulation in antinociception, hypothermia, sedation and reward. The aim of this study was to assess the influence of early application of cannabinoid type 1 (CB1) receptor antagonism SR141716A after brain injury on dynorphin-κ opioid receptor (KOR) system and the expression of metabotropic glutamate receptors (mGluRs) in a rat model of fluid percussion injury (FPI). Firstly, seizure latency induced by pentylenetetrazole was significantly prolonged 6 weeks after brain injury in group of SR141716A treatment. Then, PCR and western blot showed that SR141716A inhibited the long-term up-regulation of CB1 receptors in hippocampus. However, SR141716A resulted in long-term potentiation of dynorphin release and did not influence the up-regulation of KOR in hippocampus after brain injury. Furthermore, SR141716A reverse the overexpression of mGluR5 in the late stage of brain injury. We propose that during the induction of epileptogenesis after brain injury, early application of CB1 receptor antagonism could prevent long-term hyperexcitability by up-regulation of dynorphin-KOR system and prevention of mGluR5 induced epileptogenesis in hippocampus. PMID:27262683

  1. Extracorporeal photopheresis promotes IL-1β production.

    PubMed

    Yakut, Erhan; Jakobs, Christopher; Peric, Adriana; Michel, Gabriela; Baal, Nelli; Bein, Gregor; Brüne, Bernhard; Hornung, Veit; Hackstein, Holger

    2015-03-15

    Extracorporeal photopheresis (ECP) is a widely used clinical cell-based therapy exhibiting efficacy in heterogenous immune-mediated diseases such as cutaneous T cell lymphoma, graft-versus-host disease, and organ allograft rejection. Despite its documented efficacy in cancer immunotherapy, little is known regarding the induction of immunostimulatory mediators by ECP. In this article, we show that ECP promotes marked release of the prototypic immunostimulatory cytokine IL-1β. ECP primes IL-1β production and activates IL-1β maturation and release in the context of caspase-1 activation in monocytes and myeloid dendritic cells. Of interest, IL-1β maturation by ECP was fully intact in murine cells deficient in caspase-1, suggesting the predominance of an inflammasome-independent pathway for ECP-dependent IL-1β maturation. Clinically, patient analysis revealed significantly increased IL-1β production in stimulated leukapheresis concentrates and peripheral blood samples after ECP. Collectively, these results provide evidence for promotion of IL-1β production by ECP and offer new insight into the immunostimulatory capacity of ECP. PMID:25681340

  2. Kineret®/IL-1ra Blocks the IL-1/IL-8 Inflammatory Cascade during Recombinant Panton Valentine Leukocidin-Triggered Pneumonia but Not during S. aureus Infection

    PubMed Central

    Hayez, Davy; Da Silva, Sonia; Badiou, Cédric; Couzon, Florence; Bes, Michèle; Chavanet, Pascal; Lina, Gérard; Vandenesch, François; Croisier-Bertin, Delphine; Henry, Thomas

    2014-01-01

    Objectives Community-acquired Staphylococcus aureus necrotizing pneumonia is a life-threatening disease. Panton Valentine Leukocidin (PVL) has been associated with necrotizing pneumonia. PVL triggers inflammasome activation in human macrophages leading to IL-1β release. IL-1β activates lung epithelial cells to release IL-8. This study aimed to assess the relevance of this inflammatory cascade in vivo and to test the potential of an IL-1 receptor antagonist (IL-1Ra/Kineret) to decrease inflammation-mediated lung injury. Methods We used the sequential instillation of Heat-killed S. aureus and PVL or S. aureus infection to trigger necrotizing pneumonia in rabbits. In these models, we investigated inflammation in the presence or absence of IL-1Ra/Kineret. Results We demonstrated that the presence of PVL was associated with IL-1β and IL-8 release in the lung. During PVL-mediated sterile pneumonia, Kineret/IL-1Ra reduced IL-8 production indicating the relevance of the PVL/IL-1/IL-8 cascade in vivo and the potential of Kineret/IL-1Ra to reduce lung inflammation. However, Kineret/IL-1Ra was ineffective in blocking IL-8 production during infection with S. aureus. Furthermore, treatment with Kineret increased the bacterial burden in the lung. Conclusions Our data demonstrate PVL-dependent inflammasome activation during S.aureus pneumonia, indicate that IL-1 signaling controls bacterial burden in the lung and suggest that therapy aimed at targeting this pathway might be deleterious during pneumonia. PMID:24905099

  3. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine.

    PubMed

    Murakami, Naoka; Yokomizo, Takehiko; Okuno, Toshiaki; Shimizu, Takao

    2004-10-01

    G2A (from G2 accumulation) is a G-protein-coupled receptor (GPCR) that regulates the cell cycle, proliferation, oncogenesis, and immunity. G2A shares significant homology with three GPCRs including ovarian cancer GPCR (OGR1/GPR68), GPR4, and T cell death-associated gene 8 (TDAG8). Lysophosphatidylcholine (LPC) and sphingosylphosphorylcholine (SPC) were reported as ligands for G2A and GPR4 and for OGR1 (SPC only), and a glycosphingolipid psychosine was reported as ligand for TDAG8. As OGR1 and GPR4 were reported as proton-sensing GPCRs (Ludwig, M. G., Vanek, M., Guerini, D., Gasser, J. A., Jones, C. E., Junker, U., Hofstetter, H., Wolf, R. M., and Seuwen, K. (2003) Nature 425, 93-98), we evaluated the proton-sensing function of G2A. Transient expression of G2A caused significant activation of the zif 268 promoter and inositol phosphate (IP) accumulation at pH 7.6, and lowering extracellular pH augmented the activation only in G2A-expressing cells. LPC inhibited the pH-dependent activation of G2A in a dose-dependent manner in these assays. Thus, G2A is another proton-sensing GPCR, and LPC functions as an antagonist, not as an agonist, and regulates the proton-dependent activation of G2A. PMID:15280385

  4. Antagonism of NMDA receptors as a potential treatment for Down syndrome: a pilot randomized controlled trial

    PubMed Central

    Boada, R; Hutaff-Lee, C; Schrader, A; Weitzenkamp, D; Benke, T A; Goldson, E J; Costa, A C S

    2012-01-01

    Down syndrome (DS) is the most common genetic cause of intellectual disability. The N-methyl-D-aspartate (NMDA) receptor uncompetitive antagonist, memantine hydrochloride (memantine), has been shown to improve learning/memory and rescue one form of hippocampus synaptic plasticity dysfunction in the best-studied mouse model of DS available, the Ts65Dn mouse. Given the status of memantine as a treatment for Alzheimer's disease (AD) approved by the Food and Drug Administration, the preclinical evidence of potential efficacy in Ts65Dn mice, and the favorable safety profile of memantine, we designed a study to investigate whether the findings in the mouse model could be translated to individuals with DS. In this pilot, proof-of-principle study we hypothesized that memantine therapy would improve test scores of young adults with DS on measures of episodic and spatial memory, which are generally considered to be hippocampus dependent. Accordingly, in this randomized, double-blind, placebo-controlled trial, we compared the effect of 16-week treatment with either memantine or placebo on cognitive and adaptive functions of 40 young adults with DS using a carefully selected set of neuropsychological outcome measures. Safety and tolerability were also monitored. Although no significant differences were observed between the memantine and placebo groups on the two primary outcome measures, we found a significant improvement in the memantine group in one of the secondary measures associated with the primary hypothesis. Only infrequent and mild adverse events were noted. PMID:22806212

  5. The Halicylindramides, Farnesoid X Receptor Antagonizing Depsipeptides from a Petrosia sp. Marine Sponge Collected in Korea.

    PubMed

    Hahn, Dongyup; Kim, Hiyoung; Yang, Inho; Chin, Jungwook; Hwang, Hoosang; Won, Dong Hwan; Lee, Byoungchan; Nam, Sang-Jip; Ekins, Merrick; Choi, Hyukjae; Kang, Heonjoong

    2016-03-25

    Three new structurally related depsipeptides, halicylindramides F-H (1-3), and two known halicylindramides were isolated from a Petrosia sp. marine sponge collected off the shore of Youngdeok-Gun, East Sea, Republic of Korea. Their planar structures were elucidated by extensive spectroscopic data analyses including 1D and 2D NMR data as well as MS data. The absolute configurations of halicylindramides F-H (1-3) were determined by Marfey's method in combination with Edman degradation. The absolute configurations at C-4 of the dioxyindolyl alanine (Dioia) residues of halicylindramides G (2) and H (3) were determined as 4S and 4R, respectively, based on ECD spectroscopy. The C-2 configurations of Dioia in 2 and 3 were speculated to both be 2R based on the shared biogenesis of the halicylindramides. Halicylindramides F (1), A (4), and C (5) showed human farnesoid X receptor (hFXR) antagonistic activities, but did not bind directly to hFXR. PMID:26821210

  6. Reduction of cardiovascular risk in chronic kidney disease by mineralocorticoid receptor antagonism.

    PubMed

    Epstein, Murray

    2015-12-01

    Cardiovascular disease is the leading cause of death and morbidity in people with chronic kidney disease, but there are few evidence-based treatments for reducing cardiovascular events in these patients. The failure of novel drug candidates to delay progression to end-stage renal disease and limit or abrogate cardiovascular morbidity and mortality has led to increased interest in a mineralocorticoid receptor (MR) antagonist-based treatment model to reduce cardiovascular risk in patients with chronic kidney disease and end-stage renal disease. Aldosterone concentrations and MR signalling are associated with an enhanced risk of cardiovascular injury and the incidence of sudden death, and MR blockade decreases the risk of cardiovascular events and sudden death in patients with reduced glomerular filtration rate. Since evidence from clinical trials shows that treatment with MR antagonists confers a morbidity and mortality advantage for patients with cardiovascular disorders, similar benefits might also accrue in patients with chronic kidney disease. Large prospective trials are urgently needed to answer this question. In this Review, I argue that despite differences in the pathophysiology and clinical features of cardiovascular disease in patients with and without chronic kidney disease, MR antagonists could provide cardiovascular benefit in patients with chronic kidney disease. PMID:26429402

  7. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs.

    PubMed

    Pradelli, Emmanuelle; Karimdjee-Soilihi, Babou; Michiels, Jean-François; Ricci, Jean-Ehrland; Millet, Marie-Ange; Vandenbos, Fanny; Sullivan, Timothy J; Collins, Tassie L; Johnson, Michael G; Medina, Julio C; Kleinerman, Eugenie S; Schmid-Alliana, Annie; Schmid-Antomarchi, Heidy

    2009-12-01

    Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The experimental design involved the use of the CXCR3 antagonist, AMG487 and 2 murine models of osteosarcoma lung metastases. After tail vein injection of osteosarcoma cells, mice that were systematically treated with AMG487 according to preventive or curative protocols had a significant reduction in metastatic disease. Treatment of osteosarcoma cells in vitro with AMG487 led to decreased migration, decreased matrix metalloproteinase activity, decreased proliferation/survival and increased caspase-independent death. Taken together, our results support the hypothesis that CXCR3 and their ligands intervene in the initial dissemination of the osteosarcoma cells to the lungs and stimulate the growth and expansion of the metastatic foci in later stages. Moreover, these studies indicate that targeting CXCR3 may specifically inhibit tumor metastasis without adversely affecting antitumoral host response. PMID:19544560

  8. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs

    PubMed Central

    Pradelli, Emmanuelle; Karimdjee-Soilihi, Babou; Michiels, Jean-François; Ricci, Jean-Ehrland; Millet, Marie-Ange; Vandenbos, Fanny; Sullivan, Timothy J.; Collins, Tassie L.; Johnson, Michael G.; Medina, Julio C.; Kleinerman, Eugenie S.; Schmid-Alliana, Annie; Schmid-Antomarchi, Heidy

    2009-01-01

    Metastasis continues to be the leading cause of mortality for patients with cancer. Several years ago, it became clear that chemokines and their receptors could control the tumor progress. CXCR3 has now been identified in many cancers including osteosarcoma and CXCR3 ligands were expressed by lungs that are the primary sites to which this tumor metastasize. This study tested the hypothesis that disruption of the CXCR3/CXCR3 ligands complexes could lead to a decrease in lungs metastasis. The experimental design involved the use of the CXCR3 antagonist, AMG487 and 2 murine models of osteosarcoma lung metastases. After tail vein injection of osteosarcoma cells, mice that were systematically treated with AMG487 according to preventive or curative protocols had a significant reduction in metastatic disease. Treatment of osteosarcoma cells in vitro with AMG487 led to decreased migration, decreased matrix metalloproteinase activity, decreased proliferation/survival and increased caspase-independent death. Taken together, our results support the hypothesis that CXCR3 and their ligands intervene in the initial dissemination of the osteosarcoma cells to the lungs and stimulate the growth and expansion of the metastatic foci in later stages. Moreover, these studies indicate that targeting CXCR3 may specifically inhibit tumor metastasis without adversely affecting antitumoral host response. PMID:19544560

  9. Plasma Pro‐Endothelin‐1 Peptide Concentrations Rise in Chronic Kidney Disease and Following Selective Endothelin A Receptor Antagonism

    PubMed Central

    Dhaun, Neeraj; Yuzugulen, Jale; Kimmitt, Robert A.; Wood, Elizabeth G.; Chariyavilaskul, Pajaree; MacIntyre, Iain M.; Goddard, Jane; Webb, David J.; Corder, Roger

    2015-01-01

    Background Endothelin 1 (ET‐1) contributes to chronic kidney disease (CKD) development and progression, and endothelin receptor antagonists are being investigated as a novel therapy for CKD. The proET‐1 peptides, endothelin‐like domain peptide (ELDP) and C‐terminal pro‐ET‐1 (CT‐proET‐1), are both potential biomarkers of CKD and response to therapy with endothelin antagonists. Methods and Results We assessed plasma and urine ELDP and plasma CT‐proET‐1 in CKD patients with minimal comorbidity. Next, in a randomized double‐blind crossover study of 27 subjects with proteinuric CKD, we examined the effects of 6 weeks of treatment with placebo, sitaxentan (endothelin A antagonist), and nifedipine on these peptides alongside the primary end points of proteinuria, blood pressure, and arterial stiffness. Plasma ELDP and CT‐proET‐1 increased with CKD stage (both P<0.0001), correlating inversely with estimated glomerular filtration rate (both P<0.0001). Following intervention, placebo and nifedipine did not affect plasma and urine ELDP or plasma CT‐proET‐1. Sitaxentan increased both plasma ELDP and CT‐proET‐1 (baseline versus week 6±SEM: ELDP, 11.8±0.5 versus 13.4±0.6 fmol/mL; CT‐proET‐1, 20.5±1.2 versus 23.3±1.5 fmol/mL; both P<0.0001). Plasma ET‐1 was unaffected by any treatment. Following sitaxentan, plasma ELDP and CT‐proET‐1 correlated negatively with 24‐hour urinary sodium excretion. Conclusions ELDP and CT‐proET‐1 increase in CKD and thus are potentially useful biomarkers of renal injury. Increases in response to endothelin A antagonism may reflect EDN1 upregulation, which may partly explain fluid retention with these agents. Clinical Trial Registration URL: www.clinicalTrials.gov Unique identifier: NCT00810732 PMID:25801761

  10. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders

    PubMed Central

    Ford, Anthony P.; Undem, Bradley J.

    2013-01-01

    A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates and sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X and P2Y receptors mediate ATP modulation of sensory pathways and participate in dysregulation, where ATP action directly on primary afferent neurons (PANs), linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice and knock-down in rats led to reduced nocifensive activity and visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory and visceral pain models, have emerged. Significantly, these compounds have no overt CNS action and are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral and central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral “hollow” organs primes them to chronic discomfort, irritation and pain (symptoms) as well as exacerbated autonomic reflexes (signs), and how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary and airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional and sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs and symptoms, in the potential for benefit of P2X3 antagonists

  11. The therapeutic promise of ATP antagonism at P2X3 receptors in respiratory and urological disorders.

    PubMed

    Ford, Anthony P; Undem, Bradley J

    2013-01-01

    A sensory role for ATP was proposed long before general acceptance of its extracellular role. ATP activates and sensitizes signal transmission at multiple sites along the sensory axis, across multiple synapses. P2X and P2Y receptors mediate ATP modulation of sensory pathways and participate in dysregulation, where ATP action directly on primary afferent neurons (PANs), linking receptive field to CNS, has received much attention. Many PANs, especially C-fibers, are activated by ATP, via P2X3-containing trimers. P2X3 knock-out mice and knock-down in rats led to reduced nocifensive activity and visceral reflexes, suggesting that antagonism may offer benefit in sensory disorders. Recently, drug-like P2X3 antagonists, active in a many inflammatory and visceral pain models, have emerged. Significantly, these compounds have no overt CNS action and are inactive versus acute nociception. Selectively targeting ATP sensitization of PANs may lead to therapies that block inappropriate chronic signals at their source, decreasing drivers of peripheral and central wind-up, yet leaving defensive nociceptive and brain functions unperturbed. This article reviews this evidence, focusing on how ATP sensitization of PANs in visceral "hollow" organs primes them to chronic discomfort, irritation and pain (symptoms) as well as exacerbated autonomic reflexes (signs), and how the use of isolated organ-nerve preparations has revealed this mechanism. Urinary and airways systems share many features: dependence on continuous afferent traffic to brainstem centers to coordinate efferent autonomic outflow; loss of descending inhibitory influence in functional and sensory disorders; dependence on ATP in mediating sensory responses to diverse mechanical and chemical stimuli; a mechanistically overlapping array of existing medicines for pathological conditions. These similarities may also play out in terms of future treatment of signs and symptoms, in the potential for benefit of P2X3 antagonists

  12. The fast-off hypothesis revisited: A functional kinetic study of antipsychotic antagonism of the dopamine D2 receptor.

    PubMed

    Sahlholm, Kristoffer; Zeberg, Hugo; Nilsson, Johanna; Ögren, Sven Ove; Fuxe, Kjell; Århem, Peter

    2016-03-01

    Newer, "atypical" antipsychotics carry a lower risk of motor side-effects than older, "typical" compounds. It has been proposed that a ~100-fold faster dissociation from the dopamine D2 receptor (D2R) distinguishes atypical from typical antipsychotics. Furthermore, differing antipsychotic D2R affinities have been suggested to reflect differences in dissociation rate constants (koff), while association rate constants (kon) were assumed to be similar. However, it was recently demonstrated that lipophilic accumulation of ligand in the cell interior and/or membrane can cause underestimation of koff, and as high-affinity D2R antagonists are frequently lipophilic, this may have been a confounding factor in previous studies. In the present work, a functional electrophysiology assay was used to measure the recovery of dopamine-mediated D2R responsivity from antipsychotic antagonism, using elevated concentrations of dopamine to prevent the potential bias of re-binding of lipophilic ligands. The variability of antipsychotic kon was also reexamined, capitalizing on the temporal resolution of the assay. kon was estimated from the experimental recordings using a simple mathematical model assumed to describe the binding process. The time course of recovery from haloperidol (typical antipsychotic) was only 6.4- to 2.5-fold slower than that of the atypical antipsychotics, amisulpride, clozapine, and quetiapine, while antipsychotic kons were found to vary more widely than previously suggested. Finally, affinities calculated using our kon and koff estimates correlated well with functional potency and with affinities reported from radioligand binding studies. In light of these findings, it appears unlikely that typical and atypical antipsychotics are primarily distinguished by their D2R binding kinetics. PMID:26811292

  13. Effects of bradykinin B2 receptor antagonism on the hypotensive effects of ACE inhibition.

    PubMed Central

    Bouaziz, H; Joulin, Y; Safar, M; Benetos, A

    1994-01-01

    1. The aim of this study was to determine the participation of endogenous bradykinin (BK) in the antihypertensive effects of the angiotensin converting enzyme inhibitor (ACEI), perindoprilat, in the spontaneously hypertensive rat (SHR) on different salt diets. 2. Conscious SHRs receiving either a low or a high NaCl diet were used in order to evaluate the respective roles of angiotensin II suppression and bradykinin stimulation in the acute hypotensive effects of perindoprilat. Two different B2 receptor antagonists (B 4146 and Hoe 140) were used after bolus administration of 7 mg kg-1 of the ACEI, perindoprilat. In separate animals, Hoe 140 was administered before the injection of perindoprilat. In other experiments, the effects of Hoe 140 on the hypotensive effects of the calcium antagonist, nicardipine, were tested. 3. The different NaCl diets had no effect on baseline blood pressure. Hoe 140 injection before ACE inhibition did not modify blood pressure. Perindoprilat caused more marked hypotension in the low salt-fed rats than in the high salt animals (P < 0.01). Administration of Hoe 140 or B4146 after perindoprilat significantly reduced the antihypertensive effects of perindoprilat in the different groups, but this effect was more pronounced in high salt-fed rats. However, in SHRs receiving Hoe 140 before perindoprilat, the antihypertensive effect of perindoprilat was completely abolished in both high or low salt diet rats. In separate experiments we confirmed that Hoe 140 did not affect the hypotensive efficacy of the calcium antagonist, nicardipine. 4. Our study shows that inhibition of endogenous bradykinin degradation participates in the acute antihypertensive effects of perindoprilat in SHRs. The role of bradykinin is more pronounced following exposure to a high salt diet i.e., when the renin-angiotensin system is suppressed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7858859

  14. Monogenic IL-1 Mediated Autoinflammatory and Immunodeficiency Syndromes: Finding the Right Balance in Response to Danger Signals

    PubMed Central

    Henderson, Cailin; Goldbach-Mansky, Raphaela

    2010-01-01

    INTRODUCTION Interleukin -1 was the first cytokine identified and is a powerful inducer of fever and inflammation. The biologically active receptor for IL-1, shares signaling pathways with some pathogen recognition receptors, the toll like receptors (TLRs) which early on suggested an important role in innate immune function. DISCUSSION The discovery that some intracellular “danger receptors”, the NOD like receptors (NLRs) can assemble to form multimolecular platforms, the inflammasomes, that not only sense intracellular danger but also activate IL-1β, has provided the molecular basis for the integration of IL-1 as an early response mediator in danger recognition. The critical role of balancing IL-1 production and signaling in human disease has recently been demonstrated in rare human monogenic diseases with mutations that affect the meticulous control of IL-1 production, release and signaling by leading to decreased or increased TLR/IL-1 signaling. In diseases of decreased TLR/IL-1 signaling (IRAK-4 and MyD88 deficiencies) patients are at risk for infections with gram positive organisms; and in diseases of increased signaling, patients develop systemic autoinflammatory diseases (Cryopyrin associated periodic syndromes (CAPS), and deficiency of the IL-1 receptor antagonist (DIRA)). CONCLUSION Monogenic defects in a number of rare diseases that affect the balance of TLR/IL-1 signaling have provided us with opportunities to study the systemic effects of IL-1 in human diseases. The molecular defects in CAPS and DIRA provided a therapeutic rationale for targeting IL-1 and the impressive clinical results from IL-1 blocking therapies have undoubtedly confirmed the pivotal role of IL-1 in human disease and spurred the exploration of modifying IL-1 signaling in a number of genetically complex common human diseases. PMID:20353899

  15. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism

    PubMed Central

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-01-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80–90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine’s acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine’s acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  16. Differentiated effects of the multimodal antidepressant vortioxetine on sleep architecture: Part 2, pharmacological interactions in rodents suggest a role of serotonin-3 receptor antagonism.

    PubMed

    Leiser, Steven C; Iglesias-Bregna, Deborah; Westrich, Ligia; Pehrson, Alan L; Sanchez, Connie

    2015-10-01

    Antidepressants often disrupt sleep. Vortioxetine, a multimodal antidepressant acting through serotonin (5-HT) transporter (SERT) inhibition, 5-HT3, 5-HT7 and 5-HT1D receptor antagonism, 5-HT1B receptor partial agonism, and 5-HT1A receptor agonism, had fewer incidences of sleep-related adverse events reported in depressed patients. In the accompanying paper a polysomnographic electroencephalography (sleep-EEG) study of vortioxetine and paroxetine in healthy subjects indicated that at low/intermediate levels of SERT occupancy, vortioxetine affected rapid eye movement (REM) sleep differently than paroxetine. Here we investigated clinically meaningful doses (80-90% SERT occupancy) of vortioxetine and paroxetine on sleep-EEG in rats to further elucidate the serotoninergic receptor mechanisms mediating this difference. Cortical EEG, electromyography (EMG), and locomotion were recorded telemetrically for 10 days, following an acute dose, from rats receiving vortioxetine-infused chow or paroxetine-infused water and respective controls. Sleep stages were manually scored into active wake, quiet wake, and non-REM or REM sleep. Acute paroxetine or vortioxetine delayed REM onset latency (ROL) and decreased REM episodes. After repeated administration, vortioxetine yielded normal sleep-wake rhythms while paroxetine continued to suppress REM. Paroxetine, unlike vortioxetine, increased transitions from non-REM to wake, suggesting fragmented sleep. Next, we investigated the role of 5-HT3 receptors in eliciting these differences. The 5-HT3 receptor antagonist ondansetron significantly reduced paroxetine's acute effects on ROL, while the 5-HT3 receptor agonist SR57227A significantly increased vortioxetine's acute effect on ROL. Overall, our data are consistent with the clinical findings that vortioxetine impacts REM sleep differently than paroxetine, and suggests a role for 5-HT3 receptor antagonism in mitigating these differences. PMID:26174134

  17. Endothelin receptor antagonism: role in the treatment of pulmonary arterial hypertension related to scleroderma.

    PubMed

    Kabunga, Peter; Coghlan, Gerry

    2008-01-01

    Pulmonary arterial hypertension (PAH) is a devastating disease, which is associated with a 1-year survival of about 50% without specific treatment. Pulmonary vascular remodelling, thrombosis and vasoconstriction are thought to be directly involved in increasing pulmonary vascular resistance (PVR), which, left untreated, ultimately leads to right ventricular failure and death. A total of 10-12% of patients with systemic sclerosis (SSc) develop PAH, which is a leading cause of mortality in these patients. Targeted treatment regimens involving oral therapies, in particular endothelin receptor antagonists (ERAs), such as bosentan, sitaxsentan (sitaxentan) and ambrisentan, are now being used and this approach has improved symptoms as well as survival. 1-Year survival has improved to about 80%, while 3-year survival in advanced SSc-PAH has improved from 44% to 65% since the introduction of ERAs. Subanalysis of BREATHE-1, a pilot study and the STRIDE-2X randomized controlled trials has reported improvements in time to clinical worsening, 6-minute walk distance (6mwd) and right heart haemodynamics in SSc-PAH patients given bosentan and sitaxsentan, respectively, compared with placebo. The ARIES studies have also demonstrated a delay in the time to clinical worsening and improvement in 6mwd in connective tissue associated-PAH patients given ambrisentan compared with placebo. Unfortunately, these drugs are expensive and also have the potential for adverse interactions with other PAH and supportive therapies. Mandatory monthly liver function tests are required for safe administration of bosentan, ambrisentan and sitaxsentan, while dose adjustment of warfarin and careful monitoring are required when sitaxsentan is initiated. Earlier diagnosis and treatment of PAH may further improve outcomes with current ERAs. WHO functional class (FC) has traditionally been used to determine which patients with PAH will start therapy. The EARLY study has reported significant reductions in PVR

  18. Antagonism of Metabotropic Glutamate 1 Receptors Attenuates Behavioral Effects of Cocaine and Methamphetamine in Squirrel Monkeys

    PubMed Central

    Platt, Donna M.; Spealman, Roger D.

    2012-01-01

    Within the group I family of metabotropic glutamate receptors (mGluRs), substantial evidence points to a role for mGluR5 mechanisms in cocaine's abuse-related behavioral effects, but less is understood about the contribution of mGluR1, which also belongs to the group I mGluR family. The selective mGluR1 antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] was used to investigate the role of mGluR1 in the behavioral effects of cocaine and methamphetamine. In drug discrimination experiments, squirrel monkeys were trained to discriminate cocaine from saline by using a two-lever, food-reinforced operant procedure. JNJ16259685 (0.56 mg/kg) pretreatments significantly attenuated cocaine's discriminative stimulus effects and the cocaine-like discriminative stimulus effects of methamphetamine. In monkeys trained to self-administer cocaine or methamphetamine under a second-order schedule of intravenous drug injection, JNJ16259685 (0.56 mg/kg) significantly reduced drug-reinforced responding, resulting in a downward displacement of dose-response functions. In reinstatement studies, intravenous priming with cocaine accompanied by restoration of a cocaine-paired stimulus reinstated extinguished cocaine-seeking behavior, which was significantly attenuated by JNJ16259685 (0.56 mg/kg). Finally, in experiments involving food rather than drug self-administration, cocaine and methamphetamine increased the rate of responding, and the rate-increasing effects of both psychostimulants were significantly attenuated by JNJ16259685 (0.3 mg/kg). At the doses tested, JNJ16259685 did not significantly suppress food-reinforced behavior (drug discrimination or fixed-interval schedule of food delivery), but did significantly reduce species-typical locomotor activity in observational studies. To the extent that the psychostimulant-antagonist effects of JNJ16259685 are independent of motor function suppression, further research is warranted to

  19. Antagonism of metabotropic glutamate 1 receptors attenuates behavioral effects of cocaine and methamphetamine in squirrel monkeys.

    PubMed

    Achat-Mendes, Cindy; Platt, Donna M; Spealman, Roger D

    2012-10-01

    Within the group I family of metabotropic glutamate receptors (mGluRs), substantial evidence points to a role for mGluR5 mechanisms in cocaine's abuse-related behavioral effects, but less is understood about the contribution of mGluR1, which also belongs to the group I mGluR family. The selective mGluR1 antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] was used to investigate the role of mGluR1 in the behavioral effects of cocaine and methamphetamine. In drug discrimination experiments, squirrel monkeys were trained to discriminate cocaine from saline by using a two-lever, food-reinforced operant procedure. JNJ16259685 (0.56 mg/kg) pretreatments significantly attenuated cocaine's discriminative stimulus effects and the cocaine-like discriminative stimulus effects of methamphetamine. In monkeys trained to self-administer cocaine or methamphetamine under a second-order schedule of intravenous drug injection, JNJ16259685 (0.56 mg/kg) significantly reduced drug-reinforced responding, resulting in a downward displacement of dose-response functions. In reinstatement studies, intravenous priming with cocaine accompanied by restoration of a cocaine-paired stimulus reinstated extinguished cocaine-seeking behavior, which was significantly attenuated by JNJ16259685 (0.56 mg/kg). Finally, in experiments involving food rather than drug self-administration, cocaine and methamphetamine increased the rate of responding, and the rate-increasing effects of both psychostimulants were significantly attenuated by JNJ16259685 (0.3 mg/kg). At the doses tested, JNJ16259685 did not significantly suppress food-reinforced behavior (drug discrimination or fixed-interval schedule of food delivery), but did significantly reduce species-typical locomotor activity in observational studies. To the extent that the psychostimulant-antagonist effects of JNJ16259685 are independent of motor function suppression, further research is warranted to

  20. Preclinical evaluation of melanin-concentrating hormone receptor 1 antagonism for the treatment of obesity and depression.

    PubMed

    Gehlert, Donald R; Rasmussen, Kurt; Shaw, Janice; Li, Xia; Ardayfio, Paul; Craft, Libbey; Coskun, Tamer; Zhang, Hong Y; Chen, Yanyun; Witkin, Jeffrey M

    2009-05-01

    The mammalian neuropeptide, melanin-concentrating hormone, interacts with two G protein-coupled receptors, melanin-concentrating hormone receptor (MCHR) 1 and MCHR2; however, only MCHR1 is expressed in rats and mice. In the present study, we evaluated MCHR1 antagonism in preclinical models believed to be predictive of antiobesity and antidepressant activity. Central activity of the selective MCHR1 antagonist, GW803430 [6-(4-chloro-phenyl)-3-[3-methoxy-4-(2-pyrrolidin-1-yl-ethoxy)-phenyl]-3H-thieno[3,2-d]pyrimidin-4-one], was evaluated using ex vivo binding with autoradiography. Effective doses of GW803430 (1 and 3 mg/kg p.o.) were correlated with antiobesity activity in a 14-day study of diet-induced obese rats. GW803430 was evaluated subsequently for antidepressant-like effects in mice and rats. Acute and subchronic administration reduced immobility time in the mouse forced-swim test at doses of 3 (acute) and 3 and 10 (chronic) mg/kg p.o., an effect that was absent in MCHR1(-/-) mice. Combined subeffective doses of GW803430 (0.3 and 1 mg/kg p.o.) and imipramine (5 mg/kg) produced a robust antidepressant-like response. The compound was also active in the tail suspension test at a dose of 10 mg/kg p.o. GW803430 (30 mg/kg p.o.) significantly reduced submissive behaviors at weeks 2 and 3, a model of submissive behavior that may predict antidepressant onset. GW803430 decreased marble burying in mice at doses of 3, 10, and 30 mg/kg p.o., an assay that detects anxiolytic-like effects. Thus, GW803430 produces robust antiobesity and antidepressant-like effects in rats and mice at doses that compete for central MCHR1 in vivo. As such, MCHR1 should be considered as a promising target for future drug discovery efforts. PMID:19182070

  1. Molecular cloning and characterization of ovine IL-1 alpha and IL-1 beta.

    PubMed Central

    Andrews, A E; Barcham, G J; Brandon, M R; Nash, A D

    1991-01-01

    Interleukin-1 (IL-1) is a cytokine with a wide range of effects on a variety of cell types. By hybridization with human IL-1 alpha and IL-1 beta cDNA probes, the corresponding ovine cDNAs were isolated from a stimulated alveolar macrophage cDNA library. The sequences of these cDNAs showed that ovine IL-1 alpha and IL-1 beta encode proteins of 268 and 266 amino acids, respectively, with both the nucleotide and amino acid sequences showing a high degree of homology with their human, mouse and bovine equivalents. In a mammalian COS cell-expression system these cDNAs produced biologically active IL-1. Further experiments demonstrated the importance of sequences within the 3' untranslated portion of the cDNAs in determining the level of expression of these molecules. The analysis of expression of IL-1 alpha- and IL-1 beta-specific mRNA in response to endotoxin, phorbol myristic acid (PMA) or PMA plus ionomycin revealed a distinct pattern of differential regulation of the two genes. From genomic analysis both IL-1 alpha and IL-1 beta appear to exist as single copies in the ovine genome. Images Figure 4 Figure 5 PMID:1769692

  2. The G-Protein-Coupled Bile Acid Receptor Gpbar1 (TGR5) Inhibits Gastric Inflammation Through Antagonizing NF-κB Signaling Pathway

    PubMed Central

    Guo, Cong; Qi, Hui; Yu, Yingjie; Zhang, Qiqi; Su, Jia; Yu, Donna; Huang, Wendong; Chen, Wei-Dong; Wang, Yan-Dong

    2015-01-01

    Gpbar1 (TGR5), a membrane-bound bile acid receptor, is well-known for its roles in regulation of energy homeostasis and glucose metabolism. Here, we show that mice lacking TGR5 were much more susceptible to lipopolysaccharide (LPS)-induced acute gastric inflammation than wild-type (WT) mice and TGR5 is a negative regulator of gastric inflammation through antagonizing NF-κB signaling pathway. We found that the treatment of TGR5 ligands 23(S)-mCDCA and GPBARA (3-(2-Chlorophenyl)-N-(4-chlorophenyl)-N,5-dimethylisoxazole-4-carboxamide) suppressed gene and protein expression mediated by NF-κB signaling. TGR5 overexpression with ligand treatment inhibited gene expression of interferon-inducible protein 10 (IP-10), TNF-α, and chemoattractant protein-1 (MCP-1) induced by LPS. Furthermore, we revealed that TGR5 activation antagonized NF-κB signaling pathway through suppressing its transcription activity, the phosphorylation of IκBα and p65 translocation, which suggests that TGR5 antagonizes gastric inflammation at least in part by inhibiting NF-κB signaling. These findings identify TGR5 as a negative mediator of gastric inflammation that may serve as an attractive therapeutic tool for human gastric inflammation and cancer. PMID:26696888

  3. Mechanical loading prevents the stimulating effect of IL-1β on osteocyte-modulated osteoclastogenesis.

    PubMed

    Kulkarni, Rishikesh N; Bakker, Astrid D; Everts, Vincent; Klein-Nulend, Jenneke

    2012-03-30

    Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1β (IL-1β), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1β affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanical loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1β (0.1-1 ng/ml) for 24h. Cells were either or not subjected to mechanical loading by 1h pulsating fluid flow (PFF; 0.7 ± 0.3 Pa, 5 Hz) in the presence of IL-1β (0.1-1 ng/ml). Conditioned medium was collected after 1h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1β-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1β-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1β, as well as conditioned medium from static IL-1β-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL-1β-treated osteocytes prevented osteoclast formation. Incubation with IL-1β upregulated RANKL and downregulated OPG gene expression by static osteocytes. PFF upregulated CYR61, RANKL, and OPG gene expression by osteocytes. Our results suggest that IL-1β increases osteocyte-modulated osteoclastogenesis, and that mechanical loading of osteocytes may abolish IL-1β-induced osteoclastogenesis. PMID:22390927

  4. MFGE8 inhibits inflammasome-induced IL-1β production and limits postischemic cerebral injury

    PubMed Central

    Deroide, Nicolas; Li, Xuan; Lerouet, Dominique; Van Vré, Emily; Baker, Lauren; Harrison, James; Poittevin, Marine; Masters, Leanne; Nih, Lina; Margaill, Isabelle; Iwakura, Yoichiro; Ryffel, Bernhard; Pocard, Marc; Tedgui, Alain; Kubis, Nathalie; Mallat, Ziad

    2013-01-01

    Milk fat globule-EGF 8 (MFGE8) plays important, nonredundant roles in several biological processes, including apoptotic cell clearance, angiogenesis, and adaptive immunity. Several recent studies have reported a potential role for MFGE8 in regulation of the innate immune response; however, the precise mechanisms underlying this role are poorly understood. Here, we show that MFGE8 is an endogenous inhibitor of inflammasome-induced IL-1β production. MFGE8 inhibited necrotic cell–induced and ATP-dependent IL-1β production by macrophages through mediation of integrin β3 and P2X7 receptor interactions in primed cells. Itgb3 deficiency in macrophages abrogated the inhibitory effect of MFGE8 on ATP-induced IL-1β production. In a setting of postischemic cerebral injury in mice, MFGE8 deficiency was associated with enhanced IL-1β production and larger infarct size; the latter was abolished after treatment with IL-1 receptor antagonist. MFGE8 supplementation significantly dampened caspase-1 activation and IL-1β production and reduced infarct size in wild-type mice, but did not limit cerebral necrosis in Il1b-, Itgb3-, or P2rx7-deficient animals. In conclusion, we demonstrated that MFGE8 regulates innate immunity through inhibition of inflammasome-induced IL-1β production. PMID:23454767

  5. Establishment of the model of white blood cell membrane chromatography and screening of antagonizing TLR4 receptor component from Atractylodes macrocephala Koidz.

    PubMed

    Li, Cuiqin; He, Langchong

    2006-04-01

    A model of white blood cell membrane chromatography (WB-CMC) was established to screen active component from Atractylodes macrocephala Koidz. The component can antagonize Toll-like receptor 4 (TLR4) and inhibit inflammatory reaction. In the model of WB-CMC, cell membrane stationary phase (CMSP) was prepared by immobilizing the rabbit white blood cell membrane (WBCM) onto the surface of silica carrier and taxinol was used as a model molecule. The active component which can act on WBCM and its receptor (such as TLR4) as an effective target in A. macrocephala was determined by using a replacement experiment. The anti-inflammatory effects of the active component were tested by using pharmacological methods in vivo. The results indicated that the retention characteristics of atractylenolide I as active component was similar to that of taxinol in the model of WB-CMC. And so, atractylenolide I acted on the WBCM and TLR4 and its anti-inflammatory activity was related with antagonizing TLR4. Therefore, the interaction between the active component and WBCM and its receptor can be simulated by the model of WB-CMC in vitro. This model can be used to screen active components and to study effective characteristics for acting on definite targets. PMID:16704122

  6. Behavioral Effects of γ-Hydroxybutyrate, Its Precursor γ-Butyrolactone, and GABAB Receptor Agonists: Time Course and Differential Antagonism by the GABAB Receptor Antagonist 3-Aminopropyl(diethoxymethyl)phosphinic Acid (CGP35348)

    PubMed Central

    Koek, Wouter; Mercer, Susan L.; Coop, Andrew; France, Charles P.

    2009-01-01

    γ-Hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABAB receptors seem to play an important role. This role could be complex, because there are indications that different GABAB receptor mechanisms mediate the effects of GHB and the prototypical GABAB receptor agonist baclofen. To further explore possible differences in underlying GABAB receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABAB receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor γ-butyrolactone (GBL), and the GABAB receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA2 value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7–4.2)] that was different (P = 0.0011) from the pA2 value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4–4.7)]. This finding is further evidence that the GABAB receptor mechanisms mediating the effects of GHB and prototypical GABAB receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects. PMID:19564487

  7. Toll like receptor 9 antagonism modulates spinal cord neuronal function and survival: Direct versus astrocyte-mediated mechanisms.

    PubMed

    Acioglu, Cigdem; Mirabelli, Ersilia; Baykal, Ahmet Tarik; Ni, Li; Ratnayake, Ayomi; Heary, Robert F; Elkabes, Stella

    2016-08-01

    Toll like receptors (TLRs) are expressed by cells of the immune system and mediate the host innate immune responses to pathogens. However, increasing evidence indicates that they are important contributors to central nervous system (CNS) function in health and in pathological conditions involving sterile inflammation. In agreement with this idea, we have previously shown that intrathecal administration of a TLR9 antagonist, cytidine-phosphate-guanosine oligodeoxynucleotide 2088 (CpG ODN 2088), ameliorates the outcomes of spinal cord injury (SCI). Although these earlier studies showed a marked effect of CpG ODN 2088 on inflammatory cells, the expression of TLR9 in spinal cord (SC) neurons and astrocytes suggested that the antagonist exerts additional effects through direct actions on these cells. The current study was undertaken to assess the direct effects of CpG ODN 2088 on SC neurons, astrocytes and astrocyte-neuron interactions, in vitro. We report, for the first time, that inhibition of TLR9 in cultured SC neurons alters their function and confers protection against kainic acid (KA)-induced excitotoxic death. Moreover, the TLR9 antagonist attenuated the KA-elicited endoplasmic reticulum (ER) stress response in neurons, in vitro. CpG ODN 2088 also reduced the transcript levels and release of chemokine (C-X-C) motif ligand 1 (CXCL1) and monocyte chemotactic protein 1 (MCP-1) by astrocytes and it diminished interleukin-6 (IL-6) release without affecting transcript levels in vitro. Conditioned medium (CM) of CpG ODN 2088-treated astroglial cultures decreased the viability of SC neurons compared to CM of vehicle-treated astrocytes. However, this toxicity was not observed when astrocytes were co-cultured with neurons. Although CpG ODN 2088 limited the survival-promoting effects of astroglia, it did not reduce neuronal viability compared to controls grown in the absence of astrocytes. We conclude that the TLR9 antagonist acts directly on both SC neurons and astrocytes

  8. Immunoreactivities of IL-1β and IL-1R in oviduct of Chinese brown frog (Rana dybowskii) during pre-hibernation and the breeding period.

    PubMed

    Hu, Ruiqi; Liu, Yuning; Deng, Yu; Ma, Sihui; Sheng, Xia; Weng, Qiang; Xu, Meiyu

    2016-03-01

    The Chinese brown frog (Rana dybowskii) has one special physiological phenomenon, which is that its oviduct goes through expansion prior to hibernation instead of during the breeding period. In this study, we investigated the localization and expression level of interleukin-1 (IL-1β) and its functional membrane receptor type I (IL1R1) proteins in the oviduct of R. dybowskii during pre-hibernation and the breeding period. There were significant differences in both oviductal weight and pipe diameter, with values markedly higher in pre-hibernation than in the breeding period. Histologically, epithelium cells, glandular cells and tubule lumen were identified in the oviduct during pre-hibernation and the breeding period, while sizes of both cell types are larger in the pre-hibernation than those of the breeding period. IL-1β was immunolocalized in the cytoplasm of epithelial and glandular cells in both periods, whereas IL-1R1 was observed in the membrane of epithelial and glandular cells in the breeding period, whereas only in epithelial cells during pre-hibernation. Consistently, the protein levels of IL-1β and IL-1R1 were higher in pre-hibernation as compared to the breeding period. These results suggested that IL-1β may play an important autocrine or paracrine role in oviductal cell proliferation and differentiation of R. dybowskii. PMID:26746863

  9. Mechanical loading prevents the stimulating effect of IL-1{beta} on osteocyte-modulated osteoclastogenesis

    SciTech Connect

    Kulkarni, Rishikesh N.; Bakker, Astrid D.; Everts, Vincent; Klein-Nulend, Jenneke

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Osteocyte incubation with IL-1{beta} stimulated osteocyte-modulated osteoclastogenesis. Black-Right-Pointing-Pointer Conditioned medium from IL-1{beta}-treated osteocytes increased osteoclastogenesis. Black-Right-Pointing-Pointer IL-1{beta} upregulated RANKL and downregulated OPG gene expression by osteocytes. Black-Right-Pointing-Pointer CYR61 is upregulated in mechanically stimulated osteocytes. Black-Right-Pointing-Pointer Mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis. -- Abstract: Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1{beta} (IL-1{beta}), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1{beta} affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanical loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1{beta} (0.1-1 ng/ml) for 24 h. Cells were either or not subjected to mechanical loading by 1 h pulsating fluid flow (PFF; 0.7 {+-} 0.3 Pa, 5 Hz) in the presence of IL-1{beta} (0.1-1 ng/ml). Conditioned medium was collected after 1 h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1{beta}-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1{beta}-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1{beta}, as well as conditioned medium from static IL-1{beta}-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically loaded IL

  10. Antagonism of Dopamine Receptor 2 Long Affects Cannabinoid Receptor 1 Signaling in a Cell Culture Model of Striatal Medium Spiny Projection Neurons.

    PubMed

    Bagher, Amina M; Laprairie, Robert B; Kelly, Melanie E M; Denovan-Wright, Eileen M

    2016-06-01

    Activation of dopamine receptor 2 long (D2L) switches the signaling of type 1 cannabinoid receptor (CB1) from Gαi to Gαs, a process thought to be mediated through CB1-D2L heteromerization. Given the clinical importance of D2 antagonists, the goal of this study was to determine if D2 antagonists could modulate CB1 signaling. Interactions between CB1 and D2L, Gαi, Gαs, and β-arrestin1 were studied using bioluminescence resonance energy transfer 2 (BRET(2)) in STHdh(Q7/Q7) cells. CB1-dependent extracellular regulated kinase (ERK)1/2, CREB phosphorylation, and CB1 internalization following cotreatment of CB1 agonist and D2 antagonist were quantified. Preassembled CB1-Gαi complexes were detected by BRET(2) Arachidonyl-2'-chloroethylamide (ACEA), a selective CB1 agonist, caused a rapid and transient increase in BRET efficiency (BRETEff) between Gαi-Rluc and CB1-green fluorescent protein 2 (GFP(2)), and a Gαi-dependent increase in ERK phosphorylation. Physical interactions between CB1 and D2L were observed using BRET(2) Cotreatment of STHdh(Q7/Q7) cells with ACEA and haloperidol, a D2 antagonist, inhibited BRETEff signals between Gαi-Rluc and CB1-GFP(2) and reduced the EMax and pEC50 of ACEA-mediated Gαi-dependent ERK phosphorylation. ACEA and haloperidol cotreatments produced a delayed and sustained increase in BRETEff between Gαs-Rluc and CB1-GFP(2) and increased the EMax and pEC50 of ACEA-induced Gαs-dependent cAMP response element-binding protein phosphorylation. In cells expressing CB1 and D2L treated with ACEA, binding of haloperidol to D2 receptors switched CB1 coupling from Gαi to Gαs In addition, haloperidol treatment reduced ACEA-induced β-arrestin1 recruitment to CB1 and CB1 internalization. D2 antagonists allosterically modulate cannabinoid-induced CB1 coupling, signaling, and β-arrestin1 recruitment through binding to CB1-D2L heteromers. These findings indicate that D2 antagonism, like D2 agonists, change agonist-mediated CB1 coupling and

  11. The FGFRL1 Receptor Is Shed from Cell Membranes, Binds Fibroblast Growth Factors (FGFs), and Antagonizes FGF Signaling in Xenopus Embryos*

    PubMed Central

    Steinberg, Florian; Zhuang, Lei; Beyeler, Michael; Kälin, Roland E.; Mullis, Primus E.; Brändli, André W.; Trueb, Beat

    2010-01-01

    FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs. PMID:19920134

  12. The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos.

    PubMed

    Steinberg, Florian; Zhuang, Lei; Beyeler, Michael; Kälin, Roland E; Mullis, Primus E; Brändli, André W; Trueb, Beat

    2010-01-15

    FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs. PMID:19920134

  13. IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit

    PubMed Central

    Hill, Alison R.; Donaldson, Jessica E.; Blume, Cornelia; Smithers, Natalie; Tezera, Liku; Tariq, Kamran; Dennison, Patrick; Rupani, Hitasha; Edwards, Matthew J.; Howarth, Peter H.; Grainge, Christopher; Davies, Donna E.; Swindle, Emily J.

    2016-01-01

    ABSTRACT The bronchial epithelium and underlying fibroblasts form an epithelial mesenchymal trophic unit (EMTU) which controls the airway microenvironment. We hypothesized that cell-cell communication within the EMTU propagates and amplifies the innate immune response to respiratory viral infections. EMTU co-culture models incorporating polarized (16HBE14o-) or differentiated primary human bronchial epithelial cells (HBECs) and fibroblasts were challenged with double-stranded RNA (dsRNA) or rhinovirus. In the polarized EMTU model, dsRNA affected ionic but not macromolecular permeability or cell viability. Compared with epithelial monocultures, dsRNA-stimulated pro-inflammatory mediator release was synergistically enhanced in the basolateral compartment of the EMTU model, with the exception of IL-1α which was unaffected by the presence of fibroblasts. Blockade of IL-1 signaling with IL-1 receptor antagonist (IL-1Ra) completely abrogated dsRNA-induced basolateral release of mediators except CXCL10. Fibroblasts were the main responders to epithelial-derived IL-1 since exogenous IL-1α induced pro-inflammatory mediator release from fibroblast but not epithelial monocultures. Our findings were confirmed in a differentiated EMTU model where rhinovirus infection of primary HBECs and fibroblasts resulted in synergistic induction of basolateral IL-6 that was significantly abrogated by IL-1Ra. This study provides the first direct evidence of integrated IL-1 signaling within the EMTU to propagate inflammatory responses to viral infection.

  14. IL-1Ra and its delivery strategies: inserting the association in perspective.

    PubMed

    Akash, Muhammad Sajid Hamid; Rehman, Kanwal; Chen, Shuqing

    2013-11-01

    Interleukin-1 receptor antagonist (IL-1Ra) is a naturally occurring anti-inflammatory antagonist of interleukin-1 family of pro-inflammatory cytokines. The broad spectrum anti-inflammatory effects of IL-1Ra have been investigated against various auto-immune diseases such as diabetes mellitus, rheumatoid arthritis. Despite of its outstanding broad spectrum anti-inflammatory effects, IL-1Ra has short biological half-life (4-6 h) and to cope with this problem, up till now, many delivery strategies have been applied either to extend the half-life and/or prolong the steady-state sustained release of IL-1Ra from its target site. Here in our present paper, we have provided an overview of all approaches attempted to prolong the duration of therapeutic effects of IL-1Ra either by fusing IL-1Ra using fusion protein technology to extend the half-life and/or development of new dosage forms using various biodegradable polymers to prolong its steady-state sustained release at the site of administration. These approaches have been characterized by their intended impact on either in vitro release characteristics and/or pharmacokinetic and pharmacodynamic parameters of IL-1Ra. We have also compared these delivery strategies with each other on the basis of bioactivity of IL-1Ra after fusion with fusion protein partner and/or encapsulation with biodegradable polymer. PMID:23794040

  15. IL-1α mediates cellular cross-talk in the airway epithelial mesenchymal trophic unit.

    PubMed

    Hill, Alison R; Donaldson, Jessica E; Blume, Cornelia; Smithers, Natalie; Tezera, Liku; Tariq, Kamran; Dennison, Patrick; Rupani, Hitasha; Edwards, Matthew J; Howarth, Peter H; Grainge, Christopher; Davies, Donna E; Swindle, Emily J

    2016-01-01

    The bronchial epithelium and underlying fibroblasts form an epithelial mesenchymal trophic unit (EMTU) which controls the airway microenvironment. We hypothesized that cell-cell communication within the EMTU propagates and amplifies the innate immune response to respiratory viral infections. EMTU co-culture models incorporating polarized (16HBE14o-) or differentiated primary human bronchial epithelial cells (HBECs) and fibroblasts were challenged with double-stranded RNA (dsRNA) or rhinovirus. In the polarized EMTU model, dsRNA affected ionic but not macromolecular permeability or cell viability. Compared with epithelial monocultures, dsRNA-stimulated pro-inflammatory mediator release was synergistically enhanced in the basolateral compartment of the EMTU model, with the exception of IL-1α which was unaffected by the presence of fibroblasts. Blockade of IL-1 signaling with IL-1 receptor antagonist (IL-1Ra) completely abrogated dsRNA-induced basolateral release of mediators except CXCL10. Fibroblasts were the main responders to epithelial-derived IL-1 since exogenous IL-1α induced pro-inflammatory mediator release from fibroblast but not epithelial monocultures. Our findings were confirmed in a differentiated EMTU model where rhinovirus infection of primary HBECs and fibroblasts resulted in synergistic induction of basolateral IL-6 that was significantly abrogated by IL-1Ra. This study provides the first direct evidence of integrated IL-1 signaling within the EMTU to propagate inflammatory responses to viral infection. PMID:27583193

  16. Chronic Antagonism of the Mineralocorticoid Receptor Ameliorates Hypertension and End Organ Damage in a Rodent Model of Salt-Sensitive Hypertension

    PubMed Central

    Zhou, Xiaoyan; Crook, Martin F; Sharif-Rodriguez, Wanda; Zhu, Yonghua; Ruben, Zadok; Pan, Yi; Urosevic-Price, Olga; Wang, Li; Flattery, Amy M; Forrest, Gail; Szeto, Daphne; Zhao, Huawei; Roy, Sophie; Forrest, Michael J

    2011-01-01

    We investigated the effects of chronic mineralocorticoid receptor blockade with eplerenone on the development and progression of hypertension and end organ damage in Dahl salt-sensitive rats. Eplerenone significantly attenuated the progressive rise in systolic blood pressure (SBP) (204 ± 3 vs. 179±3 mmHg, p < 0.05), reduced proteinuria (605.5 ± 29.6 vs. 479.7 ± 26.1 mg/24h, p < 0.05), improved injury scores of glomeruli, tubules, renal interstitium, and vasculature in Dahl salt-sensitive rats fed a high-salt diet. These results demonstrate that mineralocorticoid receptor antagonism provides target organ protection and attenuates the development of elevated blood pressure (BP) in a model of salt-sensitive hypertension. PMID:21950654

  17. PKCδ-IRAK1 axis regulates oxidized LDL-induced IL-1β production in monocytes[S

    PubMed Central

    Tiwari, Rajiv Lochan; Singh, Vishal; Singh, Ankita; Rana, Minakshi; Verma, Anupam; Kothari, Nikhil; Kohli, Monica; Bogra, Jaishri; Dikshit, Madhu; Barthwal, Manoj Kumar

    2014-01-01

    This study examined the role of interleukin (IL)-1 receptor-associated kinase (IRAK) and protein kinase C (PKC) in oxidized LDL (Ox-LDL)-induced monocyte IL-1β production. In THP1 cells, Ox-LDL induced time-dependent secretory IL-1β and IRAK1 activity; IRAK4, IRAK3, and CD36 protein expression; PKCδ-JNK1 phosphorylation; and AP-1 activation. IRAK1/4 siRNA and inhibitor (INH)-attenuated Ox-LDL induced secreted IL-1β and pro-IL-1β mRNA and pro-IL-1β and mature IL-1β protein expression, respectively. Diphenyleneiodonium chloride (NADPH oxidase INH) and N-acetylcysteine (free radical scavenger) attenuated Ox-LDL-induced reactive oxygen species generation, caspase-1 activity, and pro-IL-1β and mature IL-1β expression. Ox-LDL-induced secretory IL-1β production was abrogated in the presence of JNK INH II, Tanshinone IIa, Ro-31-8220, Go6976, Rottlerin, and PKCδ siRNA. PKCδ siRNA attenuated the Ox-LDL-induced increase in IRAK1 kinase activity, JNK1 phosphorylation, and AP-1 activation. In THP1 macrophages, CD36, toll-like receptor (TLR)2, TLR4, TLR6, and PKCδ siRNA prevented Ox-LDL-induced PKCδ and IRAK1 activation and IL-1β production. Enhanced Ox-LDL and IL-1β in systemic inflammatory response syndrome (SIRS) patient plasma demonstrated positive correlation with each other and with disease severity scores. Ox-LDL-containing plasma induced PKCδ and IRAK1 phosphorylation and IL-1β production in a CD36-, TLR2-, TLR4-, and TLR6-dependent manner in primary human monocytes. Results suggest involvement of CD36, TLR2, TLR4, TLR6, and the PKCδ-IRAK1-JNK1-AP-1 axis in Ox-LDL-induced IL-1β production. PMID:24792928

  18. Phosphocholine-Modified Macromolecules and Canonical Nicotinic Agonists Inhibit ATP-Induced IL-1β Release.

    PubMed

    Hecker, Andreas; Küllmar, Mira; Wilker, Sigrid; Richter, Katrin; Zakrzewicz, Anna; Atanasova, Srebrena; Mathes, Verena; Timm, Thomas; Lerner, Sabrina; Klein, Jochen; Kaufmann, Andreas; Bauer, Stefan; Padberg, Winfried; Kummer, Wolfgang; Janciauskiene, Sabina; Fronius, Martin; Schweda, Elke K H; Lochnit, Günter; Grau, Veronika

    2015-09-01

    IL-1β is a potent proinflammatory cytokine of the innate immune system that is involved in host defense against infection. However, increased production of IL-1β plays a pathogenic role in various inflammatory diseases, such as rheumatoid arthritis, gout, sepsis, stroke, and transplant rejection. To prevent detrimental collateral damage, IL-1β release is tightly controlled and typically requires two consecutive danger signals. LPS from Gram-negative bacteria is a prototypical first signal inducing pro-IL-1β synthesis, whereas extracellular ATP is a typical second signal sensed by the ATP receptor P2X7 that triggers activation of the NLRP3-containing inflammasome, proteolytic cleavage of pro-IL-1β by caspase-1, and release of mature IL-1β. Mechanisms controlling IL-1β release, even in the presence of both danger signals, are needed to protect from collateral damage and are of therapeutic interest. In this article, we show that acetylcholine, choline, phosphocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified protein efficiently inhibit ATP-mediated IL-1β release in human and rat monocytes via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Of note, we identify receptors for phosphocholine-modified macromolecules that are synthesized by microbes and eukaryotic parasites and are well-known modulators of the immune system. Our data suggest that an endogenous anti-inflammatory cholinergic control mechanism effectively controls ATP-mediated release of IL-1β and that the same mechanism is used by symbionts and misused by parasites to evade innate immune responses of the host. PMID:26202987

  19. Maternal IL-1β Production Prevents Lung Injury in a Mouse Model of Bronchopulmonary Dysplasia

    PubMed Central

    Bäckström, Erica; Lappalainen, Urpo; Bry, Kristina

    2010-01-01

    Little is known about the influence of maternal inflammation on neonatal outcome. Production of IL-1β in the lungs of newborn infants is associated with bronchopulmonary dysplasia. Using bitransgenic (bi-TG) mice in which human (h) IL-1β is expressed with a doxycycline-inducible system controlled by the Clara cell secretory protein promoter, we have shown that hIL-1β expression causes a bronchopulmonary dysplasia–like illness in infant mice. To study the hypothesis that maternal hIL-1β production modifies the response of the newborn to hIL-1β, doxycycline was administered to bi-TG and control dams from Embryonic Day 0, inducing production of hIL-1β by the bi-TG dams before hIL-1β production started in their bi-TG fetuses, or from Embryonic Day 15, inducing simultaneous production of hIL-1β by both the bi-TG dams and their bi-TG fetuses. In addition to the lungs, hIL-1β was expressed at low levels in the uteri of bi-TG dams. Maternal inflammation preceding fetal inflammation increased the survival and growth of hIL-1β–expressing pups, enhanced alveolarization, and protected the airways against remodeling and goblet cell hyperplasia. Maternal hIL-1β production preceding fetal hIL-1β production caused silencing of several inflammatory genes, including CXC and CC chemokines, murine IL-1β, serum amyloid A3, and Toll-like receptors 2 and 4, and suppressed the expression of chitinase-like lectins Ym1 and Ym2 in the lungs of infant mice. Maternal inflammation protects the newborn against subsequent hIL-1β–induced lung inflammation and injury. In contrast, induction of hIL-1β production simultaneously in bi-TG dams and their fetuses offered no protection against inflammatory lung disease in the neonate. PMID:19411613

  20. IL1RN VNTR Polymorphism in Ischemic Stroke

    PubMed Central

    Worrall, Bradford B.; Brott, Thomas G.; Brown, Robert D.; Brown, W. Mark; Rich, Stephen S.; Arepalli, Sampath; Wavrant-De Vrièze, Fabienne; Duckworth, Jaime; Singleton, Andrew B.; Hardy, John; Meschia, James F.

    2008-01-01

    Background and Purpose Genetic factors influence risk for ischemic stroke and likely do so at multiple steps in the pathogenic process. Variants in genes related to inflammation contribute to risk of stroke. The purpose of this study was to confirm our earlier finding of an association between allele 2 of a variable number tandem repeat of the IL-1 receptor antagonist gene (IL1RN) and cerebrovascular disease. Methods An association study of the variable number tandem repeat genotype with ischemic stroke and stroke subtypes was performed on samples from a North American study of affected sibling pairs concordant for ischemic stroke and 2 North American cohorts of prospectively ascertained ischemic stroke cases and unrelated controls. DNA analysis was performed on cases and controls, stratified by race. Results After adjustment for age, sex, and stroke risk factors, the odds ratio for association of allele 2 and ischemic stroke was 2.80 (95% confidence interval, 1.29 to 6.11; P=0.03) for the white participants. The effect of allele 2 of IL1RN on stroke risk most closely fits a recessive genetic model (P=0.009). For the smaller sample of nonwhite participants, the results were not significant. Conclusions Allele 2 of IL1RN, present in nearly one-quarter of stroke patients, may contribute to genetic risk for ischemic stroke and confirm the previously identified association with cerebrovascular disease. These results are driven by the association in the white participants. Further exploration in a larger nonwhite sample is warranted. PMID:17332449

  1. Effects of single or combined histamine H1-receptor and leukotriene CysLT1-receptor antagonism on nasal adenosine monophosphate challenge in persistent allergic rhinitis

    PubMed Central

    Lee, Daniel K C; Jackson, Catherine M; Soutar, Patricia C; Fardon, Thomas C; Lipworth, Brian J

    2004-01-01

    Background The effects of single or combined histamine H1-receptor and leukotriene CysLT1-receptor antagonism on nasal adenosine monophosphate (AMP) challenge in allergic rhinitis are unknown. Objective We elected to study the effects of usual clinically recommended doses of fexofenadine (FEX), montelukast (ML) and FEX + ML combination, compared with placebo (PL), on nasal AMP challenge in patients with persistent allergic rhinitis. Methods Twelve patients with persistent allergic rhinitis (all skin prick positive to house dust mite) were randomized in a double-blind cross-over fashion to receive for 1 week either FEX 180 mg, ML 10 mg, FEX 180 mg +ML 10 mg combination, or PL, with nasal AMP challenge performed 12 h after dosing. There was a 1-week washout period between each randomized treatment. The primary outcome measure was the maximum percentage peak nasal inspiratory flow (PNIF) fall from baseline over a 60-min period after nasal challenge with a single 400 mg ml−1 dose of AMP. The area under the 60-min time–response curve (AUC) and nasal symptoms were measured as secondary outcomes. Results There was significant attenuation (P < 0.05) of the mean maximum percentage PNIF fall from baseline after nasal AMP challenge vs. PL, 48; with FEX, 37; 95% confidence interval for difference 2, 20; ML, 35 (4, 22); and FEX + ML, 32 (7, 24). The AUC (%.min) was also significantly attenuated (P < 0.05) vs. PL, 1893; with FEX, 1306 (30, 1143); ML, 1246 (214, 1078); and FEX + ML, 1153 (251, 1227). There were no significant differences for FEX vs. ML vs. FEX + ML comparing either the maximum or AUC response. The total nasal symptom score (out of 12) was also significantly improved (P < 0.05) vs. PL, 3.3; with FEX, 2.1 (0.3, 2.0); ML, 2.0 (0.5, 1.9); and FEX + ML, 2.5 (0.1, 1.4). Conclusion FEX and ML as monotherapy significantly attenuated the response to nasal AMP challenge and improved nasal symptoms compared with PL, while combination therapy conferred no additional

  2. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung.

    PubMed

    Borthwick, L A

    2016-07-01

    The IL-1 cytokine family comprises 11 members (7 ligands with agonist activity, 3 receptor antagonists and 1 anti-inflammatory cytokine) and is recognised as a key mediator of inflammation and fibrosis in multiple tissues including the lung. IL-1 targeted therapies have been successfully employed to treat a range of inflammatory conditions such as rheumatoid arthritis and gouty arthritis. This review will introduce the members of the IL-1 cytokine family, briefly discuss the cellular origins and cellular targets and provide an overview of the role of these molecules in inflammation and fibrosis in the lung. PMID:27001429

  3. Ozone Exposure of Macrophages Induces an Alveolar Epithelial Chemokine Response through IL-1α

    PubMed Central

    Manzer, Rizwan; Dinarello, Charles A.; McConville, Glen; Mason, Robert J.

    2008-01-01

    Ozone is known to produce an acute influx of neutrophils, and alveolar epithelial cells can secrete chemokines and modulate inflammatory processes. However, direct exposure of alveolar epithelial cells and macrophages to ozone (O3) produces little chemokine response. To determine if cell–cell interactions might be responsible, we investigated the effect of alveolar macrophage–conditioned media after ozone exposure (MO3CM) on alveolar epithelial cell chemokine production. Serum-free media were conditioned by exposing a rat alveolar macrophage cell line NR8383 to ozone for 1 hour. Ozone stimulated secretion of IL-1α, IL-1β, and IL-18 from NR8383 cells, but there was no secretion of chemokines or TNF-α. Freshly isolated type II cells were cultured, so as to express the biological markers of type I cells, and these cells are referred to as type I–like cells. Type I–like cells were exposed to diluted MO3CM for 24 hours, and this conditioned medium stimulated secretion of cytokine-induced neutrophil chemattractant-1 (CXCL1) and monocyte chemoattractant protein-1 (CCL2). Secretion of these chemokines was inhibited by the IL-1 receptor antagonist. Although both recombinant IL-1α and IL-1β stimulated alveolar epithelial cells to secrete chemokines, recombinant IL-1α was 100-fold more potent than IL-1β. Furthermore, neutralizing anti-rat IL-1α antibodies inhibited the secretion of chemokines by alveolar epithelial cells, whereas neutralizing anti-rat IL-1β antibodies had no effect. These observations indicate that secretion of IL-1α from macrophages stimulates alveolar epithelial cells to secrete chemokines that can elicit an inflammatory response. PMID:17901407

  4. Serum Amyloid A Induces NLRP-3-Mediated IL-1β Secretion in Neutrophils

    PubMed Central

    Migita, Kiyoshi; Izumi, Yasumori; Jiuchi, Yuka; Kozuru, Hideko; Kawahara, Chieko; Nakamura, Minoru; Nakamura, Tadashi; Agematsu, Kazunaga; Masumoto, Junya; Yasunami, Michio; Kawakami, Atsushi; Eguchi, Katsumi

    2014-01-01

    Background/Aims Serum amyloid A (SAA) is an acute phase reactant with significant immunological activities, including effects on cytokine synthesis and neutrophil chemotaxis. Neutrophils can also release cytokines with proinflammatory properties. IL-1β is a key proinflammatory cytokine, the secretion of which is controlled by inflammasome. We investigated the proinflammatory effects of SAA in vitro in relation to the NLRP3 inflammasome in neutrophils. Methodology/Principal Findings Human neutrophils isolated form healthy subjects were stimulated with serum amyloid A (SAA). The cellular supernatants were analyzed by western blot using anti-IL-1β or anti-caspase-1 antibodies. IL-1β or Nod-like receptor family, pyrin domain containing 3 (NLRP3) mRNA expressions were analyzed by real-time PCR or reverse transcription-PCR (RT-PCR) method. SAA stimulation induced pro-IL-1β mRNA expression in neutrophils. Furthermore, SAA engaged the caspase-1-activating inflammasome, resulting in the production of active IL-1β. SAA-induced pro-IL-1β expression was marginally suppressed by the Syk specific inhibitor, R406, and SAA-induced pro-IL-1β processing in neutrophils was prevented by R406. Furthermore, SAA-induced NLRP3 mRNA expression was completely blocked by R406. Analysis of intracellular signaling revealed that SAA stimulation activated the tyrosine kinase Syk and mitogen-activated protein kinase (MAPK). Conclusions/Significance These results demonstrate that the innate neutrophil immune response against SAA involves a two-step activation process: an initial signal promoting expression of pro-IL-1β and a second signal involving Syk-dependent activation of the NLRP3 inflammasome and caspase-1, allowing processing of pro-IL-1β and secretion of mature IL-1β. PMID:24846290

  5. The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction

    PubMed Central

    2010-01-01

    Introduction The impact of pro-inflammatory cytokines on neuroinflammation and cognitive function after lipopolysaccharide (LPS) challenge remains elusive. Herein we provide evidence that there is a temporal correlation between high-mobility group box 1 (HMGB-1), microglial activation, and cognitive dysfunction. Disabling the interleukin (IL)-1 signaling pathway is sufficient to reduce inflammation and ameliorate the disability. Methods Endotoxemia was induced in wild-type and IL-1R-/- mice by intra peritoneal injection of E. Coli LPS (1 mg/kg). Markers of inflammation were assessed both peripherally and centrally, and correlated to behavioral outcome using trace fear conditioning. Results Increase in plasma tumor necrosis factor-α (TNFα) peaked at 30 minutes after LPS challenge. Up-regulation of IL-1β, IL-6 and HMGB-1 was more persistent, with detectable levels up to day three. A 15-fold increase in IL-6 and a 6.5-fold increase in IL-1β mRNA at 6 hours post intervention (P < 0.001 respectively) was found in the hippocampus. Reactive microgliosis was observed both at days one and three, and was associated with elevated HMGB-1 and impaired memory retention (P < 0.005). Preemptive administration of IL-1 receptor antagonist (IL-1Ra) significantly reduced plasma cytokines and hippocampal microgliosis and ameliorated cognitive dysfunction without affecting HMGB-1 levels. Similar results were observed in LPS-challenged mice lacking the IL-1 receptor to those seen in LPS-challenged wild type mice treated with IL-1Ra. Conclusions These data suggest that by blocking IL-1 signaling, the inflammatory cascade to LPS is attenuated, thereby reducing microglial activation and preventing the behavioral abnormality. PMID:20470406

  6. Contrasting effects of peroxisome-proliferator-activated receptor (PPAR)γ agonists on membrane-associated prostaglandin E2 synthase-1 in IL-1β-stimulated rat chondrocytes: evidence for PPARγ-independent inhibition by 15-deoxy-Δ12,14prostaglandin J2

    PubMed Central

    Bianchi, Arnaud; Moulin, David; Sebillaud, Sylvie; Koufany, Meriem; Galteau, Marie-Madeleine; Netter, Patrick; Terlain, Bernard; Jouzeau, Jean-Yves

    2005-01-01

    Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1α and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1β, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)γ agonists. Real-time PCR analysis showed that IL-1β induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1α and PGE2 peaked 24 hours after stimulation with IL-1β; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Δ12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 μM), with more potency on PGE2 level than on 6-keto-PGF1α level (-90% versus -66% at 10 μM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 μM. Inhibitory effects of 10 μM 15d-PGJ2 were neither reduced by PPARγ blockade with GW-9662 nor enhanced by PPARγ overexpression, supporting a PPARγ-independent mechanism. EMSA and TransAM® analyses demonstrated that mutated IκBα almost completely suppressed the stimulating effect of IL-1β on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-κB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-κB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARγ through inhibition of

  7. Prostamide F2α receptor antagonism combined with inhibition of FAAH may block the pro-inflammatory mediators formed following selective FAAH inhibition

    PubMed Central

    Ligresti, Alessia; Martos, Jose; Wang, Jenny; Guida, Francesca; Allarà, Marco; Palmieri, Vittoria; Luongo, Livio; Woodward, David; Di Marzo, Vincenzo

    2014-01-01

    Background and PurposeProstamides are lipid mediators formed by COX-2-catalysed oxidation of the endocannabinoid anandamide and eliciting effects often opposed to those caused by anandamide. Prostamides may be formed when hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) is physiologically, pathologically or pharmacologically decreased. Thus, therapeutic benefits of FAAH inhibitors might be attenuated by concomitant production of prostamide F2α. This loss of benefit might be minimized by compounds designed to selectively antagonize prostamide receptors and also inhibiting FAAH. Experimental ApproachInhibition of FAAH by a series of selective antagonists of prostamide receptors, including AGN 204396, AGN 211335 and AGN 211336, was assessed using rat, mouse and human FAAH in vitro, together with affinity for human recombinant CB1 and CB2 receptors. Effects in vivo were measured in a model of formalin-induced inflammatory pain in mice. Key ResultsThe prostamide F2α receptor antagonists were active against mouse and rat FAAH in the low μM range and behaved as non-competitive and plasma membrane-permeant inhibitors. AGN 211335, the most potent inhibitor of rat FAAH (IC50 = 1.2 μM), raised exogenous anandamide levels in intact cells and also bound to cannabinoid CB1 receptors. Both AGN 211335 and AGN 211336 (0.25–1 mg·kg−1, i.p.) inhibited the formalin-induced nociceptive response in mice. Conclusions and ImplicationsSynthetic compounds with indirect agonist activity at cannabinoid receptors and antagonist activity at prostamide receptors can be developed. Such compounds could be used as alternatives to selective FAAH inhibitors to prevent the possibility of prostamide F2α-induced inflammation and pain. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24102214

  8. Ulipristal Acetate Antagonizes the Inhibitory Effect of Progesterone on Ciliary Beat Frequency and Upregulates Steroid Receptor Expression Levels in Human Fallopian Tubes.

    PubMed

    Yuan, Jiangjing; Zhao, Weihong; Yan, Mingxing; Zhu, Qian; Qin, Guojuan; Qiu, Jun; Zhang, Jian

    2015-12-01

    Ulipristal acetate (UPA) is a new selective progesterone receptor (PR) modulator used for emergency contraception. However, our understanding of its mechanisms of action on oviductal cilia is limited. The present study focused on the in vitro effects of UPA (0.1, 1, and 10 μmol/L) on the cilia and steroid receptors of human fallopian tubes. The ciliary beat frequency (CBF), the ultrastructure of cilia, and the levels of steroid receptors were measured. The effects of UPA on the progesterone-induced CBF reduction were also studied. Our results show that UPA dose dependently antagonizes the progesterone-induced CBF decrease, but it does not affect the CBF or the ultrastructure of the cilia. The UPA also upregulates the expression levels of the estrogen receptor α and the PR in the fallopian tubes. The results enable us to better understand the mechanisms by which UPA works as an emergency contraceptive and provides a scientific basis for its clinical application. PMID:26045548

  9. In vitro effects of glutamate and N-methyl-D-aspartate receptor (NMDAR) antagonism on human tendon derived cells.

    PubMed

    Dean, Benjamin John Floyd; Snelling, Sarah J B; Dakin, Stephanie Georgina; Javaid, Muhammad Kassim; Carr, Andrew Jonathan

    2015-10-01

    It is known that extracellular glutamate concentrations are increased in tendinopathy but the effects of glutamate upon human tendon derived cells are unknown. The primary purpose was to investigate the effect of glutamate exposure on human tendon-derived cells in terms of viability, protein, and gene expression. The second purpose was to assess whether NMDAR antagonism would affect the response of tendon-derived cells to glutamate exposure. Human tendon-derived cells were obtained from supraspinatus tendon tissue obtained during rotator cuff repair (tendon tear derived cells) and from healthy hamstring tendon tissue (control cells). The in vitro impact of glutamate exposure and NMDAR antagonism (MK-801) was measured using the Alamar blue cell viability assay, immunocytochemistry, and quantitative real-time PCR. Glutamate reduced cell viability at 24 h in tendon tear derived cells but not in control cells at concentrations of 7.5 mM and above. Cell viability was significantly reduced after 72 h of 1.875 mM glutamate in both cell groups; this deleterious effect was attenuated by NMDAR antagonism with 10 µM MK-801. Both 24 and 72 h of 1.875 mM glutamate exposure reduced Type 1 alpha 1 collagen (COL1A1) and Type 3 alpha 1 collagen (COL3A1) gene expression, but increased Aggrecan gene expression. We propose that these effects of glutamate on tendon derived cells including reduced cell viability and altered matrix gene expression contribute to the pathogenesis of tendinopathy. PMID:26041147

  10. IL-1beta induces a MyD88-dependent and ceramide-mediated activation of Src in anterior hypothalamic neurons.

    PubMed

    Davis, Christopher N; Tabarean, Iustin; Gaidarova, Svetlana; Behrens, M Margarita; Bartfai, Tamas

    2006-09-01

    The proinflammatory cytokine interleukin 1beta (IL-1beta), acting at IL-1R1 receptors, affects neuronal signaling under both physiological and pathophysiological conditions. The molecular mechanism of the rapid synaptic actions of IL-1beta in neurons is not known. We show here that within minutes of IL-1beta exposure, the firing rate of anterior hypothalamic (AH) neurons in culture was inhibited. This effect was prevented by pre-exposure of the cells to the Src family inhibitor, PP2, suggesting the involvement of Src in the hyperpolarizing effects of IL-1beta. The IL-1beta stimulation of neurons induced a rapid increase in the phosphorylation of the tyrosine kinase Src and kinase suppressor of Ras (ceramide activated protein kinase (CAPK)/KSR) in neurons grown on glia from IL-1RI(-/-) mice. These effects of IL-1beta were dependent on the association of the cytosolic adaptor protein, MyD88, to the IL-1 receptor, and on the activation of the neutral sphingomyelinase, leading to production of ceramide. A cell-permeable analog of ceramide mimicked the effects of IL-1beta on the cultured AH neurons. These results suggest that ceramide may be the second messenger of the fast IL-1beta actions in AH neurons, and that this IL-1beta/ceramide pathway may underlie the fast non-transcription-dependent, electrophysiological effects of IL-1beta observed in AH neurons in vivo. PMID:16771830

  11. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. PMID:23916504

  12. Modulation of IL-1β reprogrammes the tumor microenvironment to interrupt oral carcinogenesis

    PubMed Central

    Wu, Tong; Hong, Yun; Jia, Lihua; Wu, Jie; Xia, Juan; Wang, Juan; Hu, Qinchao; Cheng, Bin

    2016-01-01

    Head and neck squamous cell carcinoma (HNSCC) development is a multistage process includes the normal, dysplasia and squamous cell carcinoma (SCC) stages. Recently, increasing evidence has suggested that the tumor microenvironment (TME) is an integral part of malignant transformation. Exploring certain key node genes in TME for future intervention in dysplasia to interrupt oral carcinogenesis was the primary goal of this research. To achieve this goal, systems biology approaches were first applied to the epithelia and fibroblasts collected at sequential stages in a 4-nitroquinoline-1-oxide (4NQO) - induced rat oral carcinogenesis model. Through bioinformatics network construction, IL-1β was identified as one of the key node genes in TME during carcinogenesis. Immunohistochemical staining of human and rat samples demonstrated that IL-1β expression patterns were parallel to the stages of malignant transformation. Silencing IL-1β with lentivirus-delivered shRNA significantly inhibited oral squamous cell carcinoma cell growth both in vivo and in vitro. Based on these findings, we hypothesized that IL-1β may be a chemoprevention target in TME during oral carcinogenesis. Therefore, we targeted IL-1 in the TME by oral mucosal injection of an IL-1 receptor antagonist in 4NQO rats. The results demonstrated that targeting IL-1 could interrupt oral carcinogenesis by reprogramming the TME. PMID:26831400

  13. IGF-1 and PDGF-bb Suppress IL-1β-Induced Cartilage Degradation through Down-Regulation of NF-κB Signaling: Involvement of Src/PI-3K/AKT Pathway

    PubMed Central

    Mobasheri, Ali; Buhrmann, Constanze; Aldinger, Constance; Rad, Jafar Soleimani; Shakibaei, Mehdi

    2011-01-01

    Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects. PMID

  14. Differential antagonism and tolerance/cross-tolerance among nicotinic acetylcholine receptor agonists: scheduled-controlled responding and hypothermia in C57BL/6J mice.

    PubMed

    de Moura, Fernando B; McMahon, Lance R

    2016-04-01

    The tobacco-dependence pharmacotherapies varenicline and cytisine act as partial α4β2 nAChR agonists. However, the extent to which α4β2 nicotinic acetylcholine receptors (nAChRs) mediate their in-vivo effects remains unclear. Nicotine, varenicline, cytisine, and epibatidine were studied in male C57BL/6J mice for their effects on rates of fixed ratio responding and rectal temperature alone and in combination with the nonselective nAChR antagonist mecamylamine and the α4β2 nAChR antagonist dihydro-β-erythroidine. The effects of nicotine, varenicline, cytisine, epibatidine, and cocaine were assessed before and during chronic nicotine treatment. The rate-decreasing and hypothermic effects of nicotine, varenicline, cytisine, and epibatidine were antagonized by mecamylamine (1 mg/kg), but only the effects of nicotine and epibatidine were antagonized by dihydro-β-erythroidine (3.2 mg/kg). Chronic nicotine produced 4.7 and 5.1-fold rightward shifts in the nicotine dose-effect functions to decrease response rate and rectal temperature, respectively. Nicotine treatment decreased the potency of epibatidine to decrease response rate and rectal temperature 2.2 and 2.9-fold, respectively, and shifted the varenicline dose-effect functions 2.0 and 1.7-fold rightward, respectively. Cross-tolerance did not develop from nicotine to cytisine. These results suggest that the in-vivo pharmacology of tobacco cessation aids cannot be attributed to a single nAChR subtype; instead, multiple receptor subtypes differentially mediate their effects. PMID:26910582

  15. IL1RAPL1 Associated with Mental Retardation and Autism Regulates the Formation and Stabilization of Glutamatergic Synapses of Cortical Neurons through RhoA Signaling Pathway

    PubMed Central

    Hayashi, Takashi; Yoshida, Tomoyuki; Ra, Moonjin; Taguchi, Ryo; Mishina, Masayoshi

    2013-01-01

    Interleukin-1 receptor accessory protein-like 1 (IL1RAPL1) is associated with X-linked mental retardation and autism spectrum disorder. We found that IL1RAPL1 regulates synapse formation of cortical neurons. To investigate how IL1RAPL1 controls synapse formation, we here screened IL1RAPL1-interacting proteins by affinity chromatography and mass spectroscopy. IL1RAPL1 interacted with Mcf2-like (Mcf2l), a Rho guanine nucleotide exchange factor, through the cytoplasmic Toll/IL-1 receptor domain. Knockdown of endogenous Mcf2l and treatment with an inhibitor of Rho-associated protein kinase (ROCK), the downstream kinase of RhoA, suppressed IL1RAPL1-induced excitatory synapse formation of cortical neurons. Furthermore, we found that the expression of IL1RAPL1 affected the turnover of AMPA receptor subunits. Insertion of GluA1-containing AMPA receptors to the cell surface was decreased, whereas that of AMPA receptors composed of GluA2/3 was enhanced. Mcf2l knockdown and ROCK inhibitor treatment diminished the IL1RAPL1-induced changes of AMPA receptor subunit insertions. Our results suggest that Mcf2l-RhoA-ROCK signaling pathway mediates IL1RAPL1-dependent formation and stabilization of glutamatergic synapses of cortical neurons. PMID:23785489

  16. Elastin fragments induce IL-1beta upregulation via NF-kappaB pathway in melanoma cells.

    PubMed

    Debret, Romain; Le Naour, Richard R; Sallenave, Jean-Michel; Deshorgue, Aurelie; Hornebeck, William G; Guenounou, Moncef; Bernard, Philippe; Antonicelli, Frank D

    2006-08-01

    In a previous work, we reported the influence of elastin fragments (EFs) on matrix metalloproteinases-2 and -14 expression and activation in melanoma cells in vitro. We hypothesized that EFs might also modulate expression of other mediators involved during melanoma progression. Therefore we investigated the contribution of EFs on IL-1beta expression, a cytokine playing a key role in melanoma cells activation. Our results evidenced that high tumorigenic melanoma cells (M3Da cells) treated with EFs led to IL-1beta mRNA and protein upregulation. The effects of EFs on M3Da cells were found to be mediated by receptor (spliced galactosidase) occupancy, as being suppressed by lactose and reproduced by cell stimulation with the VGVAPG peptide. Binding of EFs to their receptor induced a rapid activation of extracellular signal-regulated kinase 1/2; and p38 mitogen-activated protein kinase pathways. However, these pathways were not associated with IL-1beta mRNA upregulation by EFs. Concomitantly, we demonstrated that EFs stimulation induced NF-kappaB nuclear translocation and DNA binding on IL-1beta promoter region whereas inhibition of NF-kappaB with the specific chemical inhibitor SN-50 or by overexpression of IkappaB, the endogenous inhibitor of NF-kappaB pathway, totally abolished EFs-mediated IL-1beta mRNA overexpression. These results demonstrate that EFs induce NF-kappaB activation, leading to IL-1beta upregulation in invasive melanoma cells. PMID:16675961

  17. The Role of IL-1β in the Bone Loss during Rheumatic Diseases

    PubMed Central

    Ruscitti, Piero; Cipriani, Paola; Carubbi, Francesco; Liakouli, Vasiliki; Di Benedetto, Paola; Berardicurti, Onorina; Alesse, Edoardo; Giacomelli, Roberto

    2015-01-01

    Several inflammatory diseases have been associated with increased bone resorption and fracture rates and different studies supported the relation between inflammatory cytokines and osteoclast activity. The main factor required for osteoclast activation is the stimulation by receptor activator of nuclear factor kappa-B ligand (RANKL) expressed on osteoblasts. In this context, interleukin- (IL-) 1β, one of the most powerful proinflammatory cytokines, is a strong stimulator of in vitro and in vivo bone resorption via upregulation of RANKL that stimulates the osteoclastogenesis. The resulting effects lead to an imbalance in bone metabolism favouring bone resorption and osteoporosis. In this paper, we review the available literature on the role of IL-1β in the pathogenesis of bone loss. Furthermore, we analysed the role of IL-1β in bone resorption during rheumatic diseases and, when available, we reported the efficacy of anti-IL-1β therapy in this field. PMID:25954061

  18. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia

    PubMed Central

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-01-01

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities. PMID:27273195

  19. A Novel Translational Assay of Response Inhibition and Impulsivity: Effects of Prefrontal Cortex Lesions, Drugs Used in ADHD, and Serotonin 2C Receptor Antagonism

    PubMed Central

    Humby, Trevor; Eddy, Jessica B; Good, Mark A; Reichelt, Amy C; Wilkinson, Lawrence S

    2013-01-01

    Animal models are making an increasing contribution to our understanding of the psychology and brain mechanisms underlying behavioral inhibition and impulsivity. The aim here was to develop, for the first time, a mouse analog of the stop-signal reaction time task with high translational validity in order to be able to exploit this species in genetic and molecular investigations of impulsive behaviors. Cohorts of mice were trained to nose-poke to presentations of visual stimuli. Control of responding was manipulated by altering the onset of an auditory ‘stop-signal' during the go response. The anticipated systematic changes in action cancellation were observed as stopping was made more difficult by placing the stop-signal closer to the execution of the action. Excitotoxic lesions of medial prefrontal cortex resulted in impaired stopping, while the clinically effective drugs methylphenidate and atomoxetine enhanced stopping abilities. The specific 5-HT2C receptor antagonist SB242084 also led to enhanced response control in this task. We conclude that stop-signal reaction time task performance can be successfully modeled in mice and is sensitive to prefrontal cortex dysfunction and drug treatments in a qualitatively similar manner to humans and previous rat models. Additionally, using this model we show novel and highly discrete effects of 5-HT2C receptor antagonism that suggest manipulation of 5-HT2C receptor function may be of use in correcting maladaptive impulsive behaviors and provide further evidence for dissociable contributions of serotonergic transmission to response control. PMID:23657439

  20. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia.

    PubMed

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-01-01

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities. PMID:27273195

  1. Dopamine D1 receptor antagonism in the prelimbic cortex blocks the reinstatement of heroin-seeking in an animal model of relapse.

    PubMed

    See, Ronald E

    2009-04-01

    In brain regions that have been implicated in the reinstatement of drug-seeking, the prelimbic cortex has emerged as a critical regulator of relapse behaviours. Here, the effects of prelimbic cortex dopamine (DA) D(1) receptor antagonism on drug-seeking produced by heroin-paired cues, or by a single priming dose of heroin are examined. Rats lever-pressed daily for i.v. heroin discretely paired with a conditioned stimulus during 3-h sessions for a period of 2 wk, followed by extinction and reinstatement of drug-seeking by previously heroin-paired cues (tone+light) or heroin-priming injections (0.25 mg/kg) in the absence of heroin reinforcement. Intracranial infusion of the DA D(1) receptor antagonist, SCH 23390 (0.02-2.0 microg/side), into the prelimbic cortex potently and dose dependently attenuated heroin-seeking in response to either cue presentations or a priming dose of heroin. These results suggest that DA D1 receptors regulate prefrontal cortex pathways necessary for the reinstatement of heroin-seeking. PMID:19236732

  2. Th17 can regulate silica-induced lung inflammation through an IL-1β-dependent mechanism

    PubMed Central

    Song, Laiyu; Weng, Dong; Dai, Wujing; Tang, Wen; Chen, Shi; Li, Chao; Chen, Ying; Liu, Fangwei; Chen, Jie

    2014-01-01

    Silicosis is an occupational lung disease caused by the inhalation of silica dust and characterized by lung inflammation and fibrosis. Interleukin (IL)-1β is induced by silica and functions as the key pro-inflammatory cytokine in this process. The Th17 response, which is induced by IL-1β, has been reported very important in chronic human lung inflammatory diseases. To elucidate the underlying mechanisms of IL-1β and IL-17 in silicosis, we used anakinra and an anti-IL-17 monoclonal antibody (mAb) to block the receptor of IL-1β (IL-RI) and IL-17, respectively, in a mouse model of silicosis. We observed increased IL-1β expression and an enhanced Th17 response after silica instillation. Treatment with an IL-1 type I receptor (IL-1RI) antagonist anakinra substantially decreased silica-induced lung inflammation and the Th17 response. Lung inflammation and the accumulation of inflammatory cells were attenuated in the IL-17-neutralized silicosis group. IL-17 may promote lung inflammation by modulating the differentiation of Th1 and regulatory T cells (Tregs) and by regulating the production of IL-22 and IL-1β during the lung inflammation of silicosis. Silica may induce IL-1β production from alveolar macrophages and promote inflammation by initiating a Th17 response via an IL-1β/IL-1RI-dependent mechanism. The Th17 response could induce lung inflammation during the pathogenesis of silicosis by regulating the homoeostasis of the Th immune responses and affecting the production of IL-22 and IL-1β. This study describes a potentially important inflammatory mechanism of silicosis that may bring about novel therapies for this inflammatory and fibrotic disease. PMID:25091058

  3. The effects of fast-off-D2 receptor antagonism on L-DOPA-induced dyskinesia and psychosis in parkinsonian macaques.

    PubMed

    Koprich, James B; Huot, Philippe; Fox, Susan H; Jarvie, Keith; Lang, Anthony E; Seeman, Philip; Brotchie, Jonathan M

    2013-06-01

    3,4-Dihydroxyphenylalanine (L-DOPA) treatment of Parkinson's disease (PD) is compromised by motor side effects, such as dyskinesia and non-motor problems, including psychosis. Because of the marked reduction in brain dopamine in PD and the resultant dopamine D2 receptor supersensitivity, it is impossible to use standard potent dopamine D2 receptor antagonists such as haloperidol to alleviate side effects without compromising the anti-parkinsonian benefits of L-DOPA. Haloperidol antagonizes D2 receptors with high affinity and slowly dissociates from D2 receptors (50% dissociation at 38min). We hypothesized that a rapidly dissociating D2 antagonist might allow some functional dopaminergic transmission and thus have a profile, with respect to reduction of dyskinesia and anti-parkinsonian effects, that was more useful therapeutically. The present study tested the principle of using a fast-off-D2 drug, CLR151 (50% dissociation at 23s) to modify L-DOPA actions in cynomolgus macaques with MPTP-parkinsonism. CLR151 (100mg/kg p.o.) reduced L-DOPA-induced dyskinesia and activity in the parkinsonian macaque by 86% and 52% respectively during peak action. CLR151 (100mg/kg) also reduced psychosis-like behaviour (i.e. reduced apparent visual hallucinations by 78%). Nevertheless, this dose of CLR151 significantly reduced the duration of anti-parkinsonian action of L-DOPA, ON-time (by 90%), and increased parkinsonian disability (by 57%). These data suggest that fast-off-D2 dopamine receptor antagonists, with D2-off-rate values close to those for CLR151, are unlikely to be useful in the treatment of dyskinesia and psychosis in PD. However, fast-off-D2 drugs could provide benefit if new congeners would have an even faster dissociation rate. Such drugs are now becoming available. PMID:23306217

  4. Regulatory Role of IL-1R8 in Immunity and Disease

    PubMed Central

    Molgora, Martina; Barajon, Isabella; Mantovani, Alberto; Garlanda, Cecilia

    2016-01-01

    Interleukin-1 receptor family members (ILRs) and toll-like receptors (TLRs) are characterized by the presence of a conserved intracellular domain and the toll-IL-1resistance (TIR) domain and are key players in immunity and inflammation. ILR and TLR signaling is tightly regulated at different levels. All cell types of the innate immune system express ILRs and TLRs. In addition, IL-1 family members are emerging as key players in the differentiation and function of innate and adaptive lymphoid cells. IL-1R8, also known as TIR8 or SIGIRR, is a fringe member of the ILR family and acts as a negative regulator of ILR and TLR signaling, which dampens ILR- and TLR-mediated cell activation. IL-1R8 is a component of the receptor recognizing human IL-37. Here, we summarize our current understanding of the structure and function of IL-1R8, focusing on its role in different pathological conditions, ranging from infectious and sterile inflammation to autoimmunity and cancer-related inflammation. PMID:27148268

  5. Evaluation of saccharin intake and expression of fructose-conditioned flavor preferences following opioid receptor antagonism in the medial prefrontal cortex, amygdala or lateral hypothalamus in rats.

    PubMed

    Malkusz, Danielle C; Bernal, Sonia Y; Banakos, Theodore; Malkusz, Gina; Mohamed, Andrew; Vongwattanakit, Tracy; Bodnar, Richard J

    2014-04-01

    In prior studies, systemic opioid receptor antagonism with naltrexone (NTX) failed to block flavor preference conditioning by the sweet taste or post-oral actions of sugar despite reducing overall flavored saccharin intake. Further, NTX microinjections into the nucleus accumbens (NAc) shell or core failed to alter the expression of preferences conditioned by the sweet taste or post-oral actions of sugars. In contrast, fructose-conditioned flavor preferences (CFP) were reduced or eliminated by systemic or intracerebral administration of dopamine (DA) D1 or D2 antagonists in the NAc, medial prefrontal cortex (mPFC), amygdala (AMY) or lateral hypothalamus (LH). The present study examined whether NTX microinjections into the mPFC, AMY or LH would alter expression of fructose-CFP and total flavored saccharin intake. Food-restricted rats with bilateral cannulae aimed at the mPFC, AMY or LH were trained to drink a fructose (8%)+saccharin (0.2%) solution mixed with one flavor (CS+, e.g., cherry) and a 0.2% saccharin solution mixed with another flavor (CS-, e.g., grape) during 10 one-bottle sessions. Two-bottle tests with the cherry and grape flavors in 0.2% saccharin solutions occurred 10min following total bilateral NTX doses of 0, 1, 25 and 50μg administered into the mPFC, AMY or LH. Rats preferred the CS+ over CS- flavor following vehicle and all NTX doses administered into either the mPFC or LH. CS+ intake was significantly greater than CS- intake following vehicle and the low NTX dose in the AMY; however, at the 25 and 50μg AMY NTX doses, CS+ intakes did not significantly exceed CS- intakes. Total flavored saccharin intake was significantly reduced by all three LH NTX doses (20-35%), by the 25 (14%) and 50 (22%)μg AMY NTX doses, but not by mPFC NTX. Thus, opioid antagonism in the AMY, but not the mPFC or LH attenuated, but did not block the expression of fructose-CFP, and LH and AMY, but not mPFC, NTX significantly reduced total saccharin intake. Therefore, whereas

  6. Allotopic antagonism of the non-peptide atrial natriuretic peptide (ANP) antagonist HS-142-1 on natriuretic peptide receptor NPR-A.

    PubMed Central

    Poirier, Hugo; Labrecque, Jean; Deschênes, Julie; DeLéan, André

    2002-01-01

    The microbial polysaccharide HS-142-1 has been documented as an antagonist of natriuretic peptides. It inhibits activation and peptide binding to both guanylate receptors natriuretic peptide receptor (NPR)-A and NPR-B, but has no effect on the non-cyclase receptor NPR-C. At first sight the effect of HS-142-1 on peptide binding appears to be surmountable, suggesting that it might be competitive despite its chemically divergent nature. We explored its mode of action on wild-type NPR-A (WT), on a disulphide-bridged constitutively active mutant (C423S) and on truncated mutants lacking either their cytoplasmic domain (DeltaKC) or both the cytoplasmic and the transmembrane domains (ECD). On the WT, HS-142-1 inhibited atrial natriuretic peptide (ANP) binding with a pK value of 6.51 +/- 0.07 (K(d)=0.31 microM). It displayed a similar effect on the C423S mutant (pK=6.31 +/- 0.11), indicating that its action might not be due to interference with receptor dimerization. HS-142-1 also inhibited ANP binding to DeltaKC with a pK of 7.05 +/- 0.05 (K(d)=0.089 microM), but it was inactive on ANP binding to ECD at a concentration of 10(-4) M, suggesting that the antagonism was not competitive at the peptide-binding site located on the ECD and that the transmembrane domain might be required. HS-142-1 also enhanced dissociation of NPR-A-bound (125)I-ANP in the presence of excess unlabelled ANP, implying an allotopic (allosteric) mode of action for the antagonist. PMID:11829760

  7. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy.

    PubMed

    Johansson, Maja; Agusti, Ana; Llansola, Marta; Montoliu, Carmina; Strömberg, Jessica; Malinina, Evgenya; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn; Felipo, Vicente

    2015-09-01

    Hepatic encephalopathy (HE) is one of the primary complications of liver cirrhosis. Current treatments for HE, mainly directed to reduction of ammonia levels, are not effective enough because they cannot completely eliminate hyperammonemia and inflammation, which induce the neurological alterations. Studies in animal models show that overactivation of GABAA receptors is involved in cognitive and motor impairment in HE and that reducing this activation restores these functions. We have developed a new compound, GR3027, that selectively antagonizes the enhanced activation of GABAA receptors by neurosteroids such as allopregnanolone and 3α,21-dihydroxy-5α-pregnan-20-one (THDOC). This work aimed to assess whether GR3027 improves motor incoordination, spatial learning, and circadian rhythms of activity in rats with HE. GR3027 was administered subcutaneously to two main models of HE: rats with chronic hyperammonemia due to ammonia feeding and rats with portacaval shunts (PCS). Motor coordination was assessed in beam walking and spatial learning and memory in the Morris water maze and the radial maze. Circadian rhythms of ambulatory and vertical activity were also assessed. In both hyperammonemic and PCS rats, GR3027 restores motor coordination, spatial memory in the Morris water maze, and spatial learning in the radial maze. GR3027 also partially restores circadian rhythms of ambulatory and vertical activity in PCS rats. GR3027 is a novel approach to treatment of HE that would normalize neurological functions altered because of enhanced GABAergic tone, affording more complete normalization of cognitive and motor function than current treatments for HE. PMID:26138462

  8. GR3027 antagonizes GABAA receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy

    PubMed Central

    Johansson, Maja; Agusti, Ana; Llansola, Marta; Montoliu, Carmina; Strömberg, Jessica; Malinina, Evgenya; Ragagnin, Gianna; Doverskog, Magnus; Bäckström, Torbjörn

    2015-01-01

    Hepatic encephalopathy (HE) is one of the primary complications of liver cirrhosis. Current treatments for HE, mainly directed to reduction of ammonia levels, are not effective enough because they cannot completely eliminate hyperammonemia and inflammation, which induce the neurological alterations. Studies in animal models show that overactivation of GABAA receptors is involved in cognitive and motor impairment in HE and that reducing this activation restores these functions. We have developed a new compound, GR3027, that selectively antagonizes the enhanced activation of GABAA receptors by neurosteroids such as allopregnanolone and 3α,21-dihydroxy-5α-pregnan-20-one (THDOC). This work aimed to assess whether GR3027 improves motor incoordination, spatial learning, and circadian rhythms of activity in rats with HE. GR3027 was administered subcutaneously to two main models of HE: rats with chronic hyperammonemia due to ammonia feeding and rats with portacaval shunts (PCS). Motor coordination was assessed in beam walking and spatial learning and memory in the Morris water maze and the radial maze. Circadian rhythms of ambulatory and vertical activity were also assessed. In both hyperammonemic and PCS rats, GR3027 restores motor coordination, spatial memory in the Morris water maze, and spatial learning in the radial maze. GR3027 also partially restores circadian rhythms of ambulatory and vertical activity in PCS rats. GR3027 is a novel approach to treatment of HE that would normalize neurological functions altered because of enhanced GABAergic tone, affording more complete normalization of cognitive and motor function than current treatments for HE. PMID:26138462

  9. A20 regulates IL-1-induced tolerant production of CXC chemokines in human mesangial cells via inhibition of MAPK signaling

    PubMed Central

    Luo, Hongbo; Liu, Yuming; Li, Qian; Liao, Lingjuan; Sun, Ruili; Liu, Xueting; Jiang, Manli; Hu, Jinyue

    2015-01-01

    Chemokines and chemokine receptors are involved in the resolution or progression of renal diseases. Locally secreted chemokines mediated leukocyte recruitment during the initiation and amplification phase of renal inflammation. However, the regulation of chemokine induction is not fully understood. In this study, we found that IL-1 induced a significant up-regulation of CXC chemokines CXCL1, 2, and 8 at both mRNA and protein levels in human mesangial cells. The induction of chemokines was tolerant, as the pre-treatment of HMC with IL-1 down-regulated the induction of chemokines induced by IL-1 re-stimulation. IL-1 up-regulated the ubiquintin-editing enzyme A20. A20 over-expression down-regulated IL-1-induced up-regulation of chemokines, and A20 down-regulation reversed chemokine inhibition induced by IL-1 pre-treatment, suggested that A20 played important roles in the tolerant production of chemokines. Unexpectedly, A20 over- expression inhibited the activation of ERK, JNK, and P38, but did not inhibit the activation of NF-κB. In addition, both IL-1 treatment and A20 over-expression induced the degradation of IRAK1, an important adaptor for IL-1R1 signaling, and A20 inhibition by RNA interference partly reversed the degradation of IRAK1. Taken together, IL-1-induced A20 negatively regulated chemokine production, suggesting that A20 may be an important target for the prevention and control of kidney inflammation. PMID:26648169

  10. Ceramide mediates the rapid phase of febrile response to IL-1β

    PubMed Central

    Sanchez-Alavez, Manuel; Tabarean, Iustin V.; Behrens, M. Margarita; Bartfai, Tamas

    2006-01-01

    IL-1β was identified after a long search for the endogenous pyrogen. It acts by inducing synthesis of prostaglandin E2, which mediates the late phase of IL-1β-induced fever. Here we show by radiotelemetry that the early phase of the fever response to IL-1β is mediated by ceramide. Hypothalamic application of the cell-penetrating C2-ceramide mimics the rapid phase of the IL-1β-induced fever. Inhibition of ceramide synthesis blocks the rapid phase of fever but does not affect the slower prostaglandin E2-dependent phase, which is blocked by indomethacin or by null mutation of the EP3 prostanoid receptor. Electrophysiological experiments on preoptic area/anterior hypothalamic neurons show that C2-ceramide, but not dihydroceramide, mimics the rapid hyperpolarizing effects of IL-1β on the activity of warm-sensitive hypothalamic neurons. IL-1β-mediated hyperpolarization is blocked by PP2, the selective inhibitor of the protein tyrosine kinase Src, which is known to be activated by ceramide. These in vivo and in vitro data suggest that ceramide fulfills the criteria for an endogenous pyrogen. PMID:16477014

  11. Ceramide mediates the rapid phase of febrile response to IL-1beta.

    PubMed

    Sanchez-Alavez, Manuel; Tabarean, Iustin V; Behrens, M Margarita; Bartfai, Tamas

    2006-02-21

    IL-1beta was identified after a long search for the endogenous pyrogen. It acts by inducing synthesis of prostaglandin E2, which mediates the late phase of IL-1beta-induced fever. Here we show by radiotelemetry that the early phase of the fever response to IL-1beta is mediated by ceramide. Hypothalamic application of the cell-penetrating C2-ceramide mimics the rapid phase of the IL-1beta-induced fever. Inhibition of ceramide synthesis blocks the rapid phase of fever but does not affect the slower prostaglandin E2-dependent phase, which is blocked by indomethacin or by null mutation of the EP3 prostanoid receptor. Electrophysiological experiments on preoptic area/anterior hypothalamic neurons show that C2-ceramide, but not dihydroceramide, mimics the rapid hyperpolarizing effects of IL-1beta on the activity of warm-sensitive hypothalamic neurons. IL-1beta-mediated hyperpolarization is blocked by PP2, the selective inhibitor of the protein tyrosine kinase Src, which is known to be activated by ceramide. These in vivo and in vitro data suggest that ceramide fulfills the criteria for an endogenous pyrogen. PMID:16477014

  12. Cellular trafficking of the IL-1RI-associated kinase-1 requires intact kinase activity

    SciTech Connect

    Boel, Gaby-Fleur . E-mail: boel@mail.dife.de; Jurrmann, Nadine; Brigelius-Flohe, Regina

    2005-06-24

    Upon stimulation of cells with interleukin-1 (IL-1) the IL-1 receptor type I (IL-1RI) associated kinase-1 (IRAK-1) transiently associates to and dissociates from the IL-1RI and thereafter translocates into the nucleus. Here we show that nuclear translocation of IRAK-1 depends on its kinase activity since translocation was not observed in EL-4 cells overexpressing a kinase negative IRAK-1 mutant (EL-4{sup IRAK-1-K239S}). IRAK-1 itself, an endogenous substrate with an apparent molecular weight of 24 kDa (p24), and exogenous substrates like histone and myelin basic protein are phosphorylated by nuclear located IRAK-1. Phosphorylation of p24 cannot be detected in EL-4{sup IRAK-1-K239S} cells. IL-1-dependent recruitment of IRAK-1 to the IL-1RI and subsequent phosphorylation of IRAK-1 is a prerequisite for nuclear translocation of IRAK-1. It is therefore concluded that intracellular localization of IRAK-1 depends on its kinase activity and that IRAK-1 may also function as a kinase in the nucleus as shown by a new putative endogenous substrate.

  13. Deregulation of the IL-1β axis in chronic recurrent multifocal osteomyelitis

    PubMed Central

    2014-01-01

    Background This study aims to investigate the inflammasome response in peripheral blood mononuclear cells (PBMCs) and the expression of inflammasome components in bone biopsies from patients with chronic recurrent multifocal osteomyelitis (CRMO). Methods The expression of inflammasome components mRNAs was evaluated in PBMCs isolated from 15 CRMO patients and 13 healthy controls by quantitative real-time PCR. The Interleukin (IL)-1β released in the medium of PBMC cultures after treatment with lipopolysaccharides (LPS) alone or LPS and ATP was measured by ELISA. Immunohistochemical staining for Apoptosis-associated Speck-like protein (ASC), caspase-1 (CASP-1), Nod-like receptor protein-3 (NLRP3) and IL-1β expression was performed in bone biopsies from CRMO patients. Results mRNA levels of ASC, CASP-1 and IL-1β were significantly higher in freshly isolated PBMCs from CRMO patients in active disease than in healthy controls. CASP-1 and IL-1β transcript levels were significantly higher also in PBMCs from CRMO patients in remission compared to healthy controls. PBMCs from CRMO patients in active disease stimulated in vitro with LPS showed a significant increase in IL-1β release compared to healthy control cells. Immunohistochemistry staining of bone tissue revealed the expression of inflammasome components in CRMO osteoclasts. Conclusions Our data suggest that an abnormal regulation of IL-1β axis may be involved in CRMO pathogenesis. PMID:25061439

  14. Critical role for IL-1β in DNA damage-induced mucositis

    PubMed Central

    Kanarek, Naama; Grivennikov, Sergei I.; Leshets, Michael; Lasry, Audrey; Alkalay, Irit; Horwitz, Elad; Shaul, Yoav D.; Stachler, Matthew; Voronov, Elena; Apte, Ron N.; Pagano, Michele; Pikarsky, Eli; Karin, Michael; Ghosh, Sankar; Ben-Neriah, Yinon

    2014-01-01

    β-TrCP, the substrate recognition subunit of SCF-type ubiquitin ligases, is ubiquitously expressed from two distinct paralogs, targeting for degradation many regulatory proteins, among which is the NF-κB inhibitor IκB. To appreciate tissue-specific roles of β-TrCP, we studied the consequences of inducible ablation of three or all four alleles of the E3 in the mouse gut. The ablation resulted in mucositis, a destructive gut mucosal inflammation, which is a common complication of different cancer therapies and represents a major obstacle to successful chemoradiation therapy. We identified epithelial-derived IL-1β as the culprit of mucositis onset, inducing mucosal barrier breach. Surprisingly, epithelial IL-1β is induced by DNA damage via an NF-κB–independent mechanism. Tissue damage caused by gut barrier disruption is exacerbated in the absence of NF-κB, with failure to express the endogenous IL-1β receptor antagonist IL-1Ra upon four-allele loss. Antibody neutralization of IL-1β prevents epithelial tight junction dysfunction and alleviates mucositis in β-TrCP–deficient mice. IL-1β antagonists should thus be considered for prevention and treatment of severe morbidity associated with mucositis. PMID:24469832

  15. Lack of renal tubular and hemodynamic effects of non-selective and delta-opioid receptor antagonism.

    PubMed

    Barrett, R J; Turpin, J A; McGuirk, B A; Kau, S T

    1985-01-01

    The renal pharmacological actions of the non-selective opioid receptor antagonist naloxone and the selective delta (delta)-opioid receptor antagonist ICI 154,129 were examined in conscious dogs. Neither naloxone nor ICI 154,129 altered glomerular filtration rate, renal blood flow, blood pressure, heart rate, or renal excretion of water, Na+, K+, or Cl-. In addition, urine and plasma osmolality and electrolyte concentrations and hematocrit were unchanged, suggesting that neither agent produced physiologically significant alteration in plasma vasopressin levels. These data suggest that (a) naloxone and ICI 154,129 exert no renal pharmacological effects in dogs and (b) under resting physiological conditions, delta-opioid receptors, as well as other opioid receptor subtypes, probably are not involved in the tonic regulation of renal hemodynamics or tubular function. PMID:3983226

  16. Antagonism of κ opioid receptor in the nucleus accumbens prevents the depressive-like behaviors following prolonged morphine abstinence.

    PubMed

    Zan, Gui-Ying; Wang, Qian; Wang, Yu-Jun; Liu, Yao; Hang, Ai; Shu, Xiao-Hong; Liu, Jing-Gen

    2015-09-15

    The association between morphine withdrawal and depressive-like symptoms is well documented, however, the role of dynorphin/κ opioid receptor system and the underlying neural substrates have not been fully understood. In the present study, we found that four weeks morphine abstinence after a chronic escalating morphine regimen significantly induced depressive-like behaviors in mice. Prodynorphin mRNA and protein levels were increased in the nucleus accumbens (NAc) after four weeks of morphine withdrawal. Local injection of κ opioid receptor antagonist nor-Binaltorphimine (norBNI) in the NAc significantly blocked the expression of depressive-like behaviors without influencing general locomotor activity. Thus, the present study extends previous findings by showing that prolonged morphine withdrawal-induced depressive-like behaviors are regulated by dynorphin/κ opioid receptor system, and shed light on the κ opioid receptor antagonists as potential therapeutic agents for the treatment of depressive-like behaviors induced by opiate withdrawal. PMID:26049060

  17. The role of macrophage-derived IL-1 in induction and maintenance of angiogenesis.

    PubMed

    Carmi, Yaron; Voronov, Elena; Dotan, Shahar; Lahat, Nitza; Rahat, Michal A; Fogel, Mina; Huszar, Monika; White, Malka R; Dinarello, Charles A; Apte, Ron N

    2009-10-01

    Inflammation and angiogenesis are pivotal processes in the progression of many diseases, including malignancies. A hypoxic microenvironment often results in a milieu of proinflammatory and proangiogenic cytokines produced by infiltrating cells. We assessed the role of macrophage-derived hypoxia-associated cytokines in promoting inflammation and angiogenesis. Supernatants of macrophages, stimulated under hypoxia with or without an inflammatory stimulus (LPS), promoted angiogenesis when incorporated into Matrigel plugs. However, neutralization of IL-1 in the supernatants, particularly IL-1beta, completely abrogated cell infiltration and angiogenesis in Matrigel plugs and reduced vascular endothelial growth factor (VEGF) levels by 85%. Similarly, supernatants from macrophages of IL-1beta knockout mice did not induce inflammatory or angiogenic responses. The importance of IL-1 signaling in the host was demonstrated by the dramatic reduction of inflammatory and angiogenic responses in Matrigel plugs that contained macrophage supernatants from control mice which had been implanted in IL-1 receptor type I knockout mice. Myeloid cells infiltrating into Matrigel plugs were of bone marrow origin and represented the major source of IL-1 and other cytokines/chemokines in the plugs. Cells of endothelial lineage were the main source of VEGF and were recruited mainly from neighboring tissues, rather than from the bone marrow. Using the aortic ring sprouting assay, it was shown that in this experimental system, IL-1 does not directly activate endothelial cell migration, proliferation and organization into blood vessel-like structures, but rather activates infiltrating cells to produce endothelial cell activating factors, such as VEGF. Thus, targeting IL-1beta has the potential to inhibit angiogenesis in pathological situations and may be of considerable clinical value. PMID:19752225

  18. Novel IL1RAPL1 mutations associated with intellectual disability impair synaptogenesis

    PubMed Central

    Ramos-Brossier, Mariana; Montani, Caterina; Lebrun, Nicolas; Gritti, Laura; Martin, Christelle; Seminatore-Nole, Christine; Toussaint, Aurelie; Moreno, Sarah; Poirier, Karine; Dorseuil, Olivier; Chelly, Jamel; Hackett, Anna; Gecz, Jozef; Bieth, Eric; Faudet, Anne; Heron, Delphine; Kooy, Frank; Loeys, Bart; Humeau, Yann; Sala, Carlo; Billuart, Pierre

    2015-01-01

    Mutations in interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene have been associated with non-syndromic intellectual disability and autism spectrum disorder. This protein interacts with synaptic partners like PSD-95 and PTPδ, regulating the formation and function of excitatory synapses. The aim of this work is to characterize the synaptic consequences of three IL1RAPL1 mutations, two novel causing the deletion of exon 6 (Δex6) and one point mutation (C31R), identified in patients with intellectual disability. Using immunofluorescence and electrophysiological recordings we examined the effects of IL1RAPL1 mutants over-expression on synapse formation and function in cultured rodent hippocampal neurons. Δex6 but not C31R mutation leads to IL1RAPL1 protein instability and mislocalization within dendrites. Analysis of different markers of excitatory synapses and sEPSC recording revealed that both mutants fail to induce pre- and post-synaptic differentiation, contrary to WT IL1RAPL1 protein. Cell aggregation and immunoprecipitation assays in HEK293 cells showed a reduction of the interaction between IL1RAPL1 mutants and PTPδ that could explain the observed synaptogenic defect in neurons. However, these mutants do not affect all cellular signaling since their over-expression still activates JNK pathway. We conclude that both mutations described in this study lead to a partial loss of function of the IL1RAPL1 protein through different mechanisms. Our work highlights the important function of the trans-synaptic PTPδ/ IL1RAPL1 interaction in synaptogenesis and as such, in intellectual disability in the patients. PMID:25305082

  19. The structure of the follistatin:activin complex reveals antagonism of both type I and type II receptor binding

    SciTech Connect

    Thompson, T.B.; Lerch, T.F.; Cook, R.W.; Woodruff, T.K.; Jardetzky, T.S.

    2010-03-08

    TGF-{beta} ligands stimulate diverse cellular differentiation and growth responses by signaling through type I and II receptors. Ligand antagonists, such as follistatin, block signaling and are essential regulators of physiological responses. Here we report the structure of activin A, a TGF-{beta} ligand, bound to the high-affinity antagonist follistatin. Two follistatin molecules encircle activin, neutralizing the ligand by burying one-third of its residues and its receptor binding sites. Previous studies have suggested that type I receptor binding would not be blocked by follistatin, but the crystal structure reveals that the follistatin N-terminal domain has an unexpected fold that mimics a universal type I receptor motif and occupies this receptor binding site. The formation of follistatin:BMP:type I receptor complexes can be explained by the stoichiometric and geometric arrangement of the activin:follistatin complex. The mode of ligand binding by follistatin has important implications for its ability to neutralize homo- and heterodimeric ligands of this growth factor family.

  20. The Epithelial Danger Signal IL-1α Is a Potent Activator of Fibroblasts and Reactivator of Intestinal Inflammation

    PubMed Central

    Scarpa, Melania; Kessler, Sean; Sadler, Tammy; West, Gail; Homer, Craig; McDonald, Christine; de la Motte, Carol; Fiocchi, Claudio; Stylianou, Eleni

    2016-01-01

    Intestinal epithelial cell (IEC) death is typical of inflammatory bowel disease (IBD). We investigated: i) whether IEC–released necrotic cell products (proinflammatory mediators) amplify mucosal inflammation, ii) the capacity of necrotic cell lysates from HT29 cells or human IECs to induce human intestinal fibroblasts' (HIF) production of IL-6 and IL-8, and iii) whether IL-1α, released by injured colonocytes, exacerbated experimental IBD. Necrotic cell lysates potently induced HIF IL-6 and IL-8 production independent of Toll-like receptors 2 and 4, receptor for advanced glycation end-products, high-mobility group box 1, uric acid, IL-33, or inflammasome activation. IL-1α was the key IEC-derived necrotic cell product involved in HIF cytokine production. IL-1α–positive cells were identified in the epithelium in human IBD and dextran sulfate sodium (DSS)-induced colitis. IL-1α was detected in the stool of colitic mice before IL-1β. IL-1α enemas reactivated inflammation after DSS colitis recovery, induced IL-1 receptor expression in subepithelial fibroblasts, and activated de novo inflammation even in mice without overt colitis, after the administration of low-dose DSS. IL-1α amplifies gut inflammation by inducing cytokine production by mesenchymal cells. IL-1α–mediated IEC–fibroblast interaction may be involved in amplifying and perpetuating inflammation, even without obvious intestinal damage. IL-1α may be a target for treating early IBD or preventing the reactivation of IBD. PMID:25864926

  1. Homeostatic Tissue Responses in Skin Biopsies from NOMID Patients with Constitutive Overproduction of IL-1β

    PubMed Central

    Aubert, Pamela; Suárez-Fariñas, Mayte; Mitsui, Hiroshi; Johnson-Huang, Leanne M.; Harden, Jamie Lynn; Pierson, Katherine C.; Dolan, Joseph G.; Novitskaya, Inna; Coats, Israel; Estes, Jacob; Cowen, Edward W.; Plass, Nicole; Lee, Chyi-Chia Richard; Sun, Hong-Wei

    2012-01-01

    The autoinflammatory disorder, Neonatal-onset Multisystem Inflammatory Disease (NOMID) is the most severe phenotype of disorders caused by mutations in CIAS1 that result in increased production and secretion of active IL-1β. NOMID patients present with systemic and organ-specific inflammation of the skin, central nervous system and bone, and respond dramatically to treatment with IL-1 blocking agents. We compared the cellular infiltrates and transcriptome of skin biopsies from patients with NOMID (n = 14) before treatment (lesional (LS) and non-lesional (pre-NL) skin) and after treatment (post-NL) with the IL-1 blocker anakinra (recombinant IL-1 receptor antagonist, Kineret®, Swedish Orphan Biovitrum AB, SOBI), to normal skin (n = 5) to assess tissue responses in the context of untreated and treated disease. Abundant neutrophils distinguish LS skin from pre-NL and post-NL skin. CD11c+ dermal dendritic cells and CD163+ macrophages expressed activated caspase-1 and are a likely source of cutaneous IL-1 production. Treatment with anakinra led to the disappearance of neutrophils, but CD3+ T cells and HLA-DR+ cells remained elevated. Among the upregulated genes IL-6, IL-8, TNF, IL-17A, CCL20, and the neutrophil defensins DEFA1 and DEFA3 were differentially regulated in LS tissues (compared to normal skin). Important significantly downregulated pathways in LS skin included IL-1R/TLR signaling, type I and II cytokine receptor signaling, mitochondrial dysfunction, and antigen presentation. The differential expression and regulation of microRNAs and pathways involved in post-transcriptional modification were suggestive of epigenetic modification in the chronically inflamed tissue. Overall, the dysregulated genes and pathways suggest extensive “adaptive” mechanisms to control inflammation and maintain tissue homeostasis, likely triggered by chronic IL-1 release in the skin of patients with NOMID. PMID:23226210

  2. Endothelial PPAR-γ provides vascular protection from IL-1β-induced oxidative stress.

    PubMed

    Mukohda, Masashi; Stump, Madeliene; Ketsawatsomkron, Pimonrat; Hu, Chunyan; Quelle, Frederick W; Sigmund, Curt D

    2016-01-01

    Loss of peroxisome proliferator-activated receptor (PPAR)-γ function in the vascular endothelium enhances atherosclerosis and NF-κB target gene expression in high-fat diet-fed apolipoprotein E-deficient mice. The mechanisms by which endothelial PPAR-γ regulates inflammatory responses and protects against atherosclerosis remain unclear. To assess functional interactions between PPAR-γ and inflammation, we used a model of IL-1β-induced aortic dysfunction in transgenic mice with endothelium-specific overexpression of either wild-type (E-WT) or dominant negative PPAR-γ (E-V290M). IL-1β dose dependently decreased IκB-α, increased phospho-p65, and increased luciferase activity in the aorta of NF-κB-LUC transgenic mice. IL-1β also dose dependently reduced endothelial-dependent relaxation by ACh. The loss of ACh responsiveness was partially improved by pretreatment of the vessels with the PPAR-γ agonist rosiglitazone or in E-WT. Conversely, IL-1β-induced endothelial dysfunction was worsened in the aorta from E-V290M mice. Although IL-1β increased the expression of NF-κB target genes, NF-κB p65 inhibitor did not alleviate endothelial dysfunction induced by IL-1β. Tempol, a SOD mimetic, partially restored ACh responsiveness in the IL-1β-treated aorta. Notably, tempol only modestly improved protection in the E-WT aorta but had an increased protective effect in the E-V290M aorta compared with the aorta from nontransgenic mice, suggesting that PPAR-γ-mediated protection involves antioxidant effects. IL-1β increased ROS and decreased the phospho-endothelial nitric oxide synthase (Ser(1177))-to-endothelial nitric oxide synthase ratio in the nontransgenic aorta. These effects were completely abolished in the aorta with endothelial overexpression of WT PPAR-γ but were worsened in the aorta with E-V290M even in the absence of IL-1β. We conclude that PPAR-γ protects against IL-1β-mediated endothelial dysfunction through a reduction of oxidative stress

  3. IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala

    PubMed Central

    Bajo, Michal; Varodayan, Florence P.; Madamba, Samuel G.; Robert, Amanda J.; Casal, Lindsey M.; Oleata, Christopher S.; Siggins, George R.; Roberto, Marisa

    2015-01-01

    Neuroinflammation is hypothesized to enhance alcohol consumption and contribute to the development of alcoholism. GABAergic transmission in the central amygdala (CeA) plays an important role in the transition to alcohol dependence. Therefore, we studied the effects of interleukin-1β (IL-1β), a proinflammatory cytokine mediating ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic transmission in B6129SF2/J mice. We also assessed ethanol intake in B6129SF2/J mice. Intake with unlimited (24 h) ethanol access was 9.2–12.7 g/kg (3–15% ethanol), while limited (2 h) access produced an intake of 4.1 ± 0.5 g/kg (15% ethanol). In our electrophysiology experiments, we found that recombinant IL-1β (50 and 100 ng/ml) significantly decreased the amplitude of evoked inhibitory postsynaptic potentials (eIPSPs), with no significant effects on paired-pulse facilitation (PPF). IL-1β (50 ng/ml) had dual effects on spontaneous miniature inhibitory postsynaptic currents (mIPSCs): increasing mIPSC frequencies in most CeA neurons, but decreasing both mIPSC frequencies and amplitudes in a few cells. The IL-1β receptor antagonist (IL-1ra; 100 ng/ml) also had dual effects on mIPSCs and prevented the actions of IL-1β on mIPSC frequencies. These results suggest that IL-1β can alter CeA GABAergic transmission at pre- and postsynaptic sites. Ethanol (44 mM) significantly increased eIPSP amplitudes, decreased PPFs, and increased mIPSC frequencies. IL-1β did not alter ethanol’s enhancement of the eIPSP amplitude, but, in IL-1β-responsive neurons, the ethanol effects on mIPSC frequencies were lost. Overall, our data suggest that the IL-1 system is involved in basal GABAergic transmission and that IL-1β interacts with the ethanol-induced facilitation of CeA GABAergic transmission. PMID:25852553

  4. Flavonoids inhibit the platelet TxA2 signalling pathway and antagonize TxA2 receptors (TP) in platelets and smooth muscle cells

    PubMed Central

    Guerrero, José A; Navarro-Nuñez, Leyre; Lozano, María L; Martínez, Constantino; Vicente, Vicente; Gibbins, Jonathan M; Rivera, José

    2007-01-01

    What is already known about this subject Flavonoids are largely recognized as potential inhibitors of platelet function, through nonspecific mechanisms such as antioxidant activity and/or inhibition of several enzymes and signalling proteins. In addition, we, and few others, have shown that certain antiaggregant flavonoids may behave as specific TXA2 receptor (TP) ligands in platelets. Whether flavonoids interact with TP isoforms in other cell types is not known, and direct evidence that flavonoid–TP interaction inhibits signalling downstream TP has not been shown. What this study adds This study first demonstrates that certain flavonoids behave as ligands for both TP isoforms, not only in platelets, but also in human myometrium and in TP-transfected HEK 293T cells. Differences in the effect of certain flavonoids in platelet signalling, induced by either U46619 or thrombin, suggest that abrogation of downstream TP signalling is related to their specific blockage of the TP, rather than to a nonspecific effect on tyrosine kinases or other signalling proteins. Aims Flavonoids may affect platelet function by several mechanisms, including antagonism of TxA2 receptors (TP). These TP are present in many tissues and modulate different signalling cascades. We explored whether flavonoids affect platelet TP signalling, and if they bind to TP expressed in other cell types. Methods Platelets were treated with flavonoids, or other selected inhibitors, and then stimulated with U46619. Similar assays were performed in aspirinized platelets activated with thrombin. Effects on calcium release were analysed by fluorometry and changes in whole protein tyrosine phosphorylation and activation of ERK 1/2 by Western blot analysis. The binding of flavonoids to TP in platelets, human myometrium and TPα- and TPβ-transfected HEK 293T cells was explored using binding assays and the TP antagonist 3H-SQ29548. Results Apigenin, genistein, luteolin and quercetin impaired U46619-induced calcium

  5. NMDA receptor antagonism differentially reduces acquisition and expression of sucrose- and fructose-conditioned flavor preferences in BALB/c and SWR mice.

    PubMed

    Kraft, Tamar T; Huang, Donald; Lolier, Melanie; Warshaw, Deena; LaMagna, Sam; Natanova, Elona; Sclafani, Anthony; Bodnar, Richard J

    2016-09-01

    Conditioned flavor preferences (CFP) are elicited by sucrose and fructose relative to saccharin in rats and inbred mice. Whereas dopamine, but not opioid receptor antagonists interfere with the acquisition (learning) and expression (maintenance) of sugar-CFP in rats, these antagonists differentially affect acquisition and expression of sucrose- and fructose-CFP in BALB/c and SWR inbred mice. Given that NMDA receptor antagonism with MK-801 blocks acquisition, but not expression of fructose-CFP in rats, the present study examined whether MK-801 altered the expression and acquisition of sucrose- and fructose-CFP in BALB/c and SWR mice. In expression experiments, food-restricted mice alternately consumed a flavored (CS+, e.g., cherry, 5 sessions) 16% sucrose or 8% fructose+0.2% saccharin solution and a differently-flavored (CS-, e.g., grape, 5 sessions) 0.2% saccharin solution. 2-Bottle CS choice tests occurred following vehicle or MK-801 at doses of 100 or 200μg/kg. MK-801 mildly reduced the magnitude of the expression of sucrose- and fructose-CFP in BALB/c mice, and blocked the expression of fructose-, but not sucrose-CFP at the high dose in SWR mice. In acquisition experiments, groups of BALB/c (0, 100μg/kg) and SWR (0, 100, 200μg/kg) mice were treated prior to acquisition training sessions that was followed by 2-bottle CS choice tests without injections. MK-801 (100μg/kg) eliminated acquisition of sucrose- and fructose-CFP in BALB/c, but not SWR mice. The 200μg/kg MK-801 dose eliminated acquisition of sucrose- and fructose-CFP in SWR mice. Thus, NMDA receptor signaling is essential for the learning of both forms of sugar-CFP in both strains with BALB/c mice more sensitive to MK-801 dose effects. PMID:27317846

  6. Antagonizing amyloid-β/calcium-sensing receptor signaling in human astrocytes and neurons: a key to halt Alzheimer's disease progression?

    PubMed Central

    Dal Prà, Ilaria; Chiarini, Anna; Armato, Ubaldo

    2015-01-01

    Astrocytes’ roles in late-onset Alzheimer's disease (LOAD) promotion are important, since they survive soluble or fibrillar amyloid-β peptides (Aβs) neurotoxic effects, undergo alterations of intracellular and intercellular Ca2+ signaling and gliotransmitters release via the Aβ/α7-nAChR (α7-nicotinic acetylcholine receptor) signaling, and overproduce/oversecrete newly synthesized Aβ42 oligomers, NO, and VEGF-A via the Aβ/CaSR (calcium-sensing receptor) signaling. Recently, it was suggested that the NMDAR (N-methyl-D-aspartate receptor) inhibitor nitromemantine would block the synapse-destroying effects of Aβ/α7-nAChR signaling. Yet, this and the progressive extracellular accrual and spreading of Aβ42 oligomers would be stopped well upstream by NPS 2143, an allosteric CaSR antagonist (calcilytic). PMID:25883618

  7. Metabolite Profiling and a Transcriptional Activation Assay Provide Direct Evidence of Androgen Receptor Antagonism by Bisphenol A in Fish.

    EPA Science Inventory

    Widespread environmental contamination by bisphenol A (BPA) has created the need to fully define its potential toxic mechanisms of action (MOA) to properly assess human health and ecological risks from exposure. Although long recognized as an estrogen receptor (ER) agonist, some ...

  8. Dorsal periaqueductal gray post-stimulation freezing is counteracted by neurokinin-1 receptor antagonism in the central nucleus of the amygdala in rats.

    PubMed

    Carvalho, M C; Santos, J M; Brandão, M L

    2015-05-01

    injections into the CeA prevented the proaversive effects of electrical stimulation of the dPAG assessed in the EPM 24 h later. The present results suggest that neurokininergic modulation via NK1 receptors in the CeA but not BLA or MeA is involved in the processing of aversive information derived from dPAG stimulation. The long-lasting consequences of electrical stimulation of the dPAG may be prevented by NK1 receptor antagonism in the CeA. PMID:25883049

  9. Orexin/Hypocretin-1 Receptor Antagonism Selectively Reduces Cue-Induced Feeding in Sated Rats and Recruits Medial Prefrontal Cortex and Thalamus

    PubMed Central

    Cole, Sindy; Mayer, Heather S.; Petrovich, Gorica D.

    2015-01-01

    The orexin/hypocretin system is important for reward-seeking behaviors, however less is known about its function in non-homeostatic feeding. Environmental influences, particularly cues for food can stimulate feeding in the absence of hunger and lead to maladaptive overeating behavior. The key components of the neural network that mediates this cue-induced overeating in sated rats include lateral hypothalamus, amygdala, and medial prefrontal cortex (mPFC), yet the neuropharmacological mechanisms within this network remain unknown. The current study investigated a causal role for orexin in cue-driven feeding, and examined the neural substrates through which orexin mediates this effect. Systemic administration of the orexin-1 receptor (OX1R) antagonist SB-334867 had no effect on baseline eating, but significantly reduced cue-driven consumption in sated rats. Complementary neural analysis revealed that decreased cue-induced feeding under SB-334867 increased Fos expression in mPFC and paraventricular thalamus. These results demonstrate that OX1R signaling critically regulates cue-induced feeding, and suggest orexin is acting through prefrontal cortical and thalamic sites to drive eating in the absence of hunger. These findings inform our understanding of how food-associated cues override signals from the body to promote overeating, and indicate OX1R antagonism as a potential pharmacologic target for treatment of disordered eating in humans. PMID:26536818

  10. Neuroprotective Effects of Toll-Like Receptor 4 Antagonism in Spinal Cord Cultures and in a Mouse Model of Motor Neuron Degeneration

    PubMed Central

    De Paola, Massimiliano; Mariani, Alessandro; Bigini, Paolo; Peviani, Marco; Ferrara, Giovanni; Molteni, Monica; Gemma, Sabrina; Veglianese, Pietro; Castellaneta, Valeria; Boldrin, Valentina; Rossetti, Carlo; Chiabrando, Chiara; Forloni, Gianluigi; Mennini, Tiziana; Fanelli, Roberto

    2012-01-01

    Sustained inflammatory reactions are common pathological events associated with neuron loss in neurodegenerative diseases. Reported evidence suggests that Toll-like receptor 4 (TLR4) is a key player of neuroinflammation in several neurodegenerative diseases. However, the mechanisms by which TLR4 mediates neurotoxic signals remain poorly understood. We investigated the role of TLR4 in in vitro and in vivo settings of motor neuron degeneration. Using primary cultures from mouse spinal cords, we characterized both the proinflammatory and neurotoxic effects of TLR4 activation with lipopolysaccharide (activation of microglial cells, release of proinflammatory cytokines and motor neuron death) and the protective effects of a cyanobacteria-derived TLR4 antagonist (VB3323). With the use of TLR4-deficient cells, a critical role of the microglial component with functionally active TLR4 emerged in this setting. The in vivo experiments were carried out in a mouse model of spontaneous motor neuron degeneration, the wobbler mouse, where we preliminarily confirmed a protective effect of TLR4 antagonism. Compared with vehicle- and riluzole-treated mice, those chronically treated with VB3323 showed a decrease in microglial activation and morphological alterations of spinal cord neurons and a better performance in the paw abnormality and grip-strength tests. Taken together, our data add new understanding of the role of TLR4 in mediating neurotoxicity in the spinal cord and suggest that TLR4 antagonists could be considered in future studies as candidate protective agents for motor neurons in degenerative diseases. PMID:22562723

  11. Antagonism of scavenger receptor CD36 by 5A peptide prevents chronic kidney disease progression in mice independent of blood pressure regulation.

    PubMed

    Souza, Ana Carolina P; Bocharov, Alexander V; Baranova, Irina N; Vishnyakova, Tatyana G; Huang, Yuning G; Wilkins, Kenneth J; Hu, Xuzhen; Street, Jonathan M; Alvarez-Prats, Alejandro; Mullick, Adam E; Patterson, Amy P; Remaley, Alan T; Eggerman, Thomas L; Yuen, Peter S T; Star, Robert A

    2016-04-01

    Scavenger receptor CD36 participates in lipid metabolism and inflammatory pathways important for cardiovascular disease and chronic kidney disease (CKD). Few pharmacological agents are available to slow the progression of CKD. However, apolipoprotein A-I-mimetic peptide 5A antagonizes CD36 in vitro. To test the efficacy of 5A, and to test the role of CD36 during CKD, we compared wild-type to CD36 knockout mice and wild-type mice treated with 5A, in a progressive CKD model that resembles human disease. Knockout and 5A-treated wild-type mice were protected from CKD progression without changes in blood pressure and had reductions in cardiovascular risk surrogate markers that are associated with CKD. Treatment with 5A did not further protect CD36 knockout mice from CKD progression, implicating CD36 as its main site of action. In a separate model of kidney fibrosis, 5A-treated wild-type mice had less macrophage infiltration and interstitial fibrosis. Peptide 5A exerted anti-inflammatory effects in the kidney and decreased renal expression of inflammasome genes. Thus, CD36 is a new therapeutic target for CKD and its associated cardiovascular risk factors. Peptide 5A may be a promising new agent to slow CKD progression. PMID:26994575

  12. Pro-gliogenic effect of IL-1alpha in the differentiation of embryonic neural precursor cells in vitro.

    PubMed

    Ajmone-Cat, Maria Antonietta; Cacci, Emanuele; Ragazzoni, Ylenia; Minghetti, Luisa; Biagioni, Stefano

    2010-05-01

    Inflammation is regarded as a main obstacle to brain regeneration. Major detrimental effects are attributed to microglial/macrophagic products, such as TNF-alpha and interleukin (IL)-6. The role of cytokines of the IL-1 family, particularly of IL-1alpha, in the modulation of neural precursor cell (NPC) properties is less characterized. IL-1alpha is one of the most abundant cytokines released upon acute stimulation of microglia with lipopolysaccharide and is down-regulated upon chronic stimulation. As we recently demonstrated, acutely activated microglia reduces NPC survival, prevent neuronal differentiation and promote glial differentiation. Chronically activated microglia are instead permissive to NPC survival and neuronal differentiation, and less effective in promoting astrocytic differentiation. We thus investigated whether IL-1alpha could contribute to the effects of acutely activated microglia on NPC. We found that NPC express functional IL-1 receptors and that exposure to recombinant IL-1alpha strongly enhances NPC differentiation into astrocytes, without affecting cell viability and neuronal differentiation. In the same conditions, recombinant IL-1beta has pro-gliogenic effects at concentrations 10-fold higher than those found in activated microglial conditioned media. Interestingly, immunodepletion of IL-1alpha in activated microglial conditioned media fails to revert microglial pro-gliogenic action and slightly enhances neuronal differentiation, revealing that other microglial-derived factors contribute to the modulation of NPC properties. PMID:20236219

  13. Functional relevance of NLRP3 inflammasome-mediated interleukin (IL)-1β during acute allergic airway inflammation

    PubMed Central

    Ritter, M; Straubinger, K; Schmidt, S; Busch, D H; Hagner, S; Garn, H; Prazeres da Costa, C; Layland, L E

    2014-01-01

    Overall asthmatic symptoms can be controlled with diverse therapeutic agents. However, certain symptomatic individuals remain at risk for serious morbidity and mortality, which prompts the identification of novel therapeutic targets and treatment strategies. Thus, using an adjuvant-free T helper type 2 (Th2) murine model, we have deciphered the role of interleukin (IL)-1 signalling during allergic airway inflammation (AAI). Because functional IL-1β depends on inflammasome activation we first studied asthmatic manifestations in specific inflammasome-deficient [NACHT, LRR and PYD domains-containing protein 3 (NLRP3−/−) and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC−/−)] and IL-1 receptor type 1−/− (IL-1R1−/−) mice on the BALB/c background. To verify the onset of disease we assessed cellular infiltration in the bronchial regions, lung pathology, airway hyperresponsiveness and ovalbumin (OVA)-specific immune responses. In the absence of NLRP3 inflammasome-mediated IL-1β release all symptoms of AAI were reduced, except OVA-specific immunoglobulin levels. To address whether manipulating IL-1 signalling reduced asthmatic development, we administered the IL-1R antagonist anakinra (Kineret®) during critical immunological time-points: sensitization or challenge. Amelioration of asthmatic symptoms was only observed when anakinra was administered during OVA challenge. Our findings indicate that blocking IL-1 signalling could be a potential complementary therapy for allergic airway inflammation. PMID:24943899

  14. Follistatin-like protein 1 enhances NLRP3 inflammasome-mediated IL-1β secretion from monocytes and macrophages.

    PubMed

    Chaly, Yury; Fu, Yu; Marinov, Anthony; Hostager, Bruce; Yan, Wei; Campfield, Brian; Kellum, John A; Bushnell, Daniel; Wang, Yudong; Vockley, Jerry; Hirsch, Raphael

    2014-05-01

    Follistatin-like protein 1 (FSTL-1) is overexpressed in a number of inflammatory conditions characterized by elevated IL-1β. Here, we found that FSTL-1 serum concentration was increased threefold in patients with bacterial sepsis and fourfold following administration of LPS to mice. To test the contribution of FSTL-1 to IL-1β secretion, WT and FSTL-1-deficient mice were injected with LPS. While LPS induced IL-1β in the sera of WT mice, it was low or undetectable in FSTL-1-deficient mice. Monocytes/macrophages, a key source of IL-1β, do not normally express FSTL-1. However, FSTL-1 was found in tissue macrophages after injection of LPS into mouse footpads, demonstrating that macrophages are capable of taking up FSTL-1 at sites of inflammation. In vitro, intracellular FSTL-1 localized to the mitochondria. FSTL-1 activated the mitochondrial electron transport chain, increased the production of ATP (a key activator of the nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome) and IL-1β secretion. FSTL-1 also enhanced transcription of the NLRP3 and procaspase 1 genes, two components of the NLRP3 inflammasome. Adenovirus-mediated overexpression of FSTL-1 in mouse paws led to activation of the inflammasome complex and local secretion of IL-1β and IL-1β-related proinflammatory cytokines. These results suggest that FSTL-1 may act on the NLRP3 inflammasome to promote IL-1β secretion from monocytes/macrophages. PMID:24470197

  15. The macrocyclic tetrapeptide [D-Trp]CJ-15,208 produces short-acting κ opioid receptor antagonism in the CNS after oral administration

    PubMed Central

    Eans, Shainnel O; Ganno, Michelle L; Reilley, Kate J; Patkar, Kshitij A; Senadheera, Sanjeewa N; Aldrich, Jane V; McLaughlin, Jay P

    2013-01-01

    Background and Purpose Cyclic peptides are resistant to proteolytic cleavage, therefore potentially exhibiting activity after systemic administration. We hypothesized that the macrocyclic κ opioid receptor (KOR)-selective antagonist [D-Trp]CJ-15,208 would demonstrate antagonist activity after systemic, that is, s.c. and oral (per os, p. o.), administration. Experimental Approach C57BL/6J mice were pretreated with [D-Trp]CJ-15,208 s.c. or p.o. before administration of the KOR-selective agonist U50,488 and the determination of antinociception in the warm-water tail-withdrawal assay. The locomotor activity of mice treated with [D-Trp]CJ-15,208 was determined by rotorod testing. Additional mice demonstrating cocaine conditioned place preference and subsequent extinction were pretreated daily with vehicle or [D-Trp]CJ-15,208 and then exposed to repeated forced swim stress or a single additional session of cocaine place conditioning before redetermining place preference. Key Results Pretreatment with [D-Trp]CJ-15,208 administered s.c. or p.o. dose-dependently antagonized the antinociception induced by i.p. administration of U50,488 in mice tested in the warm-water tail-withdrawal assay for less than 12 and 6 h respectively. [D-Trp]CJ-15,208 also produced limited (<25%), short-duration antinociception mediated through KOR agonism. Orally administered [D-Trp]CJ-15,208 dose-dependently antagonized centrally administered U50,488-induced antinociception, and prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine-seeking behaviour, consistent with its KOR antagonist activity, without affecting locomotor activity. Conclusions and Implications The macrocyclic tetrapeptide [D-Trp]CJ-15,208 is a short-duration KOR antagonist with weak KOR agonist activity that is active after oral administration and demonstrates blood–brain barrier permeability. These data validate the use of systemically active peptides such as [D-Trp]CJ-15,208 as potentially useful

  16. Reduction of hepatic and adipose tissue glucocorticoid receptor expression with antisense oligonucleotides improves hyperglycemia and hyperlipidemia in diabetic rodents without causing systemic glucocorticoid antagonism.

    PubMed

    Watts, Lynnetta M; Manchem, Vara Prasad; Leedom, Thomas A; Rivard, Amber L; McKay, Robert A; Bao, Dingjiu; Neroladakis, Teri; Monia, Brett P; Bodenmiller, Diane M; Cao, Julia Xiao-Chun; Zhang, Hong Yan; Cox, Amy L; Jacobs, Steven J; Michael, M Dodson; Sloop, Kyle W; Bhanot, Sanjay

    2005-06-01

    Glucocorticoids (GCs) increase hepatic gluconeogenesis and play an important role in the regulation of hepatic glucose output. Whereas systemic GC inhibition can alleviate hyperglycemia in rodents and humans, it results in adrenal insufficiency and stimulation of the hypothalamic-pituitary-adrenal axis. In the present study, we used optimized antisense oligonucleotides (ASOs) to cause selective reduction of the glucocorticoid receptor (GCCR) in liver and white adipose tissue (WAT) and evaluated the resultant changes in glucose and lipid metabolism in several rodent models of diabetes. Treatment of ob/ob mice with GCCR ASOs for 4 weeks resulted in approximately 75 and approximately 40% reduction in GCCR mRNA expression in liver and WAT, respectively. This was accompanied by approximately 65% decrease in fed and approximately 30% decrease in fasted glucose levels, a 60% decrease in plasma insulin concentration, and approximately 20 and 35% decrease in plasma resistin and tumor necrosis factor-alpha levels, respectively. Furthermore, GCCR ASO reduced hepatic glucose production and inhibited hepatic gluconeogenesis in liver slices from basal and dexamethasone-treated animals. In db/db mice, a similar reduction in GCCR expression caused approximately 40% decrease in fed and fasted glucose levels and approximately 50% reduction in plasma triglycerides. In ZDF and high-fat diet-fed streptozotocin-treated (HFD-STZ) rats, GCCR ASO treatment caused approximately 60% reduction in GCCR expression in the liver and WAT, which was accompanied by a 40-70% decrease in fasted glucose levels and a robust reduction in plasma triglyceride, cholesterol, and free fatty acids. No change in circulating corticosterone levels was seen in any model after GCCR ASO treatment. To further demonstrate that GCCR ASO does not cause systemic GC antagonism, normal Sprague-Dawley rats were challenged with dexamethasone after treating with GCCR ASO. Dexamethasone increased the expression of GC

  17. Ghrelin receptor (GHS-R1A) antagonism alters preference for ethanol and sucrose in a concentration-dependent manner in prairie voles.

    PubMed

    Stevenson, J R; Francomacaro, L M; Bohidar, A E; Young, K A; Pesarchick, B F; Buirkle, J M; McMahon, E K; O'Bryan, C M

    2016-03-01

    Ghrelin receptor (GHS-R1A) activity has been implicated in reward for preferred foods and drugs; however, a recent study in our laboratory indicated that GHS-R1A antagonism reduces early (after only four exposures) preference for 20% ethanol, but not 10% sucrose in prairie voles, a genetically diverse high alcohol-consuming species. The purpose of the present study was to determine if these effects of GHS-R1A antagonism depend on the concentration of the rewarding solution being consumed. We first characterized preference for varying concentrations of ethanol and sucrose. Two bottle tests of each ethanol concentration versus water indicated that 10% and 20% ethanol are less preferred than 3% ethanol, and a follow-up direct comparison of 10% vs. 20% showed that 10% was preferred over 20%. Direct two-bottle comparisons of 2% vs. 5%, 2% vs. 10%, and 5% vs. 10% sucrose showed that 10% sucrose was most preferred, and 2% sucrose was least preferred. The effects of JMV 2959, a GHS-R1A antagonist, on preference for each concentration of ethanol and sucrose were then tested. In a between groups design prairie voles were given four two-hour drinking sessions in which animals had access to ethanol (3, 10, or 20%) versus water, or sucrose (2, 5, or 10%) versus water every other day. Saline habituation injections were given 30 min before the third drinking session. JMV 2959 (i.p.; 9 mg/kg), a GHS-R1A antagonist, or saline was administered 30 min before the fourth drinking session. JMV 2959 reduced preference for 20% ethanol and 2% sucrose, but had no significant effect on preference for the other ethanol and sucrose concentrations. These data identify constraints on the role of GHS-R1A in early preference for ethanol and sucrose, and the concentration-dependent effects suggest strong preference for a reward may limit the importance of GHS-R1A activity. PMID:26723269

  18. Bronchopulmonary C-fibers' IL1RI contributes to the prolonged apneic response to intra-atrial injection of capsaicin by prenatal nicotinic exposure in rat pups.

    PubMed

    Zhao, Lei; Zhuang, Jianguo; Xu, Fadi

    2016-07-15

    Prenatal nicotinic exposure (PNE) as a SIDS model reportedly sensitizes bronchopulmonary C-fibers (PCFs), contributing to the prolonged PCF-mediated apnea in rat pups, but the relevant mechanisms are not fully understood. Pulmonary IL-1β upregulated by cigarette smoke is known to stimulate or sensitize PCFs acting via IL-1 type I receptor (IL1RI) and inhibit inspiration frequency. Because of its upregulation observed in SIDS victims, we hypothesized that PNE increased pulmonary IL-1β release and IL1RI expression in pulmonary C-neurons via action on α7 nicotinic acetylcholine receptors (α7nAChR) to induce the prolonged PCF-mediated apnea. IL-1β in BALF and IL1RI in the nodose/jugular (N/J) ganglion and vagal pulmonary C-neurons retrogradely-traced were compared between Ctrl (saline) and PNE pups and among the vehicle-treated Ctrl and PNE and methyllycaconitine (a selective α7nAChR antagonist)-treated PNE pups. The effect of IL-1RI blockade (IL-1Ra) on the PCF-mediated apnea was also compared between Ctrl and PNE pups. PNE significantly elevated IL-1β in BALF and upregulated IL1RI gene and protein expression in N/J ganglia and gene in vagal pulmonary C-neurons. All of these responses were eliminated by pretreatment with blockade of α7nAChR. In addition, the prolonged PCF-mediated apnea in PNE pups was significantly shortened by right atrial bolus injection of IL-1Ra. We conclude that PNE enhances pulmonary IL-1β release and PCF IL1RI expression acting via α7nAChR in contributing to sensitization of PCFs and prolongation of the PCF-mediated apneic response. PMID:27180639

  19. Plasma IL-1Ra: linking hyperapoB to risk factors for type 2 diabetes independent of obesity in humans

    PubMed Central

    Bissonnette, S; Saint-Pierre, N; Lamantia, V; Cyr, Y; Wassef, H; Faraj, M

    2015-01-01

    Background/Objective: Plasma apoB predicts the incidence of type 2 diabetes (T2D); however, the link between apoB-linpoproteins and risks for T2D remain unclear. Insulin resistance (IR) and compensatory hyperinsulinemia characterize prediabetes, and the involvement of an activated interleukin-1 (IL-1) family, mainly IL-1β and its receptor antagonist (IL-Ra), is well documented. ApoB-lipoproteins were reported to promote IL-1β secretion in immune cells; however, in vivo evidence is lacking. We hypothesized that obese subjects with hyperapoB have an activated IL-1 system that explains hyperinsulinemia and IR in these subjects. Subjects/Methods: We examined 81 well-characterized normoglycemic men and postmenopausal women (⩾27 kg m−2, 45–74 years, non-smokers, sedentary, free of chronic disease). Insulin secretion and sensitivity were measured by the gold-standard Botnia clamp, which is a combination of a 1-h intravenous glucose tolerance test (IVGTT) followed by 3-h hyperinsulinemic euglycemic clamp. Results: Plasma IL-1β was near detection limit (0.071–0.216 pg ml−1), while IL-1Ra accumulated at 1000-folds higher (77–1068 pg ml−1). Plasma apoB (0.34–1.80 g l−1) associated significantly with hypersinsulinemia (totalIVGTT: C-peptide r=0.27, insulin r=0.22), IR (M/I=−0.29) and plasma IL-1Ra (r=0.26) but not with IL-1β. Plasma IL-1Ra associated with plasma IL-1β (r=0.40), and more strongly with hyperinsulinemia and IR than apoB, while the association of plasma IL-1β was limited to second phase and total insulin secretion (r=0.23). Adjusting the association of plasma apoB to hyperinsulinemia and IR for IL-1Ra eliminated these associations. Furthermore, despite equivalent body composition, subjects with hyperapoB (⩾80th percentile, 1.14 g l−1) had higher C-peptide secretion and lower insulin sensitivity than those with low plasma apoB (⩽20th percentile, 0.78 g l−1). Adjustment for plasma IL-1 Ra eliminated all

  20. Treatment of Muckle-Wells syndrome: analysis of two IL-1-blocking regimens

    PubMed Central

    2013-01-01

    Objectives Muckle-Wells syndrome (MWS) is an autoinflammatory disease characterized by excessive interleukin-1 (IL-1) release, resulting in recurrent fevers, sensorineural hearing loss, and amyloidosis. IL-1 inhibition with anakinra, an IL-1 receptor antagonist, improves clinical symptoms and inflammatory markers. Subclinical disease activity is commonly observed. Canakinumab, a fully human IgG1 anti-IL-1β monoclonal antibody, can abolish excess IL-1β. The study aim was to analyze the efficacy and safety of these two anti-IL-1 therapies. Methods Two cohorts of patients with severe MWS and confirmed NLRP3 mutation were treated with anakinra and/or canakinumab. Clinical and laboratory features including ESR, CRP, SAA, and the neutrophil marker S100A12 were determined serially. Disease activity was captured by MWS disease activity scores (MWS-DAS). Remission was defined as MWS-DAS ≤5 plus normal CRP and SAA. Treatment efficacy and safety were analyzed. Results The study included 12 anakinra- and 14 canakinumab-treated patients; the median age was 33.5 years (3.0 years to 72.0 years); 57% were female patients. Both treatment regimens led to a significant reduction of clinical disease activity and inflammatory markers. At last follow-up, 75% of anakinra-treated and 93% of canakinumab-treated patients achieved remission. During follow-up, S100A12 levels mirrored recurrence of disease activity. Both treatment regimens had favorable safety profiles. Conclusions IL-1 blockade is an effective and safe treatment in MWS patients. MWS-DAS in combination with MWS inflammatory markers provides an excellent monitoring tool set. Canakinumab led to a sustained control of disease activity even after secondary failure of anakinra therapy. S100A12 may be a sensitive marker to detect subclinical disease activity. PMID:23718630

  1. Expression and modulation of IL-1 alpha in murine keratinocytes

    SciTech Connect

    Ansel, J.C.; Luger, T.A.; Lowry, D.; Perry, P.; Roop, D.R.; Mountz, J.D.

    1988-04-01

    Murine and human keratinocytes produce an IL-1-like factor that appears to be similar if not identical to monocyte-derived IL-1. IL-1 may be an important mediator in cutaneous inflammatory responses, however, little is currently known concerning factors that may modulate IL-1 expression in keratinocytes. To address this issue we examined the effect of LPS, UV, and the cell differentiation state on murine keratinocyte IL-1 mRNA expression. Our results indicated that as with the murine P388D1 monocyte cell line, PAM 212 keratinocytes constitutively express abundant amounts of IL-1 alpha mRNA. On exposure to LPS (100 micrograms/ml) for 8 h there was more than 10 times the increase in PAM 212 IL-1 alpha mRNA which was accompanied by a sixfold increase in supernatant IL-1 activity. Similarly UV irradiation had a significant effect on keratinocyte IL-1 alpha expression. High dose UV (300 mJ/cm2) inhibited PAM 212 IL-1 alpha expression at 4, 8, 24, 48 h post-UV whereas a lower dose of UV (100 mJ/cm2) inhibited UV at 4 and 8 h post-UV, but induced IL-1 expression at 24 and 48 h post-UV. The expression of IL-1 alpha varied with the differentiation state of the keratinocytes. Freshly removed newborn murine keratinocytes were found to constitutively express IL-1 alpha mRNA. Keratinocytes grown in low (Ca2+) tissue culture media (0.05 mM) for 6 days, functionally and phenotypically become undifferentiated and express increased quantities of IL-1 alpha mRNA, whereas cells grown in high (Ca2+) media (1.2 mM) for 6 days become terminally differentiated and IL-1 expression ceased. Keratinocytes cultured for 3 days in low (Ca2+) conditions expressed an intermediate level of IL-1 alpha. In contrast, little or no IL-1 beta mRNA was detected in either the PAM 212 cells or newborn murine keratinocytes.

  2. IL-18/IL-1/IL-17A axis: A novel therapeutic target for neonatal sepsis?

    PubMed

    Cross, Alan S

    2016-10-01

    Healthy and septic human neonates have elevated serum IL-18 levels compared with adults. Using a murine neonatal model of intraabdominal sepsis with systemic (intraperitoneal) IL-18 complementation, Wynn et al. report that IL-18 potentiated mortality in both neonatal sepsis and endotoxemia through the induction of IL-17A, and depended on IL-1 receptor 1 signaling (but not IL-1β). They propose that targeting this IL-18/IL-1/IL-17A axis may improve outcomes for human neonates with sepsis. However, given the important roles of Th17 responses and IL-18 in host defenses, some caution is in order during a potentially microbe-induced septic process in neonates. The important differences in neonatal and adult responses to sepsis highlighted in this paper emphasize the need for further study of the immune responses of neonates. PMID:27434223

  3. T Cell Receptor (TCR) Antagonism without a Negative Signal: Evidence from T Cell Hybridomas Expressing Two Independent TCRs

    PubMed Central

    Stotz, Sabine H.; Bolliger, Luca; Carbone, Francis R.; Palmer, Ed

    1999-01-01

    Antagonist peptides inhibit T cell responses by an unknown mechanism. By coexpressing two independent T cell receptors (TCRs) on a single T cell hybridoma, we addressed the question of whether antagonist ligands induce a dominant-negative signal that inhibits the function of a second, independent TCR. The two receptors, Vα2Vβ5 and Vα2Vβ10, restricted by H-2Kb and specific for the octameric peptides SIINFEKL and SSIEFARL, respectively, were coexpressed on the same cell. Agonist stimulation demonstrated that the two receptors behaved independently with regard to antigen-induced TCR downregulation and intracellular biochemical signaling. The exposure of one TCR (Vα2Vβ5) to antagonist peptides could not inhibit a second independent TCR (Vα2Vβ10) from responding to its antigen. Thus, our data clearly demonstrate that these antagonist ligands do not generate a dominant-negative signal which affects the responsiveness of the entire cell. In addition, a kinetic analysis showed that even 12 h after engagement with their cognate antigen and 10 h after reaching a steady-state of TCR internalization, T cells were fully inhibited by the addition of antagonist peptides. The window of susceptibility to antagonist ligands correlated exactly with the time required for the responding T cells to commit to interleukin 2 production. The data support a model where antagonist ligands can competitively inhibit antigenic peptides from productively engaging the TCR. This competitive inhibition is effective during the entire commitment period, where sustained TCR engagement is essential for full T cell activation. PMID:9892608

  4. Hemagglutinin of Influenza A Virus Antagonizes Type I Interferon (IFN) Responses by Inducing Degradation of Type I IFN Receptor 1

    PubMed Central

    Xia, Chuan; Vijayan, Madhuvanthi; Pritzl, Curtis J.; Fuchs, Serge Y.; McDermott, Adrian B.

    2015-01-01

    ABSTRACT Influenza A virus (IAV) employs diverse strategies to circumvent type I interferon (IFN) responses, particularly by inhibiting the synthesis of type I IFNs. However, it is poorly understood if and how IAV regulates the type I IFN receptor (IFNAR)-mediated signaling mode. In this study, we demonstrate that IAV induces the degradation of IFNAR subunit 1 (IFNAR1) to attenuate the type I IFN-induced antiviral signaling pathway. Following infection, the level of IFNAR1 protein, but not mRNA, decreased. Indeed, IFNAR1 was phosphorylated and ubiquitinated by IAV infection, which resulted in IFNAR1 elimination. The transiently overexpressed IFNAR1 displayed antiviral activity by inhibiting virus replication. Importantly, the hemagglutinin (HA) protein of IAV was proved to trigger the ubiquitination of IFNAR1, diminishing the levels of IFNAR1. Further, influenza A viral HA1 subunit, but not HA2 subunit, downregulated IFNAR1. However, viral HA-mediated degradation of IFNAR1 was not caused by the endoplasmic reticulum (ER) stress response. IAV HA robustly reduced cellular sensitivity to type I IFNs, suppressing the activation of STAT1/STAT2 and induction of IFN-stimulated antiviral proteins. Taken together, our findings suggest that IAV HA causes IFNAR1 degradation, which in turn helps the virus escape the powerful innate immune system. Thus, the research elucidated an influenza viral mechanism for eluding the IFNAR signaling pathway, which could provide new insights into the interplay between influenza virus and host innate immunity. IMPORTANCE Influenza A virus (IAV) infection causes significant morbidity and mortality worldwide and remains a major health concern. When triggered by influenza viral infection, host cells produce type I interferon (IFN) to block viral replication. Although IAV was shown to have diverse strategies to evade this powerful, IFN-mediated antiviral response, it is not well-defined if IAV manipulates the IFN receptor-mediated signaling

  5. The TLR and IL-1 signalling network at a glance.

    PubMed

    Cohen, Philip

    2014-06-01

    Toll-like receptors (TLRs) and the receptors for interleukin (IL)-1, IL-18 and IL-33 are required for defence against microbial pathogens but, if hyper-activated or not switched off efficiently, can cause tissue damage and inflammatory and autoimmune diseases. Understanding how the checks and balances in the system are integrated to fight infection without the network operating out of control will be crucial for the development of improved drugs to treat these diseases in the future. In this Cell Science at a Glance article and the accompanying poster, I provide a brief overview of how one of these intricate networks is controlled by the interplay of protein phosphorylation and protein ubiquitylation events, and the mechanisms in myeloid cells that restrict and terminate its activation to prevent inflammatory and autoimmune diseases. Finally, I suggest a few protein kinases that have been neglected as drug targets, but whose therapeutic potential should be explored in the light of recent advances in our understanding of their roles in the innate immune system. PMID:24829146

  6. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense.

    PubMed

    Franchi, Luigi; Kamada, Nobuhiko; Nakamura, Yuumi; Burberry, Aaron; Kuffa, Peter; Suzuki, Shiho; Shaw, Michael H; Kim, Yun-Gi; Núñez, Gabriel

    2012-05-01

    Intestinal phagocytes transport oral antigens and promote immune tolerance, but their role in innate immune responses remains unclear. Here we found that intestinal phagocytes were anergic to ligands for Toll-like receptors (TLRs) or commensals but constitutively expressed the precursor to interleukin 1β (pro-IL-1β). After infection with pathogenic Salmonella or Pseudomonas, intestinal phagocytes produced mature IL-1β through the NLRC4 inflammasome but did not produce tumor necrosis factor (TNF) or IL-6. BALB/c mice deficient in NLRC4 or the IL-1 receptor were highly susceptible to orogastric but not intraperitoneal infection with Salmonella. That enhanced lethality was preceded by impaired expression of endothelial adhesion molecules, lower neutrophil recruitment and poor intestinal pathogen clearance. Thus, NLRC4-dependent production of IL-1β by intestinal phagocytes represents a specific response that discriminates pathogenic bacteria from commensal bacteria and contributes to host defense in the intestine. PMID:22484733

  7. Helicobacter pylori induces IL-1β protein through the inflammasome activation in differentiated macrophagic cells.

    PubMed

    Kameoka, Shoichiro; Kameyama, Takeshi; Hayashi, Takaya; Sato, Seiichi; Ohnishi, Naomi; Hayashi, Takeru; Murata-Kamiya, Naoko; Higashi, Hideaki; Hatakeyama, Masanori; Takaoka, Akinori

    2016-01-01

    More than 50% of people in the world are infected with Helicobacter pylori (H. pylori), which induces various gastric diseases. Especially, epidemiological studies have shown that H. pylori infection is a major risk factor for gastric cancer. It has been reported that the levels of interleukin (IL)-1β are upregulated in gastric tissues of patients with H. pylori infection. In this study, we investigated the induction mechanism of IL-1β during H. pylori infection. We found that IL-1βmRNA and protein were induced in phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells after H. pylori infection. This IL-1β production was inhibited by a caspase-1 inhibitor and a ROS inhibitor. Furthermore, K(+) efflux and Ca(2+) signaling were also involved in this process. These data suggest that NOD-like receptor (NLR) family, pyrin domain containing 3 (NLRP3) and its complex, known as NLRP3 inflammasome, are involved in IL-1β production during H. pylori infection because it is reported that NLRP3 inflammasome is activated by ROS, K(+) efflux and/or Ca(2+) signaling. These findings may provide therapeutic strategy for the control of gastric cancer in H. pylori-infected patients. PMID:26912137

  8. IL-1β inhibits β-Klotho expression and FGF19 signaling in hepatocytes.

    PubMed

    Zhao, Yueshui; Meng, Chenling; Wang, Yang; Huang, Huihui; Liu, Wenjing; Zhang, Jin-Fang; Zhao, Hui; Feng, Bo; Leung, Po Sing; Xia, Yin

    2016-02-15

    Fibroblast growth factor (FGF) 19 is a member of the FGF15/19 subfamily of FGFs that includes FGF15/19, FGF21, and FGF23. FGF19 has been shown to have profound effects on liver metabolism and regeneration. FGF19 binds to FGFR4 and its coreceptor β-Klotho to activate intracellular kinases, including Erk1/2. Studies have shown that proinflammatory cytokines such as TNFα impair FGF21 signaling in adipose cells by repressing β-Klotho expression. However, little is known about the effects of inflammation on the FGF19 pathway in the liver. In the present study, we found that lipopolysaccharide (LPS) inhibited β-Klotho and Fgfr4 expression in livers in mice, whereas LPS had no effects on the two FGF19 receptors in Huh-7 and HepG2 cells. Of the three inflammatory cytokines TNFα, IL-1β, and IL-6, IL-1β drastically inhibited β-Klotho expression, whereas TNFα and IL-6 had no or minor effects. None of the three cytokines had any effects on FGFR4 expression. IL-1β directly inhibited β-Klotho transcription, and this inhibition required both the JNK and NF-κB pathways. In addition, IL-1β inhibited FGF19-induced Erk1/2 activation and cell proliferation. These results suggest that inflammation and IL-1β play an important role in regulating FGF19 signaling and function in the liver. PMID:26670488

  9. Beneficial effects of kinin B1 receptor antagonism on plasma fatty acid alterations and obesity in Zucker diabetic fatty rats.

    PubMed

    Talbot, Sébastien; Dias, Jenny Pena; El Midaoui, Adil; Couture, Réjean

    2016-07-01

    Kinins are the endogenous ligands of the constitutive B2 receptor (B2R) and the inducible B1 receptor (B1R). Whereas B2R prevents insulin resistance, B1R is involved in insulin resistance and metabolic syndrome. However, the contribution of B1R in type 2 diabetes associated with obesity remains uncertain. The aim of the present study was to examine the impact of 1-week treatment with a selective B1R antagonist (SSR240612, 10 mg/kg per day, by gavage) on hyperglycemia, hyperinsulinemia, leptinemia, body mass gain, and abnormal plasma fatty acids in obese Zucker diabetic fatty (ZDF) rats. Treatment with SSR240612 abolished the body mass gain and reduced polyphagia, polydipsia, and plasma fatty acid alterations in ZDF rats without affecting hyperglycemia, hyperinsulinemia, and hyperleptinemia. The present study suggests that the upregulated B1R plays a role in body mass gain and circulating fatty acid alterations in ZDF rats. However, mechanisms other than B1R induction would be implicated in glucose metabolism disorder in ZDF rats, based on the finding that SSR240612 did not reverse hyperglycemia and hyperinsulinemia. PMID:27172260

  10. Clozapine, but not olanzapine disrupts conditioned avoidance response in rats by antagonizing 5-HT2A receptors

    PubMed Central

    Li, Ming; Sun, Tao; Mead, Alexa

    2011-01-01

    The present study was designed to assess the role of 5-HT2A/2C receptors in the acute and repeated effect of clozapine and olanzapine in a rat conditioned avoidance response model (CAR), a validated model of antipsychotic activity. Male Sprague-Dawley rats that were previously treated with either phencyclidine (0.5-2.0 mg/kg, sc), amphetamine (1.25-5.0 mg/kg, sc), or saline and tested in a prepulse inhibition of acoustic startle study were used. They were first trained to acquire avoidance response to a white noise (CS1) and a pure tone (CS2) that differed in their ability to predict the occurrence of footshock. Those who acquired avoidance response were administered with clozapine (10.0 mg/kg, sc) or olanzapine (1.0 mg/kg, sc) together with either saline or 1-2,5-dimethoxy-4-iodo-amphetamine (DOI, a selective 5-HT2A/2C agonist, 1.0 or 2.5 mg/kg, sc), and their conditioned avoidance responses were tested for four consecutive days. After two drug-free retraining days, the long-term repeated effect was assessed in a challenge test during which all rats were injected with a low dose of clozapine (5 mg/kg, sc) or olanzapine (0.5 mg/kg). Results show that pretreatment of DOI dose-dependently reversed the acute disruptive effect of clozapine on both CS1 and CS2 avoidance responses, whereas it had little effect in reversing the acute effect of olanzapine. On the challenge test, pretreatment of DOI did not alter the clozapine-induced tolerance or the olanzapine-induced sensitization effect. These results confirmed our previous findings and suggest that clozapine, but not olanzapine acts on through 5-HT2A/2C receptors to achieve its acute avoidance disruptive effect and likely its therapeutic effects. The long-term clozapine tolerance and olanzapine sensitization effects appear to be mediated by non-5-HT2A/2C receptors. PMID:21986871

  11. Delayed antagonism of AMPA/kainate receptors reduces long-term functional deficits resulting from spinal cord trauma.

    PubMed

    Wrathall, J R; Teng, Y D; Marriott, R

    1997-06-01

    Excitatory amino acid (EAA) receptors play a significant role in delayed neuronal death after ischemic and traumatic injury to the CNS. Focal microinjection experiments have demonstrated that 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), a highly selective and potent antagonist of non-N-methyl-D-aspartate ionotropic EAA receptors, i.e., those preferring alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) or kainate, can reduce histopathology and functional deficits when administered at 15 min after traumatic spinal cord injury (SCI). Similarly, intravenous infusion of NBQX, beginning at 15 min postinjury (p.i.), results in a significant amelioration of the functional deficits produced by experimental SCI. However, if antagonists of AMPA/kainate receptors were to be used therapeutically for patients with SCI, administration would likely be delayed for several hours after injury. We therefore examined the effects of NBQX administered at 4 h after SCI on functional deficits and histopathology in a standardized rat model of contusive SCI. An incomplete SCI was produced in Sprague-Dawley rats at T8 with a weight-drop device (10 g x 2.5 cm). NBQX (15 nmol), or vehicle alone, was microinjected into the injury site 4 h later. Recovery of hind limb reflexes, postural control, and locomotor function was determined by a battery of behavioral tests performed for 8 weeks. Spinal cord tissue was then fixed by perfusion and used for morphometric and immunocytochemical analyses. Previous studies with acute NBQX treatment showed significant functional improvement by 1 week; the effects of delayed NBQX treatment on functional deficits were not discernible until 3-4 weeks after SCI. Thereafter, significant reductions in hindlimb deficits were demonstrated in two independent studies. The nature and magnitude of the reductions in chronic deficits were similar to those observed previously when NBQX was administered acutely at 15 min after SCI. Morphometric

  12. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism.

    PubMed

    Musto, Alberto E; Rosencrans, Robert F; Walker, Chelsey P; Bhattacharjee, Surjyadipta; Raulji, Chittalsinh M; Belayev, Ludmila; Fang, Zhide; Gordon, William C; Bazan, Nicolas G

    2016-01-01

    Temporal lobe epilepsy or limbic epilepsy lacks effective therapies due to a void in understanding the cellular and molecular mechanisms that set in motion aberrant neuronal network formations during the course of limbic epileptogenesis (LE). Here we show in in vivo rodent models of LE that the phospholipid mediator platelet-activating factor (PAF) increases in LE and that PAF receptor (PAF-r) ablation mitigates its progression. Synthetic PAF-r antagonists, when administered intraperitoneally in LE, re-establish hippocampal dendritic spine density and prevent formation of dysmorphic dendritic spines. Concomitantly, hippocampal interictal spikes, aberrant oscillations, and neuronal hyper-excitability, evaluated 15-16 weeks after LE using multi-array silicon probe electrodes implanted in the dorsal hippocampus, are reduced in PAF-r antagonist-treated mice. We suggest that over-activation of PAF-r signaling induces aberrant neuronal plasticity in LE and leads to chronic dysfunctional neuronal circuitry that mediates epilepsy. PMID:27444269

  13. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism

    PubMed Central

    Musto, Alberto E.; Rosencrans, Robert F.; Walker, Chelsey P.; Bhattacharjee, Surjyadipta; Raulji, Chittalsinh M.; Belayev, Ludmila; Fang, Zhide; Gordon, William C.; Bazan, Nicolas G.

    2016-01-01

    Temporal lobe epilepsy or limbic epilepsy lacks effective therapies due to a void in understanding the cellular and molecular mechanisms that set in motion aberrant neuronal network formations during the course of limbic epileptogenesis (LE). Here we show in in vivo rodent models of LE that the phospholipid mediator platelet-activating factor (PAF) increases in LE and that PAF receptor (PAF-r) ablation mitigates its progression. Synthetic PAF-r antagonists, when administered intraperitoneally in LE, re-establish hippocampal dendritic spine density and prevent formation of dysmorphic dendritic spines. Concomitantly, hippocampal interictal spikes, aberrant oscillations, and neuronal hyper-excitability, evaluated 15–16 weeks after LE using multi-array silicon probe electrodes implanted in the dorsal hippocampus, are reduced in PAF-r antagonist-treated mice. We suggest that over-activation of PAF-r signaling induces aberrant neuronal plasticity in LE and leads to chronic dysfunctional neuronal circuitry that mediates epilepsy. PMID:27444269

  14. Alterations in High-Frequency Neuronal Oscillations in a Cynomolgus Macaque Test of Sustained Attention Following NMDA Receptor Antagonism.

    PubMed

    Goonawardena, Anushka V; Heiss, Jaime; Glavis-Bloom, Courtney; Trube, Gerhard; Borroni, Edilio; Alberati, Daniela; Wallace, Tanya L

    2016-04-01

    A growing body of evidence indicates that neuronal oscillations in the gamma frequency range (30-80 Hz) are disturbed in schizophrenic patients during cognitive processes and may represent an endophenotype of the disease. N-methyl-D-aspartate (NMDA) receptor antagonists have been used experimentally to induce schizophrenia-like symptoms including cognitive deficits in animals and humans. Here we characterized neuronal oscillations and event-related potentials (ERPs) in Cynomolgus macaques fully trained to perform a continuous performance test (CPT) in the presence and absence of the NMDA antagonist phencyclidine (PCP). Macaques (n=8) were trained to touch 'target' stimuli and ignore 'distractor' stimuli presented randomly on a touchscreen. Subsequently, all subjects were implanted with epidural EEG electrodes over frontal (FC) and parietal cortices (PC) and later tested under vehicle (saline, i.m.) or acute PCP (0.1-0.3 mg/kg, i.m.) conditions. Compared with vehicle treatment, PCP produced a significant dose-dependent decrease in CPT performance accuracy and increased reaction times. Furthermore, PCP elevated the amplitudes of 'low' (30-50 Hz) and 'high' (51-80 Hz) gamma oscillations in FC and PC around target presentations for all correct responses. The CPT accuracy was inversely correlated with the gamma band amplitude in the presence of PCP. Additionally, PCP delayed the N100 peak latency in FC, and prolonged and suppressed the cognitively relevant P300 component of mean ERPs in FC and PC, respectively. The NMDA receptor antagonist-induced alteration in neuronal oscillations and ERPs may contribute to the observed cognitive deficits in macaques, and enhance our understanding of EEG recordings as a translatable biomarker. PMID:26354045

  15. Synergistic effect of 5-hydroxytryptamine 3 and neurokinin 1 receptor antagonism in rodent models of somatic and visceral pain.

    PubMed

    Greenwood-Van Meerveld, Beverley; Mohammadi, Ehsan; Tyler, Karl; Pietra, Claudio; Bee, Lucy A; Dickenson, Anthony

    2014-10-01

    Synergistic activity has been observed between serotonergic 5-hydroxytryptamine 3 (5-HT3) and tachykinergic neurokinin 1 (NK1) receptor-mediated responses. This study investigated the efficacy of a 5-HT3 antagonist, palonosetron, and a NK1 antagonist, netupitant, alone or in combination in rodent models of somatic and visceral colonic hypersensitivity. In a rat model of experimental neuropathic pain, somatic hypersensitivity was quantified by the number of ipsilateral paw withdrawals to a von Frey filament (6g). Electrophysiologic responses were recorded in the dorsal horn neurons after mechanical or thermal stimuli. Acute colonic hypersensitivity was induced experimentally in rats by infusing dilute acetic acid (0.6%) directly into the colon. Colonic sensitivity was assessed by a visceromotor behavioral response quantified as the number of abdominal contractions in response to graded isobaric pressures (0-60 mm Hg) of colorectal distension. Palonosetron or netupitant was administered alone or in combination via oral gavage. When dosed alone, both significantly reduced somatic sensitivity, decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation, and caused significant (P < 0.05) inhibition of colonic hypersensitivity in a dose-dependent manner. The combined administration of palonosetron and netupitant at doses that were ineffective alone significantly reduced both somatic and visceral sensitivity and decreased the evoked response of spinal dorsal horn neurons to mechanical or thermal stimulation. In summary, the combination of palonosetron with a NK1 receptor antagonist showed synergistic analgesic activity in rodent models of somatic and visceral hypersensitivity, and may prove to be a useful therapeutic approach to treat pain associated with irritable bowel syndrome. PMID:25077526

  16. Addition of Angiotensin Receptor Blockade or Mineralocorticoid Antagonism to Maximal Angiotensin-Converting Enzyme Inhibition in Diabetic Nephropathy

    PubMed Central

    Mehdi, Uzma F.; Adams-Huet, Beverley; Raskin, Philip; Vega, Gloria L.

    2009-01-01

    Aldosterone promotes glomerular and tubular sclerosis independent of angiotensin II in animal models of diabetic nephropathy. Most human studies testing the renoprotective benefit of adding an angiotensin receptor blocker or a mineralocorticoid receptor antagonist to a regimen based on inhibition of angiotensin-converting enzyme (ACE) used relatively low doses of ACE inhibitors. Furthermore, these studies did not determine whether antiproteinuric effects were independent of BP lowering. We conducted a double-blind, placebo-controlled trial in 81 patients with diabetes, hypertension, and albuminuria (urine albumin-to-creatinine ratio ≥300 mg/g) who all received lisinopril (80 mg once daily). We randomly assigned the patients to placebo, losartan (100 mg daily), or spironolactone (25 mg daily) for 48 wk. We obtained blood and urine albumin, urea, creatinine, electrolytes, A1c, and ambulatory BP at baseline, 24, and 48 wk. Compared with placebo, the urine albumin-to-creatinine ratio decreased by 34.0% (95% CI, −51.0%, −11.2%, P = 0.007) in the group assigned to spironolactone and by 16.8% (95% CI, −37.3%, +10.5%, P = 0.20) in the group assigned to losartan. Clinic and ambulatory BP, creatinine clearance, sodium and protein intake, and glycemic control did not differ between groups. Serum potassium level was significantly higher with the addition of either spironolactone or losartan. In conclusion, the addition of spironolactone, but not losartan, to a regimen including maximal ACE inhibition affords greater renoprotection in diabetic nephropathy despite a similar effect on BP. These results support the need to conduct a long-term, large-scale, renal failure outcomes trial. PMID:19926893

  17. H4 receptor antagonism exhibits anti-nociceptive effects in inflammatory and neuropathic pain models in rats.

    PubMed

    Hsieh, Gin C; Chandran, Prasant; Salyers, Anita K; Pai, Madhavi; Zhu, Chang Z; Wensink, Erica J; Witte, David G; Miller, Thomas R; Mikusa, Joe P; Baker, Scott J; Wetter, Jill M; Marsh, Kennan C; Hancock, Arthur A; Cowart, Marlon D; Esbenshade, Timothy A; Brioni, Jorge D; Honore, Prisca

    2010-03-01

    The histamine H(4) receptor (H(4)R) is expressed primarily on cells involved in inflammation and immune responses. To determine the potential role of H(4)R in pain transmission, the effects of JNJ7777120, a potent and selective H(4) antagonist, were characterized in preclinical pain models. Administration of JNJ7777120 fully blocked neutrophil influx observed in a mouse zymosan-induced peritonitis model (ED(50)=17 mg/kg s.c., 95% CI=8.5-26) in a mast cell-dependent manner. JNJ7777120 potently reversed thermal hyperalgesia observed following intraplantar carrageenan injection of acute inflammatory pain (ED(50)=22 mg/kg i.p., 95% CI=10-35) in rats and significantly decreased the myeloperoxide activity in the carrageenan-injected paw. In contrast, no effects were produced by either H(1)R antagonist diphenhydramine, H(2)R antagonists ranitidine, or H(3)R antagonist ABT-239. JNJ7777120 also exhibited robust anti-nociceptive activity in persistent inflammatory (CFA) pain with an ED(50) of 29 mg/kg i.p. (95% CI=19-40) and effectively reversed monoiodoacetate (MIA)-induced osteoarthritic joint pain. This compound also produced dose-dependent anti-allodynic effects in the spinal nerve ligation (ED(50)=60 mg/kg) and sciatic nerve constriction injury (ED(50)=88 mg/kg) models of chronic neuropathic pain, as well as in a skin-incision model of acute post-operative pain (ED(50)=68 mg/kg). In addition, the analgesic effects of JNJ7777120 were maintained following repeated administration and were evident at the doses that did not cause neurologic deficits in rotarod test. Our results demonstrate that selective blockade of H(4) receptors in vivo produces significant anti-nociception in animal models of inflammatory and neuropathic pain. PMID:20004681

  18. Effects of CB1 receptor agonism and antagonism on behavioral fear and physiological stress responses in adult intact, ovariectomized, and estradiol-replaced female rats.

    PubMed

    Simone, J J; Malivoire, B L; McCormick, C M

    2015-10-15

    There is growing interest in the development of cannabis-based therapies for the treatment of fear and anxiety disorders. There are a few studies, but none in females, of the effects of the highly selective cannabinoid receptor type 1 (CB1) agonist, arachidonyl 2'-chlorethylamide (ACEA), on behavioral fear. In experiment 1 involving gonadally-intact females, ACEA (either 0.1 or 0.01 mg/kg) was without effect in the elevated plus maze (EPM), and the lower dose decreased anxiety in the open field test (OFT). AM251 increased anxiety in the EPM and decreased locomotor activity in the OFT. Twenty-four hours after fear conditioning, neither ACEA nor AM251 affected generalized fear or conditioned fear recall. AM251 and 0.1 mg/kg ACEA impaired, and 0.01 mg/kg ACEA enhanced, within-session fear extinction. AM251 increased plasma corticosterone concentrations after the fear extinction session, whereas ACEA was without effect. Based on evidence that estradiol may moderate the effects of CB1 receptor signaling in females, experiment 2 involved ovariectomized (OVX) rats provided with 10-μg 17β-Estradiol and compared with OVX rats without hormone replacement (oil vehicle). Irrespective of hormone treatment, AM251 increased anxiety in the EPM, whereas ACEA (0.01 mg/kg) was without effect. Neither hormone nor drug altered anxiety in the OFT, but estradiol increased and AM251 decreased distance traveled. After fear conditioning, AM251 decreased generalized fear. Neither hormone nor drug had any effect on recall or extinction of conditioned fear, however, ACEA and AM251 increased fear-induced plasma corticosterone concentrations. Further, when results with intact rats were compared with those from OVX rats, gonadal status did not moderate the effects of either AM251 or ACEA, although OVX displayed greater anxiety and fear than did intact rats. Thus, the effects of CB1 receptor antagonism and agonism in adult female rats do not depend on ovarian estradiol. PMID:26311003

  19. Alcohol-induced IL-1β in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation

    PubMed Central

    Lippai, Dora; Bala, Shashi; Petrasek, Jan; Csak, Timea; Levin, Ivan; Kurt-Jones, Evelyn A.; Szabo, Gyongyi

    2013-01-01

    Alcohol-induced neuroinflammation is mediated by proinflammatory cytokines, including IL-1β. IL-1β production requires caspase-1 activation by inflammasomes—multiprotein complexes that are assembled in response to danger signals. We hypothesized that alcohol-induced inflammasome activation contributes to increased IL-1β in the brain. WT and TLR4-, NLRP3-, and ASC-deficient (KO) mice received an ethanol-containing or isocaloric control diet for 5 weeks, and some received the rIL-1ra, anakinra, or saline treatment. Inflammasome activation, proinflammatory cytokines, endotoxin, and HMGB1 were measured in the cerebellum. Expression of inflammasome components (NLRP1, NLRP3, ASC) and proinflammatory cytokines (TNF-α, MCP-1) was increased in brains of alcohol-fed compared with control mice. Increased caspase-1 activity and IL-1β protein in ethanol-fed mice indicated inflammasome activation. TLR4 deficiency protected from TNF-α, MCP-1, and attenuated alcohol-induced IL-1β increases. The TLR4 ligand, LPS, was not increased in the cerebellum. However, we found up-regulation of acetylated and phosphorylated HMGB1 and increased expression of the HMGB1 receptors (TLR2, TLR4, TLR9, RAGE) in alcohol-fed mice. NLRP3- or ASC-deficient mice were protected from caspase-1 activation and alcohol-induced IL-1β increase in the brain. Furthermore, in vivo treatment with rIL-1ra prevented alcohol-induced inflammasome activation and IL-1β, TNF-α, and acetylated HMGB1 increases in the cerebellum. Conversely, intracranial IL-1β administration induced TNF-α and MCP-1 in the cerebellum. In conclusion, alcohol up-regulates and activates the NLRP3/ASC inflammasome, leading to caspase-1 activation and IL-1β increase in the cerebellum. IL-1β amplifies neuroinflammation, and disruption of IL-1/IL-1R signaling prevents alcohol-induced inflammasome activation and neuroinflammation. Increased levels of acetylated and phosphorylated HMGB1 may contribute to alcoholic neuroinflammation

  20. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABA{sub A} receptors

    SciTech Connect

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-11-15

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA{sub A} receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death

  1. Histone deacetylase inhibition prevents the impairing effects of hippocampal gastrin-releasing peptide receptor antagonism on memory consolidation and extinction.

    PubMed

    Petry, Fernanda S; Dornelles, Arethuza S; Lichtenfels, Martina; Valiati, Fernanda E; de Farias, Caroline Brunetto; Schwartsmann, Gilberto; Parent, Marise B; Roesler, Rafael

    2016-07-01

    Hippocampal gastrin-releasing peptide receptors (GRPR) regulate memory formation and extinction, and disturbances in GRPR signaling may contribute to cognitive impairment associated with neurodevelopmental disorders. Histone acetylation is an important epigenetic mechanism that regulates gene expression involved in memory formation, and histone deacetylase inhibitors (HDACis) rescue memory deficits in several models. The present study determined whether inhibiting histone deacetylation would prevent memory impairments produced by GRPR blockade in the hippocampus. Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or the HDACi sodium butyrate (NaB) shortly before inhibitory avoidance (IA) training, followed by an infusion of either SAL or the selective GRPR antagonist RC-3095 immediately after training. In a second experiment, the infusions were administered before and after a retention test trial that served as extinction training. As expected, RC-3095 significantly impaired consolidation and extinction of IA memory. More importantly, pretraining administration of NaB, at a dose that had no effect when given alone, prevented the effects of RC-3095. In addition, the combination of NaB and RC-3095 increased hippocampal levels of the brain-derived neurotrophic factor (BDNF). These findings indicate that HDAC inhibition can protect against memory impairment caused by GRPR blockade. PMID:27025446

  2. Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease

    PubMed Central

    Sabaa, Nathalie; de Franceschi, Lucia; Bonnin, Philippe; Castier, Yves; Malpeli, Giorgio; Debbabi, Haythem; Galaup, Ariane; Maier-Redelsperger, Micheline; Vandermeersch, Sophie; Scarpa, Aldo; Janin, Anne; Levy, Bernard; Girot, Robert; Beuzard, Yves; Leboeuf, Christophe; Henri, Annie; Germain, Stéphane; Dussaule, Jean-Claude; Tharaux, Pierre-Louis

    2008-01-01

    Patients with sickle-cell disease (SCD) suffer from tissue damage and life-threatening complications caused by vasoocclusive crisis (VOC). Endothelin receptors (ETRs) are mediators of one of the most potent vasoconstrictor pathways in mammals, but the relationship between vasoconstriction and VOC is not well understood. We report here that pharmacological inhibition of ETRs prevented hypoxia-induced acute VOC and organ damage in a mouse model of SCD. An in vivo ultrasonographic study of renal hemodynamics showed a substantial increase in endothelin-mediated vascular resistance during hypoxia/reoxygenation-induced VOC. This increase was reversed by administration of the dual ETR antagonist (ETRA) bosentan, which had pleiotropic beneficial effects in vivo. It prevented renal and pulmonary microvascular congestion, systemic inflammation, dense rbc formation, and infiltration of activated neutrophils into tissues with subsequent nitrative stress. Bosentan also prevented death of sickle-cell mice exposed to a severe hypoxic challenge. These findings in mice suggest that ETRA could be a potential new therapy for SCD, as it may prevent acute VOC and limit organ damage in sickle-cell patients. PMID:18382768

  3. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    SciTech Connect

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  4. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production

    PubMed Central

    Jung, Y; Wen, T; Mingler, MK; Caldwell, JM; Wang, YH; Chaplin, DD; Lee, EH; Jang, MH; Woo, SY; Seoh, JY; Miyasaka, M; Rothenberg, ME

    2014-01-01

    Eosinophils are multifunctional leukocytes that reside in the gastrointestinal (GI) lamina propria, where their basal function remains largely unexplored. In this study, by examining mice with a selective deficiency of systemic eosinophils (by lineage ablation) or GI eosinophils (eotaxin-1/2 double–deficient or CC chemokine receptor 3–deficient), we show that eosinophils support immunoglobulin A (IgA) class switching, maintain intestinal mucus secretions, affect intestinal microbial composition, and promote the development of Peyer’s patches. Eosinophil-deficient mice showed reduced expression of mediators of secretory IgA production, including intestinal interleukin 1β (IL-1β), inducible nitric oxide synthase, lymphotoxin (LT) α, and LT-β, and reduced levels of retinoic acid-related orphan receptor gamma t–positive (ROR-γt+) innate lymphoid cells (ILCs) while maintaining normal levels of APRIL (a proliferation-inducing ligand), BAFF (B cell–activating factor of the tumor necrosis factor family), and TGF-β (transforming growth factor β). GI eosinophils expressed a relatively high level of IL-1β, and IL-1β–deficient mice manifested the altered gene expression profiles observed in eosinophil-deficient mice and decreased levels of IgA+ cells and ROR-γt+ ILCs. On the basis of these collective data, we propose that eosinophils are required for homeostatic intestinal immune responses including IgA production and that their affect is mediated via IL-1β in the small intestine. PMID:25563499

  5. SHP-1 and IL-1α conspire to provoke neutrophilic dermatoses

    PubMed Central

    Lukens, John R; Kanneganti, Thirumala-Devi

    2014-01-01

    Neutrophilic dermatoses are a spectrum of autoinflammatory skin disorders that are characterized by extensive infiltration of neutrophils into the epidermis and dermis. The underlining biological pathways that are responsible for this heterogeneous group of cutaneous diseases have remained elusive. However, recent work from our laboratory and other groups has shown that missense mutations in Ptpn6, which encodes for the non-receptor protein tyrosine phosphatase Src homology region 2 (SH2) domain-containing phosphatase-1 (SHP-1), results in a skin disease with many of the major histopathological and clinical features that encompass neutrophilic dermatoses in humans. In particular, we found that loss-of-function mutation in Ptpn6 results in unremitting footpad swelling, suppurative inflammation, and neutrophilia. Dysregulated wound healing responses were discovered to contribute to chronic inflammatory skin disease in SHP-1 defective mice and genetic abrogation of interleukin-1 receptor (IL-1R) protected mice from cutaneous inflammation, suggesting that IL-1-mediated events potentiate disease. Surprisingly, inflammasome activation and IL-1β-mediated events were dispensable for Ptpn6spin-mediated footpad disease. Instead, RIP1-mediated regulation of IL-1α was identified to be the major driver of inflammation and tissue damage. PMID:25054090

  6. IL-1β in eosinophil-mediated small intestinal homeostasis and IgA production.

    PubMed

    Jung, Y; Wen, T; Mingler, M K; Caldwell, J M; Wang, Y H; Chaplin, D D; Lee, E H; Jang, M H; Woo, S Y; Seoh, J Y; Miyasaka, M; Rothenberg, M E

    2015-07-01

    Eosinophils are multifunctional leukocytes that reside in the gastrointestinal (GI) lamina propria, where their basal function remains largely unexplored. In this study, by examining mice with a selective deficiency of systemic eosinophils (by lineage ablation) or GI eosinophils (eotaxin-1/2 double deficient or CC chemokine receptor 3 deficient), we show that eosinophils support immunoglobulin A (IgA) class switching, maintain intestinal mucus secretions, affect intestinal microbial composition, and promote the development of Peyer's patches. Eosinophil-deficient mice showed reduced expression of mediators of secretory IgA production, including intestinal interleukin 1β (IL-1β), inducible nitric oxide synthase, lymphotoxin (LT) α, and LT-β, and reduced levels of retinoic acid-related orphan receptor gamma t-positive (ROR-γt(+)) innate lymphoid cells (ILCs), while maintaining normal levels of APRIL (a proliferation-inducing ligand), BAFF (B cell-activating factor of the tumor necrosis factor family), and TGF-β (transforming growth factor β). GI eosinophils expressed a relatively high level of IL-1β, and IL-1β-deficient mice manifested the altered gene expression profiles observed in eosinophil-deficient mice and decreased levels of IgA(+) cells and ROR-γt(+) ILCs. On the basis of these collective data, we propose that eosinophils are required for homeostatic intestinal immune responses including IgA production and that their affect is mediated via IL-1β in the small intestine. PMID:25563499

  7. IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity.

    PubMed

    Ohne, Yoichiro; Silver, Jonathan S; Thompson-Snipes, LuAnn; Collet, Magalie A; Blanck, Jean Philippe; Cantarel, Brandi L; Copenhaver, Alan M; Humbles, Alison A; Liu, Yong-Jun

    2016-06-01

    Group 2 innate lymphoid cells (ILC2 cells) are important for type 2 immune responses and are activated by the epithelial cytokines interleukin 33 (IL-33), IL-25 and thymic stromal lymphopoietin (TSLP). Here we demonstrated that IL-1β was a critical activator of ILC2 cells, inducing proliferation and cytokine production and regulating the expression of epithelial cytokine receptors. IL-1β also governed ILC2 plasticity by inducing low expression of the transcription factor T-bet and the cytokine receptor chain IL-12Rβ2, which enabled the conversion of these cells into an ILC1 phenotype in response to IL-12. This transition was marked by an atypical chromatin landscape characterized by the simultaneous transcriptional accessibility of the locus encoding interferon-γ (IFN-γ) and the loci encoding IL-5 and IL-13. Finally, IL-1β potentiated ILC2 activation and plasticity in vivo, and IL-12 acted as the switch that determined an ILC2-versus-ILC1 response. Thus, we have identified a previously unknown role for IL-1β in facilitating ILC2 maturation and plasticity. PMID:27111142

  8. Altered mnemonic functions and resistance to NMDA receptor antagonism by forebrain conditional knockout of glycine transporter 1

    PubMed Central

    Singer, Philipp; Yee, Benjamin K.; Feldon, Joram; Iwasato, Takuji; Itohara, Shigeyoshi; Grampp, Thomas; Prenosil, George; Benke, Dietmar; Möhler, Hanns; Boison, Detlev

    2009-01-01

    Converging evidence from pharmacological and molecular studies has led to the suggestion that inhibition of glycine transporter 1 (GlyT1) constitutes an effective means to boost N-methyl-D-aspartate receptor (NMDAR) activity by increasing the extra-cellular concentration of glycine in the vicinity of glutamatergic synapses. However, the precise extent and limitation of this approach to alter cognitive function, and therefore its potential as a treatment strategy against psychiatric conditions marked by cognitive impairments, remains to be fully examined. Here, we generated mutant mice lacking GlyT1 in the entire forebrain including neurons and glia. This conditional knockout system allows a more precise examination of GlyT1 down-regulation in the brain on behaviour and cognition. The mutation was highly effective in attenuating the motor-stimulating effect of acute NMDAR blockade by phencyclidine, although no appreciable elevation in NMDAR-mediated EPSC was observed in the hippocampus. Enhanced cognitive performance was observed in spatial working memory and object recognition memory while spatial reference memory and associative learning remained unaltered. These findings provide further credence for the potential cognitive enhancing effects of brain GlyT1 inhibition. At the same time, they indicated potential phenotypic differences when compared with other constitutive and conditional GlyT1 knockout lines, and highlighted the possibility of a functional divergence between the neuronal and glia subpopulations of GlyT1 in the regulation of learning and memory processes. The relevance of this distinction to the design of future GlyT1 blockers as therapeutic tools in the treatment of cognitive disorders remains to be further investigated. PMID:19332109

  9. Sexually dimorphic effects of NMDA receptor antagonism on brain-pituitary-gonad axis development in the platyfish

    NASA Technical Reports Server (NTRS)

    Flynn, Katherine M.; Miller, Shelly A.; Sower, Stacia A.; Schreibman, Martin P.

    2002-01-01

    The N-methyl-D-aspartate glutamate receptor (NMDAR) is found in hypothalamic nuclei involved in the regulation of reproduction in several species of mammals and fishes. NMDAR is believed to affect reproductive development and function by regulating gonadotropin releasing hormone (GnRH)-producing cells. These pathways are likely to be sexually dimorphic, as are several other neurotransmitter systems involved in reproductive function. In this report, male and female platyfish received intraperitoneal injections of 0, 5, 10, 20, 40 or 60 microg/g body wt. of the non-competitive NMDAR antagonist MK-801. Injections began at 6 weeks of age and continued thrice weekly until control animals reached puberty, as evidenced by anal fin maturation. The percent of pubescent animals was significantly affected by sex and treatment, with fewer MK-801-injected females in puberty than control females at each dose (P<0.001), and fewer pubescent females than males at 10, 20 and 40 microg/g (P<0.05). There were no MK-801-related effects in males. Histological analyses revealed typical immature gonads and pituitary glands in treated females, and typical mature morphology in control females and all males. Immunocytochemical distribution of the R1 subunit of the NMDAR within the brain-pituitary-gonad (BPG) axis was limited to GnRH-containing brain cells in all animals; however, NMDAR1 distribution was in an immature pattern in treated females and a mature pattern in all others. Neural concentrations of GnRH were unaffected by MK-801 treatment in both sexes. These data suggest that in the platyfish, NMDAR influence on reproductive development is sexually dimorphic and occurs at, or above, the level of GnRH-containing cells of the BPG axis.

  10. Chronic endothelin-A receptor antagonism is as protective as angiotensin converting enzyme inhibition against cardiac dysfunction in diabetic rats

    PubMed Central

    Wölkart, G; Pang, X; Stessel, H; Kirchengast, M; Brunner, F

    2007-01-01

    Background and purpose: Diabetes mellitus is associated with a specific cardiomyopathy. We compared the cardioprotective effects of an endothelin-A receptor blocker (ETA-RB) with those of an angiotensin-converting enzyme inhibitor (ACE-I) in rats with streptozotocin (STZ)-induced diabetes. Experimental approach: Diabetic rats were left untreated or received either the ETA-RB atrasentan or the ACE-I ramipril (each 3 mg kg−1 per day) orally for 8 weeks. Isolated isovolumic heart function was studied during normoxia and in response to ischaemia-reperfusion. Cardiac fibrosis, tissue oxidative stress and tissue nitric oxide synthase (NOS) activity were determined. Key results: Basal left ventricular systolic contractility was lower in diabetic compared to nondiabetic hearts and ETA-RB or ACE-I treatment significantly antagonised the decline. Following 15 min of no-flow ischaemia, reperfusion systolic function was depressed and left-ventricular end-diastolic pressure (LVEDP) was elevated in diabetic hearts. ETA-RB or ACE-I treatment significantly improved recovery of reperfusion systolic and diastolic function, without differences between groups. Hydroxyproline (an index of tissue fibrosis) and malondialdehyde (a measure of tissue oxidative stress) were elevated at the end of reperfusion in diabetic, compared to nondiabetic hearts. Either treatment reduced hydroxyproline and malondialdehyde to control level. Constitutive NOS activity was similar in nondiabetic and diabetic hearts and unaffected by ETA-RB or ACE-I treatment. Conclusions and implications: These results suggest that in experimental type 1 diabetes ETA-RB is as effective as an ACE-I in ameliorating myocardial functions during normoxia and ischaemia-reperfusion. Combining the two treatments neither afforded additive effects, nor diminished any protection effect seen with either drug. PMID:17572700

  11. Human Osteoarthritic Cartilage Shows Reduced In Vivo Expression of IL-4, a Chondroprotective Cytokine that Differentially Modulates IL-1β-Stimulated Production of Chemokines and Matrix-Degrading Enzymes In Vitro

    PubMed Central

    Assirelli, Elisa; Pulsatelli, Lia; Dolzani, Paolo; Platano, Daniela; Olivotto, Eleonora; Filardo, Giuseppe; Trisolino, Giovanni; Facchini, Andrea; Borzì, Rosa Maria; Meliconi, Riccardo

    2014-01-01

    Background In osteoarthritis (OA), an inflammatory environment is responsible for the imbalance between the anabolic and catabolic activity of chondrocytes and, thus, for articular cartilage derangement. This study was aimed at providing further insight into the impairment of the anabolic cytokine IL-4 and its receptors in human OA cartilage, as well as the potential ability of IL-4 to antagonize the catabolic phenotype induced by IL-1β. Methodology/Principal Findings The in vivo expression of IL-4 and IL-4 receptor subunits (IL-4R, IL-2Rγ, IL-13Rα1) was investigated on full thickness OA or normal knee cartilage. IL-4 expression was found to be significantly lower in OA, both in terms of the percentage of positive cells and the amount of signal per cell. IL-4 receptor type I and II were mostly expressed in mid-deep cartilage layers. No significant difference for each IL-4 receptor subunit was noted. IL-4 anti-inflammatory and anti-catabolic activity was assessed in vitro in the presence of IL-1β and/or IL-4 for 24 hours using differentiated high density primary OA chondrocyte also exhibiting the three IL-4 R subunits found in vivo. Chemokines, extracellular matrix degrading enzymes and their inhibitors were evaluated at mRNA (real time PCR) and protein (ELISA or western blot) levels. IL-4 did not affect IL-1β-induced mRNA expression of GRO-α/CXCL1, IL-8/CXCL8, ADAMTS-5, TIMP-1 or TIMP-3. Conversely, IL-4 significantly inhibited RANTES/CCL5, MIP-1α/CCL3, MIP-1β/CCL4, MMP-13 and ADAMTS-4. These results were confirmed at protein level for RANTES/CCL5 and MMP-13. Conclusions/Significance Our results indicate for the first time that OA cartilage has a significantly lower expression of IL-4. Furthermore, we found differences in the spectrum of biological effects of IL-4. The findings that IL-4 has the ability to hamper the IL-1β-induced release of both MMP-13 and CCL5/RANTES, both markers of OA chondrocytes, strongly indicates IL-4 as a pivotal anabolic cytokine

  12. The Endoribonuclease Activity Essential for the Nonstructural Protein 11 of Porcine Reproductive and Respiratory Syndrome Virus to Inhibit NLRP3 Inflammasome-Mediated IL-1β Induction.

    PubMed

    Wang, Chao; Shi, Xibao; Zhang, Xiaozhuan; Wang, Aiping; Wang, Li; Chen, Jing; Deng, Ruiguang; Zhang, Gaiping

    2015-12-01

    NLRP3 inflammasome, which is multiprotein complex that induces the maturity and secretion of proinflammatory interleukin-1β (IL-1β), takes a bridge between the innate and adaptive immune responses to the invading pathogens. It has been shown that porcine reproductive and respiratory syndrome virus (PRRSV) could activate the NLRP3 inflammasome but induce the host's immunosuppression. This study aims to explore whether PRRSV could encode the component to antagonize the NLRP3 inflammasome. The obtained results showed that PRRSV could induce the expression and secretion of IL-1β in early infection through the pathway of NLRP3 inflammasome in porcine alveolar macrophages (PAMs), but the levels of pro-IL-1β mRNA and IL-1β protein decreased to a degree that was similar to the level of the mock-infected group in later infection. This work also found that PRRSV nonstructural protein (nsp) 11 could inhibit the expression of pro-IL-1β mRNA induced by lipopolysaccharide (LPS) and the secretion of IL-1β induced by LPS plus nigericin in PAMs. Furthermore, the mutation studies showed that the endoribonuclease activity was essential for nsp11 to inhibit the secretion of IL-1β. Therefore, it could be indicated that PRRSV could induce the activation of NLRP3 inflammasome, but the virus encoded nsp11 to inhibit this action. PMID:26398903

  13. Cannabidiol Attenuates Sensorimotor Gating Disruption and Molecular Changes Induced by Chronic Antagonism of NMDA receptors in Mice

    PubMed Central

    Issy, Ana Carolina; Ferreira, Frederico R.; Viveros, Maria-Paz; Del Bel, Elaine A.; Guimarães, Francisco S.

    2015-01-01

    Background: Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Methods: Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Results: MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were

  14. Combined serotonin (5-HT)1A agonism, 5-HT(2A) and dopamine D₂ receptor antagonism reproduces atypical antipsychotic drug effects on phencyclidine-impaired novel object recognition in rats.

    PubMed

    Oyamada, Yoshihiro; Horiguchi, Masakuni; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y

    2015-05-15

    Subchronic administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist, e.g. phencyclidine (PCP), produces prolonged impairment of novel object recognition (NOR), suggesting they constitute a hypoglutamate-based model of cognitive impairment in schizophrenia (CIS). Acute administration of atypical, e.g. lurasidone, but not typical antipsychotic drugs (APDs), e.g. haloperidol, are able to restore NOR following PCP (acute reversal model). Furthermore, atypical APDs, when co-administered with PCP, have been shown to prevent development of NOR deficits (prevention model). Most atypical, but not typical APDs, are more potent 5-HT(2A) receptor inverse agonists than dopamine (DA) D2 antagonists, and have been shown to enhance cortical and hippocampal efflux and to be direct or indirect 5-HT(1A) agonists in vivo. To further clarify the importance of these actions to the restoration of NOR by atypical APDs, sub-effective or non-effective doses of combinations of the 5-HT(1A) partial agonist (tandospirone), the 5-HT(2A) inverse agonist (pimavanserin), or the D2 antagonist (haloperidol), as well as the combination of all three agents, were studied in the acute reversal and prevention PCP models of CIS. Only the combination of all three agents restored NOR and prevented the development of PCP-induced deficit. Thus, this triple combination of 5-HT(1A) agonism, 5-HT(2A) antagonism/inverse agonism, and D2 antagonism is able to mimic the ability of atypical APDs to prevent or ameliorate the PCP-induced NOR deficit, possibly by stimulating signaling cascades from D1 and 5-HT(1A) receptor stimulation, modulated by D2 and 5-HT(2A) receptor antagonism. PMID:25448429

  15. Peripheral inflammatory disease associated with centrally activated IL-1 system in humans and mice.

    PubMed

    Lampa, Jon; Westman, Marie; Kadetoff, Diana; Agréus, Anna Nordenstedt; Le Maître, Erwan; Gillis-Haegerstrand, Caroline; Andersson, Magnus; Khademi, Mohsen; Corr, Maripat; Christianson, Christina A; Delaney, Ada; Yaksh, Tony L; Kosek, Eva; Svensson, Camilla I

    2012-07-31

    During peripheral immune activation caused by an infection or an inflammatory condition, the innate immune response signals to the brain and causes an up-regulation of central nervous system (CNS) cytokine production. Central actions of proinflammatory cytokines, in particular IL-1β, are pivotal for the induction of fever and fatigue. In the present study, the influence of peripheral chronic joint inflammatory disease in rheumatoid arthritis (RA) on CNS inflammation was investigated. Intrathecal interleukin (IL)-1β concentrations were markedly elevated in RA patients compared with controls or with patients with multiple sclerosis. Conversely, the anti-inflammatory IL-1 receptor antagonist and IL-4 were decreased in RA cerebrospinal fluid (CSF). Tumor necrosis factor and IL-6 levels in the CSF did not differ between patients and controls. Concerning IL-1β, CSF concentrations in RA patients were higher than in serum, indicating local production in the CNS, and there was a positive correlation between CSF IL-1β and fatigue assessments. Next, spinal inflammation in experimental arthritis was investigated. A marked increase of IL-1β, IL-18, and tumor necrosis factor, but not IL-6 mRNA production, in the spinal cord was observed, coinciding with increased arthritis scores in the KBxN serum transfer model. These data provide evidence that peripheral inflammation such as arthritis is associated with an immunological activation in the CNS in both humans and mice, suggesting a possible therapeutic target for centrally affecting conditions as fatigue in chronic inflammatory diseases, for which to date there are no specific treatments. PMID:22802629

  16. Meprin A and meprin {alpha} generate biologically functional IL-1{beta} from pro-IL-1{beta}

    SciTech Connect

    Herzog, Christian; Haun, Randy S.; Kaushal, Varsha; Mayeux, Philip R.; Shah, Sudhir V.; Kaushal, Gur P.

    2009-02-20

    The present study demonstrates that both oligomeric metalloendopeptidase meprin A purified from kidney cortex and recombinant meprin {alpha} are capable of generating biologically active IL-1{beta} from its precursor pro-IL-1{beta}. Amino-acid sequencing analysis reveals that meprin A and meprin {alpha} cleave pro-IL-1{beta} at the His{sup 115}-Asp{sup 116} bond, which is one amino acid N-terminal to the caspase-1 cleavage site and five amino acids C-terminal to the meprin {beta} site. The biological activity of the pro-IL-1{beta} cleaved product produced by meprin A, determined by proliferative response of helper T-cells, was 3-fold higher to that of the IL-1{beta} product produced by meprin {beta} or caspase-1. In a mouse model of sepsis induced by cecal ligation puncture that results in elevated levels of serum IL-1{beta}, meprin inhibitor actinonin significantly reduces levels of serum IL-1{beta}. Meprin A and meprin {alpha} may therefore play a critical role in the production of active IL-1{beta} during inflammation and tissue injury.

  17. Effect of endothelin antagonism on the production of cytokines in eosinophilic airway inflammation.

    PubMed

    Finsnes, F; Lyberg, T; Christensen, G; Skjønsberg, O H

    2001-04-01

    Endothelin (ET)-1 has been launched as an important mediator in bronchial asthma, which is an eosinophilic airway inflammation. However, the interplay between ET-1 and other proinflammatory mediators during the development of airway inflammation has not been elucidated. We wanted to study 1) whether the production of ET-1 precedes the production of other proinflammatory mediators and 2) whether ET-1 stimulates the production of these mediators within the airways. These hypotheses were studied during the development of an eosinophilic airway inflammation in rats. The increase in ET-1 mRNA level in lung tissue preceded the increase in mRNA levels of tumor necrosis factor-alpha, interleukin (IL)-1beta, and IL-8. Treatment of the animals with the ET receptor antagonist bosentan resulted in a substantial decrease in the concentrations of tumor necrosis factor-alpha, IL-4, IL-1beta, interferon-gamma, and ET-1 in bronchoalveolar lavage fluid. In conclusion, the synthesis of ET-1 as measured by increased mRNA level precedes the synthesis of other proinflammatory cytokines of importance for the development of an eosinophilic airway inflammation, and ET antagonism inhibits the production of these mediators within the airways. Whether treatment with ET antagonists will prove beneficial for patients with eosinophilic airway inflammations like bronchial asthma is not yet known. PMID:11238005

  18. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration

    PubMed Central

    Martino, Mikaël M.; Maruyama, Kenta; Kuhn, Gisela A.; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-01-01

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications. PMID:27001940

  19. Inhibition of IL-1R1/MyD88 signalling promotes mesenchymal stem cell-driven tissue regeneration.

    PubMed

    Martino, Mikaël M; Maruyama, Kenta; Kuhn, Gisela A; Satoh, Takashi; Takeuchi, Osamu; Müller, Ralph; Akira, Shizuo

    2016-01-01

    Tissue injury and the healing response lead to the release of endogenous danger signals including Toll-like receptor (TLR) and interleukin-1 receptor, type 1 (IL-1R1) ligands, which modulate the immune microenvironment. Because TLRs and IL-1R1 have been shown to influence the repair process of various tissues, we explored their role during bone regeneration, seeking to design regenerative strategies integrating a control of their signalling. Here we show that IL-1R1/MyD88 signalling negatively regulates bone regeneration, in the mouse. Furthermore, IL-1β which is released at the bone injury site, inhibits the regenerative capacities of mesenchymal stem cells (MSCs). Mechanistically, IL-1R1/MyD88 signalling impairs MSC proliferation, migration and differentiation by inhibiting the Akt/GSK-3β/β-catenin pathway. Lastly, as a proof of concept, we engineer a MSC delivery system integrating inhibitors of IL-1R1/MyD88 signalling. Using this strategy, we considerably improve MSC-based bone regeneration in the mouse, demonstrating that this approach may be useful in regenerative medicine applications. PMID:27001940

  20. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats.

    PubMed

    Pan, Ying; Chen, Xu-Yang; Zhang, Qing-Yu; Kong, Ling-Dong

    2014-10-01

    Depression is an inflammatory disorder. Pro-inflammatory cytokine interleukin-1 beta (IL-1β) may play a pivotal role in the central nervous system (CNS) inflammation of depression. Here, we investigated IL-1β alteration in serum, cerebrospinal fluid (CSF) and prefrontal cortex (PFC) of chronic unpredictable mild stress (CUMS)-exposed rats, a well-documented model of depression, and further explored the molecular mechanism by which CUMS procedure induced IL-1β-related CNS inflammation. We showed that 12-week CUMS procedure remarkably increased PFC IL-1β mRNA and protein levels in depressive-like behavior of rats, without significant alteration of serum and CSF IL-1β levels. We found that CUMS procedure significantly caused PFC nuclear factor kappa B (NF-κB) inflammatory pathway activation in rats. The intriguing finding in this study was the induced activation of nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome with the increased IL-1β maturation in PFC of CUMS rats, suggesting a new grade of regulatory mechanism for IL-1β-related CNS inflammation. Moreover, microglial activation and astrocytic function impairment were observed in PFC of CUMS rats. The increased co-location of NLRP3 and ionized calcium binding adaptor molecule 1 (Iba1) protein expression supported that microglia in glial cells was the primary contributor for CUMS-induced PFC NLRP3 inflammasome activation in rats. These alterations in CUMS rats were restored by chronic treatment of the antidepressant fluoxetine, indicating that fluoxetine-mediated rat PFC IL-1β reduction involves both transcriptional and post-transcriptional regulatory mechanisms. These findings provide in vivo evidence that microglial NLRP3 inflammasome activation is a mediator of IL-1β-related CNS inflammation during chronic stress, and suggest a new therapeutic target for the prevention and treatment of depression. PMID:24859041

  1. Effect of Histone Acetylation on N-Methyl-D-Aspartate 2B Receptor Subunits and Interleukin-1 Receptors in Association with Nociception-Related Somatosensory Cortex Dysfunction in a Mouse Model of Sepsis.

    PubMed

    Imamura, Yukio; Yoshikawa, Nao; Murkami, Yuki; Mitani, Satoko; Matsumoto, Naoya; Matsumoto, Hisatake; Yamada, Tomoki; Yamakawa, Kazuma; Nakagawa, Junichiro; Ogura, Hiroshi; Shimazu, Takeshi; Jin, Takashi

    2016-06-01

    Whole-body inflammation (i.e., sepsis) often results in brain-related sensory dysfunction. We previously reported that interleukin (IL)-1 resulted in synaptic dysfunction of septic encephalopathy, but the underlying molecular mechanisms remain unknown, as do effective treatments. Using mice, we examined immunohistochemistry, co-immunoprecipitation, enzyme-linked immunosorbent assay, and behavior analyses, and investigated the role of the N-methyl-D-aspartate 2B subunit (NR2B) of NMDA receptor, IL-1 receptor, and histone acetylation in the pathophysiology underlying sensory dysfunction induced by lipopolysaccharide (LPS). Mice groups of sham-operated, LPS, LPS with an NR2B antagonist, or LPS with resveratrol (a histone acetylation activator) were analyzed. We found that LPS increased NR2B and interleukin-1 receptor (IL-1R) immunoreactivity. The expression of Iba1, a marker for microglia and/or macrophages, increased more significantly in the brain than in the spinal cord, implicating NR2B and IL-1R in brain inflammation. Immunoprecipitation with NR2B and IL-1R revealed related antibodies. Blood levels of IL-1β (i.e., the IL-1R ligand) increased, though not significantly, suggesting that inflammation peaked at 20 h. Behavioral assessments of central (CNS) and peripheral sensory (PNS) function indicated that LPS delayed CNS but not PNS escape latency. Finally, NR2B antagonist or resveratrol in the lateral ventricle antagonized the effects of LPS in the brain and improved animal survival. In summary, histone acetylation may control expression of NR2B and IL-1R, alleviating inflammation-induced sensory neuronal dysfunction caused by LPS. PMID:26682951

  2. IL-1ra Secreted by ATP-Induced P2Y2 Negatively Regulates MUC5AC Overproduction via PLCβ3 during Airway Inflammation

    PubMed Central

    Kim, Jiwook; Kim, Bokyoum; Kim, Joowon; Shin, Yusom; Kim, Judeok; Ryu, Siejeong; Yang, Yu-Mi

    2016-01-01

    Mucus secretion is often uncontrolled in many airway inflammatory diseases of humans. Identifying the regulatory pathway(s) of mucus gene expression, mucus overproduction, and hypersecretion is important to alleviate airway inflammation in these diseases. However, the regulatory signaling pathway controlling mucus overproduction has not been fully identified yet. In this study, we report that the ATP/P2Y2 complex secretes many cytokines and chemokines to regulate airway inflammation, among which IL-1 receptor antagonist (IL-1ra) downregulates MUC5AC gene expression via the inhibition of Gαq-induced Ca2+ signaling. IL-1ra inhibited IL-1α protein expression and secretion, and vice versa. Interestingly, ATP/P2Y2-induced IL-1ra and IL-1α secretion were both mediated by PLCβ3. A dominant-negative mutation in the PDZ-binding domain of PLCβ3 inhibited ATP/P2Y2-induced IL-1ra and IL-1α secretion. IL-1α in the presence of the ATP/P2Y2 complex activated the ERK1/2 pathway in a greater degree and for a longer duration than the ATP/P2Y2 complex itself, which was dramatically inhibited by IL-1ra. These findings suggest that secreted IL-1ra exhibits a regulatory effect on ATP/P2Y2-induced MUC5AC gene expression, through inhibition of IL-1α secretion, to maintain the mucus homeostasis in the airway. Therefore, IL-1ra could be an excellent modality for regulating inflamed airway microenvironments in respiratory diseases. PMID:27034593

  3. P2X7 Receptor Antagonism Attenuates the Intermittent Hypoxia-induced Spatial Deficits in a Murine Model of Sleep Apnea Via Inhibiting Neuroinflammation and Oxidative Stress

    PubMed Central

    Deng, Yan; Guo, Xue-Ling; Yuan, Xiao; Shang, Jin; Zhu, Die; Liu, Hui-Guo

    2015-01-01

    Background: The mechanism of the neural injury caused by chronic intermittent hypoxia (CIH) that characterizes obstructive sleep apnea syndrome (OSAS) is not clearly known. The purpose of this study was to investigate whether P2X7 receptor (P2X7R) is responsible for the CIH-induced neural injury and the possible pathway it involves. Methods: Eight-week-old male C57BL/6 mice were used. For each exposure time point, eight mice divided in room air (RA) and IH group were assigned to the study of P2X7R expression. Whereas in the 21 days-Brilliant Blue G (BBG, a selective P2X7R antagonist) study, 48 mice were randomly divided into CIH group, BBG-treated CIH group, RA group and BBG-treated RA group. The hippocampus P2X7R expression was determined by Western blotting and real-time polymerase chain reaction (PCR). The spatial learning was analyzed by Morris water maze. The nuclear factor kappa B (NFκB) and NADPH oxidase 2 (NOX2) expressions were analyzed by Western blotting. The expressions of tumor necrosis factor α, interleukin 1β (IL-β), IL-18, and IL-6 were measured by real-time PCR. The malondialdehyde and superoxide dismutase levels were detected by colorimetric method. Cell damage was evaluated by Hematoxylin and Eosin staining and Terminal Transferase dUTP Nick-end Labeling method. Results: The P2X7R mRNA was elevated and sustained after 3-day IH exposure and the P2X7R protein was elevated and sustained after 7-day IH exposure. In the BBG study, the CIH mice showed severer neuronal cell damage and poorer performance in the behavior test. The increased NFκB and NOX2 expressions along with the inflammation injury and oxidative stress were also observed in the CIH group. BBG alleviated CIH-induced neural injury and consequent functional deficits. Conclusions: The P2X7R antagonism attenuates the CIH-induced neuroinflammation, oxidative stress, and spatial deficits, demonstrating that the P2X7R is an important therapeutic target in the cognition deficits accompanied

  4. Low Dose Nicotine and Antagonism of β2 Subunit Containing Nicotinic Acetylcholine Receptors Have Similar Effects on Affective Behavior in Mice

    PubMed Central

    Anderson, Shawn M.; Brunzell, Darlene H.

    2012-01-01

    Nicotine leads to both activation and desensitization (inactivation) of nicotinic acetylcholine receptors (nAChRs). This study tested the hypothesis that nicotine and a selective antagonist of β2*nAChRs would have similar effects on affective behavior. Adult C57BL/6J male mice were tested in a conditioned emotional response (CER) assay which evaluates the ability of an aversive stimulus to inhibit goal-directed behavior. Mice lever-pressed for a saccharin reinforcer according to a variable schedule of reinforcement during sessions in which two presentations of a compound light/tone conditioned stimulus (CS) co-terminated with a 0.1 or 0.3 mA, 0.5 s footshock unconditioned stimulus (US). During testing in the absence of the US, mice received doses of i.p. nicotine (0, 0.0032, 0.01, 0.032, 0.1 mg/kg) or a selective β2 subunit containing nAChR (β2*nAChR) antagonist dihydro-beta-erythroidine (0, 0.1, 0.3, 1.0, 3.0 mg/kg DHβE). There was a dose-dependent effect of nicotine revealing that only low doses (0.01, 0.032 mg/kg) increased CER suppression ratios (SR) in these mice. DHβE also dose-dependently increased SR at the 3 mg/kg dose. In ethological measures of fear−/anxiety-like behavior, these doses of nicotine and DHβE significantly reduced digging behavior in a marble burying task and 0.3 mg/kg DHβE promoted open-arm activity in the elevated plus maze. Doses of nicotine and DHβE that altered affective behavior had no effect on locomotor activity. Similar to previous reports with anxiolytic drugs, low dose nicotine and DHβE reversed SR in a CER assay, decreased digging in a marble burying assay and increased open arm activity in the elevated plus maze. This study provides evidence that inactivation of β2*nAChRs reduces fear-like and anxiety-like behavior in rodents and suggests that smokers may be motivated to smoke in part to desensitize their β2*nAChRs. These data further identify β2*nAChR antagonism as a potential therapeutic strategy for relief of

  5. Atranorin and lecanoric acid antagonize TCDD-induced xenobiotic response element-driven activity, but not xenobiotic response element-independent activity.

    PubMed

    Nakashima, Ken-Ichi; Tanabe, Hiroki; Fujii-Kuriyama, Yoshiaki; Hayashi, Hidetoshi; Inoue, Makoto

    2016-07-01

    Lichens are symbiotic organisms that consist of fungi and photosynthetic symbionts (algae and/or cyanobacteria). Previous studies of their constituents suggested lichens produce many kinds of aromatic secondary metabolites, such as depsides, quinones, and dibenzofurans. In this study, we evaluated the aryl hydrocarbon receptor (AhR) antagonistic activity of 17 lichen substances and demonstrated that atranorin (1) and lecanoric acid (2), isolated from Parmotrema tinctorum Hale, showed an inhibitory effect on luciferase activity increased by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), using an XRE-driven pX4TK-Luc reporter gene assay. In addition, CYP1A1 mRNA and protein levels increased by TCDD were also suppressed by 1 and 2. Conversely, neither 1 nor 2 antagonized the suppressive effect of TCDD on interleukin (IL)-1β-induced acute-phase response (APR) gene expression. Thus, we concluded that 1 and 2 were selective AhR modulators that antagonize XRE-dependent activity, but not XRE-independent activity. However, 1 has different characteristics to 2 in that 1 alone showed a suppressive effect on IL-1β-induced APR gene expression in a similar fashion to TCDD. PMID:26979434

  6. TRAF6 upregulation in spinal astrocytes maintains neuropathic pain by integrating TNF-α and IL-1β signaling

    PubMed Central

    Lu, Ying; Jiang, Bao-Chun; Cao, De-Li; Zhang, Zhi-Jun; Zhang, Xin; Ji, Ru-Rong; Gao, Yong-Jing

    2014-01-01

    The proinflammatory cytokines TNF-α and IL-1β have been strongly implicated in the pathogenesis of neuropathic pain, but the intracellular signaling of these cytokines in glial cells are not fully understood. Tumor necrosis factor receptor associated factor 6 (TRAF6) plays a key role in signal transduction in the TNF receptor superfamily and the interleukin-1 receptor superfamily. In this study, we investigated the role of TRAF6 in neuropathic pain in mice following spinal nerve ligation (SNL). SNL induced persistent TRAF6 upregulation in the spinal cord. Interestingly, TRAF6 was mainly colocalized with the astrocytic marker GFAP on SNL day 10 and partially expressed in microglia on SNL day 3. In cultured astrocytes, TRAF6 was up-regulated after exposure to TNF-α or IL-1β. TNF-α or IL-1β also increased CCL2 expression, which was suppressed by both siRNA and shRNA targeting TRAF6. TRAF6 siRNA treatment also inhibited the phosphorylation of c-Jun N-terminal kinase (JNK) in astrocytes induced by TNF-α or IL-1β. JNK inhibitor D-NKI-1 dose-dependently decreased IL-1β-induced CCL2 expression. Moreover, spinal injection of TRAF6 siRNA decreased intrathecal TNF-α-or IL-1β-induced allodynia and hyperalgesia. Spinal TRAF6 inhibition via TRAF6 siRNA, shRNA lentivirus, or antisense oligodeoxynucleotides partially reversed SNL-induced neuropathic pain and spinal CCL2 expression. Finally, intrathecal injection of TNF-α-activated astrocytes induced mechanical allodynia, which was attenuated by pretreatment of astrocytes with TRAF6 siRNA. Taken together, the results suggest that TRAF6, upregulated in spinal cord astrocytes in the late phase after nerve injury, maintains neuropathic pain by integrating TNF-α and IL-1β signaling and activating the JNK/CCL2 pathway in astrocytes. PMID:25267210

  7. IL-1 gene cluster is not linked to aggressive periodontitis.

    PubMed

    Scapoli, C; Borzani, I; Guarnelli, M E; Mamolini, E; Annunziata, M; Guida, L; Trombelli, L

    2010-05-01

    The interleukin-1 (IL-1) gene family has been associated with susceptibility to periodontal diseases, including aggressive periodontitis (AgP); however, the results are still conflicting. The present study investigated the association between IL-1 genes and AgP using 70 markers spanning the 1.1-Mb region, where the IL-1 gene family maps, and exploring both the linkage disequilibrium (LD) and the haplotype structure in a case-control study including 95 patients and 121 control individuals. No association between AgP and IL1A, IL1B, and IL1RN genes was found in either single-point or haplotype analyses. Also, the LD map of the region 2q13-14 under the Malécot model for multiple markers showed no causal association between AgP and polymorphisms within the region (p = 0.207). In conclusion, our findings failed to support the existence of a causative variant for generalized AgP within the 2q13-14 region in an Italian Caucasian population. PMID:20335539

  8. C/EBPβ regulates multiple IL-1β-induced human astrocyte inflammatory genes

    PubMed Central

    2012-01-01

    Background CCAAT enhancer-binding protein (C/EBP)β regulates gene expression in multiple organ systems and cell types, including astrocytes in the central nervous system (CNS). Inflammatory stimuli, interleukin (IL)-1β, tumor necrosis factor-α, human immunodeficiency virus (HIV)-1 and lipopolysaccharide induce astrocyte C/EBPβ expression. C/EBPβ is detectable in brains of Alzheimer’s disease (AD), Parkinson’s disease (PD) and HIV-1-associated dementia (HAD) patients, yet little is known about how C/EBPβ contributes to astrocyte gene regulation during neuroinflammation. Methods The expression of 92 human inflammation genes was compared between IL-1β-treated primary human astrocytes and astrocytes transfected with C/EBPβ-specific small interfering (si)RNA prior to IL-1β treatment for 12 h. Transcripts altered by > two-fold compared to control were subjected to one-way analysis of variance and Newman-Keuls post-test for multiple comparisons. Expression of two genes, cyclooxygenase-2 (COX-2) and bradykinin receptor B2 (BDKRB2) was further confirmed in additional human astrocyte donors. Astrocytes were treated with mitogen-activated protein kinase-selective inhibitors, then with IL-1β for 12 or 24 h followed by COX-2 and BDKRB2, expression analyses. Results IL-1β altered expression of 29 of 92 human inflammation genes by at least two-fold in primary human astrocytes in 12 h. C/EBPβ knockdown affected expression of 17 out of 29 IL-1β-regulated genes by > 25%. Two genes relevant to neuroinflammation, COX-2 and BDKRB2, were robustly decreased and increased, respectively, in response to C/EBPβ knockdown, and expression was confirmed in two additional donors. COX-2 and BDKRB2 mRNA remained altered in siRNA-transfected astrocytes at 12, 24 or 72 h. Inhibiting p38 kinase (p38K) activation blocked IL-1β-induced astrocyte COX-2 mRNA and protein expression, but not IL-1β-induced astrocyte BDKRB2 expression. Inhibiting extracellular

  9. IL-1β-dependent activation of dendritic epidermal T cells in contact hypersensitivity1

    PubMed Central

    Nielsen, Morten M.; Lovato, Paola; MacLeod, Amanda S.; Witherden, Deborah A.; Skov, Lone; Dyring-Andersen, Beatrice; Dabelsteen, Sally; Woetmann, Anders; Ødum, Niels; Havran, Wendy L.; Geisler, Carsten; Bonefeld, Charlotte M.

    2014-01-01

    Substances that penetrate the skin surface can act as allergens and induce a T cell-mediated inflammatory skin disease called contact hypersensitivity (CHS). IL-17 is a key cytokine in CHS and was originally thought to be produced solely by CD4+ T cells. However, it is now known that several cell types including γδ T cells can produce IL-17. Here, we determine the role of γδ T cells, especially the dendritic epidermal T cells (DETC), in CHS. By use of a well-established model for CHS where dinitroflourobenzen (DNFB) is used as allergen, we found that γδ T cells are important players in CHS. Thus, an increased number of IL-17 producing DETC appear in the skin following exposure to DNFB in WT mice, and DNFB-induced ear-swelling is reduced by approximately 50% in TCRδ−/− mice compared to WT mice. In accordance, DNFB-induced ear-swelling was reduced by approximately 50% in IL-17−/− mice. We show that DNFB triggers DETC activation and IL-1β production in the skin, and that keratinocytes produce IL-1β when stimulated with DNFB. We find that DETC activated in vitro by incubation with anti-CD3 and IL-1β produce IL-17. Importantly, we demonstrate that the IL-1 receptor antagonist anakinra significantly reduces CHS responses as measured by decreased ear-swelling, inhibition of local DETC activation and a reduction in the number of IL-17+ γδ T cells and DETC in the draining lymph nodes. Taken together, we show that DETC become activated and produce IL-17 in an IL-1β-dependent manner during CHS suggesting a key role for DETC in CHS. PMID:24600030

  10. ARTD1 regulates osteoclastogenesis and bone homeostasis by dampening NF-κB-dependent transcription of IL-1β.

    PubMed

    Robaszkiewicz, Agnieszka; Qu, Chao; Wisnik, Ewelina; Ploszaj, Tomasz; Mirsaidi, Ali; Kunze, Friedrich A; Richards, Peter J; Cinelli, Paolo; Mbalaviele, Gabriel; Hottiger, Michael O

    2016-01-01

    While ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) and its enzymatic activity have been shown to be important for reprogramming and differentiation of cells, such as during adipogenesis, their role and mechanism in regulating osteoclastogenesis and bone homeostasis are largely unknown. Here, in cell culture-based RANKL-induced osteoclastogenesis models, we show that silencing of ARTD1 or inhibition of its enzymatic activity enhances osteoclast differentiation and function. As a consequence of ARTD1 silencing or inhibition, the recruitment of p65/RelA to the IL-1β promoter, which is associated with transcriptionally active histone marks, IL-1β expression and inflammasome-dependent secretion of IL-1β are enhanced. This subsequently promotes sustained induction of the transcription factor Nfatc1/A and osteoclastogenesis in an autocrine manner via the IL-1 receptor. In vivo, Artd1-deficient mice display significantly decreased bone mass as a consequence of increased osteoclast differentiation. Accordingly, the expression of osteoclast markers is enhanced in mutant compared to wild-type mice. Together, these results indicate that ARTD1 controls osteoclast development and bone remodelling via its enzymatic activity by modulating the epigenetic marks surrounding the IL-1β promoter and expression of IL-1β and subsequently also Nfatc1/A. PMID:26883084

  11. NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis.

    PubMed

    Bagaitkar, Juhi; Pech, Nancy K; Ivanov, Stoyan; Austin, Anthony; Zeng, Melody Yue; Pallat, Sabine; Huang, Guangming; Randolph, Gwendalyn J; Dinauer, Mary C

    2015-12-17

    The leukocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generates reactive oxygen species essential in microbial killing and regulation of inflammation. Inactivating mutations in this enzyme lead to chronic granulomatous disease (CGD), associated with increased susceptibility to both pyogenic infections and to inflammatory disorders. The role of the NADPH oxidase in regulating inflammation driven by nonmicrobial stimuli is poorly understood. Here, we show that NADPH oxidase deficiency enhances the early local release of interleukin-1α (IL-1α) in response to damaged cells, promoting an excessive granulocyte colony-stimulating factor (G-CSF)-regulated neutrophilic response and prolonged inflammation. In peritoneal inflammation elicited by tissue injury, X-linked Cybb-null (X-CGD) mice exhibited increased release of IL-1α and IL-1 receptor -mediated G-CSF production. In turn, higher levels of systemic G-CSF increased peripheral neutrophilia, which amplified neutrophilic peritoneal inflammation in X-CGD mice. Dampening early neutrophil recruitment by neutralization of IL-1α, G-CSF, or neutrophil depletion itself promoted resolution of otherwise prolonged inflammation in X-CGD. IL-1β played little role. Thus, we identified an excessive IL-1α/G-CSF response as a major driver of enhanced sterile inflammation in CGD in the response to damaged cells. More broadly, these results provide new insights into the regulation of sterile inflammation, and identify the NADPH oxidase in regulating the amplitude of the early neutrophilic response. PMID:26443623

  12. Postnatal administration of IL-1Ra exerts neuroprotective effects following perinatal inflammation and/or hypoxic-ischemic injuries

    PubMed Central

    Girard, Sylvie; Sébire, Hugues; Brochu, Marie-Elsa; Briota, Sinziana; Sarret, Philippe; Sébire, Guillaume

    2016-01-01

    New therapeutic strategies are needed to protect neonates, especially premature newborns, against brain injury and associated neurobehavioral deficits. The role of pro-inflammatory cytokines, especially IL-1β, in the pathophysiological pathway leading to neonatal brain damage is increasingly recognized and represents an attractive therapeutic target. We investigated the therapeutic potential of postnatal systemic administration of the interleukin (IL)-1 receptor antagonist (IL-1Ra) in an animal model of perinatal brain injury using the insults most common to human neonates, i.e. prenatal exposure to inflammation and/or postnatal hypoxia-ischaemia (HI). We found that postnatal administration of IL-1Ra preserved motor function and exploratory behavior after either prenatal exposure to inflammatory agent lipopolysaccharide (LPS) or postnatal HI insult. The deleterious effect of combined prenatal LPS and postnatal HI on brain development was also alleviated by administration of IL-1Ra, as seen by the protected neural stem cell population, prevention of myelin loss in the internal capsule, decreased gliosis, and decreased neurobehavioral impairment. This study showed the distinct pattern of functional deficits induced by prenatal inflammation as compared to postnatal HI and the therapeutic potential of IL-1Ra administration against neonatal brain injury. Furthermore, our results highlight the potential for postnatal treatment of prenatal inflammatory stressors. PMID:22982341

  13. ARTD1 regulates osteoclastogenesis and bone homeostasis by dampening NF-κB-dependent transcription of IL-1β

    PubMed Central

    Robaszkiewicz, Agnieszka; Qu, Chao; Wisnik, Ewelina; Ploszaj, Tomasz; Mirsaidi, Ali; Kunze, Friedrich A.; Richards, Peter J.; Cinelli, Paolo; Mbalaviele, Gabriel; Hottiger, Michael O.

    2016-01-01

    While ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) and its enzymatic activity have been shown to be important for reprogramming and differentiation of cells, such as during adipogenesis, their role and mechanism in regulating osteoclastogenesis and bone homeostasis are largely unknown. Here, in cell culture-based RANKL-induced osteoclastogenesis models, we show that silencing of ARTD1 or inhibition of its enzymatic activity enhances osteoclast differentiation and function. As a consequence of ARTD1 silencing or inhibition, the recruitment of p65/RelA to the IL-1β promoter, which is associated with transcriptionally active histone marks, IL-1β expression and inflammasome-dependent secretion of IL-1β are enhanced. This subsequently promotes sustained induction of the transcription factor Nfatc1/A and osteoclastogenesis in an autocrine manner via the IL-1 receptor. In vivo, Artd1-deficient mice display significantly decreased bone mass as a consequence of increased osteoclast differentiation. Accordingly, the expression of osteoclast markers is enhanced in mutant compared to wild-type mice. Together, these results indicate that ARTD1 controls osteoclast development and bone remodelling via its enzymatic activity by modulating the epigenetic marks surrounding the IL-1β promoter and expression of IL-1β and subsequently also Nfatc1/A. PMID:26883084

  14. A novel STAT-like factor mediates lipopolysaccharide, interleukin 1 (IL-1), and IL-6 signaling and recognizes a gamma interferon activation site-like element in the IL1B gene.

    PubMed Central

    Tsukada, J; Waterman, W R; Koyama, Y; Webb, A C; Auron, P E

    1996-01-01

    Binding of many cytokines to their cognate receptors immediately activates Jak tyrosine kinases and their substrates, STAT (signal transducers and activators of transcription) DNA-binding proteins. The DNA binding targets of STATs are sequence elements related to the archetypal gamma interferon activation site, GAS. However, association of interleukin 1 (IL-1) with Jak-STAT signaling has remained unresolved. We now report an element termed LILRE (lipopolysaccharide [LPS] and IL-1-responsive element) in the human prointerleukin 1beta gene (IL1B) which can be immediately induced by either lipopolysaccharide (LPS) or IL-1 protein to bind a tyrosine-phosphorylated protein. This LPS- and IL-1-induced factor (LIL factor) is recognized by an antibody raised against the N terminus of Stat1, but not by those specific for either the C terminus of Stat1 or any other GAS-binding STAT. Phosphotyrosine (P-Tyr) specifically inhibits formation of the LIL factor-DNA complex, suggesting the importance of P-Tyr for the DNA-binding activity, as has been found for all STAT dimers. Analysis of DNA-binding specificity demonstrates that the LIL factor possesses a novel GAS-like binding activity that contrasts with those of other STATs in a requirement for a G residue at position 8 (TTCCTGAGA). Further investigation has revealed that IL-6, but neither IL-4 nor gamma interferon, activates the LIL factor. Thus, the existence of such a STAT-like factor (LIL-Stat) relates the LPS and IL-1 signaling pathway to other cytokine receptor signaling pathways via the activation of STATs. Moreover, the unique DNA-binding specificity and antigenicity of this factor suggest that LPS, IL-1, and IL-6 may use a common signaling pathway. PMID:8628285

  15. TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures.

    PubMed

    Tarantino, Nadine; Tinevez, Jean-Yves; Crowell, Elizabeth Faris; Boisson, Bertrand; Henriques, Ricardo; Mhlanga, Musa; Agou, Fabrice; Israël, Alain; Laplantine, Emmanuel

    2014-01-20

    Nuclear factor κB (NF-κB) essential modulator (NEMO), a regulatory component of the IκB kinase (IKK) complex, controls NF-κB activation through its interaction with ubiquitin chains. We show here that stimulation with interleukin-1 (IL-1) and TNF induces a rapid and transient recruitment of NEMO into punctate structures that are anchored at the cell periphery. These structures are enriched in activated IKK kinases and ubiquitinated NEMO molecules, which suggests that they serve as organizing centers for the activation of NF-κB. These NEMO-containing structures colocalize with activated TNF receptors but not with activated IL-1 receptors. We investigated the involvement of nondegradative ubiquitination in the formation of these structures, using cells deficient in K63 ubiquitin chains or linear ubiquitin chain assembly complex (LUBAC)-mediated linear ubiquitination. Our results indicate that, unlike TNF, IL-1 requires K63-linked and linear ubiquitin chains to recruit NEMO into higher-order complexes. Thus, different mechanisms are involved in the recruitment of NEMO into supramolecular complexes, which appear to be essential for NF-κB activation. PMID:24446482

  16. Comparison of the metabolic effects of GIP receptor antagonism and PYY(3-36) receptor activation in high fat fed mice.

    PubMed

    Irwin, N; Hunter, K; Flatt, P R

    2007-11-01

    Glucose-dependent insulinotropic polypeptide (GIP) and peptide YY (PYY) are secreted from the intestinal K- and L-cells, respectively, following a meal. Both peptides are believed to play a key role in glucose homeostasis and energy expenditure. This study investigated the effects of daily administration of the stable and specific GIP-R antagonist, (Pro(3))GIP (25 nmol/kg) and the endogenous truncated form of PYY, PYY(3-36) (50 nmol/kg), in mice fed with a high fat diet. Daily i.p. injection of (Pro(3))GIP, PYY(3-36) or combined peptide administration over 24 days significantly (P<0.05-0.01) decreased body weight compared with saline-treated controls without change in food intake. Plasma glucose levels and glucose tolerance were significantly (P<0.05) lowered by (Pro(3))GIP treatment alone, and in combination with PYY(3-36). These changes were accompanied by a slight improvement of insulin sensitivity in all of the treatment groups. (Pro(3))GIP treatment significantly reduced plasma corticosterone (P<0.05), while combined administration with PYY(3-36) significantly lowered serum glucagon (P<0.05). No appreciable changes were observed in either circulating or glucose-stimulated insulin secretion in all treatment groups. (Pro(3))GIP-treated mice had significantly (P<0.01) lowered fasting glucose levels and an improved (P<0.05) glycemic response to feeding. These comparative data indicate that chemical ablation of GIP receptor action using (Pro(3))GIP provides an especially effective means of countering obesity and related abnormalities induced by consumption of high fat energy rich diet. PMID:17884253

  17. From CRP to IL-6 to IL-1: Moving Upstream To Identify Novel Targets for Atheroprotection

    PubMed Central

    Ridker, Paul M

    2016-01-01

    Plasma levels of the inflammatory biomarker high sensitivity C-reactive protein (hsCRP) predict vascular risk with an effect estimate as large as that of total or HDL cholesterol. Further, randomized trial data addressing hsCRP have been central to understanding the anti-inflammatory effects of statin therapy and have consistently demonstrated on-treatment hsCRP levels to be as powerful a predictor of residual cardiovascular risk as on-treatment levels of LDL cholesterol. Yet, while hsCRP is clinically useful as a biomarker for risk prediction, most mechanistic studies suggest that CRP itself is unlikely to be a target for intervention. Moving upstream in the inflammatory cascade from CRP to IL-6 to IL-1 provides novel therapeutic opportunities for atheroprotection that focus on the central IL-6 signaling system and ultimately on inhibition of the IL-1β producing NLRP3 inflammasome. Cholesterol crystals, neutrophil extracellular traps (NETs), atheroprone flow, and local tissue hypoxia activate the NLRP3 inflammasome. As such, a unifying concept of hsCRP as a downstream surrogate biomarker upstream IL-1β activity has emerged. From a therapeutic perspective, small ischemia studies show reductions in acute phase hsCRP production with the IL-1 receptor antagonist anakinra and the IL-6 receptor blocker tocilizumab. A phase IIb study conducted among diabetic patients at high vascular risk indicates that canakinumab, a human monoclonal antibody that targets IL-1β, markedly reduces plasma levels of IL-6, hsCRP, and fibrinogen with no change in atherogenic lipids. Canakinumab in now being tested as a method to prevent recurrent cardiovascular events in a randomized trial of 10,065 post-myocardial infarction patients with elevated hsCRP that is fully enrolled and due to complete in 2017. Clinical trials employing alternative anti-inflammatory agents active against the CRP/IL-6/IL-1 axis including low dose methotrexate and colchicine are being explored. If successful

  18. Phenotypic and genotypic association of epithelial IL1RL1 to human TH2-like asthma

    PubMed Central

    Traister, Russell S.; Uvalle, Crystal E.; Hawkins, Gregory A.; Meyers, Deborah A.; Bleecker, Eugene R.; Wenzel, Sally E.

    2014-01-01

    Background Severe asthma remains poorly characterized, although it likely consists of at least 1 phenotype with features of TH2-like inflammation. IL1RL1, encoding both the IL-33 receptor, ST2L, and decoy receptor, sST2, has been genetically associated with asthma, though the mechanism for susceptibility remains unknown. Objective Given previous data supporting a role for IL1RL1 in TH2 inflammation, we hypothesized that ST2L expression might be increased in TH2-like asthma and that expression levels would be associated with single nucleotide polymorphisms in IL1RL1, possibly explaining its genetic relationship with asthma. We also sought to evaluate the regulation of ST2L and sST2 in vitro. Methods Endobronchial brushings and biopsies were obtained and expression of ST2L compared by severity levels, as well as by TH2-like biomarkers. Subjects were genotyped and the relationship of dichotomous expression of ST2L and sST2 to single nucleotide polymorphisms in IL1RL1 were determined. Epithelial cells were grown in air-liquid interface culture, and ST2L and sST2 responses to IFN-γ and IL-13 were evaluated. Results ST2L expression was increased in severe asthma (P = .02) and associated with multiple indicators of TH2-like inflammation, including blood eosinophils (P = .001), exhaled nitric oxide (P = .003), and epithelial CLCA1 (P < .0001) and eotaxin-3 (P = .001) mRNA expression. Multiple single nucleotide polymorphisms in IL1RL1 were found in relation to dichotomous expression of both ST2L and sST2. sST2 expression was associated with IFN-γ expression in bronchoalveolar lavage, while inducing its expression in vitro in primary human epithelial cells. Conclusion Both pathologic and genetic approaches support a role for IL1RL1 in severe asthma, as well as TH2-lke asthma, suggesting that targeting this pathway may have therapeutic benefits. PMID:25091434

  19. Inflammasome/IL-1β Responses to Streptococcal Pathogens

    PubMed Central

    LaRock, Christopher N.; Nizet, Victor

    2015-01-01

    Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the earliest and most important alarms to infection. These pathways are responsive to the virulence factors that pathogens use to subvert immune processes, and thus are typically activated only by microbes with potential to cause severe disease. Among the most serious human infections are those caused by the pathogenic streptococci, in part because these species numerous strategies for immune evasion. Since the virulence factor armament of each pathogen is unique, the role of IL-1β and the pathways leading to its activation varies for each infection. This review summarizes the role of IL-1β during infections caused by streptococcal pathogens, with emphasis on emergent mechanisms and concepts countering paradigms determined for other organisms. PMID:26500655

  20. Modeling IL-1 induced degradation of articular cartilage.

    PubMed

    Kar, Saptarshi; Smith, David W; Gardiner, Bruce S; Li, Yang; Wang, Yang; Grodzinsky, Alan J

    2016-03-15

    In this study, we develop a computational model to simulate the in vitro biochemical degradation of articular cartilage explants sourced from the femoropatellar grooves of bovine calves. Cartilage explants were incubated in culture medium with and without the inflammatory cytokine IL-1α. The spatio-temporal evolution of the cartilage explant's extracellular matrix components is modelled. Key variables in the model include chondrocytes, aggrecan, collagen, aggrecanase, collagenase and IL-1α. The model is first calibrated for aggrecan homeostasis of cartilage in vivo, then for data on (explant) controls, and finally for data on the IL-1α driven proteolysis of aggrecan and collagen over a 4-week period. The model was found to fit the experimental data best when: (i) chondrocytes continue to synthesize aggrecan during the cytokine challenge, (ii) a one to two day delay is introduced between the addition of IL-1α to the culture medium and subsequent aggrecanolysis, (iii) collagen degradation does not commence until the total concentration of aggrecan (i.e. both intact and degraded aggrecan) at any specific location within the explant becomes ≤ 1.5 mg/ml and (iv) degraded aggrecan formed due to the IL-1α induced proteolysis of intact aggrecan protects the collagen network while collagen degrades in a two-step process which, together, significantly modulate the collagen network degradation. Under simulated in vivo conditions, the model predicts increased aggrecan turnover rates in the presence of synovial IL-1α, consistent with experimental observations. Such models may help to infer the course of events in vivo following traumatic joint injury, and may also prove useful in quantitatively evaluating the efficiency of various therapeutic molecules that could be employed to avoid or modify the course of cartilage disease states. PMID:26874194

  1. Brain-borne IL-1 adjusts glucoregulation and provides fuel support to astrocytes and neurons in an autocrine/paracrine manner.

    PubMed

    Del Rey, A; Verdenhalven, M; Lörwald, A C; Meyer, C; Hernangómez, M; Randolf, A; Roggero, E; König, A M; Heverhagen, J T; Guaza, C; Besedovsky, H O

    2016-09-01

    It is still controversial which mediators regulate energy provision to activated neural cells, as insulin does in peripheral tissues. Interleukin-1β (IL-1β) may mediate this effect as it can affect glucoregulation, it is overexpressed in the 'healthy' brain during increased neuronal activity, and it supports high-energy demanding processes such as long-term potentiation, memory and learning. Furthermore, the absence of sustained neuroendocrine and behavioral counterregulation suggests that brain glucose-sensing neurons do not perceive IL-1β-induced hypoglycemia. Here, we show that IL-1β adjusts glucoregulation by inducing its own production in the brain, and that IL-1β-induced hypoglycemia is myeloid differentiation primary response 88 protein (MyD88)-dependent and only partially counteracted by Kir6.2-mediated sensing signaling. Furthermore, we found that, opposite to insulin, IL-1β stimulates brain metabolism. This effect is absent in MyD88-deficient mice, which have neurobehavioral alterations associated to disorders in glucose homeostasis, as during several psychiatric diseases. IL-1β effects on brain metabolism are most likely maintained by IL-1β auto-induction and may reflect a compensatory increase in fuel supply to neural cells. We explore this possibility by directly blocking IL-1 receptors in neural cells. The results showed that, in an activity-dependent and paracrine/autocrine manner, endogenous IL-1 produced by neurons and astrocytes facilitates glucose uptake by these cells. This effect is exacerbated following glutamatergic stimulation and can be passively transferred between cell types. We conclude that the capacity of IL-1β to provide fuel to neural cells underlies its physiological effects on glucoregulation, synaptic plasticity, learning and memory. However, deregulation of IL-1β production could contribute to the alterations in brain glucose metabolism that are detected in several neurologic and psychiatric diseases. PMID:26643538

  2. IL-1R/TLR2 through MyD88 Divergently Modulates Osteoclastogenesis through Regulation of Nuclear Factor of Activated T Cells c1 (NFATc1) and B Lymphocyte-induced Maturation Protein-1 (Blimp1).

    PubMed

    Chen, Zhihong; Su, Lingkai; Xu, Qingan; Katz, Jenny; Michalek, Suzanne M; Fan, Mingwen; Feng, Xu; Zhang, Ping

    2015-12-11

    Toll-like receptors (TLR) and the receptor for interleukin-1 (IL-1R) signaling play an important role in bacteria-mediated bone loss diseases including periodontitis, rheumatoid arthritis, and osteomyelitis. Recent studies have shown that TLR ligands inhibit the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation from un-committed osteoclast precursors, whereas IL-1 potentiates RANKL-induced osteoclast formation. However, IL-1R and TLR belong to the same IL-1R/TLR superfamily, and activate similar intracellular signaling pathways. Here, we investigate the molecular mechanisms underlying the distinct effects of IL-1 and Porphyromonas gingivalis lipopolysaccharide (LPS-PG) on RANKL-induced osteoclast formation. Our results show that LPS-PG and IL-1 differentially regulate RANKL-induced activation of osteoclast genes encoding Car2, Ctsk, MMP9, and TRAP, as well as expression of NFATc1, a master transcription factor of osteoclastogenesis. Regulation of osteoclast genes and NFATc1 by LPS-PG and IL-1 is dependent on MyD88, an important signaling adaptor for both TLR and IL-1R family members. Furthermore, LPS-PG and IL-1 differentially regulate RANKL-costimulatory receptor OSCAR (osteoclast-associated receptor) expression and Ca(2+) oscillations induced by RANKL. Moreover, LPS-PG completely abrogates RANKL-induced gene expression of B lymphocyte-induced maturation protein-1 (Blimp1), a global transcriptional repressor of anti-osteoclastogenic genes encoding Bcl6, IRF8, and MafB. However, IL-1 enhances RANKL-induced blimp1 gene expression but suppresses the gene expression of bcl6, irf8, and mafb. Our study reveals the involvement of multiple signaling molecules in the differential regulation of RANKL-induced osteoclastogenesis by TLR2 and IL-1 signaling. Understanding the signaling cross-talk among TLR, IL-1R, and RANK is critical for identifying therapeutic strategies to control bacteria-mediated bone loss. PMID:26483549

  3. Existence of both IL-1 alpha and beta in normal human amniotic fluid: unique high molecular weight form of IL-1 beta.

    PubMed Central

    Tamatani, T; Tsunoda, H; Iwasaki, H; Kaneko, M; Hashimoto, T; Onozaki, K

    1988-01-01

    We investigated the possible existence of IL-1 in human amniotic fluid (AF). Since AF from most full-term deliveries appeared to contain an inhibitor(s) for thymocyte proliferation, AFs were fractionated by gel filtration prior to IL-1 assay. IL-1 activities eluted in two peaks at positions of 90,000-60,000 MW and 20,000-15,000 MW. Growth inhibitory activity eluted at the position of 70,000-50,000 MW, and its effect appeared to be non-specific because these fractions inhibited the growth of various cell lines. Using isoelectric focusing (IEF) techniques, pI values of 6.8-7.3 for the higher MW IL-1 as well as 4.9-5.5 and 6.7-7.0 for the lower MW IL-1 were obtained. Antibody against human IL-1 alpha partially neutralized the activity of the lower MW IL-1, though it exhibited little effect on the higher MW IL-1. In contrast, antibody against human IL-1 beta almost completely neutralized the activity of the higher MW IL-1 and partially neutralized the activity of the lower MW IL-1. These results suggest that most of the higher MW IL-1 is beta-type, and the lower MW IL-1 is a mixture of alpha and beta-types. IL-1 beta appeared to exist as a complex (combined with AF components) or as an aggregate of the lower MW IL-1 forms. These findings indicate that both IL-1 alpha and IL-1 beta are present in normal human AF from full-term deliveries, though IL-1 beta exists as a higher MW form aggregated with an unknown molecule. PMID:3264804

  4. Mutual amplification of HNF4α and IL-1R1 composes an inflammatory circuit in Helicobacter pylori associated gastric carcinogenesis

    PubMed Central

    Ma, Lin; Zeng, Jiping; Guo, Qing; Liang, Xiuming; Shen, Li; Li, Shuyan; Sun, Yundong; Li, Wenjuan; Liu, Shili; Yu, Han; Chen, Chunyan; Jia, Jihui

    2016-01-01

    Helicobacter pylori (Hp) is an environmental inducer of gastritis and gastric cancer (GC). The immune response to Hp and the associated changes in somatic gene expression are key determinants governing the transition from gastritis to GC. We show that hepatocyte nuclear factor 4α (HNF4α) is upregulated by Hp infection via NF-κB signaling and that its protein and mRNA levels are elevated in GC. HNF4α in turn stimulates expression of interleukin-1 receptor 1(IL-1R1), which amplifies the inflammatory response evoked by its ligand IL-1β. IL-1β/IL-1R1 activates NF-κB signaling, thereby increasing HNF4α expression and forming a feedback loop that sustains activation of the NF-κB pathway and drives the inflammation towards GC. Examination of clinical samples revealed that HNF4α and IL-1R1 levels increase with increasing severity of Hp-induced gastritis and reach their highest levels in GC. Co-expression of HNF4α and IL-1R1 was a crucial indicator of malignant transformation from gastritis to GC, and was associated with a poorer prognosis in GC patients. Disruption of the HNF4α/IL-1R1/IL-1β/NF-κB circuit during Hp infection maybe an effective means of preventing the associated GC. PMID:26870992

  5. Comparison of non-crystalline silica nanoparticles in IL-1β release from macrophages

    PubMed Central

    2012-01-01

    Background Respirable crystalline silica (silicon dioxide; SiO2, quartz) particles are known to induce chronic inflammation and lung disease upon long-term inhalation, whereas non-crystalline (amorphous) SiO2 particles in the submicrometre range are regarded as less harmful. Several reports have demonstrated that crystalline, but also non-crystalline silica particles induce IL-1β release from macrophages via the NALP3-inflammasome complex (caspase-1, ASC and NALP3) in the presence of lipopolysaccharide (LPS) from bacteria. Our aim was to study the potential of different non-crystalline SiO2 particles from the nano- to submicro-sized range to activate IL-1β responses in LPS-primed RAW264.7 macrophages and primary rat lung macrophages. The role of the NALP3-inflammasome and up-stream mechanisms was further explored in RAW264.7 cells. Results In the present study, we have shown that 6 h exposure to non-crystalline SiO2 particles in nano- (SiNPs, 5–20 nm, 50 nm) and submicro-sizes induced strong IL-1β responses in LPS-primed mouse macrophages (RAW264.7) and primary rat lung macrophages. The primary lung macrophages were more sensitive to Si-exposure than the RAW-macrophages, and responded more strongly. In the lung macrophages, crystalline silica (MinUsil 5) induced IL-1β release more potently than the non-crystalline Si50 and Si500, when adjusted to surface area. This difference was much less pronounced versus fumed SiNPs. The caspase-1 inhibitor zYVAD and RNA silencing of the NALP3 receptor reduced the particle-induced IL-1β release in the RAW264.7 macrophages. Furthermore, inhibitors of phagocytosis, endosomal acidification, and cathepsin B activity reduced the IL-1β responses to the different particles to a similar extent. Conclusions In conclusion, non-crystalline silica particles in the nano- and submicro-size ranges seemed to induce IL-1β release from LPS-primed RAW264.7 macrophages via similar mechanisms as crystalline silica, involving particle

  6. Eccrine sweat contains IL-1α, IL-1β and IL-31 and activates epidermal keratinocytes as a danger signal.

    PubMed

    Dai, Xiuju; Okazaki, Hidenori; Hanakawa, Yasushi; Murakami, Masamoto; Tohyama, Mikiko; Shirakata, Yuji; Sayama, Koji

    2013-01-01

    Eccrine sweat is secreted onto the skin's surface and is not harmful to normal skin, but can exacerbate eczematous lesions in atopic dermatitis. Although eccrine sweat contains a number of minerals, proteins, and proteolytic enzymes, how it causes skin inflammation is not clear. We hypothesized that it stimulates keratinocytes directly, as a danger signal. Eccrine sweat was collected from the arms of healthy volunteers after exercise, and levels of proinflammatory cytokines in the sweat were quantified by ELISA. We detected the presence of IL-1α, IL-1β, and high levels of IL-31 in sweat samples. To investigate whether sweat activates keratinocytes, normal human keratinocytes were stimulated with concentrated sweat. Western blot analysis demonstrated the activation of NF-κB, ERK, and JNK signaling in sweat-stimulated keratinocytes. Real-time PCR using total RNA and ELISA analysis of supernatants showed the upregulation of IL-8 and IL-1β by sweat. Furthermore, pretreatment with IL-1R antagonist blocked sweat-stimulated cytokine production and signal activation, indicating that bioactive IL-1 is a major factor in the activation of keratinocytes by sweat. Moreover, IL-31 seems to be another sweat stimulator that activates keratinocytes to produce inflammatory cytokine, CCL2. Sweat is secreted onto the skin's surface and does not come into contact with keratinocytes in normal skin. However, in skin with a defective cutaneous barrier, such as atopic dermatitis-affected skin, sweat cytokines can directly act on epidermal keratinocytes, resulting in their activation. In conclusion, eccrine sweat contains proinflammatory cytokines, IL-1 and IL-31, and activates epidermal keratinocytes as a danger signal. PMID:23874436

  7. Lipopolysaccharide-Mediated Induction of Concurrent IL-1β and IL-23 Expression in THP-1 Cells Exhibits Differential Requirements for Caspase-1 and Cathepsin B Activity.

    PubMed

    Wynick, Christopher; Petes, Carlene; Tigert, Alexander; Gee, Katrina

    2016-08-01

    The inflammasome is a multimeric protein complex required for interleukin (IL)-1β production. Upon lipopolysaccharide (LPS) triggering of toll-like receptor (TLR)-4 and subsequent ATP signaling, the NOD-like receptor containing-pyrin domain 3 (NLRP3) inflammasome is activated to cleave pro-caspase-1 into caspase-1, allowing the secretion of IL-1β. IL-1β is known to function with IL-23 in the regulation of IL-17-producing CD4(+) T cells, Th17 cells, in adaptive immunity. Recently, studies have shown that IL-1β and IL-23 together activate IL-17-producing innate lymphoid cells, demonstrating that the pair may exhibit additional effects on cell differentiation. Using an in vitro model of bacterial infection, LPS treatment of human monocytic cells, we investigated the molecular mechanisms involved in the co-expression of IL-1β and IL-23. We found that IL-1β is partially required for optimal LPS-induced IL-23 production. We also found that IL-23 production was partially dependent on ATP signaling via the P2X7 receptor, whereas IL-1β production required this signaling. Furthermore, we identified a novel role for cathepsin B activity in IL-23 production. Taken together, this study identifies differential requirements for the co-expression of IL-1β and IL-23. Due to their similar roles in Th17 differentiation, characterization of the regulatory mechanisms for LPS-induced IL-1β and IL-23 may reveal novel information into the pathology of the inflammatory response particularly during bacterial infection. PMID:27096899

  8. Association of −31T>C and −511 C>T polymorphisms in the interleukin 1 beta (IL1B) promoter in Korean keratoconus patients

    PubMed Central

    Kim, So-Hee; Mok, Jee-Won; Kim, Hyun-Seok

    2008-01-01

    Purpose To investigate the genetic association between unrelated Korean keratoconus patients and interleukin 1 alpha (IL1A), interleukin 1 beta (IL1B), and IL1 receptor antagonist (IL1RN) gene polymorphisms. Methods We investigated the association between IL1A (rs1800587, rs2071376, and rs17561), IL1B (rs1143627, rs16944, rs1143634, and rs1143633), and IL1RN (rs419598, rs423904, rs424078, and rs315952, variable number tandem repeat [VNTR]) polymorphisms in 100 unrelated Korean keratoconus patients. One hundred control individuals without any corneal disease were selected from the general population. Polymerase chain reaction (PCR) – restriction fragment length polymorphism (RFLP) analysis and direct sequencing were used to screen for genetic variations in the IL1 gene cluster. Haplotypes for the IL1 gene cluster were constructed using Haploview version 4.0. Results We analyzed a total of 12 polymorphic sites in the IL1 gene cluster. Among them, the −511 (rs16944) and −31 (rs1143627) positions in the promoter region of IL1B were significantly different between patient and control groups. The C allele of rs16944 (−511C>T, p=0.022, odds ratio of risk [OR]=1.46, 95% confidence intervals [CI] 0.94<2.27) and the T allele of rs1143627 (−31T>C, p=0.025, OR=1.43, 95% CI 0.92<2.22) were associated with a significantly increased risk of keratoconus in Korean patients. Linkage of the two alleles, −31*C and −511*T, was associated with an increased risk for keratoconus with OR=2.38 (p=0.012, 95% CI=1.116–5.046). The *C/*A genotype of rs2071376 in IL1A intron 6 was significantly different between the keratoconus patients and control subjects (p=0.034, OR=0.59, 95% CI 0.32<1.11). Other polymorphisms did not show an association with keratoconus risk. Conclusions This is the first report of IL1 gene cluster mutation screening in Korean keratoconus patients. Significant differences in allelic frequency of IL1B between keratoconus patients and the control group suggest

  9. IL-1α released from damaged epithelial cells is sufficient and essential to trigger inflammatory responses in human lung fibroblasts

    PubMed Central

    Suwara, M I; Green, N J; Borthwick, L A; Mann, J; Mayer-Barber, K D; Barron, L; Corris, P A; Farrow, S N; Wynn, T A; Fisher, A J; Mann, D A

    2014-01-01

    Activation of the innate immune system plays a key role in exacerbations of chronic lung disease, yet the potential role of lung fibroblasts in innate immunity and the identity of epithelial danger signals (alarmins) that may contribute to this process are unclear. The objective of the study was to identify lung epithelial-derived alarmins released during endoplasmic reticulum stress (ER stress) and oxidative stress and evaluate their potential to induce innate immune responses in lung fibroblasts. We found that treatment of primary human lung fibroblasts (PHLFs) with conditioned media from damaged lung epithelial cells significantly upregulated interleukin IL-6, IL-8, monocyte chemotactic protein-1, and granulocyte macrophage colony-stimulating factor expression (P<0.05). This effect was reduced with anti-IL-1α or IL-1Ra but not anti-IL-1β antibody. Costimulation with a Toll-like receptor 3 ligand, polyinosinic–polycytidylic acid (poly I:C), significantly accentuated the IL-1α-induced inflammatory phenotype in PHLFs, and this effect was blocked with inhibitor of nuclear factor kappa-B kinase subunit beta and TGFβ-activated kinase-1 inhibitors. Finally, Il1r1−/− and Il1a−/− mice exhibit reduced bronchoalveolar lavage (BAL) neutrophilia and collagen deposition in response to bleomycin treatment. We conclude that IL-1α plays a pivotal role in triggering proinflammatory responses in fibroblasts and this process is accentuated in the presence of double-stranded RNA. This mechanism may be important in the repeated cycles of injury and exacerbation in chronic lung disease. PMID:24172847

  10. The role IL-1 in tumor-mediated angiogenesis

    PubMed Central

    Voronov, Elena; Carmi, Yaron; Apte, Ron N.

    2014-01-01

    Tumor angiogenesis is one of the hallmarks of tumor progression and is essential for invasiveness and metastasis. Myeloid inflammatory cells, such as immature myeloid precursor cells, also termed myeloid-derived suppressor cells (MDSCs), neutrophils, and monocytes/macrophages, are recruited to the tumor microenvironment by factors released by the malignant cells that are subsequently “educated” in situ to acquire a pro-invasive, pro-angiogenic, and immunosuppressive phenotype. The proximity of myeloid cells to endothelial cells (ECs) lining blood vessels suggests that they play an important role in the angiogenic response, possibly by secreting a network of cytokines/chemokines and inflammatory mediators, as well as via activation of ECs for proliferation and secretion of pro-angiogenic factors. Interleukin-1 (IL-1) is an “alarm,” upstream, pro-inflammatory cytokine that is generated primarily by myeloid cells. IL-1 initiates and propagates inflammation, mainly by inducing a local cytokine network and enhancing inflammatory cell infiltration to affected sites and by augmenting adhesion molecule expression on ECs and leukocytes. Pro-inflammatory mediators were recently shown to play an important role in tumor-mediated angiogenesis and blocking their function may suppress tumor progression. In this review, we summarize the interactions between IL-1 and other pro-angiogenic factors during normal and pathological conditions. In addition, the feasibility of IL-1 neutralization approaches for anti-cancer therapy is discussed. PMID:24734023

  11. Differential expression of immediate early genes Zif268 and c-Fos in the hippocampus and prefrontal cortex following spatial learning and glutamate receptor antagonism.

    PubMed

    Farina, Francesca R; Commins, Sean

    2016-07-01

    The objective of this study was to examine the effects of NMDAR and AMPAR antagonism on the expression of Zif268 and c-Fos in the hippocampus and medial prefrontal cortex during spatial memory encoding in rats trained in the Morris water maze. NMDAR inhibition impaired navigation and significantly attenuated expression of Zif268, but not c-Fos, in area CA1. AMPAR channel blockade had little effect on learning or IEG expression. Overall, Zif268 and c-Fos displayed markedly different patterns of hippocampal and prefrontal expression, with Zif268 being more closely linked to spatial learning. PMID:27071329

  12. 5TNF-α and IL-1β neutralization ameliorates angiotensin II-induced cardiac damage in male mice.

    PubMed

    Wang, Yueli; Li, Yulin; Wu, Yina; Jia, Lixin; Wang, Jijing; Xie, Bo; Hui, Mizhou; Du, Jie

    2014-07-01

    Inflammation is a key event in hypertensive organ damage, and TNF-α and IL-1β are elevated in hypertension. In this study, we evaluated the effects of TNF-α and IL-1β elevation on hypertensive cardiac damage by treatment with a bifunctional inflammatory inhibitor, TNF receptor 2-fragment crystalization-IL-1 receptor antagonist (TFI), which can neutralize these 2 cytokines simultaneously. A mouse hypertension model of angiotensin II (Ang II) infusion (1500 ng/kg·min for 7 d) was induced in wild-type mice. TNF-α and IL-1β were inhibited by TFI administration (5 mg/kg, every other day), the effects of inhibition on cardiac damage were examined, and its mechanism on inflammatory infiltration was further studied in vivo and in vitro. Ang II infusion induced cardiac injury, including increased macrophage infiltration, expression of inflammatory cytokines (IL-12, IL-6, etc), and cardiac fibrosis, such as elevated α-smooth muscle actin, collagen I, and TGF-β expression. Importantly, the Ang II-induced cardiac injury was suppressed by TFI treatment. Moreover, TFI reduced the expression of adhesion molecules (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) and monocyte chemotactic protein-1 expression in Ang II-treated hearts. Additionally, blockade of TNF-α and IL-1β by TFI reduced monocyte adherence to endothelia cell and macrophage migration. This study demonstrates that blocking TNF-α and IL-1β by TFI prevents cardiac damage in response to Ang II, and targeting these 2 cytokines simultaneously might be a novel tool to treat hypertensive heart injury. PMID:24877626

  13. Relevance of endoglin, IL-1α, IL-1β and anti-ovarian antibodies in females with multiple sclerosis.

    PubMed

    Thöne, Jan; Kleiter, Ingo; Stahl, Anna; Ellrichmann, Gisa; Gold, Ralf; Hellwig, Kerstin

    2016-03-15

    Few studies support the concept of reduced fertility in females with multiple sclerosis (MS). Recently we reported on reduced serum levels of Anti-Müllerian Hormone (AMH) in reproductive-age females with MS, suggestive of reduced ovarian reserve. The cause for this observation is not evident and remains speculative. The aim of the study is to examine possible immunological mechanisms interfering with fertility, as well as ovarian reserve that might affect the reproductive potential in women with MS. ELISA experiments were done to detect anti-ovarian antibodies (AOA), endoglin and interleukin (IL)-1α/-1β in sera of 85 MS females, including 15 women with known low AMH level as a marker of ovarian reserve, compared to 63 healthy controls. Groups did not differ with respect to age, smoking habits, BMI, and use of oral contraceptives. MS females showed significantly increased endoglin values compared to healthy controls. Remarkable, the highest endoglin values were found in subjects with low AMH. AOA were neither detectable in MS patients nor control subjects. IL-1α and IL-1β levels did not differ between groups. Our data established no relevance of IL-1α/-1β or AOA in ovarian insufficiency/dysfunction but suggests the involvement of endoglin in RRMS. PMID:26944156

  14. Withaferin A Inhibits Helicobacter pylori-induced Production of IL-1β in Dendritic Cells by Regulating NF-κB and NLRP3 Inflammasome Activation.

    PubMed

    Kim, Jae-Eun; Lee, Jun-Young; Kang, Min-Jung; Jeong, Yu-Jin; Choi, Jin-A; Oh, Sang-Muk; Lee, Kyung-Bok; Park, Jong-Hwan

    2015-12-01

    Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, and gastric cancer. There is evidence that IL-1β is associated with the development of gastric cancer. Therefore, downregulation of H. pylori-mediated IL-1β production may be a way to prevent gastric cancer. Withaferin A (WA), a withanolide purified from Withania somnifera, is known to exert anti-inflammatory and anti-tumor effects. In the present study, we explored the inhibitory activity of WA on H. pylori-induced production of IL-1β in murine bone marrow-derived dendritic cells (BMDCs) and the underlying cellular mechanism. Co-treatment with WA decreased IL-1β production by H. pylori in BMDCs in a dose-dependent manner. H. pylori-induced gene expression of IL-1β and NLRP3 (NOD-like receptor family, pyrin domain containing 3) were also suppressed by WA treatment. Moreover, IκB-α phosphorylation by H. pylori infection was suppressed by WA in BMDCs. Western blot analysis revealed that H. pylori induced cleavage of caspase-1 and IL-1β, as well as increased procaspase-1 and pro IL-1β protein levels, and that both were suppressed by co-treatment with WA. Finally, we determined whether WA can directly inhibit ac tivation of the NLRP3 inflammasome. NLRP3 activators induced IL-1β secretion in LPS-primed macrophages, which was inhibited by WA in a dose-dependent manner, whereas IL-6 production was not affected by WA. Moreover, cleavage of IL-1β and caspase-1 by NLRP3 activators was also dose-dependently inhibited by WA. These findings suggest that WA can inhibit IL-1β production by H. pylori in dendritic cells and can be used as a new preventive and therapeutic agent for gastric cancer. PMID:26770181

  15. Withaferin A Inhibits Helicobacter pylori-induced Production of IL-1β in Dendritic Cells by Regulating NF-κB and NLRP3 Inflammasome Activation

    PubMed Central

    Kim, Jae-Eun; Lee, Jun-Young; Kang, Min-Jung; Jeong, Yu-Jin; Choi, Jin-A; Oh, Sang-Muk

    2015-01-01

    Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, and gastric cancer. There is evidence that IL-1β is associated with the development of gastric cancer. Therefore, downregulation of H. pylori-mediated IL-1β production may be a way to prevent gastric cancer. Withaferin A (WA), a withanolide purified from Withania somnifera, is known to exert anti-inflammatory and anti-tumor effects. In the present study, we explored the inhibitory activity of WA on H. pylori-induced production of IL-1β in murine bone marrow-derived dendritic cells (BMDCs) and the underlying cellular mechanism. Co-treatment with WA decreased IL-1β production by H. pylori in BMDCs in a dose-dependent manner. H. pylori-induced gene expression of IL-1β and NLRP3 (NOD-like receptor family, pyrin domain containing 3) were also suppressed by WA treatment. Moreover, IκB-α phosphorylation by H. pylori infection was suppressed by WA in BMDCs. Western blot analysis revealed that H. pylori induced cleavage of caspase-1 and IL-1β, as well as increased procaspase-1 and pro IL-1β protein levels, and that both were suppressed by co-treatment with WA. Finally, we determined whether WA can directly inhibit ac tivation of the NLRP3 inflammasome. NLRP3 activators induced IL-1β secretion in LPS-primed macrophages, which was inhibited by WA in a dose-dependent manner, whereas IL-6 production was not affected by WA. Moreover, cleavage of IL-1β and caspase-1 by NLRP3 activators was also dose-dependently inhibited by WA. These findings suggest that WA can inhibit IL-1β production by H. pylori in dendritic cells and can be used as a new preventive and therapeutic agent for gastric cancer. PMID:26770181

  16. Involvement of IL-1 genes in the cellular responses to carbon nanotube exposure.

    PubMed

    Arnoldussen, Yke Jildouw; Skogstad, Asbjørn; Skaug, Vidar; Kasem, Mayes; Haugen, Aage; Benker, Nathalie; Weinbruch, Stephan; Apte, Ron N; Zienolddiny, Shanbeh

    2015-05-01

    The interleukin-1 (IL-1) family has been implicated in cellular responses to nanoparticles including carbon nanotubes (CNTs). IL-1α and β are key proinflammatory cytokines important in inflammatory and oxidative stress responses. The aim of this study was to characterize the role of IL-1 in cellular responses of CNTs in cells from IL-1α/β wild type (IL1-WT) mice and cells with reduced inflammatory potential from IL-1α/β deficient (IL1-KO) mice. Two multi-walled CNTs, CNT-1 containing long and thick fibers and CNT-2 containing short and thin fibers, were compared to UICC crocidolite asbestos fibers. Upon CNT exposure toxicity and apoptosis were affected differently in IL1-WT and IL1-KO cells. Upregulation of TNFα and IL-1α mRNA expression in IL1-WT cells was dependent on the type of CNT. On the contrary precursor IL-1α protein was downregulated after 24h. The mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK) was activated in IL1-KO cells and regulated by CNTs, whereas no significant changes of extracellular regulated kinase (ERK) were observed when comparing IL1-WT and IL1-KO cells. In summary, the results presented here indicate that IL-1 contributes to the cellular and molecular effects of CNT exposure and that the type of CNT has an important effect on the cellular response. PMID:25748835

  17. Cutting Edge: A Natural Antisense Transcript, AS-IL1α, Controls Inducible Transcription of the Proinflammatory Cytokine IL-1α.

    PubMed

    Chan, Jennie; Atianand, Maninjay; Jiang, Zhaozhao; Carpenter, Susan; Aiello, Daniel; Elling, Roland; Fitzgerald, Katherine A; Caffrey, Daniel R

    2015-08-15

    Natural antisense transcripts (NATs) are a class of long noncoding RNAs (lncRNAs) that are complementary to other protein-coding genes. Although thousands of NATs are encoded by mammalian genomes, their functions in innate immunity are unknown. In this study, we identified and characterized a novel NAT, AS-IL1α, which is partially complementary to IL-1α. Similar to IL-1α, AS-IL1α is expressed at low levels in resting macrophages and is induced following infection with Listeria monocytogenes or stimulation with TLR ligands (Pam3CSK4, LPS, polyinosinic-polycytidylic acid). Inducible expression of IL-1α mRNA and protein were significantly reduced in macrophages expressing shRNA that target AS-IL1α. AS-IL1α is located in the nucleus and did not alter the stability of IL-1α mRNA. Instead, AS-IL1α was required for the recruitment of RNA polymerase II to the IL-1α promoter. In summary, our studies identify AS-IL1α as an important regulator of IL-1α transcription during the innate immune response. PMID:26179904

  18. Effects of AT1 receptor antagonism on kainate-induced seizures and concomitant changes in hippocampal extracellular noradrenaline, serotonin, and dopamine levels in Wistar-Kyoto and spontaneously hypertensive rats.

    PubMed

    Tchekalarova, Jana; Loyens, Ellen; Smolders, Ilse

    2015-05-01

    In the management of epilepsy, AT1 receptor antagonists have been suggested as an additional treatment strategy. A hyperactive brain angiotensin (Ang) II system and upregulated AT1 receptors are implicated in the cerebrovascular alterations in a genetic form of hypertension. Uncontrolled hypertension could also, in turn, be a risk factor for a seizure threshold decrease and development of epileptogenesis. The present study aimed to assess the effects of the selective AT1 receptor antagonist ZD7155 on kainic acid (KA)-induced status epilepticus (SE) development and accompanying changes in the hippocampal extracellular (EC) neurotransmitter levels of noradrenaline (NAD), serotonin (5-HT), and dopamine (DA) in spontaneously hypertensive rats (SHRs) and their parent strain Wistar-Kyoto (WKY) rats, since monoamines are well-known neurotransmitters involved in mechanisms of both epilepsy and hypertension. Status epilepticus was evoked in freely moving rats by a repetitive intraperitoneal (i.p.) administration of KA in subconvulsant doses. In the treatment group, ZD7155 (5mg/kg i.p.) was coadministered with the first KA injection. Spontaneously hypertensive rats exhibited higher susceptibility to SE than WKY rats, but the AT1 receptor antagonist did not alter the development of SE in SHRs or in WKY rats. In vivo microdialysis demonstrated significant KA-induced increases of the hippocampal NAD and DA levels in SHRs and of NAD, 5-HT, and DA in WKY rats. Although SHRs developed more severe seizures while receiving a lower dose of KA compared to WKY rats, AT1 receptor antagonism completely prevented all KA-induced increases of hippocampal monoamine levels in both rat strains without affecting seizure development per se. These results suggest a lack of direct relationship between KA-induced seizure susceptibility and adaptive changes of hippocampal NAD, 5-HT, and DA levels in the effects of ZD7155 in WKY rats and SHRs. PMID:25922088

  19. Inhibition of TNF-α, IL-1α, and IL-1β by Pretreatment of Human Monocyte-Derived Macrophages with Menaquinone-7 and Cell Activation with TLR Agonists In Vitro.

    PubMed

    Pan, Min-Hsiung; Maresz, Katarzyna; Lee, Pei-Sheng; Wu, Jia-Ching; Ho, Chi-Tang; Popko, Janusz; Mehta, Dilip S; Stohs, Sidney J; Badmaev, Vladimir

    2016-07-01

    Circulatory markers of low-grade inflammation such as tumor necrosis factor-alpha (TNF-α), interleukin-1 alpha (IL-1α), and interleukin-1 beta (IL-1β) positively correlate with endothelial damage, atheroma formation, cardiovascular disease, and aging. The natural vitamin K2-menaquinone-7 (MK-7) added to the cell culture of human monocyte-derived macrophages (hMDMs) at the same time as toll-like receptor (TLR) agonists did not influence the production of TNF-α. When the cells were pretreated up to 6 h with MK-7 before treatment with TLR agonists, MK-7 did not inhibit significantly the production of TNF-α after the TLR activation. However, 30 h pretreatment of hMDMs with at least 10 μM of MK-7 effectively and dose dependently inhibited the proinflammatory function of hMDMs. Pretreatment of hMDMs with 10 μM of MK-7 for 30 h resulted in 20% inhibition of TNF-α production after lipopolysaccharide (LPS) activation (P < .05) and 43% inhibition after macrophage-activating lipopeptide (MALP) activation (P < .001). Pathogen-associated molecular pattern (PMPP) activation was inhibited by 20% with MK-7 pretreatment; however, this inhibition was not statistically significant. The 30 h pretreatment of a THP-1-differentiated monocyte cell line with MK-7 resulted in a dose-dependent downregulation of TNFα, IL-1α, and IL-1β gene expression as evaluated by RNA semiquantitative reverse transcription polymerase chain reaction (RT-PCR). MK-7 is able to modulate immune and inflammatory reactions in the dose-response inhibition of TNF-α, IL-1α, and IL-1β gene expression and protein production by the healthy hMDMs in vitro. PMID:27200471

  20. P2X7R activation drives distinct IL-1 responses in dendritic cells compared to macrophages

    PubMed Central

    Englezou, Pavlos C.; Rothwell, Simon W.; Ainscough, Joseph S.; Brough, David; Landsiedel, Robert; Verkhratsky, Alexei; Kimber, Ian; Dearman, Rebecca J.

    2015-01-01

    The P2X7R is a functionally distinct member of the P2X family of non-selective cation channels associated with rapid activation of the inflammasome complex and signalling interleukin (IL)-1β release in macrophages. The main focus of this investigation was to compare P2X7R-driven IL-1 production by primary murine bone marrow derived dendritic cells (BMDC) and macrophages (BMM). P2X7R expression in murine BMDC and BMM at both transcriptional (P2X7A variant) and protein levels was demonstrated. Priming with lipopolysaccharide (LPS) and receptor activation with adenosine triphosphate (ATP) resulted in markedly enhanced IL-1 (α and β) secretion in BMDC compared with BMM. In both cell types IL-1 production was profoundly inhibited with a P2X7R-specific inhibitor (A-740003) demonstrating that this release is predominantly a P2X7R-dependent process. These data also suggest that P2X7R and caspase-1 activation drive IL-1α release from BMDC. Both cell types expressed constitutively the gain-of-function P2X7K as well as the full P2X7A variant at equivalent levels. LPS priming reduced significantly levels of P2X7A but not P2X7K transcripts in both BMDC and BMM. P2X7R-induced pore formation, assessed by YO-PRO-1 dye uptake, was greater in BMDC, and these cells were protected from cell death. These data demonstrate that DC and macrophages display distinct patterns of cytokine regulation, particularly with respect to IL-1, as a consequence of cell-type specific differences in the physicochemical properties of the P2X7R. Understanding the cell-specific regulation of these cytokines is essential for manipulating such responses in health and disease. PMID:26068648