Sample records for il-1 receptor antagonism

  1. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Dexamethasone antagonizes IL-4 and IL-10-induced release of IL-1RA by monocytes but augments IL-4-, IL-10-, and TGF-beta-induced suppression of TNF-alpha release.

    PubMed

    Joyce, D A; Steer, J H; Kloda, A

    1996-07-01

    The activities of monocyte-derived tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 beta are potentially modified by IL-1RA and soluble receptors for TNF (sTNF-R), which are themselves monocyte products. IL-4, IL-10, TGF-beta, and glucocorticoids (GC) all suppress the lipopolysaccharide (LPS)-stimulated release of TNF-alpha and IL-1beta but vary in their effects on IL-1RA and sTNF-R. This raises the prospect of interactions between the cytokines and glucocorticoids, which may be antagonistic or additive on IL-1 and TNF activity. We, therefore, studied the interactions of the GC dexamethasone (Dex) with IL-4, IL-10, and transforming growth factor (TGF)-beta on the release of TNF-alpha and IL-1RA by human monocytes and the monocytic THP-1 cell line. Low concentration of Dex (10(-8)-10(-7)M) acted additively with low concentrations of IL-4 (0.01-1 ng/ml), IL-10 (0.01-0.1 U/ml), or TGF-beta (0.01-1 ng/ml) to profoundly suppress LPS-stimulated release of TNF-alpha by whole blood and, to a lesser degree, THP-1 cells. Dex also suppressed spontaneous release of IL-1RA from PBMC and THP-1 cells, whereas IL-4 and IL-10, but not TGF-beta, stimulated release. Dex antagonized the enhanced release in IL-4 and IL-10-stimulated cultures. The capacity to stimulate release of IL-1RA may contribute to the anti-inflammatory potential of IL-4 and IL-10 in monocyte/macrophage-mediated disease. GC, therefore, do not uniquely enhance the suppressive functions of IL-4 and IL-10 on monokine activity. The therapeutic benefit of combinations of GC and IL-4, IL-10 or TGF-beta in disease may depend on the roles of the individual monokines and antagonists in pathogenesis.

  3. Identification and mechanism of ABA receptor antagonism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melcher, Karsten; Xu, Yong; Ng, Ley-Moy

    2010-11-11

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2more » to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.« less

  4. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.

    PubMed

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Gomez, Ana I; Machado, Francisco; Di Virgilio, Francesco; Pelegrín, Pablo

    2012-07-01

    Prostaglandins (PGs) are important lipid mediators involved in the development of inflammatory associated pain and fever. PGE2 is a well-established endogenous pyrogen activated by proinflammatory cytokine interleukin (IL)-1β. P2X7 receptors (P2X7Rs) expressed by inflammatory cells are stimulated by the danger signal extracellular ATP to activate the inflammasome and release IL-1β. Here we show that P2X7R activation is required for the release of PGE2 and other autacoids independent of inflammasome activation, with an ATP EC(50) for PGE2 and IL-1β release of 1.58 and 1.23 mM, respectively. Furthermore, lack of P2X7R or specific antagonism of P2X7R decreased the febrile response in mice triggered after intraperitoneal LPS or IL-1β inoculation. Accordingly, LPS inoculation caused intraperitoneal ATP accumulation. Therefore, P2X7R antagonists emerge as novel therapeutics for the treatment for acute inflammation, pain and fever, with wider anti-inflammatory activity than currently used cyclooxygenase inhibitors.-Barberà-Cremades, M., Baroja-Mazo, A., Gomez, A. I., Machado, F., Di Virgilio, F., Pelegrín, P. P2X7 receptor-stimulation causes fever via PGE2 and IL-1β release.

  5. Expression of IGF-1, IL-27 and IL-35 Receptors in Adjuvant Induced Rheumatoid Arthritis Model.

    PubMed

    Abdi, Elham; Najafipour, Hamid; Joukar, Siyavash; Dabiri, Shahriar; Esmaeli-Mahani, Saeed; Abbasloo, Elham; Houshmandi, Nasrin; Afsharipour, Abbas

    2018-03-01

    IGF-1 and certain other cytokines have been shown to exert inflammatory/anti-inflammatory roles in chronic joint diseases. To assess the effect of IGF-1, IL-27 and IL-35, their interaction and their receptor expression in a rheumatoid arthritis model. Freund's adjuvant-induced chronic joint inflammation was operated on 160 male rats. Animals were divided into histopathology and receptor expression groups, each composed of 10 subgroups including; control, vehicle, IGF-1, IL-27, IL-35, their antagonists, IGF-1+IL-27 antagonist and IGF-1+IL-35 antagonist. After two weeks, vehicle or agonist/antagonists were injected into the joint space every other day until day 28 where joint histopathology was performed. The expression of IGF-1, IL-27 and IL-35 receptors were assessed by western blot analysis. IGF-1 did not show pro- or anti- inflammatory functions; endogenous IL-27 and IL-35, on the other hand, exerted inflammatory effects. IL-27 and IL-35 antagonists exerted the highest anti-inflammatory effects. The total inflammation scores were 0.55 ± 0.06, 4.63 ± 0.40, 3.63 ± 0.60, 2.50 ± 0.38 and 1.63 ± 0.40 regarding control, vehicle, IGF-1 Ant., IL-27 Ant. and IL-35 Ant., respectively. IGF-1 receptor expression was reduced in chronic joint inflammation and all three antagonists augmented the IGF-1 receptor expression. IL-27 and IL-35 receptors were up-regulated by chronic joint inflammation. Overall, the results demonstrated the pro-inflammatory role of endogenous IL-27 and IL-35 along with the over expression of their receptors in chronic joint inflammation. IL-27 and IL-35 antagonists exerted the most anti-inflammatory effects and increased IGF-1 receptor expression. These two antagonists may be potential agents for new treatment strategies in chronic joint inflammatory diseases.

  6. P2X receptor characterization and IL-1/IL-1Ra release from human endothelial cells.

    PubMed

    Wilson, H L; Varcoe, R W; Stokes, L; Holland, K L; Francis, S E; Dower, S K; Surprenant, A; Crossman, D C

    2007-05-01

    The pro-inflammatory cytokine, interleukin-1beta (IL-1beta), has been implicated in the pathogenesis of atherosclerosis, potentially via its release from vascular endothelium. Endothelial cells (EC) synthesize IL-1beta in response to inflammatory stimuli, but the demonstration and mechanism of release of IL-1 from ECs remains unclear. In activated monocytes, efficient release of bioactive IL-1beta occurred via activation of ATP-gated P2X(7) receptors (P2X(7)Rs). Activation of P2X(7)R in ECs from human umbilical vein (HUVECs) released IL-1 receptor antagonist (IL-1Ra). The purpose of this study was to provide a quantitative investigation of P2XR expression and function, in parallel with IL-1beta and IL-1Ra synthesis, processing and release, in HUVECs under pro-inflammatory conditions. Quantitative RT-PCR, immunoblotting, ELISA, flow cytometry, and whole-cell patch clamp recordings were used to determine protein expression and receptor function. IL-8-luciferase-reporter was used as an IL-1 sensitive bioassay. HUVECs expressed P2X(4)R and P2X(7)R subtypes and both were significantly up-regulated under inflammatory conditions. P2X(7)R currents were increased 3-fold by inflammatory stimuli, whereas no P2X(4)R-mediated currents were detected. Caspase-1, but not IL-1beta, was present intracellularly under basal conditions; inflammatory stimuli activated the synthesis of intracellular pro-IL-1beta and increased caspase-1 levels. Activation of P2X(7)Rs resulted in low-level release of bioactive IL-1beta and simultaneous release of IL-1Ra. The net biological effect of release was anti-inflammatory. Endothelial P2X(7)Rs induced secretion of both pro- and anti-inflammatory IL-1 receptor ligands, the balance of which may provide a means for altering the inflammatory state of the arterial vessel wall.

  7. Olfactory receptor antagonism between odorants

    PubMed Central

    Oka, Yuki; Omura, Masayo; Kataoka, Hiroshi; Touhara, Kazushige

    2004-01-01

    The detection of thousands of volatile odorants is mediated by several hundreds of different G protein-coupled olfactory receptors (ORs). The main strategy in encoding odorant identities is a combinatorial receptor code scheme in that different odorants are recognized by different sets of ORs. Despite increasing information on agonist–OR combinations, little is known about the antagonism of ORs in the mammalian olfactory system. Here we show that odorants inhibit odorant responses of OR(s), evidence of antagonism between odorants at the receptor level. The antagonism was demonstrated in a heterologous OR-expression system and in single olfactory neurons that expressed a given OR, and was also visualized at the level of the olfactory epithelium. Dual functions of odorants as an agonist and an antagonist to ORs indicate a new aspect in the receptor code determination for odorant mixtures that often give rise to novel perceptual qualities that are not present in each component. The current study also provides insight into strategies to modulate perceived odorant quality. PMID:14685265

  8. Structural Activation of Pro-inflammatory Human Cytokine IL-23 by Cognate IL-23 Receptor Enables Recruitment of the Shared Receptor IL-12Rβ1.

    PubMed

    Bloch, Yehudi; Bouchareychas, Laura; Merceron, Romain; Składanowska, Katarzyna; Van den Bossche, Lien; Detry, Sammy; Govindarajan, Srinath; Elewaut, Dirk; Haerynck, Filomeen; Dullaers, Melissa; Adamopoulos, Iannis E; Savvides, Savvas N

    2018-01-16

    Interleukin-23 (IL-23), an IL-12 family cytokine, plays pivotal roles in pro-inflammatory T helper 17 cell responses linked to autoimmune and inflammatory diseases. Despite intense therapeutic targeting, structural and mechanistic insights into receptor complexes mediated by IL-23, and by IL-12 family members in general, have remained elusive. We determined a crystal structure of human IL-23 in complex with its cognate receptor, IL-23R, and revealed that IL-23R bound to IL-23 exclusively via its N-terminal immunoglobulin domain. The structural and functional hotspot of this interaction partially restructured the helical IL-23p19 subunit of IL-23 and restrained its IL-12p40 subunit to cooperatively bind the shared receptor IL-12Rβ1 with high affinity. Together with structural insights from the interaction of IL-23 with the inhibitory antibody briakinumab and by leveraging additional IL-23:antibody complexes, we propose a mechanistic paradigm for IL-23 and IL-12 whereby cognate receptor binding to the helical cytokine subunits primes recruitment of the shared receptors via the IL-12p40 subunit. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Identification of a novel IL-1 cytokine family member in teleost fish.

    PubMed

    Wang, Tiehui; Bird, Steve; Koussounadis, Antonis; Holland, Jason W; Carrington, Allison; Zou, Jun; Secombes, Christopher J

    2009-07-15

    A novel IL-1 family member (nIL-1F) has been discovered in fish, adding a further member to this cytokine family. The unique gene organization of nIL-1F, together with its location in the genome and low homology to known family members, suggests that this molecule is not homologous to known IL-1F. Nevertheless, it contains a predicted C-terminal beta-trefoil structure, an IL-1F signature region within the final exon, a potential IL-1 converting enzyme cut site, and its expression level is clearly increased following infection, or stimulation of macrophages with LPS or IL-1beta. A thrombin cut site is also present and may have functional relevance. The C-terminal recombinant protein antagonized the effects of rainbow trout rIL-1beta on inflammatory gene expression in a trout macrophage cell line, suggesting it is an IL-1beta antagonist. Modeling studies confirmed that nIL-1F has the potential to bind to the trout IL-1RI receptor protein, and may be a novel IL-1 receptor antagonist.

  10. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset

    PubMed Central

    Cabrera, Susanne M.; Wang, Xujing; Chen, Yi-Guang; Jia, Shuang; Kaldunski, Mary L.; Greenbaum, Carla J.; Mandrup-Poulsen, Thomas; Hessner, Martin J.

    2016-01-01

    IL-1 antagonism has been hypothesized to preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with transcriptional analysis of plasma-induced PBMCs. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the PBMC transcriptional signatures from the two groups were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials. PMID:26692253

  11. Interleukin-1 antagonism moderates the inflammatory state associated with Type 1 diabetes during clinical trials conducted at disease onset.

    PubMed

    Cabrera, Susanne M; Wang, Xujing; Chen, Yi-Guang; Jia, Shuang; Kaldunski, Mary L; Greenbaum, Carla J; Mandrup-Poulsen, Thomas; Hessner, Martin J

    2016-04-01

    It was hypothesized that IL-1 antagonism would preserve β-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1β additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Induction of an interleukin-1 receptor (IL-1R) on monocytic cells. Evidence that the receptor is not encoded by a T cell-type IL-1R mRNA.

    PubMed

    Spriggs, M K; Lioubin, P J; Slack, J; Dower, S K; Jonas, U; Cosman, D; Sims, J E; Bauer, J

    1990-12-25

    Primary human monocytes and the human monocytic cell line THP-1 were induced to express receptors for interleukin-1 alpha (IL-1 alpha) and IL-1 beta. Treatment of primary monocytes with dexamethasone resulted in a 10-fold increase in receptor number over untreated cells, to approximately 2,000 receptors/cell. Treatment of THP-1 cells with phorbol ester followed by prostaglandin E2 and dexamethasone resulted in the expression of approximately 30,000 receptors/cell. Competitive binding assays on THP-1 cells showed that both IL-1 alpha and IL-1 beta bind to the same receptor. The monocyte IL-1R is significantly smaller (63 kDa) than the T cell IL-1R (80 kDa) and is immunologically distinct. However, induction of monocytes and monocytic cell lines leads to the appearance of an abundant mRNA of approximately 5,000 bases which hybridizes to a cDNA probe from the T cell-type IL-1R. Sequence data obtained from a cDNA clone of this mRNA indicate that the message is identical to the T cell IL-1R mRNA throughout the coding region. A smaller mRNA, also homologous to the T cell IL-1R mRNA, accumulated in induced THP-1 cells and has a shorter 3'-untranslated region than the larger. Data are presented which suggest that neither form of this message encodes the 63-kDa IL-1R, but rather that this protein is the product of a separate nonhomologous mRNA.

  13. Potentiating role of interleukin-1beta (IL-1beta) and IL-1beta type 1 receptors in the medial hypothalamus in defensive rage behavior in the cat.

    PubMed

    Hassanain, M; Bhatt, S; Zalcman, S; Siegel, A

    2005-06-28

    Recently, this laboratory provided evidence that interleukin-1beta (IL-1beta), an immune and brain-derived cytokine, microinjected into the medial hypothalamus, potentiates defensive rage behavior in the cat elicited from the midbrain periaqueductal gray (PAG), and that such effects are blocked by a 5-HT2 receptor antagonist. Since this finding represents the first time that a brain cytokine has been shown to affect defensive rage behavior, the present study replicated and extended these findings by documenting the specific potentiating role played by IL-1beta Type 1 receptor (IL-1RI), and the anatomical relationship between IL-1beta and 5-HT2 receptors in the medial hypothalamus. IL-1beta (10 ng) microinjected into the medial hypothalamus induced two separate phases of facilitation, one at 60 min and another at 180 min, post-injection. In turn, these effects were blocked with pretreatment of the selective IL-1 Type I receptor antagonist (IL-1ra) (10 ng), demonstrating the selectivity of the effects of IL-1beta on medial hypothalamic neurons upon PAG-elicited defensive rage behavior. The next stage of the study utilized immunohistochemical methods to demonstrate that IL-1beta and 5-HT2 receptors were present on the same neurons within regions of the medial hypothalamus where IL-1beta and the IL-1beta receptor antagonists were administered. This provided anatomical evidence suggesting a relationship between IL-1RI and 5-HT2 receptors in the medial hypothalamus that is consistent with the previous pharmacological observations in our laboratory. The overall findings show that activation of IL-1RI in the medial hypothalamus potentiates defensive rage behavior in the cat and that these effects may also be linked to the presence of 5-HT2 receptors on the same groups of neurons in this region of hypothalamus.

  14. Genetic polymorphism of interleukin-1A (IL-1A), IL-1B, and IL-1 receptor antagonist (IL-1RN) and prostate cancer risk.

    PubMed

    Xu, Hua; Ding, Qiang; Jiang, Hao-Wen

    2014-01-01

    We aimed to investigate the associations between polymorphisms of interleukin-1A (IL-1A), IL-1B, and IL-1 receptor antagonist (IL-1RN) and prostate cancer (PCa) risk. A comprehensive search for articles of MEDLINE and EMBASE databases and bibliographies of retrieved articles published up to August 3, 2014 was performed. Methodological quality assessment of the trials was based on a standard quality scoring system. The meta-analysis was performed using STATA 12.0. We included 9 studies (1 study for IL-1A, 5 studies for IL-1B, and 3 studies for IL-1RN), and significant association was found between polymorphisms of IL-1B-511 (rs16944) as well as IL-1B-31 (rs1143627) and PCa risk. IL-1B-511 (rs16944) polymorphism was significantly associated with PCa risk in homozygote and recessive models, as well as allele contrast (TT vs CC: OR, 0.74; 95%CI, 0.58-0.94; P=0.012; TT vs TC+CC; OR, 0.79; 95%CI, 0.63-0.98; P=0.033; T vs C: OR, 0.86; 95%CI, 0.77-0.96; P=0.008). The association between IL-1B-31 (rs1143627) polymorphism and PCa risk was weakly significant under a heterozygote model (OR, 1.35; 95%CI, 1.00-1.80; P=0.047). Sequence variants in IL-1B-511 (rs16944) and IL-1B-31 (rs1143627) are significantly associated with PCa risk, which provides additional novel evidence that proinflammatory cytokines and inflammation play an important role in the etiology of PCa.

  15. AHR prevents human IL-1R1hi ILC3 differentiation to natural killer cells

    PubMed Central

    Hughes, Tiffany; Briercheck, Edward L.; Freud, Aharon G.; Trotta, Rossana; McClory, Susan; Scoville, Steven D.; Keller, Karen; Deng, Youcai; Cole, Jordan; Harrison, Nicholas; Mao, Charlene; Zhang, Jianying; Benson, Don M.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    SUMMARY Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called “stage 3” developmental intermediate minimally characterized by a CD34-CD117+CD94- immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that includes interleukin-1 receptor (IL-1R1) positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes differentiation of tonsillar IL-22-producing IL-1R1hi human ILC3s to CD56brightCD94+ IFN-gamma-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, AHR is a transcription factor that prevents human IL-1R1hi ILC3s from differentiating into NK cells. PMID:24953655

  16. Extracellular forms of IL-37 inhibit innate inflammation in vitro and in vivo but require the IL-1 family decoy receptor IL-1R8.

    PubMed

    Li, Suzhao; Neff, C Preston; Barber, Kristina; Hong, Jaewoo; Luo, Yuchun; Azam, Tania; Palmer, Brent E; Fujita, Mayumi; Garlanda, Cecilia; Mantovani, Alberto; Kim, Soohyun; Dinarello, Charles Anthony

    2015-02-24

    Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti-IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50-55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8-deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.

  17. Structural Mimicry of Receptor Interaction by Antagonistic Interleukin-6 (IL-6) Antibodies*

    PubMed Central

    Blanchetot, Christophe; De Jonge, Natalie; Desmyter, Aline; Ongenae, Nico; Hofman, Erik; Klarenbeek, Alex; Sadi, Ava; Hultberg, Anna; Kretz-Rommel, Anke; Spinelli, Silvia; Loris, Remy; Cambillau, Christian; de Haard, Hans

    2016-01-01

    Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe229 and Phe279 of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe279. Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe279. In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe279, whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe229. PMID:27129274

  18. Structural Mimicry of Receptor Interaction by Antagonistic Interleukin-6 (IL-6) Antibodies.

    PubMed

    Blanchetot, Christophe; De Jonge, Natalie; Desmyter, Aline; Ongenae, Nico; Hofman, Erik; Klarenbeek, Alex; Sadi, Ava; Hultberg, Anna; Kretz-Rommel, Anke; Spinelli, Silvia; Loris, Remy; Cambillau, Christian; de Haard, Hans

    2016-06-24

    Interleukin 6 plays a key role in mediating inflammatory reactions in autoimmune diseases and cancer, where it is also involved in metastasis and tissue invasion. Neutralizing antibodies against IL-6 and its receptor have been approved for therapeutic intervention or are in advanced stages of clinical development. Here we describe the crystal structures of the complexes of IL-6 with two Fabs derived from conventional camelid antibodies that antagonize the interaction between the cytokine and its receptor. The x-ray structures of these complexes provide insights into the mechanism of neutralization by the two antibodies and explain the very high potency of one of the antibodies. It effectively competes for binding to the cytokine with IL-6 receptor (IL-6R) by using side chains of two CDR residues filling the site I cavities of IL-6, thus mimicking the interactions of Phe(229) and Phe(279) of IL-6R. In the first antibody, a HCDR3 tryptophan binds similarly to hot spot residue Phe(279) Mutation of this HCDR3 Trp residue into any other residue except Tyr or Phe significantly weakens binding of the antibody to IL-6, as was also observed for IL-6R mutants of Phe(279) In the second antibody, the side chain of HCDR3 valine ties into site I like IL-6R Phe(279), whereas a LCDR1 tyrosine side chain occupies a second cavity within site I and mimics the interactions of IL-6R Phe(229). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. An Epstein-Barr Virus MicroRNA Blocks Interleukin-1 (IL-1) Signaling by Targeting IL-1 Receptor 1.

    PubMed

    Skinner, Camille M; Ivanov, Nikita S; Barr, Sarah A; Chen, Yan; Skalsky, Rebecca L

    2017-11-01

    Epstein-Barr virus (EBV) encodes >44 viral microRNAs (miRNAs) that are differentially expressed throughout infection, can be detected in Epstein-Barr virus (EBV)-positive tumors, and manipulate several biological processes, including cell proliferation, apoptosis, and immune responses. Here, we show that EBV BHRF1-2 miRNAs block NF-κB activation following treatment with proinflammatory cytokines, specifically interleukin-1β (IL-1β). Analysis of EBV PAR-CLIP miRNA targetome data sets combined with pathway analysis revealed multiple BHRF1-2 miRNA targets involved in interleukin signaling pathways. By further analyzing changes in cellular gene expression patterns, we identified the IL-1 receptor 1 (IL1R1) as a direct target of miR-BHRF1-2-5p. Targeting the IL1R1 3' untranslated region (UTR) by EBV miR-BHRF1-2-5p was confirmed using 3'-UTR luciferase reporter assays and Western blot assays. Manipulation of EBV BHRF1-2 miRNA activity in latently infected B cells altered steady-state cytokine levels and disrupted IL-1β responsiveness. These studies demonstrate functionally relevant BHRF1-2 miRNA interactions during EBV infection, which is an important step in understanding their roles in pathogenesis. IMPORTANCE IL-1 signaling plays an important role in inflammation and early activation of host innate immune responses following virus infection. Here, we demonstrate that a viral miRNA downregulates the IL-1 receptor 1 during EBV infection, which consequently alters the responsiveness of cells to IL-1 stimuli and changes the cytokine expression levels within infected cell populations. We postulate that this viral miRNA activity not only disrupts IL-1 autocrine and paracrine signaling loops that can alert effector cells to sites of infection but also provides a survival advantage by dampening excessive inflammation that may be detrimental to the infected cell. Copyright © 2017 American Society for Microbiology.

  20. Selective endothelin A receptor antagonism with sitaxentan reduces neointimal lesion size in a mouse model of intraluminal injury

    PubMed Central

    Duthie, Karolina M; Hadoke, Patrick W F; Kirkby, Nicholas S; Miller, Eileen; Ivy, Jessica R; McShane, John F; Lim, Win Gel; Webb, David J

    2015-01-01

    Background and Purpose Endothelin (ET) receptor antagonism reduces neointimal lesion formation in animal models. This investigation addressed the hypothesis that the selective ETA receptor antagonist sitaxentan would be more effective than mixed ETA/B receptor antagonism at inhibiting neointimal proliferation in a mouse model of intraluminal injury. Experimental Approach Antagonism of ETA receptors by sitaxentan (1–100 nM) was assessed in femoral arteries isolated from adult, male C57Bl6 mice using isometric wire myography. Neointimal lesion development was induced by intraluminal injury in mice receiving sitaxentan (ETA antagonist; 15 mg·kg−1·day−1), A192621 (ETB antagonist; 30 mg·kg−1·day−1), the combination of both antagonists or vehicle. Treatment began 1 week before, and continued for 28 days after, surgery. Femoral arteries were then harvested for analysis of lesion size and composition. Key Results Sitaxentan produced a selective, concentration-dependent parallel rightward shift of ET-1-mediated contraction in isolated femoral arteries. Sitaxentan reduced neointimal lesion size, whereas ETB and combined ETA/B receptor antagonism did not. Macrophage and α-smooth muscle actin content were unaltered by ET receptor antagonism but sitaxentan reduced the amount of collagen in lesions. Conclusions and Implications These results suggest that ETA receptor antagonism would be more effective than combined ETA/ETB receptor antagonism at reducing neointimal lesion formation. PMID:25598351

  1. Lipoxin A4 stable analogs reduce allergic airway responses via mechanisms distinct from CysLT1 receptor antagonism.

    PubMed

    Levy, Bruce D; Lukacs, Nicholas W; Berlin, Aaron A; Schmidt, Birgitta; Guilford, William J; Serhan, Charles N; Parkinson, John F

    2007-12-01

    Cellular recruitment during inflammatory/immune responses is tightly regulated. The ability to dampen inflammation is imperative for prevention of chronic immune responses, as in asthma. Here we investigated the ability of lipoxin A4 (LXA4) stable analogs to regulate airway responses in two allergen-driven models of inflammation. A 15-epi-LXA4 analog (ATLa) and a 3-oxa-15-epi-LXA4 analog (ZK-994) prevented excessive eosinophil and T lymphocyte accumulation and activation after mice were sensitized and aerosol-challenged with ovalbumin. At <0.5 mg/kg, these LXA4 analogs reduced leukocyte trafficking into the lung by >50% and to a greater extent than equivalent doses of the CysLT1 receptor antagonist montelukast. Distinct from montelukast, ATLa treatment led to marked reductions in cysteinyl leukotrienes, interleukin-4 (IL-4), and IL-10, and both ATLa and ZK-994 inhibited levels of IL-13. In cockroach allergen-induced airway responses, both intraperitoneal and oral administration of ZK-994 significantly reduced parameters of airway inflammation and hyper-responsiveness in a dose-dependent manner. ZK-994 also significantly changed the balance of Th1/Th2-specific cytokine levels. Thus, the ATLa/LXA4 analog actions are distinct from CysLT1 antagonism and potently block both allergic airway inflammation and hyper-reactivity. Moreover, these results demonstrate these analogs' therapeutic potential as new agonists for the resolution of inflammation.

  2. NK1 receptor antagonism and emotional processing in healthy volunteers.

    PubMed

    Chandra, P; Hafizi, S; Massey-Chase, R M; Goodwin, G M; Cowen, P J; Harmer, C J

    2010-04-01

    The neurokinin-1 (NK(1)) receptor antagonist, aprepitant, showed activity in several animal models of depression; however, its efficacy in clinical trials was disappointing. There is little knowledge of the role of NK(1) receptors in human emotional behaviour to help explain this discrepancy. The aim of the current study was to assess the effects of a single oral dose of aprepitant (125 mg) on models of emotional processing sensitive to conventional antidepressant drug administration in 38 healthy volunteers, randomly allocated to receive aprepitant or placebo in a between groups double blind design. Performance on measures of facial expression recognition, emotional categorisation, memory and attentional visual-probe were assessed following the drug absorption. Relative to placebo, aprepitant improved recognition of happy facial expressions and increased vigilance to emotional information in the unmasked condition of the visual probe task. In contrast, aprepitant impaired emotional memory and slowed responses in the facial expression recognition task suggesting possible deleterious effects on cognition. These results suggest that while antagonism of NK(1) receptors does affect emotional processing in humans, its effects are more restricted and less consistent across tasks than those of conventional antidepressants. Human models of emotional processing may provide a useful means of assessing the likely therapeutic potential of new treatments for depression.

  3. Identification of the functional interleukin-22 (IL-22) receptor complex: the IL-10R2 chain (IL-10Rbeta ) is a common chain of both the IL-10 and IL-22 (IL-10-related T cell-derived inducible factor, IL-TIF) receptor complexes.

    PubMed

    Kotenko, S V; Izotova, L S; Mirochnitchenko, O V; Esterova, E; Dickensheets, H; Donnelly, R P; Pestka, S

    2001-01-26

    Interleukin-10 (IL-10)-related T cell-derived inducible factor (IL-TIF; provisionally designated IL-22) is a cytokine with limited homology to IL-10. We report here the identification of a functional IL-TIF receptor complex that consists of two receptor chains, the orphan CRF2-9 and IL-10R2, the second chain of the IL-10 receptor complex. Expression of the CRF2-9 chain in monkey COS cells renders them sensitive to IL-TIF. However, in hamster cells both chains, CRF2-9 and IL-10R2, must be expressed to assemble the functional IL-TIF receptor complex. The CRF2-9 chain (or the IL-TIF-R1 chain) is responsible for Stat recruitment. Substitution of the CRF2-9 intracellular domain with the IFN-gammaR1 intracellular domain changes the pattern of IL-TIF-induced Stat activation. The CRF2-9 gene is expressed in normal liver and kidney, suggesting a possible role for IL-TIF in regulating gene expression in these tissues. Each chain, CRF2-9 and IL-10R2, is capable of binding IL-TIF independently and can be cross-linked to the radiolabeled IL-TIF. However, binding of IL-TIF to the receptor complex is greater than binding to either receptor chain alone. Sharing of the common IL-10R2 chain between the IL-10 and IL-TIF receptor complexes is the first such case for receptor complexes with chains belonging to the class II cytokine receptor family, establishing a novel paradigm for IL-10-related ligands similar to the shared use of the gamma common chain (gamma(c)) by several cytokines, including IL-2, IL-4, IL-7, IL-9, and IL-15.

  4. IL-4 function can be transferred to the IL-2 receptor by tyrosine containing sequences found in the IL-4 receptor alpha chain.

    PubMed

    Wang, H Y; Paul, W E; Keegan, A D

    1996-02-01

    IL-4 binds to a cell surface receptor complex that consists of the IL-4 binding protein (IL-4R alpha) and the gamma chain of the IL-2 receptor complex (gamma c). The receptors for IL-4 and IL-2 have several features in common; both use the gamma c as a receptor component, and both activate the Janus kinases JAK-1 and JAK-3. In spite of these similarities, IL-4 evokes specific responses, including the tyrosine phosphorylation of 4PS/IRS-2 and the induction of CD23. To determine whether sequences within the cytoplasmic domain of the IL-4R alpha specify these IL-4-specific responses, we transplanted the insulin IL-4 receptor motif (I4R motif) of the huIL-4R alpha to the cytoplasmic domain of a truncated IL-2R beta. In addition, we transplanted a region that contains peptide sequences shown to block Stat6 binding to DNA. We analyzed the ability of cells expressing these IL-2R-IL-4R chimeric constructs to respond to IL-2. We found that IL-4 function could be transplanted to the IL-2 receptor by these regions and that proliferative and differentiative functions can be induced by different receptor sequences.

  5. Captodiamine, a putative antidepressant, enhances hypothalamic BDNF expression in vivo by synergistic 5-HT2c receptor antagonism and sigma-1 receptor agonism.

    PubMed

    Ring, Rebecca M; Regan, Ciaran M

    2013-10-01

    The putative antidepressant captodiamine is a 5-HT2c receptor antagonist and agonist at sigma-1 and D3 dopamine receptors, exerts an anti-immobility action in the forced swim paradigm, and enhances dopamine turnover in the frontal cortex. Captodiamine has also been found to ameliorate stress-induced anhedonia, reduce the associated elevations of hypothalamic corticotrophin-releasing factor (CRF) and restore the reductions in hypothalamic BDNF expression. Here we demonstrate chronic administration of captodiamine to have no significant effect on hypothalamic CRF expression through sigma-1 receptor agonism; however, both sigma-1 receptor agonism or 5-HT2c receptor antagonism were necessary to enhance BDNF expression. Regulation of BDNF expression by captodiamine was associated with increased phosphorylation of transcription factor CREB and mediated through sigma-1 receptor agonism but blocked by 5-HT2c receptor antagonism. The existence of two separate signalling pathways was confirmed by immunolocalisation of each receptor to distinct cell populations in the paraventricular nucleus of the hypothalamus. Increased BDNF induced by captodiamine was also associated with enhanced expression of synapsin, but not PSD-95, suggesting induction of long-term structural plasticity between hypothalamic synapses. These unique features of captodiamine may contribute to its ability to ameliorate stress-induced anhedonia as the hypothalamus plays a prominent role in regulating HPA axis activity.

  6. The distribution of IL-13 receptor alpha1 expression on B cells, T cells and monocytes and its regulation by IL-13 and IL-4.

    PubMed

    Graber, P; Gretener, D; Herren, S; Aubry, J P; Elson, G; Poudrier, J; Lecoanet-Henchoz, S; Alouani, S; Losberger, C; Bonnefoy, J Y; Kosco-Vilbois, M H; Gauchat, J F

    1998-12-01

    To study the expression of IL-13 receptor alpha1 (IL-13Ralpha1), specific monoclonal antibodies (mAb) were generated. Surface expression of the IL-13Ralpha1 on B cells, monocytes and T cells was assessed by flow cytometry using these specific mAb. Among tonsillar B cells, the expression was the highest on the IgD+ CD38- B cell subpopulation which is believed to represent naive B cells. Expression was also detectable on a large fraction of the IgD-CD38- B cells but not on CD38+ B cells. Activation under conditions which promote B cell Ig class switching up-regulated the expression of the receptor. However, the same stimuli had an opposite effect for IL-13Ralpha1 expression levels on monocytes. While IL-13Ralpha1 mRNA was clearly detectable in T cell preparations, no surface expression was detected. However, permeabilization of the T cells showed a clear intracellular expression of the receptor. A soluble form of the receptor was immunoprecipitated from the supernatant of activated peripheral T cells, suggesting that T cell IL-13Ralpha1 might have functions unrelated to the capacity to form a type II IL-4/IL-13R with IL-4Ralpha.

  7. Antagonism of Human Formyl Peptide Receptor 1 with Natural Compounds and their Synthetic Derivatives

    PubMed Central

    Schepetkin, Igor A.; Khlebnikov, Andrei I.; Kirpotina, Liliya N.; Quinn, Mark T.

    2015-01-01

    Formyl peptide receptor 1 (FPR1) regulates a wide variety of neutrophil functional responses and plays an important role in inflammation and the pathogenesis of various diseases. To date, a variety of natural and synthetic molecules have been identified as FPR1 ligands. Here, we review current knowledge on natural products and natural product-inspired small-molecules reported to antagonize and/or inhibit the FPR1-mediated responses. Based on this literature, additional screening of selected commercially available natural compounds for their ability to inhibit fMLF-induced Ca2+ mobilization in human neutrophils and FPR1 transfected HL-60 cells, and pharmacophore modeling, natural products with potential as FPR1 antagonists are considered and discussed in this review. The identification and characterization of natural products that antagonize FPR1 activity may have potential for the development of novel therapeutics to limit or alter the outcome of inflammatory processes. PMID:26382576

  8. Management of idiopathic recurrent pericarditis in adults and in children: a role for IL-1 receptor antagonism.

    PubMed

    Brucato, Antonio; Emmi, Giacomo; Cantarini, Luca; Di Lenarda, Andrea; Gattorno, Marco; Lopalco, Giuseppe; Marcolongo, Renzo; Imazio, Massimo; Martini, Alberto; Prisco, Domenico

    2018-06-01

    Recurrent pericarditis is one of the most frequent pericardial diseases, affecting up to 30% of the patients who have experienced acute pericarditis. While the diagnosis of acute pericarditis is sometime straight forward, its etiology and therapeutic management are still a challenge for physicians. In developed countries, the idiopathic form is the most frequent, and the search for an infectious etiology is almost invariably negative. Nevertheless, since standard treatment with nonsteroidal anti-inflammatory drugs and colchicine is not always able to neutralize pericardial inflammation in recurrent pericarditis, anakinra, an IL-1 receptor antagonist, has been proposed as a possible therapeutic alternative for refractory forms. IL-1 is a cytokine that exerts a pivotal role in innate immunity and in the pathogenesis of some autoimmune diseases, such as rheumatoid arthritis, and in autoinflammatory disorders, as familial Mediterranean fever and cryopyrin-associated periodic syndromes. The successful management of patients with acute idiopathic recurrent pericarditis (IRP) needs a teamwork approach, where cardiologists, rheumatologists, clinical immunologists and internists are involved. In this review, we will discuss the clinical and therapeutical challenges of IRP both in adults and children from a clinical practice standpoint. We will also briefly illustrate the main pathogenic mechanisms of IRP to provide internists and cardiologists with the rationale for approaching the use of anakinra in selected clinical cases.

  9. Interleukin-1 receptor (IL-1R) mediates epilepsy-induced sleep disruption.

    PubMed

    Huang, Tzu-Rung; Jou, Shuo-Bin; Chou, Yu-Ju; Yi, Pei-Lu; Chen, Chun-Jen; Chang, Fang-Chia

    2016-11-22

    Sleep disruptions are common in epilepsy patients. Our previous study demonstrates that homeostatic factors and circadian rhythm may mediate epilepsy-induced sleep disturbances when epilepsy occurs at different zeitgeber hours. The proinflammatory cytokine, interleukin-1 (IL-1), is a somnogenic cytokine and may also be involved in epileptogenesis; however, few studies emphasize the effect of IL-1 in epilepsy-induced sleep disruption. We herein hypothesized that IL-1 receptor type 1 (IL-1R1) mediates the pathogenesis of epilepsy and epilepsy-induced sleep disturbances. We determined the role of IL-1R1 by using IL-1R1 knockout (IL-1R1 -/- KO) mice. Our results elucidated the decrease of non-rapid eye movement (NREM) sleep during the light period in IL-1R -/- mice and confirmed the somnogenic role of IL-1R1. Rapid electrical amygdala kindling was performed to induce epilepsy at the particular zeitgeber time (ZT) point, ZT13. Our results demonstrated that seizure thresholds induced by kindling stimuli, such as the after-discharge threshold and successful kindling rates, were not altered in IL-1R -/- mice when compared to those obtained from the wildtype mice (IL-1R +/+ mice). This result suggests that IL-1R1 is not involved in kindling-induced epileptogenesis. During sleep, ZT13 kindling stimulation significantly enhanced NREM sleep during the subsequent 6 h (ZT13-18) in wildtype mice, and sleep returned to the baseline the following day. However, the kindling-induced sleep alteration was absent in the IL-1R -/- KO mice. These results indicate that the IL-1 signal mediates epilepsy-induced sleep disturbance, but dose not participate in kindling-induced epileptogenesis.

  10. Production of Mice Deficient in Genes for Interleukin (IL)-1α, IL-1β, IL-1α/β, and IL-1 Receptor Antagonist Shows that IL-1β Is Crucial in Turpentine-induced Fever Development and Glucocorticoid Secretion

    PubMed Central

    Horai, Reiko; Asano, Masahide; Sudo, Katsuko; Kanuka, Hirotaka; Suzuki, Masatoshi; Nishihara, Masugi; Takahashi, Michio; Iwakura, Yoichiro

    1998-01-01

    Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1α/β doubly deficient (KO) mice together with mice deficient in either the IL-1α, IL-1β, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1β as well as IL-1α/β KO mice, but not in IL-1α KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1β mRNA in the diencephalon decreased 1.5-fold in IL-1α KO mice, whereas expression of IL-1α mRNA decreased >30-fold in IL-1β KO mice, suggesting mutual induction between IL-1α and IL-1β. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1β KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1β but not IL-1α KO mice. These observations suggest that IL-1β but not IL-1α is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1α expression in the brain is dependent on IL-1β. The importance of IL-1ra both in normal physiology and under stress is also suggested. PMID:9565638

  11. Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion.

    PubMed

    Horai, R; Asano, M; Sudo, K; Kanuka, H; Suzuki, M; Nishihara, M; Takahashi, M; Iwakura, Y

    1998-05-04

    Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1alpha/beta doubly deficient (KO) mice together with mice deficient in either the IL-1alpha, IL-1beta, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1beta as well as IL-1alpha/beta KO mice, but not in IL-1alpha KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1beta mRNA in the diencephalon decreased 1.5-fold in IL-1alpha KO mice, whereas expression of IL-1alpha mRNA decreased >30-fold in IL-1beta KO mice, suggesting mutual induction between IL-1alpha and IL-1beta. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1beta KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1beta but not IL-1alpha KO mice. These observations suggest that IL-1beta but not IL-1alpha is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1alpha expression in the brain is dependent on IL-1beta. The importance of IL-1ra both in normal physiology and under stress is also suggested.

  12. Vascular Consequences of Aldosterone Excess and Mineralocorticoid Receptor Antagonism.

    PubMed

    Chrissobolis, Sophocles

    2017-01-01

    Aldosterone binds to mineralocorticoid receptors (MRs) on renal epithelial cells to regulate sodium and water reabsorption, and therefore blood pressure. Recently, the actions of aldosterone outside the kidney have been extensively investigated, with numerous reports of aldosterone having detrimental actions, including in the vasculature. Notably, elevated aldosterone levels are an independent cardiovascular risk factor, and in addition to causing an increase in blood pressure, aldosterone can have blood pressure-dependent and -independent effects commonly manifested in the vasculature in cardiovascular diseases, including oxidative stress, endothelial dysfunction, inflammation, remodeling, stiffening, and plaque formation. Receptor-dependent mechanisms mediating these actions include the MR expressed on vascular endothelial and smooth muscle cells, but also include the angiotensin II type 1 receptor, epidermal growth factor receptor and vascular endothelial growth factor receptor 1, with downstream mechanisms including NADPH oxidase, cyclooxygenase, glucose-6-phosphate dehydrogenase, poly-(ADP ribose) polymerase and placental growth factor. The beneficial actions of MR antagonism in experimental hypertension include improved endothelial function, reduced hypertrophy and remodeling, and in atherosclerosis beneficial actions include reduced plaque area, inflammation, oxidative stress and endothelial dysfunction. Aldosterone excess is detrimental and MR antagonism is beneficial in humans also. The emerging concept of the contribution of aldosterone/MR-induced immunity to vascular pathology will also be discussed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Aberrant intestinal microbiota due to IL-1 receptor antagonist deficiency promotes IL-17- and TLR4-dependent arthritis.

    PubMed

    Rogier, Rebecca; Ederveen, Thomas H A; Boekhorst, Jos; Wopereis, Harm; Scher, Jose U; Manasson, Julia; Frambach, Sanne J C M; Knol, Jan; Garssen, Johan; van der Kraan, Peter M; Koenders, Marije I; van den Berg, Wim B; van Hijum, Sacha A F T; Abdollahi-Roodsaz, Shahla

    2017-06-23

    Perturbation of commensal intestinal microbiota has been associated with several autoimmune diseases. Mice deficient in interleukin-1 receptor antagonist (Il1rn -/- mice) spontaneously develop autoimmune arthritis and are susceptible to other autoimmune diseases such as psoriasis, diabetes, and encephalomyelitis; however, the mechanisms of increased susceptibility to these autoimmune phenotypes are poorly understood. We investigated the role of interleukin-1 receptor antagonist (IL-1Ra) in regulation of commensal intestinal microbiota, and assessed the involvement of microbiota subsets and innate and adaptive mucosal immune responses that underlie the development of spontaneous arthritis in Il1rn -/- mice. Using high-throughput 16S rRNA gene sequencing, we show that IL-1Ra critically maintains the diversity and regulates the composition of intestinal microbiota in mice. IL-1Ra deficiency reduced the intestinal microbial diversity and richness, and caused specific taxonomic alterations characterized by overrepresented Helicobacter and underrepresented Ruminococcus and Prevotella. Notably, the aberrant intestinal microbiota in IL1rn -/- mice specifically potentiated IL-17 production by intestinal lamina propria (LP) lymphocytes and skewed the LP T cell balance in favor of T helper 17 (Th17) cells, an effect transferable to WT mice by fecal microbiota. Importantly, LP Th17 cell expansion and the development of spontaneous autoimmune arthritis in IL1rn -/- mice were attenuated under germ-free condition. Selective antibiotic treatment revealed that tobramycin-induced alterations of commensal intestinal microbiota, i.e., reduced Helicobacter, Flexispira, Clostridium, and Dehalobacterium, suppressed arthritis in IL1rn -/- mice. The arthritis phenotype in IL1rn -/- mice was previously shown to depend on Toll-like receptor 4 (TLR4). Using the ablation of both IL-1Ra and TLR4, we here show that the aberrations in the IL1rn -/- microbiota are partly TLR4-dependent. We further

  14. IL-1ra alleviates inflammatory hyperalgesia through preventing phosphorylation of NMDA receptor NR-1 subunit in rats.

    PubMed

    Zhang, Rui-Xin; Li, Aihui; Liu, Bing; Wang, Linbo; Ren, Ke; Zhang, Haiqing; Berman, Brian M; Lao, Lixing

    2008-04-01

    Although it has been shown that pro-inflammatory cytokines such as interleukin-1beta (IL-1beta) facilitate perception of noxious inputs at the spinal level, the mechanisms have not been understood. This study determined the cell type that produces IL-1beta, the co-localization of IL-1 receptor type I (IL-1RI) and Fos and NR1 in the spinal cord, and the effects of IL-1 receptor antagonist (IL-1ra) on NR1 phosphorylation and hyperalgesia in a rat model of inflammatory pain. Phosphorylation of NR1, an essential subunit of the NMDA receptor (NMDAR), is known to modulate NMDAR activity and facilitate pain. Hyperalgesia was induced by injecting complete Freund's adjuvant (CFA, 0.08ml, 40microg Mycobacterium tuberculosis) into one hind paw of each rat. Paw withdrawal latency (PWL) was tested before CFA (-48h) for baseline and 2 and 24h after CFA to assess hyperalgesia. IL-1ra was given (i.t.) 24h before CFA to block the action of basal IL-1beta and 2h prior to each of two PWL tests to block CFA-induced IL-1beta. Spinal cords were removed for double immunostaining of IL-1beta/neuronal marker and IL-1beta/glial cell markers, IL-1RI/Fos and IL-1RI/NR1, and for Western blot to measure NR1 phosphorylation. The data showed that: (1) astrocytes produce IL-1beta, (2) IL-1RI is localized in Fos- and NR1-immunoreactive neurons within the spinal dorsal horn, and (3) IL-1ra at 0.01mg/rat significantly increased PWL (P<0.05) and inhibited NR1 phosphorylation compared to saline control. The results suggest that spinal IL-1beta is produced by astrocytes and enhances NR1 phosphorylation to facilitate inflammatory pain.

  15. Antagonism of Sigma-1 Receptors Blocks Compulsive-Like Eating

    PubMed Central

    Cottone, Pietro; Wang, Xiaofan; Park, Jin Won; Valenza, Marta; Blasio, Angelo; Kwak, Jina; Iyer, Malliga R; Steardo, Luca; Rice, Kenner C; Hayashi, Teruo; Sabino, Valentina

    2012-01-01

    Binge eating disorder is an addiction-like disorder characterized by episodes of rapid and excessive food consumption within discrete periods of time which occur compulsively despite negative consequences. This study was aimed at determining whether antagonism of Sigma-1 receptors (Sig-1Rs) blocked compulsive-like binge eating. We trained male wistar rats to obtain a sugary, highly palatable diet (Palatable group) or a regular chow diet (Chow control group), for 1 h a day under fixed ratio 1 operant conditioning. Following intake stabilization, we evaluated the effects of the selective Sig-1R antagonist BD-1063 on food responding. Using a light/dark conflict test, we also tested whether BD-1063 could block the time spent and the food eaten in an aversive, open compartment, where the palatable diet was offered. Furthermore, we measured Sig-1R mRNA and protein expression in several brain areas of the two groups, 24 h after the last binge session. Palatable rats rapidly developed binge-like eating, escalating the 1 h intake by four times, and doubling the eating rate and the regularity of food responding, compared to Chow rats. BD-1063 dose-dependently reduced binge-like eating and the regularity of food responding, and blocked the increased eating rate in Palatable rats. In the light/dark conflict test, BD-1063 antagonized the increased time spent in the aversive compartment and the increased intake of the palatable diet, without affecting motor activity. Finally, Palatable rats showed reduced Sig-1R mRNA expression in prefrontal and anterior cingulate cortices, and a two-fold increase in Sig-1R protein expression in anterior cingulate cortex compared to control Chow rats. These findings suggest that the Sig-1R system may contribute to the neurobiological adaptations driving compulsive-like eating, opening new avenues of investigation towards pharmacologically treating binge eating disorder. PMID:22713906

  16. Interleukin (IL)-1 in rat parturition: IL-1 receptors 1 and 2 and accessory proteins abundance in pregnant rat uterus at term - regulation by progesterone.

    PubMed

    Ishiguro, Tomohito; Takeda, Jun; Fang, Xin; Bronson, Heather; Olson, David M

    2016-07-01

    The role of interleukin-1 (IL-1), a pro-inflammatory cytokine, in parturition is typically noted by changes in its concentrations. Studying the expression of its receptor family, IL-1 receptor (IL-1R) 1, IL-1R2, IL-1R accessory protein (IL-1RAcP), and its predominantly brain isoform, IL-1RAcPb, during late gestation in the uterus in the Long-Evans rat is another. We assessed changes in their mRNA and protein relative abundance in the uterus and compared IL-1RAcP and IL-1RAcPb mRNA abundance in uterus, cervix, ovaries, placenta, and whole blood of Long-Evans rats during late gestation or in RU486 and progesterone-treated dams using quantitative real-time PCR and western immunoblotting. IL-1R1, IL-1RAcP, and IL-1RAcPb mRNA abundance significantly increased in the uterus at delivery whereas IL-1R2 mRNA abundance significantly decreased. IL-1R1 protein increased at term and IL-1R2 protein decreased at term compared to nonpregnant uteri. IL1-RAcPb mRNA abundance was less than IL-1RAcP, but in the lower uterine segment it was the highest of all tissues examined. RU486 stimulated preterm delivery and an increase in IL-1R1 mRNA abundance whereas progesterone administration extended pregnancy and suppressed the increase in IL-1R1. These data suggest that changes in uterine sensitivity to IL-1 occur during late gestation and suggest another level of regulation for the control of delivery. The roles for IL-1RAcP and IL-1RAcPb need to be determined, but may relate to different intracellular signaling pathways. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair

    PubMed Central

    Karo-Atar, D; Bordowitz, A; Wand, O; Pasmanik-Chor, M; Fernandez, I E; Itan, M; Frenkel, R; Herbert, D R; Finkelman, F D; Eickelberg, O; Munitz, A

    2016-01-01

    Molecular mechanisms that regulate lung repair vs. progressive scarring in pulmonary fibrosis remain elusive. Interleukin (IL)-4 and IL-13 are pro-fibrotic cytokines that share common receptor chains including IL-13 receptor (R) α1 and are key pharmacological targets in fibrotic diseases. However, the roles of IL-13Rα1 in mediating lung injury/repair are unclear. We report dysregulated levels of IL-13 receptors in the lungs of bleomycin-treated mice and to some extent in idiopathic pulmonary fibrosis patients. Transcriptional profiling demonstrated an epithelial cell-associated gene signature that was homeostatically dependent on IL-13Rα1 expression. IL-13Rα1 regulated a striking array of genes in the lung following bleomycin administration and Il13ra1 deficiency resulted in exacerbated bleomycin-induced disease. Increased pathology in bleomycin-treated Il13ra1−/− mice was due to IL-13Rα1 expression in structural and hematopoietic cells but not due to increased responsiveness to IL-17, IL-4, IL-13, increased IL-13Rα2 or type 1 IL-4R signaling. These data highlight underappreciated protective roles for IL-13Rα1 in lung injury and homeostasis. PMID:26153764

  18. Mutant Cells That Do Not Respond to Interleukin-1 (IL-1) Reveal a Novel Role for IL-1 Receptor-Associated Kinase

    PubMed Central

    Li, Xiaoxia; Commane, Mairead; Burns, Carmel; Vithalani, Kalpa; Cao, Zhaodan; Stark, George R.

    1999-01-01

    Mutagenized human 293 cells containing an interleukin-1 (IL-1)-regulated herpes thymidine kinase gene, selected in IL-1 and gancyclovir, have yielded many independent clones that are unresponsive to IL-1. The four clones analyzed here carry recessive mutations and represent three complementation groups. Mutant A in complementation group I1 lacks IL-1 receptor-associated kinase (IRAK), while the mutants in the other two groups are defective in unknown components that function upstream of IRAK. Expression of exogenous IRAK in I1A cells (I1A-IRAK) restores their responsiveness to IL-1. Neither NFκB nor Jun kinase is activated in IL-1-treated I1A cells, but these responses are restored in I1A-IRAK cells, indicating that IRAK is required for both. To address the role of the kinase activity of IRAK in IL-1 signaling, its ATP binding site was mutated (K239A), completely abolishing kinase activity. In transfected I1A cells, IRAK-K239A was still phosphorylated upon IL-1 stimulation and, surprisingly, still complemented all the defects in the mutant cells. Therefore, IRAK must be phosphorylated by a different kinase, and phospho-IRAK must play a role in IL-1-mediated signaling that does not require its kinase activity. PMID:10373513

  19. Deficient production of IL-1 receptor antagonist and IL-6 coupled to oxidative stress in cryopyrin-associated periodic syndrome monocytes.

    PubMed

    Carta, Sonia; Tassi, Sara; Delfino, Laura; Omenetti, Alessia; Raffa, Salvatore; Torrisi, Maria Rosaria; Martini, Alberto; Gattorno, Marco; Rubartelli, Anna

    2012-09-01

    To determine whether dysregulated production of cytokines downstream of interleukin (IL)-1 participates in the pathophysiology of cryopyrin-associated periodic syndromes (CAPS). Primary monocytes from patients with CAPS, unstimulated or after stimulation with lipopolysaccharide (LPS) and other Toll-like receptor (TLR) agonists, were examined for signs of stress and production of IL-1β, IL-1 receptor antagonist (IL-1Ra) and IL-6 in comparison with monocytes from patients with autoimmune diseases and from healthy donors. Unstimulated CAPS monocytes showed mild signs of stress including elevated levels of reactive oxygen species and fragmented mitochondria. Stress signs were worsened by TLR stimulation and eventually led to protein synthesis inhibition with strong impairment of production of cytokines downstream of IL-1, such as IL-1Ra and IL-6. These defects were not detected in monocytes from autoimmune patients and healthy donors. The stress state of LPS-stimulated CAPS monocytes and the consequent inhibition of translation are likely to be responsible for the impaired production of IL-1Ra and IL-6. The deficient secretion of these cytokines coupled with increased IL-1β release explains the severity of the IL-1-related clinical manifestations and the predominant implication of innate immunity in CAPS.

  20. Interleukin-1 and IL-1 receptor antagonist in gingival crevicular fluid.

    PubMed

    Rawlinson, A; Dalati, M H; Rahman, S; Walsh, T F; Fairclough, A L

    2000-10-01

    This study aimed to investigate the cytokine IL-1beta and its receptor antagonist IL-1ra in gingival crevicular fluid (GCF), in patients with adult periodontitis. A total of 40 GCF samples were harvested from 10 subjects with moderate to severe adult periodontitis and 10 healthy controls. Subjects were selected from both genders, with all the upper anterior teeth present, and with no relevant systemic illness, pregnancy or recent medication. All subjects were non-smokers and had not received any periodontal therapy within the preceding 3 months. Deep bleeding sites, deep non-bleeding sites and healthy sites were investigated in relation to upper anterior teeth. Clinical measurements were recorded for each site, after obtaining a GCF sample. IL-1beta and IL-1ra were quantified using new commercially available ELISA kits (Quantikine), and could be detected in all samples. The mean concentration for IL-1beta was 0.11 (SD 0.14) pg/microl for bleeding periodontitis sites, 0.04 (0.05) pg/microl for non-bleeding periodontitis sites, and 0.01 (0.03) pg/microl for healthy sites (p<0.001). In contrast, the mean concentration for IL-1ra was 6.99 (9.78) pg/microl for healthy sites, 0.59 (0.44) pg/microl for non-bleeding periodontitis sites, and 0.44 (0.36) pg/microl for bleeding periodontitis sites (p<0.001, except for comparisons between bleeding and non-bleeding periodontitis sites, p>0.05). For healthy sites, a strong inverse relationship was found between IL-1beta and IL-1ra levels in GCE. The results suggest a strong relationship between the severity of adult periodontitis and the increasing GCF levels of IL-1beta and decreasing levels of IL-1ra.

  1. Structural insights into the interaction of IL-33 with its receptors.

    PubMed

    Liu, Xi; Hammel, Michal; He, Yanfeng; Tainer, John A; Jeng, U-Ser; Zhang, Linqi; Wang, Shuying; Wang, Xinquan

    2013-09-10

    Interleukin (IL)-33 is an important member of the IL-1 family that has pleiotropic activities in innate and adaptive immune responses in host defense and disease. It signals through its ligand-binding primary receptor ST2 and IL-1 receptor accessory protein (IL-1RAcP), both of which are members of the IL-1 receptor family. To clarify the interaction of IL-33 with its receptors, we determined the crystal structure of IL-33 in complex with the ectodomain of ST2 at a resolution of 3.27 Å. Coupled with structure-based mutagenesis and binding assay, the structural results define the molecular mechanism by which ST2 specifically recognizes IL-33. Structural comparison with other ligand-receptor complexes in the IL-1 family indicates that surface-charge complementarity is critical in determining ligand-binding specificity of IL-1 primary receptors. Combined crystallography and small-angle X-ray-scattering studies reveal that ST2 possesses hinge flexibility between the D3 domain and D1D2 module, whereas IL-1RAcP exhibits a rigid conformation in the unbound state in solution. The molecular flexibility of ST2 provides structural insights into domain-level conformational change of IL-1 primary receptors upon ligand binding, and the rigidity of IL-1RAcP explains its inability to bind ligands directly. The solution architecture of IL-33-ST2-IL-1RAcP complex from small-angle X-ray-scattering analysis resembles IL-1β-IL-1RII-IL-1RAcP and IL-1β-IL-1RI-IL-1RAcP crystal structures. The collective results confer IL-33 structure-function relationships, supporting and extending a general model for ligand-receptor assembly and activation in the IL-1 family.

  2. A Novel Immunoregulatory Function for IL-23: Inhibition of IL-12 Dependent IFN-γ Production

    PubMed Central

    Sieve, Amy N.; Meeks, Karen D.; Lee, Suheung; Berg, Rance E.

    2011-01-01

    Summary Most studies investigating the function of IL-23 have concluded that it promotes IL-17 secreting T cells. While some reports have also characterized IL-23 as having redundant pro-inflammatory effects with IL-12, we have instead found that IL-23 antagonizes IL-12 induced secretion of IFN-γ. When splenocytes or purified populations of T cells are cultured with IL-23, IFN-γ secretion in response to IL-12 is dramatically reduced. The impact of IL-23 is most prominent in CD8 T cells, but is also observed in NK and CD4 T cells. Mechanistically, the IL-23 receptor is not required for this phenomenon, and IL-23 inhibits signaling through the IL-12 receptor by reducing IL-12 induced signal transducer and activator of transcription 4 (STAT4) phosphorylation. IL-23 is also able to reduce IFN-γ secretion by antagonizing endogenously produced IL-12 from Listeria monocytogenes (LM) infected macrophages. In vivo, LM infection induces higher serum IFN-γ levels and a greater percentage of IFN-γ+CD8+ T cells in IL-23p19 deficient mice as compared to wild-type mice. This increase in IFN-γ production coincides with increased LM clearance at days 2–3 post-infection. Our data suggest that IL-23 may be a key factor in determining the responsiveness of lymphocytes to IL-12 and their subsequent secretion of IFN-γ. PMID:20458705

  3. Lactoferricin mediates Anti-Inflammatory and Anti-Catabolic Effects via Inhibition of IL-1 and LPS Activity in the Intervertebral Disc†

    PubMed Central

    Kim, Jae-Sung; Ellman, Michael B.; Yan, Dongyao; An, Howard S.; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Zabo, Gabriella; Hoskin, David W.; Buechter, D.D.; Van Wijnen, Andre J.; Im, Hee-Jeong

    2013-01-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. PMID:23460134

  4. Lactoferricin mediates anti-inflammatory and anti-catabolic effects via inhibition of IL-1 and LPS activity in the intervertebral disc.

    PubMed

    Kim, Jae-Sung; Ellman, Michael B; Yan, Dongyao; An, Howard S; Kc, Ranjan; Li, Xin; Chen, Di; Xiao, Guozhi; Cs-Szabo, Gabriella; Hoskin, David W; Buechter, Doug D; Van Wijnen, Andre J; Im, Hee-Jeong

    2013-09-01

    The catabolic cytokine interleukin-1 (IL-1) and endotoxin lipopolysaccharide (LPS) are well-known inflammatory mediators involved in degenerative disc disease, and inhibitors of IL-1 and LPS may potentially be used to slow or prevent disc degeneration in vivo. Here, we elucidate the striking anti-catabolic and anti-inflammatory effects of bovine lactoferricin (LfcinB) in the intervertebral disc (IVD) via antagonism of both IL-1 and LPS-mediated catabolic activity using in vitro and ex vivo analyses. Specifically, we demonstrate the biological counteraction of LfcinB against IL-1 and LPS-mediated proteoglycan (PG) depletion, matrix-degrading enzyme production, and enzyme activity in long-term (alginate beads) and short-term (monolayer) culture models using bovine and human nucleus pulposus (NP) cells. LfcinB significantly attenuates the IL-1 and LPS-mediated suppression of PG production and synthesis, and thus restores PG accumulation and pericellular matrix formation. Simultaneously, LfcinB antagonizes catabolic factor mediated induction of multiple cartilage-degrading enzymes, including MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, in bovine NP cells at both mRNA and protein levels. LfcinB also suppresses the catabolic factor-induced stimulation of oxidative and inflammatory factors such as iNOS, IL-6, and toll-like receptor-2 (TLR-2) and TLR-4. Finally, the ability of LfcinB to antagonize IL-1 and LPS-mediated suppression of PG is upheld in an en bloc intradiscal microinjection model followed by ex vivo organ culture using both mouse and rabbit IVD tissue, suggesting a potential therapeutic benefit of LfcinB on degenerative disc disease in the future. Copyright © 2013 Wiley Periodicals, Inc.

  5. Zinc-induced Dnmt1 expression involves antagonism between MTF-1 and nuclear receptor SHP

    PubMed Central

    Zhang, Yuxia; Andrews, Glen K.; Wang, Li

    2012-01-01

    Dnmt1 is frequently overexpressed in cancers, which contributes significantly to cancer-associated epigenetic silencing of tumor suppressor genes. However, the mechanism of Dnmt1 overexpression remains elusive. Herein, we elucidate a pathway through which nuclear receptor SHP inhibits zinc-dependent induction of Dnmt1 by antagonizing metal-responsive transcription factor-1 (MTF-1). Zinc treatment induces Dnmt1 transcription by increasing the occupancy of MTF-1 on the Dnmt1 promoter while decreasing SHP expression. SHP in turn represses MTF-1 expression and abolishes zinc-mediated changes in the chromatin configuration of the Dnmt1 promoter. Dnmt1 expression is increased in SHP-knockout (sko) mice but decreased in SHP-transgenic (stg) mice. In human hepatocellular carcinoma (HCC), increased DNMT1 expression is negatively correlated with SHP levels. Our study provides a molecular explanation for increased Dnmt1 expression in HCC and highlights SHP as a potential therapeutic target. PMID:22362755

  6. ANDROGEN RECEPTOR ANTAGONISM BY THE ORGANOPHOSPHATE INSECTICIDE FENITROTHION

    EPA Science Inventory

    Androgen receptor antagonism by the organophosphate insecticide fenitrothion. Tamura, H., Maness, S.C., Reischmann, K. Dorman, D.C., Gray, L.E., and Gaido, K.W. (2000). Toxicol. Sci.

    Organophosphate insecticides represent one of the most widely used classes of pesticide...

  7. Interleukin 1 Receptor (IL-1R1) Activation Exacerbates Toxin-Induced Acute Kidney Injury.

    PubMed

    Privratsky, Jamie R; Zhang, Jiandong; Lu, Xiaohan; Rudemiller, Nathan; Wei, Qingqing; Yu, Yen-Rei; Gunn, Michael Dee; Crowley, Steven D

    2018-05-23

    Acute kidney injury (AKI) is a leading cause of morbidity and mortality. Cisplatin is an effective chemotherapeutic agent whose administration is limited by nephrotoxicity. Therapies to prevent cisplatin-induced AKI are lacking. While tumor necrosis factor-α (TNF) plays a key role in the pathogenesis of cisplatin nephrotoxicity, the immune signaling pathways that trigger TNF generation in this context require elucidation. Sterile injury triggers the release and activation of both isoforms of interleukin(IL)-1, IL-1α and IL-1β, and stimulation of the interleukin-1 receptor (IL-1R1) by these ligands engages a pro-inflammatory signaling cascade that induces TNF induction. We therefore hypothesized that IL-1R1 activation exacerbates cisplatin-induced AKI by inducing TNF production thereby augmenting inflammatory signals between kidney parenchymal cells and infiltrating myeloid cells. IL-1R1+/+ (WT) and IL-1R1-/- (KO) mice were subjected to cisplatin-induced AKI. Compared to WT mice, IL-1R1 KO mice had attenuated AKI as measured by serum creatinine and BUN; renal NGAL mRNA levels; and blinded histological analysis of kidney pathology. In the cisplatin-injured kidney, IL-1R1 KO mice had diminished levels of whole kidney TNF and fewer Ly6G-expressing neutrophils. In addition, an unbiased machine learning analysis of intra-renal immune cells revealed a diminished number of CD11bint/CD11cint myeloid cells in IL-1R1 KO injured kidneys compared to IL-1R1 WT kidneys. Following cisplatin, IL-1R1 KO kidneys, compared to WTs, had fewer TNF-producing macrophages, CD11bint/CD11cint cells, and neutrophils, consistent with an effect of IL-1R1 to polarize intra-renal myeloid cells toward a pro-inflammatory phenotype. Interruption of IL-1-dependent signaling pathways warrants further evaluation to decrease nephrotoxicity during cisplatin therapy.

  8. Activation of JAK3, but not JAK1, is critical to interleukin-4 (IL4) stimulated proliferation and requires a membrane-proximal region of IL4 receptor alpha.

    PubMed

    Malabarba, M G; Kirken, R A; Rui, H; Koettnitz, K; Kawamura, M; O'Shea, J J; Kalthoff, F S; Farrar, W L

    1995-04-21

    The tyrosine kinases JAK1 and JAK3 have been shown to undergo tyrosine phosphorylation in response to interleukin-2 (IL), IL4, IL7, and IL9, cytokines which share the common IL2 receptor gamma-chain (IL2R gamma), and evidence has been found for a preferential coupling of JAK3 to IL2R gamma and JAK1 to IL2R beta. Here we show, using human premyeloid TF-1 cells, that IL4 stimulates JAK3 to a larger extent than JAK1, based upon three different evaluation criteria. These include a more vigorous tyrosine phosphorylation of JAK3 as measured by anti-phosphotyrosine immunoblotting, a more marked activation of JAK3 as determined by in vitro tyrosine kinase assays and a more manifest presence of JAK3 in activated IL4-receptor complexes. These observations suggest that IL4 receptor signal transduction does not depend on equimolar heterodimerization of JAK1 and JAK3 following IL4-induced heterodimerization of IL4R alpha and IL2R gamma. Indeed, when human IL4R alpha was stably expressed in mouse BA/F3 cells, robust IL4-induced proliferation and JAK3 activation occurred without detectable involvement of JAK1, JAK2, or TYK2. The present study suggests that JAK1 plays a subordinate role in IL4 receptor signaling, and that in certain cells exclusive JAK3 activation may mediate IL4-induced cell growth. Moreover, mutational analysis of human IL4R alpha showed that a membrane-proximal cytoplasmic region was critical for JAK3 activation, while the I4R motif was not, which is compatible with a role of JAK3 upstream of the recruitment of the insulin receptor substrate-1/4PS signaling proteins by IL4 receptors.

  9. Structural basis of GM-CSF and IL-2 sequestration by the viral decoy receptor GIF

    PubMed Central

    Felix, Jan; Kandiah, Eaazhisai; De Munck, Steven; Bloch, Yehudi; van Zundert, Gydo C.P.; Pauwels, Kris; Dansercoer, Ann; Novanska, Katka; Read, Randy J.; Bonvin, Alexandre M.J.J.; Vergauwen, Bjorn; Verstraete, Kenneth; Gutsche, Irina; Savvides, Savvas N.

    2016-01-01

    Subversion of the host immune system by viruses is often mediated by molecular decoys that sequester host proteins pivotal to mounting effective immune responses. The widespread mammalian pathogen parapox Orf virus deploys GIF, a member of the poxvirus immune evasion superfamily, to antagonize GM-CSF (granulocyte macrophage colony-stimulating factor) and IL-2 (interleukin-2), two pleiotropic cytokines of the mammalian immune system. However, structural and mechanistic insights into the unprecedented functional duality of GIF have remained elusive. Here we reveal that GIF employs a dimeric binding platform that sequesters two copies of its target cytokines with high affinity and slow dissociation kinetics to yield distinct complexes featuring mutually exclusive interaction footprints. We illustrate how GIF serves as a competitive decoy receptor by leveraging binding hotspots underlying the cognate receptor interactions of GM-CSF and IL-2, without sharing any structural similarity with the cytokine receptors. Our findings contribute to the tracing of novel molecular mimicry mechanisms employed by pathogenic viruses. PMID:27819269

  10. ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way.

    PubMed

    Piccini, Alessandra; Carta, Sonia; Tassi, Sara; Lasiglié, Denise; Fossati, Gianluca; Rubartelli, Anna

    2008-06-10

    IL-1beta and IL-18 are crucial mediators of inflammation, and a defective control of their release may cause serious diseases. Yet, the mechanisms regulating IL-1beta and IL-18 secretion are partially undefined. Both cytokines are produced as inactive cytoplasmic precursors. Processing to the active form is mediated by caspase-1, which is in turn activated by the multiprotein complex inflammasome. Here, we show that in primary human monocytes microbial components acting on different pathogen-sensing receptors and the danger-associated molecule uric acid are all competent to induce maturation and secretion of IL-1beta and IL-18 through a process that involves as a first event the extracellular release of endogenous ATP. ATP release is followed by autocrine stimulation of the purinergic receptors P2X(7). Indeed, antagonists of the P2X(7) receptor (P2X(7)R), or treatment with apyrase, prevent IL-1beta and IL-18 maturation and secretion triggered by the different stimuli. At variance, blocking P2X(7)R activity has no effects on IL-1beta secretion by monocytes carrying a mutated inflammasome that does not require exogenous ATP for activation. P2X(7)R engagement is followed by K+ efflux and activation of phospholipase A(2). Both events are required for processing and secretion induced by all of the stimuli. Thus, stimuli acting on different pathogen-sensing receptors converge on a common pathway where ATP externalization is the first step in the cascade of events leading to inflammasome activation and IL-1beta and IL-18 secretion.

  11. Human IgG1 antibodies antagonizing activating receptor NKG2D on natural killer cells

    PubMed Central

    Steigerwald, Jutta; Raum, Tobias; Pflanz, Stefan; Cierpka, Ronny; Mangold, Susanne; Rau, Doris; Hoffmann, Patrick; Kvesic, Majk; Zube, Christina; Linnerbauer, Stefanie; Lumsden, John; Sriskandarajah, Mirnaalini; Kufer, Peter; Baeuerle, Patrick A

    2009-01-01

    NKG2D is a surface receptor expressed on NK cells but also on CD8+ T cells, γδ T cells, and auto-reactive CD4+/CD28− T cells of patients with rheumatoid arthritis. Various studies suggested that NKG2D plays a critical role in autoimmune diseases, e.g., in diabetes, celiac disease and rheumatoid arthritis (RA), rendering the activating receptor a potential target for antibody-based therapies. Here, we describe the generation and characteristics of a panel of human, high-affinity anti-NKG2D IgG1 monoclonal antibodies (mAbs) derived by phage display. The lead molecule mAb E4 bound with an affinity (KD) of 2.7 ± 1.4 × 10−11 M to soluble and membrane-bound human NKG2D, and cross-reacted with NKG2D from cynomolgus macaque, indicating potential suitability for studies in a relevant primate model. MAb E4 potently antagonized the cytolytic activity of NKL cells against BaF/3-MICA cells expressing NKG2D ligand, and blocked the NKG2D ligand-induced secretion of TNFα, IFNγ and GM-CSF, as well as surface expression of CRTAM by NK cells cultured on immobilized MICA or ULBP-1 ligands. The antibody did not show a detectable loss of binding to NKG2D after seven days in human serum at 37°C, and resisted thermal inactivation up to 70°C. Based on these results, anti-human NKG2D mAb E4 provides an ideal candidate for development of a novel therapeutic agent antagonizing a key receptor of NK and cytotoxic T cells with implications in autoimmune diseases. PMID:20061825

  12. Antagonism of ligand-gated ion channel receptors: two domains of the glycine receptor alpha subunit form the strychnine-binding site.

    PubMed Central

    Vandenberg, R J; French, C R; Barry, P H; Shine, J; Schofield, P R

    1992-01-01

    The inhibitory glycine receptor (GlyR) is a member of the ligand-gated ion channel receptor superfamily. Glycine activation of the receptor is antagonized by the convulsant alkaloid strychnine. Using in vitro mutagenesis and functional analysis of the cDNA encoding the alpha 1 subunit of the human GlyR, we have identified several amino acid residues that form the strychnine-binding site. These residues were identified by transient expression of mutated cDNAs in mammalian (293) cells and examination of resultant [3H]strychnine binding, glycine displacement of [3H]strychnine, and electrophysiological responses to the application of glycine and strychnine. This mutational analysis revealed that residues from two separate domains within the alpha 1 subunit form the binding site for the antagonist strychnine. The first domain includes the amino acid residues Gly-160 and Tyr-161, and the second domain includes the residues Lys-200 and Tyr-202. These results, combined with analyses of other ligand-gated ion channel receptors, suggest a conserved tertiary structure and a common mechanism for antagonism in this receptor superfamily. PMID:1311851

  13. IL-1 receptor antagonist-mediated therapeutic effect in murine myasthenia gravis is associated with suppressed serum proinflammatory cytokines, C3, and anti-acetylcholine receptor IgG1.

    PubMed

    Yang, Huan; Tüzün, Erdem; Alagappan, Dhivyaa; Yu, Xiang; Scott, Benjamin G; Ischenko, Alexander; Christadoss, Premkumar

    2005-08-01

    In myasthenia gravis (MG), TNF and IL-1beta polymorphisms and high serum levels of these proinflammatory cytokines have been observed. Likewise, TNF and IL-1beta are critical for the activation of acetylcholine receptor (AChR)-specific T and B cells and for the development of experimental autoimmune myasthenia gravis (EAMG) induced by AChR immunization. We tested the therapeutic effect of human recombinant IL-1 receptor antagonist (IL-1ra) in C57BL/6 mice with EAMG. Multiple daily injections of 0.01 mg of IL-1ra administered for 2 wk following two AChR immunizations decreased the incidence and severity of clinical EAMG. Furthermore, IL-1ra treatment of mice with ongoing clinical EAMG reduced the clinical symptoms of disease. The IL-1ra-mediated suppression of clinical disease was associated with suppressed serum IFN-gamma, TNF-alpha, IL-1beta, IL-2, IL-6, C3, and anti-AChR IgG1 without influencing total serum IgG. Therefore, IL-1ra could be used as a nonsteroidal drug for the treatment of MG.

  14. The β-glucan receptor dectin-1 promotes lung immunopathology during fungal allergy via IL-22.

    PubMed

    Lilly, Lauren M; Gessner, Melissa A; Dunaway, Chad W; Metz, Allison E; Schwiebert, Lisa; Weaver, Casey T; Brown, Gordon D; Steele, Chad

    2012-10-01

    Sensitization to fungi, such as the mold Aspergillus fumigatus, is increasingly becoming linked with asthma severity. We have previously shown that lung responses generated via the β-glucan receptor Dectin-1 are required for lung defense during acute, invasive A. fumigatus infection. Unexpectedly, in an allergic model of chronic lung exposure to live A. fumigatus conidia, β-glucan recognition via Dectin-1 led to the induction of multiple proallergic (Muc5ac, Clca3, CCL17, CCL22, and IL-33) and proinflammatory (IL-1β and CXCL1) mediators that compromised lung function. Attenuated proallergic and proinflammatory responses in the absence of Dectin-1 were not associated with changes in Ido (IDO), Il12p35/Ebi3 (IL-35), IL-10, or TGF-β levels. Assessment of Th responses demonstrated that purified lung CD4(+) T cells produced IL-4, IL-13, IFN-γ, and IL-17A, but not IL-22, in a Dectin-1-dependent manner. In contrast, we observed robust, Dectin-1-dependent IL-22 production by unfractionated lung digest cells. Intriguingly, the absence of IL-22 alone mimicked the attenuated proallergic and proinflammatory responses observed in the absence of Dectin-1, suggesting that Dectin-1-mediated IL-22 production potentiated responses that led to decrements in lung function. To this end, neutralization of IL-22 improved lung function in normal mice. Collectively, these results indicate that the β-glucan receptor Dectin-1 contributes to lung inflammation and immunopathology associated with persistent fungal exposure via the production of IL-22.

  15. Interleukin-12 (IL-12)-driven alloimmune responses in vitro and in vivo: requirement for beta1 subunit of the IL-12 receptor.

    PubMed

    Piccotti, J R; Li, K; Chan, S Y; Eichwald, E J; Bishop, D K

    1999-06-15

    Interleukin-12 (IL-12) mediates its biologic activities via binding high-affinity receptors on T and natural killer cells. Although emphasis has been placed on the requirement for IL-12Rbeta2 in IL-12 bioactivity, the role of IL-12Rbeta1 is less well defined. The current study evaluated the effects of exogenous IL-12 on alloantigen-specific immune responses and determined the requirement for IL-12Rbeta1 in IL-12-mediated alloimmunity. The mouse heterotopic cardiac transplant model was employed to evaluate the effects of IL-12 on alloantigen-specific immune responses in vivo. In addition, IFN-gamma production in mixed lymphocyte cultures (MLC) supplemented with IL-12 was measured to assess the effects of IL-12 on Th1 function in vitro. Mice deficient in IL-12Rbeta1 (IL-12Rbeta1-/-) were used to determine the requirement for this receptor component in IL-12-driven alloimmune responses. Addition of IL-12 to MLC consisting of wild-type splenocytes enhanced alloantigen-specific proliferative responses and Th1 development. In contrast, IL-12 did not alter these in vitro immune parameters in IL-12Rbeta1-/- MLC. Treatment of wild-type cardiac allograft recipients with IL-12 resulted in high concentrations of serum interferon-gamma (IFN-gamma) and a 10-fold increase in IFN-gamma production by recipient splenocytes after restimulation in vitro. However, this fulminate Th1 response did not accelerate allograft rejection. Importantly, IL-12 had no effect on serum IFN-gamma or in vivo priming of Thl in IL-12Rbeta1-/- recipients. Finally, administration of IL-12 to WT allograft recipients resulted in a bimodal alloantibody response: antibody production was suppressed at high doses of IL-12, and enhanced at lower doses. IL-12 markedly enhances alloantigen-specific immune function; however, these exaggerated Th1-driven responses do not culminate in accelerated allograft rejection. Further, these data indicate that IL-12Rbeta1 is essential for the enhancement of both in vitro and

  16. Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway.

    PubMed

    Cook, Ian H; Evans, Jemma; Maldonado-Pérez, David; Critchley, Hilary O; Sales, Kurt J; Jabbour, Henry N

    2010-03-01

    Prokineticin-1 (PROK1) is a multifunctional secreted protein which signals via the G-protein coupled receptor, PROKR1. Previous data from our laboratory using a human genome survey microarray showed that PROK1-prokineticin receptor 1 (PROKR1) signalling regulates numerous genes important for establishment of early pregnancy, including the cytokine interleukin (IL)-11. Here, we have shown that PROK1-PROKR1 induces the expression of IL-11 in PROKR1 Ishikawa cells and first trimester decidua via the calcium-calcineurin signalling pathway in a guanine nucleotide-binding protein (G(q/11)), extracellular signal-regulated kinases, Ca(2+) and calcineurin-nuclear factor of activated T cells dependent manner. Conversely, treatment of human decidua with a lentiviral miRNA to abolish endogenous PROK1 expression results in a significant reduction in IL-11 expression and secretion. Importantly, we have also shown a regulatory role for the regulator of calcineurin 1 isoform 4 (RCAN1-4). Overexpression of RCAN1-4 in PROKR1 Ishikawa cells using an adenovirus leads to a reduction in PROK1 induced IL-11 indicating that RCAN1-4 is a negative regulator in the calcineurin-mediated signalling to IL-11. Finally, we have shown the potential for both autocrine and paracrine signalling in the human endometrium by co-localizing IL-11, IL-11Ralpha and PROKR1 within the stromal and glandular epithelial cells of non-pregnant endometrium and first trimester decidua. Overall we have identified and characterized the signalling components of a novel PROK1-PROKR1 signalling pathway regulating IL-11.

  17. Prokineticin-1 (PROK1) modulates interleukin (IL)-11 expression via prokineticin receptor 1 (PROKR1) and the calcineurin/NFAT signalling pathway

    PubMed Central

    Cook, Ian H.; Evans, Jemma; Maldonado-Pérez, David; Critchley, Hilary O.; Sales, Kurt J.; Jabbour, Henry N.

    2010-01-01

    Prokineticin-1 (PROK1) is a multifunctional secreted protein which signals via the G-protein coupled receptor, PROKR1. Previous data from our laboratory using a human genome survey microarray showed that PROK1–prokineticin receptor 1 (PROKR1) signalling regulates numerous genes important for establishment of early pregnancy, including the cytokine interleukin (IL)-11. Here, we have shown that PROK1–PROKR1 induces the expression of IL-11 in PROKR1 Ishikawa cells and first trimester decidua via the calcium–calcineurin signalling pathway in a guanine nucleotide-binding protein (Gq/11), extracellular signal-regulated kinases, Ca2+ and calcineurin–nuclear factor of activated T cells dependent manner. Conversely, treatment of human decidua with a lentiviral miRNA to abolish endogenous PROK1 expression results in a significant reduction in IL-11 expression and secretion. Importantly, we have also shown a regulatory role for the regulator of calcineurin 1 isoform 4 (RCAN1-4). Overexpression of RCAN1-4 in PROKR1 Ishikawa cells using an adenovirus leads to a reduction in PROK1 induced IL-11 indicating that RCAN1-4 is a negative regulator in the calcineurin-mediated signalling to IL-11. Finally, we have shown the potential for both autocrine and paracrine signalling in the human endometrium by co-localizing IL-11, IL-11Rα and PROKR1 within the stromal and glandular epithelial cells of non-pregnant endometrium and first trimester decidua. Overall we have identified and characterized the signalling components of a novel PROK1–PROKR1 signalling pathway regulating IL-11. PMID:19801577

  18. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    PubMed

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target. © 2014 John Wiley & Sons Ltd.

  19. Association of of IL-1 receptor antagonist (IL-1RN) and interleukin-1β genes (IL-1β) polymorphisms with recurrent pregnancy loss in Iranian Azeri women.

    PubMed

    Ali Rahmani, Seyyed; Paknejad, Zeynab; Mohammadkhanlou, Masoumeh; Daneshparvar, Marina

    2017-12-27

    Objective One of the most important problems in human reproduction is recurrent pregnancy loss (RPL). RPL is defined as three or more consecutive abortions in the first trimester of pregnancy. The association between the polymorphisms in the immunological factors and RPL was investigated. The aim of our study was to determine the association of interleukin receptor antagonist (IL-IRN) and interleukin-1β (IL-1β) polymorphisms with RPL in Iranian Azeri women. Materials and methods The study participants consisted of 100 women with RPL of Iranian Azeri origin. The control group comprised 100 age- and ethnically-matched healthy women of the same reproductive age. Genomic DNA was extracted from the whole blood and genotype determinations were performed using polymerase chain reaction (PCR) amplification followed by restriction fragment length polymorphism (RFLP) analysis. Results Our results showed no significant relationship between IL-1RN polymorphism and RPL. The homozygous state in -857 C/T variant was seen to be higher in RPL patients than in control subjects. Also frequency of wild type genotype was lower in RPL patients than in controls. However, this associations was not significant. Conclusion This study suggested that -511 C/T (rs16944) and -31 C/T (rs1143627) polymorphisms in IL-1β gene may not be involved in RPL in Iranian Azeri women. Also the promoter polymorphism of the IL-1RN gene may not play a role in the susceptibility to RPL.

  20. Short-term exposure to oleandrin enhances responses to IL-8 by increasing cell surface IL-8 receptors

    PubMed Central

    Raviprakash, Nune; Manna, Sunil Kumar

    2014-01-01

    BACKGROUND AND PURPOSE One of the first steps in host defence is the migration of leukocytes. IL-8 and its receptors are a chemokine system essential to such migration. Up-regulation of these receptors would be a viable strategy to treat dysfunctional host defence. Here, we studied the effects of the plant glycoside oleandrin on responses to IL-8 in a human monocytic cell line. EXPERIMENTAL APPROACH U937 cells were incubated with oleandrin (1-200 ng mL−1) for either 1 h (pulse) or for 24 h (non-pulse). Apoptosis; activation of NF-κB, AP-1 and NFAT; calcineurin activity and IL-8 receptors (CXCR1 and CXCR2) were measured using Western blotting, RT-PCR and reporter gene assays. KEY RESULTS Pulse exposure to oleandrin did not induce apoptosis or cytoxicity as observed after non-pulse exposure. Pulse exposure enhanced activation of NF-κB induced by IL-8 but not that induced by TNF-α, IL-1, EGF or LPS. Exposure to other apoptosis-inducing compounds (azadirachtin, resveratrol, thiadiazolidine, or benzofuran) did not enhance activation of NF-κB. Pulse exposure to oleandrin increased expression of IL-8 receptors and chemotaxis, release of enzymes and activation of NF-κB, NFAT and AP-1 along with increased IL-8-mediated calcineurin activation, and wound healing. Pulse exposure increased numbers of cell surface IL-8 receptors. CONCLUSIONS AND IMPLICATIONS Short-term (1 h; pulse) exposure to a toxic glycoside oleandrin, enhanced biological responses to IL-8 in monocytic cells, without cytoxicity. Pulse exposure to oleandrin could provide a viable therapy for those conditions where leukocyte migration is defective. PMID:24172227

  1. Strikingly higher interleukin (IL)-1alpha, IL-1beta and soluble interleukin-1 receptor antagonist (sIL-1RA) but similar IL-2, sIL-2R, IL-3, IL-4, IL-6, sIL-6R, IL-10, tumour necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta and interferon IFN-gamma urine levels in healthy females compared to healthy males: protection against urinary tract injury?

    PubMed

    Sadeghi, M; Daniel, V; Naujokat, C; Weimer, R; Opelz, G

    2005-11-01

    The aim of this prospective study was to examine gender-related differences of cytokines in the plasma and urine of healthy individuals that might provide a clue concerning the lower rate of chronic renal diseases in females. Soluble interleukin-1 receptor antagonist (sIL-1RA), interleukin (IL)-1alpha, IL-1beta, IL-2, sIL-2R, IL-3, IL-4, IL-6, sIL-6R, IL-10, tumor necrosis factor (TNF)-alpha, transforming growth factor (TGF)-beta(2) and interferon (IFN)-gamma were determined using standard enzyme-linked immunosorbent assay (ELISA). Cytokine levels were determined in simultaneously obtained plasma and urine samples of 18 male and 28 female healthy members of our laboratory staff. Urine cytokine levels were studied three times at 1-month intervals. All individuals had a negative urine nitrite test and showed no symptoms of urinary tract infection (UTI). Plasma levels of all studied cytokines were similar in males and females (P = n.s.). However, females had significantly higher urine IL-1alpha (P < 0.0001; P < 0.0001; P < 0.0001) and sIL-1RA (P = 0.0001; P = 0.0003; P = 0.0002) than males at three and higher IL-1beta at one of the three investigations (P = 0.098; P = 0.003; P = 0.073). Urine levels of the other cytokines were similar in males and females. Higher urine levels of IL-1alpha, IL-1beta and sIL-1RA in females may result from stimulation of cells in the urinary tract. Increased sIL-1RA might block T lymphocyte activation. The elevated cytokines may play a role in the protection of the female urinary tract from certain renal diseases, such as pyelonephritis and other inflammatory and sclerotic kidney diseases.

  2. Structural basis for the specific recognition of IL-18 by its alpha receptor.

    PubMed

    Wei, Hui; Wang, Dongli; Qian, Yun; Liu, Xi; Fan, Shilong; Yin, Hsien-Sheng; Wang, Xinquan

    2014-11-03

    Interleukin 18 (IL-18), a member of the IL-1 family of cytokines, is an important regulator of innate and acquired immune responses. It signals through its ligand-binding primary receptor IL-18Rα and accessory receptor IL-18Rβ. Here we report the crystal structure of IL-18 with the ectodomain of IL-18Rα, which reveals the structural basis for their specific recognition. It confirms that surface charge complementarity determines the ligand-binding specificity of primary receptors in the IL-1 receptor family. We suggest that IL-18 signaling complex adopts an architecture similar to other agonistic cytokines and propose a general ligand-receptor assembly and activation model for the IL-1 family. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Stat1-Vitamin D Receptor Interactions Antagonize 1,25-Dihydroxyvitamin D Transcriptional Activity and Enhance Stat1-Mediated Transcription

    PubMed Central

    Vidal, Marcos; Ramana, Chilakamarti V.; Dusso, Adriana S.

    2002-01-01

    The cytokine gamma interferon (IFN-γ) and the calcitropic steroid hormone 1,25-dihydroxyvitamin D (1,25D) are activators of macrophage immune function. In sarcoidosis, tuberculosis, and several granulomatoses, IFN-γ induces 1,25D synthesis by macrophages and inhibits 1,25D induction of 24-hydroxylase, a key enzyme in 1,25D inactivation, causing high levels of 1,25D in serum and hypercalcemia. This study delineates IFN-γ-1,25D cross talk in human monocytes-macrophages. Nuclear accumulation of Stat1 and vitamin D receptor (VDR) by IFN-γ and 1,25D promotes protein-protein interactions between Stat1 and the DNA binding domain of the VDR. This prevents VDR-retinoid X receptor (RXR) binding to the vitamin D-responsive element, thus diverting the VDR from its normal genomic target on the 24-hydroxylase promoter and antagonizing 1,25D-VDR transactivation of this gene. In contrast, 1,25D enhances IFN-γ action. Stat1-VDR interactions, by preventing Stat1 deactivation by tyrosine dephosphorylation, cooperate with IFN-γ/Stat1-induced transcription. This novel 1,25D-IFN-γ cross talk explains the pathogenesis of abnormal 1,25D homeostasis in granulomatous processes and provides new insights into 1,25D immunomodulatory properties. PMID:11909970

  4. The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies.

    PubMed

    Brinkmann, Constantin; Nehlmeier, Inga; Walendy-Gnirß, Kerstin; Nehls, Julia; González Hernández, Mariana; Hoffmann, Markus; Qiu, Xiangguo; Takada, Ayato; Schindler, Michael; Pöhlmann, Stefan

    2016-12-15

    The glycoprotein of Ebola virus (EBOV GP), a member of the family Filoviridae, facilitates viral entry into target cells. In addition, EBOV GP antagonizes the antiviral activity of the host cell protein tetherin, which may otherwise restrict EBOV release from infected cells. However, it is unclear how EBOV GP antagonizes tetherin, and it is unknown whether the GP of Lloviu virus (LLOV), a filovirus found in dead bats in Northern Spain, also counteracts tetherin. Here, we show that LLOV GP antagonizes tetherin, indicating that tetherin may not impede LLOV spread in human cells. Moreover, we demonstrate that appropriate processing of N-glycans in tetherin/GP-coexpressing cells is required for tetherin counteraction by EBOV GP. Furthermore, we show that an intact receptor-binding domain (RBD) in the GP1 subunit of EBOV GP is a prerequisite for tetherin counteraction. In contrast, blockade of Niemann-Pick disease type C1 (NPC1), a cellular binding partner of the RBD, did not interfere with tetherin antagonism. Finally, we provide evidence that an antibody directed against GP1, which protects mice from a lethal EBOV challenge, may block GP-dependent tetherin antagonism. Our data, in conjunction with previous reports, indicate that tetherin antagonism is conserved among the GPs of all known filoviruses and demonstrate that the GP1 subunit of EBOV GP plays a central role in tetherin antagonism. Filoviruses are reemerging pathogens that constitute a public health threat. Understanding how Ebola virus (EBOV), a highly pathogenic filovirus responsible for the 2013-2016 Ebola virus disease epidemic in western Africa, counteracts antiviral effectors of the innate immune system might help to define novel targets for antiviral intervention. Similarly, determining whether Lloviu virus (LLOV), a filovirus detected in bats in northern Spain, is inhibited by innate antiviral effectors in human cells might help to determine whether the virus constitutes a threat to humans. The

  5. Association between Kinin B1 Receptor Expression and Leukocyte Trafficking across Mouse Mesenteric Postcapillary Venules

    PubMed Central

    McLean, Peter G.; Ahluwalia, Amrita; Perretti, Mauro

    2000-01-01

    Using intravital microscopy, we examined the role played by B1 receptors in leukocyte trafficking across mouse mesenteric postcapillary venules in vivo. B1 receptor blockade attenuated interleukin (IL)-1β–induced (5 ng intraperitoneally, 2 h) leukocyte–endothelial cell interactions and leukocyte emigration (∼50% reduction). The B1 receptor agonist des-Arg9bradykinin (DABK), although inactive in saline- or IL-8–treated mice, caused marked neutrophil rolling, adhesion, and emigration 24 h after challenge with IL-1β (when the cellular response to IL-1β had subsided). Reverse transcriptase polymerase chain reaction and Western blot revealed a temporal association between the DABK-induced response and upregulation of mesenteric B1 receptor mRNA and de novo protein expression after IL-1β treatment. DABK-induced leukocyte trafficking was antagonized by the B1 receptor antagonist des-arg10HOE 140 but not by the B2 receptor antagonist HOE 140. Similarly, DABK effects were maintained in B2 receptor knockout mice. The DABK-induced responses involved the release of neuropeptides from C fibers, as capsaicin treatment inhibited the responses. Treatment with the neurokinin (NK)1 and NK3 receptor antagonists attenuated the responses, whereas NK2, calcitonin gene-related peptide, or platelet-activating factor receptor antagonists had no effect. Substance P caused leukocyte recruitment that, similar to DABK, was inhibited by NK1 and NK3 receptor blockade. Mast cell depletion using compound 48/80 reduced DABK-induced leukocyte trafficking, and DABK treatment was shown histologically to induce mast cell degranulation. DABK-induced trafficking was inhibited by histamine H1 receptor blockade. Our findings provide clear evidence that B1 receptors play an important role in the mediation of leukocyte–endothelial cell interactions in postcapillary venules, leading to leukocyte recruitment during an inflammatory response. This involves activation of C fibers and mast cells

  6. Transduction of human IL-9 receptor cDNA into TF1 cells induces IL-9 dependency and erythroid differentiation.

    PubMed

    Xiao, M; Luo, Z; Mantel, C; Broxmeyer, H E; Lu, L

    2000-02-01

    Human growth factor-dependent cell line TF1, which lacks interleukin (IL)-9 receptors (R) and does not grow in IL-9, was transduced with a retroviral vector containing human IL-9R cDNA and a selection marker. An IL-9-dependent TF1 cell line, which could also grow in other cytokines, was established after selection in G418 and could produce mature RBC in response to cytokine stimulation. TF1 cells transduced with the same viral vector without the IL-9R insert cDNA (mock control) and then selected responded the same as nontransduced TF1 cells. They failed to grow in response to IL-9 and did not generate RBC. An increased number and size of burst-forming units-erythroid (BFU-E)-like colonies were detected from IL-9R-transduced TF1 cells, compared with mock-transduced cells, in response to erythropoietin (EPO) and IL-9. To evaluate self-renewal and differentiation capacity, colony-replating assays were performed in the presence of IL-3, GM-CSF, IL-9, and EPO. After four replatings, the cloning efficiency of IL-9R-transduced TF1 cells decreased from 98% to 38%, most likely due to terminal erythroid cell differentiation. In contrast, no change in replating efficiency was detected in mock-transduced cells. TF1 cells stably expressing IL-9R and responding to IL-9 can serve as a cell line model to study the intracellular signals mediating IL-9-induced erythroid cell proliferation and differentiation.

  7. A Brief History of IL-1 and IL-1 Ra in Rheumatology.

    PubMed

    Dayer, Jean-Michel; Oliviero, Francesca; Punzi, Leonardo

    2017-01-01

    The history of what, in 1979, was called interleukin-1 (IL-1), orchestrator of leukocyte inter-communication, began many years before then, initially by the observation of fever induction via the endogenous pyrogen (EP) (1974) and then in rheumatology on the role in tissue destruction in rheumatoid diseases via the induction of collagenase and PGE 2 in human synovial cells by a mononuclear cell factor (MCF) (1977). Since then, the family has exploded to presently 11 members as well as many membrane-bound and soluble receptor forms. The discovery of a natural Interleukin-1 receptor antagonist (IL-1Ra) in human biological fluids has highlighted the importance of IL-1 and IL-1Ra in human diseases. Evidence delineating its role in autoinflammatory syndromes and the elucidation of the macromolecular complex referred to as "inflammasome" have been instrumental to our understanding of the link with IL-1. At present, the IL-1blockade as therapeutic approach is crucial for many hereditary autoinflammatory diseases, as well as for adult-onset Still's disease, crystal-induced arthropathies, certain skin diseases including neutrophil-triggered skin diseases, Behçet's disease and deficiency of IL-1Ra and other rare fever syndromes. Its role is only marginally important in rheumatoid arthritis and is still under debate with regard to osteoarthritis, type 2 diabetes mellitus, cardiovascular diseases and cancer. This brief historical review focuses on some aspects of IL-1, mainly IL-1β and IL-Ra, in rheumatology. There are many excellent reviews focusing on the IL-1 family in general or with regard to specific diseases or biological discoveries.

  8. MAPK Regulation of IL-4/-13 Receptors Contributes to the Synergistic Increase in CCL11/Eotaxin-1 in Response to TGF-β1 and IL-13 in Human Airway Fibroblasts

    PubMed Central

    Zhou, Xiuxia; Hu, Haizhen; Balzar, Silvana; Trudeau, John B.; Wenzel, Sally E.

    2012-01-01

    CCL11/eotaxin-1 is a potent eosinophilic CC chemokine expressed by primary human fibroblasts. The combination of TGF-β1 and IL-13 synergistically increases CCL11 expression, but the mechanisms behind the synergy are unclear. To address this, human airway fibroblast cultures from normal and asthmatic subjects were exposed to IL-13 alone or TGF-β1 plus IL-13. Transcriptional (nuclear run-on) and post-transcriptional (mRNA stability) assays confirmed that transcriptional regulation is critical for synergistic expression of CCL11. TGF-β1 plus IL-13 synergistically increased STAT-6 phosphorylation, nuclear translocation and binding to the CCL11 promoter as compared to IL-13 alone. STAT-6 siRNA significantly knocked down both STAT-6 mRNA expression and phosphorylation, and inhibited CCL11 mRNA and protein expression. Regulation of the IL-4 receptor α (IL-4Rα) complex by TGF-β1 augmented IL-13 signaling by dampening IL-13 receptor α2 (IL-13Rα2) expression, overcoming IL-13's autoregulation of its pathway and enhancing the expression of CCL11. Our data suggest that TGF-β1 induced activation of the MEK-ERK pathway reduces IL-13Rα2 expression induced by IL-13. Thus, TGF-β1, a pleiotropic cytokine upregulated in asthmatic airways, can augment eosinophilic inflammation by interfering with IL-13's negative feedback autoregulatory loop under MEK/ERK dependent conditions. PMID:22573806

  9. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases.

    PubMed

    Akdis, Mübeccel; Aab, Alar; Altunbulakli, Can; Azkur, Kursat; Costa, Rita A; Crameri, Reto; Duan, Su; Eiwegger, Thomas; Eljaszewicz, Andrzej; Ferstl, Ruth; Frei, Remo; Garbani, Mattia; Globinska, Anna; Hess, Lena; Huitema, Carly; Kubo, Terufumi; Komlosi, Zsolt; Konieczna, Patricia; Kovacs, Nora; Kucuksezer, Umut C; Meyer, Norbert; Morita, Hideaki; Olzhausen, Judith; O'Mahony, Liam; Pezer, Marija; Prati, Moira; Rebane, Ana; Rhyner, Claudio; Rinaldi, Arturo; Sokolowska, Milena; Stanic, Barbara; Sugita, Kazunari; Treis, Angela; van de Veen, Willem; Wanke, Kerstin; Wawrzyniak, Marcin; Wawrzyniak, Paulina; Wirz, Oliver F; Zakzuk, Josefina Sierra; Akdis, Cezmi A

    2016-10-01

    There have been extensive developments on cellular and molecular mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections during the last few years. Better understanding the functions, reciprocal regulation, and counterbalance of subsets of immune and inflammatory cells that interact through interleukins, interferons, TNF-α, and TGF-β offer opportunities for immune interventions and novel treatment modalities in the era of development of biological immune response modifiers particularly targeting these molecules or their receptors. More than 60 cytokines have been designated as interleukins since the initial discoveries of monocyte and lymphocyte interleukins (called IL-1 and IL-2, respectively). Studies of transgenic or gene-deficient mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided essential information about their functions. Here we review recent developments on IL-1 to IL-38, TNF-α, TGF-β, and interferons. We highlight recent advances during the last few years in this area and extensively discuss their cellular sources, targets, receptors, signaling pathways, and roles in immune regulation in patients with allergy and asthma and other inflammatory diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Fasting Induces IL-1 Resistance and Free-Fatty Acid-Mediated Up-Regulation of IL-1R2 and IL-1RA

    PubMed Central

    Joesting, Jennifer J.; Moon, Morgan L.; Gainey, Stephen J.; Tisza, Brittany L.; Blevins, Neil A.; Freund, Gregory G.

    2014-01-01

    Objective: Weight-loss is a near societal obsession and many diet programs use significant calorie restriction including fasting/short term starvation to generate rapid effects. Fasting is also a well-recognized cause of immunosuppression especially within the innate immune system. In this study, we sought to determine if the IL-1 arm of the neuroimmune system was down-regulated by a 24 h fast and how fasting might generate this effect. Design: Mice were allowed ad libitum access to food or had food withheld for 24 h. Expression of the endogenous IL-1 antagonists, IL-1 receptor type 2 (IL-1R2), and IL-1 receptor antagonist (IL-1RA) was determined as were sickness behaviors before and after IL-1β administration. Results: Fasting markedly increased gene expression of IL-1R2 (83-fold in adipose tissue, 9.5-fold in liver) and IL-1RA (68-fold in liver). Fasted mice were protected from IL-1β-induced weight-loss, hypoglycemia, loss of locomotor, and social anxiety. These protections were coupled to a large positive interaction of fasting and IL-1β on IL-1R2 gene expression in adipose tissue and liver (2.6- and 1.6-fold, respectively). Fasting not only increased IL-1RA and IL-1R2 protein 2.5- and 3.2-fold, respectively, in liver but also increased IL-1R2 1.8-fold in adipose tissue. Fasting, in turn, triggered a 2.4-fold increase in plasma free-fatty acids (FFAs) and a 2.1-fold increase in plasma corticosterone. Inhibition, of glucocorticoid action with mifepristone did not impact fasting-dependent IL-1R2 or IL-1RA gene expression. Administration of the FFA, palmitate, to mice increased liver IL-1R2 and IL-1RA gene expression by 14- and 11-fold, respectively. Conclusion: These findings indicate that fasting augments expression of endogenous IL-1 antagonists inducing IL-1 resistance. Fasting-induced increases in plasma FFAs appears to be a signal that drives immunosuppression during fasting/short term starvation. PMID:25071776

  11. Novel opioid cyclic tetrapeptides: Trp isomers of CJ-15,208 exhibit distinct opioid receptor agonism and short-acting κ opioid receptor antagonism.

    PubMed

    Ross, Nicolette C; Reilley, Kate J; Murray, Thomas F; Aldrich, Jane V; McLaughlin, Jay P

    2012-02-01

    The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). The two isomers showed similar affinity and selectivity for κ receptors (K(i)  30-35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological

  12. Agonism and Antagonism at the Insulin Receptor

    PubMed Central

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia; Pedersen, Thomas Åskov; Vestergaard, Kirsten; Schäffer, Lauge; Blagoev, Blagoy; Oleksiewicz, Martin B.; Kiselyov, Vladislav V.; De Meyts, Pierre

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B’29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1–10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints (3H-thymidine incorporation), and not on metabolic endpoints (14C-glucose incorporation in adipocytes and muscle cells). The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity (3H-thymidine incorporation) and phosphorylation of the IR and Akt. Together with the B29-B’29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed. PMID:23300584

  13. Cyclotides Isolated from an Ipecac Root Extract Antagonize the Corticotropin Releasing Factor Type 1 Receptor

    PubMed Central

    Fahradpour, Mohsen; Keov, Peter; Tognola, Carlotta; Perez-Santamarina, Estela; McCormick, Peter J.; Ghassempour, Alireza; Gruber, Christian W.

    2017-01-01

    Cyclotides are plant derived, cystine-knot stabilized peptides characterized by their natural abundance, sequence variability and structural plasticity. They are abundantly expressed in Rubiaceae, Psychotrieae in particular. Previously the cyclotide kalata B7 was identified to modulate the human oxytocin and vasopressin G protein-coupled receptors (GPCRs), providing molecular validation of the plants’ uterotonic properties and further establishing cyclotides as valuable source for GPCR ligand design. In this study we screened a cyclotide extract derived from the root powder of the South American medicinal plant ipecac (Carapichea ipecacuanha) for its GPCR modulating activity of the corticotropin-releasing factor type 1 receptor (CRF1R). We identified and characterized seven novel cyclotides. One cyclotide, caripe 8, isolated from the most active fraction, was further analyzed and found to antagonize the CRF1R. A nanomolar concentration of this cyclotide (260 nM) reduced CRF potency by ∼4.5-fold. In contrast, caripe 8 did not inhibit forskolin-, or vasopressin-stimulated cAMP responses at the vasopressin V2 receptor, suggesting a CRF1R-specific mode-of-action. These results in conjunction with our previous findings establish cyclotides as modulators of both classes A and B GPCRs. Given the diversity of cyclotides, our data point to other cyclotide-GPCR interactions as potentially important sources of drug-like molecules. PMID:29033832

  14. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice

    PubMed Central

    Roundtree, Harrison M.; Simeone, Timothy A.; Johnson, Chaz; Matthews, Stephanie A.; Samson, Kaeli K.; Simeone, Kristina A.

    2016-01-01

    other epilepsy models. Citation: Roundtree HM, Simeone TA, Johnson C, Matthews SA, Samson KK, Simeone KA. Orexin receptor antagonism improves sleep and reduces seizures in Kcna1-null mice. SLEEP 2016;39(2):357–368. PMID:26446112

  15. Vortioxetine dose-dependently reverses 5-HT depletion-induced deficits in spatial working and object recognition memory: a potential role for 5-HT1A receptor agonism and 5-HT3 receptor antagonism.

    PubMed

    du Jardin, Kristian Gaarn; Jensen, Jesper Bornø; Sanchez, Connie; Pehrson, Alan L

    2014-01-01

    We previously reported that the investigational multimodal antidepressant, vortioxetine, reversed 5-HT depletion-induced memory deficits while escitalopram and duloxetine did not. The present report studied the effects of vortioxetine and the potential impact of its 5-HT1A receptor agonist and 5-HT3 receptor antagonist properties on 5-HT depletion-induced memory deficits. Recognition and spatial working memory were assessed in the object recognition (OR) and Y-maze spontaneous alternation (SA) tests, respectively. 5-HT depletion was induced in female Long-Evans rats using 4-cholro-DL-phenylalanine methyl ester HCl (PCPA) and receptor occupancies were determined by ex vivo autoradiography. Rats were acutely dosed with vortioxetine, ondansetron (5-HT3 receptor antagonist) or flesinoxan (5-HT1A receptor agonist). The effects of chronic vortioxetine administration on 5-HT depletion-induced memory deficits were also assessed. 5-HT depletion reliably impaired memory performance in both the tests. Vortioxetine reversed PCPA-induced memory deficits dose-dependently with a minimal effective dose (MED) ≤0.1mg/kg (∼80% 5-HT3 receptor occupancy; OR) and ≤3.0mg/kg (5-HT1A, 5-HT1B, 5-HT3 receptor occupancy: ∼15%, 60%, 95%) in SA. Ondansetron exhibited a MED ≤3.0μg/kg (∼25% 5-HT3 receptor occupancy; OR), but was inactive in the SA test. Flesinoxan had a MED ≤1.0mg/kg (∼25% 5-HT1A receptor occupancy; SA); only 1.0mg/kg ameliorated deficits in the NOR. Chronic p.o. vortioxetine administration significantly improved memory performance in OR and occupied 95%, 66%, and 9.5% of 5-HT3, 5-HT1B, and 5-HT1A receptors, respectively. Vortioxetine's effects on SA performance may involve 5-HT1A receptor agonism, but not 5-HT3 receptor antagonism, whereas the effects on OR performance may involve 5-HT3 receptor antagonism and 5-HT1A receptor agonism. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.

  16. Regulation of Endogenous (Male) Rodent GLP-1 Secretion and Human Islet Insulin Secretion by Antagonism of Somatostatin Receptor 5.

    PubMed

    Farb, Thomas B; Adeva, Marta; Beauchamp, Thomas J; Cabrera, Over; Coates, David A; Meredith, Tamika DeShea; Droz, Brian A; Efanov, Alexander; Ficorilli, James V; Gackenheimer, Susan L; Martinez-Grau, Maria A; Molero, Victoriano; Ruano, Gema; Statnick, Michael A; Suter, Todd M; Syed, Samreen K; Toledo, Miguel A; Willard, Francis S; Zhou, Xin; Bokvist, Krister B; Barrett, David G

    2017-11-01

    Incretin and insulin responses to nutrient loads are suppressed in persons with diabetes, resulting in decreased glycemic control. Agents including sulfonylureas and dipeptidyl peptidase-4 inhibitors (DPP4i) partially reverse these effects and provide therapeutic benefit; however, their modes of action limit efficacy. Because somatostatin (SST) has been shown to suppress insulin and glucagonlike peptide-1 (GLP-1) secretion through the Gi-coupled SST receptor 5 (SSTR5) isoform in vitro, antagonism of SSTR5 may improve glycemic control via intervention in both pathways. Here, we show that a potent and selective SSTR5 antagonist reverses the blunting effects of SST on insulin secretion from isolated human islets, and demonstrate that SSTR5 antagonism affords increased levels of systemic GLP-1 in vivo. Knocking out Sstr5 in mice provided a similar increase in systemic GLP-1 levels, which were not increased further by treatment with the antagonist. Treatment of mice with the SSTR5 antagonist in combination with a DPP4i resulted in increases in systemic GLP-1 levels that were more than additive and resulted in greater glycemic control compared with either agent alone. In isolated human islets, the SSTR5 antagonist completely reversed the inhibitory effect of exogenous SST-14 on insulin secretion. Taken together, these data suggest that SSTR5 antagonism should increase circulating GLP-1 levels and stimulate insulin secretion (directly and via GLP-1) in humans, improving glycemic control in patients with diabetes. Copyright © 2017 Endocrine Society.

  17. Liver Tumor Promotion by 2,3,7,8-Tetrachlorodibenzo-p-dioxin Is Dependent on the Aryl Hydrocarbon Receptor and TNF/IL-1 Receptors

    PubMed Central

    Kennedy, Gregory D.; Nukaya, Manabu; Moran, Susan M.; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S.; Pitot, Henry C.; Drinkwater, Norman R.; Bradfield, Christopher A.

    2014-01-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn (“dioxin”). To this end, we first employed congenic mice homozygous for either the Ahrb1 or Ahrd alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by “interleukin-1 (IL-1)-like” inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the “IL-1-like” cytokines. PMID:24718703

  18. Liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxin is dependent on the aryl hydrocarbon receptor and TNF/IL-1 receptors.

    PubMed

    Kennedy, Gregory D; Nukaya, Manabu; Moran, Susan M; Glover, Edward; Weinberg, Samuel; Balbo, Silvia; Hecht, Stephen S; Pitot, Henry C; Drinkwater, Norman R; Bradfield, Christopher A

    2014-07-01

    We set out to better understand the signal transduction pathways that mediate liver tumor promotion by 2,3,7,8-tetrachlorodibenzo-p-dioxn ("dioxin"). To this end, we first employed congenic mice homozygous for either the Ahr(b1) or Ahr(d) alleles (encoding an aryl hydrocarbon receptor (AHR) with high or low binding affinity for dioxin, respectively) and demonstrated that hepatocellular tumor promotion in response to dioxin segregated with the Ahr locus. Once we had genetic evidence for the importance of AHR signaling, we then asked if tumor promotion by dioxin was influenced by "interleukin-1 (IL-1)-like" inflammatory cytokines. The importance of this question arose from our earlier observation that aspects of the acute hepatocellular toxicity of dioxin are dependent upon IL1-like cytokine signaling. To address this issue, we employed a triple knock-out (TKO) mouse model with null alleles at the loci encoding the three relevant receptors for tumor necrosis factors α and β and IL-1α and IL-1β (i.e., null alleles at the Tnfrsf1a, Tnfrsf1b, and Il-1r1 loci). The observation that TKO mice were resistant to the tumor promoting effects of dioxin in liver suggests that inflammatory cytokines play an important step in dioxin mediated liver tumor promotion in the mouse. Collectively, these data support the idea that the mechanism of dioxin acute hepatotoxicity and its activity as a promoter in a mouse two stage liver cancer model may be similar, i.e., tumor promotion by dioxin, like acute hepatotoxicity, are mediated by the linked action of two receptor systems, the AHR and the receptors for the "IL-1-like" cytokines. Published by Oxford University Press on behalf of Nucleic Acids Research 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  19. Antagonizing effects of membrane-acting androgens on the eicosanoid receptor OXER1 in prostate cancer

    PubMed Central

    Kalyvianaki, Konstantina; Gebhart, Veronika; Peroulis, Nikolaos; Panagiotopoulou, Christina; Kiagiadaki, Fotini; Pediaditakis, Iosif; Aivaliotis, Michalis; Moustou, Eleni; Tzardi, Maria; Notas, George; Castanas, Elias; Kampa, Marilena

    2017-01-01

    Accumulating evidence during the last decades revealed that androgen can exert membrane initiated actions that involve signaling via specific kinases and the modulation of significant cellular processes, important for prostate cancer cell growth and metastasis. Results of the present work clearly show that androgens can specifically act at the membrane level via the GPCR oxoeicosanoid receptor 1 (OXER1) in prostate cancer cells. In fact, OXER1 expression parallels that of membrane androgen binding in prostate cancer cell lines and tumor specimens, while in silico docking simulation of OXER1 showed that testosterone could bind to OXER1 within the same grove as 5-OxoETE, the natural ligand of OXER1. Interestingly, testosterone antagonizes the effects of 5-oxoETE on specific signaling pathways and rapid effects such as actin cytoskeleton reorganization that ultimately can modulate cell migration and metastasis. These findings verify that membrane-acting androgens exert specific effects through an antagonistic interaction with OXER1. Additionally, this interaction between androgen and OXER1, which is an arachidonic acid metabolite receptor expressed in prostate cancer, provides a novel link between steroid and lipid actions and renders OXER1 as new player in the disease. These findings should be taken into account in the design of novel therapeutic approaches in prostate cancer. PMID:28290516

  20. Synthetic Deletion of the Interleukin 23 Receptor (IL-23R) Stalk Region Led to Autonomous IL-23R Homodimerization and Activation.

    PubMed

    Hummel, Thorben M; Ackfeld, Theresa; Schönberg, Marco; Ciupka, Gregor; Schulz, Falk; Oberdoerster, Anne; Grötzinger, Joachim; Scheller, Jürgen; Floss, Doreen M

    2017-09-01

    Interleukin 23 (IL-23) regulates the development of TH17 cells, which are important for antimicrobial and antifungal responses and autoimmune and chronic inflammatory diseases. IL-23-induced Jak/STAT signaling is mediated via the heterodimeric IL-23 receptor (IL-23R)-IL-12 receptor β1 (IL-12Rβ1) complex. The typical signal-transducing receptor of the IL-6/IL-12 family contains three extracellular-membrane-proximal fibronectin type III (FNIII) domains, which are not involved in cytokine binding but are mandatory for signal transduction. In place of FNIII-type domains, IL-23R has a structurally undefined stalk. We hypothesized that the IL-23R stalk acts as a spacer to position the cytokine binding domains at a defined distance from the plasma membrane to enable signal transduction. Minor deletions of the murine, but not of the human, IL-23R stalk resulted in unresponsiveness to IL-23. Complete deletion of the human IL-23R stalk and the extended murine IL-23R stalk, including a 20-amino-acid-long duplication of domain 3, however, induced ligand-independent, autonomous receptor activation, as determined by STAT3 phosphorylation and cell proliferation. Ligand-independent, autonomous activity was caused by IL-23R homodimers and was independent of IL-12Rβ1. Our data show that deletion of the stalk results in biologically active IL-23R homodimers, thereby creating an as-yet-undescribed receptor complex of the IL-6/IL-12 cytokine family. Copyright © 2017 American Society for Microbiology.

  1. Role of IL-1 beta and 5-HT2 receptors in midbrain periaqueductal gray (PAG) in potentiating defensive rage behavior in cat.

    PubMed

    Bhatt, Suresh; Bhatt, Rekha; Zalcman, Steven S; Siegel, Allan

    2008-02-01

    Feline defensive rage, a form of aggressive behavior that occurs in response to a threat can be elicited by electrical stimulation of the medial hypothalamus or midbrain periaqueductal gray (PAG). Our laboratory has recently begun a systematic examination of the role of cytokines in the regulation of rage and aggressive behavior. It was shown that the cytokine, interleukin-2 (IL-2), differentially modulates defensive rage when microinjected into the medial hypothalamus and PAG by acting through separate neurotransmitter systems. The present study sought to determine whether a similar relationship exists with respect to interleukin 1-beta (IL-1 beta), whose receptor activation in the medial hypothalamus potentiates defensive rage. Thus, the present study identified the effects of administration of IL-1 beta into the PAG upon defensive rage elicited from the medial hypothalamus. Microinjections of IL-1 beta into the dorsal PAG significantly facilitated defensive rage behavior elicited from the medial hypothalamus in a dose and time dependent manner. In addition, the facilitative effects of IL-1 beta were blocked by pre-treatment with anti-IL-1 beta receptor antibody, while IL-1 beta administration into the PAG had no effect upon predatory attack elicited from the lateral hypothalamus. The findings further demonstrated that IL-1 beta's effects were mediated through 5-HT(2) receptors since pretreatment with a 5-HT(2C) receptors antagonist blocked the facilitating effects of IL-1 beta. An extensive pattern of labeling of IL-1 beta and 5-HT(2C) receptors in the dorsal PAG supported these findings. The present study demonstrates that IL-beta in the dorsal PAG, similar to the medial hypothalamus, potentiates defensive rage behavior and is mediated through a 5-HT(2C) receptor mechanism.

  2. IL-6 Receptor Isoforms and Ovarian Cancer

    DTIC Science & Technology

    2013-01-01

    previously de- cribed.27 Groups of mice (n 6) were dministered acetyl salicylic acid (ASA; 00 mg/kg; Sigma, St Louis, MO), phos- hate-buffered saline...indicates P .05. SA, acetyl salicylic acid ; IL6R, interleukin-6 receptor. ath. IL-6 receptor in ovarian tumors. Am J Obstet Gynecol 2010. ause they are...tumor cell proper to increase this effect . Published studies examining IL6-/- and IL6R-/- mice demonstrated a complexity of IL6 signaling for wound

  3. The secreted form of the p40 subunit of interleukin (IL)-12 inhibits IL-23 functions and abrogates IL-23-mediated antitumour effects

    PubMed Central

    Shimozato, Osamu; Ugai, Shin-ichi; Chiyo, Masako; Takenobu, Hisanori; Nagakawa, Hiroyasu; Wada, Akihiko; Kawamura, Kiyoko; Yamamoto, Hiroshi; Tagawa, Masatoshi

    2006-01-01

    Interleukin (IL)-23 is a heterodimeric cytokine consisting of a novel p19 molecule and the p40 subunit of IL-12. Since secreted p40 can act as an antagonist for IL-12, we investigated whether p40 also inhibited IL-23-mediated immunological functions. p40 did not induce interferon (IFN)-γ or IL-17 production from splenocytes but impaired IL-23-induced cytokine production by competitive binding to the IL-23 receptors. Furthermore, a mixed population of murine colon carcinoma Colon 26 cells transduced with the p40 gene and those transduced with the IL-23 gene developed tumours in syngenic mice, whereas the IL-23-expressing Colon 26 cells were completely rejected. p40 also suppressed IFN-γ production of antigen-stimulated splenocytes and IL-23-mediated cytotoxic T-lymphocyte activities in the mice that rejected Colon 26 cells expressing IL-23. p40 can thereby antagonize IL-23 and is a possible therapeutic agent for suppression of IL-23 functions. PMID:16423037

  4. Morphine-like Opiates Selectively Antagonize Receptor-Arrestin Interactions*

    PubMed Central

    Molinari, Paola; Vezzi, Vanessa; Sbraccia, Maria; Grò, Cristina; Riitano, Daniela; Ambrosio, Caterina; Casella, Ida; Costa, Tommaso

    2010-01-01

    The addictive potential of opioids may be related to their differential ability to induce G protein signaling and endocytosis. We compared the ability of 20 ligands (sampled from the main chemical classes of opioids) to promote the association of μ and δ receptors with G protein or β-arrestin 2. Receptor-arrestin binding was monitored by bioluminescence resonance energy transfer (BRET) in intact cells, where pertussis toxin experiments indicated that the interaction was minimally affected by receptor signaling. To assess receptor-G protein coupling without competition from arrestins, we employed a cell-free BRET assay using membranes isolated from cells expressing luminescent receptors and fluorescent Gβ1. In this system, the agonist-induced enhancement of BRET (indicating shortening of distance between the two proteins) was Gα-mediated (as shown by sensitivity to pertussis toxin and guanine nucleotides) and yielded data consistent with the known pharmacology of the ligands. We found marked differences of efficacy for G protein and arrestin, with a pattern suggesting more restrictive structural requirements for arrestin efficacy. The analysis of such differences identified a subset of structures showing a marked discrepancy between efficacies for G protein and arrestin. Addictive opiates like morphine and oxymorphone exhibited large differences both at δ and μ receptors. Thus, they were effective agonists for G protein coupling but acted as competitive enkephalins antagonists (δ) or partial agonists (μ) for arrestin. This arrestin-selective antagonism resulted in inhibition of short and long term events mediated by arrestin, such as rapid receptor internalization and down-regulation. PMID:20189994

  5. Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ-IL1RAPL1/IL-1RAcP for synaptic differentiation

    NASA Astrophysics Data System (ADS)

    Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya

    2015-04-01

    Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as `splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.

  6. Endothelin antagonism in portal hypertensive mice: implications for endothelin receptor-specific signaling in liver disease

    PubMed Central

    Feng, Hong-Qiang; Weymouth, Nate D.; Rockey, Don C.

    2009-01-01

    Endothelin-1 (ET-1), a potent vasoactive peptide, plays an important role in the pathogenesis of liver disease and portal hypertension. Two major endothelin receptors (ET-A and ET-B) mediate biological effects, largely on the basis of their known downstream signaling pathways. We hypothesized that the different receptors are likely to mediate divergent effects in portal hypertensive mice. Liver fibrosis and cirrhosis and portal hypertension were induced in 8-wk-old male BALB/c mice by gavage with carbon tetrachloride (CCl4). Portal pressure was recorded acutely during intravenous infusion of endothelin receptor antagonists in normal or portal hypertensive mice. In vivo microscopy was used to monitor sinusoidal dynamics. Additionally, the effect of chronic exposure to endothelin antagonists was assessed in mice during induction of fibrosis and cirrhosis with CCl4 for 8 wk. Intravenous infusion of ET-A receptor antagonists into normal and cirrhotic mice reduced portal pressure whereas ET-B receptor antagonism increased portal pressure. A mixed endothelin receptor antagonist also significantly reduced portal pressure. Additionally, the ET-A receptor antagonist caused sinusoidal dilation, whereas the ET-B receptor antagonist caused sinusoidal constriction. Chronic administration of each the endothelin receptor antagonists during the induction of fibrosis and portal hypertension led to reduced fibrosis, a significant reduction in portal pressure, and altered sinusoidal dynamics relative to controls. Acute effects of endothelin receptor antagonists are likely directly on the hepatic and sinusoidal vasculature, whereas chronic endothelin receptor antagonism appears to be more complicated, likely affecting fibrogenesis and the hepatic microcirculation. The data imply a relationship between hepatic fibrogenesis or fibrosis and vasomotor responses. PMID:19299580

  7. NK1 receptor activation in rat rostral ventrolateral medulla selectively attenuates somato-sympathetic reflex while antagonism attenuates sympathetic chemoreflex.

    PubMed

    Makeham, John M; Goodchild, Ann K; Pilowsky, Paul M

    2005-06-01

    The effects of activation and blockade of the neurokinin 1 (NK1) receptor in the rostral ventrolateral medulla (RVLM) on arterial blood pressure (ABP), splanchnic sympathetic nerve activity (sSNA), phrenic nerve activity, the somato-sympathetic reflex, baroreflex, and chemoreflex were studied in urethane-anesthetized and artificially ventilated Sprague-Dawley rats. Bilateral microinjection of either the stable substance P analog (pGlu5, MePhe8, Sar9)SP(5-11) (DiMe-SP) or the highly selective NK1 agonist [Sar9, Met (O(2))11]SP into the RVLM resulted in an increase in ABP, sSNA, and heart rate and an abolition of phrenic nerve activity. The effects of [Sar9, Met (O(2))11]SP were blocked by the selective nonpeptide NK1 receptor antagonist WIN 51708. NK1 receptor activation also dramatically attenuated the somato-sympathetic reflex elicited by tibial nerve stimulation, while leaving the baroreflex and chemoreflex unaffected. This effect was again blocked by WIN 51708. NK1 receptor antagonism in the RVLM, with WIN 51708 significantly attenuated the sympathoexcitatory response to hypoxia but had no effect on baseline respiratory function. Our findings suggest that substance P and the NK1 receptor play a significant role in the cardiorespiratory reflexes integrated within the RVLM.

  8. Potentiation of Brain Stimulation Reward by Morphine: Effects of Neurokinin-1 Receptor Antagonism

    PubMed Central

    Robinson, J.E.; Fish, E.W.; Krouse, M.C.; Thorsell, A.; Heilig, M.; Malanga, C.J.

    2012-01-01

    Rationale The abuse potential of opioids may be due to their reinforcing and rewarding effects, which may be attenuated by neurokinin-1 receptor (NK1R) antagonists. Objective To measure the effects of opioid and neurokinin-1 (NK1R) receptor blockade on the potentiation of brain stimulation reward (BSR) by morphine using the intracranial self-stimulation (ICSS) method. Methods Adult male C57BL/6J mice (n = 15) were implanted with unipolar stimulating electrodes in the lateral hypothalamus and trained to respond for varying frequencies of rewarding electrical stimulation. The BSR threshold (θ0) and maximum response rate (MAX) were determined before and after intraperitoneal administration of saline, morphine (1.0 - 17.0 mg/kg), or the NK1R antagonists L-733,060 (1.0 - 17.0 mg/kg) and L-703,606 (1.0 - 17.0 mg/kg). In morphine antagonism experiments, naltrexone (0.11.0 mg/kg) or 10.0 mg/kg L-733,060 or L-703,606 was administered 15 minutes before morphine (1.0 - 10.0 mg/kg) or saline. Results Morphine dose-dependently decreased θ0 (maximum effect = 62% of baseline) and altered MAX when compared to saline. L-703,606 and L-733,060 altered θ0 without affecting MAX. 10.0 mg/kg L-733,060 and L-703,606, which did not affect θ0 or MAX, attenuated the effects of 3.0 and 10.0 mg/kg morphine. 1.0 and 0.3 mg/kg naltrexone blocked the effects of 10.0 mg/kg morphine. Naltrexone given before saline did not affect θ0 or MAX. Conclusions The decrease in θ0 by morphine reflects its rewarding effects, which were attenuated by NK1R and opioid receptor blockade. These results demonstrate the importance of substance P signaling during limbic reward system activation by opioids. PMID:21909635

  9. Forebrain-selective AMPA-receptor antagonism guided by TARP γ-8 as an antiepileptic mechanism.

    PubMed

    Kato, Akihiko S; Burris, Kevin D; Gardinier, Kevin M; Gernert, Douglas L; Porter, Warren J; Reel, Jon; Ding, Chunjin; Tu, Yuan; Schober, Douglas A; Lee, Matthew R; Heinz, Beverly A; Fitch, Thomas E; Gleason, Scott D; Catlow, John T; Yu, Hong; Fitzjohn, Stephen M; Pasqui, Francesca; Wang, He; Qian, Yuewei; Sher, Emanuele; Zwart, Ruud; Wafford, Keith A; Rasmussen, Kurt; Ornstein, Paul L; Isaac, John T R; Nisenbaum, Eric S; Bredt, David S; Witkin, Jeffrey M

    2016-12-01

    Pharmacological manipulation of specific neural circuits to optimize therapeutic index is an unrealized goal in neurology and psychiatry. AMPA receptors are important for excitatory synaptic transmission, and their antagonists are antiepileptic. Although efficacious, AMPA-receptor antagonists, including perampanel (Fycompa), the only approved antagonist for epilepsy, induce dizziness and motor impairment. We hypothesized that blockade of forebrain AMPA receptors without blocking cerebellar AMPA receptors would be antiepileptic and devoid of motor impairment. Taking advantage of an AMPA receptor auxiliary protein, TARP γ-8, which is selectively expressed in the forebrain and modulates the pharmacological properties of AMPA receptors, we discovered that LY3130481 selectively antagonized recombinant and native AMPA receptors containing γ-8, but not γ-2 (cerebellum) or other TARP members. Two amino acid residues unique to γ-8 determined this selectivity. We also observed antagonism of AMPA receptors expressed in hippocampal, but not cerebellar, tissue from an patient with epilepsy. Corresponding to this selective activity, LY3130481 prevented multiple seizure types in rats and mice and without motor side effects. These findings demonstrate the first rationally discovered molecule targeting specific neural circuitries for therapeutic advantage.

  10. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist.

    PubMed

    Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D; Miyasaka, Masayuki; Yang, Bo-Gie; Jang, Myoung Ho

    2016-04-04

    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4(+)T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra-deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. © 2016 Sugawara et al.

  11. Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist

    PubMed Central

    Sugawara, Reiko; Lee, Eun-Jung; Jang, Min Seong; Jeun, Eun-Ji; Hong, Chun-Pyo; Kim, Jung-Hwan; Park, Areum; Yun, Chang Ho; Hong, Sung-Wook; Kim, You-Me; Seoh, Ju-Young; Jung, YunJae; Surh, Charles D.; Miyasaka, Masayuki

    2016-01-01

    Eosinophils play proinflammatory roles in helminth infections and allergic diseases. Under steady-state conditions, eosinophils are abundantly found in the small intestinal lamina propria, but their physiological function is largely unexplored. In this study, we found that small intestinal eosinophils down-regulate Th17 cells. Th17 cells in the small intestine were markedly increased in the ΔdblGATA-1 mice lacking eosinophils, and an inverse correlation was observed between the number of eosinophils and that of Th17 cells in the small intestine of wild-type mice. In addition, small intestinal eosinophils suppressed the in vitro differentiation of Th17 cells, as well as IL-17 production by small intestinal CD4+ T cells. Unlike other small intestinal immune cells or circulating eosinophils, we found that small intestinal eosinophils have a unique ability to constitutively secrete high levels of IL-1 receptor antagonist (IL-1Ra), a natural inhibitor of IL-1β. Moreover, small intestinal eosinophils isolated from IL-1Ra−deficient mice failed to suppress Th17 cells. Collectively, our results demonstrate that small intestinal eosinophils play a pivotal role in the maintenance of intestinal homeostasis by regulating Th17 cells via production of IL-1Ra. PMID:26951334

  12. Neurokinin-1 receptor antagonism attenuates neuronal activity triggered by stress-induced reinstatement of alcohol seeking.

    PubMed

    Schank, J R; Nelson, B S; Damadzic, R; Tapocik, J D; Yao, M; King, C E; Rowe, K E; Cheng, K; Rice, K C; Heilig, M

    2015-12-01

    Substance P (SP) and its cognate neurokinin-1 receptor (NK1R) are involved in alcohol-related behaviors. We have previously reported that NK1R antagonism attenuates stress-induced reinstatement of alcohol seeking and suppresses escalated alcohol self-administration, but does not affect primary reinforcement or cue-induced reinstatement. Here, we administered an NK1R antagonist or vehicle prior to footshock-induced reinstatement of alcohol seeking, and mapped the resulting neuronal activation using Fos immunohistochemistry. As expected, vehicle treated animals exposed to footshock showed induction of Fos immunoreactivity in several regions of the brain stress circuitry, including the amygdala (AMG), nucleus accumbens (NAC), dorsal raphe nucleus (DR), prefrontal cortex (PFC), and bed nucleus of the stria terminalis (BNST). NK1R antagonism selectively suppressed the stress-induced increase in Fos in the DR and NAC shell. In the DR, Fos-induction by stress largely overlapped with tryptophan hydroxylase (TrpH), indicating activation of serotonergic neurons. Of NAC shell neurons activated during stress-induced reinstatement of alcohol seeking, about 30% co-expressed dynorphin (DYN), while 70% co-expressed enkephalin (ENK). Few (<1%) activated NAC shell neurons coexpressed choline acetyltransferase (ChAT), which labels the cholinergic interneurons of this region. Infusion of the NK1R antagonist L822429 into the NAC shell blocked stress-induced reinstatement of alcohol seeking. In contrast, L822429 infusion into the DR had no effect, suggesting that the influence of NK1R signaling on neuronal activity in the DR is indirect. Taken together, our results outline a potential pathway through which endogenous NK1R activation mediates stress-induced alcohol seeking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. IL1RN Coding Variant Is Associated with Lower Risk of Acute Respiratory Distress Syndrome and Increased Plasma IL-1 Receptor Antagonist

    PubMed Central

    Feng, Rui; Li, Mingyao; Zhao, Yang; Sheu, Chau-Chyun; Tejera, Paula; Gallop, Robert; Bellamy, Scarlett; Rushefski, Melanie; Lanken, Paul N.; Aplenc, Richard; O’Keefe, Grant E.; Wurfel, Mark M.; Christiani, David C.; Christie, Jason D.

    2013-01-01

    Rationale: Acute respiratory distress syndrome (ARDS) behaves as a complex genetic trait, yet knowledge of genetic susceptibility factors remains incomplete. Objectives: To identify genetic risk variants for ARDS using large scale genotyping. Methods: A multistage genetic association study was conducted of three critically ill populations phenotyped for ARDS. Stage I, a trauma cohort study (n = 224), was genotyped with a 50K gene-centric single-nucleotide polymorphism (SNP) array. We tested SNPs associated with ARDS at P < 5 × 10−4 for replication in stage II, a trauma case–control population (n = 778). SNPs replicating their association in stage II (P < 0.005) were tested in a stage III nested case–control population of mixed subjects in the intensive care unit (n = 2,063). Logistic regression was used to adjust for potential clinical confounders. We performed ELISA to test for an association between ARDS-associated genotype and plasma protein levels. Measurements and Main Results: A total of 12 SNPs met the stage I threshold for an association with ARDS. rs315952 in the IL1RN gene encoding IL-1 receptor antagonist (IL1RA) replicated its association with reduced ARDS risk in stages II (P < 0.004) and III (P < 0.02), and was robust to clinical adjustment (combined odds ratio = 0.81; P = 4.2 × 10−5). Plasma IL1RA level was associated with rs315952C in a subset of critically ill subjects. The effect of rs315952 was independent from the tandem repeat variant in IL1RN. Conclusions: The IL1RN SNP rs315952C is associated with decreased risk of ARDS in three populations with heterogeneous ARDS risk factors, and with increased plasma IL1RA response. IL1RA may attenuate ARDS risk. PMID:23449693

  14. Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor*

    PubMed Central

    Lominadze, David; Tyagi, Neetu; Sen, Utpal; Ovechkin, Alexander; Tyagi, Suresh C.

    2012-01-01

    High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascualr dementia, stroke, and Alzheimer's disease. The -amino butyric acid (GABA) is a inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circualtion by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine -synthase, CBS −/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer's patients. PMID:22886392

  15. Effects of overexpression of IL-1 receptor-associated kinase on NFkappaB activation, IL-2 production and stress-activated protein kinases in the murine T cell line EL4.

    PubMed

    Knop, J; Wesche, H; Lang, D; Martin, M U

    1998-10-01

    The association and activation of the IL-1 receptor-associated protein kinase (IRAK) to the IL-1 receptor complex is one of the earliest events detectable in IL-1 signal transduction. We generated permanent clones of the murine T cell line EL4 6.1 overexpressing human (h)IRAK to evaluate the role of this kinase in IL-1 signaling. Overexpression of hIRAK enhanced IL-1-stimulated activation of the transcription factor NFkappaB, whereas a truncated form (N-IRAK) specifically inhibited IL-1-dependent NFkappaB activity. In clones stably overexpressing hIRAK a weak constitutive activation of NFkappaB correlated with a low basal IL-2 production which was enhanced in an IL-1-dependent manner. Compared to the parental cell line the dose-response curve of IL-1-induced IL-2 production was shifted in both potency and efficacy. These results demonstrate that IRAK directly triggers NFkappaB-mediated gene expression in EL4 cells. Qualitatively different effects were observed for the IL-1-induced activation of stress-activated protein (SAP) kinases: permanent overexpression of IRAK did not affect the dose dependence but prolonged the kinetics of IL-1-induced activation of SAP kinases, suggesting that this signaling branch may be regulated by distinct mechanisms.

  16. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taketazu, F.; Chiba, S.; Shibuya, K.

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF bindingmore » to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.« less

  17. [Cloning and expression analysis of two pro-inflammatory cytokines, IL-1β and its receptor, IL-1R2, in the Asian swamp eel Monopterus albus].

    PubMed

    Xu, Q Q; Xu, P; Zhou, J W; Pan, T S; Tuo, R; Ai, K; Yang, D Q

    2016-01-01

    Interleukin-1β (IL-1β) is the prototypic pro-inflammatory cytokine, whose functions are mediated through interaction with its receptors (IL-1R1 and IL-1R2). Herein, we cloned the full-length cDNA and genomic DNA of IL-1β and IL-1R2 in the Asian swamp eel (Monopterus albus). The eel IL-1β cDNA encodes a putative polypeptide of 246 amino acids. The protein sequence includes a typical IL-1 family signature, but lacked an interleukin-converting enzyme cleavage site. The genomic DNA of eel IL-1β was 2520 bp and comprised five exons and four introns. The eel IL-1R2 cDNA encoded a putative propeptide of 423 amino acid residues, comprising a signal peptide, a transmembrane region and two Ig-like domains in the extracellular region. Similar to other vertebrates, the genomic DNA of the eel IL-1R2 has nine exons and eight introns. Real-time PCR analysis indicated that IL-1β and IL-1R2 were constitutively expressed in all tissues, especially in the liver and immune-related organs. After infection with Aeromonas hydrophila, the transcript levels of IL-1β and IL-1R2 were induced in the head kidney and spleen, reaching their highest levels at 6 h post injection. In vitro, IL-1β and IL-1R2 mRNA levels were also upregulated rapidly at 1h post infection with A. hydrophila. Furthermore, acanthocephalan Pallisentis (Neosentis) celatus could induce the expression of both genes in the head kidney and intestine. In infected intestines, the transcript levels of IL-1β and IL-1R2 were increased by 21.4-fold and 20.8-fold, respectively, relative to the control. The present study indicated that IL-1β and IL-1R2 play an important role in inflammation and host defense, especially in the antiacanthocephalan response.

  18. GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1β/IL1R1 response

    PubMed Central

    De Marco, Paola; Lappano, Rosamaria; Francesco, Ernestina Marianna De; Cirillo, Francesca; Pupo, Marco; Avino, Silvia; Vivacqua, Adele; Abonante, Sergio; Picard, Didier; Maggiolini, Marcello

    2016-01-01

    Cancer-associated fibroblasts (CAFs) contribute to the malignant aggressiveness through secreted factors like IL1β, which may drive pro-tumorigenic inflammatory phenotypes mainly acting via the cognate receptor named IL1R1. Here, we demonstrate that signalling mediated by the G protein estrogen receptor (GPER) triggers IL1β and IL1R1 expression in CAFs and breast cancer cells, respectively. Thereby, ligand-activation of GPER generates a feedforward loop coupling IL1β induction by CAFs to IL1R1 expression by cancer cells, promoting the up-regulation of IL1β/IL1R1 target genes such as PTGES, COX2, RAGE and ABCG2. This regulatory interaction between the two cell types induces migration and invasive features in breast cancer cells including fibroblastoid cytoarchitecture and F-actin reorganization. A better understanding of the mechanisms involved in the regulation of pro-inflammatory cytokines by GPER-integrated estrogen signals may be useful to target these stroma-cancer interactions. PMID:27072893

  19. Partial agonist/antagonist mouse interleukin-2 proteins indicate that a third component of the receptor complex functions in signal transduction.

    PubMed Central

    Zurawski, S M; Imler, J L; Zurawski, G

    1990-01-01

    Some mouse interleukin-2 (mIL-2) proteins with substitutions at residue Gln141 are unable to trigger a maximal biological response. The Asp141 protein induces the lowest maximal response. The Asp141 protein can weakly antagonize the biological activity of mIL-2 and strongly antagonizes the biological activity of active mIL-2 mutant proteins that have defects in interactions with the high affinity receptor. Residue 141 mutant proteins bind with reduced affinity to T cells expressing the high affinity IL-2 receptor, yet bind normally to transfected fibroblasts expressing only the alpha and beta chains of the receptor. These results suggest that a third receptor component is important for both binding and signal transduction. PMID:2249656

  20. Effects of interleukin-1 receptor antagonist (IL-1Ra) gene 86 bp VNTR polymorphism on recurrent pregnancy loss: a case-control study.

    PubMed

    Hajizadeh, Yasamin Sayed; Emami, Elina; Nottagh, Marina; Amini, Zahra; Maroufi, Nazila Fathi; Azimian, Saba Haj; Isazadeh, Alireza

    2017-05-26

    Objective Recurrent pregnancy loss (RPL) is a heterogeneous disease which is defined as two or more consecutive fetal losses during early pregnancy. Interleukin-1 receptor antagonist (IL-1Ra) is a anti-inflammatory cytokine, which inhibits IL-1 activity by binding to its receptors. The aim of this study was to investigate the association between RPL and IL-1Ra intron 2 polymorphism (86 bp VNTR) in Iranian women. Materials and methods In this case control study, genetic polymorphism was studied in 140 RPL patients and 140 healthy women as controls. Genomic DNA was extracted from the blood samples and polymorphism analysis was performed using the polymerase chain reaction (PCR) method. Finally, the data obtained were analyzed by statistical software. Results We found an increased frequency of the IL-1Ra 1/1 genotype in the case group compared to the control group. Whereas, the frequency of IL-1Ra genotype 1/2 was higher in control group than in the case group. However, we did not observe an association between IL-1Ra 86 bp VNTR polymorphism in intron 2 and RPL patients (p > 0.05). Conclusion IL-1Ra VNTR polymorphism may not be a genetic factor for RPL. However, investigation of IL-1Ra polymorphism was recommended in other populations and patients with recurrent pregnancy loss.

  1. Arctigenin antagonizes mineralocorticoid receptor to inhibit the transcription of Na/K-ATPase.

    PubMed

    Cheng, Ye; Zhou, Meili; Wang, Yan

    2016-01-01

    Hypertension is one of the most important risk factors in cardiovascular disease and is the most common chronic disease. Mineralocorticoid receptor (MR) antagonists have been successfully used in clinic for the treatment of hypertension. Our study aims to investigate whether Arctigenin can antagonize MR and inhibit the transcription of Na/K-ATPase. The yeast two-hybrid assay was used to screen natural products and Arctigenin was identified as an MR antagonist. The direct binding of Arctigenin to MR was determined using assays based on surface plasmon resonance, differential scanning calorimetry and fluorescence quenching. Furthermore, results from mammalian one-hybrid and transcriptional activation experiments also confirmed that Arctigenin can potently antagonize MR in cells. We demonstrated that Arctigenin can decrease the level of Na/K-ATPase mRNA by antagonizing MR in HK-2 cells. Our findings show that Arctigenin can effectively decrease Na/K-ATPase transcription; thus highlight its potential as an anti-hypertensive drug lead compound. Our current findings demonstrate that Arctigenin is an antagonist of MR and effectively decreases the Na/K-ATPase 1 gene expression. Our work provides a hint for the drug discovery against cardiovascular disease.

  2. The function of the soluble interleukin 6 (IL-6) receptor in vivo: sensitization of human soluble IL-6 receptor transgenic mice towards IL- 6 and prolongation of the plasma half-life of IL-6

    PubMed Central

    1996-01-01

    Interleukin 6 (IL-6) is considered an important mediator of acute inflammatory responses. Moreover, IL-6 functions as a differentiation and growth factor of hematopoietic precursor cells, B cells, T cells, keratinocytes, neuronal cells, osteoclasts, and endothelial cells. IL-6 exhibits its action via a receptor complex consisting of a specific IL- 6 receptor (IL-6R) and a signal transducing subunit (gp130). Soluble forms of both receptor components are generated by shedding and are found in patients with various diseases such as acquired immune deficiency syndrome, rheumatoid arthritis, and others. The function of the soluble (s)IL-6R in vivo is unknown. Since human (h)IL-6 acts on human and murine target cells, but murine IL-6 on murine cells only, we constructed transgenic mice expressing the hsIL-6R. We report here that in the presence of hsIL-6R, mice are hypersensitized towards hIL-6, mounting an acute phase protein gene induction at significantly lower IL-6 dosages compared to control animals. Furthermore, in hsIL-6R transgenic mice, the detected acute phase response persists for a longer period of time. The IL-6/IL-6R complex prolongs markedly the Il- 6 plasma half-life. Our results reinforce the role of the hsIL-6R as an agonistic protein, help to understand the function of the hsIL-6R in vivo, and highlight the significance of the receptor in the induction of the acute phase response. PMID:8666898

  3. NMDA Receptor Antagonism Impairs Reversal Learning in Developing Rats

    PubMed Central

    Chadman, Kathryn K.; Watson, Deborah J.; Stanton, Mark E.

    2014-01-01

    Four experiments examined the effect of dizocilpine maleate (MK-801), a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, on reversal learning during development. On postnatal days (PND) 21, 26, or 30, rats were trained on spatial discrimination and reversal in a T-maze. When MK-801 was administered (intraperitoneally) before both acquisition and reversal, 0.18 mg/kg generally impaired performance, whereas doses of 0.06 mg/kg and 0.10 mg/kg, but not 0.03 mg/kg, selectively impaired reversal learning (Experiments 1 and 3). The selective effect on reversal was not a result of sensitization to the second dose of MK-801 (Experiment 2) and was observed when the drug was administered only during reversal in an experiment addressing state-dependent learning (Experiment 4). Spatial reversal learning is more sensitive to NMDA-receptor antagonism than is acquisition. No age differences in sensitivity to MK-801 were found between PND 21 and 30. PMID:17014258

  4. IL-1 receptor antagonist-deficient mice develop autoimmune arthritis due to intrinsic activation of IL-17-producing CCR2+Vγ6+γδ T cells

    PubMed Central

    Akitsu, Aoi; Ishigame, Harumichi; Kakuta, Shigeru; Chung, Soo-hyun; Ikeda, Satoshi; Shimizu, Kenji; Kubo, Sachiko; Liu, Yang; Umemura, Masayuki; Matsuzaki, Goro; Yoshikai, Yasunobu; Saijo, Shinobu; Iwakura, Yoichiro

    2015-01-01

    Interleukin-17 (IL-17)-producing γδ T (γδ17) cells have been implicated in inflammatory diseases, but the underlying pathogenic mechanisms remain unclear. Here, we show that both CD4+ and γδ17 cells are required for the development of autoimmune arthritis in IL-1 receptor antagonist (IL-1Ra)-deficient mice. Specifically, activated CD4+ T cells direct γδ T-cell infiltration by inducing CCL2 expression in joints. Furthermore, IL-17 reporter mice reveal that the Vγ6+ subset of CCR2+ γδ T cells preferentially produces IL-17 in inflamed joints. Importantly, because IL-1Ra normally suppresses IL-1R expression on γδ T cells, IL-1Ra-deficient mice exhibit elevated IL-1R expression on Vγ6+ cells, which play a critical role in inducing them to produce IL-17. Our findings demonstrate a pathogenic mechanism in which adaptive and innate immunity induce an autoimmune disease in a coordinated manner. PMID:26108163

  5. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    PubMed

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  6. Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer

    PubMed Central

    Norris, John D.; Ellison, Stephanie J.; Baker, Jennifer G.; Stagg, David B.; Wardell, Suzanne E.; Park, Sunghee; Alley, Holly M.; Baldi, Robert M.; Yllanes, Alexander; Andreano, Kaitlyn J.; Stice, James P.; Lawrence, Scott A.; Eisner, Joel R.; Price, Douglas K.; Moore, William R.; Figg, William D.; McDonnell, Donald P.

    2017-01-01

    The clinical utility of inhibiting cytochrome P450 17A1 (CYP17), a cytochrome p450 enzyme that is required for the production of androgens, has been exemplified by the approval of abiraterone for the treatment of castration-resistant prostate cancer (CRPC). Recently, however, it has been reported that CYP17 inhibitors can interact directly with the androgen receptor (AR). A phase I study recently reported that seviteronel, a CYP17 lyase–selective inhibitor, ædemonstrated a sustained reduction in prostate-specific antigen in a patient with CRPC, and another study showed seviteronel’s direct effects on AR function. This suggested that seviteronel may have therapeutically relevant activities in addition to its ability to inhibit androgen production. Here, we have demonstrated that CYP17 inhibitors, with the exception of orteronel, can function as competitive AR antagonists. Conformational profiling revealed that the CYP17 inhibitor–bound AR adopted a conformation that resembled the unliganded AR (apo-AR), precluding nuclear localization and DNA binding. Further, we observed that seviteronel and abiraterone inhibited the growth of tumor xenografts expressing the clinically relevant mutation AR-F876L and that this activity could be attributed entirely to competitive AR antagonism. The results of this study suggest that the ability of CYP17 inhibitors to directly antagonize the AR may contribute to their clinical efficacy in CRPC. PMID:28463227

  7. IL-13 and the IL-13 receptor as therapeutic targets for asthma and allergic disease.

    PubMed

    Mitchell, Jesse; Dimov, Vesselin; Townley, Robert G

    2010-05-01

    It is widely accepted that T-helper 2 cell (Th2) cytokines play an important role in the maintenance of asthma and allergy. Emerging evidence has highlighted the role of IL-13 in the pathogenesis of these diseases. In particular, IL-13 is involved in the regulation of IgE synthesis, mucus hypersecretion, subepithelial fibrosis and eosinophil infiltration, and has been associated with the regulation of certain chemokine receptors, notably CCR5. Thus, targeting IL-13 and its associated receptors may be a therapeutic approach to the treatment of asthma and/or allergy. Pharmaceutical and biotechnology companies are researching various strategies, based on this approach, aimed at binding IL-13, increasing the level of the IL-13 decoy receptor, IL-13Ralpha2, or blocking the effect of the chemokine receptor CCR5. This review focuses on the therapeutic potential of anti-IL-13 agents and their role in the treatment of asthma and allergy.

  8. Histamine H3 receptors and its antagonism as a novel mechanism for antipsychotic effect: a current preclinical & clinical perspective.

    PubMed

    Mahmood, Danish

    2016-10-01

    Histamine H 3 receptors are present as autoreceptors on histaminergic neurons and as heteroreceptors on nonhistaminergic neurones. They control the release and synthesis of histamine and several other key neurotransmitters in the brain. H 3 antagonism may be a novel approach to develop a new class of antipsychotic medications given the gathering evidence reporting therapeutic efficacy in several central nervous system disorders. Several medications such as cariprazine, lurasidone, LY214002, bexarotene, rasagiline, raloxifene, BL-1020 and ITI-070 are being developed to treat the negative symptoms and cognitive impairments of schizophrenia. These medications works through diverse mechanisms which include agonism at metabotropic glutamate receptor (mGluR2/3), partial agonism at dopamine D 2 , D 3 and serotonin 5-HT 1A receptors, antagonism at D 2 , 5-HT 2A, 5-HT 2B and 5-HT 7 receptors, combined dopamine antagonism with GABA agonist activity, inhibition of monoamine oxidase-B, modulation of oestrogen receptor, and activation of nuclear retinoid X receptor. However, still specific safe therapy for psychosis remains at large. Schizophrenia is a severe neuropsychiatric disorder result both from hyper- and hypo-dopaminergic transmission causing positive and negative symptoms, respectively. Pharmacological stimulation of dopamine release in the prefrontal cortex has been a viable approach in treating negative symptoms and cognitive deficits of schizophrenia symptoms that are currently not well treated and continue to represent significant unmet medical challenges. Administration of H 3 antagonists/inverse agonists increase extracellular dopamine concentrations in rat prefrontal cortex, but not in the striatum suggesting that antagonism via H 3 receptor may be a potential target for treating negative symptoms and cognitive deficits associated with schizophrenia. Further, insights are emerging into the potential role of histamine H 3 receptors as a target of antiobesity

  9. β-Adrenergic Receptor Antagonism Prevents Anxiety-like Behavior and Microglial Reactivity Induced by Repeated Social Defeat

    PubMed Central

    Wohleb, Eric S.; Hanke, Mark L.; Corona, Angela W.; Powell, Nicole D.; Stiner, La'Tonia M.; Bailey, Michael T.; Nelson, Randy J.; Godbout, Jonathan P.; Sheridan, John F.

    2011-01-01

    Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b+/CD45high/Ly6Chigh macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of de-ramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes (GILZ and FKBP51). The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) after stimulation with lipopolysaccharide (LPS) compared to microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1 deficient (IL-1r1-/-) mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors. PMID:21525267

  10. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors

    PubMed Central

    Anton, Olga M.; Vielkind, Susina; Peterson, Mary E.; Tagaya, Yutaka; Long, Eric O.

    2015-01-01

    IL-15 bound to the IL-15 receptor α chain (IL-15Rα) is presented in trans to cells bearing the IL-2 receptor β and γc chains. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor–ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR–HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to down-regulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A+ cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Co-engagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15 dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis. PMID:26453750

  11. A single tyrosine of the interleukin-9 (IL-9) receptor is required for STAT activation, antiapoptotic activity, and growth regulation by IL-9.

    PubMed

    Demoulin, J B; Uyttenhove, C; Van Roost, E; DeLestré, B; Donckers, D; Van Snick, J; Renauld, J C

    1996-09-01

    Interleukin-9 (IL-9), a T-cell-derived cytokine, interacts with a specific receptor associated with the IL-2 receptor gamma chain. In this report, we analyze the functional domains of the human IL-9 receptor transfected into mouse lymphoid cell lines. Three different functions were examined: growth stimulation in factor-dependent pro-B Ba/F3 cells, protection against dexamethasone-induced apoptosis, and Ly-6A2 induction in BW5147 lymphoma cells. The results indicated that a single tyrosine, at position 116 in the cytoplasmic domain, was required for all three activities. In addition, we observed that human IL-9 reduced the proliferation rate of transfected BW5147 cells, an effect also dependent on the same tyrosine. This amino acid was necessary for IL-9-mediated tyrosine phosphorylation of the receptor and for STAT activation but not for IRS-2/4PS activation or for JAK1 phosphorylation, which depended on a domain closer to the plasma membrane. We also showed that JAK1 was constitutively associated with the IL-9 receptor. Activated STAT complexes induced by IL-9 were found to contain STAT1, STAT3, and STAT5 transcription factors. Moreover, sequence homologies between human IL-9 receptor tyrosine 116 and tyrosines (of other receptors activating STAT3 and STAT5 were observed. Taken together, these data indicate that a single tyrosine of the IL-9 receptor, required for activation of three different STAT proteins, is necessary for distinct activities of this cytokine, including proliferative responses.

  12. Interleukin-6 (IL-6) mediated the increased contraction of distal colon in streptozotocin-induced diabetes in rats via IL-6 receptor pathway

    PubMed Central

    Chang, Xin-Wen; Qin, Ying; Jin, Zhi; Xi, Tao-Fang; Yang, Xiao; Lu, Ze-Hao; Tang, Yu-Ping; Cai, Wen-Ting; Chen, Shao-Jun; Xie, Dong-Ping

    2015-01-01

    Colonic dysmotility occurs in diabetes and blood plasma interleukin (IL)-6 levels are significantly elevated in type 1 diabetes mellitus. The aim of this study was to investigate whether IL-6 and the IL-6 receptor pathway mediates colonic dysfunction in type 1 diabetes mellitus. Male SD rats were treated with a single intraperitoneally injected dose of streptozotocin (STZ), and those displaying sustained high blood glucose were selected as diabetes mellitus models. Longitudinal muscle strips of colon were prepared to monitor colonic contraction in vitro. Contractile responses of strips of colon were recorded following treatment with IL-6 in control animals, and following anti IL-6 antibody treatment in STZ-induced diabetes in rats. Concentration of IL-6 in plasma and colon were determined by ELISA. Expressions of IL-6 α-receptor and IL-6 β-receptor in colon tissues were determined by immunohistochemistry or Western blot analysis. The non-diabetes rats treated with IL-6 and the untreated diabetes rats showed increased contraction of distal colon, whereas the diabetes rats treated with anti-IL-6 antibody showed decreased contraction of distal colon compared with the untreated diabetes rats. The IL-6 levels of plasma but not colon increased in diabetes rats. The expression of IL-6 α-receptor increased in diabetes rats. These results indicate that diabetes rats show an increase in the contractions of distal colon partly via the IL-6-IL-6 receptor pathway. PMID:26191141

  13. Gemfibrozil, a lipid-lowering drug, upregulates IL-1 receptor antagonist in mouse cortical neurons: implications for neuronal self-defense.

    PubMed

    Corbett, Grant T; Roy, Avik; Pahan, Kalipada

    2012-07-15

    Chronic inflammation is becoming a hallmark of several neurodegenerative disorders and accordingly, IL-1β, a proinflammatory cytokine, is implicated in the pathogenesis of neurodegenerative diseases. Although IL-1β binds to its high-affinity receptor, IL-1R, and upregulates proinflammatory signaling pathways, IL-1R antagonist (IL-1Ra) adheres to the same receptor and inhibits proinflammatory cell signaling. Therefore, upregulation of IL-1Ra is considered important in attenuating inflammation. The present study underlines a novel application of gemfibrozil (gem), a Food and Drug Administration-approved lipid-lowering drug, in increasing the expression of IL-1Ra in primary mouse and human neurons. Gem alone induced an early and pronounced increase in the expression of IL-1Ra in primary mouse cortical neurons. Activation of type IA p110α PI3K and Akt by gem and abrogation of gem-induced upregulation of IL-1Ra by inhibitors of PI3K and Akt indicate a role of the PI3K-Akt pathway in the upregulation of IL-1Ra. Gem also induced the activation of CREB via the PI3K-Akt pathway, and small interfering RNA attenuation of CREB abolished the gem-mediated increase in IL-1Ra. Furthermore, gem was able to protect neurons from IL-1β insult. However, small interfering RNA knockdown of neuronal IL-1Ra abrogated the protective effect of gem against IL-1β, suggesting that this drug increases the defense mechanism of cortical neurons via upregulation of IL-1Ra. Taken together, these results highlight the importance of the PI3K-Akt-CREB pathway in mediating gem-induced upregulation of IL-1Ra in neurons and suggest gem as a possible therapeutic treatment for propagating neuronal self-defense in neuroinflammatory and neurodegenerative disorders.

  14. Proinflammatory genotype of interleukin-1 and interleukin-1 receptor antagonist is associated with ESRD in proteinase 3-ANCA vasculitis patients.

    PubMed

    Borgmann, Stefan; Endisch, Georg; Hacker, Ulrich T; Song, Bong-Seok; Fricke, Harald

    2003-05-01

    Small-vessel vasculitides are associated with antineutrophil cytoplasmic antibodies (ANCAs). Cytoplasmic ANCAs are targeted mainly against proteinase 3 (PR3), whereas myeloperoxidase (MPO) is the major antigen of perinuclear ANCAs. These relapsing vasculitides show heterogeneous clinical pictures, and disease severity may vary broadly from mild local organ manifestation to acute organ failure (eg, renal failure). We tested whether two cytokine polymorphisms in the interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra) genes, known to determine cytokine secretion, are associated with clinical manifestations and outcome of ANCA-associated vasculitides. Polymerase chain reaction and restriction fragment length polymorphism analyses were performed to determine polymorphisms in the IL-1beta and IL-1ra genes in 79 patients with PR3-ANCA, 30 patients with MPO-ANCA vasculitis, and 196 healthy controls. The frequency of the so-called proinflammatory genotype, characterized by high secretion of IL-1beta and low secretion of its antagonist IL-1ra, was increased significantly in patients with PR3-ANCA with end-stage renal disease. Patients with a renal manifestation of PR3-ANCA vasculitis have an increased risk for developing end-stage renal disease when carrying the proinflammatory IL-1beta/IL-1ra genotype. Anti-inflammatory therapy specifically antagonizing the proinflammatory effect of IL-1beta may be a promising treatment for patients with Wegener's granulomatosis with renal manifestations.

  15. Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3,5-dione) Blocks the Chemotaxis of Neutrophils by Inhibiting Signal Transduction through IL-8 Receptors

    PubMed Central

    Takahashi, Masafumi; Ishiko, Takatoshi; Kamohara, Hidenobu; Hidaka, Hideaki; Ikeda, Osamu; Ogawa, Michio; Baba, Hideo

    2007-01-01

    We investigated the impact of curcumin on neutrophils. Chemotactic activity via human recombinant IL-8 (hrIL-8) was significantly inhibited by curcumin. Curcumin reduced calcium ion flow induced by internalization of the IL-8 receptor. We analyzed flow cytometry to evaluate the status of the IL-8 receptor after curcumin treatment. The change in the distribution of receptors intracellularly and on the cell surface suggested that curcumin may affect the receptor trafficking pathway intracellulary. Rab11 is a low molecular weight G protein associated with the CXCR recycling pathway. Following curcumin treatment, immunoprecipitation studies showed that the IL-8 receptor was associated with larger amounts of active Rab11 than that in control cells. These data suggest that curcumin induces the stacking of the Rab11 vesicle complex with CXCR1 and CXCR2 in the endocytic pathway. The mechanism for antiinflammatory response by curcumin may involve unique regulation of the Rab11 trafficking molecule in recycling of IL-8 receptors. PMID:17710245

  16. The interleukin (IL)-1 cytokine family--Balance between agonists and antagonists in inflammatory diseases.

    PubMed

    Palomo, Jennifer; Dietrich, Damien; Martin, Praxedis; Palmer, Gaby; Gabay, Cem

    2015-11-01

    The interleukin (IL)-1 family of cytokines comprises 11 members, including 7 pro-inflammatory agonists (IL-1α, IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) and 4 defined or putative antagonists (IL-1R antagonist (IL-1Ra), IL-36Ra, IL-37, and IL-38) exerting anti-inflammatory activities. Except for IL-1Ra, IL-1 cytokines do not possess a leader sequence and are secreted via an unconventional pathway. In addition, IL-1β and IL-18 are produced as biologically inert pro-peptides that require cleavage by caspase-1 in their N-terminal region to generate active proteins. N-terminal processing is also required for full activity of IL-36 cytokines. The IL-1 receptor (IL-1R) family comprises 10 members and includes cytokine-specific receptors, co-receptors and inhibitory receptors. The signaling IL-1Rs share a common structure with three extracellular immunoglobulin (Ig) domains and an intracellular Toll-like/IL-1R (TIR) domain. IL-1 cytokines bind to their specific receptor, which leads to the recruitment of a co-receptor and intracellular signaling. IL-1 cytokines induce potent inflammatory responses and their activity is tightly controlled at the level of production, protein processing and maturation, receptor binding and post-receptor signaling by naturally occurring inhibitors. Some of these inhibitors are IL-1 family antagonists, while others are IL-1R family members acting as membrane-bound or soluble decoy receptors. An imbalance between agonist and antagonist levels can lead to exaggerated inflammatory responses. Several genetic modifications or mutations associated with dysregulated IL-1 activity and autoinflammatory disorders were identified in mouse models and in patients. These findings paved the road to the successful use of IL-1 inhibitors in diseases that were previously considered as untreatable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Prenatal NMDA Receptor Antagonism Impaired Proliferation of Neuronal Progenitor, Leading to Fewer Glutamatergic Neurons in the Prefrontal Cortex

    PubMed Central

    Toriumi, Kazuya; Mouri, Akihiro; Narusawa, Shiho; Aoyama, Yuki; Ikawa, Natsumi; Lu, Lingling; Nagai, Taku; Mamiya, Takayoshi; Kim, Hyoung-Chun; Nabeshima, Toshitaka

    2012-01-01

    N-methyl--aspartate (NMDA) receptor is a glutamate receptor which has an important role on mammalian brain development. We have reported that prenatal treatment with phencyclidine (PCP), a NMDA receptor antagonist, induces long-lasting behavioral deficits and neurochemical changes. However, the mechanism by which the prenatal antagonism of NMDA receptor affects neurodevelopment, resulting in behavioral deficits, has remained unclear. Here, we report that prenatal NMDA receptor antagonism impaired the proliferation of neuronal progenitors, leading to a decrease in the progenitor pool in the ventricular and the subventricular zone. Furthermore, using a PCR array focused on neurogenesis and neuronal stem cells, we evaluated changes in gene expression causing the impairment of neuronal progenitor proliferation and found aberrant gene expression, such as Notch2 and Ntn1, in prenatal PCP-treated mice. Consequently, the density of glutamatergic neurons in the prefrontal cortex was decreased, probably resulting in glutamatergic hypofunction. Prenatal PCP-treated mice displayed behavioral deficits in cognitive memory and sensorimotor gating until adulthood. These findings suggest that NMDA receptors regulate the proliferation and maturation of progenitor cells for glutamatergic neuron during neurodevelopment, probably via the regulation of gene expression. PMID:22257896

  18. Sigma receptor antagonists attenuate acute methamphetamine-induced hyperthermia by a mechanism independent of IL-1β mRNA expression in the hypothalamus

    PubMed Central

    Seminerio, Michael J.; Robson, Matthew J.; McCurdy, Christopher R.; Matsumoto, Rae R.

    2013-01-01

    Methamphetamine is currently one of the most widely abused drugs worldwide, with hyperthermia being a leading cause of death in methamphetamine overdose situations. Methamphetamine-induced hyperthermia involves a variety of cellular mechanisms, including increases in hypothalamic interleukin-1 beta (IL-1β) expression. Methamphetamine also interacts with sigma receptors and previous studies have shown that sigma receptor antagonists mitigate many of the behavioral and physiological effects of methamphetamine, including hyperthermia. The purpose of the current study was to determine if the attenuation of methamphetamine-induced hyperthermia by the sigma receptor antagonists, AZ66 and SN79, is associated with a concomitant attenuation of IL-1β mRNA expression, particularly in the hypothalamus. Methamphetamine produced doseand time-dependent increases in core body temperature and IL-1β mRNA expression in the hypothalamus, striatum, and cortex in male, Swiss Webster mice. Pretreatment with the sigma receptor antagonists, AZ66 and SN79, significantly attenuated methamphetamine-induced hyperthermia, but further potentiated IL-1β mRNA in the mouse hypothalamus when compared to animals treated with methamphetamine alone. These findings suggest sigma receptor antagonists attenuate methamphetamine-induced hyperthermia through a different mechanism from that involved in the modulation of hypothalamic IL-1β mRNA expression. PMID:22820108

  19. The role of interleukin-8 (IL-8) and IL-8 receptors in platinum response in high grade serous ovarian carcinoma

    PubMed Central

    Stronach, Euan A.; Cunnea, Paula; Turner, Christina; Guney, Tankut; Aiyappa, Radhika; Jeyapalan, Senthuran; de Sousa, Camila H.; Browne, Alacoque; Magdy, Nesreen; Studd, James B.; Sriraksa, Ruethairat; Gabra, Hani; El-Bahrawy, Mona

    2015-01-01

    Platinum based drugs are the cornerstone of chemotherapy for ovarian cancer, however the development of chemoresistance hinders its success. IL-8 is involved in regulating several pro-survival pathways in cancer. We studied the expression of IL-8 and IL-8 receptors in platinum sensitive and resistant cell lines. Using qRT-PCR and immunohistochemistry, both platinum sensitive (PEA1, PEO14) and resistant (PEA2, PEO23) show increased expression of IL-8 and IL-8 receptors. IL-8RA shows nuclear and cytoplasmic expression, whilst IL-8RB is present solely in the cytoplasm. Knockdown of IL-8 increased sensitivity to cisplatin in platinum sensitive and reversed platinum resistance in resistant cell lines, decreased the expression of anti-apoptotic Bcl-2 and decreased inhibitory phosphorylation of pro-apoptotic Bad. IL-8 receptor antagonist treatment also enhanced platinum sensitivity. Nuclear localisation of IL-8RA was only detected in platinum resistant tumours. Inhibition of IL-8 signalling can enhance response in platinum sensitive and resistant disease. Nuclear IL-8RA may have potential as a biomarker of resistant disease. PMID:26267317

  20. The role of interleukin-8 (IL-8) and IL-8 receptors in platinum response in high grade serous ovarian carcinoma.

    PubMed

    Stronach, Euan A; Cunnea, Paula; Turner, Christina; Guney, Tankut; Aiyappa, Radhika; Jeyapalan, Senthuran; de Sousa, Camila H; Browne, Alacoque; Magdy, Nesreen; Studd, James B; Sriraksa, Ruethairat; Gabra, Hani; El-Bahrawy, Mona

    2015-10-13

    Platinum based drugs are the cornerstone of chemotherapy for ovarian cancer, however the development of chemoresistance hinders its success. IL-8 is involved in regulating several pro-survival pathways in cancer. We studied the expression of IL-8 and IL-8 receptors in platinum sensitive and resistant cell lines. Using qRT-PCR and immunohistochemistry, both platinum sensitive (PEA1, PEO14) and resistant (PEA2, PEO23) show increased expression of IL-8 and IL-8 receptors. IL-8RA shows nuclear and cytoplasmic expression, whilst IL-8RB is present solely in the cytoplasm. Knockdown of IL-8 increased sensitivity to cisplatin in platinum sensitive and reversed platinum resistance in resistant cell lines, decreased the expression of anti-apoptotic Bcl-2 and decreased inhibitory phosphorylation of pro-apoptotic Bad. IL-8 receptor antagonist treatment also enhanced platinum sensitivity. Nuclear localisation of IL-8RA was only detected in platinum resistant tumours. Inhibition of IL-8 signalling can enhance response in platinum sensitive and resistant disease. Nuclear IL-8RA may have potential as a biomarker of resistant disease.

  1. NK Cell Proliferation Induced by IL-15 Transpresentation Is Negatively Regulated by Inhibitory Receptors.

    PubMed

    Anton, Olga M; Vielkind, Susina; Peterson, Mary E; Tagaya, Yutaka; Long, Eric O

    2015-11-15

    IL-15 bound to the IL-15Rα-chain (IL-15Rα) is presented in trans to cells bearing the IL-2Rβ-chain and common γ-chain. As IL-15 transpresentation occurs in the context of cell-to-cell contacts, it has the potential for regulation by and of other receptor-ligand interactions. In this study, human NK cells were tested for the sensitivity of IL-15 transpresentation to inhibitory receptors. Human cells expressing HLA class I ligands for inhibitory receptors KIR2DL1, KIR2DL2/3, or CD94-NKG2A were transfected with IL-15Rα. Proliferation of primary NK cells in response to transpresented IL-15 was reduced by engagement of either KIR2DL1 or KIR2DL2/3 by cognate HLA-C ligands. Inhibitory KIR-HLA-C interactions did not reduce the proliferation induced by soluble IL-15. Therefore, transpresentation of IL-15 is subject to downregulation by MHC class I-specific inhibitory receptors. Similarly, proliferation of the NKG2A(+) cell line NKL induced by IL-15 transpresentation was inhibited by HLA-E. Coengagement of inhibitory receptors, either KIR2DL1 or CD94-NKG2A, did not inhibit phosphorylation of Stat5 but inhibited selectively phosphorylation of Akt and S6 ribosomal protein. IL-15Rα was not excluded from, but was evenly distributed across, inhibitory synapses. These findings demonstrate a novel mechanism to attenuate IL-15-dependent NK cell proliferation and suggest that inhibitory NK cell receptors contribute to NK cell homeostasis. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. Early induction of IL-1 receptor antagonist (IL-1Ra) in infants and children undergoing surgery.

    PubMed Central

    O Nualláin, E M; Puri, P; Reen, D J

    1993-01-01

    The cytokine response to injury or trauma is of interest in terms of both its mediation of the acute phase response and its possible relation to the immunological depression observed after major surgery. In this study, the production of cytokines IL-1 beta, tumour necrosis factor-alpha (TNF-alpha), IL-6 and the naturally occurring inhibitor of IL-1, IL-1Ra, have been investigated in infants and children undergoing Swenson's pull-through operation for Hirschsprung's disease. Samples of peripheral blood were taken before, during and after surgery for the measurement of cytokines. IL-1Ra levels increased significantly (P < 0.01) at 2 h after commencement of surgery, with maximal levels for individual patients being attained between 3 h and 5 h (range 7.6-67.9 ng/ml). The mean level of IL-1Ra was maximal (26.2 ng/ml) at 5 h and returned to baseline levels between 24 h and 72 h. There were no changes observed in the circulating levels of IL-1 beta in nine out of 11 patients following commencement of surgery. TNF-alpha levels did not increase in any of the patients studied. IL-6 levels increased significantly (P < 0.02) 3 h after commencement of surgery, reaching maximum concentrations at 24 h (range 20-670 pg/ml), with levels falling between 48 h and 72 h. This study demonstrates, in vivo, the independent induction of IL-1Ra without a concomitant increase of IL-1 beta levels after major surgery. It also shows that IL-1Ra is the earliest cytokine produced in response to surgical stress. PMID:8348747

  3. Of Inflammasomes and Alarmins: IL-1β and IL-1α in Kidney Disease

    PubMed Central

    2016-01-01

    Kidney injury implies danger signaling and a response by the immune system. The inflammasome is a central danger recognition platform that triggers local and systemic inflammation. In immune cells, inflammasome activation causes the release of mature IL-1β and of the alarmin IL-1α. Dying cells release IL-1α also, independently of the inflammasome. Both IL-1α and IL-1β ligate the same IL-1 receptor (IL-1R) that is present on nearly all cells inside and outside the kidney, further amplifying cytokine and chemokine release. Thus, the inflammasome-IL-1α/IL-β-IL-1R system is a central element of kidney inflammation and the systemic consequences. Seminal discoveries of recent years have expanded this central paradigm of inflammation. This review gives an overview of arising concepts of inflammasome and IL-1α/β regulation in renal cells and in experimental kidney disease models. There is a pipeline of compounds that can interfere with the inflammasome-IL-1α/IL-β-IL-1R system, ranging from recently described small molecule inhibitors of NLRP3, a component of the inflammasome complex, to regulatory agency–approved IL-1–neutralizing biologic drugs. Based on strong theoretic and experimental rationale, the potential therapeutic benefits of using such compounds to block the inflammasome-IL-1α/IL-β-IL-1R system in kidney disease should be further explored. PMID:27516236

  4. IL-1β induced methylation of the estrogen receptor ERα gene correlates with EMT and chemoresistance in breast cancer cells.

    PubMed

    Jiménez-Garduño, Aura M; Mendoza-Rodríguez, Mónica G; Urrutia-Cabrera, Daniel; Domínguez-Robles, María C; Pérez-Yépez, Eloy A; Ayala-Sumuano, Jorge Tonatiuh; Meza, Isaura

    2017-08-26

    Inflammation has been recently acknowledged as a key participant in the physiopathology of oncogenesis and tumor progression. The inflammatory cytokine IL-1β has been reported to induce the expression of markers associated with malignancy in breast cancerous cells through Epithelial-Mesenchymal Transition (EMT). Aggressive breast cancer tumors classified as Triple Negative do not respond to hormonal treatment because they lack three crucial receptors, one of which is the estrogen receptor alpha (ERα). Expression of ERα is then considered a good prognostic marker for tamoxifen treatment of this type of cancer, as the binding of this drug to the receptor blocks the transcriptional activity of the latter. Although it has been suggested that inflammatory cytokines in the tumor microenvironment could regulate ERα expression, the mechanism(s) involved in this process have not yet been established. We show here that, in a cell model of breast cancer cells (6D cells), in which the inflammatory cytokine IL-1β induces EMT by activation of the IL-1β/IL-1RI/β-catenin pathway, the up regulation of TWIST1 leads to methylation of the ESR1 gene promoter. This epigenetic modification produced significant decrease of the ERα receptor levels and increased resistance to tamoxifen. The direct participation of IL-1β in these processes was validated by blockage of the cytokine-induced signaling pathway by wortmannin inactivation of the effectors PI3K/AKT. These results support our previous reports that have suggested direct participation of the inflammatory cytokine IL-1β in the transition to malignancy of breast cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Dual ACE-inhibition and angiotensin II AT1 receptor antagonism with curcumin attenuate maladaptive cardiac repair and improve ventricular systolic function after myocardial infarctionin rat heart.

    PubMed

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Ijaz Shah, Ahmed; Garner, Ron; Zhao, Zhi-Qing

    2015-01-05

    Curcumin has been shown to improve cardiac function by reducing degradation of extracellular matrix and inhibiting synthesis of collagen after ischemia. This study tested the hypothesis that attenuation of maladaptive cardiac repair with curcumin is associated with a dual ACE-inhibition and angiotensin II AT1 receptor antagonism after myocardial infarction. Sprague-Dawley rats were subjected to 45min ischemia followed by 7 and 42 days of reperfusion, respectively. Curcumin was fed orally at a dose of 150mg/kg/day only during reperfusion. Relative to the control animals, dietary treatment with curcumin significantly reduced levels of ACE and AT1 receptor protein as determined by Western blot assay, coincident with less locally-expressed ACE and AT1 receptor in myocardium and coronary vessels as identified by immunohistochemistry. Along with this inhibition, curcumin significantly increased protein level of AT2 receptor and its expression compared with the control. As evidenced by less collagen deposition in fibrotic myocardium, curcumin also reduced the extent of collagen-rich scar and increased mass of viable myocardium detected by Masson׳s trichrome staining. Echocardiography showed that the wall thickness of the infarcted anterior septum in the curcumin group was significantly greater than that in the control group. Cardiac contractile function was improved in the curcumin treated animals as measured by fraction shortening and ejection fraction. In cultured cardiac muscle cells, curcumin inhibited oxidant-induced AT1 receptor expression and promoted cell survival. These results suggest that curcumin attenuates maladaptive cardiac repair and enhances cardiac function, primarily mediated by a dual ACE-inhibition and AT1 receptor antagonism after myocardial infarction. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis.

    PubMed

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song

    2013-06-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.

  7. [Cloning of VH and VL Gene of Human anti-IL1RAP McAb and Construction of Recombinant Chimeric Receptor].

    PubMed

    Yin, Ling-Ling; Ruan, Su-Hong; Tian, Yu; Zhao, Kai; Xu, Kai Lin

    2015-10-01

    To clone the variable region genes of human anti-IL1RAP (IL-1 receptor accessory protein) monoclonal antibodies (McAb) and to construct IL1RAP chimeric antigen receptors (CARs). The VH and VL DNA of IL1RAP single chain antibodies were amplified by RACE and overlap extension PCR from total RNA extracted from 3H6E10 and 10D8A7 hybridoma and ligated into specific IL1RAP single-chain variable fragments (scFv). CD8α transmembrane domain, CD137 intracellular domain, TCR ζ chain, human CD8α signal peptide and scFv-anti-IL1RAP were cloned into plasmid LV-lac. Recombinant lentiviruses were generated by co-transfection of recombinant plasmid LV-lac, pMD2. G, and psPAX2 helper vectors into 293FT packing cells. The VH and VL genes of 2 human anti-IL1RAP McAb were acquired. The 3H6E10 VH and VL genes consisted of 402 bp and 393 bp encoding 134 and 131 aminoacid residues, respectively; 10D8A7 VH and VL genes consisted of 423 bp and 381 bp encoding 141 and 127 amine acid residues, respectively. Recombinant expression vertors LV-3H6E10 scFv-ICD and LV-10D8A7 scFv-ICD (ICD: CD8α transmembrane domain-CD137 intracellular domain-TCR ζ chain) were constructed. The target fragments were demonstrated by sequencing analysis. Recombinant plasmids were transfected into 293FT cells and lentiviral particles were acquired. Human anti-IL1RAP recombinant receptors are constructed successfully and lay a good foundation for the construction of IL1RAP-CAR killer T cell vaccine.

  8. β-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat.

    PubMed

    Wohleb, Eric S; Hanke, Mark L; Corona, Angela W; Powell, Nicole D; Stiner, La'Tonia M; Bailey, Michael T; Nelson, Randy J; Godbout, Jonathan P; Sheridan, John F

    2011-04-27

    Psychosocial stress is associated with altered immune function and development of psychological disorders including anxiety and depression. Here we show that repeated social defeat in mice increased c-Fos staining in brain regions associated with fear and threat appraisal and promoted anxiety-like behavior in a β-adrenergic receptor-dependent manner. Repeated social defeat also significantly increased the number of CD11b(+)/CD45(high)/Ly6C(high) macrophages that trafficked to the brain. In addition, several inflammatory markers were increased on the surface of microglia (CD14, CD86, and TLR4) and macrophages (CD14 and CD86) after social defeat. Repeated social defeat also increased the presence of deramified microglia in the medial amygdala, prefrontal cortex, and hippocampus. Moreover, mRNA analysis of microglia indicated that repeated social defeat increased levels of interleukin (IL)-1β and reduced levels of glucocorticoid responsive genes [glucocorticoid-induced leucine zipper (GILZ) and FK506 binding protein-51 (FKBP51)]. The stress-dependent changes in microglia and macrophages were prevented by propranolol, a β-adrenergic receptor antagonist. Microglia isolated from socially defeated mice and cultured ex vivo produced markedly higher levels of IL-6, tumor necrosis factor-α, and monocyte chemoattractant protein-1 after stimulation with lipopolysaccharide compared with microglia from control mice. Last, repeated social defeat increased c-Fos activation in IL-1 receptor type-1-deficient mice, but did not promote anxiety-like behavior or microglia activation in the absence of functional IL-1 receptor type-1. These findings indicate that repeated social defeat-induced anxiety-like behavior and enhanced reactivity of microglia was dependent on activation of β-adrenergic and IL-1 receptors.

  9. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    PubMed

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  10. Release of IL-1beta via IL-1beta-converting enzyme in a skin dendritic cell line exposed to 2,4-dinitrofluorobenzene.

    PubMed

    Matos, Teresa J; Jaleco, Sara P; Gonçalo, Margarida; Duarte, Carlos B; Lopes, M Celeste

    2005-08-14

    We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1beta release and IL-1beta receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1 release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1beta-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1beta evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1beta receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1beta, without inducing an increase of IL-1beta mRNA in FSDC, suggests a posttranslational modification of pro-IL-1beta by ICE activity.

  11. Release of IL-1β via IL-1β-Converting Enzyme in a Skin Dendritic Cell Line Exposed to 2,4-Dinitrofluorobenzene

    PubMed Central

    Matos, Teresa J.; Jaleco, Sara P.; Gonçalo, Margarida; Duarte, Carlos B.; Lopes, M. Celeste

    2005-01-01

    We used a mouse fetal skin dendritic cell line (FSDC) to study the effect of the strong allergen 2,4-dinitrofluorobenzene (DNFB) on interleukin (IL)-1β release and IL-1β receptor immunoreactivity. Stimulation with DNFB (30 minutes) increased IL-1β release without changing the mRNA levels of the protein. Furthermore, DNFB increased transiently the interleukin-1β-converting enzyme (ICE) activity, as measured with its fluorogenic substrate Z-Tyr-Val-Ala-Asp-AFC. The ICE inhibitor Z-YVAD-FMK prevented the release of IL-1β evoked by DNFB. Incubation of the cells with DNFB (30 minutes) strongly increased IL-1β receptor immunoreactivity. The rapid effect of DNFB on the release of mature IL-1β, without inducing an increase of IL-1β mRNA in FSDC, suggests a posttranslational modification of pro-IL-1β by ICE activity. PMID:16106098

  12. Antagonism of the Ethanol-Like Discriminative Stimulus Effects of Ethanol, Pentobarbital, and Midazolam in Cynomolgus Monkeys Reveals Involvement of Specific GABAA Receptor SubtypesS⃞

    PubMed Central

    Rogers, Laura S. M.; Grant, Kathleen A.

    2009-01-01

    The γ-aminobutyric acid (GABA)A receptors mediating the discriminative stimulus effects of ethanol were studied by comparing the potency of ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)benzodiazepine-3-carboxylate (Ro15-4513) and ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazol(1,5-a)-benzodiazepine-3-carboxylate (flumazenil, Ro15-1788) to antagonize ethanol, pentobarbital (PB), and midazolam substitution for ethanol. Ro15-4513 has high affinity for receptors containing α4/6 and α5 subunits and lower affinity for α1, α2, and α3 subunits. Flumazenil is nonselective for GABAA receptors containing α1, α2, α3, and α5 subunits and has low affinity for α4/6-containing receptors. Male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) were trained to discriminate ethanol (1.0 or 2.0 g/kg i.g., 30-min pretreatment) from water. Ethanol, PB, and midazolam dose-dependently substituted for ethanol (80% ethanol-appropriate responding). Ro15-4513 (0.003–0.56 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in a vast majority of monkeys tested (15/15, 16/17, and 11/12, respectively). In contrast, flumazenil (0.30–10.0 mg/kg i.m., 5-min pretreatment) shifted the ethanol, PB, and midazolam dose-response functions rightward in 9 of 16, 12 of 16, and 7 of 9 monkeys tested, respectively. In the monkeys showing antagonism with both Ro15-4513 and flumazenil, ethanol and PB substitution were antagonized more potently by Ro15-4513 than by flumazenil, whereas midazolam substitution was antagonized with similar potency. There were no sex or training dose differences, with the exception that flumazenil failed to antagonize ethanol substitution in males trained to discriminate 2.0 g/kg ethanol. GABAA receptors with high affinity for Ro15-4513 (i.e., containing α4/6 and α5 subunits) may be particularly important mediators of the multiple discriminative stimulus effects of ethanol

  13. The orphan nuclear receptor TLX regulates hippocampal transcriptome changes induced by IL-1β.

    PubMed

    Ó'Léime, Ciarán S; Hoban, Alan E; Hueston, Cara M; Stilling, Roman; Moloney, Gerard; Cryan, John F; Nolan, Yvonne M

    2018-05-01

    TLX is an orphan nuclear receptor highly expressed within neural progenitor cells (NPCs) in the hippocampus where is regulates proliferation. Inflammation has been shown to have negative effects on hippocampal function as well as on NPC proliferation. Specifically, the pro-inflammatory cytokine IL-1β suppresses NPC proliferation as well as TLX expression in the hippocampus. However, it is unknown whether TLX itself is involved in regulating the inflammatory response in the hippocampus. To explore the role of TLX in inflammation, we assessed changes in the transcriptional landscape of the hippocampus of TLX knockout mice (TLX -/- ) compared to wildtype (WT) littermate controls with and without intrahippocampal injection of IL-1β using a whole transcriptome RNA sequencing approach. We demonstrated that there is an increase in the transcription of genes involved in the promotion of inflammation and regulation of cell chemotaxis (Tnf, Il1b, Cxcr1, Cxcr2, Tlr4) and a decrease in the expression of genes relating to synaptic signalling (Lypd1, Syt4, Cplx2) in cannulated TLX -/- mice compared to WT controls. We demonstrate that mice lacking in TLX share a similar increase in 176 genes involved in regulating inflammation (e.g. Cxcl1, Tnf, Il1b) as WT mice injected with IL-1β into the hippocampus. Moreover, TLX -/- mice injected with IL-1β displayed a blunted transcriptional profile compared to WT mice injected with IL-1β. Thus, TLX -/- mice, which already have an exaggerated inflammatory profile after cannulation surgery, are primed to respond differently to an inflammatory stimulus such as IL-1β. Together, these results demonstrate that TLX regulates hippocampal inflammatory transcriptome response to brain injury (in this case cannulation surgery) and cytokine stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Dopamine D1 and μ-opioid receptor antagonism blocks anticipatory 50 kHz ultrasonic vocalizations induced by palatable food cues in Wistar rats.

    PubMed

    Buck, Cara L; Vendruscolo, Leandro F; Koob, George F; George, Olivier

    2014-03-01

    Fifty kilohertz ultrasonic vocalizations (USVs) have been sometimes shown to reflect positive affective-like states in rats. Rewarding events, such as access to palatable food or drugs of abuse, increase the number of anticipatory 50-kHz USVs. However, little is known about the predictability of USVs, subtypes of USVs involved, and underlying neurobiological mechanisms. We examined whether cue-induced anticipatory 50-kHz USVs predict palatable food intake and tested the effects of dopamine D1 and μ-opioid receptor antagonism on anticipatory USVs. Food-restricted rats received repeated sessions of a 2-min cue light immediately followed by a 5-min access to palatable food. Ultrasonic vocalizations were recorded during cue presentation. After 24 pairing sessions, the rats were pretreated with the D1 receptor antagonist SCH 23390 (5, 10, and 20 μg/kg) and μ-opioid receptor antagonist naltrexone (0.03, 0.06, 0.13, 0.25, 0.5, and 1 mg/kg) in a Latin-square design, and USVs were recorded during cue presentation. Rats emitted 50-kHz USVs during cue presentation, and the number of USVs increased across sessions with robust and stable interindividual differences. Escalation in USVs was subtype-dependent, with nontrill calls significantly increasing over time. Palatable food intake was positively correlated with anticipatory 50-kHz USVs. Moreover, anticipatory USVs were dose-dependently prevented by antagonism of D1 and μ-opioid receptors. These findings demonstrate that anticipatory 50-kHz USVs represent a stable phenotype of increased motivation for food, and dopamine and opioid systems appear to mediate anticipatory 50-kHz USVs.

  15. Genetic regulation of IL1RL1 methylation and IL1RL1-a protein levels in asthma.

    PubMed

    Dijk, F Nicole; Xu, Chengjian; Melén, Erik; Carsin, Anne-Elie; Kumar, Asish; Nolte, Ilja M; Gruzieva, Olena; Pershagen, Goran; Grotenboer, Neomi S; Savenije, Olga E M; Antó, Josep Maria; Lavi, Iris; Dobaño, Carlota; Bousquet, Jean; van der Vlies, Pieter; van der Valk, Ralf J P; de Jongste, Johan C; Nawijn, Martijn C; Guerra, Stefano; Postma, Dirkje S; Koppelman, Gerard H

    2018-03-01

    Interleukin-1 receptor-like 1 ( IL1RL1 ) is an important asthma gene. (Epi)genetic regulation of IL1RL1 protein expression has not been established. We assessed the association between IL1RL1 single nucleotide polymorphisms (SNPs), IL1RL1 methylation and serum IL1RL1-a protein levels, and aimed to identify causal pathways in asthma.Associations of IL1RL1 SNPs with asthma were determined in the Dutch Asthma Genome-wide Association Study cohort and three European birth cohorts, BAMSE (Children/Barn, Allergy, Milieu, Stockholm, an Epidemiological survey), INMA (Infancia y Medio Ambiente) and PIAMA (Prevention and Incidence of Asthma and Mite Allergy), participating in the Mechanisms of the Development of Allergy study. We performed blood DNA IL1RL1 methylation quantitative trait locus (QTL) analysis (n=496) and (epi)genome-wide protein QTL analysis on serum IL1RL1-a levels (n=1462). We investigated the association of IL1RL1 CpG methylation with asthma (n=632) and IL1RL1-a levels (n=548), with subsequent causal inference testing. Finally, we determined the association of IL1RL1-a levels with asthma and its clinical characteristics (n=1101). IL1RL1 asthma-risk SNPs strongly associated with IL1RL1 methylation (rs1420101; p=3.7×10 -16 ) and serum IL1RL1-a levels (p=2.8×10 -56 ). IL1RL1 methylation was not associated with asthma or IL1RL1-a levels. IL1RL1-a levels negatively correlated with blood eosinophil counts, whereas there was no association between IL1RL1-a levels and asthma.In conclusion, asthma-associated IL1RL1 SNPs strongly regulate IL1RL1 methylation and serum IL1RL1-a levels, yet neither these IL1RL1- methylation CpG sites nor IL1RL1-a levels are associated with asthma. Copyright ©ERS 2018.

  16. Andrographolide Antagonizes TNF-α-Induced IL-8 via Inhibition of NADPH Oxidase/ROS/NF-κB and Src/MAPKs/AP-1 Axis in Human Colorectal Cancer HCT116 Cells.

    PubMed

    Yuan, Miaomiao; Meng, Wei; Liao, Wenzhen; Lian, Sen

    2018-05-14

    Andrographis paniculata Nees is used as a functional food in Japan, Korea, India, and China. Andrographolide, a naturally occurring phytochemical identified in Andrographis paniculata, has been discovered to present anti-inflammatory and anticancer activities. Highly expressed interleukin (IL-8) has been detected in colorectal cancer and is implicated in angiogenesis. However, the effect and molecular mechanisms of IL-8 expression by andrographolide remain obscure in human colorectal cancer cells. The present study was aimed to investigate the effects of andrographolide on TNF-α-induced IL-8 expression and its underlying mechanisms. We found that andrographolide concentration-dependently inhibited TNF-α-induced IL-8 mRNA (2.23 ± 0.15 fold at 20 μM) and protein expression (4.78 ± 0.31 fold at 20 μM) and reduced the IL-8 transcriptional activity (2.59 ± 0.25 fold at 20 μM). TNF-α stimulated the membrane translocation of p47 phox to activate reactive oxygen species (ROS)-producing NADPH oxidase (NOX). Furthermore, TNF-α induced Src and MAPKs (Erk1/2, p38 MAPK) phosphorylation, as well as NF-κB and AP-1 binding activities. We found that NF-κB and AP-1 were the critical transcription factors for TNF-α-induced IL-8 expression. Specific inhibitors and mutagenesis studies indicated that Src, Erk1/2, and p38 MAPK are related to TNF-α-induced IL-8. NOX-derived ROS and Src/MAPKs (Erk1/2 and p38 MAPK) functioned as upstream activators of NF-κB and AP-1, respectively. Taken together, andrographolide antagonizes TNF-α-induced IL-8 via inhibition of NADPH oxidase/ROS/NF-κB and Src/MAPKs/AP-1 signaling pathways in HCT116 colorectal cancer cells and then suppresses angiogenesis in the tumor microenvironment.

  17. Association study of functional polymorphisms in interleukins and interleukin receptors genes: IL1A, IL1B, IL1RN, IL6, IL6R, IL10, IL10RA and TGFB1 in schizophrenia in Polish population.

    PubMed

    Kapelski, Pawel; Skibinska, Maria; Maciukiewicz, Malgorzata; Wilkosc, Monika; Frydecka, Dorota; Groszewska, Agata; Narozna, Beata; Dmitrzak-Weglarz, Monika; Czerski, Piotr; Pawlak, Joanna; Rajewska-Rager, Aleksandra; Leszczynska-Rodziewicz, Anna; Slopien, Agnieszka; Zaremba, Dorota; Twarowska-Hauser, Joanna

    2015-12-01

    Schizophrenia has been associated with a large range of autoimmune diseases, with a history of any autoimmune disease being associated with a 45% increase in risk for the illness. The inflammatory system may trigger or modulate the course of schizophrenia through complex mechanisms influencing neurodevelopment, neuroplasticity and neurotransmission. In particular, increases or imbalance in cytokine before birth or during the early stages of life may affect neurodevelopment and produce vulnerability to the disease. A total of 27 polymorphisms of IL1N gene: rs1800587, rs17561; IL1B gene: rs1143634, rs1143643, rs16944, rs4848306, rs1143623, rs1143633, rs1143627; IL1RN gene: rs419598, rs315952, rs9005, rs4251961; IL6 gene: rs1800795, rs1800797; IL6R gene: rs4537545, rs4845617, rs2228145, IL10 gene: rs1800896, rs1800871, rs1800872, rs1800890, rs6676671; IL10RA gene: rs2229113, rs3135932; TGF1B gene: rs1800469, rs1800470; each selected on the basis of molecular evidence for functionality, were investigated in this study. Analysis was performed on a group of 621 patients with diagnosis of schizophrenia and 531 healthy controls in Polish population. An association of rs4848306 in IL1B gene, rs4251961 in IL1RN gene, rs2228145 and rs4537545 in IL6R with schizophrenia have been observed. rs6676671 in IL10 was associated with early age of onset. Strong linkage disequilibrium was observed between analyzed polymorphisms in each gene, except of IL10RA. We observed that haplotypes composed of rs4537545 and rs2228145 in IL6R gene were associated with schizophrenia. Analyses with family history of schizophrenia, other psychiatric disorders and alcohol abuse/dependence did not show any positive findings. Further studies on larger groups along with correlation with circulating protein levels are needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer's disease.

    PubMed

    Zhang, Cheng; Kuo, Ching-Chang; Moghadam, Setareh H; Monte, Louise; Campbell, Shannon N; Rice, Kenner C; Sawchenko, Paul E; Masliah, Eliezer; Rissman, Robert A

    2016-05-01

    Stress and corticotropin-releasing factor (CRF) have been implicated as mechanistically involved in Alzheimer's disease (AD), but agents that impact CRF signaling have not been carefully tested for therapeutic efficacy or long-term safety in animal models. To test whether antagonism of the type-1 corticotropin-releasing factor receptor (CRFR1) could be used as a disease-modifying treatment for AD, we used a preclinical prevention paradigm and treated 30-day-old AD transgenic mice with the small-molecule, CRFR1-selective antagonist, R121919, for 5 months, and examined AD pathologic and behavioral end points. R121919 significantly prevented the onset of cognitive impairment in female mice and reduced cellular and synaptic deficits and beta amyloid and C-terminal fragment-β levels in both genders. We observed no tolerability or toxicity issues in mice treated with R121919. CRFR1 antagonism presents a viable disease-modifying therapy for AD, recommending its advancement to early-phase human safety trials. Copyright © 2015 Alzheimer's Association. All rights reserved.

  19. Antagonism of V1b receptors promotes maternal motivation to retrieve pups in the MPOA and impairs pup-directed behavior during maternal defense in the mpBNST of lactating rats.

    PubMed

    Bayerl, Doris S; Kaczmarek, Veronika; Jurek, Benjamin; van den Burg, Erwin H; Neumann, Inga D; Gaßner, Barbara M; Klampfl, Stefanie M; Bosch, Oliver J

    2016-03-01

    Recent studies using V1b receptor (V1bR) knockout mice or central pharmacological manipulations in lactating rats highlighted the influence of this receptor for maternal behavior. However, its role in specific brain sites known to be important for maternal behavior has not been investigated to date. In the present study, we reveal that V1bR mRNA (qPCR) and protein levels (Western blot) within either the medial preoptic area (MPOA) or the medial-posterior part of the bed nucleus of the stria terminalis (mpBNST) did not differ between virgin and lactating rats. Furthermore, we characterized the effects of V1bR blockade via bilateral injections of the receptor subtype-specific antagonist SSR149415 within the MPOA or the mpBNST on maternal behavior (maternal care under non-stress and stress conditions, maternal motivation to retrieve pups in a novel environment, maternal aggression) and anxiety-related behavior in lactating rats. Blocking V1bR within the MPOA increased pup retrieval, whereas within the mpBNST it decreased pup-directed behavior, specifically licking/grooming the pups, during the maternal defense test. In addition, immediately after termination of the maternal defense test, V1bR antagonism in both brain regions reduced nursing, particularly arched back nursing. Anxiety-related behavior was not affected by V1bR antagonism in either brain region. In conclusion our data indicate that V1bR antagonism significantly modulates different aspects of maternal behavior in a brain region-dependent manner. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Genistein regulates the IL-1 beta induced activation of MAPKs in human periodontal ligament cells through G protein-coupled receptor 30.

    PubMed

    Luo, Li-Jun; Liu, Feng; Lin, Zhi-Kai; Xie, Yu-Feng; Xu, Jia-Li; Tong, Qing-Chun; Shu, Rong

    2012-06-01

    Periodontal ligament (PDL) cells are fibroblasts that play key roles in tissue integrity, periodontal inflammation and tissue regeneration in the periodontium. The periodontal tissue destruction in periodontitis is mediated by host tissue-produced inflammatory cytokines, including interleukin-1β (IL-1β). Here, we report the expression of G protein-coupled receptor 30 (GPR30, also known as G protein-coupled estrogen receptor 1 GPER) in human PDL cells and its regulation by IL-1β. IL-1β-induced GPR30 expression in human PDL cells leads to the activation of multiple signaling pathways, including MAPK, NF-κB and PI3K. In contrast, genistein, an estrogen receptor ligand, postpones the activation of MAPKs induced by IL-1β. Moreover, the inhibition of GPR30 by G15, a GPR30-specific antagonist, eliminates this delay. Thus, genistein plays a role in the regulation of MAPK activation via GPR30, and GPR30 represents a novel target regulated by steroid hormones in PDL cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Interleukin 1 receptor antagonist (IL1RN) genetic variations condition post-orthodontic external root resorption in endodontically-treated teeth.

    PubMed

    Iglesias-Linares, Alejandro; Yañez-Vico, Rosa Ma; Ballesta-Mudarra, Sofía; Ortiz-Ariza, Estefanía; Mendoza-Mendoza, Asunción; Perea-Pérez, Evelio; Moreno-Fernández, Ana Ma; Solano-Reina, Enrique

    2013-06-01

    External apical root resorption (EARR) is a frequent iatrogenic problem following orthodontic treatment in endodontically-treated teeth, about which the literature reports substantial variability in post-orthodontic treatment EARR responses. The main focus of the present study is to clarify whether variants in the interleukin-1 receptor antagonist gene coding for the IL-1ra protein have a positive/negative influence on EARR of endodontically-treated teeth. Ninety-three orthodontic patients were genetically screened for a single nucleotide polymorphism (SNP:rs419598) in the IL1 cluster. The sample was classified into 2 groups: group 1 (affected-group) showed radiographic EARR of more than 2mm; group 2 (control-group), had no EARR or EARR ≤ to 2mm following orthodontic treatment on root-filled teeth. Logistic regression analysis was performed to obtain an adjusted estimate between the SNPs studied and EARR. Genotype distributions, allelic frequencies, adjusted odds ratios (OR) and 95% confidence intervals were also calculated. We found that subjects homozygous [1/1(TT)] for the IL1RN gene [OR:10.85; p=0.001;CI:95%] were at risk of EARR in root-filled teeth. Genetic variants in the antagonist axis balance of the IL1RN (rs419598) have a direct repercussion on the predisposition to post-orthodontic EARR in root-filled teeth. Variants in allele 1 of the interleukin-1 receptor antagonist gene(rs419598) are associated(p=0.001**) with an increased risk of suffering post-orthodontic EARR in root-filled teeth.

  2. Hearing improvement in a patient with variant Muckle‐Wells syndrome in response to interleukin 1 receptor antagonism

    PubMed Central

    Rynne, M; Maclean, C; Bybee, A; McDermott, M F; Emery, P

    2006-01-01

    Background Muckle‐Wells syndrome (MWS), familial cold autoinflammatory syndrome, and neonatal onset multisystem inflammatory disease, also called chronic, infantile, neurological, cutaneous, and articular syndrome, are three hereditary autoinflammatory syndromes caused by mutations affecting the CIAS1/NALP3 gene on chromosome 1q44. The proinflammatory cytokine, interleukin 1β, is believed to have a fundamental role in their pathogenesis. Case report The case is described of a 59 year old white woman who presented with increasingly severe MWS‐type features over a 15 year period. The response to interleukin 1β inhibition with anakinra was dramatic, including a reduction in intracranial pressure with associated auditory improvement, as demonstrated by serial audiometry. Conclusions The confirmed improvement in hearing after initiation of interleukin 1 receptor antagonism corroborates previous reports that specific blockade of this single cytokine reverses most of the symptoms of this group of CIAS1/NALP3 related autoinflammatory conditions, including the sensorineural deafness, which has not been previously reported. PMID:16531551

  3. A randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia.

    PubMed

    Meskanen, Katarina; Ekelund, Heidi; Laitinen, Jarmo; Neuvonen, Pertti J; Haukka, Jari; Panula, Pertti; Ekelund, Jesper

    2013-08-01

    Histamine has important functions as regulator of several other key neurotransmitters. Patients with schizophrenia have lower histamine H1 receptor levels. Since a case report in 1990 of an effect of the H2 antagonist famotidine on negative symptoms in schizophrenia, some open-label trials have been performed, but no randomized controlled trial. Recently, it was shown that clozapine is a full inverse agonist at the H2 receptor. We performed a researcher-initiated, academically financed, double-blind, placebo-controlled, parallel-group, randomized trial with the histamine H2 antagonist famotidine in treatment-resistant schizophrenia. Thirty subjects with schizophrenia were randomized to have either famotidine (100 mg twice daily, n = 16) or placebo (n = 14) orally, added to their normal treatment regimen for 4 weeks. They were followed up weekly with the Scale for the Assessment of Negative Symptoms (SANS), the PANSS (Positive and Negative Syndrome Scale), and Clinical Global Impression (CGI) Scale. In the famotidine group, the SANS score was reduced by 5.3 (SD, 13.1) points, whereas in the placebo group the SANS score was virtually unchanged (mean change, +0.2 [SD, 9.5]). The difference did not reach statistical significance (P = 0.134) in Mann-Whitney U analysis. However, the PANSS Total score and the General subscore as well as the CGI showed significantly (P < 0.05) greater change in the famotidine group than in the placebo group. No significant adverse effects were observed. This is the first placebo-controlled, randomized clinical trial showing a beneficial effect of histamine H2 antagonism in schizophrenia. H2 receptor antagonism may provide a new alternative for the treatment of schizophrenia.

  4. Complement C5a receptor antagonism by protamine and poly-L-Arg on human leukocytes.

    PubMed

    Olsen, U B; Selmer, J; Kahl, J U

    1988-01-01

    It is shown that protamine selectively and dose-dependently inhibits complement C5a-induced leukocyte responses such as histamine release from basophils, chemiluminescence and beta-glucuronidase release from neutrophils. Protamine produces parallel rightward displacements of the C5a dose-response curves. The inhibitory capacity of the polypeptide is reversible and disappears following repeated washing of exposed cells. In neutrophils poly-L-Arg similarly and specifically antagonizes C5a-induced chemiluminescence and enzyme release. This polymer alone, however, degranulates basophils and neutrophils, leading to histamine and enzyme release, respectively. It is concluded that on human neutrophils the arginine-rich polycations protamine and poly-L-Arg exhibit a competitive C5a receptor antagonism. In addition, protamine inhibits the C5a receptors on basophils. It is hypothesized that molecular conformations of the arginine-rich polycations might bind reversibly to, and block negatively charged groups at the C5a-receptor sites.

  5. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  6. Role of the Inflammasome, IL-1β, and IL-18 in Bacterial Infections

    PubMed Central

    Sahoo, Manoranjan; Ceballos-Olvera, Ivonne; del Barrio, Laura; Re, Fabio

    2011-01-01

    The inflammasome is an important innate immune pathway that regulates at least two host responses protective against infections: (1) secretion of the proinflammatory cytokines IL-1β and IL-18 and (2) induction of pyroptosis, a form of cell death. Inflammasomes, of which different types have been identified, are multiprotein complexes containing pattern recognition receptors belonging to the Nod-like receptor family or the PYHIN family and the protease caspase-1. The molecular aspects involved in the activation of different inflammasomes by various pathogens are being rapidly elucidated, and their role during infections is being characterized. Production of IL-1β and IL-18 and induction of pyroptosis of the infected cell have been shown to be protective against many infectious agents. Here, we review the recent literature concerning inflammasome activation in the context of bacterial infections and identify important questions to be answered in the future. PMID:22125454

  7. Chemodetection in fluctuating environments: receptor coupling, buffering, and antagonism.

    PubMed

    Lalanne, Jean-Benoît; François, Paul

    2015-02-10

    Variability in the chemical composition of the extracellular environment can significantly degrade the ability of cells to detect rare cognate ligands. Using concepts from statistical detection theory, we formalize the generic problem of detection of small concentrations of ligands in a fluctuating background of biochemically similar ligands binding to the same receptors. We discover that in contrast with expectations arising from considerations of signal amplification, inhibitory interactions between receptors can improve detection performance in the presence of substantial environmental variability, providing an adaptive interpretation to the phenomenon of ligand antagonism. Our results suggest that the structure of signaling pathways responsible for chemodetection in fluctuating and heterogeneous environments might be optimized with respect to the statistics and dynamics of environmental composition. The developed formalism stresses the importance of characterizing nonspecific interactions to understand function in signaling pathways.

  8. ENDOTHELIN-A RECEPTOR ANTAGONISM IN EMBRYO CULTURE: WINDOW OF SENSITIVITY AND TIMING OF DEFECT

    EPA Science Inventory

    BRANNEN, K.C., J.M. ROGERS, and E.S. HUNTER, Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina, and Reproductive Toxicology Division, NHEERL, U.S. EPA, Research Triangle Park, North Carolina. Endothelin-A receptor antagonism in embryo culture: w...

  9. The Corepressor NCoR1 Antagonizes PGC-1α and Estrogen-Related Receptor α in the Regulation of Skeletal Muscle Function and Oxidative Metabolism

    PubMed Central

    Pérez-Schindler, Joaquín; Summermatter, Serge; Salatino, Silvia; Zorzato, Francesco; Beer, Markus; Balwierz, Piotr J.; van Nimwegen, Erik; Feige, Jérôme N.; Auwerx, Johan

    2012-01-01

    Skeletal muscle exhibits a high plasticity and accordingly can quickly adapt to different physiological and pathological stimuli by changing its phenotype largely through diverse epigenetic mechanisms. The nuclear receptor corepressor 1 (NCoR1) has the ability to mediate gene repression; however, its role in regulating biological programs in skeletal muscle is still poorly understood. We therefore studied the mechanistic and functional aspects of NCoR1 function in this tissue. NCoR1 muscle-specific knockout mice exhibited a 7.2% higher peak oxygen consumption (VO2peak), a 11% reduction in maximal isometric force, and increased ex vivo fatigue resistance during maximal stimulation. Interestingly, global gene expression analysis revealed a high overlap between the effects of NCoR1 deletion and peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α) overexpression on oxidative metabolism in muscle. Importantly, PPARβ/δ and estrogen-related receptor α (ERRα) were identified as common targets of NCoR1 and PGC-1α with opposing effects on the transcriptional activity of these nuclear receptors. In fact, the repressive effect of NCoR1 on oxidative phosphorylation gene expression specifically antagonizes PGC-1α-mediated coactivation of ERRα. We therefore delineated the molecular mechanism by which a transcriptional network controlled by corepressor and coactivator proteins determines the metabolic properties of skeletal muscle, thus representing a potential therapeutic target for metabolic diseases. PMID:23028049

  10. Combined mesenchymal stem cell transplantation and interleukin-1 receptor antagonism after partial hepatectomy

    PubMed Central

    Sang, Jian-Feng; Shi, Xiao-Lei; Han, Bing; Huang, Xu; Huang, Tao; Ren, Hao-Zhen; Ding, Yi-Tao

    2016-01-01

    AIM: To study the therapeutic effects of mesenchymal stem cells (MSCs) and an interleukin-1 receptor antagonist (IL-1Ra) in acute liver failure. METHODS: Chinese experimental miniature swine (15 ± 3 kg, 5-8 mo) were obtained from the Laboratory Animal Centre of the Affiliated Drum Tower Hospital of Nanjing University Medical School. Acute liver failure was induced via 85% hepatectomy, and animals were treated by MSC transplantation combined with IL-1Ra injection. Blood samples were collected for hepatic function analysis, and the living conditions and survival time were recorded. Liver injury was histologically analyzed. Hepatic cell regeneration and apoptosis were studied by Ki67 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. The levels of protein kinase B and nuclear factor-κB expression were analyzed by Western blotting. RESULTS: MSCs were infected with a lentivirus for expression of green fluorescent protein (GFP) for subsequent identification; 97.3% of the MSCs were positive for GFP as assessed by flow cytometry. Additional flow cytometric analysis of cell surface marker expression demonstrated that > 90% of GFP-expressing MSCs were also positive for CD29, CD44, and CD90, indicating that most of these cells expressed typical markers of MSCs, and the population of MSCs was almost pure. Transplantation of MSCs in combination with 2 mg/kg IL-1Ra therapy significantly improved survival time compared to the acute liver failure model group (35.3 ± 6.7 d vs 17.3 ± 5.5 d, P < 0.05). Combined therapy also promoted improvement in serum inflammatory cytokines and biochemical conditions. The observed hepatic histopathologic score was significantly lower in the group with combined therapy than in the model group (3.50 ± 0.87 vs 8.17 ± 1.26, P < 0.01). In addition, liver cell apoptosis in the combined therapy group was significantly inhibited (18.1 ± 2.1% vs 70.8 ± 3.7%, P < 0.01), and hepatic cell regeneration

  11. Distortion of KB estimates of endothelin-1 ETA and ETB receptor antagonists in pulmonary arteries: Possible role of an endothelin-1 clearance mechanism.

    PubMed

    Angus, James A; Hughes, Richard J A; Wright, Christine E

    2017-12-01

    Dual endothelin ET A and ET B receptor antagonists are approved therapy for pulmonary artery hypertension (PAH). We hypothesized that ET B receptor-mediated clearance of endothelin-1 at specific vascular sites may compromise this targeted therapy. Concentration-response curves (CRC) to endothelin-1 or the ET B agonist sarafotoxin S6c were constructed, with endothelin receptor antagonists, in various rat and mouse isolated arteries using wire myography or in rat isolated trachea. In rat small mesenteric arteries, bosentan displaced endothelin-1 CRC competitively indicative of ET A receptor antagonism. In rat small pulmonary arteries, bosentan 10 μmol L -1 left-shifted the endothelin-1 CRC, demonstrating potentiation consistent with antagonism of an ET B receptor-mediated endothelin-1 clearance mechanism. Removal of endothelium or L-NAME did not alter the EC 50 or Emax of endothelin-1 nor increase the antagonism by BQ788. In the presence of BQ788 and L-NAME, bosentan displayed ET A receptor antagonism. In rat trachea (ET B ), bosentan was a competitive ET B antagonist against endothelin-1 or sarafotoxin S6c. Modeling showed the importance of dual receptor antagonism where the potency ratio of ET A to ET B antagonism is close to unity. In conclusion, the rat pulmonary artery is an example of a special vascular bed where the resistance to antagonism of endothelin-1 constriction by ET dual antagonists, such as bosentan or the ET B antagonist BQ788, is possibly due to the competition of potentiation of endothelin-1 by blockade of ET B -mediated endothelin-1 clearance located on smooth muscle and antagonism of ET A - and ET B -mediated contraction. This conclusion may have direct application for the efficacy of endothelin-1 antagonists for treating PAH. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  12. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control

    PubMed Central

    Budagian, Vadim; Bulanova, Elena; Orinska, Zane; Thon, Lutz; Mamat, Uwe; Bellosta, Paola; Basilico, Claudio; Adam, Dieter; Paus, Ralf; Bulfone-Paus, Silvia

    2005-01-01

    Discrimination between cytokine receptor and receptor tyrosine kinase (RTK) signaling pathways is a central paradigm in signal transduction research. Here, we report a ‘promiscuous liaison' between both receptors that enables interleukin (IL)-15 to transactivate the signaling pathway of a tyrosine kinase. IL-15 protects murine L929 fibroblasts from tumor necrosis factor α (TNFα)-induced cell death, but fails to rescue them upon targeted depletion of the RTK, Axl; however, Axl-overexpressing fibroblasts are TNFα-resistant. IL-15Rα and Axl colocalize on the cell membrane and co-immunoprecipitate even in the absence of IL-15, whereby the extracellular part of Axl proved to be essential for Axl/IL-15Rα interaction. Most strikingly, IL-15 treatment mimics stimulation by the Axl ligand, Gas6, resulting in a rapid tyrosine phosphorylation of both Axl and IL-15Rα, and activation of the phosphatidylinositol 3-kinase/Akt pathway. This is also seen in mouse embryonic fibroblasts from wild-type but not Axl−/− or IL-15Rα−/− mice. Thus, IL-15-induced protection from TNFα-mediated cell death involves a hitherto unknown IL-15 receptor complex, consisting of IL-15Rα and Axl RTK, and requires their reciprocal activation initiated by ligand-induced IL-15Rα. PMID:16308569

  13. Production of interleukin-2 (IL-2) and expression of IL-2 receptor in patients with IgA nephropathy.

    PubMed

    Lee, T W; Kim, M J

    1992-01-01

    IL-2 production has been measured in several disease including type I diabetes mellitus, systemic lupus erythematosus, acquired immunodeficiency syndrome and active pulmonary sarcoidosis and its pathogenetic role was suggested. In IgA nephropathy, altered T cell subsets were reported to be associated with increased synthesis of IgA. The altered IL-2 production and the expression of IL-2 receptor might be involved in the pathogenesis of IgA nephropathy. To investigate the role of T cell mediated immunity in the pathogenesis of IgA nephropathy, the immune parameters such as T cell subsets, NK cell activity, interleukin-2 (IL-2) production and IL-2 receptor expression on peripheral blood mononuclear cells (PBMC) were measured before and/or after phytohemagglutinin (PHA) stimulation in 15 patients with IgA nephropathy. Age and sex matched 15 healthy controls and the correlations between the IL-2 production and immune parameters were evaluated. The mean percentages of T helper/inducer cells (CD4), T suppressor/cytotoxic cells (CD8) and the CD4/CD8 ratio of the patients were not different from those of controls and the proportions of CD8 CD11b cell in the patients (21.0 +/- 3.6%) were significantly lower than those in controls (30.5 +/- 5.3%) (p < 0.005). The production of IL-2 by fresh PBMC of both patients and controls was in undetectable ranges. The production of IL-2 by PHA stimulated PBMC of patients was significantly higher than that of controls (140.03 +/- 43.2 U/ml vs 106.5 +/- 42.1 U/ml, p < 0.05). The proportions of lymphocytes expressing the IL-2 receptor (CD25) before the stimulation with PHA in patients were 1.22 +/- 1.00 percent and were not different from those in controls (1.12 +/- 0.78 percent). The correlations between the production of IL-2 and the concentrations of serum IgA, the degrees of histologic alterations and the proportions of CD8 and CD8CD11b cells were not significant. There was a weak tendency of a positive correlation (p < 0.1) between

  14. σ Receptor Effects of N-Substituted Benztropine Analogs: Implications for Antagonism of Cocaine Self-Administration

    PubMed Central

    Hiranita, Takato; Hong, Weimin C.; Kopajtic, Theresa

    2017-01-01

    Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N-methyl (AHN1-055), N-allyl (AHN2-005), and N-butyl (JHW007) analogs of 3α-[bis(4′-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d-methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03–1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ1-receptor1R) antagonists. Therefore, the present study examined binding of the BZT analogs to σRs, as well as their in vivo σR antagonist effects. Each of the BZT analogs displaced radiolabeled σR ligands with nanomolar affinity. Further, self-administration of the σR agonist DTG (0.1–3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D1-like [R(+)-SKF 81297, (±)-SKF 82958 (0.00032–0.01 mg/kg per injection each)], D2-like [R(–)-NPA (0.0001–0.0032 mg/kg per injection), (–)-quinpirole (0.0032–0.1 mg/kg per injection)], or μ-opioid (remifentanil, 0.0001–0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N-substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σR antagonism contributes to those actions. PMID:28442581

  15. σ Receptor Effects of N-Substituted Benztropine Analogs: Implications for Antagonism of Cocaine Self-Administration.

    PubMed

    Hiranita, Takato; Hong, Weimin C; Kopajtic, Theresa; Katz, Jonathan L

    2017-07-01

    Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N -methyl (AHN1-055), N -allyl (AHN2-005), and N -butyl (JHW007) analogs of 3 α -[bis(4'-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d -methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03-1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ 1 -receptor ( σ 1 R) antagonists. Therefore, the present study examined binding of the BZT analogs to σ Rs, as well as their in vivo σ R antagonist effects. Each of the BZT analogs displaced radiolabeled σ R ligands with nanomolar affinity. Further, self-administration of the σ R agonist DTG (0.1-3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D 1 -like [ R (+)-SKF 81297, (±)-SKF 82958 (0.00032-0.01 mg/kg per injection each)], D 2 -like [ R (-)-NPA (0.0001-0.0032 mg/kg per injection), (-)-quinpirole (0.0032-0.1 mg/kg per injection)], or μ -opioid (remifentanil, 0.0001-0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N -substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σ R antagonism contributes to those actions. U.S. Government work not protected by U.S. copyright.

  16. Preclinical pharmacology of bilastine, a new selective histamine H1 receptor antagonist: receptor selectivity and in vitro antihistaminic activity.

    PubMed

    Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio

    2005-01-01

    This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.

  17. Ionotropic GABA receptor antagonism-induced adverse outcome pathways for potential neurotoxicity biomarkers.

    PubMed

    Gong, Ping; Hong, Huixiao; Perkins, Edward J

    2015-01-01

    Antagonism of ionotropic GABA receptors (iGABARs) can occur at three distinct types of receptor binding sites causing chemically induced epileptic seizures. Here we review three adverse outcome pathways, each characterized by a specific molecular initiating event where an antagonist competitively binds to active sites, negatively modulates allosteric sites or noncompetitively blocks ion channel on the iGABAR. This leads to decreased chloride conductance, followed by depolarization of affected neurons, epilepsy-related death and ultimately decreased population. Supporting evidence for causal linkages from the molecular to population levels is presented and differential sensitivity to iGABAR antagonists in different GABA receptors and organisms discussed. Adverse outcome pathways are poised to become important tools for linking mechanism-based biomarkers to regulated outcomes in next-generation risk assessment.

  18. IL-1 receptor antagonist attenuates neonatal lipopolysaccharide-induced long-lasting learning impairment and hippocampal injury in adult rats

    PubMed Central

    Pang, Yi; Bhatt, Abhay J.; Fan, Lir-Wan

    2015-01-01

    We have previously reported that neonatal lipopolysaccharide (LPS) exposure resulted in an increase in interleukin-1β (IL-1β) content, injury to the hippocampus, and cognitive deficits in juvenile male and female rats, as well as female adult rats. The present study aimed to determine whether an antiinflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), protects against the neonatal LPS exposure-induced inflammatory responses, hippocampal injury, and long-lasting learning deficits in adult rats. LPS (1 mg/kg) or LPS plus IL-1ra (0.1 mg/kg) was injected intracerebrally to Sprague-Dawley male rat pups at postnatal day 5 (P5). Neurobehavioral tests were carried out on P21, P49, and P70, while neuropathological studies were conducted on P71. Our results showed that neonatal LPS exposure resulted in learning deficits in rats at both developmental and adult ages, as demonstrated by a significantly impaired performance in the passive avoidance task (P21, P49, and P70), reduced hippocampal volume, and reduced number of Nissl+ cells in the CA1 region of the middle dorsal hippocampus of P71 rat brain. Those neuropathological and neurobehavioral alterations by LPS exposure were associated with a sustained inflammatory response in the P71 rat hippocampus, indicated by increased number of activated microglia as well as elevated levels of IL-1β. Neonatal administration of IL-1ra significantly attenuated LPS-induced long-lasting learning deficits, hippocampal injury, and sustained inflammatory responses in P71 rats. Our study demonstrates that neonatal LPS exposure leads to a persistent injury to the hippocampus, resulting in long-lasting learning disabilities related to chronic inflammation in rats, and these effects can be attenuated with an IL-1 receptor antagonist. PMID:25665855

  19. Leptin-induced IL-6 production is mediated by leptin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, Akt, NF-kappaB, and p300 pathway in microglia.

    PubMed

    Tang, Chih-Hsin; Lu, Da-Yuu; Yang, Rong-Sen; Tsai, Huei-Yann; Kao, Ming-Ching; Fu, Wen-Mei; Chen, Yuh-Fung

    2007-07-15

    Leptin, the adipocyte-secreted hormone that centrally regulates weight control, is known to function as an immunomodulatory regulator. We investigated the signaling pathway involved in IL-6 production caused by leptin in microglia. Microglia expressed the long (OBRl) and short (OBRs) isoforms of the leptin receptor. Leptin caused concentration- and time-dependent increases in IL-6 production. Leptin-mediated IL-6 production was attenuated by OBRl receptor antisense oligonucleotide, PI3K inhibitor (Ly294002 and wortmannin), Akt inhibitor (1L-6-hydroxymethyl-chiro-inositol-2-((R)-2-O-methyl-3-O-octadecylcarbonate)), NF-kappaB inhibitor (pyrrolidine dithiocarbamate), IkappaB protease inhibitor (L-1-tosylamido-2-phenylenylethyl chloromethyl ketone), IkappaBalpha phosphorylation inhibitor (Bay 117082), or NF-kappaB inhibitor peptide. Transfection with insulin receptor substrate (IRS)-1 small-interference RNA or the dominant-negative mutant of p85 and Akt also inhibited the potentiating action of leptin. Stimulation of microglia with leptin activated IkappaB kinase alpha/IkappaB kinase beta, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 phosphorylation at Ser(276), p65 and p50 translocation from the cytosol to the nucleus, and kappaB-luciferase activity. Leptin-mediated an increase of IkappaB kinase alpha/IkappaB kinase beta activity, kappaB-luciferase activity, and p65 and p50 binding to the NF-kappaB element was inhibited by wortmannin, Akt inhibitor, and IRS-1 small-interference RNA. The binding of p65 and p50 to the NF-kappaB elements, as well as the recruitment of p300 and the enhancement of histone H3 and H4 acetylation on the IL-6 promoter was enhanced by leptin. Our results suggest that leptin increased IL-6 production in microglia via the leptin receptor/IRS-1/PI3K/Akt/NF-kappaB and p300 signaling pathway.

  20. Potential of IL-1, IL-18 and Inflammasome Inhibition for the Treatment of Inflammatory Skin Diseases

    PubMed Central

    Fenini, Gabriele; Contassot, Emmanuel; French, Lars E.

    2017-01-01

    In 2002, intracellular protein complexes known as the inflammasomes were discovered and were shown to have a crucial role in the sensing of intracellular pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). Activation of the inflammasomes results in the processing and subsequent secretion of the pro-inflammatory cytokines IL-1β and IL-18. Several autoinflammatory disorders such as cryopyrin-associated periodic syndromes and Familial Mediterranean Fever have been associated with mutations of genes encoding inflammasome components. Moreover, the importance of IL-1 has been reported for an increasing number of autoinflammatory skin diseases including but not limited to deficiency of IL-1 receptor antagonist, mevalonate kinase deficiency and PAPA syndrome. Recent findings have revealed that excessive IL-1 release induced by harmful stimuli likely contributes to the pathogenesis of common dermatological diseases such as acne vulgaris or seborrheic dermatitis. A key pathogenic feature of these diseases is IL-1β-induced neutrophil recruitment to the skin. IL-1β blockade may therefore represent a promising therapeutic approach. Several case reports and clinical trials have demonstrated the efficacy of IL-1 inhibition in the treatment of these skin disorders. Next to the recombinant IL-1 receptor antagonist (IL-1Ra) Anakinra and the soluble decoy Rilonacept, the anti-IL-1α monoclonal antibody MABp1 and anti-IL-1β Canakinumab but also Gevokizumab, LY2189102 and P2D7KK, offer valid alternatives to target IL-1. Although less thoroughly investigated, an involvement of IL-18 in the development of cutaneous inflammatory disorders is also suspected. The present review describes the role of IL-1 in diseases with skin involvement and gives an overview of the relevant studies discussing the therapeutic potential of modulating the secretion and activity of IL-1 and IL-18 in such diseases. PMID:28588486

  1. Hyperresponsive febrile reactions to interleukin (IL) 1α and IL-1β, and altered brain cytokine mRNA and serum cytokine levels, in IL-1β-deficient mice

    PubMed Central

    Alheim, Katarina; Chai, Zhen; Fantuzzi, Giamila; Hasanvan, Homa; Malinowsky, David; Di Santo, Elena; Ghezzi, Pietro; Dinarello, Charles A.; Bartfai, Tamas

    1997-01-01

    IL-1β is an endogenous pyrogen that is induced during systemic lipopolysaccharide (LPS)- or IL-1-induced fever. We have examined the fever and cytokine responses following i.p. injection of IL-1 agonists, IL-1α and IL-1β, and compared these with response to LPS (i.p.) in wild-type and IL-1β-deficient mice. The IL-1β deficient mice appear to have elevated body temperature but exhibit a normal circadian temperature cycle. Exogenously injected IL-1β, IL-1α, or LPS induced hyperresponsive fevers in the IL-1β-deficient mice. We also observed phenotypic differences between wild-type and IL-1β-deficient mice in hypothalamic basal mRNA levels for IL-1α and IL-6, but not for IL-1β-converting enzyme or IL-1 receptor type I or type II. The IL-1α mRNA levels were down-regulated, whereas the IL-6 mRNA levels were up-regulated in the hypothalamus of IL-1β-deficient mice as compared with wild-type mice. The IL-1β-deficient mice also responded to LPS challenge with significantly higher serum corticosterone and with lower serum tumor necrosis factor type α levels than the wild-type mice. The data suggest that, in the redundant cascade of proinflammatory cytokines, IL-1β plays an important but not obligatory role in fever induction by LPS or IL-1α, as well as in the induction of serum tumor necrosis factor type α and corticosterone responses either by LPS or by IL-1α or IL-1β. PMID:9122256

  2. Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors.

    PubMed

    Lymperopoulos, Anastasios

    2012-01-01

    Heptahelical, G protein-coupled or seven transmembrane-spanning receptors, such as the β-adrenergic and the angiotensin II type 1 receptors, are the most diverse and therapeutically important family of receptors in the human genome, playing major roles in the physiology of various organs/tissues including the heart and blood vessels. Ligand binding activates heterotrimeric G proteins that transmit intracellular signals by regulating effector enzymes or ion channels. G protein signaling is terminated, in large part, by phosphorylation of the agonist-bound receptor by the G-protein coupled receptor kinases (GRKs), followed by βarrestin binding, which uncouples the phosphorylated receptor from the G protein and subsequently targets the receptor for internalization. As the receptor-βarrestin complex enters the cell, βarrestin-1 and -2, the two mammalian βarrestin isoforms, serve as ligand-regulated scaffolds that recruit a host of intracellular proteins and signal transducers, thus promoting their own wave of signal transduction independently of G-proteins. A constantly increasing number of studies over the past several years have begun to uncover specific roles played by these ubiquitously expressed receptor adapter proteins in signal transduction of several important heptahelical receptors regulating the physiology of various organs/ systems, including the cardiovascular (CV) system. Thus, βarrestin-dependent signaling has increasingly been implicated in CV physiology and pathology, presenting several exciting opportunities for therapeutic intervention in the treatment of CV disorders. Additionally, the discovery of this novel mode of heptahelical receptor signaling via βarrestins has prompted a revision of classical pharmacological concepts such as receptor agonism/antagonism, as well as introduction of new terms such as "biased signaling", which refers to ligand-specific activation of selective signal transduction pathways by the very same receptor. The

  3. Purification, crystallization and preliminary X-ray diffraction analysis of the IL-20-IL-20R1-IL-20R2 complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Logsdon, Naomi J.; Allen, Christopher E.; Rajashankar, Kanagalaghatta R.

    2012-02-08

    Interleukin-20 (IL-20) is an IL-10-family cytokine that regulates innate and adaptive immunity in skin and other tissues. In addition to protecting the host from various external pathogens, dysregulated IL-20 signaling has been shown to contribute to the pathogenesis of human psoriasis. IL-20 signals through two cell-surface receptor heterodimers, IL-20R1-IL-20R2 and IL-22R1-IL-20R2. In this report, crystals of the IL-20-IL-20R1-IL-20R2 ternary complex have been grown from polyethylene glycol solutions. The crystals belonged to space group P4{sub 1}2{sub 1}2 or P4{sub 3}2{sub 1}2, with unit-cell parameters a = 111, c = 135 {angstrom}, and diffracted X-rays to 3 {angstrom} resolution. The crystallographic asymmetricmore » unit contains one IL-20-IL-20R1-IL-20R2 complex, corresponding to a solvent content of approximately 54%.« less

  4. Mutual enhancement of IL-2 and IL-7 on DNA vaccine immunogenicity mainly involves regulations on their receptor expression and receptor-expressing lymphocyte generation.

    PubMed

    Zhang, Yonghong; Liang, Shuang; Li, Xiujin; Wang, Liyue; Zhang, Jianlou; Xu, Jian; Huo, Shanshan; Cao, Xuebin; Zhong, Zhenyu; Zhong, Fei

    2015-07-09

    Our previous study showed that IL-2 and IL-7 could mutually enhance the immunogenicity of canine parvovirus VP2 DNA vaccine, although the underlying mechanism remained unknown. Here, we used the OVA gene as a DNA vaccine in a mouse model to test their enhancement on DNA vaccine immunogenicity and to explore the molecular mechanism. Results showed that both IL-2 and IL-7 genes significantly increased the immunogenicity of OVA DNA vaccine in mice. Co-administration of IL-2 and IL-7 genes with OVA DNA significantly increased OVA-specific antibody titers, T cell proliferation and IFN-γ production compared with IL-2 or IL-7 alone, confirming that IL-2 and IL-7 mutually enhanced DNA vaccine immunogenicity. Mechanistically, we have shown that IL-2 significantly stimulated generation of IL-7 receptor-expressing lymphocytes, and that IL-7 significantly induced IL-2 receptor expression. These results contribute to an explanation of the mechanism of the mutual effects of IL-2 and IL-7 on enhancing DNA vaccine immunogenicity and provided a basis for further investigation on their mutual effects on adjuvant activity and immune regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals

    PubMed Central

    Chen, Chun-Jen; Shi, Yan; Hearn, Arron; Fitzgerald, Kate; Golenbock, Douglas; Reed, George; Akira, Shizuo; Rock, Kenneth L.

    2006-01-01

    While it is known that monosodium urate (MSU) crystals cause the disease gout, the mechanism by which these crystals stimulate this inflammatory condition has not been clear. Here we find that the Toll/IL-1R (TIR) signal transduction adaptor myeloid differentiation primary response protein 88 (MyD88) is required for acute gouty inflammation. In contrast, other TIR adaptor molecules, TIRAP/Mal, TRIF, and TRAM, are not required for this process. The MyD88-dependent TLR1, -2, -4, -6, -7, -9, and -11 and IL-18 receptor (IL-18R) are not essential for MSU-induced inflammation. Moreover, MSU does not stimulate HEK cells expressing TLR1–11 to activate NF-κB. In contrast, mice deficient in the MyD88-dependent IL-1R showed reduced inflammatory responses, similar to those observed in MyD88-deficient mice. Similarly, mice treated with IL-1 neutralizing antibodies also showed reduced MSU-induced inflammation, demonstrating that IL-1 production and IL-1R activation play essential roles in MSU-triggered inflammation. IL-1R deficiency in bone marrow–derived cells did not affect the inflammatory response; however, it was required in non–bone marrow–derived cells. These results indicate that IL-1 is essential for the MSU-induced inflammatory response and that the requirement of MyD88 in this process is primarily through its function as an adaptor molecule in the IL-1R signaling pathway. PMID:16886064

  6. IL-1β, in contrast to TNFα, is pivotal in blood-induced cartilage damage and is a potential target for therapy.

    PubMed

    van Vulpen, Lize F D; Schutgens, Roger E G; Coeleveld, Katja; Alsema, Els C; Roosendaal, Goris; Mastbergen, Simon C; Lafeber, Floris P J G

    2015-11-05

    Joint bleeding after (sports) trauma, after major joint surgery, or as seen in hemophilia in general leads to arthropathy. Joint degeneration is considered to result from the direct effects of blood components on cartilage and indirectly from synovial inflammation. Blood-provided proinflammatory cytokines trigger chondrocytes and induce the production of cartilage-degrading proteases. In the presence of erythrocyte-derived iron, cytokines stimulate radical formation in the vicinity of chondrocytes inducing apoptosis. To unravel the role of interleukin (IL) 1β and tumor necrosis factor (TNF) α in the pathogenesis of this blood-induced cartilage damage, the effect of antagonizing these cytokines was examined in human in vitro cultures. Addition of recombinant human IL-1β monoclonal antibody or IL-1 receptor antagonist resulted in a dose- and time-dependent protection of cartilage from blood-induced damage. In higher concentrations, almost complete normalization of cartilage matrix proteoglycan turnover was achieved. This was accompanied by a reduction in IL-1β and IL-6 production in whole blood cultures, whereas TNFα production remained unaffected. Interestingly, addition of a TNFα monoclonal antibody, although demonstrated to inhibit the direct (transient) effects of TNFα on cartilage, exhibited no effect on blood-induced (prolonged) cartilage damage. It is demonstrated that IL-1β is crucial in the development of blood-induced joint damage, whereas TNFα is not. This hierarchical position of IL-1β in blood-induced joint damage warrants studies on targeting IL-1β to potentially prevent joint degeneration after a joint bleed. © 2015 by The American Society of Hematology.

  7. Interleukin 1 β (IL-1B) and IL-1 antagonist receptor (IL-1RN) gene polymorphisms are associated with the genetic susceptibility and steroid dependence in patients with ulcerative colitis.

    PubMed

    Yamamoto-Furusho, Jesús K; Santiago-Hernández, Jean J; Pérez-Hernández, Nonanzit; Ramírez-Fuentes, Silvestre; Fragoso, José Manuel; Vargas-Alarcón, Gilberto

    2011-07-01

    Ulcerative colitis (UC) is an inflammatory bowel disease of unknown etiology. Among cytokines induced in UC, interleukin 1 antagonist (IL-1ra) and interleukin 1 β (IL-1β) seems to have a central role because of its immunoregulatory and proinflammatory activities. To determine the association between IL-1RA and IL-1B gene polymorphisms and the clinical features of UC in the Mexican Mestizo population. Five polymorphisms in the IL-1 gene cluster members IL-1B (rs16944), IL1F10 (rs3811058), and IL-1RN (rs419598, rs315952, and rs315951) were genotyped by 5' exonuclease TaqMan genotyping assays in a group of 200 Mexican patients with UC and 248 ethnically matched unrelated healthy controls. We found a significant increased frequencies of IL-1RN6/1 TC (rs315952) and RN6/2 CC (rs315951) and decreased frequency of IL-1B-511 TC (rs16944) genotypes in UC patients as compared with healthy controls. In the subgroup analysis, we found a significant association between the RN6/2 GG (rs315951) and IL-1B-511 CC (rs16944) genotypes and the presence of steroid-dependence in UC patients (pC=00001, OR=15.6 and pC=0.008, OR=4.09, respectively). Patients with UC showed increased frequencies of IL-1RN "CTC" and "TCG" haplotypes when compared with healthy controls (P=0.019, OR=1.43 and P<10(-7), OR=2.63, respectively). Two haplotypes (TTG and CTG) showed decreased frequency in patients when compared with healthy controls (P=9×10(-7), OR=0.11 and P=8×10(-6), OR=0.11, respectively). IL-1 RN and IL-1B polymorphisms were associated with the genetic susceptibility to develop UC and might be associated with the presence of steroid-dependence in UC patients.

  8. SLP-76 is required for high-affinity IgE receptor- and IL-3 receptor-mediated activation of basophils.

    PubMed

    Hidano, Shinya; Kitamura, Daisuke; Kumar, Lalit; Geha, Raif S; Goitsuka, Ryo

    2012-11-01

    Basophils have been reported to play a critical role in allergic inflammation by secreting IL-4 in response to IL-3 or high-affinity IgE receptor (FcεRI)-cross-linking. However, the signaling pathways downstream of FcεRI and the IL-3 receptor in basophils have yet to be determined. In the present study, we used mice deficient in SLP-76 (Src homology 2 domain-containing leukocyte phosphoprotein of 76kDa) to demonstrate critical functions of this adaptor molecule in transducing FcεRI- and IL-3 receptor-mediated signals that induce basophil activation. Although SLP-76 was dispensable for in vivo differentiation, as well as IL-3-induced in vitro proliferation of basophils, IL-4 production induced by both stimuli was completely ablated by SLP-76 deficiency. Biochemical analyses revealed that IL-3-induced phosphorylation of phospholipase C (PLC) γ2 and Akt, but not STAT5, was severely reduced in SLP-76-deficient basophils, whereas FcεRI cross-linking phosphorylation of PLCγ2, but not Akt, was abrogated by SLP-76 deficiency, suggesting important differences in the requirement of SLP-76 for Akt activation between FcεRI- and IL-3 receptor-mediated signaling pathways in basophils. Because IL-3-induced IL-4 production was sensitive to calcineurin inhibitors and an intracellular calcium chelator, in addition to PI3K inhibitors, SLP-76 appears to regulate FcεRI- and IL-3 receptor-induced IL-4 production via mediating PLCγ2 activation in basophils. Taken together, these findings indicate that SLP-76 is an essential signaling component for basophil activation downstream of both FcεRI and the IL-3 receptor.

  9. Enhanced Expression of IL-18 and IL-18BP in Plasma of Patients with Eczema: Altered Expression of IL-18BP and IL-18 Receptor on Mast Cells.

    PubMed

    Hu, Yalin; Wang, Junling; Zhang, Huiyun; Xie, Hua; Song, Weiwei; Jiang, Qijun; Zhao, Nan; He, Shaoheng

    2017-01-01

    IL-18 has been found to be associated with eczema. However, little is known of the role of IL-18 binding protein (BP) and IL-18 receptor (R) in eczema. We therefore investigated the expression of IL-18, IL-18BP, and IL-18R on mast cells by using flow cytometry analysis and mouse eczema model. The results showed that plasma free IL-18 and free IL-18BP levels in eczema patients were higher than those in healthy controls. IL-18 provoked up to 3.1-fold increase in skin mast cells. IL-18 induced also an increase in IL-18BP+ mast cells, but a reduction of IL-18R+ mast cells in mouse eczema skin. It was found that house dust mite allergen Der p1 and egg allergen OVA induced upregulation of the expression of IL-18, IL-18BP, and IL-18R mRNAs in HMC-1 cells following 2 and 16 h incubation. In conclusion, correlation of IL-18 and IL-18BP in eczema plasma suggests an important balance between IL-18 and IL-18BP in eczema. The decrease in molar concentration ratio of plasma IL-18BP/IL-18 and allergen-induced upregulated expression of IL-18 and IL-18R in skin mast cells of the patients with eczema suggests that anti-IL-18 including IL-18BP therapy may be useful for the treatment of eczema.

  10. Enhanced Expression of IL-18 and IL-18BP in Plasma of Patients with Eczema: Altered Expression of IL-18BP and IL-18 Receptor on Mast Cells

    PubMed Central

    2017-01-01

    IL-18 has been found to be associated with eczema. However, little is known of the role of IL-18 binding protein (BP) and IL-18 receptor (R) in eczema. We therefore investigated the expression of IL-18, IL-18BP, and IL-18R on mast cells by using flow cytometry analysis and mouse eczema model. The results showed that plasma free IL-18 and free IL-18BP levels in eczema patients were higher than those in healthy controls. IL-18 provoked up to 3.1-fold increase in skin mast cells. IL-18 induced also an increase in IL-18BP+ mast cells, but a reduction of IL-18R+ mast cells in mouse eczema skin. It was found that house dust mite allergen Der p1 and egg allergen OVA induced upregulation of the expression of IL-18, IL-18BP, and IL-18R mRNAs in HMC-1 cells following 2 and 16 h incubation. In conclusion, correlation of IL-18 and IL-18BP in eczema plasma suggests an important balance between IL-18 and IL-18BP in eczema. The decrease in molar concentration ratio of plasma IL-18BP/IL-18 and allergen-induced upregulated expression of IL-18 and IL-18R in skin mast cells of the patients with eczema suggests that anti-IL-18 including IL-18BP therapy may be useful for the treatment of eczema. PMID:28839348

  11. Cardiac Metabolic Deregulation Induced by the Tyrosine Kinase Receptor Inhibitor Sunitinib is rescued by Endothelin Receptor Antagonism

    PubMed Central

    Sourdon, Joevin; Lager, Franck; Viel, Thomas; Balvay, Daniel; Moorhouse, Rebecca; Bennana, Evangeline; Renault, Gilles; Tharaux, Pierre-Louis; Dhaun, Neeraj; Tavitian, Bertrand

    2017-01-01

    The growing field of cardio-oncology addresses the side effects of cancer treatment on the cardiovascular system. Here, we explored the cardiotoxicity of the antiangiogenic therapy, sunitinib, in the mouse heart from a diagnostic and therapeutic perspective. We showed that sunitinib induces an anaerobic switch of cellular metabolism within the myocardium which is associated with the development of myocardial fibrosis and reduced left ventricular ejection fraction as demonstrated by echocardiography. The capacity of positron emission tomography with [18F]fluorodeoxyglucose to detect the changes in cardiac metabolism caused by sunitinib was dependent on fasting status and duration of treatment. Pan proteomic analysis in the myocardium showed that sunitinib induced (i) an early metabolic switch with enhanced glycolysis and reduced oxidative phosphorylation, and (ii) a metabolic failure to use glucose as energy substrate, similar to the insulin resistance found in type 2 diabetes. Co-administration of the endothelin receptor antagonist, macitentan, to sunitinib-treated animals prevented both metabolic defects, restored glucose uptake and cardiac function, and prevented myocardial fibrosis. These results support the endothelin system in mediating the cardiotoxic effects of sunitinib and endothelin receptor antagonism as a potential therapeutic approach to prevent cardiotoxicity. Furthermore, metabolic and functional imaging can monitor the cardiotoxic effects and the benefits of endothelin antagonism in a theranostic approach. PMID:28824714

  12. Zolpidem generalization and antagonism in male and female cynomolgus monkeys trained to discriminate 1.0 or 2.0 g/kg ethanol.

    PubMed

    Helms, Christa M; Rogers, Laura S M; Waters, Courtney A; Grant, Kathleen A

    2008-07-01

    The subtypes of gamma-aminobutyric acid (GABA)(A) receptors mediating the discriminative stimulus effects of ethanol in nonhuman primates are not completely identified. The GABA(A) receptor positive modulator zolpidem has high, intermediate, and low activity at receptors containing alpha(1), alpha(2/3), and alpha(5) subunits, respectively, and partially generalizes from ethanol in several species. The partial inverse agonist Ro15-4513 has the greatest affinity for alpha(4/6)-containing receptors, higher affinity for alpha(5)- and lower, but equal, affinity for alpha(1)- and alpha(2/3)-, containing GABA(A) receptors, and antagonizes the discriminative stimulus effects of ethanol. This study assessed Ro15-4513 antagonism of the generalization of zolpidem from ethanol in male (n = 9) and female (n = 8) cynomolgus monkeys (Macaca fascicularis) trained to discriminate 1.0 g/kg (n = 10) or 2.0 g/kg (n = 7) ethanol (i.g.) from water with a 30-minute pretreatment interval. Zolpidem (0.017 to 5.6 mg/kg, i.m.) completely generalized from ethanol (>or=80% of total session responses on the ethanol-appropriate lever) for 6/7 monkeys trained to discriminate 2.0 g/kg and 4/10 monkeys trained to discriminate 1.0 g/kg ethanol. Zolpidem partially generalized from 1.0 or 2.0 g/kg ethanol in 6/7 remaining monkeys. Ro15-4513 (0.003 to 0.30 mg/kg, i.m., 5-minute pretreatment) shifted the zolpidem dose-response curve to the right in all monkeys showing generalization. Analysis of apparent pK(B) from antagonism tests suggested that the discriminative stimulus effects of ethanol common with zolpidem are mediated by low-affinity Ro15-4513 binding sites. Main effects of sex and training dose indicated greater potency of Ro15-4513 in males and in monkeys trained to discriminate 1.0 g/kg ethanol. Ethanol and zolpidem share similar discriminative stimulus effects most likely through GABA(A) receptors that contain alpha(1) subunits, however, antagonism by Ro15-4513 of zolpidem generalization

  13. A type III effector antagonizes death receptor signalling during bacterial gut infection.

    PubMed

    Pearson, Jaclyn S; Giogha, Cristina; Ong, Sze Ying; Kennedy, Catherine L; Kelly, Michelle; Robinson, Keith S; Lung, Tania Wong Fok; Mansell, Ashley; Riedmaier, Patrice; Oates, Clare V L; Zaid, Ali; Mühlen, Sabrina; Crepin, Valerie F; Marches, Olivier; Ang, Ching-Seng; Williamson, Nicholas A; O'Reilly, Lorraine A; Bankovacki, Aleksandra; Nachbur, Ueli; Infusini, Giuseppe; Webb, Andrew I; Silke, John; Strasser, Andreas; Frankel, Gad; Hartland, Elizabeth L

    2013-09-12

    Successful infection by enteric bacterial pathogens depends on the ability of the bacteria to colonize the gut, replicate in host tissues and disseminate to other hosts. Pathogens such as Salmonella, Shigella and enteropathogenic and enterohaemorrhagic (EPEC and EHEC, respectively) Escherichia coli use a type III secretion system (T3SS) to deliver virulence effector proteins into host cells during infection that promote colonization and interfere with antimicrobial host responses. Here we report that the T3SS effector NleB1 from EPEC binds to host cell death-domain-containing proteins and thereby inhibits death receptor signalling. Protein interaction studies identified FADD, TRADD and RIPK1 as binding partners of NleB1. NleB1 expressed ectopically or injected by the bacterial T3SS prevented Fas ligand or TNF-induced formation of the canonical death-inducing signalling complex (DISC) and proteolytic activation of caspase-8, an essential step in death-receptor-induced apoptosis. This inhibition depended on the N-acetylglucosamine transferase activity of NleB1, which specifically modified Arg 117 in the death domain of FADD. The importance of the death receptor apoptotic pathway to host defence was demonstrated using mice deficient in the FAS signalling pathway, which showed delayed clearance of the EPEC-like mouse pathogen Citrobacter rodentium and reversion to virulence of an nleB mutant. The activity of NleB suggests that EPEC and other attaching and effacing pathogens antagonize death-receptor-induced apoptosis of infected cells, thereby blocking a major antimicrobial host response.

  14. Platelet Activating Factor (PAF) Receptor Deletion or Antagonism Attenuates Severe HSV-1 Meningoencephalitis.

    PubMed

    Vilela, Márcia Carvalho; Lima, Graciela Kunrath; Rodrigues, David Henrique; Lacerda-Queiroz, Norinne; Pedroso, Vinicius Sousa Pietra; de Miranda, Aline Silva; Rachid, Milene Alvarenga; Kroon, Erna Geessien; Campos, Marco Antônio; Teixeira, Mauro Martins; Teixeira, Antonio Lucio

    2016-12-01

    Herpes simplex virus type 1 (HSV-1) is a human pathogen that may cause severe encephalitis. The exacerbated immune response against the virus contributes to the disease severity and death. Platelet activating factor (PAF) is a mediator capable of inducing increase in vascular permeability, production of cytokines on endothelial cells and leukocytes. We aimed to investigate the activation of PAF receptor (PAFR) and its contribution to the severity of the inflammatory response in the brain following HSV-1 infection. C57BL/6 wild-type (WT) and PAFR deficient (PAFR -/- ) mice were inoculated intracranially with 10 4 plaque-forming units (PFU) of HSV-1. Visualization of leukocyte recruitment was performed using intravital microscopy. Cells infiltration in the brain tissue were analyzed by flow cytometry. Brain was removed for chemokine assessment by ELISA and for histopathological analysis. The pharmacological inhibition by the PAFR antagonist UK-74,505 was also analyzed. In PAFR -/- mice, there was delayed lethality but no difference in viral load. Histopathological analysis of infected PAFR -/- mice showed that brain lesions were less severe when compared to their WT counterparts. Moreover, PAFR -/- mice showed less TCD4 + , TCD8 + and macrophages in brain tissue. This reduction of the presence of leukocytes in parenchyma may be mechanistically explained by a decrease in leukocytes rolling and adhesion. PAFR -/- mice also presented a reduction of the chemokine CXCL9 in the brain. In addition, by antagonizing PAFR, survival of C57BL/6 infected mice increased. Altogether, our data suggest that PAFR plays a role in the pathogenesis of experimental HSV-1 meningoencephalitis, and its blockade prevents severe disease manifestation.

  15. OPC-21268, an orally effective, nonpeptide vasopressin V1 receptor antagonist.

    PubMed

    Yamamura, Y; Ogawa, H; Chihara, T; Kondo, K; Onogawa, T; Nakamura, S; Mori, T; Tominaga, M; Yabuuchi, Y

    1991-04-26

    An orally effective, nonpeptide, vasopressin V1 receptor antagonist, OPC-21268, has been identified. This compound selectively antagonized binding to the V1 subtype of the vasopressin receptor in a competitive manner. In vivo, the compound acted as a specific antagonist of arginine vasopressin (AVP)-induced vasoconstriction. After oral administration in conscious rats, the compound also antagonized pressor responses to AVP. OPC-21268 can be used to study the physiological role of AVP and may be therapeutically useful in the treatment of hypertension and congestive heart failure.

  16. Variola Virus IL-18 Binding Protein Interacts with Three Human IL-18 Residues That Are Part of a Binding Site for Human IL-18 Receptor Alpha Subunit

    PubMed Central

    Meng, Xiangzhi; Leman, Michael; Xiang, Yan

    2007-01-01

    Interleukin-18 (IL-18) plays an important role in host defense against microbial pathogens. Many poxviruses encode homologous IL-18 binding proteins (IL-18BP) that neutralize IL-18 activity. Here, we examined whether IL-18BP neutralizes IL-18 activity by binding to the same region of IL-18 where IL-18 receptor (IL-18R) binds. We introduced alanine substitutions to known receptor binding sites of human IL18, and found that only the substitution of Leu5 reduced the binding affinity of IL-18 with IL-18BP of variola virus (varvIL-18BP) by more than 4-fold. The substitutions of Lys53 and Ser55, which were not previously known to be part of the receptor binding site but that are spatially adjacent to Leu5, reduced the binding affinity to varvIL-18BP by approximately 100- and 7-fold, respectively. These two substitutions also reduced the binding affinity with human IL-18R alpha subunit (hIL-18Rα) by 4- and 2-fold, respectively. Altogether, our data shows that varvIL-18BP prevents IL-18 from binding to IL-18R by interacting with three residues that are part of the binding site for hIL-18Rα. PMID:16979683

  17. Orexin-1 receptor blockade dysregulates REM sleep in the presence of orexin-2 receptor antagonism

    PubMed Central

    Dugovic, Christine; Shelton, Jonathan E.; Yun, Sujin; Bonaventure, Pascal; Shireman, Brock T.; Lovenberg, Timothy W.

    2014-01-01

    In accordance with the prominent role of orexins in the maintenance of wakefulness via activation of orexin-1 (OX1R) and orexin-2 (OX2R) receptors, various dual OX1/2R antagonists have been shown to promote sleep in animals and humans. While selective blockade of OX2R seems to be sufficient to initiate and prolong sleep, the beneficial effect of additional inhibition of OX1R remains controversial. The relative contribution of OX1R and OX2R to the sleep effects induced by a dual OX1/2R antagonist was further investigated in the rat, and specifically on rapid eye movement (REM) sleep since a deficiency of the orexin system is associated with narcolepsy/cataplexy based on clinical and pre-clinical data. As expected, the dual OX1/2R antagonist SB-649868 was effective in promoting non-REM (NREM) and REM sleep following oral dosing (10 and 30 mg/kg) at the onset of the dark phase. However, a disruption of REM sleep was evidenced by a more pronounced reduction in the onset of REM as compared to NREM sleep, a marked enhancement of the REM/total sleep ratio, and the occurrence of a few episodes of direct wake to REM sleep transitions (REM intrusion). When administered subcutaneously, the OX2R antagonist JNJ-10397049 (10 mg/kg) increased NREM duration whereas the OX1R antagonist GSK-1059865 (10 mg/kg) did not alter sleep. REM sleep was not affected either by OX2R or OX1R blockade alone, but administration of the OX1R antagonist in combination with the OX2R antagonist induced a significant reduction in REM sleep latency and an increase in REM sleep duration at the expense of the time spent in NREM sleep. These results indicate that additional blockade of OX1R to OX2R antagonism elicits a dysregulation of REM sleep by shifting the balance in favor of REM sleep at the expense of NREM sleep that may increase the risk of adverse events. Translation of this hypothesis remains to be tested in the clinic. PMID:24592208

  18. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia

    PubMed Central

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-01-01

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities. PMID:27273195

  19. CRF receptor 1 antagonism and brain distribution of active components contribute to the ameliorative effect of rikkunshito on stress-induced anorexia.

    PubMed

    Mogami, Sachiko; Sadakane, Chiharu; Nahata, Miwa; Mizuhara, Yasuharu; Yamada, Chihiro; Hattori, Tomohisa; Takeda, Hiroshi

    2016-06-08

    Rikkunshito (RKT), a Kampo medicine, has been reported to show an ameliorative effect on sustained hypophagia after novelty stress exposure in aged mice through serotonin 2C receptor (5-HT2CR) antagonism. We aimed to determine (1) whether the activation of anorexigenic neurons, corticotropin-releasing factor (CRF), and pro-opiomelanocortin (POMC) neurons, is involved in the initiation of hypophagia induced by novelty stress in aged mice; (2) whether the ameliorative effect of RKT is associated with CRF and POMC neurons and downstream signal transduction; and (3) the plasma and brain distribution of the active components of RKT. The administration of RKT or 5-HT2CR, CRF receptor 1 (CRFR1), and melanocortin-4 receptor antagonists significantly restored the decreased food intake observed in aged male C57BL/6 mice in the early stage after novelty stress exposure. Seven components of RKT exhibited antagonistic activity against CRFR1. Hesperetin and isoliquiritigenin, which showed antagonistic effects against both CRFR1 and 5-HT2CR, were distributed in the plasma and brain of male Sprague-Dawley rats after a single oral administration of RKT. In conclusion, the ameliorative effect of RKT in this model is assumed to be at least partly due to brain-distributed active components possessing 5-HT2CR and CRFR1 antagonistic activities.

  20. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View

    PubMed Central

    Keegan, Achsah D.; Zamorano, Jose; Keselman, Aleksander; Heller, Nicola M.

    2018-01-01

    In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this “IL-4-induced phosphorylated substrate” (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3′ kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses. PMID:29868002

  1. IL-4 and IL-13 Receptor Signaling From 4PS to Insulin Receptor Substrate 2: There and Back Again, a Historical View.

    PubMed

    Keegan, Achsah D; Zamorano, Jose; Keselman, Aleksander; Heller, Nicola M

    2018-01-01

    In this historical perspective, written in honor of Dr. William E. Paul, we describe the initial discovery of one of the dominant substrates for tyrosine phosphorylation stimulated by IL-4. We further describe how this "IL-4-induced phosphorylated substrate" (4PS) was characterized as a member of the insulin receptor substrate (IRS) family of large adaptor proteins that link IL-4 and insulin receptors to activation of the phosphatidyl-inositol 3' kinase pathway as well as other downstream signaling pathways. The relative contribution of the 4PS/IRS pathway to the early models of IL-4-induced proliferation and suppression of apoptosis are compared to our more recent understanding of the complex interplay between positive and negative regulatory pathways emanating from members of the IRS family that impact allergic responses.

  2. PPARdelta inhibits IL-1beta-stimulated proliferation and migration of vascular smooth muscle cells via up-regulation of IL-1Ra.

    PubMed

    Kim, H J; Kim, M Y; Hwang, J S; Kim, H J; Lee, J H; Chang, K C; Kim, J-H; Han, C W; Kim, J-H; Seo, H G

    2010-06-01

    Activation of peroxisome proliferator-activated receptor (PPAR) delta by GW501516, a specific PPARdelta ligand, significantly inhibited interleukin (IL)-1beta-induced proliferation and migration of vascular smooth muscle cells (VSMCs). This effect of GW501516 was dependent on transforming growth factor-beta, and was mediated through the up-regulation of IL-1 receptor antagonist. The inhibitory effect of GW501516 on VSMC proliferation was associated with cell cycle arrest at the G1 to S phase transition, which was accompanied by the induction of p21 and p53 along with decreased cyclin-dependent kinase 4 expression. Inhibition of cell migration by GW501516 was associated with the down-regulation of matrix metalloproteinase (MMP)-2 and MMP-9 in IL-1beta-treated VSMCs. Inhibition of extracellular signal-regulated kinase significantly reduced the GW501516-mediated inhibition of IL-1beta-stimulated VSMC proliferation. These results suggest that PPARdelta plays an important role in the pathophysiology of diseases associated with the proliferation and migration of VSMCs.

  3. IL-1 Blockade in Autoinflammatory Syndromes1

    PubMed Central

    Jesus, Adriana A.; Goldbach-Mansky, Raphaela

    2014-01-01

    Monogenic autoinflammatory syndromes present with excessive systemic inflammation including fever, rashes, arthritis, and organ-specific inflammation and are caused by defects in single genes encoding proteins that regulate innate inflammatory pathways. Pathogenic variants in two interleukin-1 (IL-1)–regulating genes, NLRP3 and IL1RN, cause two severe and early-onset autoinflammatory syndromes, CAPS (cryopyrin associated periodic syndromes) and DIRA (deficiency of IL-1 receptor antagonist). The discovery of the mutations that cause CAPS and DIRA led to clinical and basic research that uncovered the key role of IL-1 in an extended spectrum of immune dysregulatory conditions. NLRP3 encodes cryopyrin, an intracellular “molecular sensor” that forms a multimolecular platform, the NLRP3 inflammasome, which links “danger recognition” to the activation of the proinflammatory cytokine IL-1β. The success and safety profile of drugs targeting IL-1 in the treatment of CAPS and DIRA have encouraged their wider use in other autoinflammatory syndromes including the classic hereditary periodic fever syndromes (familial Mediterranean fever, TNF receptor–associated periodic syndrome, and hyperimmunoglobulinemia D with periodic fever syndrome) and additional immune dysregulatory conditions that are not genetically well defined, including Still’s, Behcet’s, and Schnitzler diseases. The fact that the accumulation of metabolic substrates such as monosodium urate, ceramide, cholesterol, and glucose can trigger the NLRP3 inflammasome connects metabolic stress to IL-1β-mediated inflammation and provides a rationale for therapeutically targeting IL-1 in prevalent diseases such as gout, diabetes mellitus, and coronary artery disease. PMID:24422572

  4. Substance P Receptor Antagonism: A Potential Novel Treatment Option for Viral-Myocarditis

    PubMed Central

    Robinson, Prema; Taffet, George E.; Engineer, Nikita; Khumbatta, Mitra; Firozgary, Bahrom; Reynolds, Corey; Pham, Thuy; Bulsara, Tushar; Firozgary, Gohar

    2015-01-01

    Viral-myocarditis is an important cause of heart failure for which no specific treatment is available. We previously showed the neuropeptide substance P (SP) is associated with the pathogenesis of murine myocarditis caused by encephalomyocarditis virus (EMCV). The current studies determined if pharmacological inhibition of SP-signaling via its high affinity receptor, NK1R and downstream G-protein, Ras homolog gene family, member-A (RhoA), will be beneficial in viral-myocarditis. Aprepitant (1.2 mg/kg), a SP-receptor antagonist, or fasudil (10 mg/kg), a RhoA inhibitor, or saline control was administered daily to mice orally for 3 days, prior to, or 5 days following, intraperitoneal infection with and without 50 PFU of EMCV, following which disease assessment studies, including echocardiogram and cardiac Doppler were performed in day 14 after infection. Pretreatment and posttreatment with aprepitant significantly reduced mortality, heart and cardiomyocyte size, and cardiac viral RNA levels (P < 0.05 all, ANOVA). Only aprepitant pretreatment improved heart functions; it significantly decreased end systolic diameter, improved fractional shortening, and increased peak aortic flow velocity (P < 0.05 all, ANOVA). Pre- or posttreatment with fasudil did not significantly impact disease manifestations. These findings indicate that SP contributes to cardiac-remodeling and dysfunction following ECMV infection via its high affinity receptor, but not through the Rho-A pathway. These studies suggest that SP-receptor antagonism may be a novel therapeutic-option for patients with viral-myocarditis. PMID:25821814

  5. Restoration of Tumor Immune Surveillance via Targeting of IL-13Receptor-α2

    PubMed Central

    Fichtner-Feigl, Stefan; Terabe, Masaki; Kitani, Atsushi; Young, Cheryl A.; Fuss, Ivan; Geissler, Edward K.; Schlitt, Hans-Jürgen; Berzofsky, Jay A.; Strober, Warren

    2009-01-01

    In previous studies we described a “counter-immunosurveillance” mechanism initiated by tumor-activated, IL-13-producing NKT cells that signal Gr-1+ cells to produce TGF-β1, a cytokine that suppresses the activity of tumor-inhibiting cytolytic CD8+ T cells. Here we show that in two tumor models (the CT-26 metastatic colon cancer and the 15-12RM fibrosarcoma regressor models) this counter-surveillance mechanism requires the expression of a novel IL-13 receptor, IL-13Rα2, on Gr-1intermediate cells, since down-regulation of IL-13Rα2 expression or the AP-1 signal generated by the receptor via in vivo administration of specific siRNA or decoy oligonucleotides leads to loss of TGF-β1 production. Furthermore, acting on prior studies showing that IL-13Rα2 expression is induced (in part) by TNF-α, we show that receptor expression and TGF-β1 production is inhibited by administration of a TNF-α neutralizing substance, TNF-αR-Fc (etanercept). Taking advantage of this latter fact, we then demonstrate in the CT-26 model that counter-immunosurveillance could be inhibited, anti-CT-26-specific CD8+ cytolytic activity restored, and CT-26 metastatic tumor nodules greatly decreased by administration of TNF-αR-Fc. Corroborative data was obtained using the 15-12RM fibrosarcoma model. These studies point to the prevention of metastatic cancer with an available agent with already known clinically acceptable adverse effects and toxicity. PMID:18451175

  6. Ketamine suppresses the substance P-induced production of IL-6 and IL-8 by human U373MG glioblastoma/astrocytoma cells.

    PubMed

    Yamaguchi, Keisuke; Kumakura, Seiichiro; Murakami, Taisuke; Someya, Akimasa; Inada, Eiichi; Nagaoka, Isao

    2017-03-01

    The neuropeptide substance P (SP) is an important mediator of neurogenic inflammation within the central and peripheral nervous systems. SP has been shown to induce the expression of pro-inflammatory cytokines implicated in the pathogenesis of several disorders of the human brain via the neurokinin-1 receptor (NK-1R). Ketamine, an intravenous anesthetic agent, functions as a competitive antagonist of the excitatory neurotransmission N-methyl-D‑aspartate (NMDA) receptor, and also antagonizes the NK-1R by interfering with the binding of SP. In the present study, we investigated the anti-inflammatory effects of ketamine on the SP-induced activation of a human astrocytoma cell line, U373MG, which expresses high levels of NK-1R. The results from our experiments indicated that ketamine suppressed the production of interleukin (IL)-6 and IL-8 by the U373MG cells. Furthermore, ketamine inhibited the SP-induced activation of extracellular signal‑regulated kinase (ERK)1/2, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). Taken together, these observations suggest that ketamine may suppress the SP-induced activation (IL-6 and IL-8 production) of U373MG cells by inhibiting the phosphorylation of signaling molecules (namely ERK1/2, p38 MAPK and NF-κB), thereby exerting anti‑inflammatory effects. Thus, ketamine may modulate SP-induced inflammatory responses by NK-1R‑expressing cells through the suppression of signaling molecules (such as ERK1/2, p38 MAPK and NF-κB).

  7. Amelioration of Hypoglycemia Via Somatostatin Receptor Type 2 Antagonism in Recurrently Hypoglycemic Diabetic Rats

    PubMed Central

    Yue, Jessica T.Y.; Riddell, Michael C.; Burdett, Elena; Coy, David H.; Efendic, Suad; Vranic, Mladen

    2013-01-01

    Selective antagonism of somatostatin receptor type 2 (SSTR2) normalizes glucagon and corticosterone responses to hypoglycemic clamp in diabetic rats. The purpose of this study was to determine whether SSTR2 antagonism (SSTR2a) ameliorates hypoglycemia in response to overinsulinization in diabetic rats previously exposed to recurrent hypoglycemia. Streptozotocin diabetic rats (n = 19), previously subjected to five hypoglycemia events over 3 days, received an insulin bolus (10 units/kg i.v.) plus insulin infusion (50 mU/kg/min i.v.) until hypoglycemia ensued (≤3.9 mmol/L) (experimental day 1 [Expt-D1]). The next day (Expt-D2), rats were allocated to receive either placebo treatment (n = 7) or SSTR2a infusion (3,000 nmol/kg/min i.v., n = 12) 60 min prior to the same insulin regimen. On Expt-D1, all rats developed hypoglycemia by ∼90 min, while on Expt-D2, hypoglycemia was attenuated with SSTR2a treatment (nadir = 3.7 ± 0.3 vs. 2.7 ± 0.3 mmol/L in SSTR2a and controls, P < 0.01). Glucagon response to hypoglycemia on Expt-D2 deteriorated by 20-fold in the placebo group (P < 0.001) but improved in the SSTR2a group (threefold increase in area under the curve [AUC], P < 0.001). Corticosterone response deteriorated in the placebo-treated rats on Expt-D2 but increased twofold in the SSTR2a group. Catecholamine responses were not affected by SSTR2a. Thus, SSTR2 antagonism after recurrent hypoglycemia improves the glucagon and corticosterone responses and largely ameliorates insulin-induced hypoglycemia in diabetic rats. PMID:23434929

  8. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells.

    PubMed

    Wang, L M; Myers, M G; Sun, X J; Aaronson, S A; White, M; Pierce, J H

    1993-09-17

    Although several interleukin-3 (IL-3)-dependent cell lines proliferate in response to IL-4 or insulin, the 32D line does not. Insulin and IL-4 sensitivity was restored to 32D cells by expression of IRS-1, the principal substrate of the insulin receptor. Although 32D cells possessed receptors for both factors, they lacked the IRS-1--related protein, 4PS, which becomes phosphorylated by tyrosine in insulin- or IL-4--responsive lines after stimulation. These results indicate that factors that bind unrelated receptors can use similar mitogenic signaling pathways in hematopoietic cells and that 4PS and IRS-1 are functionally similar proteins that are essential for insulin- and IL-4--induced proliferation.

  9. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family.

    PubMed

    Cayrol, Corinne; Girard, Jean-Philippe

    2018-01-01

    Interleukin-33 (IL-33) is a tissue-derived nuclear cytokine from the IL-1 family abundantly expressed in endothelial cells, epithelial cells and fibroblast-like cells, both during homeostasis and inflammation. It functions as an alarm signal (alarmin) released upon cell injury or tissue damage to alert immune cells expressing the ST2 receptor (IL-1RL1). The major targets of IL-33 in vivo are tissue-resident immune cells such as mast cells, group 2 innate lymphoid cells (ILC2s) and regulatory T cells (Tregs). Other cellular targets include T helper 2 (Th2) cells, eosinophils, basophils, dendritic cells, Th1 cells, CD8 + T cells, NK cells, iNKT cells, B cells, neutrophils and macrophages. IL-33 is thus emerging as a crucial immune modulator with pleiotropic activities in type-2, type-1 and regulatory immune responses, and important roles in allergic, fibrotic, infectious, and chronic inflammatory diseases. The critical function of IL-33/ST2 signaling in allergic inflammation is illustrated by the fact that IL33 and IL1RL1 are among the most highly replicated susceptibility loci for asthma. In this review, we highlight 15 years of discoveries on IL-33 protein, including its molecular characteristics, nuclear localization, bioactive forms, cellular sources, mechanisms of release and regulation by proteases. Importantly, we emphasize data that have been validated using IL-33-deficient cells. © 2017 The Authors. Immunological Reviews Published by John Wiley & Sons Ltd.

  10. Acute effect of mineralocorticoid receptor antagonism on vascular function in healthy older adults.

    PubMed

    Hwang, Moon-Hyon; Yoo, Jeung-Ki; Luttrell, Meredith; Kim, Han-Kyul; Meade, Thomas H; English, Mark; Talcott, Susanne; Jaffe, Iris Z; Christou, Demetra D

    2016-01-01

    Mineralocorticoid receptor (MR) activation by aldosterone may regulate vascular function in health or contribute to vascular dysfunction in cardiovascular disease. Whether the effects are beneficial or detrimental to vascular function appear to be dependent on the integrity of the vascular endothelium and whether the responses are short-term or chronic. Acute modulation of MR activation has resulted in conflicting outcomes on vascular function in young healthy adults. Little is known about the vascular role of aldosterone and MR activation in healthy human aging. The primary objective of this study was to examine whether acute inhibition of MR by the selective antagonist eplerenone, influences vascular function in healthy older adults. We performed a randomized, double-blind, placebo-controlled crossover study in 22 adults (61±1 years; mean±SE, 53-79 years) who were free from overt clinical cardiovascular disease. We measured brachial artery flow-mediated endothelium-dependent dilation and endothelium-independent dilation to sublingual nitroglycerin (0.4 mg) following eplerenone (100 mg/dose, 2 doses, 24h between doses) or placebo. In response to acute MR antagonism, flow-mediated dilation decreased by 19% (from 6.9±0.5 to 5.6±0.6%, P=0.02; placebo vs. eplerenone). Endothelial nitric oxide synthase (eNOS) activity also decreased following MR antagonism based on the ratio of phosphorylated eNOS(Ser1177) to total eNOS (1.53±0.08 vs. 1.29±0.06, P=0.02). Nitroglycerin-induced dilation and blood pressure were unaffected (nitroglycerin-induced dilation: 21.9±1.9 vs. 21.0±1.5%, P=0.5 and systolic/diastolic blood pressure: 135/77±4/2 vs. 134/77±4/2 mmHg, P≥0.6). In conclusion, acute MR antagonism impairs vascular endothelial function in healthy older adults without influencing vascular smooth muscle responsiveness to exogenous nitric oxide or blood pressure. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Regulation of IL-1beta and IL-8 production by mu-, delta-opiate receptors agonists in vitro].

    PubMed

    Geĭn, S V; Gorshkova, K G; Tendriakova, S P

    2008-07-01

    The beta-endorphin 10(-7-)-10(-11) M in LPS (lypopolisaccharide) presence and in spontaneous cultures promoted the IL-1beta production in mixed leukocyte fraction. LPS-induced IL-8 production in leukocyte fraction was inhibited by beta-endorphin 10(-7), 10(-11) M. The enchasing effect of beta-endorphin on IL-1beta production was not blocked by naloxone and naltrindole. The inhibitory effect of beta-endorphin on IL-8 production was blocked by naloxone and naltrindole. In mononuclear and neutrophile fractions beta-endorphin and delta-agonist DADLE enchased IL-1beta production in spontaneous and LPS-stimulating cultures, when IL-8 production inhibited beta-endorphin and delta-agonist DADLE only in LPS presence. No effect of mu-agonist DAGO were observed on IL-1beta production, whereas LPS-induced IL-8 secretion in neutrophile fraction inhibited by DAGO.

  12. Structural basis for IL-1α recognition by a modified DNA aptamer that specifically inhibits IL-1α signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaoming; Gelinas, Amy D.; von Carlowitz, Ira

    IL-1α is an essential cytokine that contributes to inflammatory responses and is implicated in various forms of pathogenesis and cancer. Here we report a naphthyl modified DNA aptamer that specifically binds IL-1α and inhibits its signaling pathway. By solving the crystal structure of the IL-1α/aptamer, we provide a high-resolution structure of this critical cytokine and we reveal its functional interaction interface with high-affinity ligands. The non-helical aptamer, which represents a highly compact nucleic acid structure, contains a wealth of new conformational features, including an unknown form of G-quadruplex. The IL-1α/aptamer interface is composed of unusual polar and hydrophobic elements, alongmore » with an elaborate hydrogen bonding network that is mediated by sodium ion. IL-1α uses the same interface to interact with both the aptamer and its cognate receptor IL-1RI, thereby suggesting a novel route to immunomodulatory therapeutics.« less

  13. ATP-Induced IL-1β Specific Secretion: True Under Stringent Conditions.

    PubMed

    Stoffels, Monique; Zaal, Ruben; Kok, Nina; van der Meer, Jos W M; Dinarello, Charles A; Simon, Anna

    2015-01-01

    Interleukin-1β is a potent proinflammatory cytokine, of which processing and secretion are tightly regulated. After exposure to various stimuli, mononuclear phagocytes synthesize the inactive precursor (pro-IL-1β), which is then cleaved intracellularly by caspase-1 and secreted. A widely used method for in vitro secretion of IL-1β employs LPS-primed human peripheral blood monocytes. Subsequently, adenosine triphosphate (ATP) is added to the cells in order to trigger the P2X7 receptor resulting in processing and secretion of mature IL-1β. However, it is often reported that secretion is due to cytotoxic effects of ATP with P2X7 receptor-activation-related cell death. We have challenged this concept and demonstrate IL-1β specific secretion, since there is no increase in cell death and IL-1α and IL-18 are not released in the same cultures. More importantly we show that these conclusions can only be drawn under stringent experimental conditions.

  14. Structural Characterisation Reveals Mechanism of IL-13-Neutralising Monoclonal Antibody Tralokinumab as Inhibition of Binding to IL-13Rα1 and IL-13Rα2.

    PubMed

    Popovic, B; Breed, J; Rees, D G; Gardener, M J; Vinall, L M K; Kemp, B; Spooner, J; Keen, J; Minter, R; Uddin, F; Colice, G; Wilkinson, T; Vaughan, T; May, R D

    2017-01-20

    Interleukin (IL)-13 is a pleiotropic T helper type 2 cytokine frequently associated with asthma and atopic dermatitis. IL-13-mediated signalling is initiated by binding to IL-13Rα1, which then recruits IL-4Rα to form a heterodimeric receptor complex. IL-13 also binds to IL-13Rα2, considered as either a decoy or a key mediator of fibrosis. IL-13-neutralising antibodies act by preventing IL-13 binding to IL-13Rα1, IL-4Rα and/or IL-13Rα2. Tralokinumab (CAT-354) is an IL-13-neutralising human IgG4 monoclonal antibody that has shown clinical benefit in patients with asthma. To decipher how tralokinumab inhibits the effects of IL-13, we determined the structure of tralokinumab Fab in complex with human IL-13 to 2 Å resolution. The structure analysis reveals that tralokinumab prevents IL-13 from binding to both IL-13Rα1 and IL-13Rα2. This is supported by biochemical ligand-receptor interaction assay data. The tralokinumab epitope is mainly composed of residues in helices D and A of IL-13. It is mostly light chain complementarity-determining regions that are driving paratope interactions; the variable light complementarity-determining region 2 plays a key role by providing residue contacts for a network of hydrogen bonds and a salt bridge in the core of binding. The key residues within the paratope contributing to binding were identified as Asp50, Asp51, Ser30 and Lys31. This study demonstrates that tralokinumab prevents the IL-13 pharmacodynamic effect by binding to IL-13 helices A and D, thus preventing IL-13 from interacting with IL-13Rα1 and IL-13Rα2. Copyright © 2016 AstraZeneca. Published by Elsevier Ltd.. All rights reserved.

  15. P2X7 receptor antagonism: Implications in diabetic retinopathy.

    PubMed

    Platania, Chiara Bianca Maria; Giurdanella, Giovanni; Di Paola, Luisa; Leggio, Gian Marco; Drago, Filippo; Salomone, Salvatore; Bucolo, Claudio

    2017-08-15

    Diabetic retinopathy (DR) is the most frequent complication of diabetes and one of leading causes of blindness worldwide. Early phases of DR are characterized by retinal pericyte loss mainly related to concurrent inflammatory process. Recently, an important link between P2X7 receptor (P2X7R) and inflammation has been demonstrated indicating this receptor as potential pharmacological target in DR. Here we first carried out an in silico molecular modeling study in order to characterize the allosteric pocket in P2X7R, and identify a suitable P2X7R antagonist through molecular docking. JNJ47965567 was identified as the hit compound in docking calculations, as well as for its absorption, distribution, metabolism and excretion (ADME) profile. As an in vitro model of early diabetic retinopathy, human retinal pericytes were exposed to high glucose (25mM, 48h) that caused a significant (p<0.05) release of IL-1β and LDH. The block of P2X7R by JNJ47965567 significantly (p<0.05) reverted the damage elicited by high glucose, detected as IL-1β and LDH release. Overall, our findings suggest that the P2X7R represents an attractive pharmacological target to manage the early phase of diabetic retinopathy, and the compound JNJ47965567 is a good template to discover other P2X7R selective antagonists. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The Roles of IL-6, IL-10, and IL-1RA in Obesity and Insulin Resistance in African-Americans

    PubMed Central

    Doumatey, Ayo; Huang, Hanxia; Zhou, Jie; Chen, Guanjie; Shriner, Daniel; Adeyemo, Adebowale

    2011-01-01

    Objective: The aim of the study was to investigate the associations between IL-1 receptor antagonist (IL-1RA), IL-6, IL-10, measures of obesity, and insulin resistance in African-Americans. Research Design and Methods: Nondiabetic participants (n = 1025) of the Howard University Family Study were investigated for associations between serum IL (IL-1RA, IL-6, IL-10), measures of obesity, and insulin resistance, with adjustment for age and sex. Measures of obesity included body mass index, waist circumference, hip circumference, waist-to-hip ratio, and percent fat mass. Insulin resistance was assessed using the homeostasis model assessment of insulin resistance (HOMA-IR). Data were analyzed with R statistical software using linear regression and likelihood ratio tests. Results: IL-1RA and IL-6 were associated with measures of obesity and insulin resistance, explaining 4–12.7% of the variance observed (P values < 0.001). IL-1RA was bimodally distributed and therefore was analyzed based on grouping those with low vs. high IL-1RA levels. High IL-1RA explained up to 20 and 12% of the variance in measures of obesity and HOMA-IR, respectively. Among the IL, only high IL-1RA improved the fit of models regressing HOMA-IR on measures of obesity. In contrast, all measures of obesity improved the fit of models regressing HOMA-IR on IL. IL-10 was not associated with obesity measures or HOMA-IR. Conclusions: High IL-1RA levels and obesity measures are associated with HOMA-IR in this population-based sample of African-Americans. The results suggest that obesity and increased levels of IL-1RA both contribute to the development of insulin resistance. PMID:21956416

  17. Antagonism of histamine H4 receptors exacerbates clinical and pathological signs of experimental autoimmune encephalomyelitis

    PubMed Central

    Ballerini, C; Aldinucci, A; Luccarini, I; Galante, A; Manuelli, C; Blandina, P; Katebe, M; Chazot, P L; Masini, E; Passani, M B

    2013-01-01

    Background and Purpose The histamine H4 receptor has a primary role in inflammatory functions, making it an attractive target for the treatment of asthma and refractory inflammation. These observations suggested a facilitating action on autoimmune diseases. Here we have assessed the role of H4 receptors in experimental autoimmune encephalomyelitis (EAE) a model of multiple sclerosis (MS). Experimental Approach We induced EAE with myelin oligodendrocyte glycoprotein (MOG35–55) in C57BL/6 female mice as a model of MS. The histamine H4 receptor antagonist 5-chloro-2-[(4-methylpiperazin-1-yl)carbonyl]-1H-indole (JNJ7777120) was injected i.p. daily starting at day 10 post-immunization (D10 p.i.). Disease severity was monitored by clinical and histopathological evaluation of inflammatory cells infiltrating into the spinal cord, anti-MOG35–55 antibody production, assay of T-cell proliferation by [3H]-thymidine incorporation, mononucleate cell phenotype by flow cytometry, cytokine production by elisa assay and transcription factor quantification of mRNA expression. Key Results Treatment with JNJ7777120 exacerbated EAE, increased inflammation and demyelination in the spinal cord of EAE mice and increased IFN-γ expression in lymph nodes, whereas it suppressed IL-4 and IL-10, and augmented expression of the transcription factors Tbet, FOXP3 and IL-17 mRNA in lymphocytes. JNJ7777120 did not affect proliferation of anti-MOG35–55 T-cells, anti-MOG35–55 antibody production or mononucleate cell phenotype. Conclusions and Implications H4 receptor blockade was detrimental in EAE. Given the interest in the development of H4 receptor antagonists as anti-inflammatory compounds, it is important to understand the role of H4 receptors in immune diseases to anticipate clinical benefits and also predict possible detrimental effects. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http

  18. Endogenous IL-1 in Cognitive Function and Anxiety: A Study in IL-1RI−/− Mice

    PubMed Central

    Murray, Carol L.; Obiang, Pauline; Bannerman, David; Cunningham, Colm

    2013-01-01

    Interleukin-1 (IL-1) is a key pro-inflammatory cytokine, produced predominantly by peripheral immune cells but also by glia and some neuronal populations within the brain. Its signalling is mediated via the binding of IL-1α or IL-1β to the interleukin-1 type one receptor (IL-1RI). IL-1 plays a key role in inflammation-induced sickness behaviour, resulting in depressed locomotor activity, decreased exploration, reduced food and water intake and acute cognitive deficits. Conversely, IL-1 has also been suggested to facilitate hippocampal-dependent learning and memory: IL-1RI−/− mice have been reported to show deficits on tasks of visuospatial learning and memory. We sought to investigate whether there is a generalised hippocampal deficit in IL-1RI−/− animals. Therefore, in the current study we compared wildtype (WT) mice to IL-1RI−/− mice using a variety of hippocampal-dependent learning and memory tasks, as well as tests of anxiety and locomotor activity. We found no difference in performance of the IL-1RI−/− mice compared to WT mice in a T-maze working memory task. In addition, the IL-1RI−/− mice showed normal learning in various spatial reference memory tasks including the Y-maze and Morris mater maze, although there was a subtle deficit in choice behaviour in a spatial discrimination, beacon watermaze task. IL-1RI−/− mice also showed normal memory for visuospatial context in the contextual fear conditioning paradigm. In the open field, IL-1RI−/− mice showed a significant increase in distance travelled and rearing behaviour compared to the WT mice and in the elevated plus-maze spent more time in the open arms than did the WT animals. The data suggest that, contrary to prior studies, IL-1RI−/− mice are not robustly impaired on hippocampal-dependent memory and learning but do display open field hyperactivity and decreased anxiety compared to WT mice. The results argue for a careful evaluation of the roles of endogenous IL-1 in

  19. Interleukin (IL)-33 and the IL-1 Family of Cytokines-Regulators of Inflammation and Tissue Homeostasis.

    PubMed

    Vasanthakumar, Ajithkumar; Kallies, Axel

    2017-11-03

    Cytokines play an integral role in shaping innate and adaptive immune responses. Members of the interleukin (IL)-1 family regulate a plethora of immune-cell-mediated processes, which include pathogen defense and tissue homeostasis. Notably, the IL-1 family cytokine IL-33 promotes adaptive and innate type 2 immune responses, confers viral protection and facilitates glucose metabolism and tissue repair. At the cellular level, IL-33 stimulates differentiation, maintenance, and function of various immune cell types, including regulatory T cells, effector CD4 + and CD8 + T cells, macrophages, and type 2 innate lymphoid cells (ILC2s). Other IL-1 family members, such as IL-1β and IL-18 promote type 1 responses, while IL-37 limits immune activation. Although IL-1 cytokines play critical roles in immunity and tissue repair, their deregulated expression is often linked to autoimmune and inflammatory diseases. Therefore, IL-1 cytokines are regulated tightly by posttranscriptional mechanisms and decoy receptors. In this review, we discuss the biology and function of IL-1 family cytokines, with a specific focus on regulation and function of IL-33 in immune and tissue homeostasis. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. STAT3 and STAT1 mediate IL-11–dependent and inflammation-associated gastric tumorigenesis in gp130 receptor mutant mice

    PubMed Central

    Ernst, Matthias; Najdovska, Meri; Grail, Dianne; Lundgren-May, Therese; Buchert, Michael; Tye, Hazel; Matthews, Vance B.; Armes, Jane; Bhathal, Prithi S.; Hughes, Norman R.; Marcusson, Eric G.; Karras, James G.; Na, Songqing; Sedgwick, Jonathon D.; Hertzog, Paul J.; Jenkins, Brendan J.

    2008-01-01

    Deregulated activation of STAT3 is frequently associated with many human hematological and epithelial malignancies, including gastric cancer. While exaggerated STAT3 signaling facilitates an antiapoptotic, proangiogenic, and proproliferative environment for neoplastic cells, the molecular mechanisms leading to STAT3 hyperactivation remain poorly understood. Using the gp130Y757F/Y757F mouse model of gastric cancer, which carries a mutated gp130 cytokine receptor signaling subunit that cannot bind the negative regulator of cytokine signaling SOCS3 and is characterized by hyperactivation of the signaling molecules STAT1 and STAT3, we have provided genetic evidence that IL-11 promotes chronic gastric inflammation and associated tumorigenesis. Expression of IL-11 was increased in gastric tumors in gp130Y757F/Y757F mice, when compared with unaffected gastric tissue in wild-type mice, while gp130Y757F/Y757F mice lacking the IL-11 ligand–binding receptor subunit (IL-11Rα) showed normal gastric STAT3 activation and IL-11 expression and failed to develop gastric tumors. Furthermore, reducing STAT3 activity in gp130Y757F/Y757F mice, either genetically or by therapeutic administration of STAT3 antisense oligonucleotides, normalized gastric IL-11 expression and alleviated gastric tumor burden. Surprisingly, the genetic reduction of STAT1 expression also reduced gastric tumorigenesis in gp130Y757F/Y757F mice and coincided with reduced gastric inflammation and IL-11 expression. Collectively, our data have identified IL-11 as a crucial cytokine promoting chronic gastric inflammation and associated tumorigenesis mediated by excessive activation of STAT3 and STAT1. PMID:18431520

  1. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor

    PubMed Central

    Dagdas, Yasin F; Belhaj, Khaoula; Maqbool, Abbas; Chaparro-Garcia, Angela; Pandey, Pooja; Petre, Benjamin; Tabassum, Nadra; Cruz-Mireles, Neftaly; Hughes, Richard K; Sklenar, Jan; Win, Joe; Menke, Frank; Findlay, Kim; Banfield, Mark J; Kamoun, Sophien; Bozkurt, Tolga O

    2016-01-01

    Plants use autophagy to safeguard against infectious diseases. However, how plant pathogens interfere with autophagy-related processes is unknown. Here, we show that PexRD54, an effector from the Irish potato famine pathogen Phytophthora infestans, binds host autophagy protein ATG8CL to stimulate autophagosome formation. PexRD54 depletes the autophagy cargo receptor Joka2 out of ATG8CL complexes and interferes with Joka2's positive effect on pathogen defense. Thus, a plant pathogen effector has evolved to antagonize a host autophagy cargo receptor to counteract host defenses. DOI: http://dx.doi.org/10.7554/eLife.10856.001 PMID:26765567

  2. IL-15 Deficient Tax Mice Reveal a Role for IL-1α in Tumor Immunity

    PubMed Central

    Rauch, Daniel A.; Harding, John C.; Ratner, Lee

    2014-01-01

    IL-15 is recognized as a promising candidate for tumor immunotherapy and has been described as both a promoter of cancer and a promoter of anti-cancer immunity. IL-15 was discovered in cells transformed by HTLV-1, the etiologic agent of adult T cell leukemia/lymphoma (ATL) and the human retrovirus that carries the Tax oncogene. We have developed the TAX-LUC mouse model of ATL in which Tax expression drives both malignant transformation and luciferase expression, enabling non-invasive imaging of tumorigenesis in real time. To identify the role of IL-15 in spontaneous development of lymphoma in vivo, an IL-15−/− TAX-LUC strain was developed and examined. The absence of IL-15 resulted in aggressive tumor growth and accelerated mortality and demonstrated that IL-15 was not required for Tax-mediated lymphoma but was essential for anti-tumor immunity. Further analysis revealed a unique transcriptional profile in tumor cells that arise in the absence of IL-15 that included a significant increase in the expression of IL-1α and IL-1α-regulated cytokines. Moreover, anti-IL-1α antibodies and an IL-1 receptor antagonist (Anakinra) were used to interrogate the potential of IL-1α targeted therapies in this model. Taken together, these findings identify IL-15 and IL-1α as therapeutic targets in lymphoma. PMID:24416335

  3. Do Cyclosporine A, an IL-1 Receptor Antagonist, Uridine Triphosphate, Rebamipide, and/or Bimatoprost Regulate Human Meibomian Gland Epithelial Cells?

    PubMed

    Kam, Wendy R; Liu, Yang; Ding, Juan; Sullivan, David A

    2016-08-01

    Researchers have hypothesized that treatment with cyclosporine A (CyA), interleukin-1 receptor antagonists (IL-1RA; e.g., anakinra), P2Y2 receptor agonists (e.g., uridine triphosphate; UTP), and rebamipide may alleviate human meibomian gland dysfunction (MGD) and/or dry eye disease. Investigators have also proposed that prostaglandin analogues (e.g., bimatoprost) may induce MGD. Our goal was to determine whether these compounds directly influence human meibomian gland epithelial cell (HMGEC) function. Multiple concentrations of each compound were tested for effects on immortalized (I) HMGEC morphology and survival. Nontoxic dosages were used for our studies. Immortalized HMGEC were cultured in the presence of vehicle, CyA, IL-1RA, UTP, rebamipide, or bimatoprost for up to 6 days in various media. Experiments included positive controls for proliferation (epidermal growth factor and bovine pituitary extract), differentiation (azithromycin), and signaling pathway activation (insulin-like growth factor 1). Cells were analyzed for neutral lipid staining, lysosome accumulation, lipid composition, and phosphatidylinositol-3-kinase/Akt (AKT), phosphorylation. Our findings demonstrate that CyA, IL-1RA, UTP, rebamipide, and bimatoprost had no effect on the proliferation; neutral lipid content; lysosome number; or levels of free cholesterol, triglycerides, or phospholipids in IHMGECs. Cylosporine A, IL-1RA, rebamipide, and bimatoprost significantly reduced the phosphorylation of AKT, as compared to control. Of interest, tested doses of CyA above 8 nM killed the IHMGECs. Our results show that CyA, IL-1RA, UTP, rebamipide, and bimatoprost do not influence the proliferation or differentiation of IHMGEC. However, with the exception of UTP, these compounds do decrease the activity of the AKT signaling pathway, which is known to promote cell survival.

  4. Soluble TNF-alpha receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight

    NASA Technical Reports Server (NTRS)

    Shearer, W. T.; Reuben, J. M.; Mullington, J. M.; Price, N. J.; Lee, B. N.; Smith, E. O.; Szuba, M. P.; Van Dongen, H. P.; Dinges, D. F.

    2001-01-01

    BACKGROUND: The extent to which sleep loss may predispose astronauts to a state of altered immunity during extended space travel prompts evaluation with ground-based models. OBJECTIVE: We sought to measure plasma levels of selected cytokines and their receptors, including the putative sleep-regulation proteins soluble TNF-alpha receptor (sTNF-alpha R) I and IL-6, in human subjects undergoing 2 types of sleep deprivation during environmental confinement with performance demands. METHODS: Healthy adult men (n = 42) were randomized to schedules that varied in severity of sleep loss: 4 days (88 hours) of partial sleep deprivation (PSD) involving two 2-hour naps per day or 4 days of total sleep deprivation (TSD). Plasma samples were obtained every 6 hours across 5 days and analyzed by using enzyme-linked immunoassays for sTNF-alpha RI, sTNF-alpha RII, IL-6, soluble IL-2 receptor, IL-10, and TNF-alpha. RESULTS: Interactions between the effects of time and sleep deprivation level were detected for sTNF-alpha RI and IL-6 but not for sTNF-alpha RII, soluble IL-2 receptor, IL-10, and TNF-alpha. Relative to the PSD condition, subjects in the TSD condition had elevated plasma levels of sTNF-alpha RI on day 2 (P =.04), day 3 (P =.01), and across days 2 to 4 of sleep loss (P =.01) and elevated levels of IL-6 on day 4 (P =.04). CONCLUSIONS: Total sleep loss produced significant increases in plasma levels of sTNF-alpha RI and IL-6, messengers that connect the nervous, endocrine, and immune systems. These changes appeared to reflect elevations of the homeostatic drive for sleep because they occurred in TSD but not PSD, suggesting that naps may serve as the basis for a countermeasures approach to prolonged spaceflight.

  5. CCR1 antagonism attenuates T cell trafficking to omentum and liver in obesity-associated cancer.

    PubMed

    Conroy, Melissa J; Galvin, Karen C; Kavanagh, Maria E; Mongan, Ann Marie; Doyle, Suzanne L; Gilmartin, Niamh; O'Farrelly, Cliona; Reynolds, John V; Lysaght, Joanne

    2016-07-01

    Obesity is a global health problem presenting serious risk of disease fuelled by chronic inflammation, including type 2 diabetes mellitus, cardiovascular disease, liver disease and cancer. Visceral fat, in particular the omentum and liver of obese individuals are sites of excessive inflammation. We propose that chemokine-mediated trafficking of pro-inflammatory cells to the omentum and liver contributes to local and subsequent systemic inflammation. Oesophagogastric adenocarcinoma (OAC) is an exemplar model of obesity and inflammation driven cancer. We have demonstrated that T cells actively migrate to the secreted factors from the omentum and liver of OAC patients and that both CD4(+) and CD8(+) T cells bearing the chemokine receptor CCR5 are significantly more prevalent in these tissues compared to matched blood. The CCR5 ligand and inflammatory chemokine MIP-1α is also secreted at significantly higher concentrations in the omentum and liver of our OAC patient cohort compared to matched serum. Furthermore, we report that MIP-1α receptor antagonism can significantly reduce T cell migration to the secreted factors from OAC omentum and liver. These novel data suggest that chemokine receptor antagonism may have therapeutic potential to reduce inflammatory T cell infiltration to the omentum and liver and in doing so, may ameliorate pathological inflammation in obesity and obesity-associated cancer.

  6. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    PubMed

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis. © The Author(s) 2014.

  7. Control of energy balance by hypothalamic gene circuitry involving two nuclear receptors, neuron-derived orphan receptor 1 and glucocorticoid receptor.

    PubMed

    Kim, Sun-Gyun; Lee, Bora; Kim, Dae-Hwan; Kim, Juhee; Lee, Seunghee; Lee, Soo-Kyung; Lee, Jae W

    2013-10-01

    Nuclear receptors (NRs) regulate diverse physiological processes, including the central nervous system control of energy balance. However, the molecular mechanisms for the central actions of NRs in energy balance remain relatively poorly defined. Here we report a hypothalamic gene network involving two NRs, neuron-derived orphan receptor 1 (NOR1) and glucocorticoid receptor (GR), which directs the regulated expression of orexigenic neuropeptides agouti-related peptide (AgRP) and neuropeptide Y (NPY) in response to peripheral signals. Our results suggest that the anorexigenic signal leptin induces NOR1 expression likely via the transcription factor cyclic AMP response element-binding protein (CREB), while the orexigenic signal glucocorticoid mobilizes GR to inhibit NOR1 expression by antagonizing the action of CREB. Also, NOR1 suppresses glucocorticoid-dependent expression of AgRP and NPY. Consistently, relative to wild-type mice, NOR1-null mice showed significantly higher levels of AgRP and NPY and were less responsive to leptin in decreasing the expression of AgRP and NPY. These results identify mutual antagonism between NOR1 and GR to be a key rheostat for peripheral metabolic signals to centrally control energy balance.

  8. Caffeine Suppresses the Activation of Hepatic Stellate Cells cAMP-Independently by Antagonizing Adenosine Receptors.

    PubMed

    Yamaguchi, Momoka; Saito, Shin-Ya; Nishiyama, Ryota; Nakamura, Misuzu; Todoroki, Kenichiro; Toyo'oka, Toshimasa; Ishikawa, Tomohisa

    2017-01-01

    During liver injury, hepatic stellate cells (HSCs) are activated by various cytokines and transdifferentiated into myofibroblast-like activated HSCs, which produce collagen, a major source of liver fibrosis. Therefore, the suppression of HSC activation is regarded as a therapeutic target for liver fibrosis. Several epidemiological reports have revealed that caffeine intake decreases the risk of liver disease. In this study, therefore, we investigated the effect of caffeine on the activation of primary HSCs isolated from mice. Caffeine suppressed the activation of HSC in a concentration-dependent manner. BAPTA-AM, an intracellular Ca 2+ chelator, had no effect on the caffeine-induced suppression of HSC activation. None of the isoform-selective inhibitors of phosphodiesterase1 to 5 affected changes in the morphology of HSC during activation, whereas CGS-15943, an adenosine receptor antagonist, inhibited them. Caffeine had no effect on intracellular cAMP level or on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2. In contrast, caffeine significantly decreased the phosphorylation of Akt1. These results suggest that caffeine inhibits HSC activation by antagonizing adenosine receptors, leading to Akt1 signaling activation.

  9. Involvement of interleukin-1 type 1 receptors in lipopolysaccharide-induced sickness responses.

    PubMed

    Matsuwaki, Takashi; Shionoya, Kiseko; Ihnatko, Robert; Eskilsson, Anna; Kakuta, Shigeru; Dufour, Sylvie; Schwaninger, Markus; Waisman, Ari; Müller, Werner; Pinteaux, Emmanuel; Engblom, David; Blomqvist, Anders

    2017-11-01

    Sickness responses to lipopolysaccharide (LPS) were examined in mice with deletion of the interleukin (IL)-1 type 1 receptor (IL-1R1). IL-1R1 knockout (KO) mice displayed intact anorexia and HPA-axis activation to intraperitoneally injected LPS (anorexia: 10 or 120µg/kg; HPA-axis: 120µg/kg), but showed attenuated but not extinguished fever (120µg/kg). Brain PGE 2 synthesis was attenuated, but Cox-2 induction remained intact. Neither the tumor necrosis factor-α (TNFα) inhibitor etanercept nor the IL-6 receptor antibody tocilizumab abolished the LPS induced fever in IL-1R1 KO mice. Deletion of IL-1R1 specifically in brain endothelial cells attenuated the LPS induced fever, but only during the late, 3rd phase of fever, whereas deletion of IL-1R1 on neural cells or on peripheral nerves had little or no effect on the febrile response. We conclude that while IL-1 signaling is not critical for LPS induced anorexia or stress hormone release, IL-1R1, expressed on brain endothelial cells, contributes to the febrile response to LPS. However, also in the absence of IL-1R1, LPS evokes a febrile response, although this is attenuated. This remaining fever seems not to be mediated by IL-6 receptors or TNFα, but by some yet unidentified pyrogenic factor. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Anti-IL-23 receptor monoclonal antibody prevents CD4+ T cell-mediated colitis in association with decreased systemic Th1 and Th17 responses.

    PubMed

    Imamura, Emiko; Taguchi, Katsunari; Sasaki-Iwaoka, Haruna; Kubo, Satoshi; Furukawa, Shigetada; Morokata, Tatsuaki

    2018-04-05

    Experimental colitis studies, including T cell-mediated colitis, indicate that IL-23 rather than IL-12 orchestrates intestinal inflammation in inflammatory bowel disease (IBD). Previous studies have identified the roles of IL-12 and IL-23 using mice deficient for their specific subunits, p35 and p19, respectively. However, these studies do not completely reflect the difference in roles between IL-12 and IL-23, especially since the discovery of novel IL-12 family cytokines, which also include p35 or p19 subunits. Here, to clarify the contribution of IL-12 and IL-23 in T cell-mediated colitis, we compared the efficacy of a monoclonal antibody (mAb) to an IL-23-specific receptor subunit with that of an anti-IL-12/23p40 mAb in a naive CD4 + T cell transfer model of experimental colitis, which is associated with enhanced Th1 and Th17 responses. Both antibodies almost completely prevented the development of colitis and showed reduced associated histological changes, including mucosal hyperplasia, infiltration of inflammatory cells and loss of goblet cells. The anti-IL-23 receptor mAb inhibited not only the systemic Th17-response but also the Th1-response, both of which were up-regulated in this model. These results suggest that IL-23, but not IL-12, signaling is critical for the development of colitis. Blockade of IL-23 signaling is a promising therapeutic approach for IBD. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat.

    PubMed

    Pereira, Mariana; Farrar, Andrew M; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D; Morrell, Joan I

    2011-01-01

    Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A(2A) receptors in striatal areas, including the nucleus accumbens. This study was conducted to determine if adenosine A(2A) receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. The adenosine A(2A) receptor antagonist MSX-3 (0.25-2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25-2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother-infant relationship.

  12. Effect of the adenosine A2A receptor antagonist MSX-3 on motivational disruptions of maternal behavior induced by dopamine antagonism in the early postpartum rat

    PubMed Central

    Farrar, Andrew M.; Hockemeyer, Jörg; Müller, Christa E.; Salamone, John D.; Morrell, Joan I.

    2011-01-01

    Rationale Mesolimbic dopamine (DA), particularly in the nucleus accumbens, importantly regulates activational aspects of maternal responsiveness. DA antagonism and accumbens DA depletions interfere with early postpartum maternal motivation by selectively affecting most forms of active maternal behaviors, while leaving nursing behavior relatively intact. Considerable evidence indicates that there is a functional interaction between DA D2 and adenosine A2A receptors in striatal areas, including the nucleus accumbens. Objective This study was conducted to determine if adenosine A2A receptor antagonism could reverse the effects of DA receptor antagonism on early postpartum maternal behavior. Methods The adenosine A2A receptor antagonist MSX-3 (0.25–2.0 mg/kg, IP) was investigated for its ability to reverse the effects of the DA D2 receptor antagonist haloperidol (0.1 mg/kg, IP) on the maternal behavior of early postpartum female rats. Results Haloperidol severely impaired the expression of active maternal components, including retrieval and grouping the pups at the nest site, pup licking, and nest building. Co-administration of MSX-3 (0.25–2.0 mg/kg, IP) with haloperidol produced a dose-related attenuation of the haloperidol-induced behavioral deficits in early postpartum females. Doses of MSX-3 that effectively reversed the effects of haloperidol (0.5, 1.0 mg/kg), when administered in the absence of haloperidol, did not affect maternal responding or locomotor activity. Conclusions Adenosine and DA systems interact to regulate early postpartum maternal responsiveness. This research may potentially contribute to the development of strategies for treatments of psychiatric disorders during the postpartum period, with particular emphasis in maintaining or restoring the mother–infant relationship. PMID:20848086

  13. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior.

    PubMed

    Collison, Kate S; Inglis, Angela; Shibin, Sherin; Andres, Bernard; Ubungen, Rosario; Thiam, Jennifer; Mata, Princess; Al-Mohanna, Futwan A

    2016-12-01

    We have previously showed that lifetime exposure to aspartame, commencing in utero via the mother's diet, may impair insulin tolerance and cause behavioral deficits in adulthood via mechanisms which are incompletely understood. The role of the CNS in regulating glucose homeostasis has been highlighted by recent delineation of the gut-brain axis, in which N-methyl-d-aspartic acid receptors (NMDARs) are important in maintaining glucose homeostasis, in addition to regulating certain aspects of behavior. Since the gut-brain axis can be modulated by fetal programming, we hypothesized that early-life NMDAR antagonism may affect aspartame-induced glucose deregulation in adulthood, and may alter the aspartame behavioral phenotype. Accordingly, C57Bl/6J mice were chronically exposed to aspartame commencing in utero, in the presence and absence of maternal administration of the competitive NMDAR antagonist CGP 39551, from conception until weaning. Drug/diet interactions in adulthood glucocentric and behavioral parameters were assessed. Aspartame exposure elevated blood glucose and impaired insulin-induced glucose disposal during an insulin tolerance test, which could be normalized by NMDAR antagonism. The same effects were not observed in control diet mice, suggesting an early-life drug/diet interaction. Behavioral analysis of adult offspring indicated that NMDAR antagonism of control diet mice caused hyperlocomotion and impaired spatial navigation. Conversely hypolocomotion, reduced exploratory activity and increased anxiety-related behavior were apparent in aspartame diet mice with early-life NMDAR antagonism. significant drug/diet interactions in glucocentric and behavioral parameters were identified in aspartame-exposed mice with early-life NMDAR antagonism. This suggests a possible involvement of early NMDAR interactions in aspartame-impaired glucose homeostasis and behavioral deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Leptin actions on food intake and body temperature are mediated by IL-1.

    PubMed

    Luheshi, G N; Gardner, J D; Rushforth, D A; Loudon, A S; Rothwell, N J

    1999-06-08

    Leptin regulates energy balance through its actions in the brain on appetite and energy expenditure and also shares properties with cytokines such as IL-1. We report here that leptin, injected into rats intracerebroventricularly or peripherally, induces significant dose-dependent increases in core body temperature as well as suppression of appetite. Leptin failed to affect food intake or body temperature in obese (fa/fa) Zucker rats, which posses a defective leptin receptor. Furthermore, injection of leptin increased levels of the proinflammatory cytokine IL-1beta in the hypothalamus of normal Sprague-Dawley rats. Central injection of IL-1 receptor antagonist (IL-1ra) inhibited the suppression of food intake caused by central or peripheral injection of leptin (60 and 84%, respectively) and abolished the leptin-induced increase in body temperature in both cases. Mice lacking (gene knockout) the main IL-1 receptor (80 kDa, R1) responsible for IL-1 actions showed no reduction in food intake in response to leptin. These data indicate that leptin actions in the brain depend on IL-1, and we show further that the effect of leptin on fever, but not food intake, is abolished by a cyclooxygenase inhibitor. Thus, we propose that in addition to its role in body weight regulation, leptin may mediate neuroimmune responses via actions in the brain dependent on release of IL-1 and prostaglandins.

  15. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta.

    PubMed

    Seki, E; Tsutsui, H; Nakano, H; Tsuji, N; Hoshino, K; Adachi, O; Adachi, K; Futatsugi, S; Kuida, K; Takeuchi, O; Okamura, H; Fujimoto, J; Akira, S; Nakanishi, K

    2001-02-15

    IL-18, produced as biologically inactive precursor, is secreted from LPS-stimulated macrophages after cleavage by caspase-1. In this study, we investigated the mechanism underlying caspase-1-mediated IL-18 secretion. Kupffer cells constantly stored IL-18 and constitutively expressed caspase-1. Inhibition of new protein synthesis only slightly reduced IL-18 secretion, while it decreased and abrogated their IL-1beta and IL-12 secretion, respectively. Kupffer cells deficient in Toll-like receptor (TLR) 4, an LPS-signaling receptor, did not secrete IL-18, IL-1beta, and IL-12 upon LPS stimulation. In contrast, Kupffer cells lacking myeloid differentiation factor 88 (MyD88), an adaptor molecule for TLR-mediated-signaling, secreted IL-18 without IL-1beta and IL-12 production in a caspase-1-dependent and de novo synthesis-independent manner. These results indicate that MyD88 is essential for IL-12 and IL-1beta production from Kupffer cells while their IL-18 secretion is mediated via activation of endogenous caspase-1 without de novo protein synthesis in a MyD88-independent fashion after stimulation with LPS. In addition, infection with Listeria monocytogenes, products of which have the capacity to activate TLR, increased serum levels of IL-18 in wild-type and MyD88-deficient mice but not in caspase-1-deficient mice, whereas it induced elevation of serum levels of IL-12 in both wild-type and caspase-1-deficient mice but not in MyD88-deficient mice. Taken together, these results suggested caspase-1-dependent, MyD88-independent IL-18 release in bacterial infection.

  16. Do Cyclosporine A, an IL-1 Receptor Antagonist, Uridine Triphosphate, Rebamipide, and/or Bimatoprost Regulate Human Meibomian Gland Epithelial Cells?

    PubMed Central

    Kam, Wendy R.; Liu, Yang; Ding, Juan; Sullivan, David A.

    2016-01-01

    Purpose Researchers have hypothesized that treatment with cyclosporine A (CyA), interleukin-1 receptor antagonists (IL-1RA; e.g., anakinra), P2Y2 receptor agonists (e.g., uridine triphosphate; UTP), and rebamipide may alleviate human meibomian gland dysfunction (MGD) and/or dry eye disease. Investigators have also proposed that prostaglandin analogues (e.g., bimatoprost) may induce MGD. Our goal was to determine whether these compounds directly influence human meibomian gland epithelial cell (HMGEC) function. Methods Multiple concentrations of each compound were tested for effects on immortalized (I) HMGEC morphology and survival. Nontoxic dosages were used for our studies. Immortalized HMGEC were cultured in the presence of vehicle, CyA, IL-1RA, UTP, rebamipide, or bimatoprost for up to 6 days in various media. Experiments included positive controls for proliferation (epidermal growth factor and bovine pituitary extract), differentiation (azithromycin), and signaling pathway activation (insulin-like growth factor 1). Cells were analyzed for neutral lipid staining, lysosome accumulation, lipid composition, and phosphatidylinositol-3-kinase/Akt (AKT), phosphorylation. Results Our findings demonstrate that CyA, IL-1RA, UTP, rebamipide, and bimatoprost had no effect on the proliferation; neutral lipid content; lysosome number; or levels of free cholesterol, triglycerides, or phospholipids in IHMGECs. Cylosporine A, IL-1RA, rebamipide, and bimatoprost significantly reduced the phosphorylation of AKT, as compared to control. Of interest, tested doses of CyA above 8 nM killed the IHMGECs. Conclusions Our results show that CyA, IL-1RA, UTP, rebamipide, and bimatoprost do not influence the proliferation or differentiation of IHMGEC. However, with the exception of UTP, these compounds do decrease the activity of the AKT signaling pathway, which is known to promote cell survival. PMID:27552406

  17. Postoperative ileus involves interleukin-1 receptor signaling in enteric glia.

    PubMed

    Stoffels, Burkhard; Hupa, Kristof Johannes; Snoek, Susanne A; van Bree, Sjoerd; Stein, Kathy; Schwandt, Timo; Vilz, Tim O; Lysson, Mariola; Veer, Cornelis Van't; Kummer, Markus P; Hornung, Veit; Kalff, Joerg C; de Jonge, Wouter J; Wehner, Sven

    2014-01-01

    Postoperative ileus (POI) is a common consequence of abdominal surgery that increases the risk of postoperative complications and morbidity. We investigated the cellular mechanisms and immune responses involved in the pathogenesis of POI. We studied a mouse model of POI in which intestinal manipulation leads to inflammation of the muscularis externa and disrupts motility. We used C57BL/6 (control) mice as well as mice deficient in Toll-like receptors (TLRs) and cytokine signaling components (TLR-2(-/-), TLR-4(-/-), TLR-2/4(-/-), MyD88(-/-), MyD88/TLR adaptor molecule 1(-/-), interleukin-1 receptor [IL-1R1](-/-), and interleukin (IL)-18(-/-) mice). Bone marrow transplantation experiments were performed to determine which cytokine receptors and cell types are involved in the pathogenesis of POI. Development of POI did not require TLRs 2, 4, or 9 or MyD88/TLR adaptor molecule 2 but did require MyD88, indicating a role for IL-1R1. IL-1R1(-/-) mice did not develop POI; however, mice deficient in IL-18, which also signals via MyD88, developed POI. Mice given injections of an IL-1 receptor antagonist (anakinra) or antibodies to deplete IL-1α and IL-1β before intestinal manipulation were protected from POI. Induction of POI activated the inflammasome in muscularis externa tissues of C57BL6 mice, and IL-1α and IL-1β were released in ex vivo organ bath cultures. In bone marrow transplantation experiments, the development of POI required activation of IL-1 receptor in nonhematopoietic cells. IL-1R1 was expressed by enteric glial cells in the myenteric plexus layer, and cultured primary enteric glia cells expressed IL-6 and the chemokine monocyte chemotactic protein 1 in response to IL-1β stimulation. Immunohistochemical analysis of human small bowel tissue samples confirmed expression of IL-1R1 in the ganglia of the myenteric plexus. IL-1 signaling, via IL-1R1 and MyD88, is required for development of POI after intestinal manipulation in mice. Agents that interfere with

  18. AN IL-1 RECEPTOR ANTAGONIST BLOCKS A MORPHINE-INDUCED ATTENUATION OF LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY

    PubMed Central

    Hook, Michelle A.; Washburn, Stephanie N.; Moreno, Georgina; Woller, Sarah A.; Puga, Denise; Lee, Kuan H.; Grau, James W.

    2010-01-01

    Morphine is one of the most commonly prescribed medications for the treatment of chronic pain after a spinal cord injury (SCI). Despite widespread use, however, little is known about the secondary consequences of morphine use after SCI. Unfortunately, our previous studies show that administration of a single dose of morphine, in the acute phase of a moderate spinal contusion injury, significantly attenuates locomotor function, reduces weight gain, and produces symptoms of paradoxical pain (Hook et al., 2009). The current study focused on the cellular mechanisms that mediate these effects. Based on data from other models, we hypothesized that pro-inflammatory cytokines might play a role in the morphine-induced attenuation of function. Experiment 1 confirmed that systemic morphine (20 mg/kg) administered one day after a contusion injury significantly increased expression levels of spinal IL-1β 24 hrs later. Experiment 2 extended these findings, demonstrating that a single dose of morphine (90 µg, i.t.) applied directly onto the spinal cord increased expression levels of spinal IL-1β at both 30 min and 24 hrs after administration. Experiment 3 showed that administration of an interleukin-1 receptor antagonist (IL-1ra, i.t.) prior to intrathecal morphine (90 µg), blocked the adverse effects of morphine on locomotor recovery. Further, pre-treatment with 3 µg IL-1ra prevented the increased expression of at-level neuropathic pain symptoms that was observed 28 days later in the group treated with morphine-alone. However, the IL-1ra also had adverse effects that were independent of morphine. Treatment with the IL-1ra alone undermined recovery of locomotor function, potentiated weight loss and significantly increased tissue loss at the injury site. Overall, these data suggest that morphine disrupts a critical balance in concentrations of pro-inflammatory cytokines in the spinal cord, and this undermines recovery of function. PMID:20974246

  19. An essential role for IL-2 receptor in regulatory T cell function

    PubMed Central

    Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233

  20. Monogenic IL-1 Mediated Autoinflammatory and Immunodeficiency Syndromes: Finding the Right Balance in Response to Danger Signals

    PubMed Central

    Henderson, Cailin; Goldbach-Mansky, Raphaela

    2010-01-01

    INTRODUCTION Interleukin -1 was the first cytokine identified and is a powerful inducer of fever and inflammation. The biologically active receptor for IL-1, shares signaling pathways with some pathogen recognition receptors, the toll like receptors (TLRs) which early on suggested an important role in innate immune function. DISCUSSION The discovery that some intracellular “danger receptors”, the NOD like receptors (NLRs) can assemble to form multimolecular platforms, the inflammasomes, that not only sense intracellular danger but also activate IL-1β, has provided the molecular basis for the integration of IL-1 as an early response mediator in danger recognition. The critical role of balancing IL-1 production and signaling in human disease has recently been demonstrated in rare human monogenic diseases with mutations that affect the meticulous control of IL-1 production, release and signaling by leading to decreased or increased TLR/IL-1 signaling. In diseases of decreased TLR/IL-1 signaling (IRAK-4 and MyD88 deficiencies) patients are at risk for infections with gram positive organisms; and in diseases of increased signaling, patients develop systemic autoinflammatory diseases (Cryopyrin associated periodic syndromes (CAPS), and deficiency of the IL-1 receptor antagonist (DIRA)). CONCLUSION Monogenic defects in a number of rare diseases that affect the balance of TLR/IL-1 signaling have provided us with opportunities to study the systemic effects of IL-1 in human diseases. The molecular defects in CAPS and DIRA provided a therapeutic rationale for targeting IL-1 and the impressive clinical results from IL-1 blocking therapies have undoubtedly confirmed the pivotal role of IL-1 in human disease and spurred the exploration of modifying IL-1 signaling in a number of genetically complex common human diseases. PMID:20353899

  1. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    PubMed

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  2. Post-burn hypertrophic scars are characterized by high levels of IL-1β mRNA and protein and TNF-α type I receptors.

    PubMed

    Salgado, Rosa M; Alcántara, Luz; Mendoza-Rodríguez, C Adriana; Cerbón, Marco; Hidalgo-González, Christian; Mercadillo, Patricia; Moreno, Luis M; Alvarez-Jiménez, Ricardo; Krötzsch, Edgar

    2012-08-01

    Post-burn hypertrophic scars are characterized by increased collagen synthesis and hyperplasia, and may be associated with erythema, pain, dysesthesia, pruritus, and skin border elevation. Although the etiopathogenesis of hypertrophic scarring remains unclear, proinflammatory and profibrogenic cytokines are known to play an important role in general skin dysfunction. This study assessed mRNA expression, proteins, and type I receptors of tumor necrosis factor-alpha (TNF-α) and interleukin 1-beta (IL-1β) in normal skin, normotrophic and post-burn hypertrophic scars. Skin biopsies were obtained from 10 hypertrophic and 9 normotrophic scars, and 4 normal skin sites. Only post-burn scars covering more than 10% of the body were included. Ex vivo histopathological analysis evaluated scar maturity, in situ hybridization assessed mRNA expression, and cytokine protein and cytokine/cell colocalization were performed using single- and double-label immunohistochemistry, respectively. IL-1β is overexpressed in hypertrophic scars at the post-transcriptional level, associated primarily with keratinocytes and CD1a(+) cells. Type I receptors for TNF-α are overexpressed in blood vessels of hypertrophic scars. The coordinated overexpression of IL-1β and TNF-α type I receptor may maintain the fibrogenic phenotypes of hypertrophic scars, even those in "remission". Copyright © 2011 Elsevier Ltd and ISBI. All rights reserved.

  3. IGF-1 and PDGF-bb Suppress IL-1β-Induced Cartilage Degradation through Down-Regulation of NF-κB Signaling: Involvement of Src/PI-3K/AKT Pathway

    PubMed Central

    Mobasheri, Ali; Buhrmann, Constanze; Aldinger, Constance; Rad, Jafar Soleimani; Shakibaei, Mehdi

    2011-01-01

    Objective Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key role in the pathogenesis of osteoarthritis (OA). Growth factors (GFs) capable of antagonizing the catabolic actions of cytokines may have therapeutic potential in the treatment of OA. Herein, we investigated the potential synergistic effects of insulin-like growth factor (IGF-1) and platelet-derived growth factor (PDGF-bb) on different mechanisms participating in IL-1β-induced activation of nuclear transcription factor-κB (NF-κB) and apoptosis in chondrocytes. Methods Primary chondrocytes were treated with IL-1β to induce dedifferentiation and co-treated with either IGF-1 or/and PDGF-bb and evaluated by immunoblotting and electron microscopy. Results Pretreatment of chondrocytes with IGF-1 or/and PDGF-bb suppressed IL-1β-induced NF-κB activation via inhibition of IκB-α kinase. Inhibition of IκB-α kinase by GFs led to the suppression of IκB-α phosphorylation and degradation, p65 nuclear translocation and NF-κB-regulated gene products involved in inflammation and cartilage degradation (COX-2, MMPs) and apoptosis (caspase-3). GFs or BMS-345541 (specific inhibitor of the IKK) reversed the IL-1β-induced down-regulation of collagen type II, cartilage specific proteoglycans, β1-integrin, Shc, activated MAPKinase, Sox-9 and up-regulation of active caspase-3. Furthermore, the inhibitory effects of IGF-1 or/and PDGF-bb on IL-1β-induced NF-κB activation were sensitive to inhibitors of Src (PP1), PI-3K (wortmannin) and Akt (SH-5), suggesting that the pathway consisting of non-receptor tyrosine kinase (Src), phosphatidylinositol 3-kinase and protein kinase B must be involved in IL-1β signaling. Conclusion The results presented suggest that IGF-1 and PDGF-bb are potent inhibitors of IL-1β-mediated activation of NF-κB and apoptosis in chondrocytes, may be mediated in part through suppression of Src/PI-3K/AKT pathway, which may contribute to their anti-inflammatory effects. PMID

  4. Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists.

    PubMed

    Schindler, Charles W; Karcz-Kubicha, Marzena; Thorndike, Eric B; Müller, Christa E; Tella, Srihari R; Ferré, Sergi; Goldberg, Steven R

    2005-03-01

    1. The cardiovascular effects of the adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA) and the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS 21680) were investigated in rats implanted with telemetry transmitters for the measurement of blood pressure and heart rate. 2. Intraperitoneal (i.p.) injections of the adenosine A1 receptor agonist CPA led to dose-dependent decreases in both blood pressure and heart rate. These effects of 0.3 mg kg(-1) CPA were antagonized by i.p. injections of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethyl-xanthine (CPT), but not by i.p. injections of the adenosine A2A receptor antagonist 3-(3-hydroxypropyl)-8-(m-methoxystyryl)-7-methyl-1-propargylxanthine phosphate disodium salt (MSX-3). Injections (i.p.) of the peripherally acting nonselective adenosine antagonist 8-sulfophenyltheophylline (8-SPT) and the purported nonselective adenosine antagonist caffeine also antagonized the cardiovascular effects of CPA. 3. The adenosine A2A agonist CGS 21680 given i.p. produced a dose-dependent decrease in blood pressure and an increase in heart rate. These effects of 0.5 mg kg(-1) CGS 21680 were antagonized by i.p. injections of the adenosine A2A receptor antagonist MSX-3, but not by i.p. injections of the antagonists CPT, 8-SPT or caffeine. 4. Central administration (intracerebral ventricular) of CGS 21680 produced an increase in heart rate, but no change in blood pressure. MSX-3 given i.p. antagonized the effects of the central injection of CGS 21680. 5. These results suggest that adenosine A1 receptor agonists produce decreases in blood pressure and heart rate that are mediated by A1 receptors in the periphery, with little or no contribution of central adenosine A1 receptors to those effects. 6. The heart rate increasing effect of adenosine A2A agonists appears to be mediated by adenosine A2A receptors in the central nervous system. The blood pressure decreasing

  5. Multiple lipopolysaccharide (LPS) injections alter interleukin 6 (IL-6), IL-7, IL-10 and IL-6 and IL-7 receptor mRNA in CNS and spleen.

    PubMed

    Szot, Patricia; Franklin, Allyn; Figlewicz, Dianne P; Beuca, Timothy Petru; Bullock, Kristin; Hansen, Kim; Banks, William A; Raskind, Murray A; Peskind, Elaine R

    2017-07-04

    Neuroinflammation is proposed to be an important component in the development of several central nervous system (CNS) disorders including depression, Alzheimer's disease, Parkinson's disease, and traumatic brain injury. However, exactly how neuroinflammation leads to, or contributes to, these central disorders is unclear. The objective of the study was to examine and compare the expression of mRNAs for interleukin-6 (IL-6), IL-7, IL-10 and the receptors for IL-6 (IL-6R) and IL-7 (IL-7R) using in situ hybridization in discrete brain regions and in the spleen after multiple injections of 3mg/kg lipopolysaccharide (LPS), a model of neuroinflammation. In the spleen, LPS significantly elevated IL-6 mRNA expression, then IL-10 mRNA, with no effect on IL-7 or IL-7R mRNA, while significantly decreasing IL-6R mRNA expression. In the CNS, LPS administration had the greatest effect on IL-6 and IL-6R mRNA. LPS increased IL-6 mRNA expression only in non-neuronal cells throughout the brain, but significantly elevated IL-6R mRNA in neuronal populations, where observed, except the cerebellum. LPS resulted in variable effects on IL-10 mRNA, and had no effect on IL-7 or IL-7R mRNA expression. These studies indicate that LPS-induced neuroinflammation has substantial but variable effects on the regional and cellular patterns of CNS IL-6, IL-7 and IL-10, and for IL-6R and IL-7R mRNA expression. It is apparent that administration of LPS can affect non-neuronal and neuronal cells in the brain. Further research is required to determine how CNS inflammatory changes associated with IL-6, IL-10 and IL-6R could in turn contribute to the development of CNS neurological disorders. Published by Elsevier Ltd.

  6. Heteromerization of the μ- and δ-Opioid Receptors Produces Ligand-Biased Antagonism and Alters μ-Receptor TraffickingS⃞

    PubMed Central

    Milan-Lobo, Laura

    2011-01-01

    Heteromerization of opioid receptors has been shown to alter opioid receptor pharmacology. However, how receptor heteromerization affects the processes of endocytosis and postendocytic sorting has not been closely examined. This question is of particular relevance for heteromers of the μ-opioid receptor (MOR) and δ-opioid receptor (DOR), because the MOR is recycled primarily after endocytosis and the DOR is degraded in the lysosome. Here, we examined the endocytic and postendocytic fate of MORs, DORs, and DOR/MOR heteromers in human embryonic kidney 293 cells stably expressing each receptor alone or coexpressing both receptors. We found that the clinically relevant MOR agonist methadone promotes endocytosis of MOR but also the DOR/MOR heteromer. Furthermore, we show that DOR/MOR heteromers that are endocytosed in response to methadone are targeted for degradation, whereas MORs in the same cell are significantly more stable. It is noteworthy that we found that the DOR-selective antagonist naltriben mesylate could block both methadone- and [d-Ala2,NMe-Phe4,Gly-ol5]-enkephalin-induced endocytosis of the DOR/MOR heteromers but did not block signaling from this heteromer. Together, our results suggest that the MOR adopts novel trafficking properties in the context of the DOR/MOR heteromer. In addition, they suggest that the heteromer shows “biased antagonism,” whereby DOR antagonist can inhibit trafficking but not signaling of the DOR/MOR heteromer. PMID:21422164

  7. Pre-activation with IL-12, IL-15, and IL-18 induces CD25 and a functional high affinity IL-2 receptor on human cytokine-induced memory-like NK cells

    PubMed Central

    Leong, Jeffrey W.; Chase, Julie M.; Romee, Rizwan; Schneider, Stephanie E.; Sullivan, Ryan P.; Cooper, Megan A.; Fehniger, Todd A.

    2014-01-01

    NK cells are effector lymphocytes that are under clinical investigation for the adoptive immunotherapy of hematologic malignancies, especially acute myeloid leukemia. Recent work in mice has identified innate memory-like properties of NK cells. Human NK cells also exhibit memory-like properties, and cytokine-induced memory-like (CIML) NK cells are generated via brief pre-activation with IL-12, IL-15, and IL-18, which later exhibit enhanced functionality upon restimulation. However, investigation of the optimal cytokine receptors and signals for maintenance of enhanced function and homeostasis following pre-activation remains unclear. Here, we show that IL-12, IL-15, and IL-18 pre-activation induces a rapid and prolonged expression of CD25, resulting in a functional high affinity IL-2 receptor (IL-2Rαβγ) that confers responsiveness to picomolar concentrations of IL-2. The expression of CD25 correlated with STAT5 phosphorylation in response to picomolar concentrations of IL-2, indicating the presence of a signal-competent IL-2Rαβγ. Furthermore, picomolar concentrations of IL-2 acted synergistically with IL-12 to co-stimulate IFN-γ production by pre-activated NK cells, an effect that was CD25-dependent. Picomolar concentrations of IL-2 also enhanced NK cell proliferation and cytotoxicity via the IL-2Rαβγ. Further, following adoptive transfer into immunodeficient NOD-SCID-γc−/− mice, human cytokine pre-activated NK cells expand preferentially in response to exogenous IL-2. Collectively, these data demonstrate that human CIML NK cells respond to IL-2 via IL-2Rαβγ with enhanced survival and functionality, and provide additional rationale for immunotherapeutic strategies that include brief cytokine pre-activation prior to adoptive NK cell transfer, followed by low dose IL-2 therapy. PMID:24434782

  8. Deficiency of Interleukin-1 Receptor Antagonist (DIRA): Report of the First Indian Patient and a Novel Deletion Affecting IL1RN.

    PubMed

    Mendonca, Leonardo O; Malle, Louise; Donovan, Frank X; Chandrasekharappa, Settara C; Montealegre Sanchez, Gina A; Garg, Megha; Tedgard, Ulf; Castells, Mariana; Saini, Shiv S; Dutta, Sourabh; Goldbach-Mansky, Raphaela; Suri, Deepti; Jesus, Adriana A

    2017-07-01

    Deficiency of interleukin-1 receptor antagonist (DIRA) is a rare life-threatening autoinflammatory disease caused by autosomal recessive mutations in IL1RN. DIRA presents clinically with early onset generalized pustulosis, multifocal osteomyelitis, and elevation of acute phase reactants. We evaluated and treated an antibiotic-unresponsive patient with presumed DIRA with recombinant IL-1Ra (anakinra). The patient developed anaphylaxis to anakinra and was subsequently desensitized. Genetic analysis of IL1RN was undertaken and treatment with anakinra was initiated. A 5-month-old Indian girl born to healthy non-consanguineous parents presented at the third week of life with irritability, sterile multifocal osteomyelitis including ribs and clavicles, a mild pustular rash, and elevated acute phase reactants. SNP array of the patient's genomic DNA revealed a previously unrecognized homozygous deletion of approximately 22.5 Kb. PCR and Sanger sequencing of the borders of the deleted area allowed identification of the breakpoints of the deletion, thus confirming a homozygous 22,216 bp deletion that spans the first four exons of IL1RN. Due to a clinical suspicion of DIRA, anakinra was initiated which resulted in an anaphylactic reaction that triggered desensitization with subsequent marked and sustained clinical and laboratory improvement. We report a novel DIRA-causing homozygous deletion affecting IL1RN in an Indian patient. The mutation likely is a founder mutation; the design of breakpoint-specific primers will enable genetic screening in Indian patients suspected of DIRA. The patient developed anaphylaxis to anakinra, was desensitized, and is in clinical remission on continued treatment.

  9. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts

    PubMed Central

    2011-01-01

    Introduction In addition to its direct proinflammatory activity, extracellular high mobility group box protein 1 (HMGB1) can strongly enhance the cytokine response evoked by other proinflammatory molecules, such as lipopolysaccharide (LPS), CpG-DNA and IL-1β, through the formation of complexes. Extracellular HMGB1 is abundant in arthritic joint tissue where it is suggested to promote inflammation as intra-articular injections of HMGB1 induce synovitis in mice and HMGB1 neutralizing therapy suppresses development of experimental arthritis. The aim of this study was to determine whether HMGB1 in complex with LPS, interleukin (IL)-1α or IL-1β has enhancing effects on the production of proinflammatory mediators by rheumatoid arthritis synovial fibroblasts (RASF) and osteoarthritis synovial fibroblasts (OASF). Furthermore, we examined the toll-like receptor (TLR) 4 and IL-1RI requirement for the cytokine-enhancing effects of the investigated HMGB1-ligand complexes. Methods Synovial fibroblasts obtained from rheumatoid arthritis (RA) and osteoarthritis (OA) patients were stimulated with HMGB1 alone or in complex with LPS, IL-1α or IL-1β. Tumour necrosis factor (TNF) production was determined by enzyme-linked immunospot assay (ELISPOT) assessment. Levels of IL-10, IL-1-β, IL-6 and IL-8 were measured using Cytokine Bead Array and matrix metalloproteinase (MMP) 3 production was determined by ELISA. Results Stimulation with HMGB1 in complex with LPS, IL-1α or IL-1β enhanced production of TNF, IL-6 and IL-8. HMGB1 in complex with IL-1β increased MMP production from both RASF and OASF. The cytokine production was inhibited by specific receptor blockade using detoxified LPS or IL-1 receptor antagonist, indicating that the synergistic effects were mediated through the partner ligand-reciprocal receptors TLR4 and IL-1RI, respectively. Conclusions HMGB1 in complex with LPS, IL-1α or IL-1β boosted proinflammatory cytokine- and MMP production in synovial fibroblasts from

  10. Neurokinin-1 receptor agonists bias therapeutic dendritic cells to induce type 1 immunity by licensing host dendritic cells to produce IL-12

    PubMed Central

    Janelsins, Brian M.; Sumpter, Tina L.; Tkacheva, Olga A.; Rojas-Canales, Darling M.; Erdos, Geza; Mathers, Alicia R.; Shufesky, William J.; Storkus, Walter J.; Falo, Louis D.; Morelli, Adrian E.; Larregina, Adriana T.

    2013-01-01

    Substance-P and hemokinin-1 are proinflammatory neuropeptides with potential to promote type 1 immunity through agonistic binding to neurokinin-1 receptor (NK1R). Dendritic cells (DCs) are professional antigen-presenting cells that initiate and regulate the outcome of innate and adaptive immune responses. Immunostimulatory DCs are highly desired for the development of positive immunization techniques. DCs express functional NK1R; however, regardless of their potential DC-stimulatory function, the ability of NK1R agonists to promote immunostimulatory DCs remains unexplored. Here, we demonstrate that NK1R signaling activates therapeutic DCs capable of biasing type 1 immunity by inhibition of interleukin-10 (IL-10) synthesis and secretion, without affecting their low levels of IL-12 production. The potent type 1 effector immune response observed following cutaneous administration of NK1R-signaled DCs required their homing in skin-draining lymph nodes (sDLNs) where they induced inflammation and licensed endogenous-conventional sDLN-resident and -recruited inflammatory DCs to secrete IL-12. Our data demonstrate that NK1R signaling promotes immunostimulatory DCs, and provide relevant insight into the mechanisms used by neuromediators to regulate innate and adaptive immune responses. PMID:23365459

  11. Biochanin-A antagonizes the interleukin-1β-induced catabolic inflammation through the modulation of NFκB cellular signaling in primary rat chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Ji-Su; Cho, In-A; Kang, Kyeong-Rok

    Biochanin-A, a phytoestrogen derived from herbal plants, protected from the IL-1β-induced loss of proteoglycans through the suppression of matrix degrading enzymes such as matrix metalloproteinase (MMP)-13, MMP-3, MMP-1, and ADAMTS-5 in primary rat chondrocytes and the knee articular cartilage. It also suppressed the expression of IL-1β-induced catabolic factors such as nitric oxide synthase 2, cyclooxygenase-2, prostaglandin E{sub 2}, and inflammatory cytokines. Furthermore, biochanin-A suppressed the IL-1β-induced phosphorylation of NFκB, and inhibited its nuclear translocation in primary rat chondrocytes. These results indicate that biochanin-A antagonizes the IL-1β-induced catabolic effects through its anti-inflammatory activity that involves the modulation of NFκB signaling. -more » Highlights: • Biochanin-A is a phytoestrogen derived from medicinal plants. • It suppressed the IL-1β-induced matrix degrading enzymes and catabolic factors. • It inhibited IL-1β-induced proteoglycan loss in chondrocytes and cartilage tissues. • Its anti-catabolic effects were mediated by modulation of NFκB signaling. • It may be used as a potential anti-catabolic biomaterial for osteoarthritis.« less

  12. Toll-like receptor 7 cooperates with IL-4 in activated B cells through antigen receptor or CD38 and induces class switch recombination and IgG1 production.

    PubMed

    Tsukamoto, Yumiko; Nagai, Yoshinori; Kariyone, Ai; Shibata, Takuma; Kaisho, Tsuneyasu; Akira, Shizuo; Miyake, Kensuke; Takatsu, Kiyoshi

    2009-04-01

    IL-4 and 8-mercaptoguanosine (8-SGuo) stimulation of CD38-activated B cells induces mu to gamma1 class switch recombination (CSR) at the DNA level leading to a high level of IgG1 production. Although some of signaling events initiated by IL-4 in activated B cells have been characterized, the involvement of TLR/MyD88 and Btk pathway in IL-4-dependent mu to gamma1 CSR has not been thoroughly evaluated. In this study, we characterized receptors for 8-SGuo and differential roles of 8-SGuo and IL-4 in the induction and mu to gamma1 CSR and IgG1 production. The role of TLR7 and MyD88 in 8-SGuo-induced AID expression and mu to gamma1 CSR was documented, as 8-SGuo did not act on CD38-stimulated splenic B cells from Tlr7(-/-) and Myd88(-/-) mice. CD38-activated B cells from Btk-deficient mice failed to respond to TLR7 ligands for the AID expression and CSR, indicating that Btk is also indispensable for the system. Stimulation of CD38-activated B cells with 8-SGuo induced significant AID expression and DNA double strand breaks, but IL-4 stimulation by itself did not trigger mu to gamma1 CSR. Intriguingly, the mu to gamma1 CSR in the B cells stimulated with CD38 and 8-SGuo totally depends on IL-4 stimulation. Similar results were obtained in the activated B cells through BCR and loxoribine, a well-known TLR7 ligand, in place of 8-SGuo. In vivo administration of TLR7 ligand and anti-CD38 antibody induced the generation of CD138(+) IgG1(+) cells. These results indicate that TLR7 is a receptor for 8-SGuo and plays an essential role in the AID and Blimp-1 expression; however it is not enough to complete mu to gamma1 CSR in CD38-activated B cells. IL-4 may be required for the induction of DNA repair system together with AID for the completion of CSR.

  13. Development of a cell-based qualitative assay for detection of neutralizing anti-human interleukin-1 receptor antagonist (hIL-1Ra) antibodies in rats.

    PubMed

    Gao, Jin; Li, Jingjing; Yang, Minmin; Wu, Mingyuan; Tu, Ping; Yu, Yan; Han, Wei

    2015-01-01

    To determine the incidence of the positive neutralizing anti-human interleukin receptor antagonist (anti-IL-1Ra), a novel assay based on the proliferation of human melanoma A375.S2 cells was developed and validated. In the presence of a growth-limiting concentration of IL-1β, A375.S2 cells were able to regain proliferation following the addition of IL-1Ra in a concentration-dependent manner. This dose-response effect enabled the validation of a standard curve for calculation of the concentration of IL-1Ra or, inversely, the concentration of neutralizing anti-IL-1Ra antibodies in cell culture medium or sera. The assay used CCK-8 as an indicator of proliferation. The dose-response relationship between rhIL-1Ra (dose range of 5-75 ng/ml rhIL-1Ra) and A375.S2 cell proliferation was sigmoidal and fitted a four-parameter logistic model. The percent coefficients of variation (%CVs) of quality control samples were 12.5 and 11.9% for intra-assay repeatability and 14.5 and 19.5% for inter-assay repeatability, while the total accuracy was in the range of 97.2-103.6%. For the neutralization assay, the optimal sample dilution factor was found to be 40-fold and the reasonable standard for positive and negative decision was calculated to be 59.4% neutralization rate. The %CVs of quality control samples were 12.7 and 24.0% for intra-assay repeatability and 11.6 and 30.0% for inter-assay repeatability. Analysis using the assay showed that rats could produce neutralizing anti-IL-1Ra antibodies after repeated intramuscular injection with rhIL-1Ra, and this response was not significantly dependent on the dose injected.

  14. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olgun, Nicole S., E-mail: Nicole.olgun02@stjohns.edu; Women and Children's Research Laboratory, Winthrop University Hospital, 259 1st Street, Mineola, NY, 11501; Hanna, Nazeeh, E-mail: Nhanna@winthrop.org

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11–12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ET{sub A} receptor. We have previously shown that antagonism of the ET{sub A} receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123more » post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS + BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12 h. We discovered that BQ-123, when administered 10 h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ET{sub A} receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ET{sub A} receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. - Highlights: • The pro-inflammatory response to LPS in the uterus and placenta is ET-1 dependent. • ET{sub A} blockade triggers up-regulation of IL-10 in uterus and placenta. • A positive feedback loop drives ET-1 expression in gestational tissue.« less

  15. TRPV1 Blocking Alleviates Airway Inflammation and Remodeling in a Chronic Asthma Murine Model.

    PubMed

    Choi, Joon Young; Lee, Hwa Young; Hur, Jung; Kim, Kyung Hoon; Kang, Ji Young; Rhee, Chin Kook; Lee, Sook Young

    2018-05-01

    Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness (AHR), inflammation, and remodeling. There is emerging interest in the involvement of the transient receptor potential vanilloid 1 (TRPV1) channel in the pathophysiology of asthma. This study examined whether TRPV1 antagonism alleviates asthma features in a murine model of chronic asthma. BALB/c mice were sensitized to and challenged by ovalbumin to develop chronic asthma. Capsazepine (TRPV1 antagonist) or TRPV1 small interfering RNA (siRNA) was administered in the treatment group to evaluate the effect of TPV1 antagonism on AHR, airway inflammation, and remodeling. The mice displayed increased AHR, airway inflammation, and remodeling. Treatment with capsazepine or TRPV1 siRNA reduced AHR to methacholine and airway inflammation. Type 2 T helper (Th2) cytokines (interleukin [IL]-4, IL-5, and IL-13) were reduced and epithelial cell-derived cytokines (thymic stromal lymphopoietin [TSLP], IL-33, and IL-25), which regulate Th2 cytokine-associated inflammation, were also reduced. Airway remodeling characterized by goblet cell hyperplasia, increased α-smooth muscle action, and collagen deposition was also alleviated by both treatments. Treatment directed at TRPV1 significantly alleviated AHR, airway inflammation, and remodeling in a chronic asthma murine model. The TRPV1 receptor can be a potential drug target for chronic bronchial asthma. Copyright © 2018 The Korean Academy of Asthma, Allergy and Clinical Immunology · The Korean Academy of Pediatric Allergy and Respiratory Disease.

  16. Nuclear deterrents: Intrinsic regulators of IL-1β-induced effects on hippocampal neurogenesis.

    PubMed

    O'Léime, Ciarán S; Cryan, John F; Nolan, Yvonne M

    2017-11-01

    Hippocampal neurogenesis, the process by which new neurons are born and develop into the host circuitry, begins during embryonic development and persists throughout adulthood. Over the last decade considerable insights have been made into the role of hippocampal neurogenesis in cognitive function and the cellular mechanisms behind this process. Additionally, an increasing amount of evidence exists on the impact of environmental factors, such as stress and neuroinflammation on hippocampal neurogenesis and subsequent impairments in cognition. Elevated expression of the pro-inflammatory cytokine interleukin-1β (IL-1β) in the hippocampus is established as a significant contributor to the neuronal demise evident in many neurological and psychiatric disorders and is now known to negatively regulate hippocampal neurogenesis. In order to prevent the deleterious effects of IL-1β on neurogenesis it is necessary to identify signalling pathways and regulators of neurogenesis within neural progenitor cells that can interact with IL-1β. Nuclear receptors are ligand regulated transcription factors that are involved in modulating a large number of cellular processes including neurogenesis. In this review we focus on the signalling mechanisms of specific nuclear receptors involved in regulating neurogenesis (glucocorticoid receptors, peroxisome proliferator activated receptors, estrogen receptors, and nuclear receptor subfamily 2 group E member 1 (NR2E1 or TLX)). We propose that these nuclear receptors could be targeted to inhibit neuroinflammatory signalling pathways associated with IL-1β. We discuss their potential to be therapeutic targets for neuroinflammatory disorders affecting hippocampal neurogenesis and associated cognitive function. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs

    PubMed Central

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P

    2015-01-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. PMID:26395994

  18. Behavioral effects of gamma-hydroxybutyrate, its precursor gamma-butyrolactone, and GABA(B) receptor agonists: time course and differential antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348).

    PubMed

    Koek, Wouter; Mercer, Susan L; Coop, Andrew; France, Charles P

    2009-09-01

    Gamma-hydroxybutyrate (GHB) is used therapeutically and recreationally. The mechanism by which GHB produces its therapeutic and recreational effects is not entirely clear, although GABA(B) receptors seem to play an important role. This role could be complex, because there are indications that different GABA(B) receptor mechanisms mediate the effects of GHB and the prototypical GABA(B) receptor agonist baclofen. To further explore possible differences in underlying GABA(B) receptor mechanisms, the present study examined the effects of GHB and baclofen on operant responding and their antagonism by the GABA(B) receptor antagonist 3-aminopropyl(diethoxymethyl)phosphinic acid (CGP35348). Pigeons were trained to peck a key for access to food during response periods that started at different times after the beginning of the session. In these pigeons, GHB, its precursor gamma-butyrolactone (GBL), and the GABA(B) receptor agonists baclofen and 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF97541) decreased the rate of responding in a dose- and time-dependent manner. CGP35348 shifted the dose-response curve of each agonist to the right, but the magnitude of the shift differed among the agonists. Schild analysis yielded a pA(2) value of CGP35348 to antagonize GHB and GBL [i.e., 3.9 (3.7-4.2)] that was different (P = 0.0011) from the pA(2) value to antagonize baclofen and SKF97541 [i.e., 4.5 (4.4-4.7)]. This finding is further evidence that the GABA(B) receptor mechanisms mediating the effects of GHB and prototypical GABA(B) receptor agonists are not identical. A better understanding of the similarities and differences between these mechanisms, and their involvement in the therapeutic effects of GHB and baclofen, could lead to more effective medications with fewer adverse effects.

  19. Early immune response and regulation of IL-2 receptor subunits

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J. B.; Cogoli, Augusto

    2005-01-01

    Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and

  20. Early immune response and regulation of IL-2 receptor subunits.

    PubMed

    Hughes-Fulford, Millie; Sugano, Eiko; Schopper, Thomas; Li, Chai-Fei; Boonyaratanakornkit, J B; Cogoli, Augusto

    2005-09-01

    Affymetrix oligonucleotide arrays were used to monitor expression of 8796 genes and probe sets in activated T-cells; analysis revealed that 217 genes were significantly upregulated within 4 h. Induced genes included transcription factors, cytokines and their receptor genes. Analysis by semi-quantitative RT-PCR confirmed the significant induction of IL-2, IL-2R(gamma) and IL-2R(alpha). Forty-eight of the 217 induced genes are known to or predicted to be regulated by a CRE promoter/enhancer. We found that T-cell activation caused a significant increase in CREB phosphorylation furthermore, inhibition of the PKC pathway by GF109203 reduced CREB activation by 50% and inhibition of the PKA pathway caused a total block of CREB phosphorylation and significantly reduced IFN(gamma), IL-2 and IL-2R(alpha) gene expression by approximately 40% (p<0.001). PKC(theta) plays a major role in T-cell activation: inhibition of PKC significantly reduced the expression of IFN(gamma), IL-2 and IL-2R(alpha). Since PKC blocked activation of CREB, we studied potential cross-talk between the PKC and the PKA/MAPK pathways, PMA-stimulated Jurkat cells were studied with specific signal pathway inhibitors. Extracellular signal-regulated kinase-2 (ERK2) pathway was found to be significantly activated greater than seven-fold within 30 min; however, there was little activation of ERK-1 and no activation of JNK or p38 MAPK. Inhibition of the PKA pathway, but not the PKC pathway, resulted in inhibition of ERK1/2 activation at all time points, inhibition of MEK1 and 2 significantly blocked expression of IL-2 and IL-2R(alpha). Gene expression of IL-2R(alpha) and IFN(gamma) was dependent on PKA in S49 wt cells but not in kin- mutants. Using gel shift analysis, we found that forskolin activation of T-cells resulted in activation of AP1 sites; this increase in nuclear extract AP1 was significantly blocked by MEK1 inhibitor U0126. Taken together, these results suggest that the PKA in addition to PKC and

  1. Design of the Magnetic Resonance Imaging Evaluation of Mineralocorticoid Receptor Antagonism in Diabetic Atherosclerosis (MAGMA) Trial.

    PubMed

    Rajagopalan, Sanjay; Alaiti, M Amer; Broadwater, Kylene; Goud, Aditya; Gaztanaga, Juan; Connelly, Kim; Fares, Anas; Shirazian, Shayan; Kreatsoulas, Catherine; Farkouh, Michael; Dobre, Mirela; Fink, Jeffrey C; Weir, Matthew R

    2017-09-01

    Mineralocorticoid receptor (MR) activation plays an essential role in promoting inflammation, fibrosis, and target organ damage. Currently, no studies are investigating MR antagonism in patients with type 2 diabetes mellitus (T2DM) with chronic kidney disease, at high risk for cardiovascular complications, who are otherwise not candidates for MR antagonism by virtue of heart failure. Further, there is limited information on candidate therapies that may demonstrate differential benefit from this therapy. We hypothesized that MR antagonism may provide additional protection from atherosclerosis progression in higher-risk patients who otherwise may not be candidates for such a therapeutic approach. In this double-blind, randomized, placebo-controlled trial, subjects with T2DM with chronic kidney disease (≥ stage 3) will be randomized in a 1:1 manner to placebo or spironolactone (12.5 mg with eventual escalation to 25 mg daily over a 4-week period). The co-primary efficacy endpoint will be percentage change in total atheroma volume in thoracic aorta and left ventricular mass at 52 weeks in patients treated with spironolactone vs placebo. Secondary outcomes include 24-hour mean systolic blood pressure, central aortic blood pressure, and insulin resistance (HOMA-IR) at 6 weeks. A novel measure in the study will be changes in candidate miRNAs that regulate expression of NR3C2 (MR gene) as well as measuring monocyte/macrophage polarization in response to therapy with spironolactone. We envision that our strategy of simultaneously probing the effects of a drug combined with analysis of mechanisms of action and predictive response will likely provide key information with which to design event-based trials. © 2017 Wiley Periodicals, Inc.

  2. Genetic characterization of interleukins (IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs.

    PubMed

    Neves, Fabiana; Abrantes, Joana; Almeida, Tereza; de Matos, Ana Lemos; Costa, Paulo P; Esteves, Pedro J

    2015-11-01

    ILs, as essential innate immune modulators, are involved in an array of biological processes. In the European rabbit (Oryctolagus cuniculus) IL-1α, IL-1β, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18 have been implicated in inflammatory processes and in the immune response against rabbit hemorrhagic disease virus and myxoma virus infections. In this study we characterized these ILs in six Lagomorpha species (European rabbit, pygmy rabbit, two cottontail rabbit species, European brown hare and American pika). Overall, these ILs are conserved between lagomorphs, including in their exon/intron structure. Most differences were observed between leporids and American pika. Indeed, when comparing both, some relevant differences were observed in American pika, such as the location of the stop codon in IL-1α and IL-2, the existence of a different transcript in IL8 and the number of cysteine residues in IL-1β. Changes at N-glycosylation motifs were also detected in IL-1, IL-10, IL-12B and IL-15. IL-1α is the protein that presents the highest evolutionary distances, which is in contrast to IL-12A where the distances between lagomorphs are the lowest. For all these ILs, sequences of human and European rabbit are more closely related than between human and mouse or European rabbit and mouse. © The Author(s) 2015.

  3. The role of IL-1beta in reduced IL-7 production by stromal and epithelial cells: a model for impaired T-cell numbers in the gut during HIV-1 infection.

    PubMed

    Thang, P H; Ruffin, N; Brodin, D; Rethi, B; Cam, P D; Hien, N T; Lopalco, L; Vivar, N; Chiodi, F

    2010-08-01

    Interleukin (IL)-7 is a key cytokine in T-cell homeostasis. Stromal cells, intestinal epithelial cells and keratinocytes are known to produce this cytokine. The mechanisms and cellular factors regulating IL-7 production are still unclear. We assessed whether IL-1beta and interferon (IFN)-gamma, cytokines produced during inflammatory conditions, may impact on IL-7 production. We used human intestinal epithelial cells (DLD-1 cell line) and bone marrow stromal cells (HS27 cell line), known to produce IL-7; IL-7 production was evaluated at the mRNA and protein levels. To assess whether treatment of HS27 cells with IL-1beta and/or IFN-gamma leads to changes in the gene expression of cytokines, Toll-like receptors (TLRs) and chemokines, we analysed gene expression profiles using the whole-genome microarray Human Gene 1.0 ST. We found that IFN-gamma enhanced the expression of IL-7 mRNA (P < 0.001) in both cell lines. IL-1beta treatment led to a significant down-regulation (P < 0.001) of IL-7 mRNA expression in both cell lines. The IL-7 concentration in supernatants collected from treated DLD-1 and HS27 cell cultures reflected the trend of IL-7 mRNA levels. The gene profiles revealed dramatic changes in expression of cytokines and their receptors (IL-7/IL-7R alpha; IL-1alpha,IL-1beta/IL-1R1; IFN-gamma/IFN-gammaR1), of IFN regulatory factors (IRF-1 and 2), of TLRs and of important chemo-attractants for T cells. The microarray results were verified by additional methods. Our results are discussed in the setting of inflammation and T-cell survival in the gut compartment during HIV-1 infection where stromal and epithelial cells may produce factors that contribute to impaired IL-7 homeostasis and homing of T cells.

  4. Interleukin (IL)-1 Receptor Signaling on Graft Parenchymal Cells Regulates Memory and De Novo Donor-Reactive CD8 T Cell Responses to Cardiac Allografts1

    PubMed Central

    Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D.; Abe, Toyofumi; Su, Charles A.; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M.; Fairchild, Robert L.

    2016-01-01

    Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared to complete MHC-mismatched wild type cardiac allografts, IL-1R−/− allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R−/− allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R−/− cardiac allografts took 3 weeks longer than wild type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R−/−/wild type chimeric donors indicated that IL-1R signaling on graft non-hematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli provoking development and elicitation of optimal alloimmune responses to the grafts. PMID:26856697

  5. Successful treatment of HIV-1 infection increases the expression of a novel, short transcript for IL-18 receptor α chain.

    PubMed

    Nasi, Milena; Alboni, Silvia; Pinti, Marcello; Tascedda, Fabio; Benatti, Cristina; Benatti, Stefania; Gibellini, Lara; De Biasi, Sara; Borghi, Vanni; Brunello, Nicoletta; Mussini, Cristina; Cossarizza, Andrea

    2014-11-01

    : The importance of interleukin (IL)-18 in mediating immune activation during HIV infection has recently emerged. IL-18 activity is regulated by its receptor (IL-18R), formed by an α and a β chain, the IL-18-binding protein, and the newly identified shorter isoforms of both IL-18R chains. We evaluated gene expression of the IL-18/IL-18R system in peripheral blood mononuclear cells from HIV+ patients. Compared with healthy donors, IL-18 expression decreased in patients with primary infection. The IL-18Rα short transcript expression was strongly upregulated by successful highly active antiretroviral therapy. HIV progression and its treatment can influence the expression of different components of the complex IL-18/IL-18R system.

  6. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    PubMed Central

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  7. New functional activity of aripiprazole revealed: robust antagonism of D2 dopamine receptor-stimulated Gβγ signaling

    PubMed Central

    Brust, Tarsis F.; Hayes, Michael P.; Roman, David L.; Watts, Val J.

    2014-01-01

    The dopamine D2 receptor (DRD2) is a G protein-coupled receptor (GPCR) that is generally considered to be a primary target in the treatment of schizophrenia. First generation antipsychotic drugs (e.g. haloperidol) are antagonists of the DRD2, while second generation antipsychotic drugs (e.g. olanzapine) antagonize DRD2 and 5HT2A receptors. Notably, both these classes of drugs may cause side effects associated with D2 receptor antagonism (e.g. hyperprolactemia and extrapyramidal symptoms). The novel, “third generation” antipsychotic drug, aripiprazole is also used to treat schizophrenia, with the remarkable advantage that its tendency to cause extrapyramidal symptoms is minimal. Aripiprazole is considered a partial agonist of the DRD2, but it also has partial agonist/antagonist activity for other GPCRs. Further, aripiprazole has been reported to have a unique activity profile in functional assays with the DRD2. In the present study the molecular pharmacology of aripiprazole was further examined in HEK cell models stably expressing the DRD2 and specific isoforms of adenylyl cyclase to assess functional responses of Gα and Gβγ subunits. Additional studies examined the activity of aripiprazole in DRD2-mediated heterologous sensitization of adenylyl cyclase and cell-based dynamic mass redistribution (DMR). Aripiprazole displayed a unique functional profile for modulation of G proteins, being a partial agonist for Gαi/o and a robust antagonist for Gβγ signaling. Additionally, aripiprazole was a weak partial agonist for both heterologous sensitization and dynamic mass redistribution. PMID:25449598

  8. H1- and H2-receptor characterization in the tracheal circulation of sheep.

    PubMed Central

    Webber, S. E.; Salonen, R. O.; Widdicombe, J. G.

    1988-01-01

    1. The effects of histamine, the specific H1-agonist SKF 71481-A2 and the H2-agonist dimaprit were examined on tracheal vascular resistance in sheep anaesthetized with pentobarbitone. Tracheal vascular resistance was determined by perfusing the cranial tracheal arteries at constant flows and measuring inflow pressures. Changes in tracheal smooth muscle tone were also measured. 2. Histamine and SKF 71481-A2 contracted the tracheal smooth muscle and this effect was blocked by the H1-antagonist mepyramine. Stimulation of H2-receptors with dimaprit had no effect on tracheal smooth muscle tone. 3. Histamine had a complex action on the tracheal vasculature producing either a triphasic change (early dilatation then constriction followed by late dilatation) or just a constriction. SKF 71481-A2 always produced a biphasic change in vascular resistance (dilatation followed by constriction). Dimaprit dilated the tracheal vasculature. 4. The late dilatation produced by histamine in some sheep was blocked by bilateral cervical vagotomy but the mechanism for this effect is not known. No other responses to histamine, SKF 71481-A2 or dimaprit were affected by vagotomy. 5. The vasoconstriction produced by histamine and SKF 71481-A2 was antagonized by mepyramine indicating a H1-receptor-mediated effect. Cimetidine had no effect on the vasoconstriction to histamine suggesting a lack of involvement of H2-receptors. 6. The vasodilatation produced by histamine and SKF 71481-A2 was also antagonized by mepyramine, again suggesting a H1-receptor-mediated action. Cimetidine had no effect on the vasodilator response to histamine indicating no involvement of H2-receptors in this response. 7. The dilator effect of dimaprit was antagonized by cimetidine suggesting this effect was mediated by H2-receptors. 8. We conclude that H1-receptors in the various parts of the sheep tracheal vasculature can cause increases and decreases in total tracheal vascular resistance; that H2-receptors decrease

  9. Inhibition of lysophosphatidic acid receptors 1 and 3 attenuates atherosclerosis development in LDL-receptor deficient mice.

    PubMed

    Kritikou, Eva; van Puijvelde, Gijs H M; van der Heijden, Thomas; van Santbrink, Peter J; Swart, Maarten; Schaftenaar, Frank H; Kröner, Mara J; Kuiper, Johan; Bot, Ilze

    2016-11-24

    Lysophosphatidic acid (LPA) is a natural lysophospholipid present at high concentrations within lipid-rich atherosclerotic plaques. Upon local accumulation in the damaged vessels, LPA can act as a potent activator for various types of immune cells through its specific membrane receptors LPA 1/3. LPA elicits chemotactic, pro-inflammatory and apoptotic effects that lead to atherosclerotic plaque progression. In this study we aimed to inhibit LPA signaling by means of LPA 1/3 antagonism using the small molecule Ki16425. We show that LPA 1/3 inhibition significantly impaired atherosclerosis progression. Treatment with Ki16425 also resulted in reduced CCL2 production and secretion, which led to less monocyte and neutrophil infiltration. Furthermore, we provide evidence that LPA 1/3 blockade enhanced the percentage of non-inflammatory, Ly6C low monocytes and CD4 + CD25 + FoxP3 + T-regulatory cells. Finally, we demonstrate that LPA 1/3 antagonism mildly reduced plasma LDL cholesterol levels. Therefore, pharmacological inhibition of LPA 1/3 receptors may prove a promising approach to diminish atherosclerosis development.

  10. The role of aldosterone antagonism agents in diabetic kidney disease.

    PubMed

    Wombwell, Eric; Naglich, Andrew

    2015-03-01

    Diabetic kidney disease is a common consequence of the development of diabetes. In the United Kingdom 18-30% of chronic kidney disease cases and 44% of end-stage renal disease cases in the United States have been attributed to complications of diabetic kidney disease. Angiotensin blockade using angiotensin converting enzyme inhibitors or angiotensin receptor blockers is the standard for slowing the progression of diabetic kidney disease. Evidence suggests that aldosterone antagonism added to standard therapy may be beneficial. This paper aims to explore the pathophysiological contribution of aldosterone in diabetic kidney disease and review available literature for aldosterone antagonism through mineralocorticoid receptor blockade. A comprehensive literature search was conducted. Results were analysed and summarised. Nine trials evaluating a total of 535 patients with diabetic kidney disease were identified that evaluated the use of aldosterone antagonists for reducing the signs of diabetic kidney disease. All trials demonstrated a marked decrease in urinary protein excretion when compared to, or added to angiotensin converting enzyme inhibition or angiotensin receptor blockade. The most commonly reported side effect in all of the trials was hyperkalaemia, which occurred in 6.1% of all patients evaluated. Aldosterone antagonists were generally well tolerated in the evaluated patient populations. Aldosterone antagonism may represent a safe and effective complimentary therapy to the use of angiotensin converting enzyme inhibition, or angiotensin receptor blockade, for slowing the progression of diabetic kidney disease. © 2014 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  11. Signal transduction through the IL-4 and insulin receptor families.

    PubMed

    Wang, L M; Keegan, A; Frankel, M; Paul, W E; Pierce, J H

    1995-07-01

    Activation of tyrosine kinase-containing receptors and intracellular tyrosine kinases by ligand stimulation is known to be crucial for mediating initial and subsequent events involved in mitogenic signal transduction. Receptors for insulin and insulin-like growth factor 1 (IGF-1) contain cytoplasmic tyrosine kinase domains that undergo autophosphorylation upon ligand stimulation. Activation of these receptors also leads to pronounced and rapid tyrosine phosphorylation of insulin receptor substrate 1 (IRS-1) in cells of connective tissue origin. A related substrate, designated 4PS, is similarly phosphorylated by insulin and IGF-1 stimulation in many hematopoietic cell types. IRS-1 and 4PS possess a number of tyrosine phosphorylation sites that are within motifs that bind specific SH2-containing molecules known to be involved in mitogenic signaling such as PI-3 kinase, SHPTP-2 (Syp) and Grb-2. Thus, they appear to act as docking substrates for a variety of signaling molecules. The majority of hematopoietic cytokines bind to receptors that do not possess intrinsic kinase activity, and these receptors have been collectively termed as members of the hematopoietin receptor superfamily. Despite their lack of tyrosine kinase domains, stimulation of these receptors has been demonstrated to activate intracellular kinases leading to tyrosine phosphorylation of multiple substrates. Recent evidence has demonstrated that activation of different members of the Janus family of tyrosine kinases is involved in mediating tyrosine phosphorylation events by specific cytokines. Stimulation of the interleukin 4 (IL-4) receptor, a member of the hematopoietin receptor superfamily, is thought to result in activation of Jak1, Jak3, and/or Fes tyrosine kinases.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. MAPK regulation of IL-4/IL-13 receptors contributes to the synergistic increase in CCL11/eotaxin-1 in response to TGF-β1 and IL-13 in human airway fibroblasts.

    PubMed

    Zhou, Xiuxia; Hu, Haizhen; Balzar, Silvana; Trudeau, John B; Wenzel, Sally E

    2012-06-15

    CCL11/eotaxin-1 is a potent eosinophilic CC chemokine expressed by primary human fibroblasts. The combination of TGF-β1 and IL-13 synergistically increases CCL11 expression, but the mechanisms behind the synergy are unclear. To address this, human airway fibroblast cultures from normal and asthmatic subjects were exposed to IL-13 alone or TGF-β1 plus IL-13. Transcriptional (nuclear run-on) and posttranscriptional (mRNA stability) assays confirmed that transcriptional regulation is critical for synergistic expression of CCL11. TGF-β1 plus IL-13 synergistically increased STAT-6 phosphorylation, nuclear translocation, and binding to the CCL11 promoter as compared with IL-13 alone. STAT-6 small interfering RNA significantly knocked down both STAT-6 mRNA expression and phosphorylation and inhibited CCL11 mRNA and protein expression. Regulation of the IL-4Rα complex by TGF-β1 augmented IL-13 signaling by dampening IL-13Rα2 expression, overcoming IL-13's autoregulation of its pathway and enhancing the expression of CCL11. Our data suggest that TGF-β1 induced activation of the MEK/ERK pathway reduces IL-13Rα2 expression induced by IL-13. Thus, TGF-β1, a pleiotropic cytokine upregulated in asthmatic airways, can augment eosinophilic inflammation by interfering with IL-13's negative feedback autoregulatory loop under MEK/ERK-dependent conditions.

  13. Characterization and receptor specific toxicity of two diphtheria toxin-related interleukin-3 fusion proteins DAB389-mIL-3 and DAB389-(Gly4Ser)2-mIL-3.

    PubMed

    Liger, D; vanderSpek, J C; Gaillard, C; Cansier, C; Murphy, J R; Leboulch, P; Gillet, D

    1997-04-07

    We have constructed two fusion proteins, DAB389-mIL-3 and DAB389-(Gly4Ser)2-mIL-3, in which the receptor-binding domain of diphtheria toxin is replaced by mouse interleukin-3 (IL-3). Cytotoxic activity of the fusion toxins was observed on three out of six cell lines assayed. This toxicity was mediated through binding to the IL-3 receptor as it was inhibited in a dose-dependent manner with murine IL-3 or anti-IL-3 neutralizing antibodies. DAB389-(Gly4Ser)2-mIL-3 was up to 5 times more toxic than DAB389-mIL-3, depending on the cell line (0.8 x 10(-10) M < IC50 < 3 x 10(-10) M). These proteins can be used for the detection of IL-3 receptors on mouse cells and should allow for the selective elimination of IL-3 receptor-positive pluripotent hematopoietic stem cells prior to bone marrow transplantation.

  14. Lipopolysaccharide-Induced Acute Kidney Injury Is Dependent on an IL-18 Receptor Signaling Pathway

    PubMed Central

    Nozaki, Yuji; Hino, Shoichi; Ri, Jinhai; Sakai, Kenji; Nagare, Yasuaki; Kawanishi, Mai; Niki, Kaoru; Funauchi, Masanori; Matsumura, Itaru

    2017-01-01

    The proinflammatory cytokine interleukin (IL)-18 is an important mediator of the organ failure induced by endotoxemia. IL-18 (known as an interferon-gamma (IFN-γ) inducing factor), and other inflammatory cytokines have important roles in lipopolysaccharide (LPS)-induced acute kidney injury (AKI). We investigated the effect of inflammatory cytokines and Toll-like receptor 4 (TLR4) expression, an event that is accompanied by an influx of monocytes, including CD4+ T cells and antigen-presenting cells (APCs) in IL-18Rα knockout (KO) mice and wild-type (WT) mice after LPS injection. In the acute advanced phase, the IL-18Rα KO mice showed a higher survival rate and a suppressed increase of blood urea nitrogen, increased levels of proinflammatory cytokines such as IFN-γ and IL-18, the infiltration of CD4+ T cells and the expression of kidney injury molecule-1 as an AKI marker. In that phase, the renal mRNA expression of the M1 macrophage phenotype and C-C chemokine receptor type 7 as the maturation marker of dendritic cells (DCs) was also significantly decreased in the IL-18Rα KO mice, although there were small numbers of F4/80+ cells and DCs in the kidney. Conversely, there were no significant differences in the expressions of mRNA and protein TLR4 after LPS injection between the WT and IL-18Rα KO groups. Our results demonstrated that the IL-18Rα-mediated signaling pathway plays critical roles in CD4+ T cells and APCs and responded more quickly to IFN-γ and IL-18 than TLR4 stimulation in the pathogenesis of LPS-induced AKI. PMID:29261164

  15. Nogo-receptor 1 antagonization in combination with neurotrophin-4/5 is not superior to single factor treatment in promoting survival and morphological complexity of cultured dopaminergic neurons.

    PubMed

    Seiler, Stefanie; Di Santo, Stefano; Sahli, Sebastian; Andereggen, Lukas; Widmer, Hans Rudolf

    2017-08-01

    Cell transplantation using ventral mesencephalic tissue is an experimental approach to treat Parkinson's disease. This approach is limited by poor survival of the transplants and the high number of dopaminergic neurons needed for grafting. Increasing the yield of dopaminergic neurons in donor tissue is of great importance. We have previously shown that antagonization of the Nogo-receptor 1 by NEP1-40 promoted survival of cultured dopaminergic neurons and exposure to neurotrophin-4/5 increased dopaminergic cell densities in organotypic midbrain cultures. We investigated whether a combination of both treatments offers a novel tool to further improve dopaminergic neuron survival. Rat embryonic ventral mesencephalic neurons grown as organotypic free-floating roller tube or primary dissociated cultures were exposed to neurotrophin-4/5 and NEP1-40. The combined and single factor treatment resulted in significantly higher numbers of tyrosine hydroxylase positive neurons compared to controls. Significantly stronger tyrosine hydroxylase signal intensity was detected by Western blotting in the combination-treated cultures compared to controls but not compared to single factor treatments. Neurotrophin-4/5 and the combined treatment showed significantly higher signals for the neuronal marker microtubule-associated protein 2 in Western blots compared to control while no effects were observed for the astroglial marker glial fibrillary acidic protein between groups, suggesting that neurotrophin-4/5 targets mainly neuronal cells. Finally, NEP1-40 and the combined treatment significantly augmented tyrosine hydroxylase positive neurite length. Summarizing, our findings substantiate that antagonization of the Nogo-receptor 1 promotes dopaminergic neurons but does not further increase the yield of dopaminergic neurons and their morphological complexity when combined with neurotrophin-4/5 hinting to the idea that these treatments might exert their effects by activating common

  16. Microbial Disease Spectrum Linked to a Novel IL-12Rβ1 N-Terminal Signal Peptide Stop-Gain Homozygous Mutation with Paradoxical Receptor Cell-Surface Expression

    PubMed Central

    Louvain de Souza, Thais; de Souza Campos Fernandes, Regina C.; Azevedo da Silva, Juliana; Gomes Alves Júnior, Vladimir; Gomes Coelho, Adelia; Souza Faria, Afonso C.; Moreira Salomão Simão, Nabia M.; Souto Filho, João T.; Deswarte, Caroline; Boisson-Dupuis, Stéphanie; Torgerson, Dara; Casanova, Jean-Laurent; Bustamante, Jacinta; Medina-Acosta, Enrique

    2017-01-01

    Patients with Mendelian Susceptibility to Mycobacterial Diseases (MSMD) exhibit variable vulnerability to infections by mycobacteria and other intramacrophagic bacteria (e.g., Salmonella and Klebsiella) and fungi (e.g., Histoplasma, Candida, Paracoccidioides, Coccidioides, and Cryptococcus). The hallmark of MSMD is the inherited impaired production of interferon gamma (IFN-γ) or the lack of response to it. Mutations in the interleukin (IL)-12 receptor subunit beta 1 (IL12RB1) gene accounts for 38% of cases of MSMD. Most IL12RB1 pathogenic allele mutations, including ten known stop-gain variants, cause IL-12Rβ1 complete deficiency (immunodeficiency-30, IMD30) by knocking out receptor cell-surface expression. IL12RB1 loss-of-function genotypes impair both IL-12 and IL-23 responses. Here, we assess the health effects of a rare, novel IL12RB1 stop-gain homozygous genotype with paradoxical IL-12Rβ1 cell-surface expression. We appraise four MSMD children from three unrelated Brazilian kindreds by clinical consultation, medical records, and genetic and immunologic studies. The clinical spectrum narrowed down to Bacillus Calmette-Guerin (BCG) vaccine-related suppurative adenitis in all patients with one death, and recrudescence in two, histoplasmosis, and recurrence in one patient, extraintestinal salmonellosis in one child, and cutaneous vasculitis in another. In three patients, we established the homozygous Trp7Ter predicted loss-of-function inherited genotype and inferred it from the heterozygote parents of the fourth case. The Trp7Ter mutation maps to the predicted IL-12Rβ1 N-terminal signal peptide sequence. BCG- or phytohemagglutinin-blasts from the three patients have reduced cell-surface expression of IL-12Rβ1 with impaired production of IFN-γ and IL-17A. Screening of 227 unrelated healthy subjects from the same geographic region revealed one heterozygous genotype (allele frequency 0.0022) vs. one in over 841,883 public genome/exomes. We also show that the

  17. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells

    PubMed Central

    Krieg, Carsten; Létourneau, Sven; Pantaleo, Giuseppe; Boyman, Onur

    2010-01-01

    IL-2 immunotherapy is an attractive treatment option for certain metastatic cancers. However, administration of IL-2 to patients can lead, by ill-defined mechanisms, to toxic adverse effects including severe pulmonary edema. Here, we show that IL-2–induced pulmonary edema is caused by direct interaction of IL-2 with functional IL-2 receptors (IL-2R) on lung endothelial cells in vivo. Treatment of mice with high-dose IL-2 led to efficient expansion of effector immune cells expressing high levels of IL-2Rβγ, including CD8+ T cells and natural killer cells, which resulted in a considerable antitumor response against s.c. and pulmonary B16 melanoma nodules. However, high-dose IL-2 treatment also affected immune cell lineage marker-negative CD31+ pulmonary endothelial cells via binding to functional αβγ IL-2Rs, expressed at low to intermediate levels on these cells, thus causing pulmonary edema. Notably, IL-2–mediated pulmonary edema was abrogated by a blocking antibody to IL-2Rα (CD25), genetic disruption of CD25, or the use of IL-2Rβγ–directed IL-2/anti-IL-2 antibody complexes, thereby interfering with IL-2 binding to IL-2Rαβγ+ pulmonary endothelial cells. Moreover, IL-2/anti-IL-2 antibody complexes led to vigorous activation of IL-2Rβγ+ effector immune cells, which generated a dramatic antitumor response. Thus, IL-2/anti-IL-2 antibody complexes might improve current strategies of IL-2–based tumor immunotherapy. PMID:20547866

  18. A Toll/interleukin (IL)-1 receptor domain protein from Yersinia pestis interacts with mammalian IL-1/Toll-like receptor pathways but does not play a central role in the virulence of Y. pestis in a mouse model of bubonic plague.

    PubMed

    Spear, Abigail M; Rana, Rohini R; Jenner, Dominic C; Flick-Smith, Helen C; Oyston, Petra C F; Simpson, Peter; Matthews, Stephen J; Byrne, Bernadette; Atkins, Helen S

    2012-06-01

    The Toll/interleukin (IL)-1 receptor (TIR) domain is an essential component of eukaryotic innate immune signalling pathways. Interaction between TIR domains present in Toll-like receptors and associated adaptors initiates and propagates an immune signalling cascade. Proteins containing TIR domains have also been discovered in bacteria. Studies have subsequently shown that these proteins are able to modulate mammalian immune signalling pathways dependent on TIR interactions and that this may represent an evasion strategy for bacterial pathogens. Here, we investigate a TIR domain protein from the highly virulent bacterium Yersinia pestis, the causative agent of plague. When overexpressed in vitro this protein is able to downregulate IL-1β- and LPS-dependent signalling to NFκB and to interact with the TIR adaptor protein MyD88. This interaction is dependent on a single proline residue. However, a Y. pestis knockout mutant lacking the TIR domain protein was not attenuated in virulence in a mouse model of bubonic plague. Minor alterations in the host cytokine response to the mutant were indicated, suggesting a potential subtle role in pathogenesis. The Y. pestis mutant also showed increased auto-aggregation and reduced survival in high-salinity conditions, phenotypes which may contribute to pathogenesis or survival.

  19. Substance P receptor blockade decreases stretch-induced lung cytokines and lung injury in rats.

    PubMed

    Brégeon, Fabienne; Steinberg, Jean Guillaume; Andreotti, Nicolas; Sabatier, Jean-Marc; Delpierre, Stéphane; Ravailhe, Sylvie; Jammes, Yves

    2010-04-15

    Overdistension of lung tissue during mechanical ventilation causes cytokine release, which may be facilitated by the autonomic nervous system. We used mechanical ventilation to cause lung injury in rats, and studied how cervical section of the vagus nerve, or substance P (SP) antagonism, affected the injury. The effects of 40 or 25 cmH(2)O high airway pressure injurious ventilation (HV(40) and HV(25)) were studied and compared with low airway pressure ventilation (LV) and spontaneous breathing (controls). Lung mechanics, lung weight, gas exchange, lung myeloperoxidase activity, lung concentrations of interleukin (IL)-1 beta and IL-6, and amounts of lung SP were measured. Control rats were intact, others were bivagotomized, and in some animals we administered the neurokinin-1 (NK-1) receptor blocking agent SR140333. We first determined the durations of HV(40) and HV(25) that induced the same levels of lung injury and increased lung contents of IL-1 beta and IL-6. They were 90 min and 120 min, respectively. Both HV(40) and HV(25) increased lung SP, IL-1 beta and IL-6 levels, these effects being markedly reduced by NK-1 receptor blockade. Bivagotomy reduced to a lesser extent the HV(40)- and HV(25)-induced increases in SP but significantly reduced cytokine production. Neither vagotomy nor NK-1 receptor blockade prevented HV(40)-induced lung injury but, in the HV(25) group, they made it possible to maintain lung injury indices close to those measured in the LV group. This study suggests that both neuronal and extra-neuronal SP might be involved in ventilator-induced lung inflammation and injury. NK-1 receptor blockade could be a pharmacological tool to minimize some adverse effects of mechanical ventilation.

  20. IL-17s adopt a cystine knot fold: structure and activity of a novel cytokine, IL-17F, and implications for receptor binding

    PubMed Central

    Hymowitz, Sarah G.; Filvaroff, Ellen H.; Yin, JianPing; Lee, James; Cai, Liping; Risser, Philip; Maruoka, Miko; Mao, Weiguang; Foster, Jessica; Kelley, Robert F.; Pan, Guohua; Gurney, Austin L.; de Vos, Abraham M.; Starovasnik, Melissa A.

    2001-01-01

    The proinflammatory cytokine interleukin 17 (IL-17) is the founding member of a family of secreted proteins that elicit potent cellular responses. We report a novel human IL-17 homolog, IL-17F, and show that it is expressed by activated T cells, can stimulate production of other cytokines such as IL-6, IL-8 and granulocyte colony-stimulating factor, and can regulate cartilage matrix turnover. Unexpectedly, the crystal structure of IL-17F reveals that IL-17 family members adopt a monomer fold typical of cystine knot growth factors, despite lacking the disulfide responsible for defining the canonical ‘knot’ structure. IL-17F dimerizes in a parallel manner like neurotrophins, and features an unusually large cavity on its surface. Remarkably, this cavity is located in precisely the same position where nerve growth factor binds its high affinity receptor, TrkA, suggesting further parallels between IL-17s and neurotrophins with respect to receptor recognition. PMID:11574464

  1. Effect of mitomycin C on IL-1R expression, IL-1-related hepatocyte growth factor secretion and corneal epithelial cell migration.

    PubMed

    Chen, Tsan-Chi; Chang, Shu-Wen

    2010-03-01

    To investigate how mitomycin C (MMC) modulates hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) secretions in human corneal fibroblasts and regulates human corneal epithelial (HCE) cell migration. Primary human corneal fibroblasts were treated with MMC (0.05, 0.1, or 0.2 mg/mL for 5 minutes) and were cultivated with or without interleukin (IL)-1beta. Transcript and secretion of HGF and KGF were determined by quantitative real-time RT-PCR and Western blot analysis, respectively. The effect of MMC-treated fibroblasts on HCE cell migration was evaluated using a transwell migration assay. The influence of MMC on HGF expression/secretion and HCE cell migration was further confirmed by RNA interference. The number of IL-1 receptors (IL-1R) on the fibroblast surface was analyzed by flow cytometry. MMC alone did not affect endogenous HGF expression, whereas IL-1beta alone significantly upregulated HGF transcripts and secretion. By modifying IL-1R numbers, MMC further upregulated IL-1beta-related HGF expression at a concentration of 0.05 mg/mL but to a lesser extent at 0.1 and 0.2 mg/mL. KGF transcripts and intracellular expression were suppressed by MMC dose dependently in the presence or absence of IL-1beta, whereas KGF secretion was not affected. Conditioned medium from MMC-treated fibroblasts exerted a similar concentration-dependent effect on HCE cell migration, enhancing migration most significantly at 0.05 mg/mL MMC in the presence of IL-1beta. The MMC dose-dependent modulation of HCE cell migration was abolished in HGF-silenced fibroblasts. MMC differentially modulated IL-1R expression at various concentrations and regulated HGF and KGF differently. MMC alone did not alter HGF expression. In the presence of IL-1beta, MMC-treated corneal fibroblasts modified HCE cell migration through IL-1beta-induced HGF secretion.

  2. Role of interleukin-1 and its antagonism of hepatic stellate cell proliferation and liver fibrosis in the Abcb4-/- mouse model

    PubMed Central

    Reiter, Florian P; Wimmer, Ralf; Wottke, Lena; Artmann, Renate; Nagel, Jutta M; Carranza, Manuel O; Mayr, Doris; Rust, Christian; Fickert, Peter; Trauner, Michael; Gerbes, Alexander L; Hohenester, Simon; Denk, Gerald U

    2016-01-01

    -Whitney U-test). No gender differences in the serum liver parameters [bilirubin; alanine aminotransferase (ALT); aspartate aminotransferase and alkaline phosphatase (AP)] were found. In vitro, the administration of IL-1β resulted in a significant increase in HSC proliferation [0.94 ± 0.72 arbitrary units (A.U.) in untreated controls, 1.12 ± 0.80 A.U. at an IL-1β concentration of 0.1 ng/mL and 1.18 ± 0.73 A.U. at an IL-1β concentration of 1 ng/mL in samples from n = 6 donor animals; P < 0.001; analyses of variance (ANOVA)]. Proliferation was reduced significantly by the addition of 2.5 μg/mL Anakinra (0.81 ± 0.60 A.U. in untreated controls, 0.92 ± 0.68 A.U. at an IL-1β concentration of 0.1 ng/mL, and 0.91 ± 0.69 A.U. at an IL-1β concentration of 1 ng/mL; in samples from n = 6 donor animals; P < 0.001; ANOVA) suggesting an anti-proliferative effect of this clinically approved IL-1 receptor antagonist. The FDH assay showed this dose to be non-toxic in HSCs. In vivo, Anakinra had no effect on the hepatic hydroxyproline content, liver serum tests (ALT and AP) and pro-fibrotic (collagen 1α1, collagen 1α2, transforming growth factor-β, and TIMP-1) and anti-fibrotic [matrix metalloproteinase 2 (MMP2), MMP9 and MMP13] gene expression after 4 wk of treatment. Furthermore, the hepatic IL-1β and F4/80 mRNA expression levels were unaffected by Anakinra treatment. CONCLUSION: IL-1β expression is associated with the degree of liver fibrosis in Abcb4-/- mice and promotes HSC proliferation. IL-1 antagonism shows antifibrotic effects in vitro but not in Abcb4-/- mice. PMID:27004088

  3. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes.

    PubMed

    Yin, T; Tsang, M L; Yang, Y C

    1994-10-28

    Interleukin (IL)-4 and IL-9 regulate the proliferation of T lymphocytes through interactions with their receptors. Previous studies have shown that unknown tyrosine kinases are involved in the proliferative signaling triggered by IL-4 and IL-9. Here we show that IL-4 and IL-9 induce overlapping (170, 130, and 125 kilodalton (kDa)) and distinct (45 and 88/90 kDa, respectively) protein tyrosine phosphorylation in T lymphocytes. We further identify the 170-kDa tyrosine-phosphorylated protein as 4PS/insulin receptor substrate-1-like (IRS-1L) protein and 130-kDa protein as JAK1 kinase. Furthermore, we demonstrate for the first time that JAK1 forms complexes with the IL-4 receptor and 4PS/IRS-1L protein following ligand-receptor interaction. In addition, we demonstrate that IL-9, but not IL-4, induced tyrosine phosphorylation of Stat 91 transcriptional factor. The overlapping and distinct protein tyrosine phosphorylation and activation of the same JAK1 kinase in T lymphocytes strongly suggests that IL-4 and IL-9 share the common signal transduction pathways and that the specificity for each cytokine could be achieved through the unique tyrosine-phosphorylated proteins triggered by individual cytokines.

  4. TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo.

    PubMed

    He, Yuan; Franchi, Luigi; Núñez, Gabriel

    2013-01-01

    On the basis of studies in mouse macrophages, activation of the nucleotide-binding oligomerization domain-like receptor (NLR) pyrin domain-containing 3 (Nlrp3) inflammasome is thought to require two signals. The first signal is provided by TLR stimulation and triggers the synthesis of the IL-1β precursor and Nlrp3. The second signal can be mediated by stimulation of the purinergic receptor P2X ligand-gated ion channel 7 (P2X7) by millimolar concentrations of ATP. However, these high concentrations of ATP are not found normally in the in vivo extracellular milieu, raising concern about the physiological relevance of the ATP-P2X7 pathway of inflammasome activation. In this article, we show that unlike macrophages, murine bone marrow-derived and splenic dendritic cells (DCs) can secrete substantial amounts of mature IL-1β upon stimulation with TLR ligands in the absence of ATP stimulation. The differential ability of DCs to release IL-1β and activate caspase-1 was associated with increased expression of Nlrp3 under steady-state conditions and of pro-IL-1β and Nlrp3 after stimulation with TLR agonists. IL-1β secretion from stimulated DCs was largely dependent on the Nlrp3 inflammasome, but independent of P2X7 and unaffected by incubation with apyrase. More importantly, i.p. administration of LPS induced IL-1β production in serum, which was abrogated in Nlrp3-null mice but was unaffected in P2X7-deficient mice. These results demonstrate differential regulation of the Nlrp3 inflammasome in macrophages and DCs. Furthermore, they challenge the idea that the ATP-P2X7 axis is critical for TLR-induced IL-1β production via the Nlrp3 inflammasome in vivo.

  5. Endothelin ETA Receptor Blockade, by Activating ETB Receptors, Increases Vascular Permeability and Induces Exaggerated Fluid Retention.

    PubMed

    Vercauteren, Magali; Trensz, Frederic; Pasquali, Anne; Cattaneo, Christophe; Strasser, Daniel S; Hess, Patrick; Iglarz, Marc; Clozel, Martine

    2017-05-01

    Endothelin (ET) receptor antagonists have been associated with fluid retention. It has been suggested that, of the two endothelin receptor subtypes, ET B receptors should not be blocked, because of their involvement in natriuresis and diuresis. Surprisingly, clinical data suggest that ET A -selective antagonists pose a greater risk of fluid overload than dual antagonists. The purpose of this study was to evaluate the contribution of each endothelin receptor to fluid retention and vascular permeability in rats. Sitaxentan and ambrisentan as ET A -selective antagonists and bosentan and macitentan as dual antagonists were used as representatives of each class, respectively. ET A -selective antagonism caused a dose-dependent hematocrit/hemoglobin decrease that was prevented by ET B -selective receptor antagonism. ET A -selective antagonism led to a significant blood pressure reduction, plasma volume expansion, and a greater increase in vascular permeability than dual antagonism. Isolated vessel experiments showed that ET A -selective antagonism increased vascular permeability via ET B receptor overstimulation. Acutely, ET A -selective but not dual antagonism activated sympathetic activity and increased plasma arginine vasopressin and aldosterone concentrations. The hematocrit/hemoglobin decrease induced by ET A -selective antagonism was reduced in Brattleboro rats and in Wistar rats treated with an arginine vasopressin receptor antagonist. Finally, the decrease in hematocrit/hemoglobin was larger in the venous than in the arterial side, suggesting fluid redistribution. In conclusion, by activating ET B receptors, endothelin receptor antagonists (particularly ET A -selective antagonists) favor edema formation by causing: 1) fluid retention resulting from arginine vasopressin and aldosterone activation secondary to vasodilation, and 2) increased vascular permeability. Plasma volume redistribution may explain the clinical observation of a hematocrit/hemoglobin decrease

  6. Angiotensin II type 1 and type 2 receptor-induced cell signaling.

    PubMed

    Akazawa, Hiroshi; Yano, Masamichi; Yabumoto, Chizuru; Kudo-Sakamoto, Yoko; Komuro, Issei

    2013-01-01

    The octapeptide angiotensin II (Ang II) plays a homeostatic role in the regulation of blood pressure and water and electrolyte balance, and also contributes to the progression of cardiovascular remodeling. Ang II activates Ang II type 1 (AT1) receptor and type 2 (AT2) receptor, both of which belong to the seven-transmembrane, G protein-coupled receptor family. Most of the actions of Ang II such as promotion of cellular prolifaration, hypertrophy, and fibrosis are mediated by AT1 receptor. However, in some pathological situations, AT2 receptor shows an increase in tissue expression and functions to antagonize the actions induced by AT1 receptor. Recent studies have advanced our understanding of the molecular mechanisms underlying receptor activation and signal transduction of AT1 and AT2 receptor in the cardiovascular system.

  7. Sphingosine 1-phosphate receptor modulators in multiple sclerosis.

    PubMed

    Subei, Adnan M; Cohen, Jeffrey A

    2015-07-01

    Sphingosine 1-phosphate (S1P) receptor modulators possess a unique mechanism of action as disease-modifying therapy for multiple sclerosis (MS). Subtype 1 S1P receptors are expressed on the surfaces of lymphocytes and are important in regulating egression from lymph nodes. The S1P receptor modulators indirectly antagonize the receptor's function and sequester lymphocytes in lymph nodes. Fingolimod was the first S1P agent approved in the USA in 2010 for relapsing MS after two phase III trials (FREEDOMS and TRANSFORMS) demonstrated potent efficacy, and good safety and tolerability. Post-marketing experience, as well as a third phase III trial (FREEDOMS II), also showed favorable results. More selective S1P receptor agents-ponesimod (ACT128800), siponimod (BAF312), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303-are still in relatively early stages of development, but phase I and II trials showed promising efficacy and safety. However, these observations have yet to be reproduced in phase III clinical trials.

  8. A distinct dendritic cell population arises in the thymus of IL-13Rα1-sufficient but not IL-13Rα1-deficient mice.

    PubMed

    Barik, Subhasis; Miller, Mindy; Cattin-Roy, Alexis; Ukah, Tobechukwu; Zaghouani, Habib

    2018-06-18

    IL-13 receptor alpha 1 (IL-13Rα1) associates with IL-4Rα to form a functional IL-4Rα/IL-13Rα1 heteroreceptor (HR) through which both IL-4 and IL-13 signal. Recently, HR expression was associated with the development of M2 type macrophages which function as antigen presenting cells (APCs). Herein, we show that a subset of thymic resident dendritic cells (DCs) expressing high CD11b (CD11b hi ) and intermediate CD11c (CD11c int ) arise in HR-sufficient but not HR-deficient mice. These DCs, which originate from the bone marrow are able to take up Ag from the peritoneum, traffic through the spleen and the lymph nodes and carry it to the thymus. In addition, since the DCs are able to present Ag to T cells, express high levels of the costimulatory molecule CD24, and comprise a CD8α + subset, it is likely that the cells contribute to T cell development and perhaps negative selection of self-reactive lymphocytes. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    PubMed Central

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor–positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observed with PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PR modulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored. PMID:27386569

  10. Unsurmountable antagonism of brain 5-hydroxytryptamine2 receptors by (+)-lysergic acid diethylamide and bromo-lysergic acid diethylamide.

    PubMed

    Burris, K D; Sanders-Bush, E

    1992-11-01

    Lysergic acid diethylamide (LSD) and its structural analogue 2-bromo-lysergic acid diethylamide (BOL) act as unsurmountable antagonists of serotonin-elicited contractions in smooth muscle preparations. Two different models, allosteric and kinetic, have been invoked to explain these findings. The present studies investigate the mechanism of antagonism of brain 5-hydroxytryptamine (5HT)2 receptors, utilizing cells transfected with 5HT2 receptor cDNA cloned from rat brain. A proximal cellular response, phosphoinositide hydrolysis, was examined in order to minimize possible postreceptor effects. Even though LSD behaved as a partial agonist and BOL as a pure antagonist, both drugs blocked the effect of serotonin in an unsurmountable manner, i.e., increasing concentrations of serotonin could not overcome the blocking effect of LSD or BOL. Radioligand binding studies showed that preincubation of membranes with either LSD or BOL reduced the density of [3H]ketanserin binding sites, suggesting that the drugs bind tightly to the 5HT2 receptor and are not displaced during the binding assay. Two additional experiments supported this hypothesis. First, the off-rate of [3H] LSD was slow (20 min), relative to that of [3H]ketanserin (approximately 4 min). Second, when the length of incubation with [3H]ketanserin was increased to 60 min, the LSD-induced decrease in Bmax was essentially eliminated. The possibility that LSD and BOL decrease [3H]ketanserin binding by interacting with an allosteric site was rejected, because neither drug altered the rate of dissociation of [3H]ketanserin. The most parsimonious interpretation of these results is that unsurmountable antagonism reflects prolonged occupancy of the receptor by slowly reversible antagonists.

  11. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor

    PubMed Central

    1994-01-01

    Interleukin 15 (IL-15) is a novel cytokine that has recently been cloned and expressed. Whereas it has no sequence homology with IL-2, IL- 15 interacts with components of the IL-2 receptor (IL-2R). In the present study we performed a functional analysis of recombinant IL-15 on phenotypically and functionally distinct populations of highly purified human natural killer (NK) cells. The CD56bright subset of human NK cells constitutively expresses the high affinity IL-2R and exhibits a brisk proliferative response after the binding of picomolar amounts of IL-2. Using a proliferation assay, IL-15 demonstrated a very steep dose-response curve that was distinct from the dose-response curve for IL-2. The proliferative effects of IL-15 could be abrogated by anti-IL-2R beta (p75), but not by anti-IL-2R alpha (p55). The proliferative effects of IL-2 on CD56bright NK cells could be inhibited by both antibodies. CD56dim NK cells express the intermediate affinity IL-2R in the absence of the high affinity IL-2R. Activation of CD56dim NK cells by IL-15 was similar to that of IL-2 as measured by enhanced NK cytotoxic activity, antibody-dependent cellular cytotoxicity, and NK cell production of interferon gamma, tumor necrosis factor alpha, and granulocyte/macrophage colony-stimulating factor. The IL-15-enhanced NK cytotoxic activity could be completely blocked by anti-IL-2R beta monoclonal antibody. The binding of radiolabeled IL-2 and IL-15 to CD56dim NK cells was inhibited in the presence of anti-IL-2R beta. Scatchard analysis of radiolabeled IL-15 and IL-2 binding to NK- enriched human lymphocytes revealed the presence of high and intermediate affinity receptors for both ligands. IL-15 is a ligand that activates human NK cells through components of the IL-2R in a pattern that is similar but not identical to that of IL-2. Unlike IL-2, IL-15 is produced by activated monocytes/macrophages. The discovery of IL-15 may increase our understanding of how monocytes

  12. Experimental asthma persists in IL-33 receptor knockout mice because of the emergence of thymic stromal lymphopoietin-driven IL-9+ and IL-13+ type 2 innate lymphoid cell subpopulations.

    PubMed

    Verma, Mukesh; Liu, Sucai; Michalec, Lidia; Sripada, Anand; Gorska, Magdalena M; Alam, Rafeul

    2017-11-10

    IL-33 plays an important role in the development of experimental asthma. We sought to study the role of the IL-33 receptor suppressor of tumorigenicity 2 (ST2) in the persistence of asthma in a mouse model. We studied allergen-induced experimental asthma in ST2 knockout (KO) and wild-type control mice. We measured airway hyperresponsiveness by using flexiVent; inflammatory indices by using ELISA, histology, and real-time PCR; and type 2 innate lymphoid cells (ILC2s) in lung single-cell preparations by using flow cytometry. Airway hyperresponsiveness was increased in allergen-treated ST2 KO mice and comparable with that in allergen-treated wild-type control mice. Peribronchial and perivascular inflammation and mucus production were largely similar in both groups. Persistence of experimental asthma in ST2 KO mice was associated with an increase in levels of thymic stromal lymphopoietin (TSLP), IL-9, and IL-13, but not IL-5, in bronchoalveolar lavage fluid. Expectedly, ST2 deletion caused a reduction in IL-13 + CD4 T cells, forkhead box P3-positive regulatory T cells, and IL-5 + ILC2s. Unexpectedly, ST2 deletion led to an overall increase in innate lymphoid cells (CD45 + lin - CD25 + cells) and IL-13 + ILC2s, emergence of a TSLP receptor-positive IL-9 + ILC2 population, and an increase in intraepithelial mast cell numbers in the lung. An anti-TSLP antibody abrogated airway hyperresponsiveness, inflammation, and mucus production in allergen-treated ST2 KO mice. It also caused a reduction in innate lymphoid cell, ILC2, and IL-9 + and IL-13 + ILC2 numbers in the lung. Genetic deletion of the IL-33 receptor paradoxically increases TSLP production, which stimulates the emergence of IL-9 + and IL-13 + ILC2s and mast cells and leads to development of chronic experimental asthma. An anti-TSLP antibody abrogates all pathologic features of asthma in this model. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. MFGE8 inhibits inflammasome-induced IL-1β production and limits postischemic cerebral injury.

    PubMed

    Deroide, Nicolas; Li, Xuan; Lerouet, Dominique; Van Vré, Emily; Baker, Lauren; Harrison, James; Poittevin, Marine; Masters, Leanne; Nih, Lina; Margaill, Isabelle; Iwakura, Yoichiro; Ryffel, Bernhard; Pocard, Marc; Tedgui, Alain; Kubis, Nathalie; Mallat, Ziad

    2013-03-01

    Milk fat globule-EGF 8 (MFGE8) plays important, nonredundant roles in several biological processes, including apoptotic cell clearance, angiogenesis, and adaptive immunity. Several recent studies have reported a potential role for MFGE8 in regulation of the innate immune response; however, the precise mechanisms underlying this role are poorly understood. Here, we show that MFGE8 is an endogenous inhibitor of inflammasome-induced IL-1β production. MFGE8 inhibited necrotic cell-induced and ATP-dependent IL-1β production by macrophages through mediation of integrin β(3) and P2X7 receptor interactions in primed cells. Itgb3 deficiency in macrophages abrogated the inhibitory effect of MFGE8 on ATP-induced IL-1β production. In a setting of postischemic cerebral injury in mice, MFGE8 deficiency was associated with enhanced IL-1β production and larger infarct size; the latter was abolished after treatment with IL-1 receptor antagonist. MFGE8 supplementation significantly dampened caspase-1 activation and IL-1β production and reduced infarct size in wild-type mice, but did not limit cerebral necrosis in Il1b-, Itgb3-, or P2rx7-deficient animals. In conclusion, we demonstrated that MFGE8 regulates innate immunity through inhibition of inflammasome-induced IL-1β production.

  14. Angiotensin II Type 1 Receptor Knockdown Impairs Interleukin-1β-Induced Cytokines in Human Periodontal Fibroblasts.

    PubMed

    Gabriele, Lilian Gobbo; Morandini, Ana Carolina; Dionísio, Thiago José; Santos, Carlos Ferreira

    2017-01-01

    The renin-angiotensin (Ang) system (RAS) has been reported as an important modulator of inflammatory and immune responses. Evidence suggests an alternative Ang 1-7/Mas receptor axis as counter-regulatory to the classic RAS Ang II/Ang II Type 1 (AT1) receptor axis. It is known that periodontal pathogens elicit host-derived immune response due to release of cytokines such as interleukin (IL)-1β, and fibroblasts are among the most numerous sentinel cells that contribute to this production. The aim of this study is to determine whether AT1 receptor (AT1R) contributes to production of inflammatory cytokines that are important for periodontal pathogenesis using primary human gingival fibroblasts (HGFs) and human periodontal ligament fibroblasts (HPLFs) stimulated with IL-1β. Through RNA interference or pharmacologic inhibition using AT1R antagonist losartan, HGF and HPLF were stimulated by IL-1β for 3 (messenger RNA [mRNA]) or 24 (protein) hours. IL-1β upregulated mRNA expression of AT1R, IL-1β, IL-6, IL-8, tumor necrosis factor-alpha, and osteoprotegerin (OPG) in HGF and HPLF. AT1R knockdown impaired IL-1β-induced IL-6 and IL-8 secretion in cultured HGF and HPLF. AT1R silencing also increased OPG gene expression in HGF only. Pharmacologic inhibition of AT1R through losartan modulated mRNA transcription of IL-6 and IL-8 in HPLF but not in HGF. In contrast, IL-1β-induced secretion of IL-6 and IL-8 was not influenced by losartan in HGF or HPLF. These results suggest that AT1R knockdown and AT1R pharmacologic blockade by losartan may differently control balance of inflammatory cytokines, such as IL-6 and IL-8, in primary human periodontal fibroblasts.

  15. IL-1 Receptor Signaling on Graft Parenchymal Cells Regulates Memory and De Novo Donor-Reactive CD8 T Cell Responses to Cardiac Allografts.

    PubMed

    Iida, Shoichi; Tsuda, Hidetoshi; Tanaka, Toshiaki; Kish, Danielle D; Abe, Toyofumi; Su, Charles A; Abe, Ryo; Tanabe, Kazunari; Valujskikh, Anna; Baldwin, William M; Fairchild, Robert L

    2016-03-15

    Reperfusion of organ allografts induces a potent inflammatory response that directs rapid memory T cell, neutrophil, and macrophage graft infiltration and their activation to express functions mediating graft tissue injury. The role of cardiac allograft IL-1 receptor (IL-1R) signaling in this early inflammation and the downstream primary alloimmune response was investigated. When compared with complete MHC-mismatched wild-type cardiac allografts, IL-1R(-/-) allografts had marked decreases in endogenous memory CD8 T cell and neutrophil infiltration and expression of proinflammatory mediators at early times after transplant, whereas endogenous memory CD4 T cell and macrophage infiltration was not decreased. IL-1R(-/-) allograft recipients also had marked decreases in de novo donor-reactive CD8, but not CD4, T cell development to IFN-γ-producing cells. CD8 T cell-mediated rejection of IL-1R(-/-) cardiac allografts took 3 wk longer than wild-type allografts. Cardiac allografts from reciprocal bone marrow reconstituted IL-1R(-/-)/wild-type chimeric donors indicated that IL-1R signaling on graft nonhematopoietic-derived, but not bone marrow-derived, cells is required for the potent donor-reactive memory and primary CD8 T cell alloimmune responses observed in response to wild-type allografts. These studies implicate IL-1R-mediated signals by allograft parenchymal cells in generating the stimuli-provoking development and elicitation of optimal alloimmune responses to the grafts. Copyright © 2016 by The American Association of Immunologists, Inc.

  16. Prostaglandin E2 Induces IL-6 and IL-8 Production by the EP Receptors/Akt/NF-κB Pathways in Nasal Polyp-Derived Fibroblasts.

    PubMed

    Cho, Jung-Sun; Han, In-Hye; Lee, Hye Rim; Lee, Heung-Man

    2014-09-01

    Interleukin 6 (IL-6) and IL-8 participate in the pathogenesis of chronic rhinosinusitis with nasal polyps, and their levels are increased by prostaglandin E2 (PGE2) in different cell types. The purposes of this study were to determine whether PGE2 has any effect on the increase in the levels of IL-6 and IL-8 in nasal polyp-derived fibroblasts (NPDFs) and subsequently investigate the possible mechanism of this effect. Different concentrations of PGE2 were used to stimulate NPDFs at different time intervals. NPDFs were treated with agonists and antagonists of E prostanoid (EP) receptors. To determine the signaling pathway for the expression of PGE2-induced IL-6 and IL-8, PGE2 was treated with Akt and NF-κB inhibitors in NPDFs. Reverse transcription-polymerase chain reaction for IL-6 and IL-8 mRNAs was performed. IL-6 and IL-8 levels were measured byenzyme-linked immunosorbent assay (ELISA). The activation of Akt and NF-κB was evaluated by western blot analysis. PGE2 significantly increased the mRNA and protein expression levels of IL-6 and IL-8 in NPDFs. The EP2 and EP4 agonists and antagonists induced and inhibited IL-6 expression. However, the EP4 agonist and antagonist were only observed to induce and inhibit IL-8 expression level. The Akt and NF-κB inhibitors significantly blocked PGE2-induced expression of IL-6 and IL-8. PGE2 increases IL-6 expression via EP2 and EP4 receptors, and IL-8 expression via the EP4 receptor in NPDFs. It also activates the Akt and NF-κB signal pathways for the production of IL-6 and IL-8 in NPDFs. These results suggest that signaling pathway for IL-6 and IL-8 expression induced by PGE2 might be a useful therapeutic target for the treatment of nasal polyposis.

  17. HIV-1 Vpu Antagonizes CD317/Tetherin by Adaptor Protein-1-Mediated Exclusion from Virus Assembly Sites

    PubMed Central

    Pujol, François M.; Laketa, Vibor; Schmidt, Florian; Mukenhirn, Markus; Müller, Barbara; Boulant, Steeve; Grimm, Dirk; Keppler, Oliver T.

    2016-01-01

    ABSTRACT The host cell restriction factor CD317/tetherin traps virions at the surface of producer cells to prevent their release. The HIV-1 accessory protein Vpu antagonizes this restriction. Vpu reduces the cell surface density of the restriction factor and targets it for degradation; however, these activities are dispensable for enhancing particle release. Instead, Vpu has been suggested to antagonize CD317/tetherin by preventing recycling of internalized CD317/tetherin to the cell surface, blocking anterograde transport of newly synthesized CD317/tetherin, and/or displacing the restriction factor from virus assembly sites at the plasma membrane. At the molecular level, antagonism relies on the physical interaction of Vpu with CD317/tetherin. Recent findings suggested that phosphorylation of a diserine motif enables Vpu to bind to adaptor protein 1 (AP-1) trafficking complexes via two independent interaction motifs and to couple CD317/tetherin to the endocytic machinery. Here, we used a panel of Vpu proteins with specific mutations in individual interaction motifs to define which interactions are required for antagonism of CD317/tetherin. Impairing recycling or anterograde transport of CD317/tetherin to the plasma membrane was insufficient for antagonism. In contrast, excluding CD317/tetherin from HIV-1 assembly sites depended on Vpu motifs for interaction with AP-1 and CD317/tetherin and correlated with antagonism of the particle release restriction. Consistently, interference with AP-1 function or its expression blocked these Vpu activities. Our results define displacement from HIV-1 assembly sites as active principle of CD317/tetherin antagonism by Vpu and support a role of tripartite complexes between Vpu, AP-1, and CD317/tetherin in this process. IMPORTANCE CD317/tetherin poses an intrinsic barrier to human immunodeficiency virus type 1 (HIV-1) replication in human cells by trapping virus particles at the surface of producer cells and thereby preventing

  18. Reduction in serum IL-6 after vacination of breast cancer patients with tumour-associated antigens is related to estrogen receptor status.

    PubMed

    Jiang, X P; Yang, D C; Elliott, R L; Head, J F

    2000-05-01

    Elevated serum IL-6 concentrations have been associated with poor prognosis in a variety of cancers, and decreases in serum IL-6 concentrations have been reported after chemotherapy. We have demonstrated that serum IL-6 concentrations are elevated in breast cancer patients [normal women 0.7 +/- 2.5 pg/ml (n=36), breast cancer patients 38.3 +/- 138.7 pg/ml (n = 111)]. After vaccination of breast cancer patients with a combination of tumour-associated antigens and biological adjuvants (IL-2 and GM-CSF), the concentration of IL-6 decreased significantly (P<0.05) to 8.1 +/- 14.6 pg/ml (n=85). Other studies have shown that oestrogen suppresses IL-6 production in oestrogen receptor positive breast cancer cells. We have demonstrated that the decrease in IL-6 associated with vaccination is related to the oestrogen receptor status of the tumours from breast cancer patients, as a decrease in IL-6 from 124.0 +/- 267.5 pg/ml (n=26) to 6.2 +/- 11.0 pg/ml (n=34) only occurs in patients with oestrogen receptor negative tumours. The IL-6 concentration in breast cancer patients with oestrogen receptor positive tumours remained unchanged (9.5 pg/ml before vaccination, and 9.3 pg/ml after vaccination). These results suggest that postmenopausal women with oestrogen receptor negative breast cancers, who do not respond well to either hormonal therapy with tamoxifen or adjuvant chemotherapy, may have a significant response to vaccination with autologous tumour-associated antigens.

  19. Increased systemic and epidermal levels of IL-17A and IL-1β promotes progression of non-segmental vitiligo.

    PubMed

    Bhardwaj, Supriya; Rani, Seema; Srivastava, Niharika; Kumar, Ravinder; Parsad, Davinder

    2017-03-01

    Non-segmental vitiligo (NSV) results from autoimmune destruction of melanocytes. The altered levels of various cytokines have been proposed in the pathogenesis of vitiligo. However, the exact immune mechanisms have not yet been fully elucidated. To investigate the role of epidermal and systemic cytokines in active and stable NSV patients. Serum levels of inflammatory cytokines were checked in 42 active and 30 stable NSV patients with 30 controls. The lesional, perilesional and normal skin sections were subjected to H&E staining. The mRNA expression of inflammatory cytokines and their respective receptors were assessed by quantitative PCR in lesional skin of both active and stable NSV skin. The MITF and IL-17A were immunolocalized in lesional, perilesional and normal skin tissue. Significant increase in the expression of inflammatory cytokines, IL-17A, IL-1β and TGF-β was observed in active patients, whereas no change was observed in stable patients. A marked reduction in epidermal thickness was observed in lesional skin sections. Significant increase in IL-17A and significant decrease in microphthalmia associated transcription factor (MITF) expression was observed in lesional and perilesional skin sections. Moreover, qPCR analysis showed significant alterations in the mRNA levels of IL-17A, IL-1β, IFN-γ, TGF-β and their respective receptors in active and stable vitiligo patient samples. Increased levels of IL-17A and IL-1β cytokines and decreased expression of MITF suggested a possible role of these cytokines in dysregulation of melanocytic activity in the lesional skin and hence might be responsible for the progression of active vitiligo. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Targeting IL-17A attenuates neonatal sepsis mortality induced by IL-18

    PubMed Central

    Wynn, James Lawrence; Wilson, Chris S.; Hawiger, Jacek; Scumpia, Philip O.; Marshall, Andrew F.; Liu, Jin-Hua; Zharkikh, Irina; Wong, Hector R.; Lahni, Patrick; Benjamin, John T.; Plosa, Erin J.; Weitkamp, Jörn-Hendrik; Sherwood, Edward R.; Moldawer, Lyle L.; Ungaro, Ricardo; Baker, Henry V.; Lopez, M. Cecilia; McElroy, Steven J.; Colliou, Natacha; Mohamadzadeh, Mansour; Moore, Daniel Jensen

    2016-01-01

    Interleukin (IL)-18 is an important effector of innate and adaptive immunity, but its expression must also be tightly regulated because it can potentiate lethal systemic inflammation and death. Healthy and septic human neonates demonstrate elevated serum concentrations of IL-18 compared with adults. Thus, we determined the contribution of IL-18 to lethality and its mechanism in a murine model of neonatal sepsis. We find that IL-18–null neonatal mice are highly protected from polymicrobial sepsis, whereas replenishing IL-18 increased lethality to sepsis or endotoxemia. Increased lethality depended on IL-1 receptor 1 (IL-1R1) signaling but not adaptive immunity. In genome-wide analyses of blood mRNA from septic human neonates, expression of the IL-17 receptor emerged as a critical regulatory node. Indeed, IL-18 administration in sepsis increased IL-17A production by murine intestinal γδT cells as well as Ly6G+ myeloid cells, and blocking IL-17A reduced IL-18–potentiated mortality to both neonatal sepsis and endotoxemia. We conclude that IL-17A is a previously unrecognized effector of IL-18–mediated injury in neonatal sepsis and that disruption of the deleterious and tissue-destructive IL-18/IL-1/IL-17A axis represents a novel therapeutic approach to improve outcomes for human neonates with sepsis. PMID:27114524

  1. Catabolic cytokine expression in degenerate and herniated human intervertebral discs: IL-1β and TNFα expression profile

    PubMed Central

    Le Maitre, Christine Lyn; Hoyland, Judith Alison; Freemont, Anthony J

    2007-01-01

    Low back pain is a common and debilitating disorder. Current evidence implicates intervertebral disc (IVD) degeneration and herniation as major causes, although the pathogenesis is poorly understood. While several cytokines have been implicated in the process of IVD degeneration and herniation, investigations have predominately focused on Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα). However, to date no studies have investigated the expression of these cytokines simultaneously in IVD degeneration or herniation, or determined which may be the predominant cytokine associated with these disease states. Using quantitative real time PCR and immunohistochemistry we investigated gene and protein expression for IL-1β, TNFα and their receptors in non-degenerate, degenerate and herniated human IVDs. IL-1β gene expression was observed in a greater proportion of IVDs than TNFα (79% versus 59%). Degenerate and herniated IVDs displayed higher levels of both cytokines than non-degenerate IVDs, although in degenerate IVDs higher levels of IL-1β gene expression (1,300 copies/100 ng cDNA) were observed compared to those of TNFα (250 copies of TNFα/100 ng cDNA). Degenerate IVDs showed ten-fold higher IL-1 receptor gene expression compared to non-degenerate IVDs. In addition, 80% of degenerate IVD cells displayed IL-1 receptor immunopositivity compared to only 30% of cells in non-degenerate IVDs. However, no increase in TNF receptor I gene or protein expression was observed in degenerate or herniated IVDs compared to non-degenerate IVDs. We have demonstrated that although both cytokines are produced by human IVD cells, IL-1β is expressed at higher levels and in more IVDs, particularly in more degenerate IVDs (grades 4 to 12). Importantly, this study has highlighted an increase in gene and protein production for the IL-1 receptor type I but not the TNF receptor type I in degenerate IVDs. The data thus suggest that although both cytokines may be involved in the

  2. [HSV-1 based vector mediated IL-1Rα gene for knee osteoarthritis in rabbits].

    PubMed

    Wu, Yi; Li, Jianming; Kong, Ying; Chen, Ding; Liu, Bo; Wang, Wanchun

    2013-06-01

    To investigate the effect and mechanism of herpes simplex virus type 1 (HSV-1) based vector mediated interlukin-1 receptor antagonist (IL-1Rα) gene for knee osteoarthritis in rabbits. HSV-1 vectors containing IL-1Rα genes were constructed and injected into the joint space of the osteoarthritis knee in rabbits for 4 weeks. The rabbits were sacrificed, and the knees were lavaged, dissected and the effect of transgene expression was analyzed. Levels of IL-1Rα and IL-1 expression in the recovered lavage fluids were measured with a cytokine ELISA kit. Cartilage from the lesion areas of medial femoral condyle and synovium were observed with hematoxylin and eosin (cartilage and synovium) and toluidine blue (cartilage). The blank control group was injected pHSV-LacZ vector into rabbit knees. Intra-articular delivery of pHSV-IL-1Rα-LacZ resulted in a significant inhibition of IL-1 level and cartilage degradation compared with those in the blank control group (P<0.05). pHSV-LacZ is an ideal vector to mediate intra-articular gene delivery in the rabbit model of osteoarthritis. Continuous intra-articular expression of IL-1Rα can treat knee osteoarthritis by inhibiting IL-1.

  3. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    PubMed

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Immunostimulatory CpG-oligonucleotides induce functional high affinity IL-2 receptors on B-CLL cells: costimulation with IL-2 results in a highly immunogenic phenotype.

    PubMed

    Decker, T; Schneller, F; Kronschnabl, M; Dechow, T; Lipford, G B; Wagner, H; Peschel, C

    2000-05-01

    CpG-oligodeoxynucleotides (CpG-ODN) have been shown to induce proliferation, cytokine production, and surface molecule regulation in normal and malignant human B cells. In the present study, we investigated the potential of CpG-ODN to induce functional high-affinity receptors in leukemic and normal B cells and the effects of costimulation with IL-2 on proliferation, cytokine secretion, and surface molecule regulation. Highly purified B cells from B-CLL patients and normal controls were stimulated with CpG-ODN with or without IL-2. Expression of CD25 was determined using FACS, and the presence of high-affinity IL-2 receptors was determined by scatchard analysis. Costimulatory effects of IL-2 and CpG-ODN were investigated using proliferation assays, ELISA (IL-6, TNF-alpha), and FACS analysis (CD80, CD86 expression). Reactivity of autologous and allogeneic T cells toward activated B-CLL cells was determined in mixed lymphocyte reactions and Interferon-gamma Elispot assays. The CpG-ODN DSP30 caused a significantly stronger induction of the IL-2 receptor alpha chain in malignant as compared with normal B cells (p = 0.03). This resulted in the expression of functional high-affinity IL-2 receptors in B-CLL cells, but fewer numbers of receptors with less affinity were expressed in normal B cells. Although addition of IL-2 to CpG-ODN-stimulated cells augmented proliferation in both normal B cells and B-CLL cells, no costimulatory effect on cytokine production or surface molecule expression could be observed in normal B cells. In contrast, TNF-alpha and IL-6 production was increased in B-CLL cells, and the expression of CD80 and CD86 was further enhanced when IL-2 was used as a costimulus. Autologous and allogeneic immune recognition of B-CLL cells stimulated with CpG-ODN and IL-2 was increased compared with B-CLL cells stimulated with CpG-ODN alone. Stimulation of B-CLL cells with CpG-ODN and IL-2 might be an attractive strategy for potential immunotherapies for B

  5. β-Nicotinamide Adenine Dinucleotide (β-NAD) Inhibits ATP-Dependent IL-1β Release from Human Monocytic Cells.

    PubMed

    Hiller, Sebastian Daniel; Heldmann, Sarah; Richter, Katrin; Jurastow, Innokentij; Küllmar, Mira; Hecker, Andreas; Wilker, Sigrid; Fuchs-Moll, Gabriele; Manzini, Ivan; Schmalzing, Günther; Kummer, Wolfgang; Padberg, Winfried; McIntosh, J Michael; Damm, Jelena; Zakrzewicz, Anna; Grau, Veronika

    2018-04-10

    While interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine essential for host defense, high systemic levels cause life-threatening inflammatory syndromes. ATP, a stimulus of IL-1β maturation, is released from damaged cells along with β-nicotinamide adenine dinucleotide (β-NAD). Here, we tested the hypothesis that β-NAD controls ATP-signaling and, hence, IL-1β release. Lipopolysaccharide-primed monocytic U937 cells and primary human mononuclear leukocytes were stimulated with 2'(3')- O -(4-benzoyl-benzoyl)ATP trieethylammonium salt (BzATP), a P2X7 receptor agonist, in the presence or absence of β-NAD. IL-1β was measured in cell culture supernatants. The roles of P2Y receptors, nicotinic acetylcholine receptors (nAChRs), and Ca 2+ -independent phospholipase A2 (iPLA2β, PLA2G6) were investigated using specific inhibitors and gene-silencing. Exogenous β-NAD signaled via P2Y receptors and dose-dependently (IC 50 = 15 µM) suppressed the BzATP-induced IL-1β release. Signaling involved iPLA2β, release of a soluble mediator, and nAChR subunit α9. Patch-clamp experiments revealed that β-NAD inhibited BzATP-induced ion currents. In conclusion, we describe a novel triple membrane-passing signaling cascade triggered by extracellular β-NAD that suppresses ATP-induced release of IL-1β by monocytic cells. This cascade links activation of P2Y receptors to non-canonical metabotropic functions of nAChRs that inhibit P2X7 receptor function. The biomedical relevance of this mechanism might be the control of trauma-associated systemic inflammation.

  6. IFN-γ-mediated induction of an apical IL-10 receptor on polarized intestinal epithelia.

    PubMed

    Kominsky, Douglas J; Campbell, Eric L; Ehrentraut, Stefan F; Wilson, Kelly E; Kelly, Caleb J; Glover, Louise E; Collins, Colm B; Bayless, Amanda J; Saeedi, Bejan; Dobrinskikh, Evgenia; Bowers, Brittelle E; MacManus, Christopher F; Müller, Werner; Colgan, Sean P; Bruder, Dunja

    2014-02-01

    Cytokines secreted at sites of inflammation impact the onset, progression, and resolution of inflammation. In this article, we investigated potential proresolving mechanisms of IFN-γ in models of inflammatory bowel disease. Guided by initial microarray analysis, in vitro studies revealed that IFN-γ selectively induced the expression of IL-10R1 on intestinal epithelia. Further analysis revealed that IL-10R1 was expressed predominantly on the apical membrane of polarized epithelial cells. Receptor activation functionally induced canonical IL-10 target gene expression in epithelia, concomitant with enhanced barrier restitution. Furthermore, knockdown of IL-10R1 in intestinal epithelial cells results in impaired barrier function in vitro. Colonic tissue isolated from murine colitis revealed that levels of IL-10R1 and suppressor of cytokine signaling 3 were increased in the epithelium and coincided with increased tissue IFN-γ and IL-10 cytokines. In parallel, studies showed that treatment of mice with rIFN-γ was sufficient to drive expression of IL-10R1 in the colonic epithelium. Studies of dextran sodium sulfate colitis in intestinal epithelial-specific IL-10R1-null mice revealed a remarkable increase in disease susceptibility associated with increased intestinal permeability. Together, these results provide novel insight into the crucial and underappreciated role of epithelial IL-10 signaling in the maintenance and restitution of epithelial barrier and of the temporal regulation of these pathways by IFN-γ.

  7. Automation of [(18) F]fluoroacetaldehyde synthesis: application to a recombinant human interleukin-1 receptor antagonist (rhIL-1RA).

    PubMed

    Morris, Olivia; McMahon, Adam; Boutin, Herve; Grigg, Julian; Prenant, Christian

    2016-06-15

    [(18) F]Fluoroacetaldehyde is a biocompatible prosthetic group that has been implemented pre-clinically using a semi-automated remotely controlled system. Automation of radiosyntheses permits use of higher levels of [(18) F]fluoride whilst minimising radiochemist exposure and enhancing reproducibility. In order to achieve full-automation of [(18) F]fluoroacetaldehyde peptide radiolabelling, a customised GE Tracerlab FX-FN with fully programmed automated synthesis was developed. The automated synthesis of [(18) F]fluoroacetaldehyde is carried out using a commercially available precursor, with reproducible yields of 26% ± 3 (decay-corrected, n = 10) within 45 min. Fully automated radiolabelling of a protein, recombinant human interleukin-1 receptor antagonist (rhIL-1RA), with [(18) F]fluoroacetaldehyde was achieved within 2 h. Radiolabelling efficiency of rhIL-1RA with [(18) F]fluoroacetaldehyde was confirmed using HPLC and reached 20% ± 10 (n = 5). Overall RCY of [(18) F]rhIL-1RA was 5% ± 2 (decay-corrected, n = 5) within 2 h starting from 35 to 40 GBq of [(18) F]fluoride. Specific activity measurements of 8.11-13.5 GBq/µmol were attained (n = 5), a near three-fold improvement of those achieved using the semi-automated approach. The strategy can be applied to radiolabelling a range of peptides and proteins with [(18) F]fluoroacetaldehyde analogous to other aldehyde-bearing prosthetic groups, yet automation of the method provides reproducibility thereby aiding translation to Good Manufacturing Practice manufacture and the transformation from pre-clinical to clinical production. Copyright © 2016 The Authors. Journal of Labelled Compounds and Radiopharmaceuticals published by John Wiley & Sons, Ltd.

  8. Naloxone Antagonizes Soman-induced Central Respiratory Depression in Rats.

    PubMed

    Škrbić, Ranko; Stojiljković, Miloš P; Ćetković, Slavko S; Dobrić, Silva; Jeremić, Dejan; Vulović, Maja

    2017-06-01

    The influence of naloxone on respiration impaired by the highly toxic organophosphate nerve agent soman in anaesthetized rats was investigated. Soman, administered in a dose that was ineffective in blocking the electrically induced contractions of the phrenic nerve-diaphragm preparation in situ, induced a complete block of the spontaneous respiratory movements of the diaphragm, indicating the domination of central over the peripheral effects. Naloxone dose-dependently antagonized the soman-induced respiratory blockade. Atropine, at a dose that was per se ineffective in counteracting soman-induced respiratory depression, potentiated the protective effects of naloxone and completely restored respiration. Naloxone remained completely ineffective in antagonizing respiratory depression induced by the muscarinic receptor agonist the oxotremorine. It is assumed that naloxone antagonizes soman-induced respiratory inhibition by blocking endogenous opioidergic respiratory control pathways that are independent of the stimulation of muscarinic receptors. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. Role of IL-1 beta and COX2 in silica-induced IL-6 release and loss of pneumocytes in co-cultures.

    PubMed

    Herseth, Jan I; Refsnes, Magne; Låg, Marit; Schwarze, Per E

    2009-10-01

    The pro-inflammatory cytokines IL-1 beta, TNF-alpha and IL-6 are of great importance in the development of silica-induced lung damage and repair. In this study we investigated the role of IL-1 beta, TNF-alpha and COX2 in silica-induced regulation of IL-6 release and pneumocyte loss in various mono- and co-cultures of monocytes, pneumocytes and endothelial cells. All co-cultures with monocytes, and especially cultures including endothelial cells, showed an increase of silica-induced release of IL-6 compared to the respective monocultures. Treatment with the antagonist IL-1 ra strongly decreased IL-1 beta and IL-6 release in contact co-cultures of monocytes and pneumocytes. COX2 up-regulation by silica and IL-1 beta was eliminated by IL-1 ra. Inhibition of COX2 markedly reduced both IL-1 beta and IL-6 release. IL-1 ra was more effective than COX2-inhibition in reduction of IL-6, but not of IL-1 beta. Silica-induced pneumocyte loss was reduced by IL-1 beta, but this effect was not counteracted by the IL-1 receptor antagonist. Our findings suggest that silica-induced IL-6 release from pneumocytes is mainly mediated via IL-1 beta release from the monocytes, via both COX2-dependent and -independent pathways. Notably, COX2-derived mediators seem crucial for a positive feed-back regulation of IL-1 beta release from the monocytes. In contrast to silica-induced IL-6, the reduction in pneumocyte loss by IL-1 beta does not seem to be regulated through an IL-1R1-dependent mechanism.

  10. Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1β/IL-17A axis.

    PubMed

    Ning, C; Li, Y-Y; Wang, Y; Han, G-C; Wang, R-X; Xiao, H; Li, X-Y; Hou, C-M; Ma, Y-F; Sheng, D-S; Shen, B-F; Feng, J-N; Guo, R-F; Li, Y; Chen, G-J

    2015-11-01

    Colitis-associated colorectal cancer (CAC) is the most serious complication of inflammatory bowel disease (IBD). Excessive complement activation has been shown to be involved in the pathogenesis of IBD. However, its role in the development of CAC is largely unknown. Here, using a CAC model induced by combined administration of azoxymethane (AOM) and dextran sulfate sodium (DSS), we demonstrated that complement activation was required for CAC pathogenesis. Deficiency in key components of complement (e.g., C3, C5, or C5a receptor) rendered tumor repression in mice subjected to AOM/DSS. Mechanistic investigation revealed that complement ablation dramatically reduced proinflammatory cytokine interleukin (IL)-1β levels in the colonic tissues that was mainly produced by infiltrating neutrophils. IL-1β promoted colon carcinogenesis by eliciting IL-17 response in intestinal myeloid cells. Furthermore, complement-activation product C5a represented a potent inducer for IL-1β in neutrophil, accounting for downregulation of IL-1β levels in the employed complement-deficient mice. Overall, our study proposes a protumorigenic role of complement in inflammation-related colorectal cancer and that the therapeutic strategies targeting complement may be beneficial for the treatment of CAC in clinic.

  11. IL-6 Overexpression in ERG-Positive Prostate Cancer Is Mediated by Prostaglandin Receptor EP2.

    PubMed

    Merz, Constanze; von Mässenhausen, Anne; Queisser, Angela; Vogel, Wenzel; Andrén, Ove; Kirfel, Jutta; Duensing, Stefan; Perner, Sven; Nowak, Michael

    2016-04-01

    Prostate cancer is the most diagnosed cancer in men and multiple risk factors and genetic alterations have been described. The TMPRSS2-ERG fusion event and the overexpression of the transcription factor ERG are present in approximately 50% of all prostate cancer patients, however, the clinical outcome is still controversial. Prostate tumors produce various soluble factors, including the pleiotropic cytokine IL-6, regulating cellular processes such as proliferation and metastatic segregation. Here, we used prostatectomy samples in a tissue microarray format and analyzed the co-expression and the clinicopathologic data of ERG and IL-6 using immunohistochemical double staining and correlated the read-out with clinicopathologic data. Expression of ERG and IL-6 correlated strongly in prostate tissue samples. Forced expression of ERG in prostate tumor cell lines resulted in significantly increased secretion of IL-6, whereas the down-regulation of ERG decreased IL-6 secretion. By dissecting the underlying mechanism in prostate tumor cell lines we show the ERG-mediated up-regulation of the prostanoid receptors EP2 and EP3. The prostanoid receptor EP2 was overexpressed in human prostate cancer tissue. Furthermore, the proliferation rate and IL-6 secretion in DU145 cells was reduced after treatment with EP2-receptor antagonist. Collectively, our study shows that the expression of ERG in prostate cancer is linked to the expression of IL-6 mediated by the prostanoid receptor EP2. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. IL-36 receptor deletion attenuates lung injury and decreases mortality in murine influenza pneumonia.

    PubMed

    Aoyagi, T; Newstead, M W; Zeng, X; Kunkel, S L; Kaku, M; Standiford, T J

    2017-07-01

    Influenza virus causes a respiratory disease in humans that can progress to lung injury with fatal outcome. The interleukin (IL)-36 cytokines are newly described IL-1 family cytokines that promote inflammatory responses via binding to the IL-36 receptor (IL-36R). The mechanism of expression and the role of IL-36 cytokines are poorly understood. Here, we investigated the role of IL-36 cytokines in modulating the innate inflammatory response during influenza virus-induced pneumonia in mice. The intranasal administration of influenza virus upregulated IL-36α mRNA and protein production in the lungs. In vitro, influenza virus-mediated IL-36α but not IL-36γ is induced and secreted from alveolar epithelial cells (AECs) through both a caspase-1 and caspase-3/7 dependent pathway. IL-36α was detected in microparticles shed from AECs and promoted the production of pro-inflammatory cytokines and chemokines in respiratory cells. IL-36R-deficient mice were protected from influenza virus-induced lung injury and mortality. Decreased mortality was associated with significantly reduced early accumulation of neutrophils and monocytes/macrophages, activation of lymphocytes, production of pro-inflammatory cytokines and chemokines, and permeability of the alveolar-epithelial barrier in despite impaired viral clearance. Taken together, these data indicate that IL-36 ligands exacerbate lung injury during influenza virus infection.

  13. Effect of blockage of the endocannabinoid system by CB(1) antagonism on cardiovascular risk.

    PubMed

    Mach, François; Montecucco, Fabrizio; Steffens, Sabine

    2009-01-01

    The endocannabinoid system is a crucial player in the inflammatory processes underlying atherosclerosis. Recently, basic research studies and animal models have strongly supported the role of the endocannabinoid system not only in the regulation of classical cardiovascular risk factors (including lipid profile and glucose homeostasis), but also in the activation of immune cells and inflammatory mediators. Clinical trials investigating treatment with rimonabant (a selective antagonist of the cannabinoid type 1 receptor) have suggested a beneficial effect of this drug in the management of obesity. Further studies are needed to explore a possible use for rimonabant in treating type 2 diabetes and acute and chronic cardiovascular disease. Despite the slight increase in adverse events (mainly psychiatric), which has led to the recent withdrawal of rimonabant from the market, CB(1) receptor antagonism might represent a very promising therapeutic strategy to reduce the cardiovascular risk. In the present review, we focused on the most important experimental investigations into the role of the endocannabinoid system in atherosclerosis and cardiovascular risk.

  14. Engineered Interleukin-2 Antagonists for the Inhibition of Regulatory T cells

    PubMed Central

    Liu, David V.; Maier, Lisa M.; Hafler, David A.; Wittrup, K. Dane

    2014-01-01

    The immunosuppressive effects of CD4+ CD25high regulatory T cells interfere with anti-tumor immune responses in cancer patients. Here, we present a novel class of engineered human Interleukin (IL)-2 analogues that antagonize the IL-2 receptor, for inhibiting regulatory T cell suppression. These antagonists have been engineered for high affinity to the α subunit of the IL-2 receptor and very low affinity to either the β or γ subunit, resulting in a signaling-deficient IL-2 analogue that sequesters the IL-2 receptor α subunit from wild type IL-2. Two variants, “V91R” and “Q126T” with residue substitutions that disrupt the β and γ subunit binding interfaces, respectively, have been characterized in both a T cell line and in human primary regulatory T cells. These mutants retain their high affinity binding to IL-2 receptor α subunit, but do not activate STAT5 phosphorylation or stimulate T cell growth. The two mutants competitively antagonize wild-type IL-2 signaling through the IL-2 receptor with similar efficacy, with inhibition constants of 183 pM for V91R and 216 pM for Q126T. Here, we present a novel approach to CD25-mediated Treg inhibition, with the use of an engineered human IL-2 analogue that antagonizes the IL-2 receptor. PMID:19816193

  15. IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells

    PubMed Central

    Freund, Ariane; Chauveau, Corine; Brouillet, Jean-Paul; Lucas, Annick; Lacroix, Matthieu; Licznar, Anne; Vignon, Françoise; Lazennec, Gwendal

    2003-01-01

    Estrogen receptor (ER) status is an important parameter in breast cancer management as ER-positive breast cancers have a better prognosis than ER-negative tumors. This difference comes essentially from the lower aggressiveness and invasiveness of ER-positive tumors. Here, we demonstrate, that IL-8 was clearly overexpressed in most ER-negative breast, ovary cell lines and breast tumor samples tested, whereas no significant IL-8 level could be detected in ER-positive breast or ovarian cell lines. We have also cloned human IL-8 from ER-negative MDA-MB-231 cells and we show that IL-8 produced by breast cancer cells is identical to monocyte-derived IL-8. Interestingly, the invasion potential of ER-negative breast cancer cells is associated at least in part with expression of interleukin-8 (IL-8), but not with IL-8 receptors levels. Moreover, IL-8 increases the invasiveness of ER-positive breast cancer cells by 2 fold, thus confirming the invasion-promoting role of IL-8. On the other hand, exogenous expression of estrogen receptors in ER-negative cells led to a decrease of IL-8 levels. In summary, our data show that IL-8 expression is negatively linked to ER-status of breast and ovarian cancer cells. We also support the idea that IL-8 expression is associated with a higher invasiveness potential of cancer cells in vitro, which suggests that IL-8 could be a novel marker of tumor aggressiveness. PMID:12527894

  16. Association study of schizophrenia and IL-2 receptor {beta} chain gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimgaonkar, V.L.; Yang, Z.W.; Zhang, X.R.

    1995-10-09

    A case-control association study was conducted in Caucasian patients with schizophrenia (DSM-III-R, n = 42) and unaffected controls (n = 47) matched for ethnicity and area of residence. Serum interleukin-2 receptor (IL-2R) concentrations, as well as a dinucleotide repeat polymorphism in the IL-2RP chain gene, were examined in both groups. No significant differences in IL-2R concentrations or in the distribution of the polymorphism were noted. This study does not support an association between schizophrenia and the IL-2RP gene locus, contrary to the suggestive evidence from linkage analysis in multicase families. 17 refs., 2 tabs.

  17. Gain-of-function mutations in interleukin-7 receptor-α (IL7R) in childhood acute lymphoblastic leukemias

    PubMed Central

    Shochat, Chen; Tal, Noa; Bandapalli, Obul R.; Palmi, Chiara; Ganmore, Ithamar; te Kronnie, Geertruy; Cario, Gunnar; Cazzaniga, Giovanni; Kulozik, Andreas E.; Stanulla, Martin; Schrappe, Martin; Biondi, Andrea; Basso, Giuseppe; Bercovich, Dani; Muckenthaler, Martina U.

    2011-01-01

    Interleukin-7 receptor α (IL7R) is required for normal lymphoid development. Loss-of-function mutations in this gene cause autosomal recessive severe combined immune deficiency. Here, we describe somatic gain-of-function mutations in IL7R in pediatric B and T acute lymphoblastic leukemias. The mutations cause either a serine-to-cysteine substitution at amino acid 185 in the extracellular domain (4 patients) or in-frame insertions and deletions in the transmembrane domain (35 patients). In B cell precursor leukemias, the mutations were associated with the aberrant expression of cytokine receptor-like factor 2 (CRLF2), and the mutant IL-7R proteins formed a functional receptor with CRLF2 for thymic stromal lymphopoietin (TSLP). Biochemical and functional assays reveal that these IL7R mutations are activating mutations conferring cytokine-independent growth of progenitor lymphoid cells. A cysteine, included in all but three of the mutated IL-7R alleles, is essential for the constitutive activation of the receptor. This is the first demonstration of gain-of-function mutations of IL7R. Our current and recent observations of mutations in IL7R and CRLF2, respectively suggest that the addition of cysteine to the juxtamembranous domains is a general mechanism for mutational activation of type I cytokine receptors in leukemia. PMID:21536738

  18. Thalidomide suppressed IL-1beta while enhancing TNF-alpha and IL-10, when cells in whole blood were stimulated with lipopolysaccharide.

    PubMed

    Shannon, Edward; Noveck, Robert; Sandoval, Felipe; Kamath, Burde

    2008-01-01

    Thalidomide is used to treat erythema nodosum leprosum (ENL). The events that precipitate this inflammatory reaction, which may occur in multibacillary leprosy patients, and the mechanism by which thalidomide arrest ENL, are not known. Thalidomide's ability to inhibit tumor necrosis factor alpha (TNF-alpha) in vitro has been proposed as a partial explanation of its effective treatment of ENL. In in vitro assays, thalidomide can enhance or suppress TNF-alpha. This is dependent on the stimulant used to evoke TNF-alpha; the procedure used to isolate the mononuclear cells from blood, and the predominant mononuclear cell type in the culture. To avoid artifacts that may occur during isolation of mononuclear cells from blood, we stimulated normal human blood with LPS and evaluated the effect of thalidomide and dexamethasone on TNF-alpha, and other inflammatory cytokines and biomarkers. Thalidomide suppressed interleukin 1 beta (IL-1beta) (p = 0.007), and it enhanced TNF-alpha (p = 0.007) and interleukin 10 (IL-10) (p = 0.031). Dexamethasone enhanced IL-10 (p = 0.013) and suppressed IL-1beta, TNF-alpha, interleukin 6 (IL-6), and interleukin 8 (IL-8) (p = 0.013). The two drugs did not suppress: C-reactive protein (CRP), Ig-superfamily cell-adhesion molecule 1 (ICAM 1), tumor necrosis factor receptor 1 (TNFR1), tumor necrosis factor receptor 2 (TNFR2), or amyloid A. In vitro and in vivo evidence is accumulating that TNF-alpha is not the primary cytokine targeted by thalidomide in ENL and other inflammatory conditions.

  19. Membrane Microdomains and Cytoskeleton Organization Shape and Regulate the IL-7 Receptor Signalosome in Human CD4 T-cells*

    PubMed Central

    Tamarit, Blanche; Bugault, Florence; Pillet, Anne-Hélène; Lavergne, Vincent; Bochet, Pascal; Garin, Nathalie; Schwarz, Ulf; Thèze, Jacques; Rose, Thierry

    2013-01-01

    Interleukin (IL)-7 is the main homeostatic regulator of CD4 T-lymphocytes (helper) at both central and peripheral levels. Upon activation by IL-7, several signaling pathways, mainly JAK/STAT, PI3K/Akt and MAPK, induce the expression of genes involved in T-cell differentiation, activation, and proliferation. We have analyzed the early events of CD4 T-cell activation by IL-7. We have shown that IL-7 in the first few min induces the formation of cholesterol-enriched membrane microdomains that compartmentalize its activated receptor and initiate its anchoring to the cytoskeleton, supporting the formation of the signaling complex, the signalosome, on the IL-7 receptor cytoplasmic domains. Here we describe by stimulated emission depletion microscopy the key roles played by membrane microdomains and cytoskeleton transient organization in the IL-7-regulated JAK/STAT signaling pathway. We image phospho-STAT5 and cytoskeleton components along IL-7 activation kinetics using appropriate inhibitors. We show that lipid raft inhibitors delay and reduce IL-7-induced JAK1 and JAK3 phosphorylation. Drug-induced disassembly of the cytoskeleton inhibits phospho-STAT5 formation, transport, and translocation into the nucleus that controls the transcription of genes involved in T-cell activation and proliferation. We fit together the results of these quantitative analyses and propose the following mechanism. Activated IL-7 receptors embedded in membrane microdomains induce actin-microfilament meshwork formation, anchoring microtubules that grow radially from rafted receptors to the nuclear membrane. STAT5 phosphorylated by signalosomes are loaded on kinesins and glide along the microtubules across the cytoplasm to reach the nucleus 2 min after IL-7 stimulation. Radial microtubules disappear 15 min later, while transversal microtubules, independent of phospho-STAT5 transport, begin to bud from the microtubule organization center. PMID:23329834

  20. Novel IL1RAPL1 mutations associated with intellectual disability impair synaptogenesis.

    PubMed

    Ramos-Brossier, Mariana; Montani, Caterina; Lebrun, Nicolas; Gritti, Laura; Martin, Christelle; Seminatore-Nole, Christine; Toussaint, Aurelie; Moreno, Sarah; Poirier, Karine; Dorseuil, Olivier; Chelly, Jamel; Hackett, Anna; Gecz, Jozef; Bieth, Eric; Faudet, Anne; Heron, Delphine; Frank Kooy, R; Loeys, Bart; Humeau, Yann; Sala, Carlo; Billuart, Pierre

    2015-02-15

    Mutations in interleukin-1 receptor accessory protein like 1 (IL1RAPL1) gene have been associated with non-syndromic intellectual disability (ID) and autism spectrum disorder. This protein interacts with synaptic partners like PSD-95 and PTPδ, regulating the formation and function of excitatory synapses. The aim of this work was to characterize the synaptic consequences of three IL1RAPL1 mutations, two novel causing the deletion of exon 6 (Δex6) and one point mutation (C31R), identified in patients with ID. Using immunofluorescence and electrophysiological recordings, we examined the effects of IL1RAPL1 mutant over-expression on synapse formation and function in cultured rodent hippocampal neurons. Δex6 but not C31R mutation leads to IL1RAPL1 protein instability and mislocalization within dendrites. Analysis of different markers of excitatory synapses and sEPSC recording revealed that both mutants fail to induce pre- and post-synaptic differentiation, contrary to WT IL1RAPL1 protein. Cell aggregation and immunoprecipitation assays in HEK293 cells showed a reduction of the interaction between IL1RAPL1 mutants and PTPδ that could explain the observed synaptogenic defect in neurons. However, these mutants do not affect all cellular signaling because their over-expression still activates JNK pathway. We conclude that both mutations described in this study lead to a partial loss of function of the IL1RAPL1 protein through different mechanisms. Our work highlights the important function of the trans-synaptic PTPδ/IL1RAPL1 interaction in synaptogenesis and as such in ID in the patients. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. IL-1RN and IL-1β Polymorphism and ARV-Associated Hepatotoxicity

    PubMed Central

    Samani, Dharmesh; Nema, Vijay; Gangakhedkar, R. R.

    2018-01-01

    The severity of hepatic injury depends upon cytokines. Previous studies associated IL-1RN allele 2 with IL-1β production. Hence, we examined the association of IL-1 RN and IL-1β polymorphisms with ARV-associated hepatotoxicity. Genotyping of IL-1RN (VNTR), IL-1β (-511C/T) polymorphisms was done in 162 HIV-infected patients, 34 with ARV hepatotoxicity, 128 without hepatotoxicity, and 152 healthy controls using PCR and PCR-RFLP method. The haplotypes 1T and 2C enhanced the risk for severe hepatotoxicity (OR = 1.41, P = 0.25; OR = 1.67, P = 0.31). IL-1β-511TT genotype significantly represented among tobacco using HIV-infected individuals compared to nonusers (OR = 3.74, P = 0.05). IL-1β-511TT genotype among alcohol users increased the risk for hepatotoxicity (OR = 1.80, P = 0.90). IL-1β-511CT and -511TT genotypes overrepresented in alcohol using HIV-infected individuals (OR = 2.29, P = 0.27; OR = 2.64, P = 0.19). IL-RN 2/2 and 1/3 genotypes represented higher in nevirapine using hepatotoxicity patients (OR = 1.42, P = 0.64, OR = 8.79, P = 0.09). IL-1β-511CT and -511 TT genotypes among nevirapine users enhanced the risk for severe hepatotoxicity (OR = 4.29, P = 0.20; OR = 1.95, P = 0.56). IL-1β-511CT and -511TT genotypes were overrepresented in combined nevirapine and alcohol using HIV-infected individuals as compared to nevirapine users and alcohol nonusers (OR = 2.56, P = 0.26; OR = 2.84, P = 0.24). IL-1β-511TT genotype with tobacco, alcohol, and nevirapine usage revealed a trend of risk for the development of ARV-associated hepatotoxicity and its severity.

  2. Dopamine D1 Receptors Are Not Critical for Opiate Reward but Can Mediate Opiate Memory Retrieval in a State-Dependent Manner

    PubMed Central

    Vargas-Perez, Hector; George, Susan R.; van der Kooy, Derek

    2013-01-01

    Although D1 receptor knockout mice demonstrate normal morphine place preferences, antagonism of basolateral amygdala (BLA) D1 receptors only during drug-naive rat conditioning has been reported to inhibit the expression of a morphine place preference. One possible explanation for this result is state-dependent learning. That is, the omission of the intra-BLA infusion cue during testing — which acts as a potent discriminative stimulus — may have prevented the recall of a morphine-environment association and therefore, the consequent expression of a morphine place preference. To examine this possibility, we tested whether intra-BLA infusion of the D1-receptor antagonist SCH23390 during both training and testing might reveal a morphine place preference. Our results suggest that in previously drug-naive animals, D1 receptor antagonism during testing restores the opiate conditioned place preference that is normally absent when D1 receptors are blocked only during training, suggesting that BLA D1 receptors can mediate state-dependent memory retrieval. PMID:23538064

  3. Toll-like receptor 9 mediates oral bacteria-induced IL-8 expression in gingival epithelial cells.

    PubMed

    Kim, Youngsook; Jo, Ah-ram; Jang, Da Hyun; Cho, Yong-Joon; Chun, Jongsik; Min, Byung-Moo; Choi, Youngnim

    2012-07-01

    Previously, we reported that various oral bacteria regulate interleukin (IL)-8 production differently in gingival epithelial cells. The aim of this study was to characterize the pattern recognition receptor(s) that mediate bacteria-induced IL-8 expression. Among ligands that mimic bacterial components, only a Toll-like receptor (TLR) 9 ligand enhanced IL-8 expression as determined by ELISA. Both normal and immortalized human gingival epithelial (HOK-16B) cells expressed TLR9 intracellularly and showed enhanced IL-8 expression in response to CpG-oligonucleotide. The ability of eight strains of four oral bacterial species to induce IL-8 expression in HOK-16B cells, and their invasion capacity were examined in the absence or presence of 2% human serum. The ability of purified bacterial DNA (bDNA) to induce IL-8 was also examined. Six out of eight strains increased IL-8 production in the absence of serum. Usage of an endosomal acidification blocker or a TLR9 antagonist inhibited the IL-8 induction by two potent strains. In the presence of serum, many strains lost the ability to induce IL-8 and presented substantially reduced invasion capacity. The IL-8-inducing ability of bacteria in the absence or presence of serum showed a strong positive correlation with their invasion index. The IL-8-inducing ability of bacteria in the absence of human serum was also correlated with the immunostimulatory activity of its bDNA. The observed immunostimulatory activity of the bDNA could not be linked to its CpG motif content. In conclusion, oral bacteria induce IL-8 in gingival epithelial cells through TLR9 and the IL-8-inducing ability depends on the invasive capacity and immunostimulating DNA.

  4. A novel antagonist of the prostaglandin E(2) EP(4) receptor inhibits Th1 differentiation and Th17 expansion and is orally active in arthritis models.

    PubMed

    Chen, Q; Muramoto, K; Masaaki, N; Ding, Y; Yang, H; Mackey, M; Li, W; Inoue, Y; Ackermann, K; Shirota, H; Matsumoto, I; Spyvee, M; Schiller, S; Sumida, T; Gusovsky, F; Lamphier, M

    2010-05-01

    Rheumatoid arthritis (RA) is an autoimmune disorder involving subsets of activated T cells, in particular T helper (Th) 1 and Th17 cells, which infiltrate and damage tissues and induce inflammation. Prostaglandin E(2) (PGE(2)) enhances the Th17 response, exacerbates collagen-induced arthritis (CIA) and promotes inflammatory pain. The current study investigated whether selective antagonism of the PGE(2) EP(4) receptor would suppress Th1/Th17 cell development and inflammatory arthritis in animal models of RA. Effects of PGE(2) and a novel EP(4) receptor antagonist ER-819762 on Th1 differentiation, interleukin-23 (IL-23) production by dendritic cells (DCs), and Th17 development were assessed in vitro. The effect of ER-819762 was evaluated in CIA and glucose-6-phosphate isomerase (GPI)-induced arthritis models. In addition, the effects of ER-819762 on pain were evaluated in a model of chronic inflammatory pain induced by complete Freund's adjuvant (CFA) in the rat. Stimulation of the EP(4) receptor enhanced Th1 differentiation via phosphatidylinositol 3 kinase signalling, selectively promoted Th17 cell expansion, and induced IL-23 secretion by activated DCs, effects suppressed by ER-819762 or anti-PGE(2) antibody. Oral administration of ER-19762 suppressed Th1 and Th17 cytokine production, suppressed disease in collagen- and GPI-induced arthritis in mice, and suppressed CFA-induced inflammatory pain in rats. PGE(2) stimulates EP(4) receptors to promote Th1 differentiation and Th17 expansion and is critically involved in development of arthritis in two animal models. Selective suppression of EP(4) receptor signalling may have therapeutic value in RA both by modifying inflammatory arthritis and by relieving pain.

  5. Generation and characterization of ABT-981, a dual variable domain immunoglobulin (DVD-Ig(TM)) molecule that specifically and potently neutralizes both IL-1α and IL-1β.

    PubMed

    Lacy, Susan E; Wu, Chengbin; Ambrosi, Dominic J; Hsieh, Chung-Ming; Bose, Sahana; Miller, Renee; Conlon, Donna M; Tarcsa, Edit; Chari, Ravi; Ghayur, Tariq; Kamath, Rajesh V

    2015-01-01

    Interleukin-1 (IL-1) cytokines such as IL-1α, IL-1β, and IL-1Ra contribute to immune regulation and inflammatory processes by exerting a wide range of cellular responses, including expression of cytokines and chemokines, matrix metalloproteinases, and nitric oxide synthetase. IL-1α and IL-1β bind to IL-1R1 complexed to the IL-1 receptor accessory protein and induce similar physiological effects. Preclinical and clinical studies provide significant evidence for the role of IL-1 in the pathogenesis of osteoarthritis (OA), including cartilage degradation, bone sclerosis, and synovial proliferation. Here, we describe the generation and characterization of ABT-981, a dual variable domain immunoglobulin (DVD-Ig) of the IgG1/k subtype that specifically and potently neutralizes IL-1α and IL-1β. In ABT-981, the IL-1β variable domain resides in the outer domain of the DVD-Ig, whereas the IL-1α variable domain is located in the inner position. ABT-981 specifically binds to IL-1α and IL-1β, and is physically capable of binding 2 human IL-1α and 2 human IL-1β molecules simultaneously. Single-dose intravenous and subcutaneous pharmacokinetics studies indicate that ABT-981 has a half-life of 8.0 to 10.4 d in cynomolgus monkey and 10.0 to 20.3 d in rodents. ABT-981 exhibits suitable drug-like-properties including affinity, potency, specificity, half-life, and stability for evaluation in human clinical trials. ABT-981 offers an exciting new approach for the treatment of OA, potentially addressing both disease modification and symptom relief as a disease-modifying OA drug.

  6. Mutations in the calcium-related gene IL1RAPL1 are associated with autism.

    PubMed

    Piton, Amélie; Michaud, Jacques L; Peng, Huashan; Aradhya, Swaroop; Gauthier, Julie; Mottron, Laurent; Champagne, Nathalie; Lafrenière, Ronald G; Hamdan, Fadi F; Joober, Ridha; Fombonne, Eric; Marineau, Claude; Cossette, Patrick; Dubé, Marie-Pierre; Haghighi, Pejmun; Drapeau, Pierre; Barker, Philip A; Carbonetto, Salvatore; Rouleau, Guy A

    2008-12-15

    In a systematic sequencing screen of synaptic genes on the X chromosome, we have identified an autistic female without mental retardation (MR) who carries a de novo frameshift Ile367SerfsX6 mutation in Interleukin-1 Receptor Accessory Protein-Like 1 (IL1RAPL1), a gene implicated in calcium-regulated vesicle release and dendrite differentiation. We showed that the function of the resulting truncated IL1RAPL1 protein is severely altered in hippocampal neurons, by measuring its effect on neurite outgrowth activity. We also sequenced the coding region of the close related member IL1RAPL2 and of NCS-1/FREQ, which physically interacts with IL1RAPL1, in a cohort of subjects with autism. The screening failed to identify non-synonymous variant in IL1RAPL2, whereas a rare missense (R102Q) in NCS-1/FREQ was identified in one autistic patient. Furthermore, we identified by comparative genomic hybridization a large intragenic deletion of exons 3-7 of IL1RAPL1 in three brothers with autism and/or MR. This deletion causes a frameshift and the introduction of a premature stop codon, Ala28GlufsX15, at the very beginning of the protein. All together, our results indicate that mutations in IL1RAPL1 cause a spectrum of neurological impairments ranging from MR to high functioning autism.

  7. Regiospecific Methylation of a Dietary Flavonoid Scaffold Selectively Enhances IL-1β Production following Toll-like Receptor 2 Stimulation in THP-1 Monocytes*

    PubMed Central

    Lim, Eng-Kiat; Mitchell, Paul J.; Brown, Najmeeyah; Drummond, Rebecca A.; Brown, Gordon D.; Kaye, Paul M.; Bowles, Dianna J.

    2013-01-01

    It is now recognized that innate immunity to intestinal microflora plays a significant role in mediating immune health, and modulation of microbial sensing may underpin the impact of plant natural products in the diet or when used as nutraceuticals. In this context, we have examined five classes of plant-derived flavonoids (flavonols, flavones, flavanones, catechins, and cyanidin) for their ability to regulate cytokine release induced by the Toll-like receptor 2 (TLR2) agonist Pam3CSK4. We found that the flavonols selectively co-stimulated IL-1β secretion but had no impact on the secretion of IL-6. Importantly, this costimulation of TLR2-induced cytokine secretion was dependent on regiospecific methylation of the flavonol scaffold with a rank order of quercetin-3,4′-dimethylether > quercetin-3-methylether > casticin. The mechanism underpinning this costimulation did not involve enhanced inflammasome activation. In contrast, the methylated flavonols enhanced IL-1β gene expression through transcriptional regulation, involving mechanisms that operate downstream of the initial NF-κB and STAT1 activation events. These studies demonstrate an exquisite level of control of scaffold bioactivity by regiospecific methylation, with important implications for understanding how natural products affect innate immunity and for their development as novel immunomodulators for clinical use. PMID:23760261

  8. Single-nucleotide polymorphisms of TNFA and IL1 in allergic rhinitis.

    PubMed

    Nasiri, R; Amirzargar, A Akbar; Movahedi, M; Hirbod-Mobarakeh, A; Farhadi, E; Behniafard, N; Tavakkol, M; Ansaripour, B; Moradi, B; Zare, A; Rezaei, N

    2013-01-01

    Allergic rhinitis is a complex polygenic disorder of the upper respiratory tract. Given that proinflammatory cytokines such as tumor necrosis factor (TNF) and interleukin (IL) 1 seem to play a role in the development of allergic rhinitis, we evaluated the associations between various single-nucleotide polymorphisms (SNPs) of the TNF and IL1 genes in a case-control study. The study population comprised 98 patients with allergic rhinitis. Genotyping was performed using polymerase chain reaction with sequence-specific primers for 2 TNFA promoter variants (rs1800629 and rs361525), 1 variant in the promoter region of IL1A (rs1800587), 2 SNPs in the IL1B gene (rs16944 and rs1 143634), 1 variant in the IL1 receptor (rs2234650), and 1 in IL1RA (rs315952). Patients who were homozygous for the T allele of rs16944 in IL1B had an 8.1-fold greater risk of allergic rhinitis than those with the C allele. In TNFA, a significant relationship was also detected between rs1800629 and rs361525 and allergic rhinitis. Except for rs1800587 in IL1A and rs315952 in IL1RA, significant differences were found between the patient and control groups for all other SNPs. We found that allelic variants in the TNFA and IL1 genes were not only associated with the risk of developing allergic rhinitis, but also affected disease course and severity.

  9. IL-34 and CSF-1 display an equivalent macrophage differentiation ability but a different polarization potential.

    PubMed

    Boulakirba, Sonia; Pfeifer, Anja; Mhaidly, Rana; Obba, Sandrine; Goulard, Michael; Schmitt, Thomas; Chaintreuil, Paul; Calleja, Anne; Furstoss, Nathan; Orange, François; Lacas-Gervais, Sandra; Boyer, Laurent; Marchetti, Sandrine; Verhoeyen, Els; Luciano, Frederic; Robert, Guillaume; Auberger, Patrick; Jacquel, Arnaud

    2018-01-10

    CSF-1 and IL-34 share the CSF-1 receptor and no differences have been reported in the signaling pathways triggered by both ligands in human monocytes. IL-34 promotes the differentiation and survival of monocytes, macrophages and osteoclasts, as CSF-1 does. However, IL-34 binds other receptors, suggesting that differences exist in the effect of both cytokines. In the present study, we compared the differentiation and polarization abilities of human primary monocytes in response to CSF-1 or IL-34. CSF-1R engagement by one or the other ligands leads to AKT and caspase activation and autophagy induction through expression and activation of AMPK and ULK1. As no differences were detected on monocyte differentiation, we investigated the effect of CSF-1 and IL-34 on macrophage polarization into the M1 or M2 phenotype. We highlighted a striking increase in IL-10 and CCL17 secretion in M1 and M2 macrophages derived from IL-34 stimulated monocytes, respectively, compared to CSF-1 stimulated monocytes. Variations in the secretome induced by CSF-1 or IL-34 may account for their different ability to polarize naïve T cells into Th1 cells. In conclusion, our findings indicate that CSF-1 and IL-34 exhibit the same ability to induce human monocyte differentiation but may have a different ability to polarize macrophages.

  10. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages.

    PubMed

    Bhattacharjee, Ashish; Shukla, Meenakshi; Yakubenko, Valentin P; Mulya, Anny; Kundu, Suman; Cathcart, Martha K

    2013-01-01

    Monocytes/macrophages are innate immune cells that play a crucial role in the resolution of inflammation. In the presence of the Th2 cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13), they display an anti-inflammatory profile and this activation pathway is known as alternative activation. In this study we compare and differentiate pathways mediated by IL-4 and IL-13 activation of human monocytes/macrophages. Here we report differential regulation of IL-4 and IL-13 signaling in monocytes/macrophages starting from IL-4/IL-13 cytokine receptors to Jak/Stat-mediated signaling pathways that ultimately control expression of several inflammatory genes. Our data demonstrate that although the receptor-associated tyrosine kinases Jak2 and Tyk2 are activated after the recruitment of IL-13 to its receptor (containing IL-4Rα and IL-13Rα1), IL-4 stimulates Jak1 activation. We further show that Jak2 is upstream of Stat3 activation and Tyk2 controls Stat1 and Stat6 activation in response to IL-13 stimulation. In contrast, Jak1 regulates Stat3 and Stat6 activation in IL-4-induced monocytes. Our results further reveal that although IL-13 utilizes both IL-4Rα/Jak2/Stat3 and IL-13Rα1/Tyk2/Stat1/Stat6 signaling pathways, IL-4 can use only the IL-4Rα/Jak1/Stat3/Stat6 cascade to regulate the expression of some critical inflammatory genes, including 15-lipoxygenase, monoamine oxidase A (MAO-A), and the scavenger receptor CD36. Moreover, we demonstrate here that IL-13 and IL-4 can uniquely affect the expression of particular genes such as dual-specificity phosphatase 1 and tissue inhibitor of metalloprotease-3 and do so through different Jaks. As evidence of differential regulation of gene function by IL-4 and IL-13, we further report that MAO-A-mediated reactive oxygen species generation is influenced by different Jaks. Collectively, these results have major implications for understanding the mechanism and function of alternatively activated monocytes/macrophages by IL-4 and

  11. TNF-α potentiates uric acid-induced interleukin-1β (IL-1β) secretion in human neutrophils.

    PubMed

    Yokose, Kohei; Sato, Shuzo; Asano, Tomoyuki; Yashiro, Makiko; Kobayashi, Hiroko; Watanabe, Hiroshi; Suzuki, Eiji; Sato, Chikako; Kozuru, Hideko; Yatsuhashi, Hiroshi; Migita, Kiyoshi

    2018-05-01

    Monosodium urate (MSU) has been shown to promote interleukin-1β (IL-1β) secretion in human monocytes, but the priming signals for NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome pathway remains elusive. In this study, we investigated the role of Tumor necrosis factor-alpha (TNF-α) on MSU-mediated IL-1β induction in human neutrophils. Human neutrophils were stimulated with MSU, in the presence or absence of TNF-α priming. The cellular supernatants were analyzed for IL-1β, IL-18, and caspase-1 by enzyme-linked immunosorbent assay (ELISA) methods. Pro-IL-1β mRNA expressions in human neutrophils were analyzed by real-time PCR method. TNF-α stimulation induced pro-IL-1β mRNA expression; however, MSU stimulation did not induce pro-IL-1β mRNA expression in human neutrophils. TNF-α alone or MSU stimulation did not result in efficient IL-1β secretion in human neutrophils, whereas in TNF-α-primed neutrophils, MSU stimulation resulted in a marked IL-1β and IL-18 secretion. TNF-α-primed neutrophils secreted cleaved caspase-1 (p20), in response to MSU stimulation. Our data demonstrate that priming of human neutrophils with TNF-α promotes uric acid-mediated IL-1β secretion in the absence of microbial stimulation. These findings provide insights into the neutrophils-mediated inflammatory processes in gouty arthritis.

  12. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist.

    PubMed

    Aksentijevich, Ivona; Masters, Seth L; Ferguson, Polly J; Dancey, Paul; Frenkel, Joost; van Royen-Kerkhoff, Annet; Laxer, Ron; Tedgård, Ulf; Cowen, Edward W; Pham, Tuyet-Hang; Booty, Matthew; Estes, Jacob D; Sandler, Netanya G; Plass, Nicole; Stone, Deborah L; Turner, Maria L; Hill, Suvimol; Butman, John A; Schneider, Rayfel; Babyn, Paul; El-Shanti, Hatem I; Pope, Elena; Barron, Karyl; Bing, Xinyu; Laurence, Arian; Lee, Chyi-Chia R; Chapelle, Dawn; Clarke, Gillian I; Ohson, Kamal; Nicholson, Marc; Gadina, Massimo; Yang, Barbara; Korman, Benjamin D; Gregersen, Peter K; van Hagen, P Martin; Hak, A Elisabeth; Huizing, Marjan; Rahman, Proton; Douek, Daniel C; Remmers, Elaine F; Kastner, Daniel L; Goldbach-Mansky, Raphaela

    2009-06-04

    Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1-receptor antagonist, with prominent involvement of skin and bone. We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1-receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1-pathway genes including IL1RN. We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from The Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1-family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1beta stimulation. Patients treated with anakinra responded rapidly. We propose the term deficiency of the interleukin-1-receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1-receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.) 2009 Massachusetts Medical Society

  13. BQ-123 prevents LPS-induced preterm birth in mice via the induction of uterine and placental IL-10.

    PubMed

    Olgun, Nicole S; Hanna, Nazeeh; Reznik, Sandra E

    2015-02-01

    Preterm birth (PTB), defined as any delivery occurring prior to the completion of 37 weeks' gestation, currently accounts for 11-12% of all births in the United States. Maternal genito-urinary infections account for up to 40% of all PTBS and induce a pro-inflammatory state in the host. The potent vasoconstrictor Endothelin-1 (ET-1) is known to be upregulated in the setting of infection, and elicits its effect by binding to the ETA receptor. We have previously shown that antagonism of the ETA receptor with BQ-123 is capable of preventing LPS-induced PTB in mice. We hypothesize that the administration of BQ-123 post LPS exposure will dismantle a positive feedback loop observed with pro-inflammatory cytokines upstream of ET-1. On GD 15.5, pregnant C57BL/6 mice were injected with PBS, LPS, BQ-123, or LPS+BQ-123. Changes at both the level of transcription and translation were observed in uterus and placenta in the ET-1 axis and in pro- and anti-inflammatory cytokines over the course of 12h. We discovered that BQ-123, when administered 10h post LPS, is capable of increasing production of uterine and placental Interleukin-10, causing a shift away from the pro-inflammatory state. We also observed that antagonism of the ETA receptor decreased IL-1β and TNFα in the placenta while also decreasing transcription of ET-1 in the uterus. Our results reinforce the role of ET-1 at the maternal fetal interface and highlight the potential benefit of ETA receptor blockade via the suppression of ET-1, and induction of a Th2 cytokine dominant state. Copyright © 2014. Published by Elsevier Inc.

  14. Antagonism of Human Formyl Peptide Receptor 1 (FPR1) by Chromones and Related Isoflavones

    PubMed Central

    Schepetkin, Igor A.; Kirpotina, Liliya N.; Khlebnikov, Andrei I.; Cheng, Ni; Ye, Richard D.; Quinn, Mark T.

    2014-01-01

    Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. Because FPRs play an important role in the regulation of inflammatory reactions implicated in disease pathogenesis, FPR antagonists may represent novel therapeutics for modulating innate immunity. Previously, 4H-chromones were reported to be potent and competitive FPR1 antagonists. In the present studies, 96 additional chromone analogs, including related synthetic and natural isoflavones were evaluated for FPR1 antagonist activity. We identified a number of novel competitive FPR1 antagonists that inhibited fMLF-induced intracellular Ca2+ mobilization in FPR1-HL60 cells and effectively competed with WKYMVm-FITC for binding to FPR1 in FPR1-HL60 and FPR1-RBL cells. Compound 10 (6-hexyl-2-methyl-3-(1-methyl-1H-benzimidazol-2-yl)-4-oxo-4H-chromen-7-yl acetate) was found to be the most potent FPR1-specific antagonist, with binding affinity Ki~100 nM. These chromones inhibited Ca2+ flux and chemotaxis in human neutrophils with nanomolar-micromolar IC50 values. In addition, the most potent novel FPR1 antagonists inhibited fMLF-induced phosphorylation of extracellular signal-regulated kinases (ERK1/2) in FPR1-RBL cells. These antagonists were specific for FPR1 and did not inhibit WKYMVM/WKYMVm-induced intracellular Ca2+ mobilization in FPR2-HL60 cells, FPR3-HL60 cells, RBL cells transfected with murine Fpr1, or interleukin 8-induced Ca2+ flux in human neutrophils and RBL cells transfected with CXC chemokine receptor 1 (CXCR1). Moreover, pharmacophore modeling showed that the active chromones had a significantly higher degree of similarity with the pharmacophore template as compared to inactive analogs. Thus, the chromone/isoflavone scaffold represents a relevant backbone for development of novel FPR1 antagonists. PMID:25450672

  15. The Combination of Early and Rapid Type I IFN, IL-1α, and IL-1β Production Are Essential Mediators of RNA-Like Adjuvant Driven CD4+ Th1 Responses

    PubMed Central

    Madera, Rachel F.; Wang, Jennifer P.; Libraty, Daniel H.

    2011-01-01

    There is a growing need for novel vaccine adjuvants that can provide safe and potent T-helper type 1 (Th1) activity. RNA-like immune response modifiers (IRMs) are candidate T-cell adjuvants that skew acquired immune responses towards a Th1 phenotype. We set out to delineate the essential signaling pathways by which the RNA-like IRMs, resiquimod (R-848) and polyinosinic:polycytidylic acid (poly I:C), augment CD4+ T-helper 1 (Th1) responses. Highly purified murine conventional dendritic cells (cDCs) and conventional CD4+ T-cells were co-cultured in allogeneic and MHC congenic mixed leukocyte reactions. The activation of CD4+ Th1 cells was examined utilizing cells from mice deficient in specific RNA-sensing pattern recognition receptors and signaling mediators. R-848 and poly I:C stimulation of Type I interferon production and signaling in cDCs was essential but not sufficient for driving CD4+ Th1 responses. The early and rapid production of IL-1α and IL-1β was equally critical for the optimal activation of Th1 CD4+ T-cells. R-848 activation of Toll-like receptor 7/MyD88-dependent signaling in cDCs led to a rapid upregulation of pro-IL-1α and pro-IL-1β production compared to poly I:C activation of MyD88-independent signaling pathways. The in vitro data show that CD4+ T-cell adjuvant activity of RNA-like IRMs is mediated by a critical combination of early and rapid Type I interferon, IL-1α and IL-1β production. These results provide important insights into the key signaling pathways responsible for RNA-like IRM CD4+ Th1 activation. A better understanding of the critical signaling pathways by which RNA-like IRMs stimulate CD4+ Th1 responses is relevant to the rational design of improved vaccine adjuvants. PMID:22206014

  16. Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts.

    PubMed Central

    Burch, R M; Connor, J R; Axelrod, J

    1988-01-01

    Human recombinant interleukin 1 alpha (IL-1 alpha) and IL-1 beta stimulated prostaglandin E2 synthesis in 3T3 fibroblasts in a time- and concentration-dependent manner. Enhanced prostaglandin E2 synthesis after IL-1 treatment was apparent by 1 hr and continued to increase for at least 2 days. Half-maximal stimulation occurred at 0.5 pM IL-1 alpha or IL-1 beta, and both interleukins were equally effective, with maximal stimulation occurring in response to 5-10 pM IL-1. In contrast to IL-1, bradykinin stimulation of prostaglandin E2 synthesis is rapid; its effect is maximal by 5 min. In cells that had been pretreated with IL-1 for 24 hr, prostaglandin E2 synthesis in response to bradykinin was amplified more than 10-fold. IL-1 also amplified the receptor-mediated formation of prostaglandin E2 by bombesin and thrombin. The lymphokine did not affect bradykinin receptor number or affinity. IL-1 treatment induced phospholipase A2 and cyclooxygenase but not phospholipase C or prostaglandin E isomerase. It also enhanced bradykinin-stimulated GTPase activity, suggesting possible induction of the GTP-binding regulatory protein coupled to the bradykinin receptor. Thus, IL-1 enhanced receptor-mediated release of prostaglandin E2 in response to bradykinin, bombesin, and thrombin by increasing the cellular levels of phospholipase A2, cyclooxygenase, and GTP-binding regulatory protein(s). PMID:2901097

  17. Negative regulation of TLX by IL-1β correlates with an inhibition of adult hippocampal neural precursor cell proliferation.

    PubMed

    Ryan, Sinead M; O'Keeffe, Gerard W; O'Connor, Caitriona; Keeshan, Karen; Nolan, Yvonne M

    2013-10-01

    Adult hippocampal neurogenesis is modulated by a number of intrinsic and extrinsic factors including local signalling molecules, exercise, aging and inflammation. Inflammation is also a major contributor to several hippocampal-associated disorders. Interleukin-1beta (IL-1β) is the most predominant pro-inflammatory cytokine in the brain, and an increase in its concentration is known to decrease the proliferation of both embryonic and adult hippocampal neural precursor cells (NPCs). Recent research has focused on the role of nuclear receptors as intrinsic regulators of neurogenesis, and it is now established that the orphan nuclear receptor TLX is crucial in maintaining the NPC pool in neurogenic brain regions. To better understand the involvement of TLX in IL-1β-mediated effects on hippocampal NPC proliferation, we examined hippocampal NPC proliferation and TLX expression in response to IL-1β treatment in an adult rat hippocampal neurosphere culture system. We demonstrate that IL-1β reduced the proliferation of hippocampal NPCs and TLX expression in a dose and time-dependent manner and that co-treatment with IL-1β receptor antagonist or IL-1 receptor siRNA prevented these effects. We also report a dose-dependent effect of IL-1β on the composition of cell phenotypes in the culture and on expression of TLX in these cells. This study thus provides evidence of an involvement of TLX in IL-1β-induced changes in adult hippocampal neurogenesis, and offers mechanistic insight into disorders in which neuroinflammation and alterations in neurogenesis are characteristic features. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Focal adhesion kinase-mediated activation of glycogen synthase kinase 3β regulates IL-33 receptor internalization and IL-33 signaling.

    PubMed

    Zhao, Jing; Wei, Jianxin; Bowser, Rachel K; Traister, Russell S; Fan, Ming-Hui; Zhao, Yutong

    2015-01-15

    IL-33, a relatively new member of the IL-1 cytokine family, plays a crucial role in allergic inflammation and acute lung injury. Long form ST2 (ST2L), the receptor for IL-33, is expressed on immune effector cells and lung epithelia and plays a critical role in triggering inflammation. We have previously shown that ST2L stability is regulated by the ubiquitin-proteasome system; however, its upstream internalization has not been studied. In this study, we demonstrate that glycogen synthase kinase 3β (GSK3β) regulates ST2L internalization and IL-33 signaling. IL-33 treatment induced ST2L internalization, and an effect was attenuated by inhibition or downregulation of GSK3β. GSK3β was found to interact with ST2L on serine residue 446 in response to IL-33 treatment. GSK3β binding site mutant (ST2L(S446A)) and phosphorylation site mutant (ST2L(S442A)) are resistant to IL-33-induced ST2L internalization. We also found that IL-33 activated focal adhesion kinase (FAK). Inhibition of FAK impaired IL-33-induced GSK3β activation and ST2L internalization. Furthermore, inhibition of ST2L internalization enhanced IL-33-induced cytokine release in lung epithelial cells. These results suggest that modulation of the ST2L internalization by FAK/GSK3β might serve as a unique strategy to lessen pulmonary inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. Brodalumab: the first anti-IL-17 receptor agent for psoriasis.

    PubMed

    Puig, L

    2017-05-01

    Psoriasis is a chronic immune-mediated inflammatory skin disease in which the alteration of the interleukin-23 (IL-23)/IL-17 cytokine axis appears to be crucial from a pathogenetic perspective. This has been confirmed by the efficacy of monoclonal antibodies blocking IL-17A, such as secukinumab and ixekizumab. Brodalumab is a human anti-IL-17 receptor A (IL-17RA) monoclonal antibody that inhibits the biological activity of IL-17A, IL-17F and other IL-17 isoforms, and has been approved (210 mg s.c. at weeks 0, 1, 2 and every 2 weeks thereafter) for the treatment of psoriasis vulgaris, psoriatic arthritis, pustular psoriasis and psoriatic erythroderma in Japan (Lumicef). The U.S. Food and Drug Administration has also recently approved brodalumab (Siliq) for the treatment of moderate to severe plaque psoriasis in adult patients who are candidates for systemic therapy or phototherapy and have failed to respond or have lost response to other systemic therapies. Regulatory applications are under review in the E.U. and Canada. The phase III clinical trials in moderate to severe plaque psoriasis met their primary endpoints after 12 weeks' treatment, with PASI 75 (75% improvement in the Psoriasis Area and Severity Index) response rates ranging between 83% and 86% (210 mg) and PASI 100 response rates ranging between 37% and 44%, significantly higher than those achieved with ustekinumab in the head-to-head trials AMAGINE-1 and AMAGINE-2. The most frequently reported adverse events in brodalumab clinical trials consisted of nasopharyngitis, headache, upper respiratory tract infection and arthralgia. In the head-to-head trials, rates of neutropenia were higher with both active drugs than with placebo, and mild or moderate Candida infections were more frequent with brodalumab than with ustekinumab or placebo. Clinical development was terminated by Amgen after adverse events of suicidal ideation and behavior were observed ls involving several indications, but data are

  20. Sphingosine 1-Phosphate Receptor Modulators in Multiple Sclerosis

    PubMed Central

    Subei, Adnan M.

    2015-01-01

    Sphingosine 1-phosphate (S1P) receptor modulators possess a unique mechanism of action as disease modifying therapy for multiple sclerosis (MS). Subtype 1 S1P receptors are expressed on the surfaces of lymphocytes and are important in regulating egression from lymph nodes. The S1P receptor modulators indirectly antagonize the receptor’s function and sequester lymphocytes in lymph nodes. Fingolimod was the first S1P agent approved in the United States in 2010 for relapsing MS after two phase 3 trials (FREEDOMS and TRANSFORMS) demonstrated potent efficacy, and good safety and tolerability. Post-marketing experience as well as a third phase 3 trial (FREEDOMS II) also showed favorable results. More selective S1P receptor agents: ponesimod (ACT128800), siponimod (BAF312), ozanimod (RPC1063), ceralifimod (ONO-4641), GSK2018682, and MT-1303 are still in relatively early stages of development, but phase 1 and 2 trials showed promising efficacy and safety. However, these observations have yet to be reproduced in phase 3 clinical trials. PMID:26239599

  1. Inhibition of TYK2 and JAK1 Ameliorates Imiquimod-Induced Psoriasis-like Dermatitis by Inhibiting IL-22 and the IL-23/IL-17 axis

    PubMed Central

    Works, Melissa G.; Yin, Fangfang; Yin, Catherine C.; Yiu, Ying; Shew, Kenneth; Tran, Thanh-Thuy; Dunlap, Nahoko; Lam, Jennifer; Mitchell, Tim; Reader, John; Stein, Paul L.; D’Andrea, Annalisa

    2014-01-01

    Psoriasis is a chronic autoimmune disease affecting the skin and characterized by aberrant keratinocyte proliferation and function. Immune cells infiltrate the skin and release proinflammatory cytokines that play important roles in psoriasis. The Th17 network, including IL-23 and IL-22, has recently emerged as a critical component in the pathogenesis of psoriasis. IL-22 and IL-23 signaling is dependent on the JAK family of protein tyrosine kinases, making Janus kinase (JAK) inhibition an appealing strategy for the treatment of psoriasis. Here we report the activity of SAR-20347, a small molecule inhibitor with specificity for JAK1 and Tyrosine Kinase 2 (TYK2) over other JAK family members. In cellular assays, SAR-20347 dose-dependently (1 nM-10 μM) inhibited JAK1 and/or TYK2 dependent signaling from the IL-12/IL-23, IL-22, and IFN-α receptors. In vivo, TYK2 mutant mice or treatment of wild type mice with SAR-20347 significantly reduced IL-12 induced IFN-γ production and IL-22-dependent Serum Amyloid A (SAA) to similar extents, indicating that in these models, SAR-20347 is probably acting through inhibition of TYK2. In an imiquimod-induced psoriasis model, the administration of SAR-20347 led to a striking decrease in disease pathology, including reduced activation of keratinocytes, and proinflammatory cytokine levels compared to both TYK2 mutant mice and wild type controls. Taken together, these data indicate that targeting both JAK1 and TYK2-mediated cytokine signaling is more effective than TYK2 inhibition alone in reducing psoriasis pathogenesis. PMID:25156366

  2. CRF1 receptor-deficiency increases cocaine reward.

    PubMed

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-05-01

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF 1 receptor-deficient (CRF 1 -/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF 1 -/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF 1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF 1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF 1 -/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF 1 -/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF 1 -/- mice by exogenous corticosterone does not affect CRF 1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF 1 receptor in cocaine reward, independently of the closely related HPA axis activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A computational study of the chemokine receptor CXCR1 bound with interleukin-8

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Severin Lupala, Cecylia; Wang, Ting; Li, Xuanxuan; Yun, Ji-Hye; Park, Jae-hyun; Jin, Zeyu; Lee, Weontae; Tan, Leihan; Liu, Haiguang

    2018-03-01

    CXCR1 is a G-protein coupled receptor, transducing signals from chemokines, in particular the interleukin-8 (IL8) molecules. This study combines homology modeling and molecular dynamics simulation methods to study the structure of CXCR1-IL8 complex. By using CXCR4-vMIP-II crystallography structure as the homologous template, CXCR1-IL8 complex structure was constructed, and then refined using all-atom molecular dynamics simulations. Through extensive simulations, CXCR1-IL8 binding poses were investigated in detail. Furthermore, the role of the N-terminal of CXCR1 receptor was studied by comparing four complex models differing in the N-terminal sequences. The results indicate that the receptor N-terminal affects the binding of IL8 significantly. With a shorter N-terminal domain, the binding of IL8 to CXCR1 becomes unstable. The homology modeling and simulations also reveal the key receptor-ligand residues involved in the electrostatic interactions known to be vital for complex formation. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575021, U1530401, and U1430237) and the National Research Foundation of Korea (Grant Nos. NRF-2017R1A2B2008483 and NRF-2016R1A6A3A04010213).

  4. Inhibition of HIF-1α decreases expression of pro-inflammatory IL-6 and TNF-α in diabetic retinopathy.

    PubMed

    Gao, Xiuhua; Li, Yonghua; Wang, Hongxia; Li, Chuanbao; Ding, Jianguang

    2017-12-01

    Recent studies demonstrate that pro-inflammatory cytokines (PICs, i.e. IL-1β, IL-6 and TNF-α) in retinal tissues are likely involved in the development of diabetic retinopathy (DR). In this report, we particularly examined contributions of hypoxia inducible factor subtype 1α (HIF-1α) to the expression of PICs and their receptors in diabetic retina. Streptozotocin (STZ) was systemically injected to induce hyperglycaemia in rats. ELISA and Western blot analysis were employed to determine the levels of HIF-1α and PICs as well as PIC receptors in retinal tissues of control rats and STZ rats. The levels of retinal HIF-1α were significantly increased in STZ rats 4-10 weeks after induction of hyperglycaemia as compared with control animals. With increasing HIF-1α retinal PICs including IL-1β, IL-6 and TNF-α, their respective receptors, namely IL-1R, IL-6R and TNFR1, were also elevated in STZ rats. Moreover, inhibition of HIF-1α by injection of 2-methoxyestradiol (2-MET) significantly decreased the amplified expression IL-6, TNF-α, IL-6R and TNFR1 in diabetic retina, but did not modify IL-1β pathway. In addition, we examined protein expression of Caspase-3 indicating cell apoptosis in the retina of STZ rats after infusing 2-MET, demonstrating that 2-MET attenuated an increase in Caspase-3 evoked by STZ. Hypoxia inducible factor subtype 1α (HIF-1α) activated in diabetic retina is likely to play a role in regulating pathophysiological process via IL-6 and TNF-α mechanism. This has pharmacological implications to target specific HIF-1α, IL-6 and TNF-α signalling pathway for dysfunction and vulnerability related to DR. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  5. IL-33 stimulates expression of the GPR84 (EX33) fatty acid receptor gene and of cytokine and chemokine genes in human adipocytes.

    PubMed

    Zaibi, Mohamed S; Kępczyńska, Małgorzata A; Harikumar, Parvathy; Alomar, Suliman Y; Trayhurn, Paul

    2018-05-15

    Expression of GPCR fatty acid sensor/receptor genes in adipocytes is modulated by inflammatory mediators, particularly IL-1β. In this study we examined whether the IL-1 gene superfamily member, IL-33, also regulates expression of the fatty acid receptor genes in adipocytes. Human fat cells, differentiated from preadipocytes, were incubated with IL-33 at three different dose levels for 3 or 24 h and mRNA measured by qPCR. Treatment with IL-33 induced a dose-dependent increase in GPR84 mRNA at 3 h, the level with the highest dose being 13.7-fold greater than in controls. Stimulation of GPR84 expression was transitory; the mRNA level was not elevated at 24 h. In contrast to GPR84, IL-33 had no effect on GPR120 expression. IL-33 markedly stimulated expression of the IL1B, CCL2, IL6, CXCL2 and CSF3 genes, but there was no effect on ADIPOQ expression. The largest effect was on CSF3, the mRNA level of which increased 183-fold over controls at 3 h with the highest dose of IL-33; there was a parallel increase in the secretion of G-CSF protein into the medium. It is concluded that in human adipocytes IL-33, which is synthesised in adipose tissue, has a strong stimulatory effect on the expression of cytokine and chemokine genes, particularly CSF3, and on the expression of GPR84, a pro-inflammatory fatty acid receptor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Neuroglian activates Echinoid to antagonize the Drosophila EGF receptor signaling pathway.

    PubMed

    Islam, Rafique; Wei, Shu-Yi; Chiu, Wei-Hsin; Hortsch, Michael; Hsu, Jui-Chou

    2003-05-01

    echinoid (ed) encodes an cell-adhesion molecule (CAM) that contains immunoglobulin domains and regulates the EGFR signaling pathway during Drosophila eye development. Based on our previous genetic mosaic and epistatic analysis, we proposed that Ed, via homotypic interactions, activates a novel, as yet unknown pathway that antagonizes EGFR signaling. In this report, we demonstrate that Ed functions as a homophilic adhesion molecule and also engages in a heterophilic trans-interaction with Drosophila Neuroglian (Nrg), an L1-type CAM. Co-expression of ed and nrg in the eye exhibits a strong genetic synergy in inhibiting EGFR signaling. This synergistic effect requires the intracellular domain of Ed, but not that of Nrg. In addition, Ed and Nrg colocalize in the Drosophila eye and are efficiently co-immunoprecipitated. Together, our results suggest a model in which Nrg acts as a heterophilic ligand and activator of Ed, which in turn antagonizes EGFR signaling.

  7. Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1beta-stimulated C-28/I2 chondrocytes.

    PubMed

    Toegel, S; Wu, S Q; Piana, C; Unger, F M; Wirth, M; Goldring, M B; Gabor, F; Viernstein, H

    2008-10-01

    To compare the effects of glucosamine (GlcN), curcumin, and diacerein in immortalized human C-28/I2 chondrocytes at the cellular and the gene expression level. This study aimed to provide insights into the proposed beneficial effects of these agents and to assess the applicability of the C-28/I2 cell line as a model for the evaluation of chondroprotective action. Interleukin-1beta (IL-1beta)-stimulated C-28/I2 cells were cultured in the presence of GlcN, curcumin, and diacerein prior to the evaluation of parameters such as viability, morphology and proliferation. The impact of GlcN, curcumin, and diacerein on gene expression was determined using quantitative real-time RT-PCR (qPCR). At the transcriptional level, 5 mM GlcN and 50 microM diacerein increased the expression of cartilage-specific genes such as aggrecan (AGC) and collagen type II (COL2), while reducing collagen type I (COL1) mRNA levels. Moreover, the IL-1beta-mediated shift in gene expression pattern was antagonized by GlcN and diacerein. These effects were associated with a significant reduction in cellular proliferation and the development of chondrocyte-specific cell morphology. In contrast, curcumin was not effective at lower concentrations but even damaged the cells at higher amounts. Both GlcN and diacerein promoted a differentiated chondrocytic phenotype of immortalized human C-28/I2 chondrocytes by altering proliferation, morphology, and COL2/COL1 mRNA ratios. Moreover, both agents antagonized inhibitory effects of IL-1beta by enhancing AGC and COL2 as well as by reducing COL1 mRNA levels.

  8. Pharmacology of the hypothermic response to 5-HT1A receptor activation in humans.

    PubMed

    Lesch, K P; Poten, B; Söhnle, K; Schulte, H M

    1990-01-01

    The selective 5-HT1A receptor ligand ipsapirone (IPS) caused dose-related hypothermia in humans. The response was attenuated by the nonselective 5-HT1/2 receptor antagonist metergoline and was completely antagonized by the nonselective beta-adrenoceptor antagonist pindolol, which interacts stereoselectively with the 5-HT1A receptor. The selective beta 1-adrenergic antagonist betaxolol had no effect. The findings indicate that IPS-induced hypothermia specifically involves activation of (presynaptic) 5-HT1A receptors. Therefore, the hypothermic response to IPS may provide a convenient in vivo paradigma to assess the function of the presynaptic 5-HT receptor in affective disorders and its involvement in the effects of psychotropic drugs.

  9. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

    PubMed

    Zhao, Lan-Xue; Ge, Yan-Hui; Xiong, Cai-Hong; Tang, Ling; Yan, Ying-Hui; Law, Ping-Yee; Qiu, Yu; Chen, Hong-Zhuan

    2018-03-06

    M1 muscarinic acetylcholine receptors (M1 mAChRs) are the most abundant muscarinic receptors in the hippocampus and have been shown to have procognitive effects. AMPA receptors (AMPARs), an important subtype of ionotropic glutamate receptors, are key components in neurocognitive networks. However, the role of AMPARs in procognitive effects of M1 mAChRs and how M1 mAChRs affect the function of AMPARs remain poorly understood. Here, we found that basal expression of GluA1, a subunit of AMPARs, and its phosphorylation at Ser845 were maintained by M1 mAChR activity. Activation of M1 mAChRs promoted membrane insertion of GluA1, especially to postsynaptic densities. Impairment of hippocampus-dependent learning and memory by antagonism of M1 mAChRs paralleled the reduction of GluA1 expression, and improvement of learning and memory by activation of M1 mAChRs was accompanied by the synaptic insertion of GluA1 and its increased phosphorylation at Ser845. Furthermore, abrogation of phosphorylation of Ser845 residue of GluA1 ablated M1 mAChR-mediated improvement of learning and memory. Taken together, these results show a functional correlation of M1 mAChRs and GluA1 and the essential role of GluA1 in M1 mAChR-mediated cognitive improvement.-Zhao, L.-X., Ge, Y.-H., Xiong, C.-H., Tang, L., Yan, Y.-H., Law, P.-Y., Qiu, Y., Chen, H.-Z. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

  10. IL-23 Receptor (IL-23R) Gene Protects Against Pediatric Crohn’s Disease

    PubMed Central

    Dubinsky, Marla C.; Wang, Dai; Picornell, Yoana; Wrobel, Iwona; Katzir, Lirona; Quiros, Antonio; Dutridge, Debra; Wahbeh, Ghassan; Silber, Gary; Bahar, Ron; Mengesha, Emebet; Targan, Stephan R.; Taylor, Kent D.; Rotter, Jerome I.

    2007-01-01

    Background The IL-23 receptor (IL-23R) has been found to be associated with small bowel Crohn’s disease (CD) in a whole genome association study. Specifically, the rare allele of the R381Q single nucleotide polymorphism (SNP) conferred protection against CD. It is unknown whether IL-23R is associated with IBD in children. The aim was to examine the association of IL-23R with susceptibility to IBD in pediatric patients. Methods DNA was collected from 609 subjects (151 CD and 52 ulcerative colitis [UC] trios). Trios were genotyped for the R381Q SNP of the IL-23R gene and SNP8, SNP12, SNP13, of the CARD15 gene using Taqman. The transmission disequilibrium test (TDT) was used for association to disease using GENEHUNTER 2.0. Results The rare allele of R381Q SNP was present in 2.7% of CD and 2.9% UC probands. The CARD15 frequency was 31.5% (CD) and 18% (UC). The IL-23R allele was negatively associated with inflammatory bowel disease (IBD): the R381Q SNP was undertransmitted in children with IBD (8 transmitted [T] versus 27 untransmitted [UT]; P = 0.001). This association was significant for all CD patients (6 T versus 19 UT; P = 0.009), especially for non-Jewish CD patients (2 T versus 17 UT; P = 0.0006). TDT showed a borderline association for UC (2 T versus 8 UT; P = 0.06). As expected, CARD15 was associated with CD in children by the TDT (58 T versus 22 UT P = 0.00006), but not with UC. Conclusions The protective IL-23R R381Q variant was particularly associated with CD in non-Jewish children. Thus, the initial whole genome association study based on ileal CD in adults has been extended to the pediatric population and beyond small bowel CD. PMID:17309073

  11. Role of Interleukin-1 Receptor Signaling in the Behavioral Effects of Ethanol and Benzodiazepines

    PubMed Central

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Mayfield, Jody; Harris, R. Adron

    2015-01-01

    Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway. PMID:25839897

  12. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines.

    PubMed

    Blednov, Yuri A; Benavidez, Jillian M; Black, Mendy; Mayfield, Jody; Harris, R Adron

    2015-08-01

    Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Altered expression of IL-18 binding protein and IL-18 receptor in basophils and mast cells of asthma patients.

    PubMed

    Wang, Zhiyun; Liu, Zhining; Wang, Ling; Wang, Junling; Chen, Liping; Xie, Hua; Zhang, Huiyun; He, Shaoheng

    2018-05-01

    IL-18 is likely to contribute to asthma. However, little is known regarding the role of IL-18 binding protein (BP) and IL-18 receptor (R) in asthma. Because the action of IL-18 in the body is regulated by IL-18BP and mast cells and basophils are key cell types involved in asthma, we investigated the expression of IL-18, IL-18BP and IL-18R in basophils and mast cells using flow cytometry and a mouse asthma model. We found that among basophils, approximately 53% and 51% were IL-18 + , 85% and 81% were IL-18BP + basophils, and 19.8% and 8.6% were IL-18R + in healthy control (HC) and asthmatic blood, respectively. The allergens tested had little effect on the expression of IL-18 and related factors. Only 3.5%, 14.3% and 2.4% of dispersed mast cells expressed IL-18, IL-18BP and IL-18R, respectively, in asthmatic sputum. In a mouse asthma model, OVA-sensitized mice exhibited decreased IL-18BP + but increased IL-18R + basophils in their blood. IL-18 increased the number of basophils but eliminated IL-18BP + basophils in mouse blood. IL-18 increased the number of mast cells and IL-18R + mast cells in the lung as well as increased the mast cell numbers and IL-18BP + mast cells in the bronchoalveolar lavage fluid (BALF) of OVA-sensitized mice. Thus, basophils and mast cells may be involved in asthma pathogenesis via an IL-18-associated mechanism. © 2018 The Foundation for the Scandinavian Journal of Immunology.

  14. Effects of AT1 receptor antagonism on kainate-induced seizures and concomitant changes in hippocampal extracellular noradrenaline, serotonin, and dopamine levels in Wistar-Kyoto and spontaneously hypertensive rats.

    PubMed

    Tchekalarova, Jana; Loyens, Ellen; Smolders, Ilse

    2015-05-01

    In the management of epilepsy, AT1 receptor antagonists have been suggested as an additional treatment strategy. A hyperactive brain angiotensin (Ang) II system and upregulated AT1 receptors are implicated in the cerebrovascular alterations in a genetic form of hypertension. Uncontrolled hypertension could also, in turn, be a risk factor for a seizure threshold decrease and development of epileptogenesis. The present study aimed to assess the effects of the selective AT1 receptor antagonist ZD7155 on kainic acid (KA)-induced status epilepticus (SE) development and accompanying changes in the hippocampal extracellular (EC) neurotransmitter levels of noradrenaline (NAD), serotonin (5-HT), and dopamine (DA) in spontaneously hypertensive rats (SHRs) and their parent strain Wistar-Kyoto (WKY) rats, since monoamines are well-known neurotransmitters involved in mechanisms of both epilepsy and hypertension. Status epilepticus was evoked in freely moving rats by a repetitive intraperitoneal (i.p.) administration of KA in subconvulsant doses. In the treatment group, ZD7155 (5mg/kg i.p.) was coadministered with the first KA injection. Spontaneously hypertensive rats exhibited higher susceptibility to SE than WKY rats, but the AT1 receptor antagonist did not alter the development of SE in SHRs or in WKY rats. In vivo microdialysis demonstrated significant KA-induced increases of the hippocampal NAD and DA levels in SHRs and of NAD, 5-HT, and DA in WKY rats. Although SHRs developed more severe seizures while receiving a lower dose of KA compared to WKY rats, AT1 receptor antagonism completely prevented all KA-induced increases of hippocampal monoamine levels in both rat strains without affecting seizure development per se. These results suggest a lack of direct relationship between KA-induced seizure susceptibility and adaptive changes of hippocampal NAD, 5-HT, and DA levels in the effects of ZD7155 in WKY rats and SHRs. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Role of D1- and D2-like dopaminergic receptors in the nucleus accumbens in modulation of formalin-induced orofacial pain: Involvement of lateral hypothalamus.

    PubMed

    Shafiei, Iman; Vatankhah, Mahsaneh; Zarepour, Leila; Ezzatpanah, Somayeh; Haghparast, Abbas

    2018-05-01

    The role of dopaminergic system in modulation of formalin-induced orofacial nociception has been established. The present study aims to investigate the role of dopaminergic receptors in the nucleus accumbens (NAc) in modulation of nociceptive responses induced by formalin injection in the orofacial region. One hundred and six male Wistar rats were unilaterally implanted with two cannulae into the lateral hypothalamus (LH) and NAc. Intra-LH microinjection of carbachol, a cholinergic receptor agonist, was done 5min after intra-accumbal administration of different doses of SCH23390 (D1-like receptor antagonist) or sulpiride (D2-like receptor antagonist). After 5min, 50μl of 1% formalin was subcutaneously injected into the upper lip for inducing the orofacial pain. Carbachol alone dose-dependently reduced both phases of the formalin-induced orofacial pain. Intra-accumbal administration of SCH23390 (0.25, 1 and 4μg/0.5μl saline) or sulpiride (0.25, 1 and 4μg/0.5μl DMSO) before LH stimulation by carbachol (250nM/0.5μl saline) antagonized the antinociceptive responses during both phases of orofacial formalin test. The effects of D1- and D2-like receptor antagonism on the LH stimulation-induced antinociception were almost similar during the early phase. However, compared to D1-like receptor antagonism, D2-like receptor antagonism was a little more effective but not significant, at blocking the LH stimulation-induced antinociception during the late phase of formalin test. The findings revealed that there is a direct or indirect neural pathway from the LH to the NAc which is at least partially contributed to the modulation of formalin-induced orofacial nociception through recruitment of both dopaminergic receptors in this region. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Interleukin 1 receptor antagonist is a member of the interleukin 1 gene family: evolution of a cytokine control mechanism.

    PubMed Central

    Eisenberg, S P; Brewer, M T; Verderber, E; Heimdal, P; Brandhuber, B J; Thompson, R C

    1991-01-01

    Interleukin 1 receptor antagonist (IL-1ra) is a protein that binds to the IL-1 receptor and blocks the binding of both IL-1 alpha and -beta without inducing a signal of its own. Human IL-1ra has some sequence identity to human IL-1 beta, but the evolutionary relationship between these proteins has been unclear. We show that the genes for human, mouse, and rat IL-1ra are similar to the genes for IL-1 alpha and IL-1 beta in intron-exon organization, indicating that gene duplication events were important in the creation of this gene family. Furthermore, an analysis of sequence comparisons and mutation rates for IL-1 alpha, IL-1 beta, and IL-1ra suggests that the duplication giving rise to the IL-1ra gene was an early event in the evolution of the gene family. Comparisons between the mature sequences for IL-1ra, IL-1 alpha, and IL-1 beta suggest that IL-1ra has a beta-stranded structure like to IL-1 alpha and IL-1 beta, consistent with the three proteins being related. The N-terminal sequences of IL-1ra appear to be derived from a region of the genome different than those of IL-1 alpha and IL-1 beta, thus explaining their different modes of biosynthesis and suggesting an explanation for their different biological activities. Images PMID:1828896

  17. Benzodiazepine antagonism by harmane and other beta-carbolines in vitro and in vivo.

    PubMed

    Rommelspacher, H; Nanz, C; Borbe, H O; Fehske, K J; Müller, W E; Wollert, U

    1981-03-26

    Harmane and other related beta-carbolines are putative endogenous ligands of the benzodiazepine receptor. Since the compounds are potent convulsants they may have agonist activities at the benzodiazepine receptor while the benzodiazepines may be antagonists. This hypothesis was proved by comparing the in vivo and in vitro antagonism of benzodiazepines by harmane and other beta-carbolines. Harmane is clearly a competitive inhibitor of benzodiazepine receptor binding in vitro. Moreover, harmane-induced convulsions can be inhibited reversibly by diazepam in a manner which is consistent with the assumption of competitive antagonism in vivo. For some beta-carboline derivatives a correlation was found between the affinity for the benzodiazepine receptor in vitro and the convulsive potency in vivo. Thus, the data reported suggest that harmane or other related beta-carbolines are putative endogenous agonists of the benzodiazepine receptor. This suggestion is further supported by the observation that diazepam is equally potent in inhibiting harmane- or picrotoxin-induced convulsions, indicating a convulsive mechanism within the GABA receptor-benzodiazepine receptor system.

  18. Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-β levels in male mice.

    PubMed

    Savignac, Helene M; Couch, Yvonne; Stratford, Michael; Bannerman, David M; Tzortzis, George; Anthony, Daniel C; Burnet, Philip W J

    2016-02-01

    The manipulation of the enteric microbiota with specific prebiotics and probiotics, has been shown to reduce the host's inflammatory response, alter brain chemistry, and modulate anxiety behaviour in both rodents and humans. However, the neuro-immune and behavioural effects of prebiotics on sickness behaviour have not been explored. Here, adult male CD1 mice were fed with a specific mix of non-digestible galacto-oligosaccharides (Bimuno®, BGOS) for 3 weeks, before receiving a single injection of lipopolysaccharide (LPS), which induces sickness behaviour and anxiety. Locomotor and marble burying activities were assessed 4h after LPS injection, and after 24h, anxiety in the light-dark box was assessed. Cytokine expression, and key components of the serotonergic (5-Hydroxytryptamine, 5-HT) and glutamatergic system were evaluated in the frontal cortex to determine the impact of BGOS administration at a molecular level. BGOS-fed mice were less anxious in the light-dark box compared to controls 24h after the LPS injection. Elevated cortical IL-1β concentrations in control mice 28 h after LPS were not observed in BGOS-fed animals. This significant BGOS×LPS interaction was also observed for 5HT2A receptors, but not for 5HT1A receptors, 5HT, 5HIAA, NMDA receptor subunits, or other cytokines. The intake of BGOS did not influence LPS-mediated reductions in marble burying behaviour, and its effect on locomotor activity was equivocal. Together, our data show that the prebiotic BGOS has an anxiolytic effect, which may be related to the modulation of cortical IL-1β and 5-HT2A receptor expression. Our data suggest a potential role for prebiotics in the treatment of neuropsychiatric disorders where anxiety and neuroinflammation are prominent clinical features. Copyright © 2015. Published by Elsevier Inc.

  19. IL-1 or TNF receptor gene deletion delays onset of encephalopathy and attenuates brain edema in experimental acute liver failure.

    PubMed

    Bémeur, Chantal; Qu, Hong; Desjardins, Paul; Butterworth, Roger F

    2010-01-01

    Previous reports suggested that brain-derived proinflammatory cytokines are involved in the pathogenesis of hepatic encephalopathy (HE) and brain edema in acute liver failure (ALF). To further address this issue, expression of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) mRNAs were measured in the brains of mice with acute liver failure resulting from exposure to azoxymethane. In addition, time to severe encephalopathy (coma) was assessed in mice lacking genes coding for interferon-gamma, the tumor necrosis factor receptor-1 or the interleukin-1 type 1 receptor. Interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma expression were quantified using RT-PCR. Significant increases in interleukin-1beta and tumor necrosis factor-alpha mRNA were observed in the frontal cortex of azoxymethane-treated wild-type mice at coma stages of encephalopathy. Interferon-gamma, however, could not be detected in the brains of these animals. Onset of severe encephalopathy (coma) and brain edema in ALF mice were significantly delayed in interleukin-1 type 1 receptor or tumor necrosis factor receptor-1 knockout mice. Deletion of the interferon-gamma gene, on the other hand, had no significative effect on the neurological status or brain water content of acute liver failure mice. These results demonstrate that toxic liver injury resulting from exposure to azoxymethane is associated with selective induction of proinflammatory cytokines in the brain and that deletion of tumor necrosis factor receptor-1 or interlukin-1 type 1 receptor delays the onset of coma and brain edema in this model of acute liver failure. These findings further support a role for selective brain-derived cytokines in the pathogenesis of the cerebral complications in acute liver failure and suggest that anti-inflammatory strategies could be beneficial in their prevention. Copyright 2009 Elsevier Ltd. All rights reserved.

  20. Dopamine D1 receptors are not critical for opiate reward but can mediate opiate memory retrieval in a state-dependent manner.

    PubMed

    Ting-A-Kee, Ryan; Mercuriano, Laura E; Vargas-Perez, Hector; George, Susan R; van der Kooy, Derek

    2013-06-15

    Although D1 receptor knockout mice demonstrate normal morphine place preferences, antagonism of basolateral amygdala (BLA) D1 receptors only during drug-naive rat conditioning has been reported to inhibit the expression of a morphine place preference. One possible explanation for this result is state-dependent learning. That is, the omission of the intra-BLA infusion cue during testing - which acts as a potent discriminative stimulus - may have prevented the recall of a morphine-environment association and therefore, the consequent expression of a morphine place preference. To examine this possibility, we tested whether intra-BLA infusion of the D1-receptor antagonist SCH23390 during both training and testing might reveal a morphine place preference. Our results suggest that in previously drug-naive animals, D1 receptor antagonism during testing restores the opiate conditioned place preference that is normally absent when D1 receptors are blocked only during training, suggesting that BLA D1 receptors can mediate state-dependent memory retrieval. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Psoriatic inflammation causes hepatic inflammation with concomitant dysregulation in hepatic metabolism via IL-17A/IL-17 receptor signaling in a murine model.

    PubMed

    Al-Harbi, Naif O; Nadeem, Ahmed; Al-Harbi, Mohammed M; Zoheir, Khairy M A; Ansari, Mushtaq A; El-Sherbeeny, Ahmed M; Alanazi, Khalid M; Alotaibi, Moureq R; Ahmad, Sheikh F

    2017-02-01

    Psoriatic inflammation has been shown to be associated with cardiovascular dysfunction and systemic inflammation. Recently, psoriasis has also been linked to hepatic disorders, however underlying mechanism connecting the two are unknown. IL-17A being a central pro-inflammatory cytokine in the pathogenesis of psoriasis may be involved in hepatic inflammation through its receptor and downward signaling; however so far no study has investigated IL-17A related signaling in the liver during psoriasis in a murine model. Therefore, this study explored psoriasis-induced hepatic inflammation and concurrent metabolic changes. Mice were applied topically imiquimod (IMQ) to develop psoriatic inflammation. Additionally mice were also treated either with IL-17A or anti-IL17A antibody to explore the role of IL-17 related signaling in liver. Mice were then assessed for hepatic inflammation through assessment of inflammatory/oxidative stress markers (IL-17RC, NFκB, IL-6, MCP-1, IL-1β, GM-CSF, ICAM-1, iNOS, lipid peroxides and myeloperoxidase activity) as well as hepatic injury (alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase) and protein/lipid metabolic biomarkers (total proteins, albumin, total bilirubin, triglycerides, HDL cholesterol, and total cholesterol). IMQ treatment led to hepatic inflammation as evidenced by increased pro-inflammatory cytokines and oxidative stress with concomitant dysregulation in hepatic protein/lipid metabolism. Treatment with IL-17A further aggravated, whereas treatment with anti-IL17A antibody ameliorated IMQ-induced changes in hepatic injury/inflammation and protein/lipid metabolism. Our study shows for the first time that psoriatic inflammation leads to hepatic inflammation which results in dysregulated protein/lipid metabolism through IL-17RC/NFκB signaling. This could result in increased risk of cardiovascular dysfunction in patients with psoriasis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Selective progesterone receptor modulators 1: use during pregnancy.

    PubMed

    Benagiano, Giuseppe; Bastianelli, Carlo; Farris, Manuela

    2008-10-01

    A large number of synthetic compounds known as selective progesterone receptor modulators can bind to progesterone receptors: the ligands exhibit a spectrum of activities ranging from pure antagonism to a mixture of agonism and antagonism. Only a dozen or so selective progesterone receptor modulators have been tested to any significant extent: among them are mifepristone (RU 486), asoprisnil (J867), onapristone (ZK 98 299), ulipristal (CDB 2914), Proellex() (CDB 4124), ORG 33628 and ORG 31710. Their clinical applications during pregnancy are discussed. A careful evaluation of existing major review papers and recently published articles was carried out focusing on mifepristone, the most widely studied selective progesterone receptor modulator, which was first used for the voluntary interruption of an early gestation. Other selective progesterone receptor modulators, especially those with partial agonist action, have shown little activity during pregnancy in animal models. Besides early and late voluntary interruption of gestation, selective progesterone receptor modulators have been tested in a variety of obstetrical situations: to obtain a ripening of the cervix, for the medical management of early embryonic loss and foetal death, for the induction of labour at term and for the medical treatment of extra-uterine pregnancies. The only applications that seem worthy of large-scale utilisation during pregnancy are voluntary interruption of early and late gestation, medical management of early delayed miscarriage and late foetal demise.

  3. Antagonism of Lateral Amygdala Alpha1-Adrenergic Receptors Facilitates Fear Conditioning and Long-Term Potentiation

    ERIC Educational Resources Information Center

    Lazzaro, Stephanie C.; Hou, Mian; Cunha, Catarina; LeDoux, Joseph E.; Cain, Christopher K.

    2010-01-01

    Norepinephrine receptors have been studied in emotion, memory, and attention. However, the role of alpha1-adrenergic receptors in fear conditioning, a major model of emotional learning, is poorly understood. We examined the effect of terazosin, an alpha1-adrenergic receptor antagonist, on cued fear conditioning. Systemic or intra-lateral amygdala…

  4. Caspase-8 modulates Dectin-1 and CR3 driven IL-1β production in response to β-glucans and the fungal pathogen, Candida albicans1

    PubMed Central

    Ganesan, Sandhya; Rathinam, Vijay A. K.; Bossaller, Lukas; Army, Kelly; Kaiser, William J.; Mocarski, Edward S.; Dillon, Christopher P.; Green, Douglas R.; Mayadas, Tanya N.; Levitz, Stuart M.; Hise, Amy G.

    2014-01-01

    Inflammasomes are central mediators of host defense to a wide range of microbial pathogens. The NLRP3 inflammasome plays a key role in triggering caspase-1 dependent IL-1β maturation and resistance to fungal dissemination in Candida albicans infection. β-glucans are major components of fungal cell walls that trigger IL-1β secretion in both murine and human immune cells. In this study, we sought to determine the contribution of β-glucans to C. albicans-induced inflammasome responses in mouse dendritic cells. We show that the NLRP3-ASC-caspase-1 inflammasome is absolutely critical for IL-1β production in response to β-glucans. Interestingly, we also found that both Complement Receptor 3 (CR3/Mac-1) and dectin-1 play a crucial role in coordinating β-glucan-induced IL-1β processing as well as a cell death response. In addition to the essential role of caspase-1, we identify an important role for the pro-apoptotic protease caspase-8 in promoting β-glucan-induced cell death and NLRP3 inflammasome-dependent IL-1β maturation. A strong requirement for Complement Receptor 3 and caspase-8 was also found for NLRP3 dependent IL-1β production in response to heat killed Candida albicans. Together, these results define the importance of dectin-1, CR3 and caspase-8, in addition to the canonical NLRP3 inflammasome, in mediating β-glucan and C. albicans induced innate responses in dendritic cells. Collectively, these findings establish a novel link between β-glucan recognition receptors and the inflammatory proteases caspase-8 and caspase-1 in coordinating cytokine secretion and cell death in response to immunostimulatory fungal components. PMID:25063877

  5. Loss of IL-15 receptor α alters the endurance, fatigability, and metabolic characteristics of mouse fast skeletal muscles

    PubMed Central

    Pistilli, Emidio E.; Bogdanovich, Sasha; Garton, Fleur; Yang, Nan; Gulbin, Jason P.; Conner, Jennifer D.; Anderson, Barbara G.; Quinn, LeBris S.; North, Kathryn; Ahima, Rexford S.; Khurana, Tejvir S.

    2011-01-01

    IL-15 receptor α (IL-15Rα) is a component of the heterotrimeric plasma membrane receptor for the pleiotropic cytokine IL-15. However, IL-15Rα is not merely an IL-15 receptor subunit, as mice lacking either IL-15 or IL-15Rα have unique phenotypes. IL-15 and IL-15Rα have been implicated in muscle phenotypes, but a role in muscle physiology has not been defined. Here, we have shown that loss of IL-15Rα induces a functional oxidative shift in fast muscles, substantially increasing fatigue resistance and exercise capacity. IL-15Rα–knockout (IL-15Rα–KO) mice ran greater distances and had greater ambulatory activity than controls. Fast muscles displayed fatigue resistance and a slower contractile phenotype. The molecular signature of these muscles included altered markers of mitochondrial biogenesis and calcium homeostasis. Morphologically, fast muscles had a greater number of muscle fibers, smaller fiber areas, and a greater ratio of nuclei to fiber area. The alterations of physiological properties and increased resistance to fatigue in fast muscles are consistent with a shift toward a slower, more oxidative phenotype. Consistent with a conserved functional role in humans, a genetic association was found between a SNP in the IL15RA gene and endurance in athletes stratified by sport. Therefore, we propose that IL-15Rα has a role in defining the phenotype of fast skeletal muscles in vivo. PMID:21765213

  6. Hydrogen sulphide decreases IL-1β-induced activation of fibroblast-like synoviocytes from patients with osteoarthritis

    PubMed Central

    Sieghart, Daniela; Liszt, Melissa; Wanivenhaus, Axel; Bröll, Hans; Kiener, Hans; Klösch, Burkhard; Steiner, Günter

    2015-01-01

    Balneotherapy employing sulphurous thermal water is still applied to patients suffering from diseases of musculoskeletal system like osteoarthritis (OA) but evidence for its clinical effectiveness is scarce. Since the gasotransmitter hydrogen sulphide (H2S) seems to affect cells involved in degenerative joint diseases, it was the objective of this study to investigate the effects of exogenous H2S on fibroblast-like synoviocytes (FLS), which are key players in OA pathogenesis being capable of producing pro-inflammatory cytokines and matrix degrading enzymes. To address this issue primary FLS derived from OA patients were stimulated with IL-1β and treated with the H2S donor NaHS. Cellular responses were analysed by ELISA, quantitative real-time PCR, phospho-MAPkinase array and Western blotting. Treatment-induced effects on cellular structure and synovial architecture were investigated in three-dimensional extracellular matrix micromasses. NaHS treatment reduced both spontaneous and IL-1β-induced secretion of IL-6, IL-8 and RANTES in different experimental settings. In addition, NaHS treatment reduced the expression of matrix metallo-proteinases MMP-2 and MMP-14. IL-1β induced the phosphorylation of several MAPkinases. NaHS treatment partially reduced IL-1β-induced activation of several MAPK whereas it increased phosphorylation of pro-survival factor Akt1/2. When cultured in spherical micromasses, FLS intentionally established a synovial lining layer-like structure; stimulation with IL-1β altered the architecture of micromasses leading to hyperplasia of the lining layer which was completely inhibited by concomitant exposure to NaHS. These data suggest that H2S partially antagonizes IL-1β stimulation via selective manipulation of the MAPkinase and the PI3K/Akt pathways which may encourage development of novel drugs for treatment of OA. PMID:25312962

  7. Effect of biodegradability on CXCR4 antagonism, transfection efficacy and antimetastatic activity of polymeric Plerixafor

    PubMed Central

    Li, Jing; Oupický, David

    2014-01-01

    Chemokine receptor CXCR4 and its sole ligand SDF-1 are key players in regulating cancer cell invasion and metastasis. Plerixafor (AMD3100) is a small-molecule CXCR4 antagonist that prevents binding of SDF-1 to CXCR4 and has potential in prevention of cancer metastasis. This study investigates the influence of biodegradability of a recently reported polymeric Plerixafor (PAMD) on CXCR4 antagonism, antimetastatic activity, and transfection efficacy of PAMD polyplexes with plasmid DNA. We show that PAMD exhibits CXCR4 antagonism and inhibition of cancer cell invasion in vitro regardless of its biodegradability. Biodegradable PAMD showed considerably enhanced transfection efficiency and decreased cytotoxicity when compared with the non-degradable PAMD. Despite similar CXCR4 antagonism in vitro, only biodegradable PAMD displayed antimetastatic activity in experimental lung metastasis model in vivo. PMID:24726746

  8. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) protects against renal inflammation and renal cancer cell proliferation and migration through antagonizing NF-κB and STAT3 signaling pathways.

    PubMed

    Su, Jia; Zhang, Qiqi; Qi, Hui; Wu, Linlin; Li, Yuanqiang; Yu, Donna; Huang, Wendong; Chen, Wei-Dong; Wang, Yan-Dong

    2017-08-15

    Gpbar1 (TGR5), a G-protein-coupled bile acid membrane receptor, is well known for its roles in regulation of glucose metabolism and energy homeostasis. In the current work, we found that TGR5 activation by its ligand suppressed lipopolysaccharide (LPS)-induced proinflammatory gene expression in wild-type (WT) but not TGR5 -/- mouse kidney. Furthermore, we found that TGR5 is a suppressor of kidney cancer cell proliferation and migration. We show that TGR5 activation antagonized NF-κB and STAT3 signaling pathways through suppressing the phosphorylation of IκBα, the translocation of p65 and the phosphorylation of STAT3. TGR5 overexpression with ligand treatment inhibited gene expression mediated by NF-κB and STAT3. These results suggest that TGR5 antagonizes kidney inflammation and kidney cancer cell proliferation and migration at least in part by inhibiting NF-κB and STAT3 signaling. These findings identify TGR5 may serve as an attractive therapeutic tool for human renal inflammation related diseases and cancer.

  9. Acute and subacute IL-1β administrations differentially modulate neuroimmune and neurotrophic systems: possible implications for neuroprotection and neurodegeneration

    PubMed Central

    2013-01-01

    Background In Alzheimer’s disease, stroke and brain injuries, activated microglia can release proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines may change astrocyte and neurotrophin functions, which influences neuronal survival and induces apoptosis. However, the interaction between neuroinflammation and neurotrophin functions in different brain conditions is unknown. The present study hypothesized that acute and subacute elevated IL-1β differentially modulates glial and neurotrophin functions, which are related to their role in neuroprotection and neurodegeneration. Method Rats were i.c.v. injected with saline or IL-1β for 1 or 8 days and tested in a radial maze. mRNA and protein expressions of glial cell markers, neurotrophins, neurotrophin receptors, β-amyloid precursor protein (APP) and the concentrations of pro- and anti-inflammatory cytokines were measured in the hippocampus. Results When compared to controls, memory deficits were found 4 days after IL-1 administrations, however the deficits were attenuated by IL-1 receptor antagonist (RA). Subacute IL-1 administrations increased expressions of APP, microglial active marker CD11b, and p75 neurotrophin receptor, and the concentration of tumor necrosis factor (TNF)-α and IL-1β, but decreased expressions of astrocyte active marker glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and TrK B. By contrast, up-regulations of NGF, BDNF and TrK B expressions were found after acute IL-1 administration, which are associated with the increase in both glial marker expressions and IL-10 concentrations. However, TrK A was down-regulated by acute and up-regulated by subacute IL-1 administrations. Subacute IL-1-induced changes in the glial activities, cytokine concentrations and expressions of BDNF and p75 were reversed by IL-1RA treatment. Conclusion These results indicate that acute and subacute IL-1 administrations induce different changes toward neuroprotection

  10. Identification of a second murine interleukin-11 receptor alpha-chain gene (IL11Ra2) with a restricted pattern of expression.

    PubMed

    Robb, L; Hilton, D J; Brook-Carter, P T; Begley, C G

    1997-03-15

    The interleukin-11 receptor alpha-chain, a member of the hematopoietin receptor superfamily, forms, together with gp130, a functional high-affinity receptor complex for interleukin 11. We, and others, reported the cloning of the murine interleukin 11 receptor alpha-chain cDNA (IL11Ra) and recently described the structure of the IL11Ra locus. We also described the presence of a second IL11Ra-like locus in some mouse strains. In this study we report that the second locus, designated IL11Ra2, encodes an mRNA species. The transcript was 99% identical to the IL11Ra transcript in the coding and 3'-untranslated region, but had a different 5'-untranslated region. The complete genomic organization of the IL11Ra2 locus is presented, and the two loci are shown to be located on a 200-kb NaeI genomic fragment. Comparison of the expression pattern of the IL11Ra and IL11Ra2 genes using an RT-PCR restriction fragment length polymorphism strategy revealed that while the expression of IL11Ra was widespread, expression of IL11Ra2 was restricted to testis, lymph node, and thymus.

  11. IL-7 and CD4 T Follicular Helper Cells in HIV-1 Infection

    PubMed Central

    Chiodi, Francesca; Bekele, Yonas; Lantto Graham, Rebecka; Nasi, Aikaterini

    2017-01-01

    IL-7 was previously shown to upregulate the expression of molecules important for interaction of CD4+ T cells with B cells. It is poorly studied whether IL-7 has a role in the biology of T follicular helper (Tfh) cells and whether IL-7 dysregulates the expression of B-cell costimulatory molecules on Tfh cells. We review the literature and provide arguments in favor of IL-7 being involved in the biology of human Tfh cells. The CD127 IL-7 receptor is expressed on circulating Tfh and non-Tfh cells, and we show that IL-7, but not IL-6 or IL-21, upregulates the expression of CD70 and PD-1 on these cells. We conclude that IL-7, a cytokine whose level is elevated during HIV-1 infection, may have a role in increased expression of B cell costimulatory molecules on Tfh cells and lead to abnormal B cell differentiation. PMID:28473831

  12. IL-7 and CD4 T Follicular Helper Cells in HIV-1 Infection.

    PubMed

    Chiodi, Francesca; Bekele, Yonas; Lantto Graham, Rebecka; Nasi, Aikaterini

    2017-01-01

    IL-7 was previously shown to upregulate the expression of molecules important for interaction of CD4+ T cells with B cells. It is poorly studied whether IL-7 has a role in the biology of T follicular helper (Tfh) cells and whether IL-7 dysregulates the expression of B-cell costimulatory molecules on Tfh cells. We review the literature and provide arguments in favor of IL-7 being involved in the biology of human Tfh cells. The CD127 IL-7 receptor is expressed on circulating Tfh and non-Tfh cells, and we show that IL-7, but not IL-6 or IL-21, upregulates the expression of CD70 and PD-1 on these cells. We conclude that IL-7, a cytokine whose level is elevated during HIV-1 infection, may have a role in increased expression of B cell costimulatory molecules on Tfh cells and lead to abnormal B cell differentiation.

  13. An Autoinflammatory Disease with Deficiency of the Interleukin-1Receptor Antagonist

    PubMed Central

    Aksentijevich, Ivona; Masters, Seth L.; Ferguson, Polly J.; Dancey, Paul; Frenkel, Joost; van Royen-Kerkhoff, Annet; Laxer, Ron; Tedgård, Ulf; Cowen, Edward W.; Pham, Tuyet-Hang; Booty, Matthew; Estes, Jacob D.; Sandler, Netanya G.; Plass, Nicole; Stone, Deborah L.; Turner, Maria L.; Hill, Suvimol; Butman, John A.; Schneider, Rayfel; Babyn, Paul; El-Shanti, Hatem I.; Pope, Elena; Barron, Karyl; Bing, Xinyu; Laurence, Arian; Lee, Chyi-Chia R.; Chapelle, Dawn; Clarke, Gillian I.; Ohson, Kamal; Nicholson, Marc; Gadina, Massimo; Yang, Barbara; Korman, Benjamin D.; Gregersen, Peter K.; van Hagen, P. Martin; Hak, A. Elisabeth; Huizing, Marjan; Rahman, Proton; Douek, Daniel C.; Remmers, Elaine F.; Kastner, Daniel L.; Goldbach-Mansky, Raphaela

    2010-01-01

    Background Autoinflammatory diseases manifest inflammation without evidence of infection, high-titer autoantibodies, or autoreactive T cells. We report a disorder caused by mutations of IL1RN, which encodes the interleukin-1receptor antagonist, with prominent involvement of skin and bone. Methods We studied nine children from six families who had neonatal onset of sterile multifocal osteomyelitis, periostitis, and pustulosis. Response to empirical treatment with the recombinant interleukin-1receptor antagonist anakinra in the first patient prompted us to test for the presence of mutations and changes in proteins and their function in interleukin-1–pathway genes including IL1RN. Results We identified homozygous mutations of IL1RN in nine affected children, from one family from Newfoundland, Canada, three families from the Netherlands, and one consanguineous family from Lebanon. A nonconsanguineous patient from Puerto Rico was homozygous for a genomic deletion that includes IL1RN and five other interleukin-1–family members. At least three of the mutations are founder mutations; heterozygous carriers were asymptomatic, with no cytokine abnormalities in vitro. The IL1RN mutations resulted in a truncated protein that is not secreted, thereby rendering cells hyperresponsive to interleukin-1β stimulation. Patients treated with anakinra responded rapidly. Conclusions We propose the term deficiency of the interleukin-1receptor antagonist, or DIRA, to denote this autosomal recessive autoinflammatory disease caused by mutations affecting IL1RN. The absence of interleukin-1receptor antagonist allows unopposed action of interleukin-1, resulting in life-threatening systemic inflammation with skin and bone involvement. (ClinicalTrials.gov number, NCT00059748.) PMID:19494218

  14. Influence of the IL-1Ra gene polymorphism on in vivo synthesis of IL-1Ra and IL-1beta after live yellow fever vaccination.

    PubMed

    Hacker, U T; Erhardt, S; Tschöp, K; Jelinek, T; Endres, S

    2001-09-01

    The inflammatory response in infectious and autoimmune diseases is regulated by the balance between pro- and anti-inflammatory cytokines. The IL-1 complex contains polymorphic genes coding for IL-1alpha, IL-1beta and IL-1Ra. The IL-1Ra (variable number of tanden repeat) VNTR polymorphism has been shown to influence the capacity to produce IL-1beta and IL-1Ra after in vitro stimulation. Allele 2 of this polymorphism is associated with a number of inflammatory diseases. To determine the impact of the IL-1Ra polymorphism on in vivo human cytokine synthesis, we used a yellow fever vaccination model for the induction of cytokine synthesis in healthy volunteers. Two different yellow fever vaccines were used. After administration of the RKI vaccine (34 volunteers), plasma TNF-alpha concentration increased from 13.4 +/- 0.9 pg/ml to 23.3 +/- 1.1 pg/ml (P < 0.001), and plasma IL-1Ra concentration increased from 308 +/- 25 pg/ml to 1019 +/- 111 pg/ml (P < 0.001), on day 2. Using Stamaril vaccine, no increase in the plasma concentrations of either TNF-alpha or IL-1Ra could be detected (n = 17). Only the RKI vaccine induced TNF-alpha synthesis after in vitro stimulation of MNC. Carriers of allele 2 of the IL-1Ra polymorphism had increased baseline concentrations of IL-1Ra (350 +/- 32 pg/ml) compared with non-carriers (222 +/- 18 pg/ml, P < 0.001), and decreased concentrations of IL-1beta (0.9 +/- 0.2 pg/ml for carriers versus 2.8 +/- 0.7 pg/ml for non-carriers, P = 0.017). After yellow fever vaccination (RKI vaccine), no significant differences in the increase of IL-1Ra plasma levels were detected between carriers and non-carriers of allele 2 of the IL-1Ra gene polymorphism. This is the first study to examine the influence of this genetic polymorphism on in vivo-induced human IL-1beta and IL-1Ra synthesis. Baseline concentrations of IL-1Ra and IL-1beta were significantly influenced by the IL-1Ra polymorphism. No influence of the IL-1Ra polymorphism on the in vivo

  15. IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORγt/Blimp-1 signal to promote the progression of endometriosis

    PubMed Central

    Chang, Kai-Kai; Liu, Li-Bing; Jin, Li-Ping; Zhang, Bing; Mei, Jie; Li, Hui; Wei, Chun-Yan; Zhou, Wen-Jie; Zhu, Xiao-Yong; Shao, Jun; Li, Da-Jin; Li, Ming-Qing

    2017-01-01

    Endometriosis is an estrogen-dependent inflammatory disease. The anti-inflammatory cytokine IL-10 is also increased in endometriosis. IL-10 production by Th17 cells is critical for limiting autoimmunity and inflammatory responses. However, the mechanism of inducing IL-10-producing Th17 cells is still largely unknown. The present study investigated the differentiation mechanism and role of IL-10-producing Th17 cells in endometriosis. Here, we report that IL-10+Th17 cells are significantly increased in the peritoneal fluid of women with endometriosis, along with an elevation of IL-27, IL-6 and TGF-β. Compared with peripheral CD4+ T cells, endometrial CD4+ T cells highly expressed IL-27 receptors, especially the ectopic endometrium. Under external (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) and local (estrogen, IL-6 and TGF-β) environmental regulation, IL-27 from macrophages and endometrial stromal cells (ESCs) induces IL-10 production in Th17 cells in vitro and in vivo. This process may be mediated through the interaction between c-musculoaponeurotic fibrosarconna (c-Maf) and retinoic acid-related orphan receptor gamma t (RORγt), and associated with the upregulation of downstream B lymphocyte-induced maturation protein-1 (Blimp-1). IL-10+Th17 cells, in turn, stimulate the proliferation and implantation of ectopic lesions and accelerate the progression of endometriosis. These results suggest that IL-27 is a pivotal regulator in endometriotic immune tolerance by triggering Th17 cells to produce IL-10 and promoting the rapid growth and implantation of ectopic lesions. This finding provides a scientific basis for potential therapeutic strategies aimed at preventing the development of endometriosis, especially for patients with high levels of IL-10+Th17 cells. PMID:28300844

  16. A Single Aspiration of Rod-like Carbon Nanotubes Induces Asbestos-like Pulmonary Inflammation Mediated in Part by the IL-1 Receptor.

    PubMed

    Rydman, Elina M; Ilves, Marit; Vanhala, Esa; Vippola, Minnamari; Lehto, Maili; Kinaret, Pia A S; Pylkkänen, Lea; Happo, Mikko; Hirvonen, Maija-Riitta; Greco, Dario; Savolainen, Kai; Wolff, Henrik; Alenius, Harri

    2015-09-01

    Carbon nanotubes (CNT) have been eagerly studied because of their multiple applications in product development and potential risks on health. We investigated the difference of two different CNT and asbestos in inducing proinflammatory reactions in C57BL/6 mice after single pharyngeal aspiration exposure. We used long tangled and long rod-like CNT, as well as crocidolite asbestos at a dose of 10 or 40 µg/mouse. The mice were sacrificed 4 and 16 h or 7, 14, and 28 days after the exposure. To find out the importance of a major inflammatory marker IL-1β in CNT-induced pulmonary inflammation, we used etanercept and anakinra as antagonists as well as Interleukin 1 (IL-1) receptor (IL-1R-/-) mice. The results showed that rod-like CNT, and asbestos in lesser extent, induced strong pulmonary neutrophilia accompanied by the proinflammatory cytokines and chemokines 16 h after the exposure. Seven days after the exposure, neutrophilia had essentially disappeared but strong pulmonary eosinophilia peaked in rod-like CNT and asbestos-exposed groups. After 28 days, pulmonary granulomas, goblet cell hyperplasia, and Charcot-Leyden-like crystals containing acidophilic macrophages were observed especially in rod-like CNT-exposed mice. IL-1R-/- mice and antagonists-treated mice exhibited a significant decrease in neutrophilia and messenger ribonucleic acid (mRNA) levels of proinflammatory cytokines at 16 h. However, rod-like CNT-induced Th2-type inflammation evidenced by the expression of IL-13 and mucus production was unaffected in IL-1R-/- mice at 28 days. This study provides knowledge about the pulmonary effects induced by a single exposure to the CNT and contributes to hazard assessment of carbon nanomaterials on airway exposure. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Functional expression of IL-12 receptor by human eosinophils: IL-12 promotes eosinophil apoptosis.

    PubMed

    Nutku, E; Zhuang, Q; Soussi-Gounni, A; Aris, F; Mazer, B D; Hamid, Q

    2001-07-15

    In murine models of allergic inflammation, IL-12 has been shown to decrease tissue eosinophilia, but the underlying mechanisms are not known. We evaluated the expression of IL-12R and the effect of IL-12 on eosinophil survival. In situ hybridization demonstrated the presence of mRNA and immunoreactivity for IL-12Rbeta1 and -beta2 subunits in human peripheral blood eosinophils. Surface expression of IL-12Rbeta1 and -beta2 subunits on freshly isolated human eosinophils was optimally expressed after incubation with PMA. To determine the functional significance of IL-12R studies, we studied cell viability and apoptosis. Morphological analysis and propidium iodide staining for cell cycle demonstrated that recombinant human IL-12 increased in vitro human eosinophil apoptosis in a dose-dependent manner. Addition of IL-5 together with IL-12 abrogated eosinophil apoptosis, suggesting that IL-12 and IL-5 have antagonistic effects. Our findings provide evidence for a novel role for IL-12 in regulating eosinophil function by increasing eosinophil apoptosis.

  18. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain.

    PubMed

    Sanger, Gareth J

    2004-04-01

    NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorders. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of this receptor in disrupted colonic motility. NK1 receptor antagonism does not exert consistent analgesic activity in humans, but similar studies have not been carried out against pain of GI origin, where NK1 receptors may have additional influences on mucosal inflammatory or "irritant" processes. NK3 receptors mediate certain disruptions of intestinal motility. The activity may be driven by tachykinins released from intrinsic primary afferent neurones (IPANs), which induce slow EPSP activity in connecting IPANs and hence, a degree of hypersensitivity within the enteric nervous system. The same process is also proposed to increase C-fibre sensitivity, either indirectly or directly. Thus, NK3 receptor antagonists inhibit intestinal nociception via a "peripheral" mechanism that may be intestine-specific. Studies with talnetant and other selective NK3 receptor antagonists are, therefore, revealing an exciting and novel pathway by which pathological changes in intestinal motility and nociception can be induced, suggesting a role for NK3 receptor antagonism in irritable bowel syndrome.

  19. P2X7 receptor antagonism ameliorates renal dysfunction in a rat model of sepsis.

    PubMed

    Arulkumaran, Nishkantha; Sixma, Marije L; Pollen, Sean; Ceravola, Elias; Jentho, Elisa; Prendecki, Maria; Bass, Paul S; Tam, Frederick W K; Unwin, Robert J; Singer, Mervyn

    2018-03-01

    Sepsis is a major clinical problem associated with significant organ dysfunction and high mortality. The ATP-sensitive P2X 7 receptor activates the NLRP3 inflammasome and is a key component of the innate immune system. We used a fluid-resuscitated rat model of fecal peritonitis and acute kidney injury (AKI) to investigate the contribution of this purinergic receptor to renal dysfunction in sepsis. Six and 24 h time-points were chosen to represent early and established sepsis, respectively. A selective P2X 7 receptor antagonist (A-438079) dissolved in dimethyl sulfoxide (DMSO) was infused 2 h following induction of sepsis. Compared with sham-operated animals, septic animals had significant increases in heart rate (-1(-4 to 8)% vs. 21(12-26)%; P = 0.003), fever (37.4(37.2-37.6)°C vs. 38.6(38.2-39.0)°C; P = 0.0009), and falls in serum albumin (29(27-30)g/L vs. 26(24-28); P = 0.0242). Serum IL-1β (0(0-10)(pg/mL) vs. 1671(1445-33778)(pg/mL); P < 0.001) and renal IL-1β (86(50-102)pg/mg protein vs. 200 (147-248)pg/mg protein; P = 0.0031) were significantly elevated in septic compared with sham-operated animals at 6 h. Serum creatinine was elevated in septic animals compared with sham-operated animals at 24 h (23(22-25) μmol/L vs. 28 (25-30)μmol/L; P = 0.0321). Renal IL-1β levels were significantly lower in A-438079-treated animals compared with untreated animals at 6 h (70(55-128)pg/mg protein vs. 200(147-248)pg/mg protein; P = 0.021). At 24 h, compared with untreated animals, A-438079-treated animals had more rapid resolution of tachycardia (22(13-36)% vs. -1(-6 to 7)%; P = 0.019) and fever (39.0(38.6-39.1)°C vs. 38.2(37.6-38.7)°C; P < 0.024), higher serum albumin (23(21-25)g/L vs. (27(25-28)g/L); P = 0.006), lower arterial lactate (3.2(2.5-4.3)mmol/L vs. 1.4(0.9-1.8)mmol/L; P = 0.037), and lower serum creatinine concentrations (28(25-30)μmol/L vs. 22(17-27)μmol/L; P = 0.019). P2X 7 A treatment ameliorates the systemic

  20. Germinal Center T Follicular Helper Cell IL-4 Production Is Dependent on Signaling Lymphocytic Activation Molecule Receptor (CD150)

    PubMed Central

    Yusuf, Isharat; Kageyama, Robin; Monticelli, Laurel; Johnston, Robert J.; DiToro, Daniel; Hansen, Kyle; Barnett, Burton; Crotty, Shane

    2010-01-01

    CD4 T cell help is critical for the generation and maintenance of germinal centers (GCs), and T follicular helper (TFH) cells are the CD4 T cell subset required for this process. Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP [SH2D1A]) expression in CD4 T cells is essential for GC development. However, SAP-deficient mice have only a moderate defect in TFH differentiation, as defined by common TFH surface markers. CXCR5+ TFH cells are found within the GC, as well as along the boundary regions of T/B cell zones. In this study, we show that GC-associated T follicular helper (GC TFH) cells can be identified by their coexpression of CXCR5 and the GL7 epitope, allowing for phenotypic and functional analysis of TFH and GC TFH populations. GC TFH cells are a functionally discrete subset of further polarized TFH cells, with enhanced B cell help capacity and a specialized ability to produce IL-4 in a TH2-independent manner. Strikingly, SAP-deficient mice have an absence of the GC TFH cell subset and SAP− TFH cells are defective in IL-4 and IL-21 production. We further demonstrate that SLAM (Slamf1, CD150), a surface receptor that uses SAP signaling, is specifically required for IL-4 production by GC TFH cells. GC TFH cells require IL-4 and -21 production for optimal help to B cells. These data illustrate complexities of SAP-dependent SLAM family receptor signaling, revealing a prominent role for SLAM receptor ligation in IL-4 production by GC CD4 T cells but not in TFH cell and GC TFH cell differentiation. PMID:20525889

  1. Aniracetam, 1-BCP and cyclothiazide differentially modulate the function of NMDA and AMPA receptors mediating enhancement of noradrenaline release in rat hippocampal slices.

    PubMed

    Pittaluga, A; Bonfanti, A; Arvigo, D; Raiteri, M

    1999-04-01

    Aniracetam, 1-(1,3-benzodioxol-5-yl-carbonyl)piperidine (1-BCP) and cyclothiazide, three compounds considered to enhance cognition through modulation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors, were evaluated in the 'kynurenate test', a biochemical assay in which some nootropics have been shown to prevent the antagonism by kynurenic acid of the N-methyl-D-aspartate (NMDA)-evoked [3H]noradrenaline ([3H]NA) release from rat hippocampal slices. Aniracetam attenuated the kynurenate (100 microM) antagonism of the [3H]NA release elicited by 100 microM NMDA with high potency (EC50< or =0.1 microM). Cyclothiazide and 1-BCP were about 10 and 100 times less potent than aniracetam, respectively. The effect of aniracetam persisted in the presence of the AMPA receptor antagonist 6-nitro-7-sulphamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) added at 5 microM, a concentration that did not affect NMDA receptors; in contrast, NBQX reduced the effect of 1-BCP and abolished that of cyclothiazide. The AMPA-evoked release of [3H]NA from hippocampal slices or synaptosomes was enhanced by cyclothiazide, less potently by 1-BCP and weakly by aniracetam. High concentrations of kynurenate (1 mM) antagonized the AMPA-evoked [3H]NA release in slices; this antagonism was attenuated by 1 microM cyclothiazide and reversed to an enhancement of AMPA-evoked [3H]NA release by 10 microM of the drug, but was insensitive to 1-BCP or aniracetam. It is concluded that aniracetam exerts a dual effect on glutamatergic transmission: modulation of NMDA receptor function at nanomolar concentrations, and modulation of AMPA receptors at high micromolar concentrations. As to cyclothiazide and 1-BCP, our data concur with the idea that both compounds largely act through AMPA receptors, although an NMDA component may be involved in the effect of 1-BCP.

  2. IL-6 pathway-driven investigation of response to IL-6 receptor inhibition in rheumatoid arthritis

    PubMed Central

    Wang, Jianmei; Platt, Adam; Upmanyu, Ruchi; Germer, Søren; Lei, Guiyuan; Rabe, Christina; Benayed, Ryma; Kenwright, Andrew; Hemmings, Andrew; Martin, Mitchell; Harari, Olivier

    2013-01-01

    Objectives To determine whether heterogeneity in interleukin-6 (IL-6), IL-6 receptor and other components of the IL-6 signalling pathway/network, at the gene, transcript and protein levels, correlate with disease activity in patients with rheumatoid arthritis (RA) and with clinical response to tocilizumab. Design Biomarker samples and clinical data for five phase 3 trials of tocilizumab were analysed using serum (3751 samples), genotype (927 samples) and transcript (217 samples) analyses. Linear regression was then used to assess the association between these markers and either baseline disease activity or treatment response. Results Higher baseline serum IL-6 levels were significantly associated (p<0.0001) with higher baseline DAS28, erythrocyte sedimentation rate, C reactive protein and Health Assessment Questionnaire in patients whose responses to disease-modifying antirheumatic drugs (DMARD-IR) and to antitumour necrosis factor (aTNF-IR) were inadequate and patients who were naive/responders to methotrexate (MTX). Higher baseline serum IL-6 levels were also significantly associated with better clinical response to tocilizumab (versus placebo) measured by cDAS28 in the pooled DMARD-IR (p<0.0001) and MTX-naive populations (p=0.04). However, the association with treatment response was weak. A threefold difference in baseline IL-6 level corresponded to only a 0.17-unit difference in DAS28 at week 16. IL-6 pathway single nucleotide polymorphisms and RNA levels also were not strongly associated with treatment response. Conclusions Our analyses illustrate that the biological activity of a disease-associated molecular pathway may impact the benefit of a therapy targeting that pathway. However, the variation in pathway activity, as measured in blood, may not be a strong predictor. These data suggest that the major contribution to variability in clinical responsiveness to therapeutics in RA remains unknown. PMID:23959753

  3. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis

    PubMed Central

    Iannitti, Rossana G.; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A.; van de Veerdonk, Frank L.; Romani, Luigina

    2016-01-01

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurrs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF. PMID:26972847

  4. IL-1 receptor antagonist ameliorates inflammasome-dependent inflammation in murine and human cystic fibrosis.

    PubMed

    Iannitti, Rossana G; Napolioni, Valerio; Oikonomou, Vasilis; De Luca, Antonella; Galosi, Claudia; Pariano, Marilena; Massi-Benedetti, Cristina; Borghi, Monica; Puccetti, Matteo; Lucidi, Vincenzina; Colombo, Carla; Fiscarelli, Ersilia; Lass-Flörl, Cornelia; Majo, Fabio; Cariani, Lisa; Russo, Maria; Porcaro, Luigi; Ricciotti, Gabriella; Ellemunter, Helmut; Ratclif, Luigi; De Benedictis, Fernando Maria; Talesa, Vincenzo Nicola; Dinarello, Charles A; van de Veerdonk, Frank L; Romani, Luigina

    2016-03-14

    Dysregulated inflammasome activation contributes to respiratory infections and pathologic airway inflammation. Through basic and translational approaches involving murine models and human genetic epidemiology, we show here the importance of the different inflammasomes in regulating inflammatory responses in mice and humans with cystic fibrosis (CF), a life-threatening disorder of the lungs and digestive system. While both contributing to pathogen clearance, NLRP3 more than NLRC4 contributes to deleterious inflammatory responses in CF and correlates with defective NLRC4-dependent IL-1Ra production. Disease susceptibility in mice and microbial colonization in humans occurs in conditions of genetic deficiency of NLRC4 or IL-1Ra and can be rescued by administration of the recombinant IL-1Ra, anakinra. These results indicate that pathogenic NLRP3 activity in CF could be negatively regulated by IL-1Ra and provide a proof-of-concept evidence that inflammasomes are potential targets to limit the pathological consequences of microbial colonization in CF.

  5. Effect of peptide aldehydes with IL-1 beta converting enzyme inhibitory properties on IL-1 alpha and IL-1 beta production in vitro.

    PubMed

    Németh, K; Patthy, M; Fauszt, I; Széll, E; Székely, J I; Bajusz, S

    1995-12-01

    Tripeptide and pentapeptide aldehydes as substrate-base inhibitors of cysteine proteases were designed in our laboratory for the inhibition of interleukin-1 beta converting enzyme (ICE), a recently described cysteine protease responsible for the processing of IL-1 beta. The biological effectivity of the peptide aldehydes was studied in THP-1 cells and human whole blood. The released and cell-associated IL-1 alpha and IL-1 beta levels were determined by ELISA from the supernatants and cell lysates, respectively. The total IL-1 like bioactivity was assayed by the D10 G4.1 cell proliferation method. The tripeptide aldehyde (Z-Val-His-Asp-H) and pentapeptide aldehyde (Eoc-Ala-Tyr-Val-Ala-Asp-H) significantly reduced IL-1 beta levels in the supernatants in relatively high concentrations (10-100 microM), but the IL-1 alpha release was unaffected by these peptides. However, a considerable decrease in the cell-associated IL-1 beta and IL-1 alpha levels was observed. N-terminal extension of the tripeptide aldehyde yielded even more potent inhibitors. Amino acid substitution at the P2 position did not cause considerable changes in the inhibitory activity. The peptide aldehydes suppressed the IL-1 beta production in a reversible manner, whereas dexamethasone, a glucocorticoid, had a prolonged inhibitory effect. The inhibitory effect of these peptides and that of dexamethasone appeared to be additive. These findings indicate that these peptide aldehydes might be used as IL-beta inhibitory agents in experimental models in which IL-1 beta is a key mediator or ICE is implicated.

  6. SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor

    PubMed Central

    Bradley, ME; Bond, ME; Manini, J; Brown, Z; Charlton, SJ

    2009-01-01

    Background and purpose: In several previous studies, the C-X-C chemokine receptor (CXCR)2 antagonist 1-(2-bromo-phenyl)-3-(7-cyano-3H-benzotriazol-4-yl)-urea (SB265610) has been described as binding competitively with the endogenous agonist. This is in contrast to many other chemokine receptor antagonists, where the mechanism of antagonism has been described as allosteric. Experimental approach: To determine whether it displays a unique mechanism among the chemokine receptor antagonists, the mode of action of SB265610 was investigated at the CXCR2 receptor using radioligand and [35S]-GTPγS binding approaches in addition to chemotaxis of human neutrophils. Key results: In equilibrium saturation binding studies, SB265610 depressed the maximal binding of [125I]-interleukin-8 ([125I]-IL-8) without affecting the Kd. In contrast, IL-8 was unable to prevent binding of [3H]-SB265610. Kinetic binding experiments demonstrated that this was not an artefact of irreversible or slowly reversible binding. In functional experiments, SB265610 caused a rightward shift of the concentration-response curves to IL-8 and growth-related oncogene α, but also a reduction in maximal response elicited by each agonist. Fitting these data to an operational allosteric ternary complex model suggested that, once bound, SB265610 completely blocks receptor activation. SB265610 also inhibited basal [35S]-GTPγS binding in this preparation. Conclusions and implications: Taken together, these data suggest that SB265610 behaves as an allosteric inverse agonist at the CXCR2 receptor, binding at a region distinct from the agonist binding site to prevent receptor activation, possibly by interfering with G protein coupling. PMID:19422399

  7. Functional relevance of G-protein-coupled-receptor-associated proteins, exemplified by receptor-activity-modifying proteins (RAMPs).

    PubMed

    Fischer, J A; Muff, R; Born, W

    2002-08-01

    The calcitonin (CT) receptor (CTR) and the CTR-like receptor (CRLR) are close relatives within the type II family of G-protein-coupled receptors, demonstrating sequence identity of 50%. Unlike the interaction between CT and CTR, receptors for the related hormones and neuropeptides amylin, CT-gene-related peptide (CGRP) and adrenomedullin (AM) require one of three accessory receptor-activity-modifying proteins (RAMPs) for ligand recognition. An amylin/CGRP receptor is revealed when CTR is co-expressed with RAMP1. When complexed with RAMP3, CTR interacts with amylin alone. CRLR, initially classed as an orphan receptor, is a CGRP receptor when co-expressed with RAMP1. The same receptor is specific for AM in the presence of RAMP2. Together with human RAMP3, CRLR defines an AM receptor, and with mouse RAMP3 it is a low-affinity CGRP/AM receptor. CTR-RAMP1, antagonized preferentially by salmon CT-(8-32) and not by CGRP-(8-37), and CRLR-RAMP1, antagonized by CGRP-(8-37), are two CGRP receptor isotypes. Thus amylin and CGRP interact specifically with heterodimeric complexes between CTR and RAMP1 or RAMP3, and CGRP and AM interact with complexes between CRLR and RAMP1, RAMP2 or RAMP3.

  8. Type I interleukin-1 receptor is required for pulmonary responses to subacute ozone exposure in mice.

    PubMed

    Johnston, Richard A; Mizgerd, Joseph P; Flynt, Lesley; Quinton, Lee J; Williams, Erin S; Shore, Stephanie A

    2007-10-01

    Interleukin (IL)-1, a proinflammatory cytokine, is expressed in the lung after ozone (O(3)) exposure. IL-1 mediates its effects through the type I IL-1 receptor (IL-1RI), the only signaling receptor for both IL-1alpha and IL-1beta. The purpose of this study was to determine the role of IL-1RI in pulmonary responses to O(3.) To that end, wild-type, C57BL/6 (IL-1RI(+/+)) mice and IL-1RI-deficient (IL-1RI(-/-)) mice were exposed to O(3) either subacutely (0.3 ppm for 72 h) or acutely (2 ppm for 3 h). Subacute O(3) exposure increased bronchoalveolar lavage fluid (BALF) protein, interferon-gamma-inducible protein (IP)-10, soluble tumor necrosis factor receptor 1 (sTNFR1), and neutrophils in IL-1RI(+/+) and IL-1RI(-/-) mice. With the exception of IP-10, all outcome indicators were reduced in IL-1RI(-/-) mice. Furthermore, subacute O(3) exposure increased IL-6 mRNA expression in IL-1RI(+/+), but not IL-1RI(-/-) mice. Acute (2 ppm) O(3) exposure increased BALF protein, IL-6, eotaxin, KC, macrophage inflammatory protein (MIP)-2, IP-10, monocyte chemotactic protein-1, sTNFR1, neutrophils, and epithelial cells in IL-1RI(+/+) and IL-1RI(-/-) mice. For IL-6, eotaxin, MIP-2, and sTNFR1, there were small but significant reductions of these outcome indicators in IL-1RI(-/-) versus IL-1RI(+/+) mice at 6 hours after exposure, but not at other time points, whereas other outcome indicators were unaffected by IL-1RI deficiency. These results suggest that IL-1RI is required for O(3)-induced pulmonary inflammation during subacute O(3) exposure, but plays a more minor role during acute O(3) exposure. In addition, these results suggest that the induction of IL-6 via IL-1RI may be important in mediating the effects of O(3) during subacute exposure.

  9. Impact of IL-1 inhibition on fatigue associated with autoinflammatory syndromes.

    PubMed

    Yadlapati, Sujani; Efthimiou, Petros

    2016-01-01

    Cryopyrin-associated periodic syndromes (CAPS) is a rare group of autoinflammatory disorders that includes familial cold autoinflammatory syndrome or FCAS, Muckle-wells syndrome or MWS, and neonatal-onset multisystem inflammatory disease or NOMID. CAPS is caused by a mutation in the NOD-like receptor family, pyrin domain containing 3 (NLRP3) gene. This ultimately leads to increased production of interleukin (IL)-1β. IL-1β is a biologically active member of the IL-1 family. It is not only a pro-inflammatory cytokine responsible for features such as fever, rash, and arthritis, but is also a major mediator in the central pathways of fatigue. Fatigue is a major component of CAPS and is associated with severely compromised quality of life. In clinical studies, fatigue was measured using functional assessment of chronic illness therapy-fatigue or FACIT-F and short form-36 or SF-36, physical component score instruments. These questionnaires can also be used to monitor improvement of fatigue following initiation of therapy. IL-1 inhibitors block the IL-1 signaling cascade, thereby preventing systemic inflammation in CAPS. The decrease in systemic inflammation is accompanied by improvement in fatigue.

  10. The Fas/Fap-1/Cav-1 complex regulates IL-1RA secretion in mesenchymal stem cells to accelerate wound healing.

    PubMed

    Kou, Xiaoxing; Xu, Xingtian; Chen, Chider; Sanmillan, Maria Laura; Cai, Tao; Zhou, Yanheng; Giraudo, Claudio; Le, Anh; Shi, Songtao

    2018-03-14

    Mesenchymal stem cells (MSCs) are capable of secreting exosomes, extracellular vesicles, and cytokines to regulate cell and tissue homeostasis. However, it is unknown whether MSCs use a specific exocytotic fusion mechanism to secrete exosomes and cytokines. We show that Fas binds with Fas-associated phosphatase-1 (Fap-1) and caveolin-1 (Cav-1) to activate a common soluble N -ethylmaleimide-sensitive factor (NSF) attachment protein receptor (SNARE)-mediated membrane fusion mechanism to release small extracellular vesicles (sEVs) in MSCs. Moreover, we reveal that MSCs produce and secrete interleukin-1 receptor antagonist (IL-1RA) associated with sEVs to maintain rapid wound healing in the gingiva via the Fas/Fap-1/Cav-1 cascade. Tumor necrosis factor-α (TNF-α) serves as an activator to up-regulate Fas and Fap-1 expression via the nuclear factor κB pathway to promote IL-1RA release. This study identifies a previously unknown Fas/Fap-1/Cav-1 axis that regulates SNARE-mediated sEV and IL-1RA secretion in stem cells, which contributes to accelerated wound healing. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  11. Celecoxib offsets the negative renal influences of cyclosporine via modulation of the TGF-β1/IL-2/COX-2/endothelin ET(B) receptor cascade.

    PubMed

    El-Gowelli, Hanan M; Helmy, Maged W; Ali, Rabab M; El-Mas, Mahmoud M

    2014-03-01

    Endothelin (ET) signaling provokes nephrotoxicity induced by the immunosuppressant drug cyclosporine A (CSA). We tested the hypotheses that (i): celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, counterbalances renal derangements caused by CSA in rats and (ii) the COX-2/endothelin ET(B) receptor signaling mediates the CSA-celecoxib interaction. Ten-day treatment with CSA (20 mg/kg/day) significantly increased biochemical indices of renal function (serum urea, creatinine), inflammation (interleukin-2, IL-2) and fibrosis (transforming growth factor-β₁, TGF-β₁). Histologically, CSA caused renal tubular atrophy along with interstitial fibrosis. These detrimental renal effects of CSA were largely reduced in rats treated concurrently with celecoxib (10 mg/kg/day). We also report that cortical glomerular and medullary tubular protein expressions of COX-2 and ET(B) receptors were reduced by CSA and restored to near-control values in rats treated simultaneously with celecoxib. The importance of ET(B) receptors in renal control and in the CSA-celecoxib interaction was further verified by the findings (i) most of the adverse biochemical, inflammatory, and histopathological profiles of CSA were replicated in rats treated with the endothelin ETB receptor antagonist BQ788 (0.1 mg/kg/day, 10 days), and (ii) the BQ788 effects, like those of CSA, were alleviated in rats treated concurrently with celecoxib. Together, the data suggest that the facilitation of the interplay between the TGF-β1/IL-2/COX-2 pathway and the endothelin ET(B) receptors constitutes the cellular mechanism by which celecoxib ameliorates the nephrotoxic manifestations of CSA in rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Toll-like receptors 2 and 4 modulate intestinal IL-10 differently in ileum and colon

    PubMed Central

    Layunta, Elena; Grasa, Laura; Pardo, Julián; García, Santiago; Alcalde, Ana I

    2017-01-01

    Background Inflammatory bowel diseases are consequence of an intestinal homeostasis breakdown in which innate immune dysregulation is implicated. Toll-like receptor (TLR)2 and TLR4 are immune recognition receptors expressed in the intestinal epithelium, the first physical-physiological barrier for microorganisms, to inform the host of the presence of Gram-positive and Gram-negative organisms. Interleukin (IL)-10 is an essential anti-inflammatory cytokine that contributes to maintenance of intestinal homeostasis. Aim Our main aim was to investigate intestinal IL-10 synthesis and release, and whether TLR2 and TLR4 are determinants of IL-10 expression in the intestinal tract. Methods We used Caco-2 cell line as an enterocyte-like cell model, and also ileum and colon from mice deficient in TLR2, TLR4 or TLR2/4 to test the involvement of TLR signaling. Results Intestinal epithelial cells are able to synthesize and release IL-10 and their expression is increased after TLR2 or TLR4 activation. IL-10 regulation seems to be tissue specific, with IL-10 expression in the ileum regulated by a compensation between TLR2 and TLR4 expression, whereas in the colon, TLR2 and TLR4 affect IL-10 expression independently. Conclusions Intestinal epithelial cells could release IL-10 in response to TLR activation, playing an intestinal tissue-dependent and critical intestinal immune role. PMID:29774159

  13. Toll-like receptors 2 and 4 modulate intestinal IL-10 differently in ileum and colon.

    PubMed

    Latorre, Eva; Layunta, Elena; Grasa, Laura; Pardo, Julián; García, Santiago; Alcalde, Ana I; Mesonero, José E

    2018-04-01

    Inflammatory bowel diseases are consequence of an intestinal homeostasis breakdown in which innate immune dysregulation is implicated. Toll-like receptor (TLR)2 and TLR4 are immune recognition receptors expressed in the intestinal epithelium, the first physical-physiological barrier for microorganisms, to inform the host of the presence of Gram-positive and Gram-negative organisms. Interleukin (IL)-10 is an essential anti-inflammatory cytokine that contributes to maintenance of intestinal homeostasis. Our main aim was to investigate intestinal IL-10 synthesis and release, and whether TLR2 and TLR4 are determinants of IL-10 expression in the intestinal tract. We used Caco-2 cell line as an enterocyte-like cell model, and also ileum and colon from mice deficient in TLR2, TLR4 or TLR2/4 to test the involvement of TLR signaling. Intestinal epithelial cells are able to synthesize and release IL-10 and their expression is increased after TLR2 or TLR4 activation. IL-10 regulation seems to be tissue specific, with IL-10 expression in the ileum regulated by a compensation between TLR2 and TLR4 expression, whereas in the colon, TLR2 and TLR4 affect IL-10 expression independently. Intestinal epithelial cells could release IL-10 in response to TLR activation, playing an intestinal tissue-dependent and critical intestinal immune role.

  14. Comparison of tachykinin NK1 and NK2 receptors in the circular muscle of the guinea-pig ileum and proximal colon.

    PubMed

    Maggi, C A; Patacchini, R; Meini, S; Quartara, L; Sisto, A; Potier, E; Giuliani, S; Giachetti, A

    1994-05-01

    1. The aim of this study was the pharmacological characterization of tachykinin NK1 and NK2 receptors mediating contraction in the circular muscle of the guinea-pig ileum and proximal colon. The action of substance P (SP), neurokinin A (NKA) and of the synthetic agonists [Sar9]SP sulphone, [Glp6,Pro9]SP(6-11) (septide) and [beta Ala8]NKA(4-10) was investigated. The affinities of various peptide and nonpeptide antagonists for the NK1 and NK2 receptor was estimated by use of receptor selective agonists. 2. The natural agonists, SP and NKA, produced concentration-dependent contraction in both preparations. EC50 values were 100 pM and 5 nM for SP, 1.2 nM and 19 nM for NKA in the ileum and colon, respectively. The action of SP and NKA was not significantly modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). 3. Synthetic NK1 and NK2 receptor agonists produced concentration-dependent contraction of the circular muscle of the ileum and proximal colon. EC50 values were 83 pM, 36 pM and 10 nM in the ileum, 8 nM, 0.7 nM and 12 nM in the colon for [Sar9]SP sulphone, septide and [beta Ala8]NKA-(4-10), respectively. The pseudopeptide derivative of NKA(4-10), MDL 28,564 behaved as a full or near-to-full agonist in both preparations, its EC50s being 474 nM and 55 nM in the ileum and colon, respectively. 4. Nifedipine (1 microM) abolished the response to septide and [Sar9]SP sulphone in the ileum and produced a rightward shift and large depression of the response in the colon. The response to [beta Ala8]NKA(4-10) was abolished in the ileum and largely unaffected in the colon. 5. The NK1 receptor antagonists, (+/-)-CP 96,34, FK 888 and GR 82,334 competitively antagonized the response to septide and [Sar9]SP sulphone in both preparations without affecting that to [beta Ala8]NKA(4-10). In general, the NK1 receptor antagonists were significantly more potent toward septide than [Sar9]SP sulphone in both preparations. 6. The NK2 receptor antagonists, GR

  15. Changes in interleukin-1 signal modulators induced by 3,4-methylenedioxymethamphetamine (MDMA): regulation by CB2 receptors and implications for neurotoxicity

    PubMed Central

    2011-01-01

    Background 3,4-Methylenedioxymethamphetamine (MDMA) produces a neuroinflammatory reaction in rat brain characterized by an increase in interleukin-1 beta (IL-1β) and microglial activation. The CB2 receptor agonist JWH-015 reduces both these changes and partially protects against MDMA-induced neurotoxicity. We have examined MDMA-induced changes in IL-1 receptor antagonist (IL-1ra) levels and IL-1 receptor type I (IL-1RI) expression and the effects of JWH-015. The cellular location of IL-1β and IL-1RI was also examined. MDMA-treated animals were given the soluble form of IL-1RI (sIL-1RI) and neurotoxic effects examined. Methods Dark Agouti rats received MDMA (12.5 mg/kg, i.p.) and levels of IL-1ra and expression of IL-1RI measured 1 h, 3 h or 6 h later. JWH-015 (2.4 mg/kg, i.p.) was injected 48 h, 24 h and 0.5 h before MDMA and IL-1ra and IL-1RI measured. For localization studies, animals were sacrificed 1 h or 3 h following MDMA and stained for IL-1β or IL-1RI in combination with neuronal and microglial markers. sIL-1RI (3 μg/animal; i.c.v.) was administered 5 min before MDMA and 3 h later. 5-HT transporter density was determined 7 days after MDMA injection. Results MDMA produced an increase in IL-ra levels and a decrease in IL-1RI expression in hypothalamus which was prevented by CB2 receptor activation. IL-1RI expression was localized on neuronal cell bodies while IL-1β expression was observed in microglial cells following MDMA. sIL-1RI potentiated MDMA-induced neurotoxicity. MDMA also increased IgG immunostaining indicating that blood brain-barrier permeability was compromised. Conclusions In summary, MDMA produces changes in IL-1 signal modulators which are modified by CB2 receptor activation. These results indicate that IL-1β may play a partial role in MDMA-induced neurotoxicity. PMID:21595923

  16. Glucagon-like peptide-1 receptor expression on human eosinophils and its regulation of eosinophil activation.

    PubMed

    Mitchell, P D; Salter, B M; Oliveria, J P; El-Gammal, A; Tworek, D; Smith, S G; Sehmi, R; Gauvreau, G M; Butler, M; O'Byrne, P M

    2017-03-01

    Glucagon-like peptide-1 (GLP-1) and its receptor are part of the incretin family of hormones that regulate glucose metabolism. GLP-1 also has immune modulatory roles. To measure the expression of the GLP-1 receptor (GLP-1R) on eosinophils and neutrophils in normal and asthmatic subjects and evaluate effects of a GLP-1 analog on eosinophil function. Peripheral blood samples were taken from 10 normal and 10 allergic asthmatic subjects. GLP-1R expression was measured on eosinophils and neutrophils. Subsequently, the asthmatic subjects underwent allergen and diluent inhalation challenges, and GLP-1R expression was measured. Purified eosinophils, collected from mild asthmatic subjects, were stimulated with lipopolysaccharide (LPS) and a GLP-1 analog to evaluate eosinophil cell activation markers CD11b and CD69 and cytokine (IL-4, IL-5, IL-8 and IL-13) production. Glucagon-like peptide-1 receptor is expressed on human eosinophils and neutrophils. Eosinophil, but not neutrophil, expression of GLP-1R is significantly higher in normal controls compared to allergic asthmatics. The expression of GLP-1R did not change on either eosinophils or neutrophils following allergen challenge. A GLP-1 analog significantly decreased the expression of eosinophil-surface activation markers following LPS stimulation and decreased eosinophil production of IL-4, IL-8 and IL-13, but not IL-5. Glucagon-like peptide-1 receptor is expressed on human eosinophils and neutrophils. A GLP-1 analog attenuates LPS-stimulated eosinophil activation. GLP-1 agonists may have additional adjunctive indications in treating persons with concomitant type 2 diabetes mellitus and asthma. © 2016 John Wiley & Sons Ltd.

  17. MyD88 But Not TRIF Is Essential for Osteoclastogenesis Induced by Lipopolysaccharide, Diacyl Lipopeptide, and IL-1α

    PubMed Central

    Sato, Nobuaki; Takahashi, Naoyuki; Suda, Koji; Nakamura, Midori; Yamaki, Mariko; Ninomiya, Tadashi; Kobayashi, Yasuhiro; Takada, Haruhiko; Shibata, Kenichiro; Yamamoto, Masahiro; Takeda, Kiyoshi; Akira, Shizuo; Noguchi, Toshihide; Udagawa, Nobuyuki

    2004-01-01

    Myeloid differentiation factor 88 (MyD88) plays essential roles in the signaling of the Toll/interleukin (IL)-1 receptor family. Toll–IL-1 receptor domain-containing adaptor inducing interferon-β (TRIF)-mediated signals are involved in lipopolysaccharide (LPS)-induced MyD88-independent pathways. Using MyD88-deficient (MyD88−/−) mice and TRIF-deficient (TRIF−/−) mice, we examined roles of MyD88 and TRIF in osteoclast differentiation and function. LPS, diacyl lipopeptide, and IL-1α stimulated osteoclastogenesis in cocultures of osteoblasts and hemopoietic cells obtained from TRIF−/− mice, but not MyD88−/− mice. These factors stimulated receptor activator of nuclear factor-κB ligand mRNA expression in TRIF−/− osteoblasts, but not MyD88−/− osteoblasts. LPS stimulated IL-6 production in TRIF−/− osteoblasts, but not TRIF−/− macrophages. LPS and IL-1α enhanced the survival of TRIF−/− osteoclasts, but not MyD88−/− osteoclasts. Diacyl lipopeptide did not support the survival of osteoclasts because of the lack of Toll-like receptor (TLR)6 in osteoclasts. Macrophages expressed both TRIF and TRIF-related adaptor molecule (TRAM) mRNA, whereas osteoblasts and osteoclasts expressed only TRIF mRNA. Bone histomorphometry showed that MyD88−/− mice exhibited osteopenia with reduced bone resorption and formation. These results suggest that the MyD88-mediated signal is essential for the osteoclastogenesis and function induced by IL-1 and TLR ligands, and that MyD88 is physiologically involved in bone turnover. PMID:15353553

  18. Matrilin-3 induction of IL-1 receptor antagonist is required for up-regulating collagen II and aggrecan and down-regulating ADAMTS-5 gene expression.

    PubMed

    Jayasuriya, Chathuraka T; Goldring, Mary B; Terek, Richard; Chen, Qian

    2012-09-11

    Deletion or mutation of the gene encoding the cartilage extracellular matrix (ECM) protein matrilin-3 (MATN3) results in the early onset of osteoarthritis (OA), suggesting chondroprotective properties of MATN3. To understand the mechanisms underlying these properties, we determined the effects of MATN3 protein on the expression of several key anabolic and catabolic genes involved in chondrocyte homeostasis, and the dependence of such regulation on the anti-inflammatory cytokine: IL-1 receptor antagonist (IL-1Ra). The effects of recombinant human (rh) MATN3 protein were examined in C28/I2 immortalized human chondrocytes, primary human chondrocytes (PHCs), and primary mouse chondrocytes (PMCs). Messenger RNA levels of IL-1Ra, COL2A1, ACAN, MMP-13, and ADAMTS-4 and -5 were determined using real-time RT-PCR. Knocking down IL-1Ra was achieved by siRNA gene silencing. IL-1Ra protein levels were quantified by ELISA and the Bio-Plex Suspension Array System. COL2A1 protein level was quantified using Western blot analysis. Statistic analysis was done using the two-tailed t-test or one-way ANOVA. rhMATN3 protein induced gene expression of IL-1Ra in C28/I2 cells, PHCs, and PMCs in a dose- and time-dependent manner. Treatment of C28/I2 cells and PHCs with MATN3 protein stimulated gene expression of COL2A1 and ACAN. Conversely, mRNA levels of COL2A1 and ACAN were decreased in MATN3 KO mice. MATN3 protein treatment inhibited IL-1β-induced MMP-13, ADAMTS-4 and ADAMTS-5 in C28/I2 cells and PHCs. Knocking down IL-1Ra abolished the MATN3-mediated stimulation of COL2A1 and ACAN and inhibition of ADAMTS-5, but had no effect on MATN3 inhibition of MMP-13 mRNA. Our findings point to a novel regulatory role of MATN3 in cartilage homeostasis due to its capacity to induce IL-1Ra, to upregulate gene expression of the major cartilage matrix components, and to downregulate the expression of OA-associated matrix-degrading proteinases in chondrocytes. The chondroprotective properties of

  19. IL-1beta suppresses the formation of osteoclasts by increasing OPG production via an autocrine mechanism involving celecoxib-related prostaglandins in chondrocytes.

    PubMed

    Watanabe, Yusuke; Namba, Aki; Aida, Yukiko; Honda, Kazuhiro; Tanaka, Hideki; Suzuki, Naoto; Matsumura, Hideo; Maeno, Masao

    2009-01-01

    Elevated interleukin (IL)-1 concentrations in synovial fluid have been implicated in joint bone and cartilage destruction. Previously, we showed that IL-1beta stimulated the expression of prostaglandin (PG) receptor EP4 via increased PGE(2) production. However, the effect of IL-1beta on osteoclast formation via chondrocytes is unclear. Therefore, we examined the effect of IL-1beta and/or celecoxib on the expression of macrophage colony-stimulating factor (M-CSF), receptor activator of NF-kappaB ligand (RANKL), and osteoprotegerin (OPG) in human chondrocytes, and the indirect effect of IL-1beta on osteoclast-like cell formation using RAW264.7 cells. OPG and RANKL expression increased with IL-1beta; whereas M-CSF expression decreased. Celecoxib blocked the stimulatory effect of IL-1beta. Conditioned medium from IL-1beta-treated chondrocytes decreased TRAP staining in RAW264.7 cells. These results suggest that IL-1beta suppresses the formation of osteoclast-like cells via increased OPG production and decreased M-CSF production in chondrocytes, and OPG production may increase through an autocrine mechanism involving celecoxib-related PGs.

  20. Indoxyl Sulfate Promotes Macrophage IL-1β Production by Activating Aryl Hydrocarbon Receptor/NF-κ/MAPK Cascades, but the NLRP3 inflammasome Was Not Activated

    PubMed Central

    Wakamatsu, Takuya; Yamamoto, Suguru; Ito, Toru; Sato, Yoko; Matsuo, Koji; Takahashi, Yoshimitsu; Kaneko, Yoshikatsu; Goto, Shin; Kazama, Junichiro James; Gejyo, Fumitake; Narita, Ichiei

    2018-01-01

    In chronic kidney disease (CKD) patients, accumulation of uremic toxins is associated with cardiovascular risk and mortality. One of the hallmarks of kidney disease-related cardiovascular disease is intravascular macrophage inflammation, but the mechanism of the reaction with these toxins is not completely understood. Macrophages differentiated from THP-1 cells were exposed to indoxyl sulfate (IS), a representative uremic toxin, and changes in inflammatory cytokine production and intracellular signaling molecules including interleukin (IL)-1, aryl hydrocarbon receptor (AhR), nuclear factor (NF)-κ, and mitogen-activated protein kinase (MAPK) cascades as well as the NLRP3 inflammasome were quantified by real-time PCR, Western blot analysis, and enzyme-linked immunosorbent assay. IS induced macrophage pro-IL-1β mRNA expression, although mature IL-1 was only slightly increased. IS increased AhR and the AhR-related mRNA expression; this change was suppressed by administration of proteasome inhibitor. IS promoted phosphorylation of NF-κB p65 and MAPK enzymes; the reaction and IL-1 expression were inhibited by BAY11-7082, an inhibitor of NF-κB. In contrast, IS decreased NLRP3 and did not change ASC, pro-caspase 1, or caspase-1 activation. IS-inducing inflammation in macrophages results from accelerating AhR-NF-κB/MAPK cascades, but the NLRP3 inflammasome was not activated. These reactions may restrict mature IL-1β production, which may explain sustained chronic inflammation in CKD patients. PMID:29543732

  1. CSF-1 Receptor Signaling in Myeloid Cells

    PubMed Central

    Stanley, E. Richard; Chitu, Violeta

    2014-01-01

    The CSF-1 receptor (CSF-1R) is activated by the homodimeric growth factors colony-stimulating factor-1 (CSF-1) and interleukin-34 (IL-34). It plays important roles in development and in innate immunity by regulating the development of most tissue macrophages and osteoclasts, of Langerhans cells of the skin, of Paneth cells of the small intestine, and of brain microglia. It also regulates the differentiation of neural progenitor cells and controls functions of oocytes and trophoblastic cells in the female reproductive tract. Owing to this broad tissue expression pattern, it plays a central role in neoplastic, inflammatory, and neurological diseases. In this review we summarize the evolution, structure, and regulation of expression of the CSF-1R gene. We review, the structures of CSF-1, IL-34, and the CSF-1R and the mechanism of ligand binding to and activation of the receptor. We further describe the pathways regulating macrophage survival, proliferation, differentiation, and chemotaxis downstream from the CSF-1R. PMID:24890514

  2. Autocrine Regulation of UVA-Induced IL-6 Production via Release of ATP and Activation of P2Y Receptors

    PubMed Central

    Kawano, Ayumi; Kadomatsu, Remi; Ono, Miyu; Kojima, Shuji; Tsukimoto, Mitsutoshi; Sakamoto, Hikaru

    2015-01-01

    Extracellular nucleotides, such as ATP, are released from cells in response to various stimuli and act as intercellular signaling molecules through activation of P2 receptors. Exposure to the ultraviolet radiation A (UVA) component of sunlight causes molecular and cellular damage, and in this study, we investigated the involvement of extracellular nucleotides and P2 receptors in the UVA-induced cellular response. Human keratinocyte-derived HaCaT cells were irradiated with a single dose of UVA (2.5 J/cm2), and ATP release and interleukin (IL)-6 production were measured. ATP was released from cells in response to UVA irradiation, and the release was blocked by pretreatment with inhibitors of gap junction hemichannels or P2X7 receptor antagonist. IL-6 production was increased after UVA irradiation, and this increase was inhibited by ecto-nucleotidase or by antagonists of P2Y11 or P2Y13 receptor. These results suggest that UVA-induced IL-6 production is mediated by release of ATP through hemichannels and P2X7 receptor, followed by activation of P2Y11 and P2Y13 receptors. Interestingly, P2Y11 and P2Y13 were associated with the same pattern of IL-6 production, though they trigger different intracellular signaling cascades: Ca2+-dependent and PI3K-dependent, respectively. Thus, IL-6 production in response to UVA-induced ATP release involves at least two distinct pathways, mediated by activation of P2Y11 and P2Y13 receptors. PMID:26030257

  3. IL-1β and IL-6 Upregulation in Children with H1N1 Influenza Virus Infection

    PubMed Central

    Chiaretti, Antonio; Pulitanò, Silvia; Barone, Giovanni; Ferrara, Pietro; Capozzi, Domenico; Riccardi, Riccardo

    2013-01-01

    The role of cytokines in relation to clinical manifestations, disease severity, and outcome of children with H1N1 virus infection remains thus far unclear. The aim of this study was to evaluate interleukin IL-1β and IL-6 plasma expressions and their association with clinical findings, disease severity, and outcome of children with H1N1 infection. We prospectively evaluated 15 children with H1N1 virus infection and 15 controls with lower respiratory tract infections (LRTI). Interleukin plasma levels were measured using immunoenzymatic assays. Significantly higher levels of IL-1β and IL-6 were detected in all patients with H1N1 virus infection compared to controls. It is noteworthy to mention that in H1N1 patients with more severe clinical manifestations of disease IL-1β and IL-6 expressions were significantly upregulated compared to H1N1 patients with mild clinical manifestations. In particular, IL-6 was significantly correlated with specific clinical findings, such as severity of respiratory compromise and fever. No correlation was found between interleukin expression and final outcome. In conclusion, H1N1 virus infection induces an early and significant upregulation of both interleukins IL1β and IL-6 plasma expressions. The upregulation of these cytokines is likely to play a proinflammatory role in H1N1 virus infection and may contribute to airway inflammation and bronchial hyperreactivity in these patients. PMID:23737648

  4. Progesterone and the Repression of Myometrial Inflammation: The Roles of MKP-1 and the AP-1 System

    PubMed Central

    Lei, K.; Georgiou, E. X.; Chen, L.; Yulia, A.; Sooranna, S. R.; Brosens, J. J.; Bennett, P. R.

    2015-01-01

    Progesterone (P4) maintains uterine quiescence during pregnancy and its functional withdrawal is associated with increased prostaglandin synthesis and the onset of labor. In primary human myometrial cells, the glucocorticoid receptor (GR) rather than the P4 receptor mediates P4 antagonism of IL-1β-induced cyclooxygenase-2 (COX-2) expression, the rate-limiting enzyme in prostaglandin synthesis. We now report that P4 also acts via GR to induce MAPK phosphatase (MKP)-1 and knockdown of MKP-1 impairs the ability of P4 to repress IL-1β-dependent COX-2 induction. Microarray analysis revealed that P4 repressed preferentially activator protein-1-responsive genes in response to IL-1β. Consistent with these observations, we found that the ability of P4 to reduce c-Jun activation was lost upon GR as well as MKP-1 knockdown. Interestingly, c-Jun levels in human myometrial cells declined upon GR and MKP-1 knockdown, which suggests the presence of an activator protein-1 feedback loop. This is supported by our observation that c-Jun levels declined after an initial rise in primary myometrial cells treated with phorbol 12-myrisatate 13-acetate, a potent activator of c-Jun N-terminal kinase. Finally, we show that MKP-1 is an intermediate in P4-mediated repression of some but not all IL-1β-responsive genes. For example, P4 repression of IL11 and IRAK3 was maintained upon MKP-1 knockdown. Taken together, the data show that P4 acts via GR to drive MKP-1 expression, which in turn inhibits IL-1β-dependent c-Jun activation and COX-2 expression. PMID:26280733

  5. Role of IL-18 in atopic asthma is determined by balance of IL-18/IL-18BP/IL-18R.

    PubMed

    Zhang, Huiyun; Wang, Junling; Wang, Ling; Xie, Hua; Chen, Liping; He, Shaoheng

    2018-01-01

    It is recognized that IL-18 is related to development of asthma, but role of IL-18 in asthma remains controversial and confusing. This is largely due to lack of information on expression of IL-18 binding protein (BP) and IL-18 receptor (R) in asthma. In this study, we found that plasma levels of IL-18 and IL-18BP were elevated in asthma. The ratio between plasma concentrations of IL-18 and IL-18BP was 1:12.8 in asthma patients. We demonstrated that 13-fold more monocytes, 17.5-fold more neutrophils and 4.1-fold more B cells express IL-18BP than IL-18 in asthmatic blood, suggesting that there is excessive amount of IL-18BP to abolish actions of IL-18 in asthma. We also discovered that more IL-18R+ monocytes, neutrophils and B cells are located in asthmatic blood. Once injected, IL-18 eliminated IL-18R+ monocytes in blood, but up-regulated expression of IL-18R in lung macrophages of OVA-sensitized mice. Our data clearly indicate that the role of IL-18 in asthma is very likely to be determined by balance of IL-18/IL-18BP/IL-18R expression in inflammatory cells. Therefore, IL-18R blocking or IL-18BP activity enhancing therapies may be useful for treatment of asthma. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. IL-1beta, IL-6 and IL-8 levels in gyneco-obstetric infections.

    PubMed Central

    Basso, Beatriz; Giménez, Francisco; López, Carlos

    2005-01-01

    OBJECTIVE: During pregnancy cytokines and inflammatory mediators stimulate the expression of prostaglandin, the levels of which determine the onset of labor. The aim of this work was to study interleukin IL-1beta, IL-6 and IL-8 levels in the vaginal discharge, serum and urine of pregnant women with genitourinary infection before and after specific treatment. One hundred and fifty-one patients were studied during the second or third trimester of their pregnancy. METHODS: The selected patients were: healthy or control group (n = 52), those with bacterial vaginosis (n = 47), those with vaginitis (n = 37), those with asymptomatic urinary infection (n = 15) and post-treatment. The level of cytokines was assayed by ELISA test. The Mann-Whitney U-test was used for statistical analysis. RESULTS: The IL-1beta levels in vaginal discharge were: control 103.5 +/- 24.2 pg/ml, bacterial vaginosis 1030 +/- 59.5, vaginitis 749.14 +/- 66.7l ( p < 0.0001), post-treatment 101.4 +/- 28.7. IL-6 values were similar in both control and infected groups, and there were no patients with chorioamnionitis. In vaginal discharge IL-6: control 14.2 +/- 3.9 pg/ml, bacterial vaginosis 13.2 +/- 3.8, vaginitis 13 +/- 4.2. IL-8 levels were: control 1643 +/- 130.3 pg/ml, bacterial vaginosis 2612.7 +/- 257.7, vaginitis 3437 +/- 460 (p < 0.0001), post-treatment 1693 +/- 126.6. In urine the results were: control 40.2 +/- 17 pg/ml, asymptomatic urinary infection 1200.7 +/- 375 (p < 0.0001). In patients with therapeutic success both IL-1beta and IL-8 returned to normal levels. CONCLUSIONS: Genitourinary infections induce a significant increase in IL-1beta and IL-8 levels in vaginal secretions, and IL-8 in urine as well. Both cytokines could be useful as evolutive markers of infection. PMID:16338780

  7. West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5.

    PubMed

    Zhang, Hong-Lei; Ye, Han-Qing; Liu, Si-Qing; Deng, Cheng-Lin; Li, Xiao-Dan; Shi, Pei-Yong; Zhang, Bo

    2017-09-15

    West Nile virus (WNV) is a mosquito-borne flavivirus that causes epidemics of encephalitis and viscerotropic disease worldwide. This virus has spread rapidly and has posed a significant public health threat since the outbreak in New York City in 1999. The interferon (IFN)-mediated antiviral response represents an important component of virus-host interactions and plays an essential role in regulating viral replication. Previous studies have suggested that multifunctional nonstructural proteins encoded by flaviviruses antagonize the host IFN response via various means in order to establish efficient viral replication. In this study, we demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes IFN-β production, most likely through suppression of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) activation. In a dual-luciferase reporter assay, WNV NS1 significantly inhibited the activation of the IFN-β promoter after Sendai virus infection or poly(I·C) treatment. NS1 also suppressed the activation of the IFN-β promoter when it was stimulated by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in the RLR signaling pathway. Furthermore, NS1 blocked the phosphorylation and nuclear translocation of IRF3 upon stimulation by various inducers. Mechanistically, WNV NS1 targets RIG-I and melanoma differentiation-associated gene 5 (MDA5) by interacting with them and subsequently causing their degradation by the proteasome. Furthermore, WNV NS1 inhibits the K63-linked polyubiquitination of RIG-I, thereby inhibiting the activation of downstream sensors in the RLR signaling pathway. Taken together, our results reveal a novel mechanism by which WNV NS1 interferes with the host antiviral response. IMPORTANCE WNV Nile virus (WNV) has received increased attention since its introduction to the United States. However, the pathogenesis of this virus is poorly understood. This study demonstrated that the nonstructural protein 1 (NS1) of WNV

  8. Immunostaining and transcriptional enhancement of interleukin-1 receptor type I in the rat dental follicle.

    PubMed

    Wise, G E; Zhao, L

    1997-05-01

    Interleukin-1alpha (IL-1alpha) enhances the gene expression of colony-stimulating factor-one (CSF-1) in dental follicle cells. In turn, CSF-1 appears to be a critical molecule in stimulating the cellular events of eruption that require the presence of the follicle. Chronologically, the maximal transcription and translation of CSF-1 in the follicle occurs early postnatally, followed by a decline later. Thus, in this study, immunostaining for the interleukin-1 receptor type I (IL-1RI) was used to determine if it paralleled the CSF-1 localization and chronology. The results showed that IL-1RI is primarily localized in the dental follicle, with maximal immunostaining early postnatally and a greatly reduced staining by day 10. In conjunction with this, molecules that enhance the gene expression of IL-1alpha epidermal growth factor (EGF) and transforming growth factor-beta1 (TGF-beta1) were also shown to enhance the expression of IL-1RI, but IL-1alpha did not increase the gene expression of IL-1RI. After injections of EGF at different times postnatally the mRNA of IL-1RI increased over comparable controls. Between days 2 and 5 the IL-1RI mRNA in the follicle decreased. In combination the results suggest that, as the expression of IL-1alpha is enhanced in the stellate reticulum either by EGF or TGF-beta1, these two molecules could also enhance the expression of IL-1RI in the dental follicle such that more receptors would be available to respond to the increased IL-1alpha secreted. The maximal presence of the receptors (IL-1RI) in the dental follicle early postnatally, followed by their subsequent decline, parallels the rise and fall of CSF-1 in the follicle. Thus, regulation of the IL-1RI and IL-1RI gene expression might be a means of regulating changes in CSF-1 in the follicle.

  9. IL-1RA gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules could alleviate rheumatoid arthritis.

    PubMed

    Hu, Jianhua; Li, Hongjian; Chi, Guanhao; Yang, Zhao; Zhao, Yi; Liu, Wei; Zhang, Chao

    2015-01-01

    In order to investigate the encapsulation of interleukin 1 receptor antagonist (IL-RA) gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of interleukin 1 receptor antagonist (IL-RA) to treat Rheumatoid arthritis (RA). We transfect mesenchymal stem cells with IL-RA gene, and quantify the IL-RA proteins released from the encapsulated cells followed by microencapsulation of recombinant mesenchymal stem cells, and thus observe the permeability of APA microcapsules and evaluate clinical effects after induction and treatment of collagen-induced arthritis (CIA). The concentration of IL-RA in the supernatant was determined by IL-RA ELISA kit by run in technical triplicates using samples from three separate mice. Encapsulated IL-RA gene-transfected cells were capable of constitutive delivery of IL-RA proteins for at least 30 days. Moreover, the APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Also, it has been found that the APA microcapsules can significantly attenuate collagen induced arthritis after delivering of APA microcapsules to rats. Our results demonstrated that the nonautologous IL-RA gene-transfected stem cells are of potential utility for RA therapy.

  10. IL-1RA gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules could alleviate rheumatoid arthritis

    PubMed Central

    Hu, Jianhua; Li, Hongjian; Chi, Guanhao; Yang, Zhao; Zhao, Yi; Liu, Wei; Zhang, Chao

    2015-01-01

    Objectives: In order to investigate the encapsulation of interleukin 1 receptor antagonist (IL-RA) gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of interleukin 1 receptor antagonist (IL-RA) to treat Rheumatoid arthritis (RA). Methods: We transfect mesenchymal stem cells with IL-RA gene, and quantify the IL-RA proteins released from the encapsulated cells followed by microencapsulation of recombinant mesenchymal stem cells, and thus observe the permeability of APA microcapsules and evaluate clinical effects after induction and treatment of collagen-induced arthritis (CIA). The concentration of IL-RA in the supernatant was determined by IL-RA ELISA kit by run in technical triplicates using samples from three separate mice. Results: Encapsulated IL-RA gene-transfected cells were capable of constitutive delivery of IL-RA proteins for at least 30 days. Moreover, the APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Also, it has been found that the APA microcapsules can significantly attenuate collagen induced arthritis after delivering of APA microcapsules to rats. Conclusions: Our results demonstrated that the nonautologous IL-RA gene-transfected stem cells are of potential utility for RA therapy. PMID:25785047

  11. The transient receptor potential ankyrin-1 mediates mechanical hyperalgesia induced by the activation of B1 receptor in mice.

    PubMed

    Meotti, Flavia Carla; Figueiredo, Cláudia Pinto; Manjavachi, Marianne; Calixto, João B

    2017-02-01

    The kinin receptor B 1 and the transient receptor potential ankyrin 1 (TRPA1) work as initiators and gatekeepers of nociception and inflammation. This study reports that the nociceptive transmission induced by activation of B 1 receptor is dependent on TRPA1 ion channel. The mechanical hyperalgesia was induced by intrathecal (i.t.) injection of B 1 agonist des-Arginine 9 -bradykinin (DABK) or TRPA1 agonist cinnamaldehyde and was evaluated by the withdrawal response after von Frey Hair application in the hind paw. After behavioral experiments, lumbar spinal cord and dorsal root ganglia (DRG) were harvested to assess protein expression and mRNA by immunohistochemistry and real time-PCR, respectively. The pharmacological antagonism (HC030031) or the down-regulation of TRPA1 greatly inhibited the mechanical hyperalgesia induced by DABK. Intrathecal injection of DABK up regulated the ionized calcium binding adaptor molecule (Iba-1) in lumbar spinal cord (L5-L6); TRPA1 protein and mRNA in lumbar spinal cord; and B 1 receptor mRNA in both lumbar spinal cord and DRG. The knockdown of TRPA1 prevented microglia activation induced by DABK. Furthermore, the mechanical hyperalgesia induced by either DABK or by cinnamaldehyde was significantly reduced by inhibition of cyclooxygenase (COX), protein kinase C (PKC) or phospholipase C (PLC). In summary, this study revealed that TRPA1 positively modulates the mechanical hyperalgesia induced by B 1 receptor activation in the spinal cord and that the classical GPCR downstream molecules PLC, diacylglycerol (DAG), 3,4,5-inositide phosphate (IP 3 ) and PKC are involved in the nociceptive transmission triggered by these two receptors. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Yoda1 analogue (Dooku1) which antagonizes Yoda1‐evoked activation of Piezo1 and aortic relaxation

    PubMed Central

    Evans, Elizabeth L; Cuthbertson, Kevin; Endesh, Naima; Rode, Baptiste; Blythe, Nicola M; Hyman, Adam J; Hall, Sally J; Gaunt, Hannah J; Ludlow, Melanie J

    2018-01-01

    Background and Purpose The mechanosensitive Piezo1 channel has important roles in vascular physiology and disease. Yoda1 is a small‐molecule agonist, but the pharmacology of these channels is otherwise limited. Experimental Approach Yoda1 analogues were generated by synthetic chemistry. Intracellular Ca2+ and Tl+ measurements were made in HEK 293 or CHO cell lines overexpressing channel subunits and in HUVECs, which natively express Piezo1. Isometric tension recordings were made from rings of mouse thoracic aorta. Key Results Modification of the pyrazine ring of Yoda1 yielded an analogue, which lacked agonist activity but reversibly antagonized Yoda1. The analogue is referred to as Dooku1. Dooku1 inhibited 2 μM Yoda1‐induced Ca2+‐entry with IC50s of 1.3 μM (HEK 293 cells) and 1.5 μM (HUVECs) yet failed to inhibit constitutive Piezo1 channel activity. It had no effect on endogenous ATP‐evoked Ca2+ elevation or store‐operated Ca2+ entry in HEK 293 cells or Ca2+ entry through TRPV4 or TRPC4 channels overexpressed in CHO and HEK 293 cells. Yoda1 caused dose‐dependent relaxation of aortic rings, which was mediated by an endothelium‐ and NO‐dependent mechanism and which was antagonized by Dooku1 and analogues of Dooku1. Conclusion and Implications Chemical antagonism of Yoda1‐evoked Piezo1 channel activity is possible, and the existence of a specific chemical interaction site is suggested with distinct binding and efficacy domains. PMID:29498036

  13. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor.

    PubMed

    Ryan, J J; McReynolds, L J; Keegan, A; Wang, L H; Garfein, E; Rothman, P; Nelms, K; Paul, W E

    1996-02-01

    IL-4 causes hematopoietic cells to proliferate and express a series of genes, including CD23. We examined whether IL-4-mediated growth, as measured by 4PS phosphorylation, and gene induction were similarly controlled. Studies of M12.4.1 cells expressing human IL-4R truncation mutants indicated that the region between amino acids 557-657 is necessary for full gene expression, which correlated with Stat6 DNA binding activity. This region was not required for 4PS phosphorylation. Tyrosine-to-phenylalanine mutations in the interval between amino acids 557-657 revealed that as long as one tyrosine remained unmutated, CD23 was fully induced. When all three tyrosines were mutated, the receptor was unable to induce CD23. The results indicate that growth regulation and gene expression are principally controlled by distinct regions of IL-4R.

  14. A Novel Mechanism of γ-Irradiation-Induced IL-6 Production Mediated by P2Y11 Receptor in Epidermal Keratinocytes.

    PubMed

    Ohsaki, Airi; Miyano, Yuki; Tanaka, Rei; Tanuma, Sei-Ichi; Kojima, Shuji; Tsukimoto, Mitsutoshi

    2018-06-01

    Skin inflammation is caused by excessive production of cytokines and chemokines in response to an external stimulus, such as radiation, but the mechanisms involved are not completely understood. Here, we report a novel mechanism of γ-irradiation-induced interleukin-6 (IL-6) production mediated by P2Y11 receptors in epidermal cells. After irradiation of HaCaT cells derived from human epidermal keratinocytes with 5 Gy of γ-rays ( 137 Cs: 0.78 Gy/min), IL-6 production was unchanged at 24 h after γ-irradiation, but was increased at 48 h. IL-6 mRNA was increased at 30 h, and IL-6 production was increased at 33 h after irradiation. The production of IL-6 was sustained at least for 4 d after irradiation. P2Y11 receptor antagonist NF157 inhibited IL-6 production in irradiated cells. Treatment with ATP, a ligand of P2Y11 receptor caused IL-6 production within 24 h. ATP-induced IL-6 production was also suppressed by NF157. Extracellular ATP level was increased after irradiation. The p38 mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) signaling was involved in the production of IL-6 at the downstream of P2Y11 receptor activation. In addition, the cell cycle was arrested at the G2/M phase, and DNA repair foci were not disappeared at 48 h after γ-irradiation. The protein level of histone methylation enzyme G9a, which inhibits IL-6 production, was decreased after γ-irradiation. In conclusion, we suggest that γ-irradiation induces sustained IL-6 production in HaCaT cells from 33 h after irradiation, which is mediated through P2Y11 receptor-p38 MAPK-NF-κB signaling pathway and G9a degradation. This is a novel mechanism of cytokine production in γ-irradiated cells.

  15. MCPIP-1, Alias Regnase-1, Controls Epithelial Inflammation by Posttranscriptional Regulation of IL-8 Production.

    PubMed

    Dobosz, Ewelina; Wilamowski, Mateusz; Lech, Maciej; Bugara, Beata; Jura, Jolanta; Potempa, Jan; Koziel, Joanna

    2016-01-01

    Pattern recognition receptors are critical for the detection of invading microorganisms. They activate multiple pathways that lead to the induction of proinflammatory responses and pathogen clearance. The intensity and duration of this immune reaction must be tightly controlled spatially and temporally in every tissue by different negative regulators. We hypothesized that monocyte chemoattractant protein-1-induced protein-1 (MCPIP-1) might play a role in maintaining immune homeostasis in the epithelium both under physiological conditions and upon bacterial infection. To this end, we examined the distribution of the MCPIP-1 transcript and protein in various tissues. The MCPIP-1 protein level was higher in epithelial cells than in myeloid cells. MCPIP-1 exerted RNase activity towards the interleukin (IL)-8 transcript and the lifespan of IL-8 was determined by the presence of the stem-loops/hairpin structures at the 3'UTR region of IL-8 mRNA. Moreover, using fully active, purified recombinant MCPIP-1 protein, we elucidated the mechanism by which MCPIP-1 controls the IL-8 mRNA level. In conclusion, we uncovered a novel IL-8-dependent mechanism via which MCPIP-1 maintains epithelial homeostasis. This study reveals for the first time that MCPIP-1 plays a crucial anti-inflammatory role not only in myeloid cells but also in epithelial cells. © 2016 S. Karger AG, Basel.

  16. Prostaglandin E2 inhibition of IL-27 production in murine dendritic cells: a novel mechanism which involves IRF1

    PubMed Central

    Hooper, Kirsten M; Yen, Jui-Hung; Kong, Weimin; Rahbari, Kate M; Kuo, Ping-Chang; Gamero, Ana M; Ganea, Doina

    2016-01-01

    IL-27, a multifunctional cytokine produced by antigen-presenting cells, antagonizes inflammation by affecting conventional dendritic cells (cDC), inducing IL-10, and promoting development of regulatory Tr1 cells. Although the mechanisms involved in IL-27 induction are well-studied, much less is known about the factors that negatively impact IL-27 expression. Prostaglandin E2 (PGE2), a major immunomodulatory prostanoid, acts as a pro-inflammatory agent in several models of inflammatory/autoimmune diseases, promoting primarily Th17 development and function. In this study, we report on a novel mechanism which promotes the pro-inflammatory function of PGE2. We showed previously that PGE2 inhibits IL-27 production in murine bone marrow derived DCs. Here, we show that, in addition to BMDCs, PGE2 inhibits IL-27 production in macrophages and in splenic cDC and we identify a novel pathway consisting of signaling through EP2/EP4→induction of cAMP→downregulation of IRF1 expression and binding to the p28 ISRE site. The inhibitory effect of PGE2 on p28 and irf1 expression does not involve endogenous IFNβ, STAT1 or STAT2, and inhibition of IL-27 does not appear to be mediated through PKA, EPAC, PI3K, or MAPKs. We observed similar inhibition of il27p28 expression in vivo in splenic DC following administration of dimethyl PGE2 in conjunction with LPS. Based on the anti-inflammatory role of IL-27 in cDC and through the generation of Tr1 cells, we propose that the PGE2-induced inhibition of IL-27 in activated cDC represents an important additional mechanism for its in vivo pro-inflammatory functions. PMID:28062696

  17. Absence of the common gamma chain (γ(c)), a critical component of the Type I IL-4 receptor, increases the severity of allergic lung inflammation.

    PubMed

    Dasgupta, Preeta; Qi, Xiulan; Smith, Elizabeth P; Keegan, Achsah D

    2013-01-01

    The T(H)2 cytokines, IL-4 and IL-13, play critical roles in inducing allergic lung inflammation and drive the alternative activation of macrophages (AAM). Although both cytokines share receptor subunits, IL-4 and IL-13 have differential roles in asthma pathogenesis: IL-4 regulates T(H)2 cell differentiation, while IL-13 regulates airway hyperreactivity and mucus production. Aside from controlling T(H)2 differentiation, the unique contribution of IL-4 signaling via the Type I receptor in airway inflammation remains unclear. Therefore, we analyzed responses in mice deficient in gamma c (γ(c)) to elucidate the role of the Type I IL-4 receptor. OVA primed CD4⁺ OT-II T cells were adoptively transferred into RAG2⁻/⁻ and γ(c)⁻/⁻ mice and allergic lung disease was induced. Both γ(c)⁻/⁻ and γcxRAG2⁻/⁻ mice developed increased pulmonary inflammation and eosinophilia upon OVA challenge, compared to RAG2⁻/⁻ mice. Characteristic AAM proteins FIZZ1 and YM1 were expressed in lung epithelial cells in both mouse strains, but greater numbers of FIZZ1+ or YM1+ airways were present in γ(c)⁻/⁻ mice. Absence of γc in macrophages, however, resulted in reduced YM1 expression. We observed higher T(H)2 cytokine levels in the BAL and an altered DC phenotype in the γ(c)⁻/⁻ recipient mice suggesting the potential for dysregulated T cell and dendritic cell (DC) activation in the γ(c)-deficient environment. These results demonstrate that in absence of the Type I IL-4R, the Type II R can mediate allergic responses in the presence of T(H)2 effectors. However, the Type I R regulates AAM protein expression in macrophages.

  18. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1β secretion

    PubMed Central

    Tassi, Sara; Carta, Sonia; Delfino, Laura; Caorsi, Roberta; Martini, Alberto; Gattorno, Marco; Rubartelli, Anna

    2010-01-01

    In healthy monocytes, Toll-like receptor (TLR) engagement induces production of reactive oxygen species (ROS), followed by an antioxidant response involved in IL-1β processing and secretion. Markers of the antioxidant response include intracellular thioredoxin and extracellular release of reduced cysteine. Cryopyrin-associated periodic syndromes (CAPS) are autoinflammatory diseases in which Nod-like receptor family pyrin domain–containing 3 (NLRP3) gene mutations lead to increased IL-1β secretion. We show in a large cohort of patients that IL-1β secretion by CAPS monocytes is much faster than that by healthy monocytes. This accelerated kinetics is caused by alterations in the basal redox state, as well as in the redox response to TLR triggering displayed by CAPS monocytes. Indeed, unstimulated CAPS monocytes are under a mild oxidative stress, with elevated levels of both ROS and antioxidants. The redox response to LPS is quickened, with early generation of the reducing conditions favoring IL-1β processing and secretion, and then rapidly exhausted. Therefore, secretion of IL-1β is accelerated, but reaches a plateau much earlier than in healthy controls. Pharmacologic inhibition of the redox response hinders IL-1β release, confirming the functional link between redox impairment and altered kinetics of secretion. Monocytes from patients with juvenile idiopathic arthritis display normal kinetics of redox response and IL-1β secretion, excluding a role of chronic inflammation in the alterations observed in CAPS. We conclude that preexisting redox alterations distinct from CAPS monocytes anticipate the pathogen-associated molecular pattern molecule–induced generation of the reducing environment favorable to inflammasome activation and IL-1β secretion. PMID:20445104

  19. Altered redox state of monocytes from cryopyrin-associated periodic syndromes causes accelerated IL-1beta secretion.

    PubMed

    Tassi, Sara; Carta, Sonia; Delfino, Laura; Caorsi, Roberta; Martini, Alberto; Gattorno, Marco; Rubartelli, Anna

    2010-05-25

    In healthy monocytes, Toll-like receptor (TLR) engagement induces production of reactive oxygen species (ROS), followed by an antioxidant response involved in IL-1beta processing and secretion. Markers of the antioxidant response include intracellular thioredoxin and extracellular release of reduced cysteine. Cryopyrin-associated periodic syndromes (CAPS) are autoinflammatory diseases in which Nod-like receptor family pyrin domain-containing 3 (NLRP3) gene mutations lead to increased IL-1beta secretion. We show in a large cohort of patients that IL-1beta secretion by CAPS monocytes is much faster than that by healthy monocytes. This accelerated kinetics is caused by alterations in the basal redox state, as well as in the redox response to TLR triggering displayed by CAPS monocytes. Indeed, unstimulated CAPS monocytes are under a mild oxidative stress, with elevated levels of both ROS and antioxidants. The redox response to LPS is quickened, with early generation of the reducing conditions favoring IL-1beta processing and secretion, and then rapidly exhausted. Therefore, secretion of IL-1beta is accelerated, but reaches a plateau much earlier than in healthy controls. Pharmacologic inhibition of the redox response hinders IL-1beta release, confirming the functional link between redox impairment and altered kinetics of secretion. Monocytes from patients with juvenile idiopathic arthritis display normal kinetics of redox response and IL-1beta secretion, excluding a role of chronic inflammation in the alterations observed in CAPS. We conclude that preexisting redox alterations distinct from CAPS monocytes anticipate the pathogen-associated molecular pattern molecule-induced generation of the reducing environment favorable to inflammasome activation and IL-1beta secretion.

  20. Gemfibrozil, a lipid-lowering drug, upregulates interleukin-1 receptor antagonist in mouse cortical neurons: Implications for neuronal self-defense

    PubMed Central

    Corbett, Grant T.; Roy, Avik; Pahan, Kalipada

    2012-01-01

    Chronic inflammation is becoming a hallmark of several neurodegenerative disorders and accordingly, interleukin-1 beta (IL-1β), a proinflammatory cytokine, is implicated in the pathogenesis of neurodegenerative diseases. While IL-1β binds to its high-affinity receptor, interleukin-1 receptor (IL-1R), and upregulates proinflammatory signaling pathways, interleukin-1 receptor antagonist (IL-1Ra) adheres to the same receptor and inhibits proinflammatory cell signaling. Therefore, upregulation of IL-1Ra is considered important in attenuating inflammation. The present study underlines a novel application of gemfibrozil, an FDA-approved lipid-lowering drug, in increasing the expression of IL-1Ra in primary mouse and human neurons. Gemfibrozil alone induced an early and pronounced increase in the expression of IL-1Ra in primary mouse cortical neurons. Activation of type IA p110α phosphatidylinositol 3-kinase (PI3-K) and Akt by gemfibrozil and abrogation of gemfibrozil-induced upregulation of IL-1Ra by inhibitors of PI3-K and Akt indicate a role of the PI3-K – Akt pathway in the upregulation of IL-1Ra. Gemfibrozil also induced the activation of cAMP response element-binding (CREB) via the PI3-K – Akt pathway and siRNA attenuation of CREB abolished the gemfibrozil-mediated increase in IL-1Ra. Furthermore, gemfibrozil was able to protect neurons from IL-1β insult. However, siRNA knockdown of neuronal IL-1Ra abrogated the protective effect of gemfibrozil against IL-1β suggesting that this drug increases the defense mechanism of cortical neurons via upregulation of IL-1Ra. Together, these results highlight the importance of the PI3-K – Akt – CREB pathway in mediating gemfibrozil-induced upregulation of IL-1Ra in neurons and suggest gemfibrozil as a possible therapeutic treatment for propagating neuronal self defense in neuroinflammatory and neurodegenerative disorders. PMID:22706077

  1. Role for NK(1) and NK(2) receptors in the motor activity in mouse colon.

    PubMed

    Mulè, Flavia; Amato, Antonella; Serio, Rosa

    2007-09-10

    The present study examined the effects induced by endogenous and exogenous activation of NK(1) and NK(2) receptors on the mechanical activity of mouse proximal colon. Experiments were performed in vitro recording the changes in intraluminal pressure from isolated colonic segments. Electrical field stimulation in the presence of atropine and guanethidine produced a small relaxation, followed by nonadrenergic noncholinergic (NANC) contraction. SR140333, NK(1) receptor antagonist, or SR48968, NK(2) receptor antagonist, significantly reduced the contraction, although SR48968 appeared more efficacious. The co-administration of SR140333 and SR48968 virtually abolished the NANC contraction. [Sar(9), Met(O(2))(11)]-substance P, selective NK(1) receptor agonist, induced a concentration-dependent biphasic effect, contraction followed by reduction of the mechanical spontaneous activity. Both effects were antagonized by SR140333, but not by SR48968. [beta-Ala(8)]-neurokinin A (4-10), selective NK(2) receptor agonist, evoked concentration-dependent contraction, which was antagonized by SR48968, but not by SR140333. The contraction induced by [Sar(9), Met(O(2))(11)]-substance P, but not by [beta-Ala(8)]-neurokinin A (4-10), was reduced by tetrodotoxin or atropine, and increased by N(omega)-nitro-L-arginine methyl ester (L-NAME), inhibitor of nitric oxide synthase. The inhibitory effects induced by [Sar(9), Met(O(2))(11)]-substance P were abolished by tetrodotoxin or L-NAME. The results of the present study suggest that in mouse colon both NK(1) and NK(2) receptors are junctionally activated by endogenous tachykinins to cause an additive response. NK(1) receptors appear to be located on cholinergic and on nitrergic neurons as well as on smooth muscle cells, whereas NK(2) receptors seem to be present exclusively on smooth muscle cells.

  2. Identification of Interleukin-27 (IL-27)/IL-27 Receptor Subunit Alpha as a Critical Immune Axis for In Vivo HIV Control.

    PubMed

    Ruiz-Riol, M; Berdnik, D; Llano, A; Mothe, B; Gálvez, C; Pérez-Álvarez, S; Oriol-Tordera, B; Olvera, A; Silva-Arrieta, S; Meulbroek, M; Pujol, F; Coll, J; Martinez-Picado, J; Ganoza, C; Sanchez, J; Gómez, G; Wyss-Coray, T; Brander, C

    2017-08-15

    Intact and broad immune cell effector functions and specific individual cytokines have been linked to HIV disease outcome, but their relative contribution to HIV control remains unclear. We asked whether the proteome of secreted cytokines and signaling factors in peripheral blood can be used to discover specific pathways critical for host viral control. A custom glass-based microarray, able to measure >600 plasma proteins involved in cell-to-cell communication, was used to measure plasma protein profiles in 96 HIV-infected, treatment-naive individuals with high (>50,000) or low (<10,000 HIV RNA copies/ml) viral loads. Univariate and regression model analysis demonstrate that plasma levels of soluble interleukin-27 (IL-27) are significantly elevated in individuals with high plasma viremia ( P < 0.0001) and are positively correlated with proviral HIV-DNA copy numbers in peripheral blood mononuclear cells (PBMC) (Rho = 0.4011; P = 0.0027). Moreover, soluble IL-27 plasma levels are negatively associated with the breadth and magnitude of the total virus-specific T-cell responses and directly with plasma levels of molecules involved in Wnt/β-catenin signaling. In addition to IL-27, gene expression levels of the specific IL-27 receptor ( IL27RA ) in PBMC correlated directly with both plasma viral load (Rho = 0.3531; P = 0.0218) and the proviral copy number in the peripheral blood as an indirect measure of partial viral reservoir (Rho = 0.4580; P = 0.0030). These results were validated in unrelated cohorts of early infected subjects as well as subjects before and after initiation of antiretroviral treatment, and they identify IL-27 and its specific receptor as a critical immune axis for the antiviral immune response and as robust correlates of viral load and proviral reservoir size in PBMC. IMPORTANCE The detailed knowledge of immune mechanisms that contribute to HIV control is a prerequisite for the design of effective treatment strategies to achieve HIV cure. Cells

  3. In vitro and in vivo biological activities of SR140333, a novel potent non-peptide tachykinin NK1 receptor antagonist.

    PubMed

    Emonds-Alt, X; Doutremepuich, J D; Heaulme, M; Neliat, G; Santucci, V; Steinberg, R; Vilain, P; Bichon, D; Ducoux, J P; Proietto, V

    1993-12-21

    (S)1-(2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)pip eridin-3- yl]ethyl)-4-phenyl-1-azoniabicyclo[2.2.2]octane chloride (SR140333) is a new non-peptide antagonist of tachykinin NK1 receptors. SR140333 potently, selectively and competitively inhibited substance P binding to NK1 receptors from various animal species, including humans. In vitro, it was a potent antagonist in functional assays for NK1 receptors such as [Sar9,Met(O2)11]substance P-induced endothelium-dependent relaxation of rabbit pulmonary artery and contraction of guinea-pig ileum. Up to 1 microM, it had no effect in bioassays for NK2 ([beta Ala8]neurokinin A-induced contraction of endothelium-deprived rabbit pulmonary artery) and NK3 ([MePhe7]neurokinin B-induced contraction of rat portal vein) receptors. The antagonism exerted by SR140333 toward NK1 receptors was apparently non-competitive, with pD2' values (antagonism potency evaluated by the negative logarithm of the molar concentration of antagonist that produces a 50% reduction of the maximal response to the agonist) between 9.65 and 10.16 in the different assays. SR140333 also blocked in vitro [Sar9,Met(O2)11]substance P-induced release of acetylcholine from rat striatum. In vivo, SR140333 exerted highly potent antagonism toward [Sar9,Met(O2)11]substance P-induced hypotension in dogs (ED50 = 3 micrograms/kg i.v.), bronchoconstriction in guinea-pig (ED50 = 42 micrograms/kg i.v.) and plasma extravasation in rats (ED50 = 7 micrograms/kg i.v.). Finally, it also blocked the activation of rat thalamic neurons after nociceptive stimulation (ED50 = 0.2 micrograms/kg i.v.).

  4. Biotinyl endothelin-1 binding to endothelin receptor and its applications.

    PubMed

    Saravanan, K; Paramasivam, M; Dey, S; Singh, T P; Srinivasan, A

    2004-09-01

    The endothelin (ET) system consists of two membrane receptor types A and B and three 21-mer isopeptides endothelin-1, endothelin-2, and endothelin-3 as ligands. This system is involved in many physiological processes such as vasomodulation, neurotransmission, embryonic development, renal function, and regulation of cell proliferation. In many pathophysiological conditions involving endothelin system, the endothelin antagonism could be a possible clinical treatment. Designing of an antagonist involves the characterization of the binding of the test compounds to the endothelin receptors. This is being carried out using radioactive ligand. A simpler and quicker method will be of great advantage. This study reports a non-radioactive method for establishing the IC50 concentrations of the ligand. This method uses biotinylated-endothelin-1 and streptavidin conjugated with horseradish peroxidase. Hydroxyl apatite gel is used for separating the bound and unbound biotin-tagged endothelin-1. This method is applicable to detergent solubilized receptors and purified recombinant receptors. The endothelin receptor type A expressed in Pichia pastoris system has been used in this study. We show that this method is applicable in Western blot analysis of endothelin-1 and its receptor complex. This can be used to localize the receptor molecules as well.

  5. Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion.

    PubMed

    Pineau, Isabelle; Sun, Libo; Bastien, Dominic; Lacroix, Steve

    2010-05-01

    CNS injury stimulates the expression of several proinflammatory cytokines and chemokines, some of which including MCP-1 (also known as CCL2), KC (CXCL1), and MIP-2 (CXCL2) act to recruit Gr-1(+) leukocytes at lesion sites. While earlier studies have reported that neutrophils and monocytes/macrophages contribute to secondary tissue loss after spinal cord injury (SCI), recent work has shown that depletion of Gr-1(+) leukocytes compromised tissue healing and worsened functional recovery. Here, we demonstrate that astrocytes distributed throughout the spinal cord initially contribute to early neuroinflammation by rapidly synthesizing MCP-1, KC, and MIP-2, from 3 up to 12h post-SCI. Chemokine expression by astrocytes was followed by the infiltration of blood-derived immune cells, such as type I "inflammatory" monocytes and neutrophils, into the lesion site and nearby damaged areas. Interestingly, astrocytes from mice deficient in MyD88 signaling produced significantly less MCP-1 and MIP-2 and were unable to synthesize KC. Analysis of the contribution of MyD88-dependent receptors revealed that the astrocytic expression of MCP-1, KC, and MIP-2 was mediated by the IL-1 receptor (IL-1R1), and not by TLR2 or TLR4. Flow cytometry analysis of cells recovered from the spinal cord of MyD88- and IL-1R1-knockout mice confirmed the presence of significantly fewer type I "inflammatory" monocytes and the almost complete absence of neutrophils at 12h and 4days post-SCI. Together, these results indicate that MyD88/IL-1R1 signals regulate the entry of neutrophils and, to a lesser extent, type I "inflammatory" monocytes at sites of SCI. Copyright 2009 Elsevier Inc. All rights reserved.

  6. A novel cyclohexene derivative, ethyl (6R)-6-[N-(2-Chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), selectively inhibits toll-like receptor 4-mediated cytokine production through suppression of intracellular signaling.

    PubMed

    Ii, Masayuki; Matsunaga, Naoko; Hazeki, Kaoru; Nakamura, Kazuyo; Takashima, Katsunori; Seya, Tsukasa; Hazeki, Osamu; Kitazaki, Tomoyuki; Iizawa, Yuji

    2006-04-01

    Proinflammatory mediators such as cytokines and NO play pivotal roles in various inflammatory diseases. To combat inflammatory diseases successfully, regulation of proinflammatory mediator production would be a critical process. In the present study, we investigated the in vitro effects of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule cytokine production inhibitor, and its mechanism of action. In RAW264.7 cells and mouse peritoneal macrophages, TAK-242 suppressed lipopolysaccharide (LPS)-induced production of NO, tumor necrosis factor-alpha (TNF-alpha), and interleukin (IL)-6, with 50% inhibitory concentration (IC50) of 1.1 to 11 nM. TAK-242 also suppressed the production of these cytokines from LPS-stimulated human peripheral blood mononuclear cells (PBMCs) at IC50 values from 11 to 33 nM. In addition, the inhibitory effects on the LPS-induced IL-6 and IL-12 production were similar in human PBMCs, monocytes, and macrophages. TAK-242 inhibited mRNA expression of IL-6 and TNF-alpha induced by LPS and interferon-gamma in RAW264.7 cells. The phosphorylation of mitogen-activated protein kinases induced by LPS was also inhibited in a concentration-dependent manner. However, TAK-242 did not antagonize the binding of LPS to the cells. It is noteworthy that TAK-242 suppressed the cytokine production induced by Toll-like receptor (TLR) 4 ligands, but not by ligands for TLR2, -3, and -9. In addition, IL-1beta-induced IL-8 production from human PBMCs was not markedly affected by TAK-242. These data suggest that TAK-242 suppresses the production of multiple cytokines by selectively inhibiting TLR4 intracellular signaling. Finally, TAK-242 is a novel small molecule TLR4 signaling inhibitor and could be a promising therapeutic agent for inflammatory diseases, whose pathogenesis involves TLR4.

  7. ARTD1 regulates osteoclastogenesis and bone homeostasis by dampening NF-κB-dependent transcription of IL-1β

    PubMed Central

    Robaszkiewicz, Agnieszka; Qu, Chao; Wisnik, Ewelina; Ploszaj, Tomasz; Mirsaidi, Ali; Kunze, Friedrich A.; Richards, Peter J.; Cinelli, Paolo; Mbalaviele, Gabriel; Hottiger, Michael O.

    2016-01-01

    While ADP-ribosyltransferase diphtheria toxin-like 1 (ARTD1, formerly PARP1) and its enzymatic activity have been shown to be important for reprogramming and differentiation of cells, such as during adipogenesis, their role and mechanism in regulating osteoclastogenesis and bone homeostasis are largely unknown. Here, in cell culture-based RANKL-induced osteoclastogenesis models, we show that silencing of ARTD1 or inhibition of its enzymatic activity enhances osteoclast differentiation and function. As a consequence of ARTD1 silencing or inhibition, the recruitment of p65/RelA to the IL-1β promoter, which is associated with transcriptionally active histone marks, IL-1β expression and inflammasome-dependent secretion of IL-1β are enhanced. This subsequently promotes sustained induction of the transcription factor Nfatc1/A and osteoclastogenesis in an autocrine manner via the IL-1 receptor. In vivo, Artd1-deficient mice display significantly decreased bone mass as a consequence of increased osteoclast differentiation. Accordingly, the expression of osteoclast markers is enhanced in mutant compared to wild-type mice. Together, these results indicate that ARTD1 controls osteoclast development and bone remodelling via its enzymatic activity by modulating the epigenetic marks surrounding the IL-1β promoter and expression of IL-1β and subsequently also Nfatc1/A. PMID:26883084

  8. Comparison of tachykinin NK1 and NK2 receptors in the circular muscle of the guinea-pig ileum and proximal colon.

    PubMed Central

    Maggi, C. A.; Patacchini, R.; Meini, S.; Quartara, L.; Sisto, A.; Potier, E.; Giuliani, S.; Giachetti, A.

    1994-01-01

    1. The aim of this study was the pharmacological characterization of tachykinin NK1 and NK2 receptors mediating contraction in the circular muscle of the guinea-pig ileum and proximal colon. The action of substance P (SP), neurokinin A (NKA) and of the synthetic agonists [Sar9]SP sulphone, [Glp6,Pro9]SP(6-11) (septide) and [beta Ala8]NKA(4-10) was investigated. The affinities of various peptide and nonpeptide antagonists for the NK1 and NK2 receptor was estimated by use of receptor selective agonists. 2. The natural agonists, SP and NKA, produced concentration-dependent contraction in both preparations. EC50 values were 100 pM and 5 nM for SP, 1.2 nM and 19 nM for NKA in the ileum and colon, respectively. The action of SP and NKA was not significantly modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). 3. Synthetic NK1 and NK2 receptor agonists produced concentration-dependent contraction of the circular muscle of the ileum and proximal colon. EC50 values were 83 pM, 36 pM and 10 nM in the ileum, 8 nM, 0.7 nM and 12 nM in the colon for [Sar9]SP sulphone, septide and [beta Ala8]NKA-(4-10), respectively. The pseudopeptide derivative of NKA(4-10), MDL 28,564 behaved as a full or near-to-full agonist in both preparations, its EC50s being 474 nM and 55 nM in the ileum and colon, respectively. 4. Nifedipine (1 microM) abolished the response to septide and [Sar9]SP sulphone in the ileum and produced a rightward shift and large depression of the response in the colon. The response to [beta Ala8]NKA(4-10) was abolished in the ileum and largely unaffected in the colon. 5. The NK1 receptor antagonists, (+/-)-CP 96,34, FK 888 and GR 82,334 competitively antagonized the response to septide and [Sar9]SP sulphone in both preparations without affecting that to [beta Ala8]NKA(4-10). In general, the NK1 receptor antagonists were significantly more potent toward septide than [Sar9]SP sulphone in both preparations. 6. The NK2 receptor antagonists, GR

  9. NK cell development requires Tsc1-dependent negative regulation of IL-15-triggered mTORC1 activation

    PubMed Central

    Yang, Meixiang; Chen, Shasha; Du, Juan; He, Junming; Wang, Yuande; Li, Zehua; Liu, Guangao; Peng, Wanwen; Zeng, Xiaokang; Li, Dan; Xu, Panglian; Guo, Wei; Chang, Zai; Wang, Song; Tian, Zhigang; Dong, Zhongjun

    2016-01-01

    Activation of metabolic signalling by IL-15 is required for natural killer (NK) cell development. Here we show that Tsc1, a repressor of mTOR, is dispensable for the terminal maturation, survival and function of NK cells but is critical to restrict exhaustive proliferation of immature NK cells and activation downstream of IL-15 during NK cell development. Tsc1 is expressed in immature NK cells and is upregulated by IL-15. Haematopoietic-specific deletion of Tsc1 causes a marked decrease in the number of NK cells and compromises rejection of ‘missing-self' haematopoietic tumours and allogeneic bone marrow. The residual Tsc1-null NK cells display activated, pro-apoptotic phenotype and elevated mTORC1 activity. Deletion of Raptor, a component of mTORC1, largely reverses these defects. Tsc1-deficient NK cells express increased levels of T-bet and downregulate Eomes and CD122, a subunit of IL-15 receptor. These results reveal a role for Tsc1-dependent inhibition of mTORC1 activation during immature NK cell development. PMID:27601261

  10. AOP description: ER antagonism leading to reproductive dysfunction (in fish)

    EPA Science Inventory

    This adverse outcome pathway details the linkage between antagonism of estrogen receptor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoint considered in the OECD 229 Fish Short Term ...

  11. Endocannabinoid receptor blockade reduces alanine aminotransferase in polycystic ovary syndrome independent of weight loss.

    PubMed

    Dawson, Alison J; Kilpatrick, Eric S; Coady, Anne-Marie; Elshewehy, Abeer M M; Dakroury, Youssra; Ahmed, Lina; Atkin, Stephen L; Sathyapalan, Thozhukat

    2017-07-14

    Evidence suggests that endocannabinoid system activation through the cannabinoid receptor 1 (CB1) is associated with enhanced liver injury, and CB1 antagonism may be beneficial. The aim of this study was to determine the impact of rimonabant (CB1 antagonist) on alanine aminotransferase (ALT), a hepatocellular injury marker, and a hepatic inflammatory cytokine profile. Post hoc review of 2 studies involving 50 obese women with PCOS and well matched for weight, randomised to weight reducing therapy; rimonabant (20 mg od) or orlistat (120 mg tds), or to insulin sensitising therapy metformin, (500 mg tds), or pioglitazone (45 mg od). No subject had non-alcoholic fatty liver disease (NAFLD). Treatment with rimonabant for 12 weeks reduced both ALT and weight (p < 0.01), and there was a negative correlation between Δ ALT and Δ HOMA-IR (p < 0.001), but not between Δ ALT and Δ weight. There was a significant reduction of weight with orlistat (p < 0.01); however, orlistat, metformin and pioglitazone had no effect on ALT. The free androgen index fell in all groups (p < 0.05). The inflammatory marker hs-CRP was reduced by pioglitazone (p < 0.001) alone and did not correlate with changes in ALT. The inflammatory cytokine profile for IL-1β, IL-6, IL-7, IL-10, IL12, TNF-α, MCP-1 and INF-γ did not differ between groups. None of the interventions had an effect on biological variability of ALT. Rimonabant through CB1 receptor blockade decreased serum ALT that was independent of weight loss and hepatic inflammatory markers in obese women with PCOS without NAFLD. ISRCTN58369615 (February 2007; retrospectively registered) ISRCTN75758249 (October 2007; retrospectively registered).

  12. Impact of Muscarinic M3 Receptor Antagonism on the Risk of Type 2 Diabetes in Antidepressant-Treated Patients: A Case-Controlled Study.

    PubMed

    Tran, Yen-Hao; Schuiling-Veninga, Catharina C M; Bergman, Jorieke E H; Groen, Henk; Wilffert, Bob

    2017-06-01

    M 3 muscarinic receptor antagonism has been associated with glucose intolerance and disturbance of insulin secretion. Our objective was to examine the risk of type 2 diabetes mellitus (T2DM) in patients using antidepressants with and without M 3 muscarinic receptor antagonism (AD_antaM 3 and AD_nonantaM 3 , respectively). We designed a case-control study using a pharmacy prescription database. We selected a cohort of patients who initiated antidepressant use between the ages of 20 and 40 years and who did not receive any anti-diabetic prescriptions at baseline. Cases were defined as those who developed T2DM [i.e., receiving oral anti-diabetic medication, Anatomical Therapeutic Chemical (ATC) code A10B] during the follow-up period (1994-2014), and ten random controls were picked for each case from the cohort of patients who did not develop T2DM. A total of 530 cases with incident T2DM and 5300 controls were included. Compared with no use of antidepressants during the previous 2 years, recent (within the last 6 months) exposure to AD_antaM 3 was associated with a moderately increased risk of T2DM: adjusted odds ratio 1.55 (95% confidence interval 1.18-2.02). In the stratified analyses, this association was dose dependent (>365 defined daily doses) and significant for patients who were in the younger age group (<45 years at the end of follow-up), were female and had no co-morbidity. On the other hand, recent exposure to AD_nonantaM 3 was not associated with a risk for T2DM in any of our analyses. Our results suggest that exposure to AD_antaM 3 was associated with the development of T2DM among antidepressant users.

  13. Induction of IL-1, in the testes of adult mice, following subcutaneous administration of turpentine.

    PubMed

    Elhija, Mahmoud Abu; Lunenfeld, Eitan; Huleihel, Mahmoud

    2006-02-01

    Interleukin-1 family is present in the testicular homogenates and its cellular compartments. It has been suggested that IL-1 is involved in physiological and pathological functions of the testicular tissues. In the present study we examined the effect of acute mostly localized inflammation, using turpentine, on the expression levels of testicular IL-1 system. Mice were subcutaneously injected with steam-distilled turpentine or saline (control). Three hours to 10 days following the injection, mice were killed and testis and spleen were homogenized and examined for interleukin (IL)-1alpha, IL-1beta, and IL-1 receptor antagonist (IL-1ra) levels by enzyme-linked immunosorbent assay and polymerase chain reaction. Subcutaneous injection of turpentine induced mice systemic inflammation, as indicated by significant increase in serum IL-1beta levels, and IL-1alpha, IL-1beta and IL-1ra in spleen homogenates. The levels of IL-1alpha, IL-1beta and IL-1ra were significantly induced in testicular homogenates of adult mice following subcutaneous injection of turpentine. The significant induction of testicular IL-1alpha was detected after 3-24 hr of turpentine injection and decreased later (after 3-10 days) to levels similar to the control. However, significant induction of testicular IL-1beta was detected only after 3-10 days of turpentine injection, and for testicular IL-1ra levels was detected after 3 hr to 6 days of turpentine injection, and after 10 days the levels were similar to the control. These results were also confirmed by mRNA expression of these factors. Our results demonstrate for the first time the distant effect of acute localized inflammation on testicular IL-1 levels. Thus, transient inflammatory response to infectious/inflammatory agents at non-testicular sites that elicit systemic IL-1 response should be considered during clinical treatment as a possible factor of male infertility.

  14. Dissociable Hippocampal and Amygdalar D1-like receptor contribution to Discriminated Pavlovian conditioned approach learning

    PubMed Central

    Andrzejewski, Matthew E; Ryals, Curtis

    2016-01-01

    Pavlovian conditioning is an elementary form of reward-related behavioral adaptation. The mesolimbic dopamine system is widely considered to mediate critical aspects of reward-related learning. For example, initial acquisition of positively-reinforced operant behavior requires dopamine (DA) D1 receptor (D1R) activation in the basolateral amygdala (BLA), central nucleus of the amygdala (CeA), and the ventral subiculum (vSUB). However, the role of D1R activation in these areas on appetitive, non-drug-related, Pavlovian learning is not currently known. In separate experiments, microinfusions of the D1-like receptor antagonist SCH-23390 (3.0 nmol/0.5 μL per side) into the amygdala and subiculum preceded discriminated Pavlovian conditioned approach (dPCA) training sessions. D1-like antagonism in all three structures impaired the acquisition of discriminated approach, but had no effect on performance after conditioning was asymptotic. Moreover, dissociable effects of D1-like antagonism in the three structures on components of discriminated responding were obtained. Lastly, the lack of latent inhibition in drug-treated groups may elucidate the role of D1-like in reward-related Pavlovian conditioning. The present data suggest a role for the D1 receptors in the amygdala and hippocampus in learning the significance of conditional stimuli, but not in the expression of conditional responses. PMID:26632336

  15. Follicular expression of pro-inflammatory cytokines tumour necrosis factor-α (TNFα), interleukin 6 (IL6) and their receptors in cattle: TNFα, IL6 and macrophages suppress thecal androgen production in vitro.

    PubMed

    Samir, Moafaq; Glister, Claire; Mattar, Dareen; Laird, Mhairi; Knight, Phil G

    2017-07-01

    Pro-inflammatory cytokines secreted by macrophages and other cell types are implicated as intraovarian factors affecting different aspects of ovarian function including follicle and corpus luteum 'turnover', steroidogenesis and angiogenesis. Here, we compared granulosal (GC) and thecal (TC) expression of TNF, IL6 and their receptors (TNFRSF1A, TNFRSF1B and IL6R) during bovine antral follicle development; all five mRNA transcripts were detected in both GC and TC and statistically significant cell-type and follicle stage-related differences were evident. Since few studies have examined cytokine actions on TC steroidogenesis, we cultured TC under conditions that retain a non-luteinized 'follicular' phenotype and treated them with TNFα and IL6 under basal and LH-stimulated conditions. Both TNFα and IL6 suppressed androgen secretion concomitantly with CYP17A1 and LHCGR mRNA expression. In addition, TNFα reduced INSL3, HSD3B1 and NOS3 expression but increased NOS2 expression. IL6 also reduced LHCGR and STAR expression but did not affect HSD3B1, INSL3, NOS2 or NOS3 expression. As macrophages are a prominent source of these cytokines in vivo , we next co-cultured TC with macrophages and observed an abolition of LH-induced androgen production accompanied by a reduction in CYP17A1, INSL3, LHCGR, STAR, CYP11A1 and HSD3B1 expression. Exposure of TC to bacterial lipopolysaccharide also blocked LH-induced androgen secretion, an effect reduced by a toll-like receptor blocker (TAK242). Collectively, the results support an inhibitory action of macrophages on thecal androgen production, likely mediated by their secretion of pro-inflammatory cytokines that downregulate the expression of LHCGR, CYP17A1 and INSL3. Bovine theca interna cells can also detect and respond directly to lipopolysaccharide. © 2017 Society for Reproduction and Fertility.

  16. IL-7 receptor blockade following T cell depletion promotes long-term allograft survival

    PubMed Central

    Mai, Hoa-Le; Boeffard, Françoise; Longis, Julie; Danger, Richard; Martinet, Bernard; Haspot, Fabienne; Vanhove, Bernard; Brouard, Sophie; Soulillou, Jean-Paul

    2014-01-01

    T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti–IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4– and anti-CD8–mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation. PMID:24569454

  17. Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakanishi, Masako, E-mail: n-masako@wakayama-med.ac.jp; Morita, Yoshihiro; Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka 599-0202

    Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growthmore » and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5′-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis. - Highlights: • Acidity accelerates the growth, migration, and tube formation of LECs. • Acidic condition induces IL-8 expression in LECs. • IL-8 is critical for the changes of LECs. • IL-8 expression is induced via TRPV1 activation.« less

  18. Increased levels of CCR7(lo)PD-1(hi) CXCR5+ CD4+ T cells, and associated factors Bcl-6, CXCR5, IL-21 and IL-6 contribute to repeated implantation failure.

    PubMed

    Gong, Qiaoqiao; Zhu, Yuejie; Pang, Nannan; Ai, Haiquan; Gong, Xiaoyun; La, Xiaolin; Ding, Jianbing

    2017-12-01

    In vitro fertilization-embryo transfer (IVF-ET) can be used by infertile couples to assist with reproduction; however, failure of the embryo to implant into the endometrial lining results in failure of the IVF treatment. The present study investigated the expression of chemokine receptor 7 (CCR7)(lo) programmed death-1(PD-1)(hi) chemokine receptor type 5 (CXCR5) + cluster of differentiation 4 (CD4) + T cells and associated factors in patients with repeated implantation failure (RIF). A total of 30 females with RIF and 30 healthy females were enrolled in the current study. Flow cytometry was used to detect the proportion of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells in the peripheral blood. Cytokine bead arrays were performed to detect the levels of interleukin (IL)-6, -4 and -2 in the serum. ELISAs were used to detect the level of IL-21 in the serum. Quantitative real time polymerase chain reaction analysis and immunohistochemistry were used to investigate the expression of B-cell lymphoma 6 (Bcl-6), chemokine receptor type 5 (CXCR5) and IL-21 in the endometrium. The results revealed that the percentage of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells was increased in the RIF group compared with the control group during the mid luteal phase. The mRNA and protein levels of Bcl-6, IL-21 and CXCR5 in the endometrium and the concentrations of IL-21 and IL-6 in the serum were significantly increased in the RIF group; however, no significant difference was observed between the two groups in regards to the expression of IL-4 and IL-2. Furthermore, a significant positive correlation was identified between the percentage of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells and IL-21 and IL-6 levels. The expression of IL-21 also had a positive correlation with Bcl-6 and CXCR5 expression in the RIF group. These results suggest that increased levels of CCR7(lo)PD-1(hi) CXCR5 + CD4 + T cells and associated factors contribute to RIF and could therefore be a potential therapeutic target.

  19. The farnesoid-X-receptor in myeloid cells controls CNS autoimmunity in an IL-10-dependent fashion.

    PubMed

    Hucke, Stephanie; Herold, Martin; Liebmann, Marie; Freise, Nicole; Lindner, Maren; Fleck, Ann-Katrin; Zenker, Stefanie; Thiebes, Stephanie; Fernandez-Orth, Juncal; Buck, Dorothea; Luessi, Felix; Meuth, Sven G; Zipp, Frauke; Hemmer, Bernhard; Engel, Daniel Robert; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-09-01

    Innate immune responses by myeloid cells decisively contribute to perpetuation of central nervous system (CNS) autoimmunity and their pharmacologic modulation represents a promising strategy to prevent disease progression in Multiple Sclerosis (MS). Based on our observation that peripheral immune cells from relapsing-remitting and primary progressive MS patients exhibited strongly decreased levels of the bile acid receptor FXR (farnesoid-X-receptor, NR1H4), we evaluated its potential relevance as therapeutic target for control of established CNS autoimmunity. Pharmacological FXR activation promoted generation of anti-inflammatory macrophages characterized by arginase-1, increased IL-10 production, and suppression of T cell responses. In mice, FXR activation ameliorated CNS autoimmunity in an IL-10-dependent fashion and even suppressed advanced clinical disease upon therapeutic administration. In analogy to rodents, pharmacological FXR activation in human monocytes from healthy controls and MS patients induced an anti-inflammatory phenotype with suppressive properties including control of effector T cell proliferation. We therefore, propose an important role of FXR in control of T cell-mediated autoimmunity by promoting anti-inflammatory macrophage responses.

  20. LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPARγ ligand synthesis

    PubMed Central

    Lefèvre, Lise; Authier, Hélène; Stein, Sokrates; Majorel, Clarisse; Couderc, Bettina; Dardenne, Christophe; Eddine, Mohamad Ala; Meunier, Etienne; Bernad, José; Valentin, Alexis; Pipy, Bernard; Schoonjans, Kristina; Coste, Agnès

    2015-01-01

    Liver receptor homologue-1 (LRH-1) is a nuclear receptor involved in the repression of inflammatory processes in the hepatointestinal tract. Here we report that LRH-1 is expressed in macrophages and induced by the Th2 cytokine IL-13 via a mechanism involving STAT6. We show that loss-of-function of LRH-1 in macrophages impedes IL-13-induced macrophage polarization due to impaired generation of 15-HETE PPARγ ligands. The incapacity to generate 15-HETE metabolites is at least partially caused by the compromised regulation of CYP1A1 and CYP1B1. Mice with LRH-1-deficient macrophages are, furthermore, highly susceptible to gastrointestinal and systemic Candida albicans infection. Altogether, these results identify LRH-1 as a critical component of the anti-inflammatory and fungicidal response of alternatively activated macrophages that acts upstream from the IL-13-induced 15-HETE/PPARγ axis. PMID:25873311

  1. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    PubMed Central

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  2. MCPIP-1, alias Regnase-1 controls epithelial inflammation by post-transcriptional regulation of IL-8 production

    PubMed Central

    Dobosz, E.; Wilamowski, M.; Lech, M.; Bugara, B.; Jura, J.; Potempa, J.; Koziel, J.

    2016-01-01

    Pattern recognition receptors are critical for the detection of invading microorganisms. They activate multiple pathways that lead to the induction of pro-inflammatory responses and pathogen clearance. The intensity and duration of this immune reaction must be tightly controlled spatially and temporally in every tissue by different negative regulators. We hypothesized that monocyte chemoattractant protein-1–induced protein-1 (MCPIP-1) might play a role in maintaining immune homeostasis in the epithelium both under physiological conditions and upon bacterial infection. To this end, we examined the distribution of MCPIP-1 transcript and protein in various tissues. The MCPIP-1 protein level was higher in epithelial cells than in myeloid cells. MCPIP-1 exerted RNase activity towards the IL-8 transcript and the life-span of IL-8 was determined by the presence of the stem-loops/hairpin (SL) structures at the 3′ UTR region of IL-8 mRNA. Moreover, using fully active, purified recombinant MCPIP-1 protein, we elucidated the mechanism by which MCPIP-1 controls the IL-8 mRNA level. In conclusion, we uncovered a novel IL-8–dependent mechanism via which MCPIP-1 maintains epithelial homeostasis. This study reveals for the first time that MCPIP-1 plays a crucial anti-inflammatory role not only in myeloid cells but also in epithelial cells. PMID:27513529

  3. Association study of IL10 and IL23R-IL12RB2 in Iranian patients with Behçet's disease.

    PubMed

    Xavier, Joana M; Shahram, Farhad; Davatchi, Fereydoun; Rosa, Alexandra; Crespo, Jorge; Abdollahi, Bahar Sadeghi; Nadji, Abdolhadi; Jesus, Gorete; Barcelos, Filipe; Patto, José Vaz; Shafiee, Niloofar Mojarad; Ghaderibarim, Fahmida; Oliveira, Sofia A

    2012-08-01

    Independent replication of the findings from genome-wide association studies (GWAS) remains the gold standard for results validation. Our aim was to test the association of Behçet's disease (BD) with the interleukin-10 gene (IL10) and the IL-23 receptor-IL-12 receptor β2 (IL23R-IL12RB2) locus, each of which has been previously identified as a risk factor for BD in 2 different GWAS. Six haplotype-tagging single-nucleotide polymorphisms (SNPs) in IL10 and 42 in IL23R-IL12RB2 were genotyped in 973 Iranian patients with BD and 637 non-BD controls. Population stratification was assessed using a panel of 86 ancestry-informative markers. Subtle evidence of population stratification was found in our data set. In IL10, rs1518111 was nominally associated with BD before and after adjustment for population stratification (odds ratio [OR] for T allele 1.20, 95% confidence interval [95% CI] 1.02-1.40, unadjusted P [P(unadj) ] = 2.53 × 10(-2) ; adjusted P [P(adj) ] = 1.43 × 10(-2) ), and rs1554286 demonstrated a trend toward association (P(unadj) = 6.14 × 10(-2) ; P(adj) = 3.21 × 10(-2) ). Six SNPs in IL23R-IL12RB2 were found to be associated with BD after Bonferroni correction for multiple testing, the most significant of which were rs17375018 (OR for G allele 1.51, 95% CI 1.27-1.78, P(unadj) = 1.93 × 10(-6) ), rs7517847 (OR for T allele 1.48, 95% CI 1.26-1.74, P(unadj) = 1.23 × 10(-6) ), and rs924080 (OR for T allele 1.29, 95% CI 1.20-1.39, P = 1.78 × 10(-5) ). SNPs rs10489629, rs1343151, and rs1495965 were also significantly associated with BD in all tests performed. Results of meta-analyses of our data combined with data from other populations further confirmed the role of rs1518111, rs17375018, rs7517847, and rs924080 in the risk of BD, but no epistatic interactions between IL10 and IL23R-IL12RB2 were detected. Results of imputation analysis highlighted the importance of IL23R regulatory regions in the susceptibility to BD. These findings independently confirm

  4. Eccrine Sweat Contains IL-1α, IL-1β and IL-31 and Activates Epidermal Keratinocytes as a Danger Signal

    PubMed Central

    Dai, Xiuju; Okazaki, Hidenori; Hanakawa, Yasushi; Murakami, Masamoto; Tohyama, Mikiko; Shirakata, Yuji; Sayama, Koji

    2013-01-01

    Eccrine sweat is secreted onto the skin's surface and is not harmful to normal skin, but can exacerbate eczematous lesions in atopic dermatitis. Although eccrine sweat contains a number of minerals, proteins, and proteolytic enzymes, how it causes skin inflammation is not clear. We hypothesized that it stimulates keratinocytes directly, as a danger signal. Eccrine sweat was collected from the arms of healthy volunteers after exercise, and levels of proinflammatory cytokines in the sweat were quantified by ELISA. We detected the presence of IL-1α, IL-1β, and high levels of IL-31 in sweat samples. To investigate whether sweat activates keratinocytes, normal human keratinocytes were stimulated with concentrated sweat. Western blot analysis demonstrated the activation of NF-κB, ERK, and JNK signaling in sweat-stimulated keratinocytes. Real-time PCR using total RNA and ELISA analysis of supernatants showed the upregulation of IL-8 and IL-1β by sweat. Furthermore, pretreatment with IL-1R antagonist blocked sweat-stimulated cytokine production and signal activation, indicating that bioactive IL-1 is a major factor in the activation of keratinocytes by sweat. Moreover, IL-31 seems to be another sweat stimulator that activates keratinocytes to produce inflammatory cytokine, CCL2. Sweat is secreted onto the skin's surface and does not come into contact with keratinocytes in normal skin. However, in skin with a defective cutaneous barrier, such as atopic dermatitis-affected skin, sweat cytokines can directly act on epidermal keratinocytes, resulting in their activation. In conclusion, eccrine sweat contains proinflammatory cytokines, IL-1 and IL-31, and activates epidermal keratinocytes as a danger signal. PMID:23874436

  5. Control of adipogenesis by the autocrine interplays between angiotensin 1-7/Mas receptor and angiotensin II/AT1 receptor signaling pathways.

    PubMed

    Than, Aung; Leow, Melvin Khee-Shing; Chen, Peng

    2013-05-31

    Angiotensin II (AngII), a peptide hormone released by adipocytes, can be catabolized by adipose angiotensin-converting enzyme 2 (ACE2) to form Ang(1-7). Co-expression of AngII receptors (AT1 and AT2) and Ang(1-7) receptors (Mas) in adipocytes implies the autocrine regulation of the local angiotensin system upon adipocyte functions, through yet unknown interactive mechanisms. In the present study, we reveal the adipogenic effects of Ang(1-7) through activation of Mas receptor and its subtle interplays with the antiadipogenic AngII-AT1 signaling pathways. Specifically, in human and 3T3-L1 preadipocytes, Ang(1-7)-Mas signaling promotes adipogenesis via activation of PI3K/Akt and inhibition of MAPK kinase/ERK pathways, and Ang(1-7)-Mas antagonizes the antiadipogenic effect of AngII-AT1 by inhibiting the AngII-AT1-triggered MAPK kinase/ERK pathway. The autocrine regulation of the AngII/AT1-ACE2-Ang(1-7)/Mas axis upon adipogenesis has also been revealed. This study suggests the importance of the local regulation of the delicately balanced angiotensin system upon adipogenesis and its potential as a novel therapeutic target for obesity and related metabolic disorders.

  6. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Dongmin; Perros, Frédéric; Caramori, Gaetano

    Highlights: • Nuclear IL-33 expression is reduced in vascular endothelial cells from PAH patients. • Knockdown of IL-33 leads to increased IL-6 and sST2 mRNA expression. • IL-33 binds homeobox motifs in target gene promoters and recruits repressor proteins. - Abstract: Idiopathic pulmonary arterial hypertension (IPAH) is an incurable condition leading to right ventricular failure and death and inflammation is postulated to be associated with vascular remodelling. Interleukin (IL)-33, a member of the “alarmin” family can either act on the membrane ST2 receptor or as a nuclear repressor, to regulate inflammation. We show, using immunohistochemistry, that IL-33 expression is nuclearmore » in the vessels of healthy subjects whereas nuclear IL-33 is markedly diminished in the vessels of IPAH patients. This correlates with reduced IL-33 mRNA expression in their lung. In contrast, serum levels of IL-33 are unchanged in IPAH. However, the expression of the soluble form of ST2, sST2, is enhanced in the serum of IPAH patients. Knock-down of IL-33 in human endothelial cells (ECs) using siRNA is associated with selective modulation of inflammatory genes involved in vascular remodelling including IL-6. Additionally, IL-33 knock-down significantly increased sST2 release from ECs. Chromatin immunoprecipitation demonstrated that IL-33 bound multiple putative homeodomain protein binding motifs in the proximal and distal promoters of ST2 genes. IL-33 formed a complex with the histone methyltransferase SUV39H1, a transcriptional repressor. In conclusion, IL-33 regulates the expression of IL-6 and sST2, an endogenous IL-33 inhibitor, in primary human ECs and may play an important role in the pathogenesis of PAH through recruitment of transcriptional repressor proteins.« less

  7. Angiotensin II Receptor Antagonism Reduces Transforming Growth Factor Beta and Smad Signaling in Thoracic Aortic Aneurysm

    PubMed Central

    Nataatmadja, Maria; West, Jennifer; Prabowo, Sulistiana; West, Malcolm

    2013-01-01

    ABSTRACT Background The expression of transforming growth factor beta (TGF-β) and Smad3 regulates extracellular matrix homeostasis and inflammation in aortic aneurysms. The expression of Smad3 depends on signaling by angiotensin II (AngII) receptor pathways through TGF-β receptor–dependent and –independent pathways. Methods To determine the expression of AngII type 1 (AT1R) and type 2 receptors (AT2R), TGF-β, and Smad3 in thoracic aortic aneurysms, we performed immunohistochemistry testing on tissue and cultured cells derived from subjects with Marfan syndrome (MFS) and bicuspid aortic valve (BAV) malformation and from normal aortas of subjects who were organ donors. Results MFS and BAV aneurysm tissue showed enhanced accumulation of TGF-β and Smad3 in vascular smooth muscle cells (VSMCs) and in inflammatory cells in the subintimal layer and tunica media. The normal aortic wall exhibited minimal TGF-β and Smad3 staining. Cultured VSMCs from MFS and BAV samples showed nuclear Smad3 and strong cytoplasmic TGF-β expression in the cytoplasmic vesicles. In control cells, Smad3 was located mainly in the cytoplasm, and weak cytoplasmic TGF-β was distributed with a pattern similar to that of the aneurysm-derived cells. Compared to normal aorta cells, AT1R and AT2R expression was increased in both aneurysm types. Treatment of cultured VSMCs with the AT1R antagonist losartan caused both reduced TGF-β vesicle localization and nuclear expression of Smad3. Conclusions Increased TGF-β and Smad3 expression in aneurysm tissue and cultured VSMCs is consistent with aberrant TGF-β expression and the activation of Smad3 signaling. Losartan-mediated reduction in TGF-β expression and the cytoplasmic localization of Smad3 support a role for AT1R antagonism in the inhibition of aneurysm progression. PMID:23532685

  8. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice.

    PubMed

    Roundtree, Harrison M; Simeone, Timothy A; Johnson, Chaz; Matthews, Stephanie A; Samson, Kaeli K; Simeone, Kristina A

    2016-02-01

    Comorbid sleep disorders occur in approximately one-third of people with epilepsy. Seizures and sleep disorders have an interdependent relationship where the occurrence of one can exacerbate the other. Orexin, a wake-promoting neuropeptide, is associated with sleep disorder symptoms. Here, we tested the hypothesis that orexin dysregulation plays a role in the comorbid sleep disorder symptoms in the Kcna1-null mouse model of temporal lobe epilepsy. Rest-activity was assessed using infrared beam actigraphy. Sleep architecture and seizures were assessed using continuous video-electroencephalography-electromyography recordings in Kcna1-null mice treated with vehicle or the dual orexin receptor antagonist, almorexant (100 mg/kg, intraperitoneally). Orexin levels in the lateral hypothalamus/perifornical region (LH/P) and hypothalamic pathology were assessed with immunohistochemistry and oxygen polarography. Kcna1-null mice have increased latency to rapid eye movement (REM) sleep onset, sleep fragmentation, and number of wake epochs. The numbers of REM and non-REM (NREM) sleep epochs are significantly reduced in Kcna1-null mice. Severe seizures propagate to the wake-promoting LH/P where injury is apparent (indicated by astrogliosis, blood-brain barrier permeability, and impaired mitochondrial function). The number of orexin-positive neurons is increased in the LH/P compared to wild-type LH/P. Treatment with a dual orexin receptor antagonist significantly increases the number and duration of NREM sleep epochs and reduces the latency to REM sleep onset. Further, almorexant treatment reduces the incidence of severe seizures and overall seizure burden. Interestingly, we report a significant positive correlation between latency to REM onset and seizure burden in Kcna1-null mice. Dual orexin receptor antagonists may be an effective sleeping aid in epilepsy, and warrants further study on their somnogenic and ant-seizure effects in other epilepsy models. © 2016 Associated

  9. Taking The Time To Study Competitive Antagonism

    PubMed Central

    Wyllie, D J A; Chen, P E

    2007-01-01

    Selective receptor antagonists are one of the most powerful resources in a pharmacologist's toolkit and are essential for the identification and classification of receptor subtypes and dissecting their roles in normal and abnormal body function. However, when the actions of antagonists are measured inappropriately and misleading results are reported, confusion and wrong interpretations ensue. This article gives a general overview of Schild analysis and the method of determining antagonist equilibrium constants. We demonstrate why this technique is preferable in the study of competitive receptor antagonism than the calculation of antagonist concentration that inhibit agonist-evoked responses by 50%. In addition we show how the use of Schild analysis can provide information on the outcome of single amino acid mutations in structure-function studies of receptors. Finally, we illustrate the need for caution when studying the effects of potent antagonists on synaptic transmission where the timescale of events under investigation is such that ligands and receptors never reach steady-state occupancy. PMID:17245371

  10. Estrogen and progesterone decrease let-7f microRNA expression and increase IL-23/IL-23 receptor signaling and IL-17A production in patients with severe asthma.

    PubMed

    Newcomb, Dawn C; Cephus, Jacqueline Yvonne; Boswell, Madison G; Fahrenholz, John M; Langley, Emily W; Feldman, Amy S; Zhou, Weisong; Dulek, Daniel E; Goleniewska, Kasia; Woodward, Kimberly B; Sevin, Carla M; Hamilton, Robert G; Kolls, Jay K; Peebles, R Stokes

    2015-10-01

    Women have an increased prevalence of severe asthma compared with men. IL-17A is associated with severe asthma and requires IL-23 receptor (IL-23R) signaling, which is negatively regulated by let-7f microRNA. We sought to Determine the mechanism by which 17β-estradiol (E2) and progesterone (P4) increase IL-17A production. IL-17A production was determined by using flow cytometry in TH17 cells from women (n = 14) and men (n = 15) with severe asthma. Cytokine levels were measured by using ELISA, and IL-23R and let-7f expression was measured by using quantitative PCR in TH17-differentiated cells from healthy women (n = 13) and men (n = 14). In sham-operated or ovariectomized female mice, 17β-E2, P4, 17β-E2+P4, or vehicle pellets were administered for 3 weeks before ex vivo TH17 cell differentiation. Airway neutrophil infiltration and CXCL1 (KC) expression were also determined in ovalbumin (OVA)-challenged wild-type female recipient mice with an adoptive transfer of OVA-specific TH17 cells from female and male mice. In patients with severe asthma and healthy control subjects, IL-17A production was increased in TH17 cells from women compared with men. IL-23R expression was increased and let-7f expression was decreased in TH17-differentiated cells from women compared with men. In ovariectomized mice IL-17A and IL-23R expression was increased and Let-7f expression was decreased in TH17 cells from mice administered 17β-E2+P4 compared with those administered vehicle. Furthermore, transfer of female OVA-specific TH17 cells increased acute neutrophil infiltration in the lungs of OVA-challenged recipient mice compared with transfer of male OVA-specific TH17 cells. 17β-E2+P4 increased IL-17A production from TH17 cells, providing a potential mechanism for the increased prevalence of severe asthma in women compared with men. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  11. β-1,3/1,6-Glucan-supplemented diets antagonize immune inhibitory effects of hypoxia and enhance the immune response to a model vaccine.

    PubMed

    Rodríguez, Felipe E; Valenzuela, Beatriz; Farías, Ana; Sandino, Ana María; Imarai, Mónica

    2016-12-01

    The diets of farmed salmon are usually supplemented with immunostimulants to improve health status. Because β-glucan is one of the most common immunostimulants used in diets, here we examined the effect of two β-1,3/1,6-glucan-supplemented diets on the expression of immune response genes of Atlantic salmon. The relative abundances of IFN-α1, Mx, IFN-γ, IL-12, TGF-β1, IL-10, and CD4 transcripts were evaluated in head kidney by qRT-PCR. We assessed the effects of the diets under normoxia and acute hypoxia, as salmon are especially sensitive to changes in the concentration of dissolved oxygen, which can also affect immunity. These effects were also tested on vaccinated fish, as we expected that β-1,3/1,6-glucan-supplemented diets would enhance the adaptive immune response to the vaccine. We found that administration of the Bg diet (containing β-1,3/1,6-glucan) under normoxia had no effects on the expression of the analyzed genes in the kidney of the diet-fed fish, but under hypoxia/re-oxygenation (90 min of acute hypoxia), the βg diet affected the expression of the antiviral genes, IFN-α1 and Mx, preventing their decrease caused by hypoxia. The Bax diet, which in addition to β-1,3/1,6-glucan, contained astaxanthin, increased IL-12 and IFN-γ in kidneys. With fish exposed to hypoxia/reoxygenation, the diet prevented the decrease of IFN-α1 and Mx levels observed after hypoxia. When fish were vaccinated, only the levels of IL-12 and CD4 transcripts increased, but interestingly if fish were also fed the Bax diet, the vaccination induced a significant increase in all the analyzed transcripts. Finally, when vaccinated fish were exposed to hypoxia, the effect of the Bax diet was greatly reduced for all genes tested and moreover, inducible effects completely disappeared for IL-12, IFN-α, and Mx. Altogether, these results showed that the tested β-1,3/1,6-glucan diets increased the levels of transcripts of key genes involved in innate and adaptive immune response

  12. TLX is an intrinsic regulator of the negative effects of IL-1β on proliferating hippocampal neural progenitor cells.

    PubMed

    Ó'Léime, Ciarán S; Kozareva, Danka A; Hoban, Alan E; Long-Smith, Caitriona M; Cryan, John F; Nolan, Yvonne M

    2018-02-01

    Hippocampal neurogenesis is a lifelong process whereby new neurons are produced and integrate into the host circuitry within the hippocampus. It is regulated by a multitude of extrinsic and intrinsic regulators and is believed to contribute to certain hippocampal-dependent cognitive tasks. Hippocampal neurogenesis and associated cognition have been demonstrated to be impaired after increases in the levels of proinflammatory cytokine IL-1β in the hippocampus, such as that which occurs in various neurodegenerative and psychiatric disorders. IL-1β also suppresses the expression of TLX (orphan nuclear receptor tailless homolog), which is an orphan nuclear receptor that functions to promote neural progenitor cell (NPC) proliferation and suppress neuronal differentiation; therefore, manipulation of TLX represents a potential strategy with which to prevent the antiproliferative effects of IL-1β. In this study, we assessed the mechanism that underlies IL-1β-induced changes in TLX expression and determined the protective capacity of TLX to mitigate the effects of IL-1β on embryonic rat hippocampal neurosphere expansion. We demonstrate that IL-1β activated the NF-κB pathway in proliferating NPCs and that this activation was responsible for IL-1β-induced changes in TLX expression. In addition, we report that enhancing TLX expression prevented the IL-1β-induced suppression of neurosphere expansion. Thus, we highlight TLX as a potential protective regulator of the antiproliferative effects of IL-1β on hippocampal neurogenesis.-Ó'Léime, C. S., Kozareva, D. A., Hoban, A. E., Long-Smith, C. M., Cryan, J. F., Nolan, Y. M. TLX is an intrinsic regulator of the negative effects of IL-1β on proliferating hippocampal neural progenitor cells.

  13. A synergistic interferon-γ production is induced by mouse hepatitis virus in interleukin-12 (IL-12)/IL-18-activated natural killer cells and modulated by carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1a receptor

    PubMed Central

    Jacques, Alexandre; Bleau, Christian; Turbide, Claire; Beauchemin, Nicole; Lamontagne, Lucie

    2009-01-01

    The production of interferon-γ (IFN-γ) by infiltrating natural killer (NK) cells in liver is involved in the control of mouse hepatitis virus (MHV) infection. The objectives of this study were to identify the mechanisms used by MHV type 3 to modulate the production of IFN-γ by NK cells during the acute hepatitis in susceptible C57BL/6 mice. Ex vivo and in vitro experiments revealed that NK cells, expressing carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1a (the MHV receptor), can produce a higher level of IFN-γ in the presence of both L2-MHV3 and interleukin-12 (IL-12)/IL-18. The synergistic production of IFN-γ by NK cells depends on viral replication rather than viral fixation only, because it is inhibited or not induced in cells infected with ultraviolet-inactivated viruses and in cells from Ceacam1a−/− mice infected with virulent viruses. The synergistic IFN-γ production involves the p38 mitogen-activated protein kinase (MAPK) rather than the extracellular signal-regulated kinase-1/2 MAPK signalling pathway. However, the signal triggered through the engagement of CEACAM1a decreases the production of IFN-γ, when these molecules are cross-linked using specific monoclonal antibodies. These results suggest that control of acute hepatitis by IFN-γ-producing NK cells may depend on both production of IL-12 and IL-18 in the liver environment and viral infection of NK cells. PMID:19740316

  14. Novel long‐acting antagonists of muscarinic ACh receptors

    PubMed Central

    Randáková, Alena; Rudajev, Vladimír; Doležal, Vladimír; Boulos, John

    2018-01-01

    Background and Purpose The aim of this study was to develop potent and long‐acting antagonists of muscarinic ACh receptors. The 4‐hexyloxy and 4‐butyloxy derivatives of 1‐[2‐(4‐oxidobenzoyloxy)ethyl]‐1,2,3,6‐tetrahydropyridin‐1‐ium were synthesized and tested for biological activity. Antagonists with long‐residence time at receptors are therapeutic targets for the treatment of several neurological and psychiatric human diseases. Their long‐acting effects allow for reduced daily doses and adverse effects. Experimental Approach The binding and antagonism of functional responses to the agonist carbachol mediated by 4‐hexyloxy compounds were investigated in CHO cells expressing individual subtypes of muscarinic receptors and compared with 4‐butyloxy analogues. Key Results The 4‐hexyloxy derivatives were found to bind muscarinic receptors with micromolar affinity and antagonized the functional response to carbachol with a potency ranging from 30 nM at M1 to 4 μM at M3 receptors. Under washing conditions to reverse antagonism, the half‐life of their antagonistic action ranged from 1.7 h at M2 to 5 h at M5 receptors. Conclusions and Implications The 4‐hexyloxy derivatives were found to be potent long‐acting M1‐preferring antagonists. In view of current literature, M1‐selective antagonists may have therapeutic potential for striatal cholinergic dystonia, delaying epileptic seizure after organophosphate intoxication or relieving depression. These compounds may also serve as a tool for research into cognitive deficits. PMID:29498041

  15. The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction.

    PubMed

    Wang, L M; Michieli, P; Lie, W R; Liu, F; Lee, C C; Minty, A; Sun, X J; Levine, A; White, M F; Pierce, J H

    1995-12-01

    Interleukin-13 (IL-13) induced a potent mitogenic response in IL-3-dependent TF-1 cells and DNA synthesis to a lesser extent in MO7E and FDC-P1 cells. IL-13 stimulation of these lines, like IL-4 and insulin-like growth factor-1 (IGF-1), resulted in tyrosine phosphorylation of a 170-kD substrate. The tyrosine-phosphorylated 170-kD substrate strongly associated with the 85-kD subunit of phosphoinositol-3 (PI-3) kinase and with Grb-2. Anti-4PS serum readily detected the 170-kD substrate in lysates from both TF-1 and FDC-P1 cells stimulated with IL-13 or IL-4. These data provide evidence that IL-13 induces tyrosine phosphorylation of the 4PS substrate, providing an essential interface between the IL-13 receptor and signaling molecules containing SH2 domains. IL-13 and IL-4 stimulation of murine L cell fibroblasts, which endogenously express the IL-4 receptor (IL-4R alpha) and lack expression of the IL-2 receptor gamma subunit (IL-2R gamma), resulted in tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1)/4PS. Enhanced tyrosine phosphorylation of IRS-1/4PS was observed in response to IL-4, but not IL-13 treatment of L cells transfected with the IL-2R gamma chain. These results indicate that IL-13 does not use the IL-2R gamma subunit in its receptor complex and that expression of IL-2R gamma enhances, but is not absolutely required for mediating IL-4-induced tyrosine phosphorylation of IRS-1/4PS.

  16. Endocannabinoid receptor blockade increases vascular endothelial growth factor and inflammatory markers in obese women with polycystic ovary syndrome.

    PubMed

    Sathyapalan, Thozhukat; Javed, Zeeshan; Kilpatrick, Eric S; Coady, Anne-Marie; Atkin, Stephen L

    2017-03-01

    Animal studies suggest that cannabinoid receptor-1 (CB-1) blockade reduces inflammation and neovascularization by decreasing vascular endothelial growth factor (VEGF) levels associated with a reduction in inflammatory markers, thereby potentially reducing cardiovascular risk. To determine the impact of CB1 antagonism by rimonabant on VEGF and inflammatory markers in obese PCOS women. Randomized, open-labelled parallel study. Endocrinology outpatient clinic in a referral centre. Twenty patients with PCOS (PCOS) and biochemical hyperandrogenaemia with a body mass index of ≥30 kg/m 2 were recruited. Patients were randomized to 1·5 g daily of metformin or 20 mg daily of rimonabant. Post hoc review to detect VEGF and pro-inflammatory cytokines TNF-α, IL-1β, IL-1ra, IL-2, IL6, IL-8, IL-10 and MCP-1 before and after 12 weeks of treatment. After 12 weeks of rimonabant treatment, there was a significant increase in VEGF (99·2 ± 17·6 vs 116·2 ± 15·8 pg/ml, P < 0·01) and IL-8 (7·4 ± 11·0 vs 18·1 ± 13·2 pg/ml, P < 0·05) but not after metformin (VEGF P = 0·7; IL-8 P = 0·9). There was no significant difference in the pro-inflammatory cytokines TNF-α, IL-1β, IL-1ra, IL-2, IL6, IL-8, IL-10 and MCP-1 following either treatment. This study suggests that rimonabant CB-I blockade paradoxically raised VEGF and the cytokine IL-8 in obese women with PCOS that may have offset the potential benefit associated with weight loss. © 2016 John Wiley & Sons Ltd.

  17. Overcoming dendritic cell tardiness to triumph over IL-13 receptor: a strategy for the development of effective pediatric vaccines.

    PubMed

    Hoeman, Christine; Dhakal, Mermagya; Zaghouani, Habib

    2010-06-01

    Neonatal exposure to antigen gives rise to a primary response comprising both T helper 1 (Th1) and T helper 2 (Th2) lymphocytes. However, re-encounter with the same antigen yields an indubitably biased response with minimal Th1 but excessive Th2 cells. Since Th1 cells combat microbes while Th2 cells react to allergens, the neonate faces susceptibility to both microbial infections and allergic reactions. The Th1/Th2 imbalance of neonatal immunity stems from a delayed maturation of dendritic cells that yields limited IL-12 cytokine during the neonatal stage. Th1 cells developing under these circumstances up-regulate the IL-13Ralpha1 chain that physically associates with the IL-4Ralpha chain, forming a potentially hazardous heteroreceptor. During re-challenge with antigen, IL-4 from Th2 cells utilizes the heteroreceptor to signal the death of Th1 cells, leading to the Th2 bias of neonatal immunity. Our view to overcome Th1 deficiency is to supplement neonatal immunizations with toll-like receptor ligands that could stimulate maturation of dendritic cells and augment IL-12 production to counter IL-13Ralpha1 up-regulation. This regimen would yield Th1 cells devoid of the heteroreceptor and resistant to IL-4-induced apoptosis. Accordingly, the neonate would have balanced Th1/Th2 immunity and withstand both microbes and allergens. Such approaches could open new avenues for better pediatric vaccines and allergy therapies.

  18. Meprin A and meprin {alpha} generate biologically functional IL-1{beta} from pro-IL-1{beta}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herzog, Christian; University of Arkansas for Medical Sciences, Department of Medicine, Little Rock, AR 72205; Haun, Randy S.

    The present study demonstrates that both oligomeric metalloendopeptidase meprin A purified from kidney cortex and recombinant meprin {alpha} are capable of generating biologically active IL-1{beta} from its precursor pro-IL-1{beta}. Amino-acid sequencing analysis reveals that meprin A and meprin {alpha} cleave pro-IL-1{beta} at the His{sup 115}-Asp{sup 116} bond, which is one amino acid N-terminal to the caspase-1 cleavage site and five amino acids C-terminal to the meprin {beta} site. The biological activity of the pro-IL-1{beta} cleaved product produced by meprin A, determined by proliferative response of helper T-cells, was 3-fold higher to that of the IL-1{beta} product produced by meprin {beta}more » or caspase-1. In a mouse model of sepsis induced by cecal ligation puncture that results in elevated levels of serum IL-1{beta}, meprin inhibitor actinonin significantly reduces levels of serum IL-1{beta}. Meprin A and meprin {alpha} may therefore play a critical role in the production of active IL-1{beta} during inflammation and tissue injury.« less

  19. CSL311, a novel, potent, therapeutic monoclonal antibody for the treatment of diseases mediated by the common β chain of the IL-3, GM-CSF and IL-5 receptors

    PubMed Central

    Panousis, Con; Dhagat, Urmi; Edwards, Kirsten M.; Rayzman, Veronika; Hardy, Matthew P.; Braley, Hal; Gauvreau, Gail M.; Hercus, Timothy R.; Smith, Steven; Sehmi, Roma; McMillan, Laura; Dottore, Mara; McClure, Barbara J.; Fabri, Louis J.; Vairo, Gino; Lopez, Angel F; Parker, Michael W.; Nash, Andrew D.; Wilson, Nicholas J.; Wilson, Michael J.; Owczarek, Catherine M.

    2016-01-01

    ABSTRACT The β common-signaling cytokines interleukin (IL)-3, granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-5 stimulate pro-inflammatory activities of haematopoietic cells via a receptor complex incorporating cytokine-specific α and shared β common (βc, CD131) receptor. Evidence from animal models and recent clinical trials demonstrate that these cytokines are critical mediators of the pathogenesis of inflammatory airway disease such as asthma. However, no therapeutic agents, other than steroids, that specifically and effectively target inflammation mediated by all 3 of these cytokines exist. We employed phage display technology to identify and optimize a novel, human monoclonal antibody (CSL311) that binds to a unique epitope that is specific to the cytokine-binding site of the human βc receptor. The binding epitope of CSL311 on the βc receptor was defined by X-ray crystallography and site-directed mutagenesis. CSL311 has picomolar binding affinity for the human βc receptor, and at therapeutic concentrations is a highly potent antagonist of the combined activities of IL-3, GM-CSF and IL-5 on primary eosinophil survival in vitro. Importantly, CSL311 inhibited the survival of inflammatory cells present in induced sputum from human allergic asthmatic subjects undergoing allergen bronchoprovocation. Due to its high potency and ability to simultaneously suppress the activity of all 3 β common cytokines, CSL311 may provide a new strategy for the treatment of chronic inflammatory diseases where the human βc receptor is central to pathogenesis. The coordinates for the βc/CSL311 Fab complex structure have been deposited with the RCSB Protein Data Bank (PDB 5DWU). PMID:26651396

  20. Differential expression and evolution of three tandem, interleukin-1 receptor-like 1 genes in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Interleukin-1 receptor-like 1 (Il1rl1 or ST2), a member of the Interleukin-1 Receptor family, has pleiotropic roles including tissue homeostasis, inflammation, immune polarization, and disease resistance in mammals. A single orthologue was previously described in salmonid fish; however, a recently ...

  1. Card9-dependent IL-1β regulates IL-22 production from group 3 innate lymphoid cells and promotes colitis-associated cancer.

    PubMed

    Bergmann, Hanna; Roth, Susanne; Pechloff, Konstanze; Kiss, Elina A; Kuhn, Sabine; Heikenwälder, Mathias; Diefenbach, Andreas; Greten, Florian R; Ruland, Jürgen

    2017-08-01

    Inflammatory bowel diseases (IBD) are key risk factors for the development of colorectal cancer, but the mechanisms that link intestinal inflammation with carcinogenesis are insufficiently understood. Card9 is a myeloid cell-specific signaling protein that regulates inflammatory responses downstream of various pattern recognition receptors and which cooperates with the inflammasomes for IL-1β production. Because polymorphisms in Card9 were recurrently associated with human IBD, we investigated the function of Card9 in a colitis-associated cancer (CAC) model. Card9 -/- mice develop smaller, less proliferative and less dysplastic tumors compared to their littermates and in the regenerating mucosa we detected dramatically impaired IL-1β generation and defective IL-1β controlled IL-22 production from group 3 innate lymphoid cells. Consistent with the key role of immune-derived IL-22 in activating STAT3 signaling during normal and pathological intestinal epithelial cell (IEC) proliferation, Card9 -/- mice also exhibit impaired tumor cell intrinsic STAT3 activation. Our results imply a Card9-controlled, ILC3-mediated mechanism regulating healthy and malignant IEC proliferation and demonstrates a role of Card9-mediated innate immunity in inflammation-associated carcinogenesis. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Elevated serum levels of IL-2R, IL-1RA, and CXCL9 are associated with a poor prognosis in follicular lymphoma

    PubMed Central

    Mir, Muhammad A.; Maurer, Matthew J.; Ziesmer, Steven C.; Slager, Susan L.; Habermann, Thomas; Macon, William R.; Link, Brian K.; Syrbu, Sergei; Witzig, Thomas; Friedberg, Jonathan W.; Press, Oliver; LeBlanc, Michael; Cerhan, James R.; Novak, Anne

    2015-01-01

    Serum cytokines and chemokines may reflect tumor biology and host response in follicular lymphoma (FL). To determine whether the addition of these biological factors may further refine prognostication, 30 cytokines and chemokines were measured in pretreatment serum specimens from newly diagnosed FL patients (n = 209) and from 400 matched controls. Cytokine levels were correlated with clinical outcome in patients who were observed or received single agent rituximab, or those who received chemotherapy. Correlations with outcome in chemotherapy treated patients were further examined in a separate cohort of 183 South West Oncology Group (SWOG) patients and all patients were then included in a meta-analysis. Six cytokines were associated with outcome in the Molecular Epidemiology Resource (MER) after adjusting for the FL international prognostic index. In patients who were observed or treated with rituximab alone, increased serum IL-12 and interleukin 1 receptor antagonist (IL-1RA) (P = .005 and .02) were associated with a shorter event-free survival. In patients receiving chemotherapy, hepatocyte growth factor, IL-8, IL-1RA, and CXCL9 (P = .015, .048, .004, and .0005) predicted a shorter EFS. When the MER chemotherapy treated patients and SWOG patients were combined in a meta-analysis, IL-2R, IL-1RA, and CXCL9 (P = .013, .042, and .0012) were associated with a poor EFS. PMID:25422100

  3. IL-17 Receptor Signaling in Oral Epithelial Cells Is Critical for Protection against Oropharyngeal Candidiasis.

    PubMed

    Conti, Heather R; Bruno, Vincent M; Childs, Erin E; Daugherty, Sean; Hunter, Joseph P; Mengesha, Bemnet G; Saevig, Danielle L; Hendricks, Matthew R; Coleman, Bianca M; Brane, Lucas; Solis, Norma; Cruz, J Agustin; Verma, Akash H; Garg, Abhishek V; Hise, Amy G; Richardson, Jonathan P; Naglik, Julian R; Filler, Scott G; Kolls, Jay K; Sinha, Satrajit; Gaffen, Sarah L

    2016-11-09

    Signaling through the IL-17 receptor (IL-17R) is required to prevent oropharyngeal candidiasis (OPC) in mice and humans. However, the IL-17-responsive cell type(s) that mediate protection are unknown. Using radiation chimeras, we were able to rule out a requirement for IL-17RA in the hematopoietic compartment. We saw remarkable concordance of IL-17-controlled gene expression in C. albicans-infected human oral epithelial cells (OECs) and in tongue tissue from mice with OPC. To interrogate the role of the IL-17R in OECs, we generated mice with conditional deletion of IL-17RA in superficial oral and esophageal epithelial cells (Il17ra ΔK13 ). Following oral Candida infection, Il17ra ΔK13 mice exhibited fungal loads and weight loss indistinguishable from Il17ra -/- mice. Susceptibility in Il17ra ΔK13 mice correlated with expression of the antimicrobial peptide β-defensin 3 (BD3, Defb3). Consistently, Defb3 -/- mice were susceptible to OPC. Thus, OECs dominantly control IL-17R-dependent responses to OPC through regulation of BD3 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway.

    PubMed

    Li, Wei-Hua; Qiu, Ying; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2015-01-01

    As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.

  5. CXCL13 regulates the trafficking of GluN2B-containing NMDA receptor via IL-17 in the development of remifentanil-induced hyperalgesia in rats.

    PubMed

    Zhu, M; Yuan, S T; Yu, W L; Jia, L L; Sun, Y

    2017-05-01

    This study aimed to investigate whether CXCL13 modulated the trafficking of NMDA receptor via interleukin (IL)-17 in a rat model of remifentanil-induced hyperalgesia (RIH).Although chemokines are crucial regulators of neuroinflammation, spinal N-methyl-d-aspartate (NMDA) receptor activation, and development of hypernociceptive process, little is known about specific pathogenesis and effective treatment. Inflammatory mediators are required for excitatory synaptic transmission in pathologic pain. A neutralizing antibody against CXCL13 (anti-CXCL13), antiserum against IL-17 (anti-IL-17), and recombinant CXCL13 and IL-17 were administered intrathecally to explore the roles of CXCL13, IL-17, and NMDA receptor, as well as the prevention of hyperalgesia. Paw withdrawal threshold and paw withdrawal latency were employed to record mechanical allodynia and thermal hyperalgesia. Reverse transcriptase quantitative polymerase chain reaction was used to evaluate the levels of CXCL13/CXCR5 and IL-17/IL-17RA in the spinal dorsal horn. The trafficking of spinal GluN2B-containing NMDA receptor was assessed by Western blot after nociceptive testing. This study found mechanical allodynia and thermal hyperalgesia with a remarkable increase in the expression of spinal CXCL13/CXCR5 and IL-17/IL-17RA and trafficking of GluN2B-containing NMDA receptor after remifentanil exposure. Behavioral RIH and elevated GluN2B trafficking were dampened by intrathecal anti-CXCL13 and anti-IL-17, respectively. The delivery of exogenous CXCL13 dose-dependently generated a rapid nociceptive hypersensitivity in naïve rats, which was prevented by coadministering anti-IL-17. CXCL13-induced IL-17RA overproduction and GluN2B trafficking were reversed by anti-IL-17 treatment. GluN2B antagonist also blocked CXCL13, and IL-17 directly induced hyperalgesia. This study highlighted the contribution of IL-17 pathway in the trafficking of CXCL13-induced GluN2B-containing NMDA receptor in the pathogenesis of RIH

  6. NMDA receptor subunits and associated signaling molecules mediating antidepressant-related effects of NMDA-GluN2B antagonism

    PubMed Central

    Kiselycznyk, Carly; Jury, Nicholas; Halladay, Lindsay; Nakazawa, Kazu; Mishina, Masayoshi; Sprengel, Rolf; Grant, Seth G.N.; Svenningsson, Per; Holmes, Andrew

    2015-01-01

    Drugs targeting the glutamate N-methyl-D-aspartate receptor (NMDAR) may be efficacious for treating mood disorders, as exemplified by the rapid antidepressant effects produced by single administration of the NMDAR antagonist ketamine. Though the precise mechanisms underlying the antidepressant-related effects of NMDAR antagonism remain unclear, recent studies implicate specific NMDAR subunits, including GluN2A and GluN2B, as well as the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunit glutamate receptor interacting molecule, PSD-95. Here, integrating mutant and pharmacological in mice, we investigated the contribution of these subunits and molecules to antidepressant-related behaviors and the antidepressant-related effects of the GluN2B blocker, Ro 25-6981. We found that global deletion of GluA1 or PSD-95 reduced forced swim test (FST) immobility, mimicking the antidepressant-related effect produced by systemically administered Ro 25-6981 in C57BL/6J mice. Moreover, the FST antidepressant-like effects of systemic Ro 25-6981 were intact in mutants with global GluA1 deletion or GluN1 deletion in forebrain interneurons, but were absent in mutants constitutively lacking GluN2A or PSD-95. Next, we found that microinfusing Ro 25-6981 into the medial prefrontal cortex (mPFC), but not basolateral amygdala, of C57BL/6J mice was sufficient to produce an antidepressant-like effect. Together, these findings extend and refine current understanding of the mechanisms mediating antidepressant-like effects produced by NMDAR-GluN2B antagonists, and may inform the development of a novel class of medications for treating depression that target the GluN2B subtype of NMDAR. PMID:25800971

  7. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy

    PubMed Central

    Dhillion, Pushpinder; Wallace, Kedra; Herse, Florian; Scott, Jeremy; Wallukat, Gerd; Heath, Judith; Mosely, Janae; Martin, James N.; Dechend, Ralf

    2012-01-01

    Preeclampsia is associated with autoimmune cells TH17, secreting interleukin-17, autoantibodies activating the angiotensin II type I receptor (AT1-AA), and placental oxidative stress (ROS). The objective of our study was to determine whether chronic IL-17 increases blood pressure by stimulating ROS and AT1-AAs during pregnancy. To answer this question four groups of rats were examined: normal pregnant (NP, n = 20), NP+IL-17 (n = 12), NP+tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) (n = 7) (a superoxide dismutase mimetic that scavenges ROS), and NP+IL-17+tempol (n = 11). IL-17 (150 pg/day) was infused into NP rats while tempol was administered via the drinking water ad libitum. On day 19 blood pressure (MAP) was recorded, and plasma, urine, and tissue were collected for isolation of ROS detected by chemilluminescent technique. Urinary isoprostane was measured by ELISA. AT1-AAs were determined via cardiomyocyte assay and expressed as beats per minute. MAP increased from 98 ± 3 mmHg in NP to 123 ± 3 mmHg in IL-17-infused NP rats. Urinary isoprostane increased from 1,029 ± 1 in NP to 3,526 ± 2 pg·mg−1·day−1 in IL-17-infused rats (P < 0.05). Placental ROS was 436 ± 4 RLU·ml−1·min−1 (n = 4) in NP and 702 ± 5 (n = 5) RLU·ml−1·min−1 in IL-17-treated rats. Importantly, AT1-AA increased from 0.41 ± 0.05 beats/min in NP rats (n = 8) to 18.4 ± 1 beats/min in IL-17 rats (n = 12). Administration of tempol attenuated the hypertension (101 ± 3 mmHg) ROS (459 ± 5 RLU·ml−1·min−1) and blunted AT1-AAs (7.3 ± 0.6 beats/min) in NP+IL-17+tempol-treated rats. Additionally, AT1 receptor blockade inhibited IL-17-induced hypertension and placental oxidative stress. MAP was 105 ± 5 mmHg and ROS was 418 ± 5 RLU·ml−1·min−1 in NP+IL 17-treated with losartan. These data indicate that IL-17 causes placental oxidative stress, which serves as stimulus modulating AT1-AAs that may play an important role in mediating IL-17-induced hypertension

  8. Immunology in clinic review series; focus on autoinflammatory diseases: update on monogenic autoinflammatory diseases: the role of interleukin (IL)-1 and an emerging role for cytokines beyond IL-1

    PubMed Central

    Goldbach-Mansky, R

    2012-01-01

    The disease-based discovery of the molecular basis for autoinflammatory diseases has led not only to a rapidly growing number of clinically and genetically identifiable disorders, but has unmantled key inflammatory pathways such as the potent role of the alarm cytokine interleukin (IL)-1 in human disease. Following its initial failures in the treatment of sepsis and the moderate success in the treatment of rheumatoid arthritis, IL-1 blocking therapies had a renaissance in the treatment of a number of autoinflammatory conditions, and IL-1 blocking therapies have been Food and Drug Administration (FDA)-approved for the treatment of the autoinflammatory conditions: cryopyrin-associated periodic syndromes (CAPS). CAPS and deficiency of the IL-1 receptor antagonist (DIRA), both genetic conditions with molecular defects in the IL-1 pathway, have provided a pathogenic rationale to IL-1 blocking therapies, and the impressive clinical results confirmed the pivotal role of IL-1 in human disease. Furthermore, IL-1 blocking strategies have shown clinical benefit in a number of other genetically defined autoinflammatory conditions, and diseases with clinical similarities to the monogenic disorders and not yet identified genetic causes. The discovery that IL-1 is not only triggered by infectious danger signals but also by danger signals released from metabolically ‘stressed’ or even dying cells has extended the concept of autoinflammation to disorders such as gout, and those that were previously not considered inflammatory, such as type 2 diabetes, coronary artery disease, obesity and some degenerative diseases, and provided the conceptual framework to target IL-1 in these diseases. Despite the tremendous success of IL-1 blocking therapy, the use of these agents in a wider spectrum of autoinflammatory conditions has uncovered disease subsets that are not responsive to IL-1 blockade, including the recently discovered proteasome-associated autoinflammatory syndromes such as

  9. Polymorphisms in the Toll-Like Receptor and the IL-23/IL-17 Pathways Were Associated with Susceptibility to Inflammatory Bowel Disease in a Danish Cohort

    PubMed Central

    Bank, Steffen; Andersen, Paal Skytt; Burisch, Johan; Pedersen, Natalia; Roug, Stine; Galsgaard, Julied; Ydegaard Turino, Stine; Broder Brodersen, Jacob; Rashid, Shaista; Kaiser Rasmussen, Britt; Avlund, Sara; Bastholm Olesen, Thomas; Hoffmann, Hans Jürgen; Andersen Nexø, Bjørn; Sode, Jacob; Vogel, Ulla; Andersen, Vibeke

    2015-01-01

    Background The inflammatory bowel diseases (IBD), Crohn’s disease (CD) and ulcerative colitis (UC), result from the combined effects of susceptibility genes and environmental factors. Previous studies have shown that polymorphisms in the Toll-like receptor (TLR), the apoptosis, the IL-23/IL-17 and the interferon gamma (IFNG) pathways are associated with risk of both CD and UC. Methods Using a candidate gene approach, 21 functional single nucleotide polymorphisms (SNPs) in 15 genes were assessed in a clinical homogeneous group of severely diseased ethnic Danish patients consisting of 624 patients with CD, 411 patients with UC and 795 controls. The results were analysed using logistic regression. Results The polymorphisms TLR5 (rs5744174) and IL12B (rs6887695) were associated with risk of CD, and TLR1 (rs4833095) and IL18 (rs187238) were associated with risk of both CD and UC (p<0.05). After Bonferroni correction for multiple testing, the homozygous variant genotype of TLR1 743 T>C (rs4833095) was associated with increased risk CD (OR: 3.15, 95% CI: 1.59–6.26, p = 0.02) and CD and UC combined (OR: 2.96, 95% CI: 1.64–5.32, p = 0.005). Conclusion Our results suggest that genetically determined high activity of TLR1 and TLR5 was associated with increased risk of both CD and UC and CD, respectively. This supports that the host microbial composition or environmental factors in the gut are involved in risk of IBD. Furthermore, genetically determined high activity of the IL-23/IL-17 pathway was associated with increased risk of CD and UC. Overall, our results support that genetically determined high inflammatory response was associated with increased risk of both CD and UC. PMID:26698117

  10. Activation of the IL-2 Receptor in Podocytes: A Potential Mechanism for Podocyte Injury in Idiopathic Nephrotic Syndrome?

    PubMed Central

    Zea, Arnold H.; Stewart, Tyrus; Ascani, Jeannine; Tate, David J.; Finkel-Jimenez, Beatriz; Wilk, Anna; Reiss, Krzysztof; Smoyer, William E.; Aviles, Diego H.

    2016-01-01

    The renal podocyte plays an important role in maintaining the structural integrity of the glomerular basement membrane. We have previously reported that patients with idiopathic nephrotic syndrome (INS) have increased IL-2 production. We hypothesized that podocytes express an IL-2 receptor (IL-2R) and signaling through this receptor can result in podocyte injury. To confirm the presence of the IL-2R, we tested a conditionally immortalized murine podocyte cell line by flow cytometry, qPCR, and Western blot. To test for the presence of the IL-2R in vivo, immunohistochemical staining was performed on human renal biopsies in children with FSGS and control. Podocytes were stimulated with IL-2 in vitro, to study signaling events via the JAK/STAT pathway. The results showed that stimulation with IL-2 resulted in increased mRNA and protein expression of STAT 5a, phosphorylated STAT 5, JAK 3, and phosphorylated JAK 3. We then investigated for signs of cellular injury and the data showed that pro-apoptotic markers Bax and cFLIP were significantly increased following IL-2 exposure, whereas LC3 II was decreased. Furthermore, mitochondrial depolarization and apoptosis were both significantly increased following activation of the IL-2R. We used a paracellular permeability assay to monitor the structural integrity of a podocyte monolayer following IL-2 exposure. The results showed that podocytes exposed to IL-2 have increased albumin leakage across the monolayer. We conclude that murine podocytes express the IL-2R, and that activation through the IL-2R results in podocyte injury. PMID:27389192

  11. Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma.

    PubMed

    Brown, Christine E; Aguilar, Brenda; Starr, Renate; Yang, Xin; Chang, Wen-Chung; Weng, Lihong; Chang, Brenda; Sarkissian, Aniee; Brito, Alfonso; Sanchez, James F; Ostberg, Julie R; D'Apuzzo, Massimo; Badie, Behnam; Barish, Michael E; Forman, Stephen J

    2018-01-03

    T cell immunotherapy is emerging as a powerful strategy to treat cancer and may improve outcomes for patients with glioblastoma (GBM). We have developed a chimeric antigen receptor (CAR) T cell immunotherapy targeting IL-13 receptor α2 (IL13Rα2) for the treatment of GBM. Here, we describe the optimization of IL13Rα2-targeted CAR T cells, including the design of a 4-1BB (CD137) co-stimulatory CAR (IL13BBζ) and a manufacturing platform using enriched central memory T cells. Utilizing orthotopic human GBM models with patient-derived tumor sphere lines in NSG mice, we found that IL13BBζ-CAR T cells improved anti-tumor activity and T cell persistence as compared to first-generation IL13ζ-CAR CD8 + T cells that had shown evidence for bioactivity in patients. Investigating the impact of corticosteroids, given their frequent use in the clinical management of GBM, we demonstrate that low-dose dexamethasone does not diminish CAR T cell anti-tumor activity in vivo. Furthermore, we found that local intracranial delivery of CAR T cells elicits superior anti-tumor efficacy as compared to intravenous administration, with intraventricular infusions exhibiting possible benefit over intracranial tumor infusions in a multifocal disease model. Overall, these findings help define parameters for the clinical translation of CAR T cell therapy for the treatment of brain tumors. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  12. Polymorphisms of the IL-1beta and IL-1beta-inducible genes in ulcerative colitis.

    PubMed

    Nohara, Hiroaki; Saito, Yuki; Higaki, Singo; Okayama, Naoko; Hamanaka, Yuichiro; Okita, Kiwamu; Hinoda, Yuji

    2002-11-01

    Ulcerative colitis (UC) is a chronic disorder of undetermined etiology, but a genetic predisposition to UC is well recognized. Among cytokines induced in UC, interleukin 1 (IL-1) appears to have a central role because of its immunological upregulatory and proinflammatory activities. The aim of this study was to assess whether UC is associated with polymorphisms of the IL-1beta gene and three additional genes inducible with IL-1beta in Japanese subjects. A total of 96 patients with UC and 106 ethnically matched controls were genotyped at polymorphic sites in IL-1beta, matrix metalloproteinase 1 (MMP-1), matrix metalloproteinase 3 (MMP-3), and inducible nitric oxide synthase (iNOS) genes, using polymerase chain reaction (PCR)-based methods. There was no significant difference in genotype distributions of IL-1beta, MMP-1, MMP-3, and iNOS genes between controls and UC patients in a Japanese population. Also, no significant association of those polymorphisms with various clinical parameters of the patients was found. However, concerning association of age at onset with clinical factors in UC, the frequency of pancolitis was significantly higher in UC patients with age at onset being less than 30 years than in those more than 30 years of age (P = 0.049). No association of the IL-1beta and three IL-1beta-inducible gene polymorphisms with UC was observed in a Japanese population.

  13. Association of SNPs from IL1A, IL1B, and IL6 Genes with Human Cytomegalovirus Infection Among Pregnant Women.

    PubMed

    Wujcicka, Wioletta Izabela; Wilczyński, Jan Szczęsny; Nowakowska, Dorota Ewa

    2017-05-01

    The study was aimed to estimate the role and prevalence rates of genotypes, haplotypes, and alleles, located within the single-nucleotide polymorphisms (SNPs) of interleukin (IL) 1A, IL1B, and IL6 genes, in the occurrence and development of human cytomegalovirus (HCMV) infection among pregnant women. A research was conducted in 129 pregnant women, out of whom, 65 were HCMV infected and 64 were age-matched control uninfected individuals. HCMV DNA was quantitated for UL55 gene by the real-time Q PCR in the body fluids. The genotypic statuses within the SNPs were determined by nested PCR-RFLP assays and confirmed, by sequencing for randomly selected representative PCR products. A relationship between the genotypes and alleles, as well as haplotypes and multiple variants in the studied polymorphisms, and the occurrence of HCMV infection in pregnant women, was determined using a logistic regression model. TT genotype within IL1A polymorphism significantly decreased the risk of HCMV infection (OR 0.32, 95% CI 0.09-1.05; p ≤ 0.050). Considering IL6 SNP, the prevalence rate of GC genotype was significantly decreased among the HCMV infected, compared to the uninfected control individuals (OR 0.45, 95% CI 0.21-0.99; p ≤ 0.050). Moreover, CC homozygotic status in IL6 SNP, found in pregnant women, significantly decreased the risk of congenital infection with HCMV in their offsprings (OR 0.12; p ≤ 0.050). In multiple SNP analysis, TC haplotype within the IL1 polymorphisms significantly decreased the risk of the infection in pregnant women (OR 0.38 95% CI 0.15-0.96; p ≤ 0.050). In addition, TTG complex variants for all the studied polymorphisms and TG variants for IL1B and IL6 SNPs were significantly more prevalent among the infected offsprings with symptomatic congenital cytomegaly than among the asymptomatic cases (p ≤ 0.050). In conclusion, the analyzed IL1A -889 C>T, IL1B +3954 C>T, and IL6 -174 G>C polymorphisms may be associated with the

  14. Evaluation of the antagonism of nicotine by mecamylamine and pempidine in the brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, T.J.

    1989-01-01

    Antagonists have been crucial in the characterization of nicotine's pharmacology. Initial evidence for the existence of central nicotinic receptors was based on the fact that nicotine produced a number of behavioral effects that were antagonized by ganglionic blockers that crossed the blood-brain barrier, such as mecamylamine and pempidine. These compounds are thought to be noncompetitive antagonists due to the fact that they do not compete for agonist binding to brain homogenate in vitro. However, pharmacological evidence in support of noncompetitive antagonism is lacking. Dose-response curves for nicotine were determined in the presence of various doses of pempidine for depression ofmore » spontaneous activity and antinociception in mice. Pempidine was found to shift the dose response curves for these effects of nicotine in a manner consistent with noncompetitive antagonism. A number of mecamylamine analogs were investigated for antagonism of these central effects of nicotine as well. These studies revealed that the N-, 2-, and 3-methyls were crucial for optimal efficacy and potency and suggests that these compounds possess a specific mechanism of action, possibly involving a receptor. Furthermore, the structure-activity relationships for the mecamylamine analogs were found to be different than that previously reported for the agonists, suggesting that they do not act at the same site. The binding of ({sup 3} H)-L-nicotine and ({sup 3}H)-pempidine was studied in vitro to mouse brain homogentate and in situ to rat brain slices. The in situ binding of ({sup 3}H)-L-nicotine to rat brain slices was quantitated autoradiographically to discrete brain areas in the presence and absence of 1, 10 and 100 {mu}M nicotine and pempidine. Pempidine did not effectively displace ({sup 3}H)-L-nicotine binding.« less

  15. Mineralocorticoid receptor antagonism treats obesity-associated cardiac diastolic dysfunction.

    PubMed

    Bender, Shawn B; DeMarco, Vincent G; Padilla, Jaume; Jenkins, Nathan T; Habibi, Javad; Garro, Mona; Pulakat, Lakshmi; Aroor, Annayya R; Jaffe, Iris Z; Sowers, James R

    2015-05-01

    Patients with obesity and diabetes mellitus exhibit a high prevalence of cardiac diastolic dysfunction (DD), an independent predictor of cardiovascular events for which no evidence-based treatment exists. In light of renin-angiotensin-aldosterone system activation in obesity and the cardioprotective action of mineralocorticoid receptor (MR) antagonists in systolic heart failure, we examined the hypothesis that MR blockade with a blood pressure-independent low-dose spironolactone (LSp) would treat obesity-associated DD in the Zucker obese (ZO) rat. Treatment of ZO rats exhibiting established DD with LSp normalized cardiac diastolic function, assessed by echocardiography. This was associated with reduced cardiac fibrosis, but not reduced hypertrophy, and restoration of endothelium-dependent vasodilation of isolated coronary arterioles via a nitric oxide-independent mechanism. Further mechanistic studies revealed that LSp reduced cardiac oxidative stress and improved endothelial insulin signaling, with no change in arteriolar stiffness. Infusion of Sprague-Dawley rats with the MR agonist aldosterone reproduced the DD noted in ZO rats. In addition, improved cardiac function in ZO-LSp rats was associated with attenuated systemic and adipose inflammation and an anti-inflammatory shift in cardiac immune cell mRNAs. Specifically, LSp increased cardiac markers of alternatively activated macrophages and regulatory T cells. ZO-LSp rats had unchanged blood pressure, serum potassium, systemic insulin sensitivity, or obesity-associated kidney injury, assessed by proteinuria. Taken together, these data demonstrate that MR antagonism effectively treats established obesity-related DD via blood pressure-independent mechanisms. These findings help identify a particular population with DD that might benefit from MR antagonist therapy, specifically patients with obesity and insulin resistance. © 2015 American Heart Association, Inc.

  16. Mechanical loading prevents the stimulating effect of IL-1{beta} on osteocyte-modulated osteoclastogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Rishikesh N.; Bakker, Astrid D.; Everts, Vincent

    Highlights: Black-Right-Pointing-Pointer Osteocyte incubation with IL-1{beta} stimulated osteocyte-modulated osteoclastogenesis. Black-Right-Pointing-Pointer Conditioned medium from IL-1{beta}-treated osteocytes increased osteoclastogenesis. Black-Right-Pointing-Pointer IL-1{beta} upregulated RANKL and downregulated OPG gene expression by osteocytes. Black-Right-Pointing-Pointer CYR61 is upregulated in mechanically stimulated osteocytes. Black-Right-Pointing-Pointer Mechanical loading of osteocytes may abolish IL-1{beta}-induced osteoclastogenesis. -- Abstract: Inflammatory diseases such as rheumatoid arthritis are often accompanied by higher plasma and synovial fluid levels of interleukin-1{beta} (IL-1{beta}), and by increased bone resorption. Since osteocytes are known to regulate bone resorption in response to changes in mechanical stimuli, we investigated whether IL-1{beta} affects osteocyte-modulated osteoclastogenesis in the presence or absence of mechanicalmore » loading of osteocytes. MLO-Y4 osteocytes were pre-incubated with IL-1{beta} (0.1-1 ng/ml) for 24 h. Cells were either or not subjected to mechanical loading by 1 h pulsating fluid flow (PFF; 0.7 {+-} 0.3 Pa, 5 Hz) in the presence of IL-1{beta} (0.1-1 ng/ml). Conditioned medium was collected after 1 h PFF or static cultures. Subsequently mouse bone marrow cells were seeded on top of the IL-1{beta}-treated osteocytes to determine osteoclastogenesis. Conditioned medium from mechanically loaded or static IL-1{beta}-treated osteocytes was added to co-cultures of untreated osteocytes and mouse bone marrow cells. Gene expression of cysteine-rich protein 61 (CYR61/CCN1), receptor activator of nuclear factor kappa-B ligand (RANKL), and osteoprotegerin (OPG) by osteocytes was determined immediately after PFF. Incubation of osteocytes with IL-1{beta}, as well as conditioned medium from static IL-1{beta}-treated osteocytes increased the formation of osteoclasts. However, conditioned medium from mechanically

  17. IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells

    PubMed Central

    Ben-Sasson, Shlomo Z.; Hogg, Alison; Hu-Li, Jane; Wingfield, Paul; Chen, Xi; Crank, Michelle; Caucheteux, Stephane; Ratner-Hurevich, Maya; Berzofsky, Jay A.; Nir-Paz, Ran

    2013-01-01

    Here, we show that interleukin-1 (IL-1) enhances antigen-driven CD8 T cell responses. When administered to recipients of OT-I T cell receptor transgenic CD8 T cells specific for an ovalbumin (OVA) peptide, IL-1 results in an increase in the numbers of wild-type but not IL1R1−/− OT-I cells, particularly in spleen, liver, and lung, upon immunization with OVA and lipopolysaccharide. IL-1 administration also results in an enhancement in the frequency of antigen-specific cells that are granzyme B+, have cytotoxic activity, and/ or produce interferon γ (IFN-γ). Cells primed in the presence of IL-1 display enhanced expression of granzyme B and increased capacity to produce IFN-γ when rechallenged 2 mo after priming. In three in vivo models, IL-1 enhances the protective value of weak immunogens. Thus, IL-1 has a marked enhancing effect on antigen-specific CD8 T cell expansion, differentiation, migration to the periphery, and memory. PMID:23460726

  18. IL-6-Type Cytokine Signaling in Adipocytes Induces Intestinal GLP-1 Secretion.

    PubMed

    Wueest, Stephan; Laesser, Céline I; Böni-Schnetzler, Marianne; Item, Flurin; Lucchini, Fabrizio C; Borsigova, Marcela; Müller, Werner; Donath, Marc Y; Konrad, Daniel

    2018-01-01

    We recently showed that interleukin (IL)-6-type cytokine signaling in adipocytes induces free fatty acid release from visceral adipocytes, thereby promoting obesity-induced hepatic insulin resistance and steatosis. In addition, IL-6-type cytokines may increase the release of leptin from adipocytes and by those means induce glucagon-like peptide 1 (GLP-1) secretion. We thus hypothesized that IL-6-type cytokine signaling in adipocytes may regulate insulin secretion. To this end, mice with adipocyte-specific knockout of gp130, the signal transducer protein of IL-6, were fed a high-fat diet for 12 weeks. Compared with control littermates, knockout mice showed impaired glucose tolerance and circulating leptin, GLP-1, and insulin levels were reduced. In line, leptin release from isolated adipocytes was reduced, and intestinal proprotein convertase subtilisin/kexin type 1 ( Pcsk1 ) expression, the gene encoding PC1/3, which controls GLP-1 production, was decreased in knockout mice. Importantly, treatment with the GLP-1 receptor antagonist exendin 9-39 abolished the observed difference in glucose tolerance between control and knockout mice. Ex vivo, supernatant collected from isolated adipocytes of gp130 knockout mice blunted Pcsk1 expression and GLP-1 release from GLUTag cells. In contrast, glucose- and GLP-1-stimulated insulin secretion was not affected in islets of knockout mice. In conclusion, adipocyte-specific IL-6 signaling induces intestinal GLP-1 release to enhance insulin secretion, thereby counteracting insulin resistance in obesity. © 2017 by the American Diabetes Association.

  19. Sigma Receptor 1 activation attenuates release of inflammatory cytokines MIP1γ, MIP2, MIP3α and IL12 (p40/p70) by retinal Müller glial cells

    PubMed Central

    Shanmugam, A.; Wang, J.; Markand, S.; Perry, R.L.; Tawfik, A.; Zorrilla, E.; Ganapathy, V.; Smith, S.B.

    2015-01-01

    The high affinity Sigma Receptor 1 (σR1) ligand (+)-pentazocine ((+)-PTZ) affords profound retinal neuroprotection in vitro and in vivo by a yet-unknown mechanism. A common feature of retinal disease is Müller cell reactive gliosis, which includes cytokine release. Here we investigated whether LPS stimulates cytokine release by primary mouse Müller cells and whether (+)-PTZ alters release. Using a highly sensitive inflammatory antibody array we observed significant release of macrophage inflammatory proteins (MIP1γ, MIP2, MIP3α) and interleukin-12 (IL12 (p40/p70)) in LPS-treated cells compared to controls, and a significant decrease in secretion upon (+)-PTZ treatment. Müller cells from σR1 knockout mice demonstrated increased MIP1γ, MIP2, MIP3α and IL12 (p40/p70) secretion when exposed to LPS compared to LPS-stimulated WT cells. We investigated whether cytokine secretion was accompanied by cytosolic-to-nuclear NFκB translocation and whether endothelial cell adhesion/migration was altered by released cytokines. Cells exposed to LPS demonstrated increased NFκB nuclear location, which was reduced significantly in (+)-PTZ-treated cells. Media conditioned by LPS-stimulated-Müller cells induced leukocyte-endothelial cell adhesion and endothelial cell migration, which was attenuated by (+)-PTZ treatment. The findings suggest that release of certain inflammatory cytokines by Müller cells can be attenuated by σR1 ligands providing insights into the retinal neuroprotective role of this receptor. PMID:25439327

  20. Conformationally restricted analogs of BD1008 and an antisense oligodeoxynucleotide targeting sigma1 receptors produce anti-cocaine effects in mice.

    PubMed

    Matsumoto, R R; McCracken, K A; Friedman, M J; Pouw, B; De Costa, B R; Bowen, W D

    2001-05-11

    Cocaine's ability to interact with sigma receptors suggests that these proteins mediate some of its behavioral effects. Therefore, three novel sigma receptor ligands with antagonist activity were evaluated in Swiss Webster mice: BD1018 (3S-1-[2-(3,4-dichlorophenyl)ethyl]-1,4-diazabicyclo[4.3.0]nonane), BD1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine), and LR132 (1R,2S-(+)-cis-N-[2-(3,4-dichlorophenyl)ethyl]-2-(1-pyrrolidinyl)cyclohexylamine). Competition binding assays demonstrated that all three compounds have high affinities for sigma1 receptors. The three compounds vary in their affinities for sigma2 receptors and exhibit negligible affinities for dopamine, opioid, GABA(A) and NMDA receptors. In behavioral studies, pre-treatment of mice with BD1018, BD1063, or LR132 significantly attenuated cocaine-induced convulsions and lethality. Moreover, post-treatment with LR132 prevented cocaine-induced lethality in a significant proportion of animals. In contrast to the protection provided by the putative antagonists, the well-characterized sigma receptor agonist di-o-tolylguanidine (DTG) and the novel sigma receptor agonist BD1031 (3R-1-[2-(3,4-dichlorophenyl)ethyl]-1,4-diazabicyclo[4.3.0]nonane) each worsened the behavioral toxicity of cocaine. At doses where alone, they produced no significant effects on locomotion, BD1018, BD1063 and LR132 significantly attenuated the locomotor stimulatory effects of cocaine. To further validate the hypothesis that the anti-cocaine effects of the novel ligands involved antagonism of sigma receptors, an antisense oligodeoxynucleotide against sigma1 receptors was also shown to significantly attenuate the convulsive and locomotor stimulatory effects of cocaine. Together, the data suggests that functional antagonism of sigma receptors is capable of attenuating a number of cocaine-induced behaviors.

  1. Reciprocal Regulation of Substance P and IL-12/IL-23 and the Associated Cytokines, IFNγ/IL-17: A Perspective on the Relevance of This Interaction to Multiple Sclerosis.

    PubMed

    Vilisaar, Janek; Kawabe, Kiyokazu; Braitch, Manjit; Aram, Jehan; Furtun, Yasemin; Fahey, Angela J; Chopra, Mark; Tanasescu, Radu; Tighe, Patrick J; Gran, Bruno; Pothoulakis, Charalabos; Constantinescu, Cris S

    2015-09-01

    The neuropeptide substance P (SP) exhibits cytokine-like properties and exerts different effects in autoimmune inflammation. Various immune cells express SP and its neurokinin-1 receptor (NK1R) isoforms. A role for SP has been demonstrated in a number of autoimmune conditions, including multiple sclerosis (MS). In this work, we studied the role of SP and NK1R in human immune cells with a focus on their relationship with IL-12/IL-23 family cytokines and the associated IFN-γ/IL-17. (1) To determine the role of SP mediated effects on induction of various inflammatory cytokines in peripheral blood mononuclear cells (PBMC); (2) to investigate the expression of SP and its receptor in T cells and the effects of stimulation with IL-12 and IL-23. Quantitative real-time PCR, flow cytometry, ELISA, promoter studies on PBMC and primary T cells from healthy volunteers, and Jurkat cell line. Treatment with SP significantly increased the expression of IL-12/IL-23 subunit p40, IL-23 p19 and IL-12 p35 mRNA in human PBMC. Expression of NK1R and SP in T cells was upregulated by IL-23 but a trend was observed with IL-12. The IL-23 effect likely involves IL-17 production that additionally mediates IL-23 effects. Mutual interactions exist with SP enhancing the cytokines IL-23 and IL-12, and SP and NK1R expression being differentially but potentially synergistically regulated by these cytokines. These findings suggest a proinflammatory role for SP in autoimmune inflammation. We propose a model whereby immunocyte derived SP stimulates Th1 and Th17 autoreactive cells migrating to the central nervous system (CNS), enhances their crossing the blood brain barrier and perpetuates inflammation in the CNS by being released from damaged nerves and activating both resident glia and infiltrating immune cells. SP may be a therapeutic target in MS.

  2. IL-27 induces the production of IgG1 by human B cells.

    PubMed

    Boumendjel, Amel; Tawk, Lina; Malefijt, René de Waal; Boulay, Vera; Yssel, Hans; Pène, Jérôme

    2006-12-01

    It has been reported that IL-27 specifically induces the production of IgG2a by mouse B cells and inhibits IL-4-induced IgG1 synthesis. Here, we show that human naïve cord blood expresses a functional IL-27 receptor, consisting of the TCCR and gp130 subunits, although at lower levels as compared to naïve and memory splenic B cells. IL-27 does not induce proliferative responses and does not increase IgG1 production by CD19(+)CD27(+) memory B cells. However, it induces a low, but significant production of IgG1 by naïve CD19(+)CD27(-)IgD(+)IgG(-) spleen and cord blood B cells, activated via CD40, whereas it has no effect on the production of the other IgG subclasses. In addition, IL-27 induces the differentiation of a population of B cells that express high levels of CD38, in association with a down-regulation of surface IgD expression, and that are surface IgG(+/int), CD20(low), CD27(high), indicating that IL-27 promotes isotype switching and plasma cell differentiation of naive B cells. However, as compared to the effects of IL-21 and IL-10, both switch factors for human IgG1 and IgG3, those of IL-27 are modest and regulate exclusively the production of IgG1. Finally, although IL-27 has no effect on IL-4 and anti-CD40-induced Cepsilon germline promoter activity, it up-regulates IL-4-induced IgE production by naive B cells. These results point to a partial redundancy of switch factors regulating the production of IgG1 in humans, and furthermore indicate the existence of a common regulation of the human IgG1and murine IgG2a isotypes by IL-27.

  3. IL-6 Receptor Isoforms and Ovarian Cancer Progression

    DTIC Science & Technology

    2010-10-01

    carcinoma cell ines, respectively, were obtained from merican Type Culture Collection (Man- ssas, VA). Cells were maintained in Dul- ecco’s Modified...tien IL6R hist stra (ind trans 010L6R. Cross -reactivity between human rican Journal of Obstetrics & Gynecology 1.e3 a o T 5 g m S D w t R T l a 1 c ( m...allele of IL-6ra (Il6rafl/+) were first crossed with FLPe+/+ mice (38) to delete the FRT-flanked Neo cassette in the targeting vector. Progeny with

  4. Pregnancy, but not the allergic status, influences spontaneous and induced interleukin-1beta (IL-1beta), IL-6, IL-10 and IL-12 responses.

    PubMed

    Amoudruz, Petra; Minang, Jacob Taku; Sundström, Yvonne; Nilsson, Caroline; Lilja, Gunnar; Troye-Blomberg, Marita; Sverremark-Ekström, Eva

    2006-09-01

    In this study, we investigated how pregnancy influences cytokine production in response to stimulation of the innate and the adaptive immune system, respectively. Peripheral blood mononuclear cells (PBMCs) from allergic (n = 44) and non-allergic (n = 36) women were collected at three time-points: during the third trimester, at delivery and at a non-pregnant state 2 years after delivery. The production of interleukin-1beta (IL-1beta), IL-6, IL-10 and IL-12 was measured by enzyme-linked immunosorbent assay (ELISA) or enzyme-linked immunospot assay (ELISPOT). The spontaneous cytokine production, and the response following stimulation with agents that primarily activate the adaptive part of the immune system [phytohaemagglutinin (PHA), allergen extracts from cat and birch], or lipopolysaccharide (LPS) that activate innate immunity was measured in vitro. There was a significantly higher spontaneous in vitro production of IL-1beta, IL-6 and IL-10 by PBMCs during pregnancy than 2 years after pregnancy, and this was not affected by the allergic status of the women. Conversely, in PHA-stimulated cell cultures there was a lower production of IL-10 and IL-12 during pregnancy than 2 years after pregnancy. LPS-induced IL-6 levels were significantly lower in PBMCs obtained during pregnancy than at 2 years after pregnancy. In addition, we made the interesting observation that in allergic women total immunoglobulin E (IgE) levels were significantly lower 2 years after pregnancy compared to the levels during pregnancy. Taken together, our results indicate that while atopic allergy in women does not have a substantial effect on cytokine production, pregnancy has an obvious effect on the immune system in terms of cytokine production as well as on the total IgE levels.

  5. Mechanical stress-induced interleukin-1beta expression through adenosine triphosphate/P2X7 receptor activation in human periodontal ligament cells.

    PubMed

    Kanjanamekanant, K; Luckprom, P; Pavasant, P

    2013-04-01

    Mechanical stress is an important factor in maintaining homeostasis of the periodontium. Interleukin-1beta (IL-1β) and adenosine triphosphate (ATP) are considered potent inflammatory mediators. In macrophages, ATP-activated P2X7 receptor is involved in IL-1β processing and release. Our previous works demonstrated mechanical stress-induced expression of osteopontin and RANKL through the ATP/P2Y1 receptor in human periodontal ligament (HPDL) cells. This study was designed to examine the effect of mechanical stress on IL-1β expression in HPDL cells, as well as the mechanism and involvement of ATP and the P2 purinergic receptor. Cultured HPDL cells were treated with continuous compressive loading. IL-1β expression was analyzed at both mRNA and protein levels, using RT-PCR and ELISA, respectively. Cell viability was examined using the MTT assay. ATP was also used to stimulate HPDL cells. Inhibitors, antagonists and the small interfering RNA (siRNA) technique were used to investigate the role of ATP and the specific P2 subtypes responsible for IL-1β induction along with the intracellular mechanism. Mechanical stress could up-regulate IL-1β expression through the release of ATP in HPDL cells. ATP alone was also capable of increasing IL-1β expression. The induction of IL-1β was markedly inhibited by inhibitors and by siRNA targeting the P2X7 receptor. ATP-stimulated IL-1β expression was also diminished by intracellular calcium inhibitors. Our work clearly indicates the capability of HPDL cells to respond directly to mechanical stimulation. The results signified the important roles of ATP/P2 purinergic receptors, as well as intracellular calcium signaling, in mechanical stress-induced inflammation via up-regulation of the proinflammatory cytokine, IL-1β, in HPDL cells. © 2012 John Wiley & Sons A/S.

  6. IL-17 Promotes Angiogenic Factors IL-6, IL-8, and Vegf Production via Stat1 in Lung Adenocarcinoma.

    PubMed

    Huang, Qi; Duan, Limin; Qian, Xin; Fan, Jinshuo; Lv, Zhilei; Zhang, Xiuxiu; Han, Jieli; Wu, Feng; Guo, Mengfei; Hu, Guorong; Du, Jiao; Chen, Caiyun; Jin, Yang

    2016-11-07

    Inflammation and angiogenesis are two hallmarks of carcinoma. The proinflammatory cytokine interleukin-17 (IL-17) facilitates angiogenesis in lung cancer; however, the underlying mechanism is not fully understood. In this study, tumour microvessel density (MVD) was positively associated with IL-17, interleukin-6 (IL-6), interleukin-8 (IL-8), and vascular endothelial cell growth factor (VEGF) expression in human lung adenocarcinoma tissues, and it was increased in tumour tissues of A549-IL-17 cell-bearing nude mice. Importantly, positive correlations were also detected between IL-17 expression and IL-6, IL-8 and VEGF expression in human lung adenocarcinoma tissues. Furthermore, IL-6, IL-8 and VEGF production, as well as STAT1 phosphorylation, were increased in tumour tissues of A549-IL-17 cell-bearing nude mice in vivo and in A549 and H292 cells following IL-17 stimulation in vitro. In addition, STAT1 knockdown using an inhibitor and siRNA attenuated the IL-17-mediated increases in IL-6, IL-8 and VEGF expression in A549 and H292 cells. In conclusion, IL-17 may promote the production of the angiogenic inducers IL-6, IL-8 and VEGF via STAT1 signalling in lung adenocarcinoma.

  7. STAT1 is Constitutively Activated in the T/C28a2 Immortalized Juvenile Human Chondrocyte Line and Stimulated by IL-6 Plus Soluble IL-6R.

    PubMed

    Meszaros, Evan C; Malemud, Charles J

    2015-04-01

    T/C28a2 immortalized juvenile human chondrocytes were employed to determine the extent to which activation of Signal Transducers and Activators of Transcription-1 (STAT1) occurred in response to recombinant human interleukin-6 (rhIL-6) or rhIL-6 in combination with the soluble IL-6 receptor (sIL-6R). Two forms of STAT1, STAT1A and STAT1B, were identified on SDS-PAGE and western blotting with anti-STAT1 antibody. Western blotting revealed that STAT1 was constitutively phosphorylated (p-STAT1). Although incubation of T/C28a2 chondrocytes with rhIL-6 (50 ng/ml) increased p-STAT1A by Δ=22.3% after 30 min, this percent difference failed to reach significance by Chi-square analysis. Similarly, no effect of rhIL-6 (Δ=+10.7%) on p-STAT1B was seen at 30 min. In contrast, although the combination of rhIL-6 plus sIL-6R had no effect on p-STAT1A, rhIL-6 plus sIL-6R increased p-STAT1B by Δ=73.3% (p<0.0001) after 30 min compared to the control group and by Δ=56.7% (p<0.0001) compared to rhIL-6 alone. Janex-1, a Janus kinase-3-specific inhibitor (100 μM) partially reduced the effect of rhIL-6 on p-STAT1B by Δ=27.7% (p<0.05). The results of this study showed that STAT1A/STAT1B was constitutively activated in T/C28a2 chondrocytes. Although rhIL-6 increased p-STAT1B to a small extent, the combination of rhIL-6 plus sIL-6R was far more effective in stimulating STAT1B phosphorylation compared to controls or rhIL-6 alone. These data support the likelihood that although JAK3-mediated activation of STAT1 in T/C28a2 chondrocytes may involve the IL-6/IL-6R/gp130 pathway, these results indicated that STAT1 activation in response to IL-6 preferentially involved IL-6 trans -signaling via sIL-6R.

  8. IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells

    PubMed Central

    Neeb, Lars; Hellen, Peter; Boehnke, Carsten; Hoffmann, Jan; Schuh-Hofer, Sigrid; Dirnagl, Ulrich; Reuter, Uwe

    2011-01-01

    Objective Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified. Methods and Results 1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE2) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE2 and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect. Conclusion We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE2 (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The

  9. Development of an interleukin (IL)-33 sandwich ELISA kit specific for mature IL-33.

    PubMed

    Kim, Eunsom; Kwak, Areum; Jhun, Hyunjhung; Lee, Siyoung; Jo, Seunghyun; Lee, Jongho; Kang, Tae-Bong; Her, Erk; Bae, Suyoung; Lee, Youngmin; Kim, Soohyun

    2016-01-01

    Interleukin (IL)-33 is an inflammatory cytokine and belongs to the IL-1 family of cytokines. There are eleven members of the IL-1 family of cytokines and all have important roles in host defense against infections. Their levels are increased during infection and in various auto-inflammatory diseases. IL-33 is also associated with autoimmune diseases such as asthma, atopic dermatitis, rheumatoid arthritis, and atherosclerosis. IL-33 receptors consist of IL-1R4 and IL-1R3 to induce both Th1 and Th2 type immune response. Here we present the development of monoclonal antibodies (mAbs) against human mature IL-33. Recombinant human mature IL-33 protein was expressed in E. coli and purified by multi-step affinity chromatography. The human IL-33 activity was examined in HMC-1 and Raw 264.7 cells. Mice were immunized with the biologically active mature IL-33 to generate mAb against IL-33. The anti-IL-33 mAb (clone/4) was used as a capture antibody for a sandwich enzyme-linked immunosorbent assay (ELISA). This assay detects mature IL-33 with a high sensitivity (80 pg/mL) but does not recognize the biologically inactive precursor IL-33. This article describes the methods for a newly developed IL-33 ELISA kit that is specific for mature IL-33 and may be used to analyze bioactive mature IL-33 in various immunological diseases.

  10. Susceptibility to mycobacterial disease due to mutations in IL-12Rβ1 in three Iranian patients.

    PubMed

    Alinejad Dizaj, Maryam; Mortaz, Esmaeil; Mahdaviani, Seyed Alireza; Mansouri, Davood; Mehrian, Payam; Verhard, Els M; Varahram, Mohammad; Babaie, Delara; Adcock, Ian M; Garssen, Johan; van de Vosse, Esther; Velayati, Aliakbar

    2018-06-01

    In the last decade, autosomal recessive interleukin-12 receptor β1 (IL-12Rβ1) deficiency, the most common cause of Mendelian susceptibility to mycobacterial disease (MSMD), has been diagnosed in a few children and adults with severe tuberculosis in Iran. Here, we report three cases referred to the Immunology, Asthma and Allergy ward at the National Research Institute of Tuberculosis and Lung Diseases (NRITLD) at Masih Daneshvari Hospital from 2012 to 2017 with Mycobacterium tuberculosis and non-tuberculous mycobacteria infections due to defects in IL-12Rβ1 but with different clinical manifestations. All three were homozygous for either an IL-12Rβ1 missense or nonsense mutation that caused the IL-12Rβ1 protein not to be expressed on the cell membrane and completely abolished the cellular response to recombinant IL-12. Our findings suggest that the presence of IL-12Rβ1 deficiency should be determined in children with mycobacterial infections at least in countries with a high prevalence of parental consanguinity and in areas endemic for TB like Iran.

  11. TLR3 mediates release of IL-1β and cell death in keratinocytes in a caspase-4 dependent manner.

    PubMed

    Grimstad, Øystein; Husebye, Harald; Espevik, Terje

    2013-10-01

    Inflammation and timely cell death are important elements in host defence and healing processes. Keratinocytes express high levels of Toll-like receptor 3 (TLR3), and stimulation of the receptor with its ligand polyinosinic-polycytidylic acid (polyI:C) is a powerful signal for release of a variety of proinflammatory cytokines. Caspase-4 is required for maturation of pro-IL-1β through activation of caspase-1 in keratinocytes. TLR3 in keratinocytes was stimulated with polyI:C. Induction of messenger RNA of pro-IL-1β and inflammasomal components was measured using quantitative polymerase chain reaction methodology. Protein expression of IL-1β was analysed with ELISA and Western blot techniques. Activation of apoptotic caspases was measured with flow cytometry, and cytotoxicity was determined. TLR3 induced release of substantial amounts of pro-IL-1β in keratinocytes. NLRP3 or ASC dependent processing of IL-1β into its cleaved bioactive form was found to be minimal. The release of IL-1β was due to polyI:C induced cell death that occurred through a caspase-4 dependent manner. Caspase-1 did not seem to be involved in the polyI:C induced cytotoxicity despite that TLR3 stimulation induced activation of caspase-1. In addition, the apoptotic caspases -8, -9 and -3/7 were activated by polyI:C. TLR3 stimulation in keratinocytes induces a caspase-4 dependent release of pro-IL-1β, but further processing to active IL-1β is limited. Furthermore, TLR3 stimulation results in pyroptotic- and apoptotic cell death. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Development of regulatory T cells requires IL-7Rα stimulation by IL-7 or TSLP

    PubMed Central

    Mazzucchelli, Renata; Hixon, Julie A.; Spolski, Rosanne; Chen, Xin; Li, Wen Qing; Hall, Veronica L.; Willette-Brown, Jami; Hurwitz, Arthur A.; Leonard, Warren J.

    2008-01-01

    Interleukin-7 (IL-7), a cytokine produced by stromal cells, is required for thymic development and peripheral homeostasis of most major subsets of T cells. We examined whether regulatory T (Treg) cells also required the IL-7 pathway by analyzing IL-7Rα−/− mice. We observed a striking reduction in cells with the Treg surface phenotype (CD4, CD25, GITR (glucocorticoid-induced tumor necrosis factor [TNF]-like receptor), CD45RB, CD62L, CD103) or intracellular markers (cytotoxic T-lymphocyte–associated antigen-4, CTLA-4, and forkhead box transcription factor 3, Foxp3). Foxp3 transcripts were virtually absent in IL-7Rα−/− lymphoid tissues, and no Treg cell suppressive activity could be detected. There are 2 known ligands for IL-7Rα: IL-7 itself and thymic stromal lymphopoietin (TSLP). Surprisingly, mice deficient in IL-7 or the other chain of the TSLP receptor (TSLPR) developed relatively normal numbers of Treg cells. Combined deletion of IL-7 and TSLP receptor greatly reduced Treg cell development in the thymus but was not required for survival of mature peripheral Treg cells. We conclude that Treg cells, like other T cells, require signals from the IL-7 receptor, but unlike other T cells, do not require IL-7 itself because of at least partially overlapping actions of IL-7 and TSLP for development of Treg cells. PMID:18664628

  13. Antagonism of corticotropin-releasing factor CRF1 receptors blocks the enhanced response to cocaine after social stress.

    PubMed

    Ferrer-Pérez, Carmen; Reguilón, Marina D; Manzanedo, Carmen; Aguilar, M Asunción; Miñarro, José; Rodríguez-Arias, Marta

    2018-03-15

    Numerous studies have shown that social defeat stress induces an increase in the rewarding effects of cocaine. In this study we have investigated the role played by the main hypothalamic stress hormone, corticotropin-releasing factor (CRF), in the effects that repeated social defeat (RSD) induces in the conditioned rewarding effects and locomotor sensitization induced by cocaine. A total of 220 OF1 mice were divided into experimental groups according to the treatment received before each social defeat: saline, 5 or 10 mg/kg of the nonpeptidic corticotropin-releasing factor CRF 1 receptor antagonist CP-154,526, or 15 or 30 µg/kg of the peptidic corticotropin-releasing factor CRF 2 receptor antagonist Astressin 2 -B. Three weeks after the last defeat, conditioned place preference (CPP) induced by 1 mg/kg of cocaine was evaluated. Motor response to 10 mg/kg of cocaine was also studied after a sensitization induction. Blockade of corticotropin-releasing factor CRF 1 receptor reversed the increase in cocaine CPP induced by social defeat. Conversely, peripheral corticotropin-releasing factor CRF 2 receptor blockade produced similar effects to those observed in socially stressed animals. The effect of RSD on cocaine sensitization was again blocked by the corticotropin-releasing factor CRF 1 receptor antagonist, while peripheral CRF 2 receptor antagonist did not show effect. Acute administration of Astressin 2 -B induced an anxiogenic response. Our results confirm that CRF modulates the effects of social stress on reinforcement and sensitization induced by cocaine in contrasting ways. These findings highlight CRF receptors as potential therapeutic targets to be explored by research about stress-related addiction problems. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Epiregulin (EREG) is upregulated through an IL-1β autocrine loop in Caco-2 epithelial cells with reduced CFTR function.

    PubMed

    Massip-Copiz, Macarena; Clauzure, Mariángeles; Valdivieso, Ángel G; Santa-Coloma, Tomás A

    2018-03-01

    CFTR is a cAMP-regulated chloride channel, whose mutations produce cystic fibrosis. The impairment of CFTR activity increases the intracellular Cl - concentration, which in turn produces an increased interleukin-1β (IL-1β) secretion. The secreted IL-1β then induces an autocrine positive feedback loop, further stimulating IL-1β priming and secretion. Since IL-1β can transactivate the epidermal growth factor receptor (EGFR), we study here the levels of expression for different EGFR ligands in Caco-2/pRS26 cells (expressing shRNA against CFTR resulting in a reduced CFTR expression and activity). The epiregulin (EREG), amphiregulin (AREG), and heparin binding EGF like growth factor (HBEGF) mRNAs, were found overexpressed in Caco-2/pRS26 cells. The EREG mRNA had the highest differential expression and was further characterized. In agreement with its mRNA levels, Western blots (WB) showed increased EREG levels in CFTR-impaired cells. In addition, EREG mRNA and protein levels were stimulated by incubation with exogenous IL-1β and inhibited by the Interleukin 1 receptor type I (IL1R1) antagonist IL1RN, suggesting that the overexpression of EREG is a consequence of the autocrine IL-1β loop previously described for these cells. In addition, the JNK inhibitor SP600125, and the EGFR inhibitors AG1478 and PD168393, also had an inhibitory effect on EREG expression, suggesting that EGFR, activated in Caco-2/pRS26 cells, is involved in the observed EREG upregulation. In conclusion, in Caco-2 CFTR-shRNA cells, the EGFR ligand EREG is overexpressed due to an active IL-1β autocrine loop that indirectly activates EGFR, constituting new signaling effectors for the CFTR signaling pathway, downstream of CFTR, Cl - , and IL-1β. © 2017 Wiley Periodicals, Inc.

  15. Enforced IL-10 Expression Confers Type 1 Regulatory T Cell (Tr1) Phenotype and Function to Human CD4+ T Cells

    PubMed Central

    Andolfi, Grazia; Fousteri, Georgia; Rossetti, Maura; Magnani, Chiara F; Jofra, Tatiana; Locafaro, Grazia; Bondanza, Attilio; Gregori, Silvia; Roncarolo, Maria-Grazia

    2012-01-01

    Type 1 regulatory T (Tr1) cells are an inducible subset of CD4+ Tr cells characterized by high levels of interleukin (IL)-10 production and regulatory properties. Several protocols to generate human Tr1 cells have been developed in vitro. However, the resulting population includes a significant fraction of contaminating non-Tr1 cells, representing a major bottleneck for clinical application of Tr1 cell therapy. We generated an homogeneous IL-10–producing Tr1 cell population by transducing human CD4+ T cells with a bidirectional lentiviral vector (LV) encoding for human IL-10 and the marker gene, green fluorescent protein (GFP), which are independently coexpressed. The resulting GFP+ LV-IL-10–transduced human CD4+ T (CD4LV-IL-10) cells expressed, upon T-cell receptor (TCR) activation, high levels of IL-10 and concomitant low levels of IL-4, and markers associated with IL-10. Moreover, CD4LV-IL-10 T cells displayed typical Tr1 features: the anergic phenotype, the IL-10, and transforming growth factor (TGF)-β dependent suppression of allogeneic T-cell responses, and the ability to suppress in a cell-to-cell contact independent manner in vitro. CD4LV-IL-10 T cells were able to control xeno graft-versus-host disease (GvHD), demonstrating their suppressive function in vivo. These results show that constitutive over-expression of IL-10 in human CD4+ T cells leads to a stable cell population that recapitulates the phenotype and function of Tr1 cells. PMID:22692497

  16. Exploring new scaffolds for angiotensin II receptor antagonism.

    PubMed

    Kritsi, Eftichia; Matsoukas, Minos-Timotheos; Potamitis, Constantinos; Karageorgos, Vlasios; Detsi, Anastasia; Magafa, Vasilliki; Liapakis, George; Mavromoustakos, Thomas; Zoumpoulakis, Panagiotis

    2016-09-15

    Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa.

    PubMed

    Altmeier, Simon; Toska, Albulena; Sparber, Florian; Teijeira, Alvaro; Halin, Cornelia; LeibundGut-Landmann, Salomé

    2016-09-01

    Mucosal infections with Candida albicans belong to the most frequent forms of fungal diseases. Host protection is conferred by cellular immunity; however, the induction of antifungal immunity is not well understood. Using a mouse model of oropharyngeal candidiasis (OPC) we show that interleukin-1 receptor (IL-1R) signaling is critical for fungal control at the onset of infection through its impact on neutrophils at two levels. We demonstrate that both the recruitment of circulating neutrophils to the site of infection and the mobilization of newly generated neutrophils from the bone marrow depended on IL-1R. Consistently, IL-1R-deficient mice displayed impaired chemokine production at the site of infection and defective secretion of granulocyte colony-stimulating factor (G-CSF) in the circulation in response to C. albicans. Strikingly, endothelial cells were identified as the primary cellular source of G-CSF during OPC, which responded to IL-1α that was released from keratinocytes in the infected tissue. The IL-1-dependent crosstalk between two different cellular subsets of the nonhematopoietic compartment was confirmed in vitro using a novel murine tongue-derived keratinocyte cell line and an established endothelial cell line. These data establish a new link between IL-1 and granulopoiesis in the context of fungal infection. Together, we identified two complementary mechanisms coordinating the neutrophil response in the oral mucosa, which is critical for preventing fungal growth and dissemination, and thus protects the host from disease.

  18. Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer.

    PubMed

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Ferré, Sergi

    2014-10-01

    The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists. U.S. Government work not protected by U.S. copyright.

  19. IL-1β Signaling Promotes CNS-Intrinsic Immune Control of West Nile Virus Infection

    PubMed Central

    Ramos, Hilario J.; Lanteri, Marion C.; Blahnik, Gabriele; Negash, Amina; Suthar, Mehul S.; Brassil, Margaret M.; Sodhi, Khushbu; Treuting, Piper M.; Busch, Michael P.; Norris, Philip J.; Gale, Michael

    2012-01-01

    West Nile virus (WNV) is an emerging flavivirus capable of infecting the central nervous system (CNS) and mediating neuronal cell death and tissue destruction. The processes that promote inflammation and encephalitis within the CNS are important for control of WNV disease but, how inflammatory signaling pathways operate to control CNS infection is not defined. Here, we identify IL-1β signaling and the NLRP3 inflammasome as key host restriction factors involved in viral control and CNS disease associated with WNV infection. Individuals presenting with acute WNV infection displayed elevated levels of IL-1β in their plasma over the course of infection, suggesting a role for IL-1β in WNV immunity. Indeed, we found that in a mouse model of infection, WNV induced the acute production of IL-1β in vivo, and that animals lacking the IL-1 receptor or components involved in inflammasome signaling complex exhibited increased susceptibility to WNV pathogenesis. This outcome associated with increased accumulation of virus within the CNS but not peripheral tissues and was further associated with altered kinetics and magnitude of inflammation, reduced quality of the effector CD8+ T cell response and reduced anti-viral activity within the CNS. Importantly, we found that WNV infection triggers production of IL-1β from cortical neurons. Furthermore, we found that IL-1β signaling synergizes with type I IFN to suppress WNV replication in neurons, thus implicating antiviral activity of IL-1β within neurons and control of virus replication within the CNS. Our studies thus define the NLRP3 inflammasome pathway and IL-1β signaling as key features controlling WNV infection and immunity in the CNS, and reveal a novel role for IL-1β in antiviral action that restricts virus replication in neurons. PMID:23209411

  20. IL-1α/IL-1R1 Expression in Chronic Obstructive Pulmonary Disease and Mechanistic Relevance to Smoke-Induced Neutrophilia in Mice

    PubMed Central

    Finch, Donna; Nikota, Jake K.; Zavitz, Caleb C. J.; Kelly, Ashling; Lambert, Kristen N.; Piper, Sian; Foster, Martyn L.; Goldring, James J. P.; Wedzicha, Jadwiga A.; Bassett, Jennifer; Bramson, Jonathan; Iwakura, Yoichiro; Sleeman, Matthew; Kolbeck, Roland; Coyle, Anthony J.; Humbles, Alison A.; Stämpfli, Martin R.

    2011-01-01

    Background Cigarette smoking is the main risk factor for the development of chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide. Despite this, the cellular and molecular mechanisms that contribute to COPD pathogenesis are still poorly understood. Methodology and Principal Findings The objective of this study was to assess IL-1 α and β expression in COPD patients and to investigate their respective roles in perpetuating cigarette smoke-induced inflammation. Functional studies were pursued in smoke-exposed mice using gene-deficient animals, as well as blocking antibodies for IL-1α and β. Here, we demonstrate an underappreciated role for IL-1α expression in COPD. While a strong correlation existed between IL-1α and β levels in patients during stable disease and periods of exacerbation, neutrophilic inflammation was shown to be IL-1α-dependent, and IL-1β- and caspase-1-independent in a murine model of cigarette smoke exposure. As IL-1α was predominantly expressed by hematopoietic cells in COPD patients and in mice exposed to cigarette smoke, studies pursued in bone marrow chimeric mice demonstrated that the crosstalk between IL-1α+ hematopoietic cells and the IL-1R1+ epithelial cells regulates smoke-induced inflammation. IL-1α/IL-1R1-dependent activation of the airway epithelium also led to exacerbated inflammatory responses in H1N1 influenza virus infected smoke-exposed mice, a previously reported model of COPD exacerbation. Conclusions and Significance This study provides compelling evidence that IL-1α is central to the initiation of smoke-induced neutrophilic inflammation and suggests that IL-1α/IL-1R1 targeted therapies may be relevant for limiting inflammation and exacerbations in COPD. PMID:22163019

  1. In-vivo extravasation induces the expression of interleukin 1 receptor type 1 in human neutrophils

    PubMed Central

    Paulsson, J M; Moshfegh, A; Dadfar, E; Held, C; Jacobson, S H; Lundahl, J

    2012-01-01

    In order to address neutrophil activation during inflammation we assessed the expression of interleukin 1 receptor type 1 (IL-1R1) following in-vivo extravasation. Extravasated neutrophils were collected from 11 healthy study subjects by a skin chamber technique and compared to neutrophils in peripheral blood. Expression of IL-1R1 was assessed by microarray, quantitative polymerase chain reaction (qPCR), Western blot, flow cytometry, enzyme linked immunosorbent assay (ELISA) and immunoelectron microscopy (iEM). IL-1R1 was induced following extravasation, demonstrated by both gene array and qPCR. Western blot demonstrated an increased expression of IL-1R1 in extravasated leucocytes. This was confirmed further in neutrophils by flow cytometry and iEM that also demonstrated an increased intracellular pool of IL-1R1 that could be mobilized by N-formyl-methionine-leucine-phenylalanine (fMLP). Stimulation of peripheral neutrophils with IL-1 resulted in transcription of NFκB and a number of downstream chemokines and the corresponding chemokines were also induced following in-vivo extravasation. The present results demonstrate that IL-1R1 is induced following extravasation and exists on the neutrophil surface, as well as in a mobile intracellular pool. Furthermore, neutrophils express functional IL-1R1 as demonstrated by the induction of chemokines following IL-1 stimulation. The results indicate a potential role for IL-1 in the activation of neutrophils at inflammatory sites. PMID:22385245

  2. The upregulation of specific interleukin (IL) receptor antagonists and paradoxical enhancement of neuronal apoptosis due to electrode induced strain and brain micromotion.

    PubMed

    Karumbaiah, Lohitash; Norman, Sharon E; Rajan, Nithish B; Anand, Sanjay; Saxena, Tarun; Betancur, Martha; Patkar, Radhika; Bellamkonda, Ravi V

    2012-09-01

    The high mechanical mismatch between stiffness of silicon and metal microelectrodes and soft cortical tissue, induces strain at the neural interface which likely contributes to failure of the neural interface. However, little is known about the molecular outcomes of electrode induced low-magnitude strain (1-5%) on primary astrocytes, microglia and neurons. In this study we simulated brain micromotion at the electrode-brain interface by subjecting astrocytes, microglia and primary cortical neurons to low-magnitude cyclical strain using a biaxial stretch device, and investigated the molecular outcomes of induced strain in vitro. In addition, we explored the functional consequence of astrocytic and microglial strain on neural health, when they are themselves subjected to strain. Quantitative real-time PCR array (qRT-PCR Array) analysis of stretched astrocytes and microglia showed strain specific upregulation of an Interleukin receptor antagonist - IL-36Ra (previously IL-1F5), to ≈ 1018 and ≈ 236 fold respectively. Further, IL-36Ra gene expression remained unchanged in astrocytes and microglia treated with bacterial lipopolysaccharide (LPS) indicating that the observed upregulation in stretched astrocytes and microglia is potentially strain specific. Zymogram and western blot analysis revealed that mechanically strained astrocytes and microglia upregulated matrix metalloproteinases (MMPs) 2 and 9, and other markers of reactive gliosis such as glial fibrillary acidic protein (GFAP) and neurocan when compared to controls. Primary cortical neurons when stretched with and without IL-36Ra, showed a ≈ 400 fold downregulation of tumor necrosis factor receptor superfamily, member 11b (TNFRSF11b). Significant upregulation of members of the caspase cysteine proteinase family and other pro-apoptotic genes was also observed in the presence of IL-36Ra than in the absence of IL-36Ra. Adult rats when implanted with microwire electrodes showed upregulation of IL-36Ra (≈ 20

  3. Ephrinb1 and Ephrinb2 Are Associated with Interleukin-7 Receptor α and Retard Its Internalization from the Cell Surface*

    PubMed Central

    Luo, Hongyu; Wu, Zenghui; Qi, Shijie; Jin, Wei; Han, Bing; Wu, Jiangping

    2011-01-01

    IL-7 plays vital roles in thymocyte development, T cell homeostasis, and the survival of these cells. IL-7 receptor α (IL-7Rα) on thymocytes and T cells is rapidly internalized upon IL-7 ligation. Ephrins (Efns) are cell surface molecules and ligands of the largest receptor kinase family, Eph kinases. We discovered that T cell-specific double gene knock-out (dKO) of Efnb1 and Efnb2 in mice led to reduced IL-7Rα expression in thymocytes and T cells, and that IL-7Rα down-regulation was accelerated in dKO CD4 cells upon IL-7 treatment. On the other hand, Efnb1 and Efnb2 overexpression on T cell lymphoma EL4 cells retarded IL-7Rα down-regulation. dKO T cells manifested compromised STAT5 activation and homeostatic proliferation, an IL-7-dependent process. Fluorescence resonance energy transfer and immunoprecipitation demonstrated that Efnb1 and Efnb2 interacted physically with IL-7Rα. Such interaction likely retarded IL-7Rα internalization, as Efnb1 and Efnb2 were not internalized. Therefore, we revealed a novel function of Efnb1 and Efnb2 in stabilizing IL-7Rα expression at the post-translational level, and a previously unknown modus operandi of Efnbs in the regulation of expression of other vital cell surface receptors. PMID:22069310

  4. Vehicular exhaust particles promote allergic airway inflammation through an aryl hydrocarbon receptor-notch signaling cascade.

    PubMed

    Xia, Mingcan; Viera-Hutchins, Loida; Garcia-Lloret, Maria; Noval Rivas, Magali; Wise, Petra; McGhee, Sean A; Chatila, Zena K; Daher, Nancy; Sioutas, Constantinos; Chatila, Talal A

    2015-08-01

    Traffic-related particulate matter (PM) has been linked to a heightened incidence of asthma and allergic diseases. However, the molecular mechanisms by which PM exposure promotes allergic diseases remain elusive. We sought to determine the expression, function, and regulation of pathways involved in promotion of allergic airway inflammation by PM. We used gene expression transcriptional profiling, in vitro culture assays, and in vivo murine models of allergic airway inflammation. We identified components of the Notch pathway, most notably Jagged 1 (Jag1), as targets of PM induction in human monocytes and murine dendritic cells. PM, especially ultrafine particles, upregulated TH cytokine levels, IgE production, and allergic airway inflammation in mice in a Jag1- and Notch-dependent manner, especially in the context of the proasthmatic IL-4 receptor allele Il4raR576. PM-induced Jag1 expression was mediated by the aryl hydrocarbon receptor (AhR), which bound to and activated AhR response elements in the Jag1 promoter. Pharmacologic antagonism of AhR or its lineage-specific deletion in CD11c(+) cells abrogated the augmentation of airway inflammation by PM. PM activates an AhR-Jag1-Notch cascade to promote allergic airway inflammation in concert with proasthmatic alleles. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  5. Mineralocorticoid Receptor Antagonism Prevents Obesity-Induced Cerebral Artery Remodeling and Reduces White Matter Injury in rats.

    PubMed

    Pires, Paulo Wagner; McClain, Jonathon Lee; Hayoz, Sebastian F; Dorrance, Anne McLaren

    2018-05-14

    Midlife obesity is a risk factor for dementia development. Obesity has also been linked to hyperaldosteronism, and this can be modeled in rats by high fat (HF) feeding from weaning. Aldosterone, or activation of the mineralocorticoid receptor (MR) causes cerebrovascular injury in lean hypertensive rats. We hypothesized that rats fed a HF diet would show inward middle cerebral artery (MCA) remodeling that could be prevented by MR antagonism. We further proposed that the cerebral artery remodeling would be associated with white mater injury. Three-week-old male Sprague-Dawley rats were fed a HF diet ± the MR antagonist canrenoic acid (Canr) for 17 weeks. Control rats received normal chow (Control NC). MCA structure was assessed by pressure myography. The MCAs from HF fed rats had smaller lumens and thicker walls when compared to arteries from Control NC rats; Canr prevented the MCA remodeling associated with HF feeding. HF feeding increased the mRNA expression of markers of cell proliferation and vascular inflammation in cerebral arteries and Canr treatment prevented this. White mater injury was increased in the rats fed the HF diet and this was reduced by Canr treatment. The expression of doublecortin, a marker of new and immature neurons was reduced in HF fed rats, and MR antagonism normalized this. These data suggest that HF feeding leads to MR dependent remodeling of the MCA and this is associated with markers of dementia development. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Actions of 3-[2′-phosphonomethyl[1,1′-biphenyl]-3-yl]alanine (PMBA) on cloned glycine receptors

    PubMed Central

    Hosie, Alastair M; Akagi, Hiroyuki; Ishida, Michiko; Shinozaki, Haruhiko

    1999-01-01

    PMBA is a novel antagonist of strychnine-sensitive glycine receptors in the rat spinal cord, however, its mode of action is unknown. The actions of PMBA on rat glycine receptor α1 and α2 homomers in Xenopus oocytes were studied under two-electrode voltage-clamp. Co-application of PMBA and glycine to both α1 and α2 homomers yielded inward currents which decayed to a steady-state. Responses rose slowly to the same steady-state amplitude following a 2 min pre-incubation in PMBA. Strychnine, but not picrotoxinin, showed similar antagonism to PMBA. The potency of PMBA was independent of membrane potential between −100 and 0 mV. When tested against EC50 concentrations of glycine, PMBA was almost equally potent on α1 (IC50, 406±41 nM: Hill coefficient, 1.5±0.2) and α2 (IC50, 539±56 nM; Hill coefficient, 1.4±0.2) homomers. PMBA (1–10 μM) and strychnine (200 nM) reduced the potency of glycine and the amplitude of the maximal agonist response of α1 and α2 homomers. In 10 μM PMBA, two distinct classes of glycine response were observed on α2, only a single class of responses were observed on α1. There are similarities in PMBA and strychnine antagonism, although these compounds are structurally distinct. The possibility that PMBA interacts at two binding sites which differ in α1 and α2 subunits is discussed. PMBA may provide a lead structure for novel antagonists with which to investigate structural differences in glycine receptor at α1 and α2 subunits. PMID:10205013

  7. Decreased concentrations of soluble interleukin-1 receptor accessory protein levels in the peritoneal fluid of women with endometriosis.

    PubMed

    Michaud, Nadège; Al-Akoum, Mahéra; Gagnon, Geneviève; Girard, Karine; Blanchet, Pierre; Rousseau, Julie Anne; Akoum, Ali

    2011-12-01

    Interleukin 1 (IL1) may play an important role in endometriosis-associated pelvic inflammation, and natural specific inhibitors, including soluble IL1 receptor accessory protein (sIL1RAcP) and soluble IL1 receptor type 2 (sIL1R2), are critical for counterbalancing the pleiotropic effects of IL1. The objective of this study was to evaluate the levels of sIL1RAcP, together with those of sIL1R2 and IL1β, in the peritoneal fluid of women with and without endometriosis. Peritoneal fluid samples were obtained at laparoscopy and assessed by ELISA. sIL1RAcP concentrations were reduced in endometriosis stages I-II and III-IV. sIL1R2 concentrations were decreased, and those of IL1β were significantly increased in endometriosis stages I-II. sIL1RAcP and sIL1R2 concentrations were significantly decreased in the secretory phase of the menstrual cycle, and IL1β concentrations were elevated in the proliferative and the secretory phases. sIL1RAcP and sIL1R2 concentrations were reduced in women with endometriosis who were infertile, fertile, suffering from pelvic pain or pain-free. However, IL1β concentrations were significantly reduced in women with endometriosis who were infertile or had pelvic pain. These changes may exacerbate the local peritoneal inflammatory reaction observed in women with endometriosis and contribute to endometriosis pathophysiology and the major symptoms of this disease. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Mineralocorticoid receptor antagonism protects the aorta from vascular smooth muscle cell proliferation and collagen deposition in a rat model of adrenal aldosterone-producing adenoma.

    PubMed

    Yan, Yongji; Wang, Chao; Lu, Yiqin; Gong, Huijie; Wu, Zhun; Ma, Xin; Li, Hongzhao; Wang, Baojun; Zhang, Xu

    2018-02-01

    The number of patients with adrenal aldosterone-producing adenomas (APAs) has gradually increased. However, even after adenoma resection, some patients still suffer from high systolic blood pressure (SBP), which is possibly due to great arterial remodeling. Moreover, mineralocorticoid receptors (MRs) were found to be expressed in vascular smooth muscle cells (VSMCs). This study aims to determine whether MR antagonism protects the aorta from aldosterone-induced aortic remolding. Male rats were subcutaneously implanted with an osmotic minipumps and randomly divided into four groups: control; aldosterone (1 μg/h); aldosterone plus a specific MR antagonist, eplerenone (100 mg/kg/day); and aldosterone plus a vasodilator, hydralazine (25 mg/kg/day). After 8 weeks of infusion, aortic smooth muscle cell proliferation and collagen deposition, as well as the MDM2 and TGF-β1 expression levels in the aorta, were examined. Model rats with APAs were successfully constructed. Compared with the control rats, the model rats exhibited (1) marked SBP elevation, (2) no significant alteration in aortic morphology, (3) increased VSMC proliferation and MDM2 expression in the aorta, and (4) enhanced total collagen and collagen III depositions in the aorta, accompanied with up-regulated expression of TGF-β1. These effects were significantly inhibited by co-administration with eplerenone but not with hydralazine. These findings suggested that specific MR antagonism protects the aorta from aldosterone-induced VSMC proliferation and collagen deposition.

  9. Attenuation of Cocaine-Induced Conditioned Place Preference and Motor Activity via Cannabinoid CB2 Receptor Agonism and CB1 Receptor Antagonism in Rats

    PubMed Central

    Delis, Foteini; Polissidis, Alexia; Poulia, Nafsika; Justinova, Zuzana; Nomikos, George G.; Goldberg, Steven R.

    2017-01-01

    Abstract Background: Studies have shown the involvement of cannabinoid (CB) receptors in the behavioral and neurobiological effects of psychostimulants. Most of these studies have focused on the role of CB1 receptors in the psychostimulant effects of cocaine, while very few have investigated the respective role of CB2 receptors. Further studies are warranted to elucidate the extent of CB receptor involvement in the expression of cocaine-induced effects. Methods: The role of CB1 and CB2 receptors in the rewarding and motor properties of cocaine was assessed in conditioned place preference, conditioned motor activity, and open field activity in rats. Results: The CB1 receptor antagonist rimonabant (3 mg/kg) decreased the acquisition and the expression of conditioned place preference induced by cocaine (20 mg/kg). Rimonabant inhibited cocaine-elicited conditioned motor activity when administered during the expression of cocaine-induced conditioned place preference. Rimonabant decreased ambulatory and vertical activity induced by cocaine. The CB2 receptor agonist JWH-133 (10 mg/kg) decreased the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 inhibited cocaine-elicited conditioned motor activity when administered during the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 decreased ambulatory activity and abolished vertical activity induced by cocaine. The effects of JWH-133 on cocaine conditioned and stimulated responses were abolished when the CB2 receptor antagonist/inverse agonist AM630 (5 mg/kg) was preadministered. Conclusions: Cannabinoid CB1 and CB2 receptors modulate cocaine-induced rewarding behavior and appear to have opposite roles in the regulation of cocaine’s reinforcing and psychomotor effects. PMID:27994006

  10. Bradykinin B1 and B2 receptors, tumour necrosis factor α and inflammatory hyperalgesia

    PubMed Central

    Poole, S; Lorenzetti, B B; Cunha, J M; Cunha, F Q; Ferreira, S H

    1999-01-01

    The effects of BK agonists and antagonists, and other hyperalgesic/antihyperalgesic drugs were measured (3 h after injection of hyperalgesic drugs) in a model of mechanical hyperalgesia (the end-point of which was indicated by a brief apnoea, the retraction of the head and forepaws, and muscular tremor). DALBK inhibited responses to carrageenin, bradykinin, DABK, and kallidin. Responses to kallidin and DABK were inhibited by indomethacin or atenolol and abolished by the combination of indomethacin+atenolol. DALBK or HOE 140, given 30 min before, but not 2 h after, carrageenin, BK, DABK and kallidin reduced hyperalgesic responses to these agents. A small dose of DABK+a small dose of BK evoked a response similar to the response to a much larger dose of DABK or BK, given alone. Responses to BK were antagonized by HOE 140 whereas DALBK antagonized only responses to larger doses of BK. The combination of a small dose of DALBK with a small dose of HOE 140 abolished the response to BK. The hyperalgesic response to LPS (1 μg) was inhibited by DALBK or HOE 140 and abolished by DALBK+HOE 140. The hyperalgesic response to LPS (5 μg) was not antagonized by DALBK+HOE 140. These data suggest: (a) a predominant role for B2 receptors in mediating hyperalgesic responses to BK and to drugs that stimulate BK release, and (b) activation of the hyperalgesic cytokine cascade independently of both B1 and B2 receptors if the hyperalgesic stimulus is of sufficient magnitude. PMID:10188975

  11. Helicobacter pylori induces IL-1β and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway.

    PubMed

    Li, Xiang; Liu, Sheng; Luo, Jingjing; Liu, Anyuan; Tang, Shuangyang; Liu, Shuo; Yu, Minjun; Zhang, Yan

    2015-06-01

    This study investigated whether Helicobacter pylori could activate the nucleotide-binding oligomerization domain-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome in human macrophages and the involvement of reactive oxygen species (ROS) in inflammasome activation. Phorbol-12-myristate-13-acetate (PMA)-differentiated human acute monocytic leukemia cell line THP-1 was infected with H. pylori. The levels of pro-inflammatory cytokines interleukin (IL)-1β and IL-18 in supernatant were measured by ELISA. Intracellular ROS level was analyzed by flow cytometry. Quantitative real-time PCR and western blot analysis were employed to determine the mRNA and protein expression levels of NLRP3 and caspase-1 in THP-1 cells, respectively. Our results showed that H. pylori infection could induce IL-1β and IL-18 production in PMA-differentiated THP-1 cells in a dose- and time-dependent manner. Moreover, secretion of IL-1β and IL-18 in THP-1 cells following H. pylori infection was remarkably reduced by NLRP3-specific small interfering RNA treatment. In addition, the intracellular ROS level was elevated by H. pylori infection, which could be eliminated by the ROS scavenger N-acetylcysteine (NAC). Furthermore, NAC treatment could inhibit NLRP3 inflammasome formation and caspase-1 activation and suppress the release of IL-1β and IL-18 from H. pylori-infected THP-1 cells. These findings provide novel insights into the innate immune response against H. pylori infection, which could potentially be used for the prevention and treatment of H. pylori-related diseases. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyomiya, Hiroyasu; Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580; Ariyoshi, Wataru

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, includingmore » Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.« less

  13. Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor d4 and downstream mitogen-activated protein kinase signaling.

    PubMed

    Smith, Jessica L; Stein, David A; Shum, David; Fischer, Matthew A; Radu, Constantin; Bhinder, Bhavneet; Djaballah, Hakim; Nelson, Jay A; Früh, Klaus; Hirsch, Alec J

    2014-05-01

    Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds-dihydrodibenzothiepines (DHBTs), identified through high-throughput screening-with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds. The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same

  14. Translating 5-HT receptor pharmacology.

    PubMed

    Sanger, G J

    2009-12-01

    Since metoclopramide was first described (in 1964) there have been several attempts to develop compounds which retained gastrointestinal prokinetic activity (via 5-HT(4) receptor activation) but without the limiting side effects associated with dopamine D(2) receptor antagonism. Early compounds (mosapride, cisapride, renzapride, tegaserod) were identified before several of the 5-HT receptors were even described (including 5-HT(4) and 5-HT(2B)), whereas prucalopride came later. Several compounds were hampered by non-selectivity, introducing cardiac liability (cisapride: activity at human Ether-a-go-go Related Gene) or potentially, a reduced intestinal prokinetic activity caused by activity at a second 5-HT receptor (renzapride: antagonism at the 5-HT(3) receptor; tegaserod: antagonism at the 5-HT(2B) receptor). Poor intrinsic activity at gastrointestinal 5-HT(4) receptors has also been an issue (mosapride, tegaserod). Perhaps prucalopride has now achieved the profile of good selectivity of action and high intrinsic activity at intestinal 5-HT(4) receptors, without clinically-meaningful actions on 5-HT(4) receptors in the heart. The progress of this compound for treatment of chronic constipation, as well as competitor molecules such as ATI-7505 and TD-5108, will now be followed with interest as each attempts to differentiate themselves from each other. Perhaps at last, 5-HT(4) receptor agonists are being given the chance to show what they can do.

  15. Selective Activation of Sphingosine 1-Phosphate Receptors 1 and 3 Promotes Local Microvascular Network Growth

    PubMed Central

    Sefcik, Lauren S.; Petrie Aronin, Caren E.; Awojoodu, Anthony O.; Shin, Soo J.; Mac Gabhann, Feilim; MacDonald, Timothy L.; Wamhoff, Brian R.; Lynch, Kevin R.; Peirce, Shayn M.

    2011-01-01

    Proper spatial and temporal regulation of microvascular remodeling is critical to the formation of functional vascular networks, spanning the various arterial, venous, capillary, and collateral vessel systems. Recently, our group has demonstrated that sustained release of sphingosine 1-phosphate (S1P) from biodegradable polymers promotes microvascular network growth and arteriolar expansion. In this study, we employed S1P receptor-specific compounds to activate and antagonize different combinations of S1P receptors to elucidate those receptors most critical for promotion of pharmacologically induced microvascular network growth. We show that S1P1 and S1P3 receptors act synergistically to enhance functional network formation via increased functional length density, arteriolar diameter expansion, and increased vascular branching in the dorsal skinfold window chamber model. FTY720, a potent activator of S1P1 and S1P3, promoted a 107% and 153% increase in length density 3 and 7 days after implantation, respectively. It also increased arteriolar diameters by 60% and 85% 3 and 7 days after implantation. FTY720-stimulated branching in venules significantly more than unloaded poly(D, L-lactic-co-glycolic acid). When implanted on the mouse spinotrapezius muscle, FTY720 stimulated an arteriogenic response characterized by increased tortuosity and collateralization of branching microvascular networks. Our results demonstrate the effectiveness of S1P1 and S1P3 receptor-selective agonists (such as FTY720) in promoting microvascular growth for tissue engineering applications. PMID:20874260

  16. Genetic polymorphisms of surfactant protein D rs2243639, Interleukin (IL)-1β rs16944 and IL-1RN rs2234663 in chronic obstructive pulmonary disease, healthy smokers, and non-smokers.

    PubMed

    Issac, Marianne Samir M; Ashur, Wafaa; Mousa, Heba

    2014-06-01

    Chronic obstructive pulmonary disease (COPD) is a complex chronic inflammatory disease that involves the activity of various inflammatory cells and mediators. It has been suggested that susceptibility to COPD is, at least in part, genetically determined. The primary aim of this study was to investigate the association between surfactant protein D (SFTPD) rs2243639, interleukin (IL)-1β rs16944 and IL-1 receptor antagonist (IL-1RN) rs2234663 gene polymorphisms and COPD susceptibility, as well as examining the association between the various IL-1RN/IL-1β haplotypes and pulmonary function tests (PFT). Secondly, we aimed to examine the influence of SFTPD rs2243639 polymorphism on serum surfactant protein D (SP-D) level. A total of 114 subjects were recruited in this study and divided into three groups: 63 COPD patients, 25 asymptomatic smokers, and 26 healthy controls. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed for the detection of SFTPD rs2243639 and IL-1β rs16944 polymorphisms. Detection of variable numbers of an 86-bp tandem repeat (VNTR) of IL-1RN was done using PCR. Serum SP-D level was measured using enzyme linked-immunosorbent assay. PFTs were measured by spirometry. Carriers of the SFTPD AG and AA polymorphic genotypes constituted 71.4 % of COPD patients versus 48 % in asymptomatic smokers, with a statistically significant difference between the two groups (p = 0.049). Smokers who were carriers of the polymorphic SFTPD rs2243639 A allele (AG and AA genotypes) have a 2.708 times risk of developing COPD when compared with wild-type GG genotype carriers [odds ratio (OR) 2.708 (95 % CI 1.041-7.047)]. Forced expiratory flow (FEF) 25-75 % predicted was higher in IL-1RN*1/*1 when compared with *1/*2 (p = 0.013). FEF25-75 % predicted in carriers of haplotype IL-1RN *1/IL-1β T (49.21 ± 10.26) was statistically significantly higher than in carriers of IL-1RN *2/IL-1β T (39.67 ± 12.64) [p = 0

  17. Microsomal Prostaglandin E Synthase-1 Facilitates an Intercellular Interaction between CD4⁺ T Cells through IL-1β Autocrine Function in Experimental Autoimmune Encephalomyelitis.

    PubMed

    Takemiya, Takako; Takeuchi, Chisen; Kawakami, Marumi

    2017-12-19

    Microsomal prostaglandin synthetase-1 (mPGES-1) is an inducible terminal enzyme that produces prostaglandin E₂ (PGE₂). In our previous study, we investigated the role of mPGES-1 in the inflammation and demyelination observed in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, using mPGES - 1 -deficient ( mPGES-1 -/- ) and wild-type (wt) mice. We found that mPGES-1 facilitated inflammation, demyelination, and paralysis and was induced in vascular endothelial cells and macrophages and microglia around inflammatory foci. Here, we investigated the role of interleukin-1β (IL-1β) in the intercellular mechanism stimulated by mPGES-1 in EAE spinal cords in the presence of inflammation. We found that the area invaded by CD4-positive (CD4⁺) T cells was extensive, and that PGE₂ receptors EP1-4 were more induced in activated CD4⁺ T cells of wt mice than in those of mPGES - 1 -/- mice. Moreover, IL-1β and IL-1 receptor 1 (IL-1r1) were produced by 65% and 48% of CD4⁺ T cells in wt mice and by 44% and 27% of CD4⁺ T cells in mPGES-1 -/- mice. Furthermore, interleukin-17 (IL-17) was released from the activated CD4⁺ T cells. Therefore, mPGES-1 stimulates an intercellular interaction between CD4⁺ T cells by upregulating the autocrine function of IL-1β in activated CD4⁺ T cells, which release IL-17 to facilitate axonal and myelin damage in EAE mice.

  18. Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma.

    PubMed

    Agrawal, Swati; Townley, Robert G

    2014-02-01

    Asthma markedly diminishes quality of life due to limited activity, absences from work or school and hospitalizations. Patients with severe asthma which are not controlled despite taking effective therapy are most in need of new treatment approaches. IL-13 was demonstrated as 'central mediator of allergic asthma'. IL-13 has been implicated in the pathogenesis of asthma, idiopathic pulmonary fibrosis and COPD. IL-13 levels in the sputum and bronchial biopsy samples remain elevated in severe asthma despite the use of inhaled and systemic corticosteroids. Thus, IL-13 is a mediator involved in corticosteroid resistance. Periostin enhances profibrotic TGF-β signaling in subepithelial fibrosis associated with asthma. IL-13 induces bronchial epithelial cells to secrete periostin. Periostin may be a biomarker for Th2 induced airway inflammation. Lebrikizumab is a monoclonal antibody against IL-13. Lebrikizumab improved lung function in asthmatics who were symptomatic despite treatment with long acting beta agonist and inhaled corticosteroids and provided benefit in the treatment of severe uncontrolled asthma. Lebrikizumab block IL-13 signaling through the IL-13Rα1/IL-4Rα receptor. There was a larger reduction in FENO in the high periostin subgroup than in the low periostin subgroup (34.4 vs 4.3%). Serum CCL17, CCL13 and total IgE levels decreased in the lebrikizumab group.

  19. Eosinophils Contribute to Intestinal Inflammation via Chemoattractant Receptor-homologous Molecule Expressed on Th2 Cells, CRTH2, in Experimental Crohn's Disease.

    PubMed

    Radnai, Balázs; Sturm, Eva M; Stančić, Angela; Jandl, Katharina; Labocha, Sandra; Ferreirós, Nerea; Grill, Magdalena; Hasenoehrl, Carina; Gorkiewicz, Gregor; Marsche, Gunther; Heinemann, Ákos; Högenauer, Christoph; Schicho, Rudolf

    2016-09-01

    Prostaglandin [PG] D2 activates two receptors, DP and CRTH2. Antagonism of CRTH2 has been shown to promote anti-allergic and anti-inflammatory effects. We investigated whether CRTH2 may play a role in Crohn's disease [CD], focusing on eosinophils which are widely present in the inflamed mucosa of CD patients and express both receptors. Using the 2,4,6-trinitrobenzenesulfonic acid [TNBS]-induced colitis model, involvement of CRTH2 in colitis was investigated by pharmacological antagonism, immunohistochemistry, Western blotting, immunoassay, and leukocyte recruitment. Chemotactic assays were performed with isolated human eosinophils. Biopsies and serum samples of CD patients were examined for presence of CRTH2 and ligands, respectively. High amounts of CRTH2-positive cells, including eosinophils, are present in the colonic mucosa of mice with TNBS colitis and in human CD. The CRTH2 antagonist OC-459, but not the DP antagonist MK0524, reduced inflammation scores and decreased TNF-α, IL-1β, and IL-6 as compared with control mice. OC-459 inhibited recruitment of eosinophils into the colon and also inhibited CRTH2-induced chemotaxis of human eosinophils in vitro. Eosinophil-depleted ΔdblGATA knockout mice were less sensitive to TNBS-induced colitis, whereas IL-5 transgenic mice with lifelong eosinophilia were more severely affected than wild types. In addition, we show that serum levels of PGD2 and Δ(12)-PGJ2 were increased in CD patients as compared with control individuals. CRTH2 plays a pro-inflammatory role in TNBS-induced colitis. Eosinophils contribute to the severity of the inflammation, which is improved by a selective CRTH2 antagonist. CRTH2 may, therefore, represent an important target in the pharmacotherapy of CD. Copyright © 2016 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain.

    PubMed

    Ortíz-Rentería, Miguel; Juárez-Contreras, Rebeca; González-Ramírez, Ricardo; Islas, León D; Sierra-Ramírez, Félix; Llorente, Itzel; Simon, Sidney A; Hiriart, Marcia; Rosenbaum, Tamara; Morales-Lázaro, Sara L

    2018-02-13

    The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.