Science.gov

Sample records for image acquisition technique

  1. 3D GRASE PROPELLER: Improved Image Acquisition Technique for Arterial Spin Labeling Perfusion Imaging

    PubMed Central

    Tan, Huan; Hoge, W. Scott; Hamilton, Craig A.; Günther, Matthias; Kraft, Robert A.

    2014-01-01

    Arterial spin labeling (ASL) is a non-invasive technique that can quantitatively measure cerebral blood flow (CBF). While traditionally ASL employs 2D EPI or spiral acquisition trajectories, single-shot 3D GRASE is gaining popularity in ASL due to inherent SNR advantage and spatial coverage. However, a major limitation of 3D GRASE is through-plane blurring caused by T2 decay. A novel technique combining 3D GRASE and a PROPELLER trajectory (3DGP) is presented to minimize through-plane blurring without sacrificing perfusion sensitivity or increasing total scan time. Full brain perfusion images were acquired at a 3×3×5mm3 nominal voxel size with Q2TIPS-FAIR as the ASL preparation sequence. Data from 5 healthy subjects was acquired on a GE 1.5T scanner in less than 4 minutes per subject. While showing good agreement in CBF quantification with 3D GRASE, 3DGP demonstrated reduced through-plane blurring, improved anatomical details, high repeatability and robustness against motion, making it suitable for routine clinical use. PMID:21254211

  2. 3D Image Acquisition System Based on Shape from Focus Technique

    PubMed Central

    Billiot, Bastien; Cointault, Frédéric; Journaux, Ludovic; Simon, Jean-Claude; Gouton, Pierre

    2013-01-01

    This paper describes the design of a 3D image acquisition system dedicated to natural complex scenes composed of randomly distributed objects with spatial discontinuities. In agronomic sciences, the 3D acquisition of natural scene is difficult due to the complex nature of the scenes. Our system is based on the Shape from Focus technique initially used in the microscopic domain. We propose to adapt this technique to the macroscopic domain and we detail the system as well as the image processing used to perform such technique. The Shape from Focus technique is a monocular and passive 3D acquisition method that resolves the occlusion problem affecting the multi-cameras systems. Indeed, this problem occurs frequently in natural complex scenes like agronomic scenes. The depth information is obtained by acting on optical parameters and mainly the depth of field. A focus measure is applied on a 2D image stack previously acquired by the system. When this focus measure is performed, we can create the depth map of the scene. PMID:23591964

  3. Development and application of a high speed digital data acquisition technique to study steam bubble collapse using particle image velocimetry

    SciTech Connect

    Schmidl, W.D.

    1992-08-01

    The use of a Particle Image Velocimetry (PIV) method, which uses digital cameras for data acquisition, for studying high speed fluid flows is usually limited by the digital camera`s frame acquisition rate. The velocity of the fluid under study has to be limited to insure that the tracer seeds suspended in the fluid remain in the camera`s focal plane for at least two consecutive images. However, the use of digital cameras for data acquisition is desirable to simplify and expedite the data analysis process. A technique was developed which will measure fluid velocities with PIV techniques using two successive digital images and two different framing rates simultaneously. The first part of the method will measure changes which occur to the flow field at the relatively slow framing rate of 53.8 ms. The second part will measure changes to the same flow field at the relatively fast framing rate of 100 to 320 {mu}s. The effectiveness of this technique was tested by studying the collapse of steam bubbles in a subcooled tank of water, a relatively high speed phenomena. The tracer particles were recorded and velocity vectors for the fluid were obtained far from the steam bubble collapse.

  4. Development and application of a high speed digital data acquisition technique to study steam bubble collapse using particle image velocimetry

    SciTech Connect

    Schmidl, W.D.

    1992-08-01

    The use of a Particle Image Velocimetry (PIV) method, which uses digital cameras for data acquisition, for studying high speed fluid flows is usually limited by the digital camera's frame acquisition rate. The velocity of the fluid under study has to be limited to insure that the tracer seeds suspended in the fluid remain in the camera's focal plane for at least two consecutive images. However, the use of digital cameras for data acquisition is desirable to simplify and expedite the data analysis process. A technique was developed which will measure fluid velocities with PIV techniques using two successive digital images and two different framing rates simultaneously. The first part of the method will measure changes which occur to the flow field at the relatively slow framing rate of 53.8 ms. The second part will measure changes to the same flow field at the relatively fast framing rate of 100 to 320 [mu]s. The effectiveness of this technique was tested by studying the collapse of steam bubbles in a subcooled tank of water, a relatively high speed phenomena. The tracer particles were recorded and velocity vectors for the fluid were obtained far from the steam bubble collapse.

  5. A general algorithm for magnetic resonance imaging simulation: a versatile tool to collect information about imaging artefacts and new acquisition techniques.

    PubMed

    Placidi, Giuseppe; Alecci, Marcello; Sotgiu, Antonello

    2002-01-01

    An innovative algorithm for Magnetic Resonance Imaging (MRI) capable of demonstrating the source of various artefacts and driving the hardware and software acquisition process is presented. The algorithm is based on the application of the Bloch equations to the magnetization vector of each point of the simulated object, as requested by the instructions of the MRI pulse sequence. The collected raw data are then used to reconstruct the image of the object. The general structure of the algorithm makes it possible to simulate a great range of imaging situations in order to explain the nature of unwanted artefacts and to study new acquisition techniques. The way the algorithm structures the sequence has also allowed the easy implementation of MRI data acquisition on a commercial general-purpose DSP-based data acquisition board, thus facilitating the comparison between simulated and experimental results. PMID:15460653

  6. Image Acquisition Context

    PubMed Central

    Bidgood, W. Dean; Bray, Bruce; Brown, Nicolas; Mori, Angelo Rossi; Spackman, Kent A.; Golichowski, Alan; Jones, Robert H.; Korman, Louis; Dove, Brent; Hildebrand, Lloyd; Berg, Michael

    1999-01-01

    Objective: To support clinically relevant indexing of biomedical images and image-related information based on the attributes of image acquisition procedures and the judgments (observations) expressed by observers in the process of image interpretation. Design: The authors introduce the notion of “image acquisition context,” the set of attributes that describe image acquisition procedures, and present a standards-based strategy for utilizing the attributes of image acquisition context as indexing and retrieval keys for digital image libraries. Methods: The authors' indexing strategy is based on an interdependent message/terminology architecture that combines the Digital Imaging and Communication in Medicine (DICOM) standard, the SNOMED (Systematized Nomenclature of Human and Veterinary Medicine) vocabulary, and the SNOMED DICOM microglossary. The SNOMED DICOM microglossary provides context-dependent mapping of terminology to DICOM data elements. Results: The capability of embedding standard coded descriptors in DICOM image headers and image-interpretation reports improves the potential for selective retrieval of image-related information. This favorably affects information management in digital libraries. PMID:9925229

  7. Technique for real-time frontal face image acquisition using stereo system

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Vizilter, Yuri V.; Kudryashov, Yuri I.

    2013-04-01

    Most part of existing systems for face recognition is usually based on two-dimensional images. And the quality of recognition is rather high for frontal images of face. But for other kind of images the quality decreases significantly. It is necessary to compensate for the effect of a change in the posture of a person (the camera angle) for correct operation of such systems. There are methods of transformation of 2D image of the person to the canonical orientation. The efficiency of these methods depends on the accuracy of determination of specific anthropometric points. Problems can arise for cases of partly occlusion of the person`s face. Another approach is to have a set of person images for different view angles for the further processing. But a need for storing and processing a large number of two-dimensional images makes this method considerably time-consuming. The proposed technique uses stereo system for fast generation of person face 3D model and obtaining face image in given orientation using this 3D model. Real-time performance is provided by implementing and graph cut methods for face surface 3D reconstruction and applying CUDA software library for parallel calculation.

  8. Taking the perfect nuclear image: quality control, acquisition, and processing techniques for cardiac SPECT, PET, and hybrid imaging.

    PubMed

    Case, James A; Bateman, Timothy M

    2013-10-01

    Nuclear Cardiology for the past 40 years has distinguished itself in its ability to non-invasively assess regional myocardial blood flow and identify obstructive coronary disease. This has led to advances in managing the diagnosis, risk stratification, and prognostic assessment of cardiac patients. These advances have all been predicated on the collection of high quality nuclear image data. National and international professional societies have established guidelines for nuclear laboratories to maintain high quality nuclear cardiology services. In addition, laboratory accreditation has further advanced the goal of the establishing high quality standards for the provision of nuclear cardiology services. This article summarizes the principles of nuclear cardiology single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging and techniques for maintaining quality: from the calibration of imaging equipment to post processing techniques. It also will explore the quality considerations of newer technologies such as cadmium zinc telleride (CZT)-based SPECT systems and absolute blood flow measurement techniques using PET. PMID:23868070

  9. Automated ship image acquisition

    NASA Astrophysics Data System (ADS)

    Hammond, T. R.

    2008-04-01

    The experimental Automated Ship Image Acquisition System (ASIA) collects high-resolution ship photographs at a shore-based laboratory, with minimal human intervention. The system uses Automatic Identification System (AIS) data to direct a high-resolution SLR digital camera to ship targets and to identify the ships in the resulting photographs. The photo database is then searchable using the rich data fields from AIS, which include the name, type, call sign and various vessel identification numbers. The high-resolution images from ASIA are intended to provide information that can corroborate AIS reports (e.g., extract identification from the name on the hull) or provide information that has been omitted from the AIS reports (e.g., missing or incorrect hull dimensions, cargo, etc). Once assembled into a searchable image database, the images can be used for a wide variety of marine safety and security applications. This paper documents the author's experience with the practicality of composing photographs based on AIS reports alone, describing a number of ways in which this can go wrong, from errors in the AIS reports, to fixed and mobile obstructions and multiple ships in the shot. The frequency with which various errors occurred in automatically-composed photographs collected in Halifax harbour in winter time were determined by manual examination of the images. 45% of the images examined were considered of a quality sufficient to read identification markings, numbers and text off the entire ship. One of the main technical challenges for ASIA lies in automatically differentiating good and bad photographs, so that few bad ones would be shown to human users. Initial attempts at automatic photo rating showed 75% agreement with manual assessments.

  10. Colony image acquisition and segmentation

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2007-12-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems. The main problems are image acquisition and image segmentation. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. The developed colony image segmentation algorithm consists of the sub-algorithms: (1) image classification; (2) image processing; and (3) colony delineation. The colony delineation algorithm main contain: the procedures based on grey level similarity, on boundary tracing, on shape information and colony excluding. In addition, a number of algorithms are developed for colony analysis. The system has been tested and satisfactory.

  11. Acquisition and applications of 3D images

    NASA Astrophysics Data System (ADS)

    Sterian, Paul; Mocanu, Elena

    2007-08-01

    The moiré fringes method and their analysis up to medical and entertainment applications are discussed in this paper. We describe the procedure of capturing 3D images with an Inspeck Camera that is a real-time 3D shape acquisition system based on structured light techniques. The method is a high-resolution one. After processing the images, using computer, we can use the data for creating laser fashionable objects by engraving them with a Q-switched Nd:YAG. In medical field we mention the plastic surgery and the replacement of X-Ray especially in pediatric use.

  12. Functional MRI Using Regularized Parallel Imaging Acquisition

    PubMed Central

    Lin, Fa-Hsuan; Huang, Teng-Yi; Chen, Nan-Kuei; Wang, Fu-Nien; Stufflebeam, Steven M.; Belliveau, John W.; Wald, Lawrence L.; Kwong, Kenneth K.

    2013-01-01

    Parallel MRI techniques reconstruct full-FOV images from undersampled k-space data by using the uncorrelated information from RF array coil elements. One disadvantage of parallel MRI is that the image signal-to-noise ratio (SNR) is degraded because of the reduced data samples and the spatially correlated nature of multiple RF receivers. Regularization has been proposed to mitigate the SNR loss originating due to the latter reason. Since it is necessary to utilize static prior to regularization, the dynamic contrast-to-noise ratio (CNR) in parallel MRI will be affected. In this paper we investigate the CNR of regularized sensitivity encoding (SENSE) acquisitions. We propose to implement regularized parallel MRI acquisitions in functional MRI (fMRI) experiments by incorporating the prior from combined segmented echo-planar imaging (EPI) acquisition into SENSE reconstructions. We investigated the impact of regularization on the CNR by performing parametric simulations at various BOLD contrasts, acceleration rates, and sizes of the active brain areas. As quantified by receiver operating characteristic (ROC) analysis, the simulations suggest that the detection power of SENSE fMRI can be improved by regularized reconstructions, compared to unregularized reconstructions. Human motor and visual fMRI data acquired at different field strengths and array coils also demonstrate that regularized SENSE improves the detection of functionally active brain regions. PMID:16032694

  13. Simultaneous multislice (SMS) imaging techniques.

    PubMed

    Barth, Markus; Breuer, Felix; Koopmans, Peter J; Norris, David G; Poser, Benedikt A

    2016-01-01

    Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in-plane parallel imaging this can have only a marginal intrinsic signal-to-noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications. Furthermore, for some implementations SMS techniques can reduce radiofrequency (RF) power deposition. In this review the current state of the art of SMS imaging is presented. In the Introduction, a historical overview is given of the history of SMS excitation in MRI. The following section on RF pulses gives both the theoretical background and practical application. The section on encoding and reconstruction shows how the collapsed multislice images can be disentangled by means of the transmitter pulse phase, gradient pulses, and most importantly using multichannel receiver coils. The relationship between classic parallel imaging techniques and SMS reconstruction methods is explored. The subsequent section describes the practical implementation, including the acquisition of reference data, and slice cross-talk. Published applications of SMS imaging are then reviewed, and the article concludes with an outlook and perspective of SMS imaging. PMID:26308571

  14. Simultaneous multislice (SMS) imaging techniques

    PubMed Central

    Barth, Markus; Breuer, Felix; Koopmans, Peter J.; Poser, Benedikt A.

    2015-01-01

    Simultaneous multislice imaging (SMS) using parallel image reconstruction has rapidly advanced to become a major imaging technique. The primary benefit is an acceleration in data acquisition that is equal to the number of simultaneously excited slices. Unlike in‐plane parallel imaging this can have only a marginal intrinsic signal‐to‐noise ratio penalty, and the full acceleration is attainable at fixed echo time, as is required for many echo planar imaging applications. Furthermore, for some implementations SMS techniques can reduce radiofrequency (RF) power deposition. In this review the current state of the art of SMS imaging is presented. In the Introduction, a historical overview is given of the history of SMS excitation in MRI. The following section on RF pulses gives both the theoretical background and practical application. The section on encoding and reconstruction shows how the collapsed multislice images can be disentangled by means of the transmitter pulse phase, gradient pulses, and most importantly using multichannel receiver coils. The relationship between classic parallel imaging techniques and SMS reconstruction methods is explored. The subsequent section describes the practical implementation, including the acquisition of reference data, and slice cross‐talk. Published applications of SMS imaging are then reviewed, and the article concludes with an outlook and perspective of SMS imaging. Magn Reson Med 75:63–81, 2016. © 2015 The Authors. Magnetic Resonance in Medicine Published by Wiley Periodicals, Inc. on behalf of International Society of Medicine in Resonance. PMID:26308571

  15. SU-E-J-11: Measurement of Eye Lens Dose for Varian On-Board Imaging with Different CBCT Acquisition Techniques

    SciTech Connect

    Deshpande, S; Dhote, D; Kumar, R; Thakur, K

    2015-06-15

    Purpose: To measure actual patient eye lens dose for different cone beam computed tomography (CBCT) acquisition protocol of Varian’s On Board Imagining (OBI) system using Optically Stimulated Luminescence (OSL) dosimeter and study the eye lens dose with patient geometry and distance of isocenter to the eye lens Methods: OSL dosimeter was used to measure eye lens dose of patient. OSL dosimeter was placed on patient forehead center during CBCT image acquisition to measure eye lens dose. For three different cone beam acquisition protocol (standard dose head, low dose head and high quality head) of Varian On-Board Imaging, eye lens doses were measured. Measured doses were correlated with patient geometry and distance between isocenter to eye lens. Results: Measured eye lens dose for standard dose head was in the range of 1.8 mGy to 3.2 mGy, for high quality head protocol dose was in range of 4.5mGy to 9.9 mGy whereas for low dose head was in the range of 0.3mGy to 0.7mGy. Dose to eye lens is depends upon position of isocenter. For posterioraly located tumor eye lens dose is less. Conclusion: From measured doses it can be concluded that by proper selection of imagining protocol and frequency of imaging, it is possible to restrict the eye lens dose below the new limit set by ICRP. However, undoubted advantages of imaging system should be counter balanced by careful consideration of imaging protocol especially for very intense imaging sequences for Adoptive Radiotherapy or IMRT.

  16. Optimisation of acquisition time in bioluminescence imaging

    NASA Astrophysics Data System (ADS)

    Taylor, Shelley L.; Mason, Suzannah K. G.; Glinton, Sophie; Cobbold, Mark; Styles, Iain B.; Dehghani, Hamid

    2015-03-01

    Decreasing the acquisition time in bioluminescence imaging (BLI) and bioluminescence tomography (BLT) will enable animals to be imaged within the window of stable emission of the bioluminescent source, a higher imaging throughput and minimisation of the time which an animal is anaesthetised. This work investigates, through simulation using a heterogeneous mouse model, two methods of decreasing acquisition time: 1. Imaging at fewer wavelengths (a reduction from five to three); and 2. Increasing the bandwidth of filters used for imaging. The results indicate that both methods are viable ways of decreasing the acquisition time without a loss in quantitative accuracy. Importantly, when choosing imaging wavelengths, the spectral attenuation of tissue and emission spectrum of the source must be considered, in order to choose wavelengths at which a high signal can be achieved. Additionally, when increasing the bandwidth of the filters used for imaging, the bandwidth must be accounted for in the reconstruction algorithm.

  17. Emerging Imaging Techniques

    PubMed Central

    McVeigh, Elliot R.

    2007-01-01

    This article reviews recent developments in selected imaging technologies focused on the cardiovascular system. The techniques covered are: ultrasound biomicroscopy (UBM), microSPECT, microPET, near infrared imaging, and quantum dots. For each technique, the basic physical principles are explained and recent example applications demonstrated. PMID:16614313

  18. A Novel Fast Helical 4D-CT Acquisition Technique to Generate Low-Noise Sorting Artifact–Free Images at User-Selected Breathing Phases

    SciTech Connect

    Thomas, David; Lamb, James; White, Benjamin; Jani, Shyam; Gaudio, Sergio; Lee, Percy; Ruan, Dan; McNitt-Gray, Michael; Low, Daniel

    2014-05-01

    Purpose: To develop a novel 4-dimensional computed tomography (4D-CT) technique that exploits standard fast helical acquisition, a simultaneous breathing surrogate measurement, deformable image registration, and a breathing motion model to remove sorting artifacts. Methods and Materials: Ten patients were imaged under free-breathing conditions 25 successive times in alternating directions with a 64-slice CT scanner using a low-dose fast helical protocol. An abdominal bellows was used as a breathing surrogate. Deformable registration was used to register the first image (defined as the reference image) to the subsequent 24 segmented images. Voxel-specific motion model parameters were determined using a breathing motion model. The tissue locations predicted by the motion model in the 25 images were compared against the deformably registered tissue locations, allowing a model prediction error to be evaluated. A low-noise image was created by averaging the 25 images deformed to the first image geometry, reducing statistical image noise by a factor of 5. The motion model was used to deform the low-noise reference image to any user-selected breathing phase. A voxel-specific correction was applied to correct the Hounsfield units for lung parenchyma density as a function of lung air filling. Results: Images produced using the model at user-selected breathing phases did not suffer from sorting artifacts common to conventional 4D-CT protocols. The mean prediction error across all patients between the breathing motion model predictions and the measured lung tissue positions was determined to be 1.19 ± 0.37 mm. Conclusions: The proposed technique can be used as a clinical 4D-CT technique. It is robust in the presence of irregular breathing and allows the entire imaging dose to contribute to the resulting image quality, providing sorting artifact–free images at a patient dose similar to or less than current 4D-CT techniques.

  19. Image compression technique

    DOEpatents

    Fu, Chi-Yung; Petrich, Loren I.

    1997-01-01

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace's equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image.

  20. Image compression technique

    DOEpatents

    Fu, C.Y.; Petrich, L.I.

    1997-03-25

    An image is compressed by identifying edge pixels of the image; creating a filled edge array of pixels each of the pixels in the filled edge array which corresponds to an edge pixel having a value equal to the value of a pixel of the image array selected in response to the edge pixel, and each of the pixels in the filled edge array which does not correspond to an edge pixel having a value which is a weighted average of the values of surrounding pixels in the filled edge array which do correspond to edge pixels; and subtracting the filled edge array from the image array to create a difference array. The edge file and the difference array are then separately compressed and transmitted or stored. The original image is later reconstructed by creating a preliminary array in response to the received edge file, and adding the preliminary array to the received difference array. Filling is accomplished by solving Laplace`s equation using a multi-grid technique. Contour and difference file coding techniques also are described. The techniques can be used in a method for processing a plurality of images by selecting a respective compression approach for each image, compressing each of the images according to the compression approach selected, and transmitting each of the images as compressed, in correspondence with an indication of the approach selected for the image. 16 figs.

  1. Renal imaging techniques.

    PubMed

    Hierholzer, K; Hierholzer, J

    1997-01-01

    The ancient approach to obtain an image of the kidneys (and other internal organs) was 'section-inspection-imaging' by drawing, painting, sculpturing, and modelling. The present study follows chronologically the development and use of sectioning techniques from ancient (often forbidden) methods to modern microdissection and maceration of silicone-rubber-injected tubules. Inspection evolved from the use of the naked eye to magnifying lenses, microscopes and finally electron microscopy. Pertinent examples such as the description of the kidneys as the site of urine formation, the visualization of loop structures in the renal medulla and the imaging of tight junction strands are discussed. Inspection or visualization of renal structure and function has been revolutionized by modern noninvasive techniques, such as X-ray imaging, imaging by radioisotopes, ultrasound, computer tomography and nuclear magnetic resonance. Pertinent examples are given demonstrating the potency of the various techniques. The contribution of computerized data evaluation is discussed. The development of micropuncture and microperfusion techniques has opened the field for direct imaging not only of renal (sub)structural details but also of functional parameters such as transtubular reabsorption rates, single glomerular capillary filtration and conductance of the paracellular pathway. We focus particularly on techniques specifically designed to visualize renal hemodynamic and transport parameters. PMID:9189257

  2. Image Acquisition in Real Time

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In 1995, Carlos Jorquera left NASA s Jet Propulsion Laboratory (JPL) to focus on erasing the growing void between high-performance cameras and the requisite software to capture and process the resulting digital images. Since his departure from NASA, Jorquera s efforts have not only satisfied the private industry's cravings for faster, more flexible, and more favorable software applications, but have blossomed into a successful entrepreneurship that is making its mark with improvements in fields such as medicine, weather forecasting, and X-ray inspection. Formerly a JPL engineer who constructed imaging systems for spacecraft and ground-based astronomy projects, Jorquera is the founder and president of the three-person firm, Boulder Imaging Inc., based in Louisville, Colorado. Joining Jorquera to round out the Boulder Imaging staff are Chief Operations Engineer Susan Downey, who also gained experience at JPL working on space-bound projects including Galileo and the Hubble Space Telescope, and Vice President of Engineering and Machine Vision Specialist Jie Zhu Kulbida, who has extensive industrial and research and development experience within the private sector.

  3. A design of camera simulator for photoelectric image acquisition system

    NASA Astrophysics Data System (ADS)

    Cai, Guanghui; Liu, Wen; Zhang, Xin

    2015-02-01

    In the process of developing the photoelectric image acquisition equipment, it needs to verify the function and performance. In order to make the photoelectric device recall the image data formerly in the process of debugging and testing, a design scheme of the camera simulator is presented. In this system, with FPGA as the control core, the image data is saved in NAND flash trough USB2.0 bus. Due to the access rate of the NAND, flash is too slow to meet the requirement of the sytsem, to fix the problem, the pipeline technique and the High-Band-Buses technique are applied in the design to improve the storage rate. It reads image data out from flash in the control logic of FPGA and output separately from three different interface of Camera Link, LVDS and PAL, which can provide image data for photoelectric image acquisition equipment's debugging and algorithm validation. However, because the standard of PAL image resolution is 720*576, the resolution is different between PAL image and input image, so the image can be output after the resolution conversion. The experimental results demonstrate that the camera simulator outputs three format image sequence correctly, which can be captured and displayed by frame gather. And the three-format image data can meet test requirements of the most equipment, shorten debugging time and improve the test efficiency.

  4. Fast Hadamard Spectroscopic Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Goelman, G.

    1994-07-01

    Fast Hadamard spectroscopic imaging (HSI) techniques are presented. These techniques combine transverse and longitudinal encoding to obtain multiple-volume localization. The fast techniques are optimized for nuclei with short T2 and long T1 relaxation times and are therefore suitable for in vivo31P spectroscopy. When volume coils are used in fast HSI techniques, the signal-to-noise ratio per unit time (SNRT) is equal to the SNRT in regular HSI techniques. When surface coils are used, fast HSI techniques give significant improvement of SNRT over conventional HSI. Several fast techniques which are different in total experimental time and pulse demands are presented. When the number of acquisitions in a single repetition time is not higher than two, fast HSI techniques can be used with surface coils and the B1 inhomogeneity does not affect the localization. Surface-coil experiments on phantoms and on human calf muscles in vivo are presented. In addition, it is shown that the localization obtained by the HSI techniques are independent of the repetition times.

  5. Single Acquisition Quantitative Single Point Electron Paramagnetic Resonance Imaging

    PubMed Central

    Jang, Hyungseok; Subramanian, Sankaran; Devasahayam, Nallathamby; Saito, Keita; Matsumoto, Shingo; Krishna, Murali C; McMillan, Alan B

    2013-01-01

    Purpose Electron paramagnetic resonance imaging (EPRI) has emerged as a promising non-invasive technology to dynamically image tissue oxygenation. Due to its extremely short spin-spin relaxation times, EPRI benefits from a single-point imaging (SPI) scheme where the entire FID signal is captured using pure phase encoding. However, direct T2*/pO2 quantification is inhibited due to constant magnitude gradients which result in time-decreasing FOV. Therefore, conventional acquisition techniques require repeated imaging experiments with differing gradient amplitudes (typically 3), which results in long acquisition time. Methods In this study, gridding was evaluated as a method to reconstruct images with equal FOV to enable direct T2*/pO2 quantification within a single imaging experiment. Additionally, an enhanced reconstruction technique that shares high spatial k-space regions throughout different phase encoding time delays was investigated (k-space extrapolation). Results The combined application of gridding and k-space extrapolation enables pixelwise quantification of T2* from a single acquisition with improved image quality across a wide range of phase encoding delay times. The calculated T2*/pO2 does not vary across this time range. Conclusion By utilizing gridding and k-space extrapolation, accurate T2*/pO2 quantification can be achieved within a single dataset to allow enhanced temporal resolution (by a factor of 3). PMID:23913515

  6. Effective GPR Data Acquisition and Imaging

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    We have demonstrated that dense GPR data acquisition typically antenna step increment less than 1/10 wave length can provide clear 3-dimeantiona subsurface images, and we created 3DGPR images. Now we are interested in developing GPR survey methodologies which required less data acquisition time. In order to speed up the data acquisition, we are studying efficient antenna positioning for GPR survey and 3-D imaging algorithm. For example, we have developed a dual sensor "ALIS", which combines GPR with metal detector (Electromagnetic Induction sensor) for humanitarian demining, which acquires GPR data by hand scanning. ALIS is a pulse radar system, which has a frequency range 0.5-3GHz.The sensor position tracking system has accuracy about a few cm, and the data spacing is typically more than a few cm, but it can visualize the mines, which has a diameter about 8cm. 2 systems of ALIS have been deployed by Cambodian Mine Action Center (CMAC) in mine fields in Cambodia since 2009 and have detected more than 80 buried land mines. We are now developing signal processing for an array type GPR "Yakumo". Yakumo is a SFCW radar system which is a multi-static radar, consisted of 8 transmitter antennas and 8 receiver antennas. We have demonstrated that the multi-static data acquisition is not only effective in data acquisition, but at the same time, it can increase the quality of GPR images. Archaeological survey by Yakumo in large areas, which are more than 100m by 100m have been conducted, for promoting recovery from Tsunami attacked East Japan in March 2011. With a conventional GPR system, we are developing an interpolation method of radar signals, and demonstrated that it can increase the quality of the radar images, without increasing the data acquisition points. When we acquire one dimensional GPR profile along a survey line, we can acquire relatively high density data sets. However, when we need to relocate the data sets along a "virtual" survey line, for example a

  7. [Progress in imaging techniques].

    PubMed

    Mishima, Kazuaki; Otsuka, Tsukasa

    2013-05-01

    Today it is common to perform real-time diagnosis and treatment via live broadcast as a method of education and to spread new technology for diagnosis and therapy in medical fields. Live medical broadcasts have developed along with broadcast technology. In the early days, live video feeds were sent from operating rooms to classrooms and lecture halls in universities and hospitals. However, the development of imaging techniques and communication networks enabled live broadcasts that bi-directionally link operating rooms and meeting halls during scientific meetings and live demonstration courses. Live broadcasts therefore became an important method for education and the dissemination of new medical technologies. The development of imaging techniques has contributed to more realistic live broadcasts through such innovative techniques as three-dimensional viewing and higher-definition 4K technology. In the future, live broadcasts will be transmitted on personal computers using regular Internet connections. In addition to the enhancement of image delivery technology, it will also be necessary to examine the entire image delivery environment carefully, including issues of security and privacy of personal information. PMID:23789334

  8. Smartphone Image Acquisition During Postmortem Monocular Indirect Ophthalmoscopy.

    PubMed

    Lantz, Patrick E; Schoppe, Candace H; Thibault, Kirk L; Porter, William T

    2016-01-01

    The medical usefulness of smartphones continues to evolve as third-party applications exploit and expand on the smartphones' interface and capabilities. This technical report describes smartphone still-image capture techniques and video-sequence recording capabilities during postmortem monocular indirect ophthalmoscopy. Using these devices and techniques, practitioners can create photographic documentation of fundal findings, clinically and at autopsy, without the expense of a retinal camera. Smartphone image acquisition of fundal abnormalities can promote ophthalmological telemedicine--especially in regions or countries with limited resources--and facilitate prompt, accurate, and unbiased documentation of retinal hemorrhages in infants and young children. PMID:26248715

  9. Impact of image acquisition timing on image quality for dual energy contrast-enhanced breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Hill, Melissa L.; Mainprize, James G.; Puong, Sylvie; Carton, Ann-Katherine; Iordache, Razvan; Muller, Serge; Yaffe, Martin J.

    2012-03-01

    Dual-energy contrast-enhanced digital breast tomosynthesis (DE CE-DBT) image quality is affected by a large parameter space including the tomosynthesis acquisition geometry, imaging technique factors, the choice of reconstruction algorithm, and the subject breast characteristics. The influence of most of these factors on reconstructed image quality is well understood for DBT. However, due to the contrast agent uptake kinetics in CE imaging, the subject breast characteristics change over time, presenting a challenge for optimization . In this work we experimentally evaluate the sensitivity of the reconstructed image quality to timing of the low-energy and high-energy images and changes in iodine concentration during image acquisition. For four contrast uptake patterns, a variety of acquisition protocols were tested with different timing and geometry. The influence of the choice of reconstruction algorithm (SART or FBP) was also assessed. Image quality was evaluated in terms of the lesion signal-difference-to-noise ratio (LSDNR) in the central slice of DE CE-DBT reconstructions. Results suggest that for maximum image quality, the low- and high-energy image acquisitions should be made within one x-ray tube sweep, as separate low- and high-energy tube sweeps can degrade LSDNR. In terms of LSDNR per square-root dose, the image quality is nearly equal between SART reconstructions with 9 and 15 angular views, but using fewer angular views can result in a significant improvement in the quantitative accuracy of the reconstructions due to the shorter imaging time interval.

  10. Sample Acquisition Techniques for Exobiology Flight Experiments

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Carle, Glenn C.; Stratton, David M.; Valentin, Jose R.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    Exobiology Flight Experiments involve complex analyses conducted in environments far different than those encountered in terrestrial applications. A major part of the analytical challenge is often the selection, acquisition, delivery and, in some cases, processing of a sample suitable for the analytical requirements of the mission. The added complications of severely limited resources and sometimes rigid time constraints combine to make sample acquisition potentially a major obstacle for successful analyses. Potential samples come in a wide range including planetary atmospheric gas and aerosols (from a wide variety of pressures), planetary soil or rocks, dust and ice particles streaming off of a comet, and cemetery surface ice and rocks. Methods to collect and process sample are often mission specific, requiring continual development of innovative concepts and mechanisms. These methods must also maintain the integrity of the sample for the experimental results to be meaningful. We present here sample acquisition systems employed from past missions and proposed for future missions.

  11. Psycholinguistic Techniques in Second Language Acquisition Research.

    ERIC Educational Resources Information Center

    Marinis, Theodore

    2003-01-01

    Presents the benefits of using online methodologies in second language acquisition (SLA) research. Provides a selection of online experiments that have been widely used in first and second language processing studies that are suitable for SLA research and discusses the hardware and software packages required for setting up a psycholinguistic…

  12. Optical image acquisition system for colony analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weixing; Jin, Wenbiao

    2006-02-01

    For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems since they belong to a new technology product. One of the main problems is image acquisition. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. A digital camera in the top of the box connected to a PC computer with a USB cable, all the camera functions are controlled by the computer.

  13. Review: Magnetic resonance imaging techniques in ophthalmology

    PubMed Central

    Fagan, Andrew J.

    2012-01-01

    Imaging the eye with magnetic resonance imaging (MRI) has proved difficult due to the eye’s propensity to move involuntarily over typical imaging timescales, obscuring the fine structure in the eye due to the resulting motion artifacts. However, advances in MRI technology help to mitigate such drawbacks, enabling the acquisition of high spatiotemporal resolution images with a variety of contrast mechanisms. This review aims to classify the MRI techniques used to date in clinical and preclinical ophthalmologic studies, describing the qualitative and quantitative information that may be extracted and how this may inform on ocular pathophysiology. PMID:23112569

  14. Acquisition method improvement for Bossa Nova Technologies' full Stokes, passive polarization imaging camera SALSA

    NASA Astrophysics Data System (ADS)

    El Ketara, M.; Vedel, M.; Breugnot, S.

    2016-05-01

    For some applications, the need for fast polarization acquisition is essential (if the scene observed is moving or changing quickly). In this paper, we present a new acquisition method for Bossa Nova Technologies' full Stokes passive polarization imaging camera, the SALSA. This polarization imaging camera is based on "Division of Time polarimetry" architecture. The use of this technique presents the advantage of preserving the full resolution of the image observed all the while reducing the speed acquisition time. The goal of this new acquisition method is to overcome the limitations associated with Division of Time acquisition technique as well as to obtain high-speed polarization imaging while maintaining the image resolution. The efficiency of this new method is demonstrated in this paper through different experiments.

  15. Applications Of Digital Image Acquisition In Anthropometry

    NASA Astrophysics Data System (ADS)

    Woolford, Barbara; Lewis, James L.

    1981-10-01

    Anthropometric data on reach and mobility have traditionally been collected by time consuming and relatively inaccurate manual methods. Three dimensional digital image acquisition promises to radically increase the speed and ease of data collection and analysis. A three-camera video anthropometric system for collecting position, velocity, and force data in real time is under development for the Anthropometric Measurement Laboratory at NASA's Johnson Space Center. The use of a prototype of this system for collecting data on reach capabilities and on lateral stability is described. Two extensions of this system are planned.

  16. 77 FR 40552 - Federal Acquisition Regulation; Price Analysis Techniques

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Federal Acquisition Regulation; Price Analysis Techniques AGENCY: Department of Defense (DoD), General... clarify the use of a price analysis technique in order to establish a fair and reasonable price. DATES....404-1(b)(2) addresses various price analysis techniques and procedures the Government may use...

  17. Acoustic imaging systems (for robotic object acquisition)

    NASA Astrophysics Data System (ADS)

    Richardson, J. M.; Martin, J. F.; Marsh, K. A.; Schoenwald, J. S.

    1985-03-01

    The long-term objective of the effort is to establish successful approaches for 3D acoustic imaging of dense solid objects in air to provide the information required for acquisition and manipulation of these objects by a robotic system. The objective of this first year's work was to achieve and demonstrate the determination of the external geometry (shape) of such objects with a fixed sparse array of sensors, without the aid of geometrical models or extensive training procedures. Conventional approaches for acoustic imaging fall into two basic categories. The first category is used exclusively for dense solid objects. It involves echo-ranging from a large number of sensor positions, achieved either through the use of a larger array of transducers or through extensive physical scanning of a small array. This approach determines the distance to specular reflection points from each sensor position; with suitable processing an image can be inferred. The second category uses the full acoustic waveforms to provide an image, but is strictly applicable only to weak inhomogeneities. The most familiar example is medical imaging of the soft tissue portions of the body where the range of acoustic impedance is relatively small.

  18. Rapid brain MRI acquisition techniques at ultra-high fields.

    PubMed

    Setsompop, Kawin; Feinberg, David A; Polimeni, Jonathan R

    2016-09-01

    Ultra-high-field MRI provides large increases in signal-to-noise ratio (SNR) as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher-spatial-resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, there is a concurrent increased image-encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI - particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development - such as the move from conventional 2D slice-by-slice imaging to more efficient simultaneous multislice (SMS) or multiband imaging (which can be viewed as "pseudo-3D" encoding) as well as full 3D imaging - have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multichannel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26835884

  19. 78 FR 37690 - Federal Acquisition Regulation; Price Analysis Techniques

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... published a proposed rule in the Federal Register at 77 FR 40552 on July 10, 2012, to clarify and pinpoint a... Federal Acquisition Regulation; Price Analysis Techniques AGENCY: Department of Defense (DoD), General... clarify and give a precise reference in the use of a price analysis technique in order to establish a...

  20. Impacts of Vocabulary Acquisition Techniques Instruction on Students' Learning

    ERIC Educational Resources Information Center

    Orawiwatnakul, Wiwat

    2011-01-01

    The objectives of this study were to determine how the selected vocabulary acquisition techniques affected the vocabulary ability of 35 students who took EN 111 and investigate their attitudes towards the techniques instruction. The research study was one-group pretest and post-test design. The instruments employed were in-class exercises…

  1. Advanced radiographic imaging techniques.

    NASA Technical Reports Server (NTRS)

    Beal, J. B.; Brown, R. L.

    1973-01-01

    Examination of the nature and operational constraints of conventional X-radiographic and neutron imaging methods, providing a foundation for a discussion of advanced radiographic imaging systems. Two types of solid-state image amplifiers designed to image X rays are described. Operational theory, panel construction, and performance characteristics are discussed. A closed-circuit television system for imaging neutrons is then described and the system design, operational theory, and performance characteristics are outlined. Emphasis is placed on a description of the advantages of these imaging systems over conventional methods.

  2. Future image acquisition trends for PET/MRI.

    PubMed

    Boss, Andreas; Weiger, Markus; Wiesinger, Florian

    2015-05-01

    Hybrid PET/MRI scanners have become commercially available in the past years but are not yet widely distributed. The combination of a state-of-the-art PET with a state-of-the-art MRI scanner provides numerous potential advantages compared with the established PET/CT hybrid systems, namely, increased soft tissue contrast; functional information from MRI such as diffusion, perfusion, and blood oxygenation level-dependent techniques; true multiplanar data acquisition; and reduced radiation exposure. On the contrary, current PET/MRI technology is hampered by several shortcomings compared with PET/CT, the most important issues being how to use MR data for PET attenuation correction and the low sensitivity of MRI for small-scale pulmonary pathologies compared with high-resolution CT. Moreover, the optimal choice for hybrid PET/MRI acquisition protocols needs to be defined providing the highest possible degree of sensitivity and specificity within the constraints of the available measurement time. A multitude of new acquisition strategies of PET and MRI not only offer to overcome current obstacles of hybrid PET/MRI but also provide deeper insights into the pathophysiology of oncological, inflammatory, or degenerative diseases from the combination of molecular and functional imaging techniques. PMID:25841275

  3. A novel time stamping technique for distributed data acquisition systems.

    PubMed

    Subramaniam, E T

    2012-12-01

    In this paper, we discuss the design and implementation of a synchronizing technique for data acquisition systems, which can effectively use the normal, standard local area network cables to provide a time stamp, with a range up to 32 days, resolution of 10 ns, and synchronization within ± 5 ns. This system may be used to synchronize data being collected by independent heterogeneous data acquisition modules, that acquire events independently. Such distributed systems are generally designed with a tree-like structure or independent self-triggered acquisition boxes. These leaf edges are connected through branches to the root node, via non-bus based inter-connecting links. The present system has been tested with a set of self-triggered digital signal processing based data acquisition engines, having a 100 MHz analog to digital converter front end. PMID:23277988

  4. Sensor image prediction techniques

    NASA Astrophysics Data System (ADS)

    Stenger, A. J.; Stone, W. R.; Berry, L.; Murray, T. J.

    1981-02-01

    The preparation of prediction imagery is a complex, costly, and time consuming process. Image prediction systems which produce a detailed replica of the image area require the extensive Defense Mapping Agency data base. The purpose of this study was to analyze the use of image predictions in order to determine whether a reduced set of more compact image features contains enough information to produce acceptable navigator performance. A job analysis of the navigator's mission tasks was performed. It showed that the cognitive and perceptual tasks he performs during navigation are identical to those performed for the targeting mission function. In addition, the results of the analysis of his performance when using a particular sensor can be extended to the analysis of this mission tasks using any sensor. An experimental approach was used to determine the relationship between navigator performance and the type of amount of information in the prediction image. A number of subjects were given image predictions containing varying levels of scene detail and different image features, and then asked to identify the predicted targets in corresponding dynamic flight sequences over scenes of cultural, terrain, and mixed (both cultural and terrain) content.

  5. SPECTRAL IMAGING TECHNIQUES FOR GRAIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three spectral imaging techniques were employed for the purpose of assessing the quality of cereal grains. Each of these techniques provided unique, yet complementary, information. Nuclear magnetic resonance (NMR), also called magnetic resonance imaging (MRI), was used to detect mobile components ...

  6. Graphical user interface for image acquisition and processing

    DOEpatents

    Goldberg, Kenneth A.

    2002-01-01

    An event-driven GUI-based image acquisition interface for the IDL programming environment designed for CCD camera control and image acquisition directly into the IDL environment where image manipulation and data analysis can be performed, and a toolbox of real-time analysis applications. Running the image acquisition hardware directly from IDL removes the necessity of first saving images in one program and then importing the data into IDL for analysis in a second step. Bringing the data directly into IDL creates an opportunity for the implementation of IDL image processing and display functions in real-time. program allows control over the available charge coupled device (CCD) detector parameters, data acquisition, file saving and loading, and image manipulation and processing, all from within IDL. The program is built using IDL's widget libraries to control the on-screen display and user interface.

  7. Psycholinguistic Techniques and Resources in Second Language Acquisition Research

    ERIC Educational Resources Information Center

    Roberts, Leah

    2012-01-01

    In this article, a survey of current psycholinguistic techniques relevant to second language acquisition (SLA) research is presented. I summarize many of the available methods and discuss their use with particular reference to two critical questions in current SLA research: (1) What does a learner's current knowledge of the second language (L2)…

  8. Camera settings for UAV image acquisition

    NASA Astrophysics Data System (ADS)

    O'Connor, James; Smith, Mike J.; James, Mike R.

    2016-04-01

    The acquisition of aerial imagery has become more ubiquitous than ever in the geosciences due to the advent of consumer-grade UAVs capable of carrying imaging devices. These allow the collection of high spatial resolution data in a timely manner with little expertise. Conversely, the cameras/lenses used to acquire this imagery are often given less thought, and can be unfit for purpose. Given weight constraints which are frequently an issue with UAV flights, low-payload UAVs (<1 kg) limit the types of cameras/lenses which could potentially be used for specific surveys, and therefore the quality of imagery which can be acquired. This contribution discusses these constraints, which need to be considered when selecting a camera/lens for conducting a UAV survey and how they can best be optimized. These include balancing of the camera exposure triangle (ISO, Shutter speed, Aperture) to ensure sharp, well exposed imagery, and its interactions with other camera parameters (Sensor size, Focal length, Pixel pitch) as well as UAV flight parameters (height, velocity).

  9. Update on imaging techniques in oculoplastics

    PubMed Central

    Cetinkaya, Altug

    2012-01-01

    Imaging is a beneficial aid to the oculoplastic surgeon especially in orbital and lacrimal disorders when the pathology is not visible from outside. It is a powerful tool that may be benefited in not only diagnosis but also management and follow-up. The most common imaging modalities required are CT and MRI, with CT being more frequently ordered by oculoplastic surgeons. Improvements in technology enabled the acquisition times to shorten incredibly. Radiologists can now obtain images with superb resolution, and isolate the site and tissue of interest from other structures with special techniques. Better contrast agents and 3D imaging capabilities make complicated cases easier to identify. Color Doppler imaging is becoming more popular both for research and clinical purposes. Magnetic resonance angiography (MRA) added so much to the vascular system imaging recently. Although angiography is still the gold standard, new software and techniques rendered MRA as valuable as angiography in most circumstances. Stereotactic navigation, although in use for a long time, recently became the focus of interest for the oculoplastic surgeon especially in orbital decompressions. Improvements in radiology and nuclear medicine techniques of lacrimal drainage system imaging provided more detailed analysis of the system. PMID:23961020

  10. Age of Acquisition and Imageability: A Cross-Task Comparison

    ERIC Educational Resources Information Center

    Ploetz, Danielle M.; Yates, Mark

    2016-01-01

    Previous research has reported an imageability effect on visual word recognition. Words that are high in imageability are recognised more rapidly than are those lower in imageability. However, later researchers argued that imageability was confounded with age of acquisition. In the current research, these two factors were manipulated in a…

  11. Reproducible high-resolution multispectral image acquisition in dermatology

    NASA Astrophysics Data System (ADS)

    Duliu, Alexandru; Gardiazabal, José; Lasser, Tobias; Navab, Nassir

    2015-07-01

    Multispectral image acquisitions are increasingly popular in dermatology, due to their improved spectral resolution which enables better tissue discrimination. Most applications however focus on restricted regions of interest, imaging only small lesions. In this work we present and discuss an imaging framework for high-resolution multispectral imaging on large regions of interest.

  12. The analysis of image acquisition in LabVIEW

    NASA Astrophysics Data System (ADS)

    Xu, Wuni; Zhong, Lanxiang

    2011-06-01

    In this paper, four methods of image acquisition in LabVIEW were described, and its realization principles and the procedures in combination with different hardware architectures were illustrated in the virtual instrument laboratory. Experiment results show that the methods of image acquisition in LabVIEW have many advantages such as easier configuration, lower complexity and stronger practicability than in VB and C++. Thus the methods are fitter to set the foundation for image processing, machine vision, pattern recognition research.

  13. EDITORIAL: Imaging Systems and Techniques Imaging Systems and Techniques

    NASA Astrophysics Data System (ADS)

    Giakos, George; Yang, Wuqiang; Petrou, M.; Nikita, K. S.; Pastorino, M.; Amanatiadis, A.; Zentai, G.

    2011-10-01

    This special feature on Imaging Systems and Techniques comprises 27 technical papers, covering essential facets in imaging systems and techniques both in theory and applications, from research groups spanning three different continents. It mainly contains peer-reviewed articles from the IEEE International Conference on Imaging Systems and Techniques (IST 2011), held in Thessaloniki, Greece, as well a number of articles relevant to the scope of this issue. The multifaceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment, and the technological revolution; there is an urgent need to address and propose dynamic and innovative solutions to problems that tend to be either complex and static or rapidly evolving with a lot of unknowns. For instance, exploration of the engineering and physical principles of new imaging systems and techniques for medical applications, remote sensing, monitoring of space resources and enhanced awareness, exploration and management of natural resources, and environmental monitoring, are some of the areas that need to be addressed with urgency. Similarly, the development of efficient medical imaging techniques capable of providing physiological information at the molecular level is another important area of research. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, using high resolution and high selectivity nanoimaging techniques, can play an important role in the diagnosis and treatment of cancer, as well as provide efficient drug-delivery imaging solutions for disease treatment with increased sensitivity and specificity. On the other hand, technical advances in the development of efficient digital imaging systems and techniques and tomographic devices operating on electric impedance tomography, computed tomography, single-photon emission and positron emission tomography detection principles are anticipated to have a significant impact on a

  14. Automated medical image segmentation techniques

    PubMed Central

    Sharma, Neeraj; Aggarwal, Lalit M.

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images. PMID:20177565

  15. Automatic image acquisition processor and method

    DOEpatents

    Stone, William J.

    1986-01-01

    A computerized method and point location system apparatus is disclosed for ascertaining the center of a primitive or fundamental object whose shape and approximate location are known. The technique involves obtaining an image of the object, selecting a trial center, and generating a locus of points having a predetermined relationship with the center. Such a locus of points could include a circle. The number of points overlying the object in each quadrant is obtained and the counts of these points per quadrant are compared. From this comparison, error signals are provided to adjust the relative location of the trial center. This is repeated until the trial center overlies the geometric center within the predefined accuracy limits.

  16. Automatic image acquisition processor and method

    DOEpatents

    Stone, W.J.

    1984-01-16

    A computerized method and point location system apparatus is disclosed for ascertaining the center of a primitive or fundamental object whose shape and approximate location are known. The technique involves obtaining an image of the object, selecting a trial center, and generating a locus of points having a predetermined relationship with the center. Such a locus of points could include a circle. The number of points overlying the object in each quadrant is obtained and the counts of these points per quadrant are compared. From this comparison, error signals are provided to adjust the relative location of the trial center. This is repeated until the trial center overlies the geometric center within the predefined accuracy limits.

  17. Slow gantry rotation acquisition technique for on-board four-dimensional digital tomosynthesis

    SciTech Connect

    Maurer, Jacqueline; Pan Tinsu; Yin, Fang-Fang

    2010-02-15

    Purpose: Four-dimensional cone-beam computed tomography (4D CBCT) has been investigated for motion imaging in the radiotherapy treatment room. The drawbacks of 4D CBCT are long scan times and high imaging doses. The aims of this study were to develop and investigate a slow gantry rotation acquisition protocol for four-dimensional digital tomosynthesis (4D DTS) as a faster, lower dose alternative to 4D CBCT. Methods: This technique was implemented using an On-Board Imager kV imaging system (Varian Medical Systems, Palo Alto, CA) mounted on the gantry of a linear accelerator. The general procedure for 4D DTS imaging using slow gantry rotation acquisition consists of the following steps: (1) acquire projections over a limited gantry rotation angle in a single motion with constant frame rate and gantry rotation speed; (2) generate a respiratory signal and temporally match projection images with appropriate points from the respiratory signal; (3) use the respiratory signal to assign phases to each of the projection images; (4) sort projection images into phase bins; and (5) reconstruct phase images. Phantom studies were conducted to validate theoretically derived relationships between acquisition and respiratory parameters. Optimization of acquisition parameters was then conducted by simulating lung scans using patient data. Lung tumors with approximate volumes ranging from 0.12 to 1.53 cm{sup 3} were studied. Results: A protocol for slow gantry rotation 4D DTS was presented. Equations were derived to express relationships between acquisition parameters (frame rate, phase window, and angular intervals between projections), respiratory cycle durations, and resulting acquisition times and numbers of projections. The phantom studies validated the relationships, and the patient studies resulted in determinations of appropriate acquisition parameters. The phase window must be set according to clinical goals. For 10% phase windows, we found that appropriate frame rates

  18. Simultaneous acquisition of differing image types

    DOEpatents

    Demos, Stavros G

    2012-10-09

    A system in one embodiment includes an image forming device for forming an image from an area of interest containing different image components; an illumination device for illuminating the area of interest with light containing multiple components; at least one light source coupled to the illumination device, the at least one light source providing light to the illumination device containing different components, each component having distinct spectral characteristics and relative intensity; an image analyzer coupled to the image forming device, the image analyzer decomposing the image formed by the image forming device into multiple component parts based on type of imaging; and multiple image capture devices, each image capture device receiving one of the component parts of the image. A method in one embodiment includes receiving an image from an image forming device; decomposing the image formed by the image forming device into multiple component parts based on type of imaging; receiving the component parts of the image; and outputting image information based on the component parts of the image. Additional systems and methods are presented.

  19. Angular Differential Imaging: a Powerful High-Contrast Imaging Technique

    SciTech Connect

    Marois, C; Lafreniere, D; Doyon, R; Macintosh, B; Nadeau, D

    2005-11-07

    Angular differential imaging is a high-contrast imaging technique that reduces speckle noise from quasi-static optical aberrations and facilitates the detection of faint nearby companions. A sequence of images is acquired with an altitude/azimuth telescope, the instrument rotator being turned off. This keeps the instrument and telescope optics aligned, stabilizes the instrumental PSF and allows the field of view to rotate with respect to the instrument. For each image, a reference PSF obtained from other images of the sequence is subtracted. All residual images are then rotated to align the field and are median combined. Observed performances are reported for Gemini Altair/NIRI data. Inside the speckle dominated region of the PSF, it is shown that quasi-static PSF noise can be reduced by a factor {approx}5 for each image subtraction. The combination of all residuals then provides an additional gain of the order of the square root of the total number of images acquired. To our knowledge, this is the first time an acquisition strategy and reduction pipeline designed for speckle attenuation and high contrast imaging is demonstrated to significantly get better detection limits with longer integration times at all angular separations. A PSF noise attenuation of 100 was achieved from 2-hour long sequences of images of Vega, reaching a 5-sigma contrast of 20 magnitudes for separations greater than 7''. This technique can be used with currently available instruments to search for {approx} 1 M{sub Jup} exoplanets with orbits of radii between 50 and 300 AU around nearby young stars. The possibility of combining the technique with other high-contrast imaging methods is briefly discussed.

  20. Urologic imaging and interventional techniques

    SciTech Connect

    Bush, W.H.

    1989-01-01

    This book provides an overview of all imaging modalities and invasive techniques of the genitourinary system. Three general chapters discuss ionic and nonionic contrast media, the management of reactions to contrast media, and radiation doses from various uroradiologic procedures. Chapters are devoted to intravenous pyelography, computed tomography, magnetic resonance imaging, ultrasound, nuclear medicine, lymphography, arteriography, and venography. Two chapters discuss the pediatric applications of uroradiology and ultrasound. Two chapters integrate the various imaging techniques of the upper and lower genitourinary systems into an algorithmic approach for various pathologic entities.

  1. EDITORIAL: Imaging systems and techniques Imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George; Nikita, Konstantina; Pastorino, Matteo; Karras, Dimitrios

    2009-10-01

    The papers in this special issue focus on providing the state-of-the-art approaches and solutions to some of the most challenging imaging areas, such as the design, development, evaluation and applications of imaging systems, measuring techniques, image processing algorithms and instrumentation, with an ultimate aim of enhancing the measurement accuracy and image quality. This special issue explores the principles, engineering developments and applications of new imaging systems and techniques, and encourages broad discussion of imaging methodologies, shaping the future and identifying emerging trends. The multi-faceted field of imaging requires drastic adaptation to the rapid changes in our society, economy, environment and technological evolution. There is an urgent need to address new problems, which tend to be either static but complex, or dynamic, e.g. rapidly evolving with time, with many unknowns, and to propose innovative solutions. For instance, the battles against cancer and terror, monitoring of space resources and enhanced awareness, management of natural resources and environmental monitoring are some of the areas that need to be addressed. The complexity of the involved imaging scenarios and demanding design parameters, e.g. speed, signal-to-noise ratio (SNR), specificity, contrast, spatial resolution, scatter rejection, complex background and harsh environments, necessitate the development of a multi-functional, scalable and efficient imaging suite of sensors, solutions driven by innovation, and operation on diverse detection and imaging principles. Efficient medical imaging techniques capable of providing physiological information at the molecular level present another important research area. Advanced metabolic and functional imaging techniques, operating on multiple physical principles, and using high-resolution, high-selectivity nano-imaging methods, quantum dots, nanoparticles, biomarkers, nanostructures, nanosensors, micro-array imaging chips

  2. Image acquisition in the Pi-of-the-Sky project

    NASA Astrophysics Data System (ADS)

    Jegier, M.; Nawrocki, K.; Poźniak, K.; Sokołowski, M.

    2006-10-01

    Modern astronomical image acquisition systems dedicated for sky surveys provide large amount of data in a single measurement session. During one session that lasts a few hours it is possible to get as much as 100 GB of data. This large amount of data needs to be transferred from camera and processed. This paper presents some aspects of image acquisition in a sky survey image acquisition system. It describes a dedicated USB linux driver for the first version of the "Pi of The Sky" CCD camera (later versions have also Ethernet interface) and the test program for the camera together with a driver-wrapper providing core device functionality. Finally, the paper contains description of an algorithm for matching several images based on image features, i.e. star positions and their brightness.

  3. Towards a Platform for Image Acquisition and Processing on RASTA

    NASA Astrophysics Data System (ADS)

    Furano, Gianluca; Guettache, Farid; Magistrati, Giorgio; Tiotto, Gabriele

    2013-08-01

    This paper presents the architecture of a platform for image acquisition and processing based on commercial hardware and space qualified hardware. The aim is to extend the Reference Architecture Test-bed for Avionics (RASTA) system in order to obtain a Test-bed that allows testing different hardware and software solutions in the field of image acquisition and processing. The platform will allow the integration of space qualified hardware and Commercial Off The Shelf (COTS) hardware in order to test different architectural configurations. The first implementation is being performed on a low cost commercial board and on the GR712RC board based on the Dual Core Leon3 fault tolerant processor. The platform will include an actuation module with the aim of implementing a complete pipeline from image acquisition to actuation, making possible the simulation of a real case scenario involving acquisition and actuation.

  4. Run control techniques for the Fermilab DART data acquisition system

    SciTech Connect

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-10-01

    DART is the high speed, Unix based data acquisition system being developed by the Fermilab Computing Division in collaboration with eight High Energy Physics Experiments. This paper describes DART run-control which implements flexible, distributed, extensible and portable paradigms for the control and monitoring of data acquisition systems. We discuss the unique and interesting aspects of the run-control - why we chose the concepts we did, the benefits we have seen from the choices we made, as well as our experiences in deploying and supporting it for experiments during their commissioning and sub-system testing phases. We emphasize the software and techniques we believe are extensible to future use, and potential future modifications and extensions for those we feel are not.

  5. Chemical Applications of a Programmable Image Acquisition System

    NASA Astrophysics Data System (ADS)

    Ogren, Paul J.; Henry, Ian; Fletcher, Steven E. S.; Kelly, Ian

    2003-06-01

    Image analysis is widely used in chemistry, both for rapid qualitative evaluations using techniques such as thin layer chromatography (TLC) and for quantitative purposes such as well-plate measurements of analyte concentrations or fragment-size determinations in gel electrophoresis. This paper describes a programmable system for image acquisition and processing that is currently used in the laboratories of our organic and physical chemistry courses. It has also been used in student research projects in analytical chemistry and biochemistry. The potential range of applications is illustrated by brief presentations of four examples: (1) using well-plate optical transmission data to construct a standard concentration absorbance curve; (2) the quantitative analysis of acetaminophen in Tylenol and acetylsalicylic acid in aspirin using TLC with fluorescence detection; (3) the analysis of electrophoresis gels to determine DNA fragment sizes and amounts; and, (4) using color change to follow reaction kinetics. The supplemental material in JCE Online contains information on two additional examples: deconvolution of overlapping bands in protein gel electrophoresis, and the recovery of data from published images or graphs. The JCE Online material also presents additional information on each example, on the system hardware and software, and on the data analysis methodology.

  6. MR imaging of ore for heap bioleaching studies using pure phase encode acquisition methods

    NASA Astrophysics Data System (ADS)

    Fagan, Marijke A.; Sederman, Andrew J.; Johns, Michael L.

    2012-03-01

    Various MRI techniques were considered with respect to imaging of aqueous flow fields in low grade copper ore. Spin echo frequency encoded techniques were shown to produce unacceptable image distortions which led to pure phase encoded techniques being considered. Single point imaging multiple point acquisition (SPI-MPA) and spin echo single point imaging (SESPI) techniques were applied. By direct comparison with X-ray tomographic images, both techniques were found to be able to produce distortion-free images of the ore packings at 2 T. The signal to noise ratios (SNRs) of the SESPI images were found to be superior to SPI-MPA for equal total acquisition times; this was explained based on NMR relaxation measurements. SESPI was also found to produce suitable images for a range of particles sizes, whereas SPI-MPA SNR deteriorated markedly as particles size was reduced. Comparisons on a 4.7 T magnet showed significant signal loss from the SPI-MPA images, the effect of which was accentuated in the case of unsaturated flowing systems. Hence it was concluded that SESPI was the most robust imaging method for the study of copper ore heap leaching hydrology.

  7. Diagnostic cardiology: Noninvasive imaging techniques

    SciTech Connect

    Come, P.C.

    1985-01-01

    This book contains 23 chapters. Some of the chapter titles are: The chest x-ray and cardiac series; Computed tomographic scanning of the heart, coronary arteries, and great vessels; Digital subtraction angiography in the assessment of cardiovascular disease; Magnetic resonance: technique and cardiac applications; Basics of radiation physics and instrumentation; and Nuclear imaging: the assessment of cardiac performance.

  8. Image Acquisition and Quality in Digital Radiography.

    PubMed

    Alexander, Shannon

    2016-09-01

    Medical imaging has undergone dramatic changes and technological breakthroughs since the introduction of digital radiography. This article presents information on the development of digital radiography and types of digital radiography systems. Aspects of image quality and radiation exposure control are highlighted as well. In addition, the article includes related workplace changes and medicolegal considerations in the digital radiography environment. PMID:27601691

  9. Data acquisition and preprocessing techniques for remote sensing field research

    NASA Technical Reports Server (NTRS)

    Biehl, L. L.; Robinson, B. F.

    1983-01-01

    A crops and soils data base has been developed at Purdue University's Laboratory for Applications of Remote Sensing using spectral and agronomic measurements made by several government and university researchers. The data are being used to (1) quantitatively determine the relationships of spectral and agronomic characteristics of crops and soils, (2) define future sensor systems, and (3) develop advanced data analysis techniques. Researchers follow defined data acquisition and preprocessing techniques to provide fully annotated and calibrated sets of spectral, agronomic, and meteorological data. These procedures enable the researcher to combine his data with that acquired by other researchers for remote sensing research. The key elements or requirements for developing a field research data base of spectral data that can be transported across sites and years are appropriate experiment design, accurate spectral data calibration, defined field procedures, and through experiment documentation.

  10. Fast Imaging Technique for fMRI: Consecutive Multishot Echo Planar Imaging Accelerated with GRAPPA Technique

    PubMed Central

    Kang, Daehun; Sung, Yul-Wan; Kang, Chang-Ki

    2015-01-01

    This study was to evaluate the proposed consecutive multishot echo planar imaging (cmsEPI) combined with a parallel imaging technique in terms of signal-to-noise ratio (SNR) and acceleration for a functional imaging study. We developed cmsEPI sequence using both consecutively acquired multishot EPI segments and variable flip angles to minimize the delay between segments and to maximize the SNR, respectively. We also combined cmsEPI with the generalized autocalibrating partially parallel acquisitions (GRAPPA) method. Temporal SNRs were measured at different acceleration factors and number of segments for functional sensitivity evaluation. We also examined the geometric distortions, which inherently occurred in EPI sequence. The practical acceleration factors, R = 2 or R = 3, of the proposed technique improved the temporal SNR by maximally 18% in phantom test and by averagely 8.2% in in vivo experiment, compared to cmsEPI without parallel imaging. The data collection time was decreased in inverse proportion to the acceleration factor as well. The improved temporal SNR resulted in better statistical power when evaluated on the functional response of the brain. In this study, we demonstrated that the combination of cmsEPI with the parallel imaging technique could provide the improved functional sensitivity for functional imaging study, compensating for the lower SNR by cmsEPI. PMID:26413518

  11. Evaluation of a variable dose acquisition technique for microcalcification and mass detection in digital breast tomosynthesis

    SciTech Connect

    Das, Mini; Gifford, Howard C.; O'Connor, J. Michael; Glick, Stephen J.

    2009-06-15

    In this article the authors evaluate a recently proposed variable dose (VD)-digital breast tomosynthesis (DBT) acquisition technique in terms of the detection accuracy for breast masses and microcalcification (MC) clusters. With this technique, approximately half of the total dose is used for one center projection and the remaining dose is split among the other tomosynthesis projection views. This acquisition method would yield both a projection view and a reconstruction view. One of the aims of this study was to evaluate whether the center projection alone of the VD acquisition can provide equal or superior MC detection in comparison to the 3D images from uniform dose (UD)-DBT. Another aim was to compare the mass-detection capabilities of 3D reconstructions from VD-DBT and UD-DBT. In a localization receiver operating characteristic (LROC) observer study of MC detection, the authors compared the center projection of a VD acquisition scheme (at 2 mGy dose) with detector pixel size of 100 {mu}m with the UD-DBT reconstruction (at 4 mGy dose) obtained with a voxel size of 100 {mu}m. MCs with sizes of 150 and 180 {mu}m were used in the study, with each cluster consisting of seven MCs distributed randomly within a small volume. Reconstructed images in UD-DBT were obtained from a projection set that had a total of 4 mGy dose. The current study shows that for MC detection, using the center projection alone of VD acquisition scheme performs worse with area under the LROC curve (A{sub L}) of 0.76 than when using the 3D reconstructed image using the UD acquisition scheme (A{sub L}=0.84). A 2D ANOVA found a statistically significant difference (p=0.038) at a significance level of 0.05. In the current study, although a reconstructed image was also available using the VD acquisition scheme, it was not used to assist the MC detection task which was done using the center projection alone. In the case of evaluation of detection accuracy of masses, the reconstruction with VD-DBT (A

  12. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  13. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  14. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    PubMed Central

    Li, Xiangwei; Lan, Xuguang; Yang, Meng; Xue, Jianru; Zheng, Nanning

    2014-01-01

    Compressive Sensing Imaging (CSI) is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS) acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4∼2 dB comparing with current state-of-the-art, while maintaining a low computational complexity. PMID:25490597

  15. Influence of acquisition parameters on MV-CBCT image quality.

    PubMed

    Gayou, Olivier

    2012-01-01

    The production of high quality pretreatment images plays an increasing role in image-guided radiotherapy (IGRT) and adaptive radiation therapy (ART). Megavoltage cone-beam computed tomography (MV-CBCT) is the simplest solution of all the commercially available volumetric imaging systems for localization. It also suffers the most from relatively poor contrast due to the energy range of the imaging photons. Several avenues can be investigated to improve MV-CBCT image quality while maintaining an acceptable patient exposure: beam generation, detector technology, reconstruction parameters, and acquisition parameters. This article presents a study of the effects of the acquisition scan length and number of projections of a Siemens Artiste MV-CBCT system on image quality within the range provided by the manufacturer. It also discusses other aspects not related to image quality one should consider when selecting an acquisition protocol. Noise and uniformity were measured on the image of a cylindrical water phantom. Spatial resolution was measured using the same phantom half filled with water to provide a sharp water/air interface to derive the modulation transfer function (MTF). Contrast-to-noise ratio (CNR) was measured on a pelvis-shaped phantom with four inserts of different electron densities relative to water (1.043, 1.117, 1.513, and 0.459). Uniformity was independent of acquisition protocol. Noise decreased from 1.96% to 1.64% when the total number of projections was increased from 100 to 600 for a total exposure of 13.5 MU. The CNR showed a ± 5% dependence on the number of projections and 10% dependence on the scan length. However, these variations were not statistically significant. The spatial resolution was unaffected by the arc length or the sampling rate. Acquisition parameters have little to no effect on the image quality of the MV-CBCT system within the range of parameters available on the system. Considerations other than image quality, such as memory

  16. Superimposed fringe projection for three-dimensional shape acquisition by image analysis

    SciTech Connect

    Sasso, Marco; Chiappini, Gianluca; Palmieri, Giacomo; Amodio, Dario

    2009-05-01

    The aim in this work is the development of an image analysis technique for 3D shape acquisition, based on luminous fringe projections. In more detail, the method is based on the simultaneous use of several projectors, which is desirable whenever the surface under inspection has a complex geometry, with undercuts or shadow areas. In these cases, the usual fringe projection technique needs to perform several acquisitions, each time moving the projector or using several projectors alternately. Besides the procedure of fringe projection and phase calculation, an unwrap algorithm has been developed in order to obtain continuous phase maps needed in following calculations for shape extraction. With the technique of simultaneous projections, oriented in such a way to cover all of the surface, it is possible to increase the speed of the acquisition process and avoid the postprocessing problems related to the matching of different point clouds.

  17. CCD image acquisition for multispectral teledetection

    NASA Astrophysics Data System (ADS)

    Peralta-Fabi, R.; Peralta, A.; Prado, Jorge M.; Vicente, Esau; Navarette, M.

    1992-08-01

    A low cost high-reliability multispectral video system has been developed for airborne remote sensing. Three low weight CCD cameras are mounted together with a photographic camera in a keviar composite self-contained structure. The CCD cameras are remotely controlled have spectral filters (80 nm at 50 T) placed in front of their optical system and all cameras are aligned to capture the same image field. Filters may be changed so as to adjust spectral bands according to the object s reflectance properties but a set of bands common to most remote sensing aircraft and satellites are usually placed covering visible and near JR. This paper presents results obtained with this system and some comparisons as to the cost resolution and atmospheric correction advantages with respect to other more costly devices. Also a brief description of the Remotely Piloted Vehicle (RPV) project where the camera system will be mounted is given. The images so obtained replace the costlier ones obtained by satellites in severai specific applications. Other applications under development include fire monitoring identification of vegetation in the field and in the laboratory discrimination of objects by color for industrial applications and for geological and engineering surveys. 1.

  18. Using image processing techniques on proximity probe signals in rotordynamics

    NASA Astrophysics Data System (ADS)

    Diamond, Dawie; Heyns, Stephan; Oberholster, Abrie

    2016-06-01

    This paper proposes a new approach to process proximity probe signals in rotordynamic applications. It is argued that the signal be interpreted as a one dimensional image. Existing image processing techniques can then be used to gain information about the object being measured. Some results from one application is presented. Rotor blade tip deflections can be calculated through localizing phase information in this one dimensional image. It is experimentally shown that the newly proposed method performs more accurately than standard techniques, especially where the sampling rate of the data acquisition system is inadequate by conventional standards.

  19. Digital image acquisition in in vivo confocal microscopy.

    PubMed

    Petroll, W M; Cavanagh, H D; Lemp, M A; Andrews, P M; Jester, J V

    1992-01-01

    A flexible system for the real-time acquisition of in vivo images has been developed. Images are generated using a tandem scanning confocal microscope interfaced to a low-light-level camera. The video signal from the camera is digitized and stored using a Gould image processing system with a real-time digital disk (RTDD). The RTDD can store up to 3200 512 x 512 pixel images at video rates (30 images s-1). Images can be input directly from the camera during the study, or off-line from a Super VHS video recorder. Once a segment of experimental interest is digitized onto the RTDD, the user can interactively step through the images, average stable sequences, and identify candidates for further processing and analysis. Examples of how this system can be used to study the physiology of various organ systems in vivo are presented. PMID:1552573

  20. Radio reflection imaging of asteroid and comet interiors I: Acquisition and imaging theory

    NASA Astrophysics Data System (ADS)

    Sava, Paul; Ittharat, Detchai; Grimm, Robert; Stillman, David

    2015-05-01

    Imaging the interior structure of comets and asteroids can provide insight into their formation in the early Solar System, and can aid in their exploration and hazard mitigation. Accurate imaging can be accomplished using broadband wavefield data penetrating deep inside the object under investigation. This can be done in principle using seismic systems (which is difficult since it requires contact with the studied object), or using radar systems (which is easier since it can be conducted from orbit). We advocate the use of radar systems based on instruments similar to the ones currently deployed in space, e.g. the CONSERT experiment of the Rosetta mission, but perform imaging using data reflected from internal interfaces, instead of data transmitted through the imaging object. Our core methodology is wavefield extrapolation using time-domain finite differences, a technique often referred to as reverse-time migration and proven to be effective in high-quality imaging of complex geologic structures. The novelty of our approach consists in the use of dual orbiters around the studied object, instead of an orbiter and a lander. Dual orbiter systems can provide multi-offset data that illuminate the target object from many different illumination angles. Multi-offset data improve image quality (a) by avoiding illumination shadows, (b) by attenuating coherent noise (image artifacts) caused by wavefield multi-pathing, and (c) by providing information necessary to infer the model parameters needed to simulate wavefields inside the imaging target. The images obtained using multi-offset are robust with respect to instrument noise comparable in strength with the reflected signal. Dual-orbiter acquisition leads to improved image quality which is directly dependent on the aperture between the transmitter and receiver antennas. We illustrate the proposed methodology using a complex model based on a scaled version of asteroid 433 Eros.

  1. Effect of temporal acquisition parameters on image quality of strain time constant elastography.

    PubMed

    Nair, Sanjay; Varghese, Joshua; Chaudhry, Anuj; Righetti, Raffaella

    2015-04-01

    Ultrasound methods to image the time constant (TC) of elastographic tissue parameters have been recently developed. Elastographic TC images from creep or stress relaxation tests have been shown to provide information on the viscoelastic and poroelastic behavior of tissues. However, the effect of temporal ultrasonic acquisition parameters and input noise on the image quality of the resultant strain TC elastograms has not been fully investigated yet. Understanding such effects could have important implications for clinical applications of these novel techniques. This work reports a simulation study aimed at investigating the effects of varying windows of observation, acquisition frame rate, and strain signal-to-noise ratio (SNR) on the image quality of elastographic TC estimates. A pilot experimental study was used to corroborate the simulation results in specific testing conditions. The results of this work suggest that the total acquisition time necessary for accurate strain TC estimates has a linear dependence to the underlying strain TC (as estimated from the theoretical strain-vs.-time curve). The results also indicate that it might be possible to make accurate estimates of the elastographic TC (within 10% error) using windows of observation as small as 20% of the underlying TC, provided sufficiently fast acquisition rates (>100 Hz for typical acquisition depths). The limited experimental data reported in this study statistically confirm the simulation trends, proving that the proposed model can be used as upper bound guidance for the correct execution of the experiments. PMID:24942645

  2. Applications of digital image acquisition in anthropometry

    NASA Technical Reports Server (NTRS)

    Woolford, B.; Lewis, J. L.

    1981-01-01

    A description is given of a video kinesimeter, a device for the automatic real-time collection of kinematic and dynamic data. Based on the detection of a single bright spot by three TV cameras, the system provides automatic real-time recording of three-dimensional position and force data. It comprises three cameras, two incandescent lights, a voltage comparator circuit, a central control unit, and a mass storage device. The control unit determines the signal threshold for each camera before testing, sequences the lights, synchronizes and analyzes the scan voltages from the three cameras, digitizes force from a dynamometer, and codes the data for transmission to a floppy disk for recording. Two of the three cameras face each other along the 'X' axis; the third camera, which faces the center of the line between the first two, defines the 'Y' axis. An image from the 'Y' camera and either 'X' camera is necessary for determining the three-dimensional coordinates of the point.

  3. Networks for image acquisition, processing and display

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.

    1990-01-01

    The human visual system comprises layers of networks which sample, process, and code images. Understanding these networks is a valuable means of understanding human vision and of designing autonomous vision systems based on network processing. Ames Research Center has an ongoing program to develop computational models of such networks. The models predict human performance in detection of targets and in discrimination of displayed information. In addition, the models are artificial vision systems sharing properties with biological vision that has been tuned by evolution for high performance. Properties include variable density sampling, noise immunity, multi-resolution coding, and fault-tolerance. The research stresses analysis of noise in visual networks, including sampling, photon, and processing unit noises. Specific accomplishments include: models of sampling array growth with variable density and irregularity comparable to that of the retinal cone mosaic; noise models of networks with signal-dependent and independent noise; models of network connection development for preserving spatial registration and interpolation; multi-resolution encoding models based on hexagonal arrays (HOP transform); and mathematical procedures for simplifying analysis of large networks.

  4. Applying Realtime Intelligence Acquisition Techniques To Problems In Resource Management

    NASA Astrophysics Data System (ADS)

    Greer, Jerry D.

    1989-02-01

    Most people see little similarity between a battlefield manager and a natural resource manager. However, except for the element of time, many striking similarities may be drawn. Indeed, there are more differences between the tranquil scenes of mountain scenery, forests, rivers or grasslands and bomb scarred battlefields where survival is often the prime objective. The similarities center around the basic need for information upon which good decisions may be made. Both managers of battlefields and of natural resources require accurate, timely, and continuous information about changing conditions. Based on this information, they each make decisions to conserve the materials and resources under their charge. Their common goal is to serve the needs of the people in their society. On the one hand, the goal is victory in battle to perpetuate a way of life or a political system. On the other, the goal is victory in an ongoing battle against fire, insects, disease, soil erosion, vandalism, theft, and misuse in general. Here, a desire to maintain natural resources in a productive and healthy condition prevails. The objective of the natural resource manager is to keep natural resources in such a condition that they will continue to meet the needs and wants of the people who claim them for their common good. In this paper, the different needs for information are compared and a little history of some of the quasi-military aspects of resource management is given. Needs for information are compared and current uses of data acquisition techniques are reviewed. Similarities and differences are discussed and future opportunities for cooperation in data acquisition are outlined.

  5. CCD image data acquisition system for optical astronomy.

    NASA Astrophysics Data System (ADS)

    Bhat, P. N.; Patnaik, K.; Kembhavi, A. K.; Patnaik, A. R.; Prabhu, T. P.

    1990-11-01

    A complete image processing system based on a charge coupled device (CCD) has been developed at TIFR, Bombay, for use in optical astronomy. The system consists of a P-8600/B GEC CCD chip, a CCD controller, a VAX 11/725 mini-computer to carry out the image acquisition and display on a VS-11 monitor. All the necessary software and part of the hardware were developed locally, integrated together and installed at the Vainu Bappu Observatory at Kavalur. CCD as an imaging device and its advantages over the conventional photographic plate is briefly reviewed. The acquisition system is described in detail. The preliminary results are presented and the future research programme is outlined.

  6. A digital imaging photometry system for cometary data acquisition

    NASA Technical Reports Server (NTRS)

    Clifton, K. S.; Benson, C. M.; Gary, G. A.

    1986-01-01

    This report describes a digital imaging photometry system developed in the Space Science Laboratory at the Marshall Space Flight center. The photometric system used for cometary data acquisition is based on an intensified secondary electron conduction (ISEC) vidicon coupled to a versatile data acquisition system which allows real-time interactive operation. Field tests on the Orion and Rosette nebulas indicate a limiting magnitude of approximately m sub v = 14 over the 40 arcmin field-of-view. Observations were conducted of Comet Giacobini-Zinner in August 1985. The resulting data are discussed in relation to the capabilities of the digital analysis system. The development program concluded on August 31, 1985.

  7. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy.

    PubMed

    FitzGerald, Thomas J; Bishop-Jodoin, Maryann; Followill, David S; Galvin, James; Knopp, Michael V; Michalski, Jeff M; Rosen, Mark A; Bradley, Jeffrey D; Shankar, Lalitha K; Laurie, Fran; Cicchetti, M Giulia; Moni, Janaki; Coleman, C Norman; Deye, James A; Capala, Jacek; Vikram, Bhadrasain

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy quality assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials. PMID:26853346

  8. NMR Imaging: Instrumentation and Techniques

    NASA Astrophysics Data System (ADS)

    Tingle, Jeremy Mark

    Available from UMI in association with The British Library. This thesis presents three original contributions to the field of Nuclear Magnetic Resonance (NMR): the experimental framework and analysis for the measurement of a new imaging parameter to describe perfusion; the measurement and analysis of magnetic field inhomogeneity and a practical correction system for their reduction; a novel system for the synchronous control of NMR experiments based on the microprogrammed concept. The thesis begins with an introduction to the theory of NMR. The application of NMR to imaging is also introduced with emphasis on the techniques which developed into those in common use today. Inaccurate determination of the traditional NMR parameters (T_1 and T_2 and the molecular diffusion coefficient) can be caused by non-diffusive fluid movement within the sample. The experimental basis for determining a new imaging parameter --the Perfusion coefficient--is presented. This provides a measure of forced isotropic fluid motion through an organ or tissue. The instrumentation required for conducting NMR experiments is described in order to introduce the contribution made in this area during this research: A sequence controller. The controller is based on the concept of microprogramming and enables completely synchronous output of 128 bits of data. The software for the generation and storage of control data and the regulation of the data to provide experimental control is microcomputer based. It affords precise and accurate regulation of the magnetic field gradients, the rf synthesizer and the spectrometer for spectroscopic and imaging applications. Fundamental to the science of NMR is the presence of a magnetic field. A detailed study of the analysis of magnetic field inhomogeneity in terms of spherical harmonics is presented. The field of a whole body imaging system with poor inhomogeneity was measured and analyzed to determine and describe the components of the inhomogeneity. Finally a

  9. The ADIS advanced data acquisition, imaging, and storage system

    SciTech Connect

    Flaherty, J.W.

    1986-01-01

    The design and development of Automated Ultrasonic Scanning Systems (AUSS) by McDonnell Aircraft Company has provided the background for the development of the ADIS advanced data acquisition, imaging, and storage system. The ADIS provides state-of-the-art ultrasonic data processing and imaging features which can be utilized in both laboratory and production line composite evaluation applications. System features, such as, real-time imaging, instantaneous electronic rescanning, multitasking capability, histograms, and cross-sections, provide the tools necessary to inspect and evaluate composite parts quickly and consistently.

  10. Current image acquisition options in PET/MR.

    PubMed

    Boellaard, Ronald; Quick, Harald H

    2015-05-01

    Whole-body PET/MR hybrid imaging combines excellent soft tissue contrast and various functional imaging parameters provided by MR with high sensitivity and quantification of radiotracer uptake provided by PET. Although clinical evaluation now is under way, PET/MR demands for new technologies and innovative solutions, currently subject to interdisciplinary research. Attenuation correction (AC) of human soft tissues and of hardware components has to be MR based to maintain quantification of PET imaging as CT attenuation information is missing. MR-based AC is inherently associated with the following challenges: patient tissues are segmented into only few tissue classes, providing discrete attenuation coefficients; bone is substituted as soft tissue in MR-based AC; the limited field of view in MRI leads to truncations in body imaging and, consequently, in MR-based AC; and correct segmentation of lung tissue may be hampered by breathing artifacts. Use of time of flight during PET image acquisition and reconstruction, however, may improve the accuracy of AC. This article provides a status of current image acquisition options in PET/MR hybrid imaging. PMID:25841274

  11. Imaging techniques in biology and medicine

    SciTech Connect

    Swenberg, C.E.

    1988-01-01

    This book serves as an introduction to some aspects of imaging techniques as utilized in biology and medicine. Techniques presented include image processing, ultrasound, radiotracers, autoradiography, computed tomography, and MRI (all major imaging techniques). The underlying mathematics and physics are kept to a minimum.

  12. Image acquisition planning for the CHRIS sensor onboard PROBA

    NASA Astrophysics Data System (ADS)

    Fletcher, Peter A.

    2004-10-01

    The CHRIS (Compact High Resolution Imaging Spectrometer) instrument was launched onboard the European Space Agency (ESA) PROBA satellite on 22 October 2001. CHRIS can acquire up to 63 bands of hyperspectral data at a ground spatial resolution of 36m. Alternatively, the instrument can be configured to acquire 18 bands of data with a spatial resolution of 17m. PROBA, by virtue of its agile pointing capability, enables CHRIS to acquire five different angle images of the selected site. Two sites can be acquired every 24 hours. The hyperspectral and multi-angle capability of CHRIS makes it an important resource for stydying BRDF phenomena of vegetation. Other applications include coastal and inland waters, wild fires, education and public relations. An effective data acquisition planning procedure has been implemented and since mid-2002 users have been receiving data for analysis. A cloud prediction routine has been adopted that maximises the image acquisition capacity of CHRIS-PROBA. Image acquisition planning is carried out by RSAC Ltd on behalf of ESA and in co-operation with Sira Technology Ltd and Redu, the ESA ground station in Belgium, responsible for CHRIS-PROBA.

  13. Tooling Techniques Enhance Medical Imaging

    NASA Technical Reports Server (NTRS)

    2012-01-01

    mission. The manufacturing techniques developed to create the components have yielded innovations advancing medical imaging, transportation security, and even energy efficiency.

  14. Bone fragility and imaging techniques

    PubMed Central

    D’Elia, Giovanni; Caracchini, Giuseppe; Cavalli, Loredana; Innocenti, Paolo

    2009-01-01

    Bone fragility is a silent condition that increases bone fracture risk, enhanced by low bone mass and microarchitecture deterioration of bone tissue that lead to osteoporosis. Fragility fractures are the major clinical manifestation of osteoporosis. A large body of epidemiological data indicates that the current standard for predicting fragility fracture risk is an areal BMD (aBMD) measurement by DXA. Although mineral density measurements assess the quantity of bone, the quality of the tissue is an important predictor of fragility. Thus, bone strength is explained not only by BMD but also by macrostructural and microstructural characteristics of bone tissue. Imaging diagnostics, through the use of X-rays, DXA, Ultrasonography, CT and MR, provides methods for diagnosis and characterization of fractures, and semi- and quantitative methods for assessment of bone consistency and strength, that become precious for bone fragility clinical management if they are integrated by clinical risk factors. The last employment of sophisticated non-invasively imaging techniques in clinical research as high-resolution CT (hrCT), microCT (μ-CT), high-resolution MR (hrMR) and, microRM (μRM), combined with finite element analysis methods, open to new challenges in a better bone strength assessment to enhance the comprehension of biomechanical parameters and the prediction of fragility fractures. PMID:22461252

  15. Stable image acquisition for mobile image processing applications

    NASA Astrophysics Data System (ADS)

    Henning, Kai-Fabian; Fritze, Alexander; Gillich, Eugen; Mönks, Uwe; Lohweg, Volker

    2015-02-01

    Today, mobile devices (smartphones, tablets, etc.) are widespread and of high importance for their users. Their performance as well as versatility increases over time. This leads to the opportunity to use such devices for more specific tasks like image processing in an industrial context. For the analysis of images requirements like image quality (blur, illumination, etc.) as well as a defined relative position of the object to be inspected are crucial. Since mobile devices are handheld and used in constantly changing environments the challenge is to fulfill these requirements. We present an approach to overcome the obstacles and stabilize the image capturing process such that image analysis becomes significantly improved on mobile devices. Therefore, image processing methods are combined with sensor fusion concepts. The approach consists of three main parts. First, pose estimation methods are used to guide a user moving the device to a defined position. Second, the sensors data and the pose information are combined for relative motion estimation. Finally, the image capturing process is automated. It is triggered depending on the alignment of the device and the object as well as the image quality that can be achieved under consideration of motion and environmental effects.

  16. Colony image acquisition and genetic segmentation algorithm and colony analyses

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2012-01-01

    Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.

  17. A review of breast tomosynthesis. Part I. The image acquisition process

    SciTech Connect

    Sechopoulos, Ioannis

    2013-01-15

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process.

  18. A review of breast tomosynthesis. Part I. The image acquisition process

    PubMed Central

    Sechopoulos, Ioannis

    2013-01-01

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process. PMID:23298126

  19. A review of breast tomosynthesis. Part I. The image acquisition process.

    PubMed

    Sechopoulos, Ioannis

    2013-01-01

    Mammography is a very well-established imaging modality for the early detection and diagnosis of breast cancer. However, since the introduction of digital imaging to the realm of radiology, more advanced, and especially tomographic imaging methods have been made possible. One of these methods, breast tomosynthesis, has finally been introduced to the clinic for routine everyday use, with potential to in the future replace mammography for screening for breast cancer. In this two part paper, the extensive research performed during the development of breast tomosynthesis is reviewed, with a focus on the research addressing the medical physics aspects of this imaging modality. This first paper will review the research performed on the issues relevant to the image acquisition process, including system design, optimization of geometry and technique, x-ray scatter, and radiation dose. The companion to this paper will review all other aspects of breast tomosynthesis imaging, including the reconstruction process. PMID:23298126

  20. Imaging Techniques in Endodontics: An Overview

    PubMed Central

    Deepak, B. S.; Subash, T. S.; Narmatha, V. J.; Anamika, T.; Snehil, T. K.; Nandini, D. B.

    2012-01-01

    This review provides an overview of the relevance of imaging techniques such as, computed tomography, cone beam computed tomography, and ultrasound, to endodontic practice. Many limitations of the conventional radiographic techniques have been overcome by the newer methods. Advantages and disadvantages of various imaging techniques in endodontic practice are also discussed. PMID:22530184

  1. Modeling the target acquisition performance of active imaging systems.

    PubMed

    Espinola, Richard L; Jacobs, Eddie L; Halford, Carl E; Vollmerhausen, Richard; Tofsted, David H

    2007-04-01

    Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown. PMID:19532626

  2. Modeling the target acquisition performance of active imaging systems

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Jacobs, Eddie L.; Halford, Carl E.; Vollmerhausen, Richard; Tofsted, David H.

    2007-04-01

    Recent development of active imaging system technology in the defense and security community have driven the need for a theoretical understanding of its operation and performance in military applications such as target acquisition. In this paper, the modeling of active imaging systems, developed at the U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate, is presented with particular emphasis on the impact of coherent effects such as speckle and atmospheric scintillation. Experimental results from human perception tests are in good agreement with the model results, validating the modeling of coherent effects as additional noise sources. Example trade studies on the design of a conceptual active imaging system to mitigate deleterious coherent effects are shown.

  3. Access Techniques for Document Image Databases.

    ERIC Educational Resources Information Center

    Walker, Frank L.; Thoma, George R.

    1990-01-01

    Describes access and retrieval techniques implemented as part of a research and development program in electronic imaging applied to document storage and retrieval at the National Library of Medicine. Design considerations for large image databases are discussed. (six references) (EAM)

  4. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

    SciTech Connect

    Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan

    2009-11-15

    span, the performance rolled off beyond a certain number of projections, indicating that simply increasing the number of projections in tomosynthesis may not necessarily improve its performance. The best performance for both projection images and tomosynthesis slices was obtained for 15-17 projections spanning an angular arc of {approx}45 deg. - the maximum tested in our study, and for an acquisition dose equal to single-view mammography. The optimization framework developed in this framework is applicable to other reconstruction techniques and other multiprojection systems.

  5. 360-degree dense multiview image acquisition system using time multiplexing

    NASA Astrophysics Data System (ADS)

    Yendo, Tomohiro; Fujii, Toshiaki; Panahpour Tehrani, Mehrdad; Tanimoto, Masayuki

    2010-02-01

    A novel 360-degree 3D image acquisition system that captures multi-view images with narrow view interval is proposed. The system consists of a scanning optics system and a high-speed camera. The scanning optics system is composed of a double-parabolic mirror shell and a rotating flat mirror tilted at 45 degrees to the horizontal plane. The mirror shell produces a real image of an object that is placed at the bottom of the shell. The mirror shell is modified from usual system which is used as 3D illusion toy so that the real image can be captured from right horizontal viewing direction. The rotating mirror in the real image reflects the image to the camera-axis direction. The reflected image observed from the camera varies according to the angle of the rotating mirror. This means that the camera can capture the object from various viewing directions that are determined by the angle of the rotating mirror. To acquire the time-varying reflected images, we use a high-speed camera that is synchronized with the angle of the rotating mirror. We have used a high-speed camera which resolution is 256×256 and the maximum frame rate is 10000fps at the resolution. Rotating speed of the tilted flat mirror is about 27 rev./sec. The number of views is 360. The focus length of parabolic mirrors is 73mm and diameter is 360mm. Objects which length is less than about 30mm can be acquired. Captured images are compensated rotation and distortion caused by double-parabolic mirror system, and reproduced as 3D moving images by Seelinder display.

  6. Efficient image acquisition design for a cancer detection system

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung; Roehrig, Hans; Borders, Marisa H.; Fitzpatrick, Kimberly A.; Roveda, Janet

    2013-09-01

    Modern imaging modalities, such as Computed Tomography (CT), Digital Breast Tomosynthesis (DBT) or Magnetic Resonance Tomography (MRT) are able to acquire volumetric images with an isotropic resolution in micrometer (um) or millimeter (mm) range. When used in interactive telemedicine applications, these raw images need a huge storage unit, thereby necessitating the use of high bandwidth data communication link. To reduce the cost of transmission and enable archiving, especially for medical applications, image compression is performed. Recent advances in compression algorithms have resulted in a vast array of data compression techniques, but because of the characteristics of these images, there are challenges to overcome to transmit these images efficiently. In addition, the recent studies raise the low dose mammography risk on high risk patient. Our preliminary studies indicate that by bringing the compression before the analog-to-digital conversion (ADC) stage is more efficient than other compression techniques after the ADC. The linearity characteristic of the compressed sensing and ability to perform the digital signal processing (DSP) during data conversion open up a new area of research regarding the roles of sparsity in medical image registration, medical image analysis (for example, automatic image processing algorithm to efficiently extract the relevant information for the clinician), further Xray dose reduction for mammography, and contrast enhancement.

  7. Optimizing ECM techniques against monopulse acquisition and tracking radars

    NASA Astrophysics Data System (ADS)

    Kwon, Ki Hoon

    1989-09-01

    Electronic countermeasure (ECM) techniques against monopulse radars, which are generally employed in the Surface-to-Air Missile targeting system, are presented and analyzed. Particularly, these ECM techniques are classified into five different categories, which are; denial jamming, deception jamming, passive countermeasures, decoys, and destructive countermeasures. The techniques are fully discussed. It was found difficult to quantize the jamming effectiveness of individual techniques, because ECM techniques are involved with several complex parameters and they are usually entangled together. Therefore, the methodological approach for optimizing ECM techniques is based on purely conceptual analysis of the techniques.

  8. Status of RAISE, the Rapid Acquisition Imaging Spectrograph Experiment

    NASA Astrophysics Data System (ADS)

    Laurent, Glenn T.; Hassler, D. M.; DeForest, C.; Ayres, T. R.; Davis, M.; De Pontieu, B.; Schuehle, U.; Warren, H.

    2013-07-01

    The Rapid Acquisition Imaging Spectrograph Experiment (RAISE) sounding rocket payload is a high speed scanning-slit imaging spectrograph designed to observe the dynamics and heating of the solar chromosphere and corona on time scales as short as 100 ms, with 1 arcsec spatial resolution and a velocity sensitivity of 1-2 km/s. The instrument is based on a new class of UV/EUV imaging spectrometers that use only two reflections to provide quasi-stigmatic performance simultaneously over multiple wavelengths and spatial fields. The design uses an off-axis parabolic telescope mirror to form a real image of the sun on the spectrometer entrance aperture. A slit then selects a portion of the solar image, passing its light onto a near-normal incidence toroidal grating, which re-images the spectrally dispersed radiation onto two array detectors. Two full spectral passbands over the same one-dimensional spatial field are recorded simultaneously with no scanning of the detectors or grating. The two different spectral bands (1st-order 1205-1243Å and 1526-1564Å) are imaged onto two intensified Active Pixel Sensor (APS) detectors whose focal planes are individually adjusted for optimized performance. The telescope and grating are coated with B4C to enhance short wavelength (2nd order) reflectance, enabling the instrument to record the brightest lines between 602-622Å and 761-780Å at the same time. RAISE reads out the full field of both detectors at 5-10 Hz, allowing us to record over 1,500 complete spectral observations in a single 5-minute rocket flight, opening up a new domain of high time resolution spectral imaging and spectroscopy. We present an overview of the project, a summary of the maiden flight results, and an update on instrument status.Abstract (2,250 Maximum Characters): The Rapid Acquisition Imaging Spectrograph Experiment (RAISE) sounding rocket payload is a high speed scanning-slit imaging spectrograph designed to observe the dynamics and heating of the solar

  9. Reduction and analysis techniques for infrared imaging data

    NASA Technical Reports Server (NTRS)

    Mccaughrean, Mark

    1989-01-01

    Infrared detector arrays are becoming increasingly available to the astronomy community, with a number of array cameras already in use at national observatories, and others under development at many institutions. As the detector technology and imaging instruments grow more sophisticated, more attention is focussed on the business of turning raw data into scientifically significant information. Turning pictures into papers, or equivalently, astronomy into astrophysics, both accurately and efficiently, is discussed. Also discussed are some of the factors that can be considered at each of three major stages; acquisition, reduction, and analysis, concentrating in particular on several of the questions most relevant to the techniques currently applied to near infrared imaging.

  10. Optical and digital microscopic imaging techniques and applications in pathology.

    PubMed

    Chen, Xiaodong; Zheng, Bin; Liu, Hong

    2011-01-01

    The conventional optical microscope has been the primary tool in assisting pathological examinations. The modern digital pathology combines the power of microscopy, electronic detection, and computerized analysis. It enables cellular-, molecular-, and genetic-imaging at high efficiency and accuracy to facilitate clinical screening and diagnosis. This paper first reviews the fundamental concepts of microscopic imaging and introduces the technical features and associated clinical applications of optical microscopes, electron microscopes, scanning tunnel microscopes, and fluorescence microscopes. The interface of microscopy with digital image acquisition methods is discussed. The recent developments and future perspectives of contemporary microscopic imaging techniques such as three-dimensional and in vivo imaging are analyzed for their clinical potentials. PMID:21483100

  11. RAISE (Rapid Acquisition Imaging Spectrograph Experiment): Results and Instrument Status

    NASA Astrophysics Data System (ADS)

    Laurent, Glenn T.; Hassler, Donald; DeForest, Craig; Ayres, Tom; Davis, Michael; DePontieu, Bart; Diller, Jed; Graham, Roy; Schule, Udo; Warren, Harry

    2015-04-01

    We present initial results from the successful November 2014 launch of the RAISE (Rapid Acquisition Imaging Spectrograph Experiment) sounding rocket program, including intensity maps, high-speed spectroheliograms and dopplergrams, as well as an update on instrument status. The RAISE sounding rocket payload is the fastest high-speed scanning-slit imaging spectrograph flown to date and is designed to observe the dynamics and heating of the solar chromosphere and corona on time scales as short as 100-200ms, with arcsecond spatial resolution and a velocity sensitivity of 1-2 km/s. The instrument is based on a class of UV/EUV imaging spectrometers that use only two reflections to provide quasi-stigmatic performance simultaneously over multiple wavelengths and spatial fields. The design uses an off-axis parabolic telescope mirror to form a real image of the sun on the spectrometer entrance aperture. A slit then selects a portion of the solar image, passing its light onto a near-normal incidence toroidal grating, which re-images the spectrally dispersed radiation onto two array detectors. Two full spectral passbands over the same one-dimensional spatial field are recorded simultaneously with no scanning of the detectors or grating. The two different spectral bands (1st-order 1205-1243Å and 1526-1564Å) are imaged onto two intensified Active Pixel Sensor (APS) detectors whose focal planes are individually adjusted for optimized performance. RAISE reads out the full field of both detectors at 5-10 Hz, allowing us to record over 1,500 complete spectral observations in a single 5-minute rocket flight, opening up a new domain of high time resolution spectral imaging and spectroscopy. RAISE is designed to study small-scale multithermal dynamics in active region (AR) loops, explore the strength, spectrum and location of high frequency waves in the solar atmosphere, and investigate the nature of transient brightenings in the chromospheric network.

  12. A flexible high-rate USB2 data acquisition system for PET and SPECT imaging

    SciTech Connect

    J. Proffitt, W. Hammond, S. Majewski, V. Popov, R.R. Raylman, A.G. Weisenberger, R. Wojcik

    2006-02-01

    A new flexible data acquisition system has been developed to instrument gamma-ray imaging detectors designed by the Jefferson Lab Detector and Imaging Group. Hardware consists of 16-channel data acquisition modules installed on USB2 carrier boards. Carriers have been designed to accept one, two, and four modules. Application trigger rate and channel density determines the number of acquisition boards and readout computers used. Each channel has an independent trigger, gated integrator and a 2.5 MHz 12-bit ADC. Each module has an FPGA for analog control and signal processing. Processing includes a 5 ns 40-bit trigger time stamp and programmable triggering, gating, ADC timing, offset and gain correction, charge and pulse-width discrimination, sparsification, event counting, and event assembly. The carrier manages global triggering and transfers module data to a USB buffer. High-granularity time-stamped triggering is suitable for modular detectors. Time stamped events permit dynamic studies, complex offline event assembly, and high-rate distributed data acquisition. A sustained USB data rate of 20 Mbytes/s, a sustained trigger rate of 300 kHz for 32 channels, and a peak trigger rate of 2.5 MHz to FIFO memory were achieved. Different trigger, gating, processing, and event assembly techniques were explored. Target applications include >100 kHz coincidence rate PET detectors, dynamic SPECT detectors, miniature and portable gamma detectors for small-animal and clinical use.

  13. Three dimensional scattering center imaging techniques

    NASA Technical Reports Server (NTRS)

    Younger, P. R.; Burnside, W. D.

    1991-01-01

    Two methods to image scattering centers in 3-D are presented. The first method uses 2-D images generated from Inverse Synthetic Aperture Radar (ISAR) measurements taken by two vertically offset antennas. This technique is shown to provide accurate 3-D imaging capability which can be added to an existing ISAR measurement system, requiring only the addition of a second antenna. The second technique uses target impulse responses generated from wideband radar measurements from three slightly different offset antennas. This technique is shown to identify the dominant scattering centers on a target in nearly real time. The number of measurements required to image a target using this technique is very small relative to traditional imaging techniques.

  14. Application of Chang's attenuation correction technique for single-photon emission computed tomography partial angle acquisition of Jaszczak phantom

    PubMed Central

    Saha, Krishnendu; Hoyt, Sean C.; Murray, Bryon M.

    2016-01-01

    The acquisition and processing of the Jaszczak phantom is a recommended test by the American College of Radiology for evaluation of gamma camera system performance. To produce the reconstructed phantom image for quality evaluation, attenuation correction is applied. The attenuation of counts originating from the center of the phantom is greater than that originating from the periphery of the phantom causing an artifactual appearance of inhomogeneity in the reconstructed image and complicating phantom evaluation. Chang's mathematical formulation is a common method of attenuation correction applied on most gamma cameras that do not require an external transmission source such as computed tomography, radionuclide sources installed within the gantry of the camera or a flood source. Tomographic acquisition can be obtained in two different acquisition modes for dual-detector gamma camera; one where the two detectors are at 180° configuration and acquire projection images for a full 360°, and the other where the two detectors are positioned at a 90° configuration and acquire projections for only 180°. Though Chang's attenuation correction method has been used for 360° angle acquisition, its applicability for 180° angle acquisition remains a question with one vendor's camera software producing artifacts in the images. This work investigates whether Chang's attenuation correction technique can be applied to both acquisition modes by the development of a Chang's formulation-based algorithm that is applicable to both modes. Assessment of attenuation correction performance by phantom uniformity analysis illustrates improved uniformity with the proposed algorithm (22.6%) compared to the camera software (57.6%). PMID:27051167

  15. Application of Chang's attenuation correction technique for single-photon emission computed tomography partial angle acquisition of Jaszczak phantom.

    PubMed

    Saha, Krishnendu; Hoyt, Sean C; Murray, Bryon M

    2016-01-01

    The acquisition and processing of the Jaszczak phantom is a recommended test by the American College of Radiology for evaluation of gamma camera system performance. To produce the reconstructed phantom image for quality evaluation, attenuation correction is applied. The attenuation of counts originating from the center of the phantom is greater than that originating from the periphery of the phantom causing an artifactual appearance of inhomogeneity in the reconstructed image and complicating phantom evaluation. Chang's mathematical formulation is a common method of attenuation correction applied on most gamma cameras that do not require an external transmission source such as computed tomography, radionuclide sources installed within the gantry of the camera or a flood source. Tomographic acquisition can be obtained in two different acquisition modes for dual-detector gamma camera; one where the two detectors are at 180° configuration and acquire projection images for a full 360°, and the other where the two detectors are positioned at a 90° configuration and acquire projections for only 180°. Though Chang's attenuation correction method has been used for 360° angle acquisition, its applicability for 180° angle acquisition remains a question with one vendor's camera software producing artifacts in the images. This work investigates whether Chang's attenuation correction technique can be applied to both acquisition modes by the development of a Chang's formulation-based algorithm that is applicable to both modes. Assessment of attenuation correction performance by phantom uniformity analysis illustrates improved uniformity with the proposed algorithm (22.6%) compared to the camera software (57.6%). PMID:27051167

  16. Imaging techniques in signal transduction IHC.

    PubMed

    Sedgewick, Jerry

    2011-01-01

    Augmentation of digital images is almost always a necessity in order to obtain a reproduction that matches the appearance of the original. However, that augmentation can mislead if it is done incorrectly and not within reasonable limits. When procedures are in place for ensuring that originals are archived, and image manipulation steps are reported, scientists not only follow good laboratory practices, but also avoid ethical issues associated with postprocessing and protect their labs from any future allegations of scientific misconduct. Also, when procedures are in place for correct acquisition of images, the extent of postprocessing is minimized or eliminated. These procedures include color balancing (for brighfield images), keeping tonal values within the dynamic range of the detector, frame averaging to eliminate noise (typically in fluorescence imaging), use of the highest bit depth when a choice is available, flatfield correction, and archiving of the image in a nonlossy format (not JPEG).When postprocessing is necessary, the commonly used applications for correction include Photoshop, and ImageJ, but a free program (GIMP) can also be used. Corrections to images include scaling the bit depth to higher and lower ranges, removing color casts from brightfield images, setting brightness and contrast, reducing color noise, reducing "grainy" noise, conversion of pure colors to grayscale, conversion of grayscale to colors typically used in fluorescence imaging, correction of uneven illumination and flatfield correction, blending color images (fluorescence), and extending the depth of focus. These corrections are explained in step-by-step procedures in the chapter that follows. PMID:21370028

  17. Online image acquisition system for wheel set measurement based on asynchronous reset mode

    NASA Astrophysics Data System (ADS)

    Wu, Kaihua; Guo, Yu; Chen, Yixin

    2011-11-01

    The wearing degree of the wheel set is one of the main factors that influence the safety and stability of running train. Measurement of wheel set wear has significant importance to railway safety. An automatic measurement method for geometrical parameters of wheel set based on optoelectronic technique was proposed. In the method, linear structured laser light was projected on the wheel tread surface. The geometrical parameters can be deduced from the profile image. An online image acquisition system was designed based on asynchronous reset of CCD. The entire time sequence of asynchronous reset was designed. The image was acquired only when wheel moved into the designed position. Image acquisition was fulfilled by hardware interrupt mode. Quantitative relation between position accuracy and speed, timedelay error, CCD resolution and imaging region was deuced. Relation between moving blur and speed, exposure time was also decided. The measuring system was installed along the straight railway section. When the wheel set was running in a limited speed, the devices placed alone railway line can measure the geometrical parameters automatically. Position accuracy achieved 1.1mm when moving speed reached 2km/h and moving blur was limited in less than one pixel size while exposure time set to be 1/5550s. The image definition can meet the demand of real and online measurement.

  18. Exploitation of realistic computational anthropomorphic phantoms for the optimization of nuclear imaging acquisition and processing protocols.

    PubMed

    Loudos, George K; Papadimitroulas, Panagiotis G; Kagadis, George C

    2014-01-01

    Monte Carlo (MC) simulations play a crucial role in nuclear medical imaging since they can provide the ground truth for clinical acquisitions, by integrating and quantifing all physical parameters that affect image quality. The last decade a number of realistic computational anthropomorphic models have been developed to serve imaging, as well as other biomedical engineering applications. The combination of MC techniques with realistic computational phantoms can provide a powerful tool for pre and post processing in imaging, data analysis and dosimetry. This work aims to create a global database for simulated Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) exams and the methodology, as well as the first elements are presented. Simulations are performed using the well validated GATE opensource toolkit, standard anthropomorphic phantoms and activity distribution of various radiopharmaceuticals, derived from literature. The resulting images, projections and sinograms of each study are provided in the database and can be further exploited to evaluate processing and reconstruction algorithms. Patient studies using different characteristics are included in the database and different computational phantoms were tested for the same acquisitions. These include the XCAT, Zubal and the Virtual Family, which some of which are used for the first time in nuclear imaging. The created database will be freely available and our current work is towards its extension by simulating additional clinical pathologies. PMID:25570355

  19. Magnetic resonance image enhancement by reducing receptors' effective size and enabling multiple channel acquisition.

    PubMed

    Yepes-Calderon, Fernando; Velasquez, Adriana; Lepore, Natasha; Beuf, Olivier

    2014-01-01

    Magnetic resonance imaging is empowered by parallel reading, which reduces acquisition time dramatically. The time saved by parallelization can be used to increase image quality or to enable specialized scanning protocols in clinical and research environments. In small animals, the sizing constraints render the use of multi-channeled approaches even more necessary, as they help to improve the typically low spatial resolution and lesser signal-to-noise ratio; however, the use of multiple channels also generates mutual induction (MI) effects that impairs imaging creation. Here, we created coils and used the shared capacitor technique to diminish first degree MI effects and pre-amplifiers to deal with higher order MI-related image deterioration. The constructed devices are tested by imaging phantoms that contain identical solutions; thus, creating the conditions for several statistical comparisons. We confirm that the shared capacitor strategy can recover the receptor capacity in compounded coils when working at the dimensions imposed by small animal imaging. Additionally, we demonstrate that the use of pre-amplifiers does not significantly reduce the quality of the images. Moreover, in light of our results, the two MI-avoiding techniques can be used together, therefore establishing the practical feasibility of flexible array coils populated with multiple loops for small animal imaging. PMID:25570478

  20. Target-acquisition performance in undersampled infrared imagers: static imagery to motion video.

    PubMed

    Krapels, Keith; Driggers, Ronald G; Teaney, Brian

    2005-11-20

    In this research we show that the target-acquisition performance of an undersampled imager improves with sensor or target motion. We provide an experiment designed to evaluate the improvement in observer performance as a function of target motion rate in the video. We created the target motion by mounting a thermal imager on a precision two-axis gimbal and varying the sensor motion rate from 0.25 to 1 instantaneous field of view per frame. A midwave thermal imager was used to permit short integration times and remove the effects of motion blur. It is shown that the human visual system performs a superresolution reconstruction that mitigates some aliasing and provides a higher (than static imagery) effective resolution. This process appears to be relatively independent of motion velocity. The results suggest that the benefits of superresolution reconstruction techniques as applied to imaging systems with motion may be limited. PMID:16318174

  1. The Rapid Acquisition Imaging Spectrograph Experiment (RAISE) Sounding Rocket Investigation

    NASA Astrophysics Data System (ADS)

    Laurent, Glenn T.; Hassler, Donald M.; Deforest, Craig; Slater, David D.; Thomas, Roger J.; Ayres, Thomas; Davis, Michael; de Pontieu, Bart; Diller, Jed; Graham, Roy; Michaelis, Harald; Schuele, Udo; Warren, Harry

    2016-03-01

    We present a summary of the solar observing Rapid Acquisition Imaging Spectrograph Experiment (RAISE) sounding rocket program including an overview of the design and calibration of the instrument, flight performance, and preliminary chromospheric results from the successful November 2014 launch of the RAISE instrument. The RAISE sounding rocket payload is the fastest scanning-slit solar ultraviolet imaging spectrograph flown to date. RAISE is designed to observe the dynamics and heating of the solar chromosphere and corona on time scales as short as 100-200ms, with arcsecond spatial resolution and a velocity sensitivity of 1-2km/s. Two full spectral passbands over the same one-dimensional spatial field are recorded simultaneously with no scanning of the detectors or grating. The two different spectral bands (first-order 1205-1251Å and 1524-1569Å) are imaged onto two intensified Active Pixel Sensor (APS) detectors whose focal planes are individually adjusted for optimized performance. RAISE reads out the full field of both detectors at 5-10Hz, recording up to 1800 complete spectra (per detector) in a single 6-min rocket flight. This opens up a new domain of high time resolution spectral imaging and spectroscopy. RAISE is designed to observe small-scale multithermal dynamics in Active Region (AR) and quiet Sun loops, identify the strength, spectrum and location of high frequency waves in the solar atmosphere, and determine the nature of energy release in the chromospheric network.

  2. 360-deg profilometry: new techniques for display and acquisition

    NASA Astrophysics Data System (ADS)

    Asundi, Anand K.; Chan, Chi-Shing; Sajan, M. R.

    1994-08-01

    Two optical methods are proposed for shape measurement and defect detection of curved surfaces in the form of a complete 350-deg profile of the object. The first one is the standard structured light approach. Display of the resulting data is the emphasis of this section. The second approach uses modulated structured light with a scanning digital camera for faster and simpler data acquisition. Quantitative processing is done off-line while real-time moire produces enhanced display of the defects for qualitative analysis.

  3. Contrast-enhanced MR Angiography of the Abdomen with Highly Accelerated Acquisition Techniques

    PubMed Central

    Mostardi, Petrice M.; Glockner, James F.; Young, Phillip M.

    2011-01-01

    Purpose: To demonstrate that highly accelerated (net acceleration factor [Rnet] ≥ 10) acquisition techniques can be used to generate three-dimensional (3D) subsecond timing images, as well as diagnostic-quality high-spatial-resolution contrast material–enhanced (CE) renal magnetic resonance (MR) angiograms with a single split dose of contrast material. Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written consent was obtained from all participants. Twenty-two studies were performed in 10 female volunteers (average age, 47 years; range, 27–62 years) and six patients with renovascular disease (three women; average age, 48 years; range, 37–68 years; three men; average age, 60 years; range, 50–67 years; composite average age, 54 years; range, 38–68 years). The two-part protocol consisted of a low-dose (2 mL contrast material) 3D timing image with approximate 1-second frame time, followed by a high-spatial-resolution (1.0–1.6-mm isotropic voxels) breath-hold 3D renal MR angiogram (18 mL) over the full abdominal field of view. Both acquisitions used two-dimensional (2D) sensitivity encoding acceleration factor (R) of eight and 2D homodyne (HD) acceleration (RHD) of 1.4–1.8 for Rnet = R · RHD of 10 or higher. Statistical analysis included determination of mean values and standard deviations of image quality scores performed by two experienced reviewers with use of eight evaluation criteria. Results: The 2-mL 3D time-resolved image successfully portrayed progressive arterial filling in all 22 studies and provided an anatomic overview of the vasculature. Successful timing was also demonstrated in that the renal MR angiogram showed adequate or excellent portrayal of the main renal arteries in 21 of 22 studies. Conclusion: Two-dimensional acceleration techniques with Rnet of 10 or higher can be used in CE MR angiography to acquire (a) a 3D image series with 1-second frame time, allowing accurate

  4. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  5. Imaging techniques in childhood arthritis.

    PubMed

    Harcke, H T; Mandell, G A; Cassell, I L

    1997-08-01

    Technological advances in imaging have given physicians caring for children with arthritis a greater opportunity to detect abnormalities early in the course of a disease and better methods for monitoring chronic changes. Indications for using radiography, bone densitometry, nuclear medicine, ultrasound, CT scanning, and MR imaging are discussed in this article. In this era of managed care, the practicing clinician is urged more than ever to consult with the radiologist in selecting the study or sequence of studies to be used in particular case. In this way, evaluation can be limited to the most effective strategy from both the clinical and cost perspectives. PMID:9287376

  6. Electronic imaging system and technique

    DOEpatents

    Bolstad, Jon O.

    1987-01-01

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  7. Electronic imaging system and technique

    DOEpatents

    Bolstad, J.O.

    1984-06-12

    A method and system for viewing objects obscurred by intense plasmas or flames (such as a welding arc) includes a pulsed light source to illuminate the object, the peak brightness of the light reflected from the object being greater than the brightness of the intense plasma or flame; an electronic image sensor for detecting a pulsed image of the illuminated object, the sensor being operated as a high-speed shutter; and electronic means for synchronizing the shutter operation with the pulsed light source.

  8. An accurate registration technique for distorted images

    NASA Technical Reports Server (NTRS)

    Delapena, Michele; Shaw, Richard A.; Linde, Peter; Dravins, Dainis

    1990-01-01

    Accurate registration of International Ultraviolet Explorer (IUE) images is crucial because the variability of the geometrical distortions that are introduced by the SEC-Vidicon cameras ensures that raw science images are never perfectly aligned with the Intensity Transfer Functions (ITFs) (i.e., graded floodlamp exposures that are used to linearize and normalize the camera response). A technique for precisely registering IUE images which uses a cross correlation of the fixed pattern that exists in all raw IUE images is described.

  9. Payload Configurations for Efficient Image Acquisition - Indian Perspective

    NASA Astrophysics Data System (ADS)

    Samudraiah, D. R. M.; Saxena, M.; Paul, S.; Narayanababu, P.; Kuriakose, S.; Kiran Kumar, A. S.

    2014-11-01

    The world is increasingly depending on remotely sensed data. The data is regularly used for monitoring the earth resources and also for solving problems of the world like disasters, climate degradation, etc. Remotely sensed data has changed our perspective of understanding of other planets. With innovative approaches in data utilization, the demands of remote sensing data are ever increasing. More and more research and developments are taken up for data utilization. The satellite resources are scarce and each launch costs heavily. Each launch is also associated with large effort for developing the hardware prior to launch. It is also associated with large number of software elements and mathematical algorithms post-launch. The proliferation of low-earth and geostationary satellites has led to increased scarcity in the available orbital slots for the newer satellites. Indian Space Research Organization has always tried to maximize the utility of satellites. Multiple sensors are flown on each satellite. In each of the satellites, sensors are designed to cater to various spectral bands/frequencies, spatial and temporal resolutions. Bhaskara-1, the first experimental satellite started with 2 bands in electro-optical spectrum and 3 bands in microwave spectrum. The recent Resourcesat-2 incorporates very efficient image acquisition approach with multi-resolution (3 types of spatial resolution) multi-band (4 spectral bands) electro-optical sensors (LISS-4, LISS-3* and AWiFS). The system has been designed to provide data globally with various data reception stations and onboard data storage capabilities. Oceansat-2 satellite has unique sensor combination with 8 band electro-optical high sensitive ocean colour monitor (catering to ocean and land) along with Ku band scatterometer to acquire information on ocean winds. INSAT- 3D launched recently provides high resolution 6 band image data in visible, short-wave, mid-wave and long-wave infrared spectrum. It also has 19 band

  10. Validation of an image simulation technique for two computed radiography systems: An application to neonatal imaging

    SciTech Connect

    Smans, Kristien; Vandenbroucke, Dirk; Pauwels, Herman; Struelens, Lara; Vanhavere, Filip; Bosmans, Hilde

    2010-05-15

    Purpose: The purpose of this study is to develop a computer model to simulate the image acquisition for two computed radiography (CR) imaging systems used for neonatal chest imaging: (1) The Agfa ADC Compact, a flying spot reader with powder phosphor image plates (MD 40.0); and (2) the Agfa DX-S, a line-scanning CR reader with needle crystal phosphor image plates (HD 5.0). The model was then applied to compare the image quality of the two CR imaging systems. Methods: Monte Carlo techniques were used to simulate the transport of primary and scattered x rays in digital x-ray systems. The output of the Monte Carlo program was an image representing the energy absorbed in the detector material. This image was then modified using physical characteristics of the CR imaging systems to account for the signal intensity variations due to the heel effect along the anode-cathode axis, the spatial resolution characteristics of the imaging system, and the various sources of image noise. The simulation was performed for typical acquisition parameters of neonatal chest x-ray examinations. To evaluate the computer model, the authors compared the threshold-contrast detectability in simulated and experimentally acquired images of a contrast-detail phantom. Threshold-contrast curves were computed using a commercially available scoring program. Results: The threshold-contrast curves of the simulated and experimentally acquired images show good agreement; for the two CR systems, 93% of the threshold diameters calculated from the simulated images fell within the confidence intervals of the threshold diameter calculated from the experimentally assessed images. Moreover, the superiority of needle based CR plates for neonatal imaging was confirmed. Conclusions: The good agreement between simulated and experimental acquired results indicates that the computer model is accurate.

  11. Sliding interleaved kY (SLINKY) acquisition: a novel 3D MRA technique with suppressed slab boundary artifact.

    PubMed

    Liu, K; Rutt, B K

    1998-01-01

    This work addresses the elimination of the slab boundary artifact (SBA) or venetian blind artifact in three-dimensional multiple overlapped thin slab acquisition (3D MOTSA) for magnetic resonance angiography (MRA). Our method uses a sliding-slab, interleaved kY (SLINKY) data acquisition strategy, equalizing flow-related signal intensity weighting across the entire slab dimension. This technique demodulates signal intensity changes along the slab direction and can essentially eliminate the SBA while retaining the same or better imaging time efficiency than that of conventional MOTSA, providing robustness to complicated flow patterns and thereby resulting in more accurate depiction of vascular morphology. In addition, this technique does not need specialized reconstruction and extra computation. The unique penalty of this technique is the sensitivity to phase inconsistency in the data. Both phantom and in vivo experiments verify the clinical significance of the technique. The new MRA images acquired with this imaging technique show highly reliable mapping of vascular morphology without the SBA and reduction of signal voids in complex/slow flow regions. PMID:9702893

  12. Image processing technique for arbitrary image positioning in holographic stereogram

    NASA Astrophysics Data System (ADS)

    Kang, Der-Kuan; Yamaguchi, Masahiro; Honda, Toshio; Ohyama, Nagaaki

    1990-12-01

    In a one-step holographic stereogram, if the series of original images are used just as they are taken from perspective views, three-dimensional images are usually reconstructed in back of the hologram plane. In order to enhance the sense of perspective of the reconstructed images and minimize blur of the interesting portions, we introduce an image processing technique for making a one-step flat format holographic stereogram in which three-dimensional images can be observed at an arbitrary specified position. Experimental results show the effect of the image processing. Further, we show results of a medical application using this image processing.

  13. Comparison Of Four FFT-Based Frequency-Acquisition Techniques

    NASA Technical Reports Server (NTRS)

    Shah, Biren N.; Hinedi, Sami M.; Holmes, Jack K.

    1993-01-01

    Report presents comparative theoretical analysis of four conceptual techniques for initial estimation of carrier frequency of suppressed-carrier, binary-phase-shift-keyed radio signal. Each technique effected by open-loop analog/digital signal-processing subsystem part of Costas-loop phase-error detector functioning in closed-loop manner overall.

  14. System of acquisition and processing of images of dynamic speckle

    NASA Astrophysics Data System (ADS)

    Vega, F.; >C Torres,

    2015-01-01

    In this paper we show the design and implementation of a system to capture and analysis of dynamic speckle. The device consists of a USB camera, an isolated system lights for imaging, a laser pointer 633 nm 10 mw as coherent light source, a diffuser and a laptop for processing video. The equipment enables the acquisition and storage of video, also calculated of different descriptors of statistical analysis (vector global accumulation of activity, activity matrix accumulation, cross-correlation vector, autocorrelation coefficient, matrix Fujji etc.). The equipment is designed so that it can be taken directly to the site where the sample for biological study and is currently being used in research projects within the group.

  15. Evaluation of Acquisition Strategies for Image-Based Construction Site Monitoring

    NASA Astrophysics Data System (ADS)

    Tuttas, S.; Braun, A.; Borrmann, A.; Stilla, U.

    2016-06-01

    Construction site monitoring is an essential task for keeping track of the ongoing construction work and providing up-to-date information for a Building Information Model (BIM). The BIM contains the as-planned states (geometry, schedule, costs, ...) of a construction project. For updating, the as-built state has to be acquired repeatedly and compared to the as-planned state. In the approach presented here, a 3D representation of the as-built state is calculated from photogrammetric images using multi-view stereo reconstruction. On construction sites one has to cope with several difficulties like security aspects, limited accessibility, occlusions or construction activity. Different acquisition strategies and techniques, namely (i) terrestrial acquisition with a hand-held camera, (ii) aerial acquisition using a Unmanned Aerial Vehicle (UAV) and (iii) acquisition using a fixed stereo camera pair at the boom of the crane, are tested on three test sites. They are assessed considering the special needs for the monitoring tasks and limitations on construction sites. The three scenarios are evaluated based on the ability of automation, the required effort for acquisition, the necessary equipment and its maintaining, disturbance of the construction works, and on the accuracy and completeness of the resulting point clouds. Based on the experiences during the test cases the following conclusions can be drawn: Terrestrial acquisition has the lowest requirements on the device setup but lacks on automation and coverage. The crane camera shows the lowest flexibility but the highest grade of automation. The UAV approach can provide the best coverage by combining nadir and oblique views, but can be limited by obstacles and security aspects. The accuracy of the point clouds is evaluated based on plane fitting of selected building parts. The RMS errors of the fitted parts range from 1 to a few cm for the UAV and the hand-held scenario. First results show that the crane camera

  16. GPSCAN.VI: A general-purpose LabVIEW program for scanning imaging or any application requiring synchronous analog voltage generation and data acquisition

    NASA Astrophysics Data System (ADS)

    Ferrand, Patrick

    2015-07-01

    A large number of measurement techniques involve the scanning of a probe, while a physical quantity is measured. This is for instance the case for all scanning imaging methods. Data acquisition therefore requires high acquisition rates, together with an accurate synchronization between the probe control and the measurement. The GPSCAN.VI program is a general purpose LabVIEW program for the control of National Instruments high-speed data acquisition boards, allowing to design scanning imaging systems. Analog output voltages are used to drive a two-dimensional scanning device, while acquisition of analog voltages and TTL pulse counting are run in parallel. Acquisition of megapixel images with pixel dwell times down to the microsecond can be reached with negligible I/O transfer time. The design can be generalized to any situation requiring high speed synchronous generation and acquisition.

  17. A comparison of image inpainting techniques

    NASA Astrophysics Data System (ADS)

    Liu, Yaojie; Shu, Chang

    2015-03-01

    Image inpainting is an important research topic in the field of image processing. The objective of inpainting is to "guess" the lost information according to surrounding image information, which can be applied in old photo restoration, object removal and demosaicing. Based on the foundation of previous literature of image inpainting and image modeling, this paper provides an overview of the state-of-art image inpainting methods. This survey first covers mathematics models of inpainting and different kinds of image impairment. Then it goes to the main components of an image, the structure and the texture, and states how these inpainting models and algorithms deal with the two separately, using PDE's method, exemplar-based method and etc. Afterwards sparse-representation-based inpainting and related techniques are introduced. Experimental analysis will be presented to evaluate the relative merits of different algorithms, with the measure of Peak Signal to Noise Ratio (PSNR) as well as direct visual perception.

  18. Sandia LSI accelerated aging and data acquisition techniques

    SciTech Connect

    Walker, J.E.

    1980-04-01

    The purpose of the Microelectronic Evaluation Laboratory at Sandia is to develop a program for evaluating CMOS LSI (complementary metal oxide silicon - large scale integrated) technology devices which are being used for the first time in a weapon system. These evaluations are based on accelerated aging studies and electrical tests to determine the reliability and life of the devices. In accelerated aging, specific, controlled stresses are applied to the device to accelerate time-to-failure. Data are used tin mathematical models to estimate life in acutal use. The stresses used for this technology are temperature and voltage. The devices are stored at temperatures with or without voltage applied (steady-state or cyclical) and periodically tested until at least 50% failures are encountered. Since most current technologies use epoxy-die-attachment, aging temperatures must be under 200/sup 0/C. This delays device failure, and a 16% failure level is used when this extrapolation is considered valid. Statistical analysis is performed on the resultant data to predict reliability with time. The equipment and procedures used for accelerated aging tests are described in detail. The data acquisition system and its use are discussed. All devices, after functional failure has occurred, are given to the failure analysis group for failure evaluations. In order to improve reliability predictions, failure analysis is most concerned with the separation of freak and main life mechanisms. Through these evaluations, higher reliability and longer device life have become a milestone of the future. (LCL)

  19. Reconstruction techniques for optoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Koestli, Kornel P.; Paltauf, Guenther; Schmidt-Kloiber, Heinz; Weber, Heinz P.

    2001-06-01

    Optoacoustics is a method to gain information from inside a tissue. This is done by irradiating a tissue with a short light pulse, which generates a pressure distribution inside the tissue that mirrors the absorber distribution. The pressure distribution measured on the tissue-surface allows, by applying a back-projection method, to calculate a tomography image of the absorber distribution. This study presents a novel computational algorithm based on Fourier transform, which, at least in principle, yields an exact 3D reconstruction of the distribution of absorbed energy density inside turbid media. The reconstruction is based on 2D pressure distributions captured outside at different times. The FFT reconstruction algorithm is first tested in the back projection of simulated pressure transients of small model absorbers, and finally applied to reconstruct the distribution of artificial blood vessels in three dimensions.

  20. Utilizing image processing techniques to compute herbivory.

    PubMed

    Olson, T E; Barlow, V M

    2001-01-01

    Leafy spurge (Euphorbia esula L. sensu lato) is a perennial weed species common to the north-central United States and southern Canada. The plant is a foreign species toxic to cattle. Spurge infestation can reduce cattle carrying capacity by 50 to 75 percent [1]. University of Wyoming Entomology doctoral candidate Vonny Barlow is conducting research in the area of biological control of leafy spurge via the Aphthona nigriscutis Foudras flea beetle. He is addressing the question of variability within leafy spurge and its potential impact on flea beetle herbivory. One component of Barlow's research consists of measuring the herbivory of leafy spurge plant specimens after introducing adult beetles. Herbivory is the degree of consumption of the plant's leaves and was measured in two different manners. First, Barlow assigned each consumed plant specimen a visual rank from 1 to 5. Second, image processing techniques were applied to "before" and "after" images of each plant specimen in an attempt to more accurately quantify herbivory. Standardized techniques were used to acquire images before and after beetles were allowed to feed on plants for a period of 12 days. Matlab was used as the image processing tool. The image processing algorithm allowed the user to crop the portion of the "before" image containing only plant foliage. Then Matlab cropped the "after" image with the same dimensions, converted the images from RGB to grayscale. The grayscale image was converted to binary based on a user defined threshold value. Finally, herbivory was computed based on the number of black pixels in the "before" and "after" images. The image processing results were mixed. Although, this image processing technique depends on user input and non-ideal images, the data is useful to Barlow's research and offers insight into better imaging systems and processing algorithms. PMID:11347423

  1. Accuracy test procedure for image evaluation techniques.

    PubMed

    Jones, R A

    1968-01-01

    A procedure has been developed to determine the accuracy of image evaluation techniques. In the procedure, a target having orthogonal test arrays is photographed with a high quality optical system. During the exposure, the target is subjected to horizontal linear image motion. The modulation transfer functions of the images in the horizontal and vertical directions are obtained using the evaluation technique. Since all other degradations are symmetrical, the quotient of the two modulation transfer functions represents the modulation transfer function of the experimentally induced linear image motion. In an accurate experiment, any discrepancy between the experimental determination and the true value is due to inaccuracy in the image evaluation technique. The procedure was used to test the Perkin-Elmer automated edge gradient analysis technique over the spatial frequency range of 0-200 c/m. This experiment demonstrated that the edge gradient technique is accurate over this region and that the testing procedure can be controlled with the desired accuracy. Similarly, the test procedure can be used to determine the accuracy of other image evaluation techniques. PMID:20062421

  2. Image processing techniques for digital orthophotoquad production

    USGS Publications Warehouse

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  3. Three-dimensional radar imaging techniques and systems for near-field applications

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, A. Mark; Tedeschi, Jonathan R.

    2016-05-01

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar crosssection (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, throughbarrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  4. Superresolution imaging: a survey of current techniques

    NASA Astrophysics Data System (ADS)

    Cristóbal, G.; Gil, E.; Šroubek, F.; Flusser, J.; Miravet, C.; Rodríguez, F. B.

    2008-08-01

    Imaging plays a key role in many diverse areas of application, such as astronomy, remote sensing, microscopy, and tomography. Owing to imperfections of measuring devices (e.g., optical degradations, limited size of sensors) and instability of the observed scene (e.g., object motion, media turbulence), acquired images can be indistinct, noisy, and may exhibit insuffcient spatial and temporal resolution. In particular, several external effects blur images. Techniques for recovering the original image include blind deconvolution (to remove blur) and superresolution (SR). The stability of these methods depends on having more than one image of the same frame. Differences between images are necessary to provide new information, but they can be almost unperceivable. State-of-the-art SR techniques achieve remarkable results in resolution enhancement by estimating the subpixel shifts between images, but they lack any apparatus for calculating the blurs. In this paper, after introducing a review of current SR techniques we describe two recently developed SR methods by the authors. First, we introduce a variational method that minimizes a regularized energy function with respect to the high resolution image and blurs. In this way we establish a unifying way to simultaneously estimate the blurs and the high resolution image. By estimating blurs we automatically estimate shifts with subpixel accuracy, which is inherent for good SR performance. Second, an innovative learning-based algorithm using a neural architecture for SR is described. Comparative experiments on real data illustrate the robustness and utilization of both methods.

  5. Task-driven image acquisition and reconstruction in cone-beam CT

    PubMed Central

    Gang, Grace J.; Stayman, J. Webster; Ehtiati, Tina; Siewerdsen, Jeffrey H.

    2015-01-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters and in the presence of a realistic anatomical model. Task-based detectability index (d') is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e., the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d' for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d' by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  6. Task-driven image acquisition and reconstruction in cone-beam CT

    NASA Astrophysics Data System (ADS)

    Gang, Grace J.; Webster Stayman, J.; Ehtiati, Tina; Siewerdsen, Jeffrey H.

    2015-04-01

    This work introduces a task-driven imaging framework that incorporates a mathematical definition of the imaging task, a model of the imaging system, and a patient-specific anatomical model to prospectively design image acquisition and reconstruction techniques to optimize task performance. The framework is applied to joint optimization of tube current modulation, view-dependent reconstruction kernel, and orbital tilt in cone-beam CT. The system model considers a cone-beam CT system incorporating a flat-panel detector and 3D filtered backprojection and accurately describes the spatially varying noise and resolution over a wide range of imaging parameters in the presence of a realistic anatomical model. Task-based detectability index (d‧) is incorporated as the objective function in a task-driven optimization of image acquisition and reconstruction techniques. The orbital tilt was optimized through an exhaustive search across tilt angles ranging ±30°. For each tilt angle, the view-dependent tube current and reconstruction kernel (i.e. the modulation profiles) that maximized detectability were identified via an alternating optimization. The task-driven approach was compared with conventional unmodulated and automatic exposure control (AEC) strategies for a variety of imaging tasks and anthropomorphic phantoms. The task-driven strategy outperformed the unmodulated and AEC cases for all tasks. For example, d‧ for a sphere detection task in a head phantom was improved by 30% compared to the unmodulated case by using smoother kernels for noisy views and distributing mAs across less noisy views (at fixed total mAs) in a manner that was beneficial to task performance. Similarly for detection of a line-pair pattern, the task-driven approach increased d‧ by 80% compared to no modulation by means of view-dependent mA and kernel selection that yields modulation transfer function and noise-power spectrum optimal to the task. Optimization of orbital tilt identified the

  7. The Application of Remote Sensing Techniques to Urban Data Acquisition

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1971-01-01

    The application of remote sensing techniques useful in acquiring data concerning housing quality is discussed. Conclusions reached from the investigation were: (1) Use of individuals with a higher degree of training in photointerpretation should significantly increase the percentage of successful classifications. (2) Small area classification of urban housing quality can definitely be accomplished via high resolution aerial photography. Such surveys, at the levels of accuracy demonstrated, can be of major utility in quick look surveys. (3) Survey costs should be significantly reduced.

  8. New acquisition techniques and statistical analysis of bubble size distributions

    NASA Astrophysics Data System (ADS)

    Proussevitch, A.; Sahagian, D.

    2005-12-01

    Various approaches have been taken to solve the long-standing problem of determining size distributions of objects embedded in an opaque medium. In the case of vesicles in volcanic rocks, the most reliable technique is 3-D imagery by computed X-Ray tomography. However, this method is expensive, requires intensive computational resources and thus limited and not always available for an investigator. As a cheaper alternative, 2-D cross-sectional data is commonly available, but requires stereological analysis for 3-D conversion. A stereology technique for spherical bubbles is quite robust but elongated non-spherical bubbles require complicated conversion approaches and large observed populations. We have revised computational schemes of applying non-spherical stereology for practical analysis of bubble size distributions. The basic idea of this new approach is to exclude from the conversion those classes (bins) of non-spherical bubbles that provide a larger cross-section probability distribution than a maximum value which depends on mean aspect ratio. Thus, in contrast to traditional stereological techniques, larger bubbles are "predicted" from the rest of the population. As a proof of principle, we have compared distributions so obtained with direct 3-D imagery (X-Ray tomography) for non-spherical bubbles from the same samples of vesicular basalts collected from the Colorado Plateau. The results of the comparison demonstrate that in cases where x-ray tomography is impractical, stereology can be used with reasonable reliability, even for non-spherical vesicles.

  9. Characterization of high resolution MR images reconstructed by a GRAPPA based parallel technique

    NASA Astrophysics Data System (ADS)

    Banerjee, Suchandrima; Majumdar, Sharmila

    2006-03-01

    This work implemented an auto-calibrating parallel imaging technique and applied it to in vivo magnetic resonance imaging (MRI) of trabecular bone micro-architecture. A Generalized auto-calibrating partially parallel acquisition (GRAPPA) based reconstruction technique using modified robust data fitting was developed. The MR data was acquired with an eight channel phased array receiver on three normal volunteers on a General Electric 3 Tesla scanner. Microstructures comprising the trabecular bone architecture are of the order of 100 microns and hence their depiction requires very high imaging resolution. This work examined the effects of GRAPPA based parallel imaging on signal and noise characteristics and effective spatial resolution in high resolution (HR) images, for the range of undersampling or reduction factors 2-4. Additionally quantitative analysis was performed to obtain structural measures of trabecular bone from the images. Image quality in terms of contrast and depiction of structures was maintained in parallel images for reduction factors up to 3. Comparison between regular and parallel images suggested similar spatial resolution for both. However differences in noise characteristics in parallel images compared to regular images affected the threshholding based quantification. This suggested that GRAPPA based parallel images might require different analysis techniques. In conclusion, the study showed the feasibility of using parallel imaging techniques in HR-MRI of trabecular bone, although quantification strategies will have to be further investigated. Reduction of acquisition time using parallel techniques can improve the clinical feasibility of MRI of trabecular bone for prognosis and staging of the skeletal disorder osteoporosis.

  10. Ultrasonic imaging techniques for breast cancer detection.

    SciTech Connect

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.; Huang, L.

    2006-01-01

    Improving the resolution and specificity of current ultrasonic imaging technology can enhance its relevance to detection of early-stage breast cancers. Ultrasonic evaluation of breast lesions is desirable because it is quick, inexpensive, and does not expose the patient to potentially harmful ionizing radiation. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors, thus reducing the number of biopsies performed, increasing treatment options, and lowering mortality, morbidity, and remission percentages. In this work, a novel ultrasonic imaging reconstruction method that exploits straight-ray migration is described. This technique, commonly used in seismic imaging, accounts for scattering more accurately than standard ultrasonic approaches, thus providing superior image resolution. A breast phantom with various inclusions is imaged using a pulse-echo approach. The data are processed using the ultrasonic migration method and results are compared to standard linear ultrasound and to x-ray computed tomography (CT) scans. For an ultrasonic frequency of 2.25 MHz, imaged inclusions and features of approximately 1mm are resolved, although better resolution is expected with minor modifications. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also briefly discussed.

  11. Biometric iris image acquisition system with wavefront coding technology

    NASA Astrophysics Data System (ADS)

    Hsieh, Sheng-Hsun; Yang, Hsi-Wen; Huang, Shao-Hung; Li, Yung-Hui; Tien, Chung-Hao

    2013-09-01

    Biometric signatures for identity recognition have been practiced for centuries. Basically, the personal attributes used for a biometric identification system can be classified into two areas: one is based on physiological attributes, such as DNA, facial features, retinal vasculature, fingerprint, hand geometry, iris texture and so on; the other scenario is dependent on the individual behavioral attributes, such as signature, keystroke, voice and gait style. Among these features, iris recognition is one of the most attractive approaches due to its nature of randomness, texture stability over a life time, high entropy density and non-invasive acquisition. While the performance of iris recognition on high quality image is well investigated, not too many studies addressed that how iris recognition performs subject to non-ideal image data, especially when the data is acquired in challenging conditions, such as long working distance, dynamical movement of subjects, uncontrolled illumination conditions and so on. There are three main contributions in this paper. Firstly, the optical system parameters, such as magnification and field of view, was optimally designed through the first-order optics. Secondly, the irradiance constraints was derived by optical conservation theorem. Through the relationship between the subject and the detector, we could estimate the limitation of working distance when the camera lens and CCD sensor were known. The working distance is set to 3m in our system with pupil diameter 86mm and CCD irradiance 0.3mW/cm2. Finally, We employed a hybrid scheme combining eye tracking with pan and tilt system, wavefront coding technology, filter optimization and post signal recognition to implement a robust iris recognition system in dynamic operation. The blurred image was restored to ensure recognition accuracy over 3m working distance with 400mm focal length and aperture F/6.3 optics. The simulation result as well as experiment validates the proposed code

  12. Geometric assessment of image quality using digital image registration techniques

    NASA Technical Reports Server (NTRS)

    Tisdale, G. E.

    1976-01-01

    Image registration techniques were developed to perform a geometric quality assessment of multispectral and multitemporal image pairs. Based upon LANDSAT tapes, accuracies to a small fraction of a pixel were demonstrated. Because it is insensitive to the choice of registration areas, the technique is well suited to performance in an automatic system. It may be implemented at megapixel-per-second rates using a commercial minicomputer in combination with a special purpose digital preprocessor.

  13. Optimal Short-Time Acquisition Schemes in High Angular Resolution Diffusion-Weighted Imaging

    PubMed Central

    Prčkovska, V.; Achterberg, H. C.; Bastiani, M.; Pullens, P.; Balmashnova, E.; ter Haar Romeny, B. M.; Vilanova, A.; Roebroeck, A.

    2013-01-01

    This work investigates the possibilities of applying high-angular-resolution-diffusion-imaging- (HARDI-) based methods in a clinical setting by investigating the performance of non-Gaussian diffusion probability density function (PDF) estimation for a range of b-values and diffusion gradient direction tables. It does so at realistic SNR levels achievable in limited time on a high-performance 3T system for the whole human brain in vivo. We use both computational simulations and in vivo brain scans to quantify the angular resolution of two selected reconstruction methods: Q-ball imaging and the diffusion orientation transform. We propose a new analytical solution to the ODF derived from the DOT. Both techniques are analytical decomposition approaches that require identical acquisition and modest postprocessing times and, given the proposed modifications of the DOT, can be analyzed in a similar fashion. We find that an optimal HARDI protocol given a stringent time constraint (<10 min) combines a moderate b-value (around 2000 s/mm2) with a relatively low number of acquired directions (>48). Our findings generalize to other methods and additional improvements in MR acquisition techniques. PMID:23554808

  14. Comparison of various enhanced radar imaging techniques

    NASA Astrophysics Data System (ADS)

    Gupta, Inder J.; Gandhe, Avinash

    1998-09-01

    Recently, many techniques have been proposed to enhance the quality of radar images obtained using SAR and/or ISAR. These techniques include spatially variant apodization (SVA), adaptive sidelobe reduction (ASR), the Capon method, amplitude and phase estimation of sinusoids (APES) and data extrapolation. SVA is a special case of ASR; whereas the APES algorithm is similar to the Capon method except that it provides a better amplitude estimate. In this paper, the ASR technique, the APES algorithm and data extrapolation are used to generate radar images of two experimental targets and an airborne target. It is shown that although for ideal situations (point targets) the APES algorithm provides the best radar images (reduced sidelobe level and sharp main lobe), its performance degrades quickly for real world targets. The ASR algorithm gives radar images with low sidelobes but at the cost of some loss of information about the target. Also, there is not much improvement in radar image resolution. Data extrapolation, on the other hand, improves image resolution. In this case one can reduce the sidelobes by using non-uniform weights. Any loss in the radar image resolution due to non-uniform weights can be compensated by further extrapolating the scattered field data.

  15. Optimized acquisition time for x-ray fluorescence imaging of gold nanoparticles: a preliminary study using photon counting detector

    NASA Astrophysics Data System (ADS)

    Ren, Liqiang; Wu, Di; Li, Yuhua; Chen, Wei R.; Zheng, Bin; Liu, Hong

    2016-03-01

    X-ray fluorescence (XRF) is a promising spectroscopic technique to characterize imaging contrast agents with high atomic numbers (Z) such as gold nanoparticles (GNPs) inside small objects. Its utilization for biomedical applications, however, is greatly limited to experimental research due to longer data acquisition time. The objectives of this study are to apply a photon counting detector array for XRF imaging and to determine an optimized XRF data acquisition time, at which the acquired XRF image is of acceptable quality to allow the maximum level of radiation dose reduction. A prototype laboratory XRF imaging configuration consisting of a pencil-beam X-ray and a photon counting detector array (1 × 64 pixels) is employed to acquire the XRF image through exciting the prepared GNP/water solutions. In order to analyze the signal to noise ratio (SNR) improvement versus the increased exposure time, all the XRF photons within the energy range of 63 - 76KeV that include two Kα gold fluorescence peaks are collected for 1s, 2s, 3s, and so on all the way up to 200s. The optimized XRF data acquisition time for imaging different GNP solutions is determined as the moment when the acquired XRF image just reaches a quality with a SNR of 20dB which corresponds to an acceptable image quality.

  16. Interpretation techniques. [image enhancement and pattern recognition

    NASA Technical Reports Server (NTRS)

    Dragg, J. L.

    1974-01-01

    The image enhancement and geometric correction and registration techniques developed and/or demonstrated on ERTS data are relatively mature and greatly enhance the utility of the data for a large variety of users. Pattern recognition was improved by the use of signature extension, feature extension, and other classification techniques. Many of these techniques need to be developed and generalized to become operationally useful. Advancements in the mass precision processing of ERTS were demonstrated, providing the hope for future earth resources data to be provided in a more readily usable state. Also in evidence is an increasing and healthy interaction between the techniques developers and the user/applications investigators.

  17. High-accuracy data acquisition architectures for ultrasonic imaging.

    PubMed

    Kalashnikov, Alexander N; Ivchenko, Vladimir G; Challis, Richard E; Hayes-Gill, Barrie R

    2007-08-01

    This paper proposes a novel architecture for a data acquisition system intended to support the next generation of ultrasonic imaging instruments operating at or above 100 MHz. Existing systems have relatively poor signal-to-noise ratios and are limited in terms of their maximum data sampling rate, both of which are improved by a combination of embedded averaging and embedded interleaved sampling. "On-the-fly" pipelined operation minimizes control overheads for signal averaging. A two-clock sampling timing system provides for effective sampling rates that are a factor of 20 or more above the basic sampling rate of the analog-to-digital converter (ADC). The system uses commercial field-programmable gate array devices operated at clock frequencies commensurable with the ADC clock. Implementation is via the Xilinx Xtreme digital signal processing development kit, available at low cost. Sample rates of up to 2160 MHz have been achieved in combination with up to 16384 coherent averages using the above-mentioned off-the-shelf hardware. PMID:17703663

  18. Dual camera system for acquisition of high resolution images

    NASA Astrophysics Data System (ADS)

    Papon, Jeremie A.; Broussard, Randy P.; Ives, Robert W.

    2007-02-01

    Video surveillance is ubiquitous in modern society, but surveillance cameras are severely limited in utility by their low resolution. With this in mind, we have developed a system that can autonomously take high resolution still frame images of moving objects. In order to do this, we combine a low resolution video camera and a high resolution still frame camera mounted on a pan/tilt mount. In order to determine what should be photographed (objects of interest), we employ a hierarchical method which first separates foreground from background using a temporal-based median filtering technique. We then use a feed-forward neural network classifier on the foreground regions to determine whether the regions contain the objects of interest. This is done over several frames, and a motion vector is deduced for the object. The pan/tilt mount then focuses the high resolution camera on the next predicted location of the object, and an image is acquired. All components are controlled through a single MATLAB graphical user interface (GUI). The final system we present will be able to detect multiple moving objects simultaneously, track them, and acquire high resolution images of them. Results will demonstrate performance tracking and imaging varying numbers of objects moving at different speeds.

  19. A summary of image segmentation techniques

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly

    1993-01-01

    Machine vision systems are often considered to be composed of two subsystems: low-level vision and high-level vision. Low level vision consists primarily of image processing operations performed on the input image to produce another image with more favorable characteristics. These operations may yield images with reduced noise or cause certain features of the image to be emphasized (such as edges). High-level vision includes object recognition and, at the highest level, scene interpretation. The bridge between these two subsystems is the segmentation system. Through segmentation, the enhanced input image is mapped into a description involving regions with common features which can be used by the higher level vision tasks. There is no theory on image segmentation. Instead, image segmentation techniques are basically ad hoc and differ mostly in the way they emphasize one or more of the desired properties of an ideal segmenter and in the way they balance and compromise one desired property against another. These techniques can be categorized in a number of different groups including local vs. global, parallel vs. sequential, contextual vs. noncontextual, interactive vs. automatic. In this paper, we categorize the schemes into three main groups: pixel-based, edge-based, and region-based. Pixel-based segmentation schemes classify pixels based solely on their gray levels. Edge-based schemes first detect local discontinuities (edges) and then use that information to separate the image into regions. Finally, region-based schemes start with a seed pixel (or group of pixels) and then grow or split the seed until the original image is composed of only homogeneous regions. Because there are a number of survey papers available, we will not discuss all segmentation schemes. Rather than a survey, we take the approach of a detailed overview. We focus only on the more common approaches in order to give the reader a flavor for the variety of techniques available yet present enough

  20. Electrostatic Capacitive Imaging: A New NDE Technique

    NASA Astrophysics Data System (ADS)

    Diamond, G.; Hutchins, D. A.; Leong, K. K.; Gan, T. H.

    2007-03-01

    A new technique for NDE has been developed which is capable of imaging a wide range of materials and structures, ranging from insulators to metallic conductors. The approach, known as Capacitive Imaging (CI) uses electrode arrays in air to produce an AC electric field distribution within the material. Scanning the electrodes over the material causes a change in the field distribution, and hence changes in output voltage. Capacitive coupling allows the technique to work on a wide variety of material conductivities without some of the disadvantages associated with conventional eddy current and potential drop methods. Images are presented of carbon fibre composite materials, concrete and Plexiglas, illustrating the range of application in NDE. The effect of electrode shape and excitation frequency will be discussed in terms of image resolution and depth of penetration.

  1. The application of remote sensing techniques to selected inter and intra urban data acquisition problems

    NASA Technical Reports Server (NTRS)

    Horton, F. E.

    1970-01-01

    The utility of remote sensing techniques to urban data acquisition problems in several distinct areas was identified. This endeavor included a comparison of remote sensing systems for urban data collection, the extraction of housing quality data from aerial photography, utilization of photographic sensors in urban transportation studies, urban change detection, space photography utilization, and an application of remote sensing techniques to the acquisition of data concerning intra-urban commercial centers. The systematic evaluation of variable extraction for urban modeling and planning at several different scales, and the model derivation for identifying and predicting economic growth and change within a regional system of cities are also studied.

  2. An overview of data acquisition, signal coding and data analysis techniques for MST radars

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1986-01-01

    An overview is given of the data acquisition, signal processing, and data analysis techniques that are currently in use with high power MST/ST (mesosphere stratosphere troposphere/stratosphere troposphere) radars. This review supplements the works of Rastogi (1983) and Farley (1984) presented at previous MAP workshops. A general description is given of data acquisition and signal processing operations and they are characterized on the basis of their disparate time scales. Then signal coding, a brief description of frequently used codes, and their limitations are discussed, and finally, several aspects of statistical data processing such as signal statistics, power spectrum and autocovariance analysis, outlier removal techniques are discussed.

  3. A Markov chain technique for determining the acquisition behavior of a digital tracking loop

    NASA Technical Reports Server (NTRS)

    Chadwick, H. D.

    1972-01-01

    An iterative procedure is presented for determining the acquisition behavior of discrete or digital implementations of a tracking loop. The technique is based on the theory of Markov chains and provides the cumulative probability of acquisition in the loop as a function of time in the presence of noise and a given set of initial condition probabilities. A digital second-order tracking loop to be used in the Viking command receiver for continuous tracking of the command subcarrier phase was analyzed using this technique, and the results agree closely with experimental data.

  4. Imaging through scattering media by interferometric techniques

    NASA Astrophysics Data System (ADS)

    Tai, A. M.; Aleksoff, C. C.; Chang, B. J.

    1981-07-01

    It is shown that while holographic techniques are effective in seeing through such scattering media as fog, their usefulness in field applications is limited by the requirement of a separate reference beam. An alternative interferometric technique that uses a grating interferometric imaging system is presented, whose main advantage is a relatively high tolerance to normal vibration and air disturbances. It is proposed that the system incorporate a recording device that combines an image converter-intensifier with a real time light modulator. In addition to permitting real time operation, such a device would also increase system sensitivity and permit the use of IR illumination.

  5. Retinal Image Simulation of Subjective Refraction Techniques.

    PubMed

    Perches, Sara; Collados, M Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient's response-guided refraction) is the most commonly used approach. In this context, this paper's main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques--including Jackson's Cross-Cylinder test (JCC)--relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software's usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648

  6. Red flag imaging techniques in Barrett's esophagus.

    PubMed

    Saxena, Payal; Canto, Marcia Irene

    2013-07-01

    The key to detection and treatment of early neoplasia in Barrett's esophagus (BE) is thorough and careful inspection of the Barrett's segment. The greatest role for red flag techniques is to help identify neoplastic lesions for targeted biopsy and therapy. High-definition white light endoscopy (HD-WLE) can potentially improve endoscopic imaging of BE compared with standard endoscopy, but little scientific evidence supports this. The addition of autofluorescence imaging to HD-WLE and narrow band imaging increases sensitivity and the false-positive rate without significantly improving overall detection of BE-related neoplasia. PMID:23735101

  7. Digital image processing: a primer for JVIR authors and readers: part 2: digital image acquisition.

    PubMed

    LaBerge, Jeanne M; Andriole, Katherine P

    2003-11-01

    This is the second installment of a three-part series on digital image processing intended to prepare authors for online submission of manuscripts. In the first article of the series, we reviewed the fundamentals of digital image architecture. In this article, we describe the ways that an author can import digital images to the computer desktop. We explore the modern imaging network and explain how to import picture archiving and communications systems (PACS) images to the desktop. Options and techniques for producing digital hard copy film are also presented. PMID:14605101

  8. Post-acquisition small-animal respiratory gated imaging using micro cone-beam CT

    NASA Astrophysics Data System (ADS)

    Hu, Jicun; Haworth, Steven T.; Molthen, Robert C.; Dawson, Christopher A.

    2004-04-01

    On many occasions, it is desirable to image lungs in vivo to perform a pulmonary physiology study. Since the lungs are moving, gating with respect to the ventilatory phase has to be performed in order to minimize motion artifacts. Gating can be done in real time, similar to cardiac imaging in clinical applications, however, there are technical problems that have lead us to investigate different approaches. The problems include breath-to-breath inconsistencies in tidal volume, which makes the precise detection of ventilatory phase difficult, and the relatively high ventilation rates seen in small animals (rats and mice have ventilation rates in the range of a hundred cycles per minute), which challenges the capture rate of many imaging systems (this is particularly true of our system which utilizes cone-beam geometry and a 2 dimensional detector). Instead of pre-capture ventilation gating we implemented a method of post-acquisition gating. We acquire a sequence of projections images at 30 frames per second for each of 360 viewing angles. During each capture sequence the rat undergoes multiple ventilation cycles. Using the sequence of projection images, an automated region of interest algorithm, based on integrated grayscale intensity, tracts the ventilatory phase of the lungs. In the processing of an image sequence, multiple projection images are identified at a particular phase and averaged to improve the signal-to-ratio. The resulting averaged projection images are input to a Feldkamp cone-beam algorithm reconstruction algorithm in order to obtain isotropic image volumes. Minimal motion artifact data sets improve qualitative and quantitative analysis techniques useful in physiologic studies of pulmonary structure and function.

  9. Retinal Imaging Techniques for Diabetic Retinopathy Screening.

    PubMed

    Goh, James Kang Hao; Cheung, Carol Y; Sim, Shaun Sebastian; Tan, Pok Chien; Tan, Gavin Siew Wei; Wong, Tien Yin

    2016-03-01

    Due to the increasing prevalence of diabetes mellitus, demand for diabetic retinopathy (DR) screening platforms is steeply increasing. Early detection and treatment of DR are key public health interventions that can greatly reduce the likelihood of vision loss. Current DR screening programs typically employ retinal fundus photography, which relies on skilled readers for manual DR assessment. However, this is labor-intensive and suffers from inconsistency across sites. Hence, there has been a recent proliferation of automated retinal image analysis software that may potentially alleviate this burden cost-effectively. Furthermore, current screening programs based on 2-dimensional fundus photography do not effectively screen for diabetic macular edema (DME). Optical coherence tomography is becoming increasingly recognized as the reference standard for DME assessment and can potentially provide a cost-effective solution for improving DME detection in large-scale DR screening programs. Current screening techniques are also unable to image the peripheral retina and require pharmacological pupil dilation; ultra-widefield imaging and confocal scanning laser ophthalmoscopy, which address these drawbacks, possess great potential. In this review, we summarize the current DR screening methods using various retinal imaging techniques, and also outline future possibilities. Advances in retinal imaging techniques can potentially transform the management of patients with diabetes, providing savings in health care costs and resources. PMID:26830491

  10. New techniques in articular cartilage imaging.

    PubMed

    Potter, Hollis G; Black, Brandon R; Chong, Le Roy

    2009-01-01

    Standardized magnetic resonance imaging (MRI) pulse sequences provide an accurate, reproducible assessment of cartilage morphology. Three-dimensional (3D) modeling techniques enable semiautomated models of the joint surface and thickness measurements, which may eventually prove essential in templating before partial or total joint resurfacing as well as focal cartilage repair. Quantitative MRI techniques, such as T2 mapping, T1 rho, and delayed gadolinium-enhanced MRI of cartilage (dGEMRIC), provide noninvasive information about cartilage and repair tissue biochemistry. Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) demonstrate information regarding the regional anisotropic variation of cartilage ultrastructure. Further research strengthening the association between quantitative MRI and cartilage material properties may predict the functional capacity of native and repaired tissue. MRI provides an essential objective assessment of cartilage regenerative procedures. PMID:19064167

  11. Imaging Instrumentation and Techniques for Precision Radiotherapy

    NASA Astrophysics Data System (ADS)

    Parodi, Katia; Parodi, Katia; Thieke, Christian; Thieke, Christian

    Over the last decade, several technological advances have considerably improved the achievable precision of dose delivery in radiation therapy. Clinical exploitation of the superior tumor-dose conformality offered by modern radiotherapy techniques like intensity-modulated radiotherapy and ion beam therapy requires morphological and functional assessment of the tumor during the entire therapy chain from treatment planning to beam application and treatment response evaluation. This chapter will address the main rationale and role of imaging in state-of-the-art external beam radiotherapy. Moreover, it will present the status of novel imaging instrumentation and techniques being nowadays introduced in clinical use or still under development for image guidance and, ultimately, dose guidance of precision radiotherapy.

  12. [Cucumber diseases diagnosis using multispectral imaging technique].

    PubMed

    Feng, Jie; Liao, Ning-Fang; Zhao, Bo; Luo, Yong-Dao; Li, Bao-Ju

    2009-02-01

    For a reliable diagnosis of plant diseases and insect pests, spectroscopy analysis technique and mutispectral imaging technique are proposed to diagnose five cucumber diseases, namely Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, Corynespora cassiicola and Pseudoperonospora cubensis. In the experiment, the cucumbers' multispectral images of 14 visible lights channels, near infrared channel and panchromatic channel were captured using narrow-band multispectral imaging system under standard observation environment. And the 5 cucumber diseases, healthy leaves and reference white were classified using their multispectral information, the distance, angle and relativity. The discrimination of Trichothecium roseum, Sphaerotheca fuliginea, Cladosporium cucumerinum, and reference white was 100%, and that of Pseudoperonospora cubensis and healthy leaves was 80% and 93.33% respectively. The mean correct discrimination of diseases was 81.90% when the distance and relativity were used together. The result shows that the method realized good accuracy in the cucumber diseases diagnosis. PMID:19445229

  13. Spacing Techniques in Second Language Vocabulary Acquisition: Short-Term Gains vs. Long-Term Memory

    ERIC Educational Resources Information Center

    Schuetze, Ulf

    2015-01-01

    This article reports the results of two experiments using the spacing technique (Leitner, 1972; Landauer & Bjork, 1978) in second language vocabulary acquisition. In the past, studies in this area have produced mixed results attempting to differentiate between massed, uniform and expanded intervals of spacing (Balota, Duchek, & Logan,…

  14. Retinal Image Simulation of Subjective Refraction Techniques

    PubMed Central

    Perches, Sara; Collados, M. Victoria; Ares, Jorge

    2016-01-01

    Refraction techniques make it possible to determine the most appropriate sphero-cylindrical lens prescription to achieve the best possible visual quality. Among these techniques, subjective refraction (i.e., patient’s response-guided refraction) is the most commonly used approach. In this context, this paper’s main goal is to present a simulation software that implements in a virtual manner various subjective-refraction techniques—including Jackson’s Cross-Cylinder test (JCC)—relying all on the observation of computer-generated retinal images. This software has also been used to evaluate visual quality when the JCC test is performed in multifocal-contact-lens wearers. The results reveal this software’s usefulness to simulate the retinal image quality that a particular visual compensation provides. Moreover, it can help to gain a deeper insight and to improve existing refraction techniques and it can be used for simulated training. PMID:26938648

  15. Acquisition and Processing of Multi-source Technique Offshore with Different Types of Source

    NASA Astrophysics Data System (ADS)

    Li, L.; Tong, S.; Zhou, H. W.

    2015-12-01

    Multi-source blended offshore seismic acquisition has been developed in recent years. The technology aims to improve the efficiency of acquisition or enhance the image quality through the dense spatial sampling. Previous methods usually use several source of the same type, we propose applying onshore sources with different central frequencies to image multiscale target layers at different depths. Low frequency seismic source is used to image the deep structure but has low resolution at shallow depth, which can be compensated by high frequency. By combing the low and high frequency imaging together, we obtain high resolution profiles on both shallow and deep. Considering all of above, we implemented a 2-D cruise using 300Hz and 2000Hz central frequency spark source whcich are randomly shooted with certain delay time. In this process we separate blended data by denoising methods, including middle filter and curvelet transform, and then match prestack data to obtain final profiles. Median filter can restrain impulse noise and protect the edges while curvelet transform has multi-scale characteristics and powerful sparse expression ability. The iterative noise elimination can produce good results. Prestack matching filter is important when integrate wavelet of two different spark sources because of their different characteristics, making data accordant for reflecting time, amplitude, frequency and phase. By comparing with profiles used either single type of source, the image of blended acquisition shows higher resolution at shallow depth and results in more information in deep locations.

  16. Super-resolution reconstruction to increase the spatial resolution of diffusion weighted images from orthogonal anisotropic acquisitions.

    PubMed

    Scherrer, Benoit; Gholipour, Ali; Warfield, Simon K

    2012-10-01

    Diffusion-weighted imaging (DWI) enables non-invasive investigation and characterization of the white matter but suffers from a relatively poor spatial resolution. Increasing the spatial resolution in DWI is challenging with a single-shot EPI acquisition due to the decreased signal-to-noise ratio and T2(∗) relaxation effect amplified with increased echo time. In this work we propose a super-resolution reconstruction (SRR) technique based on the acquisition of multiple anisotropic orthogonal DWI scans. DWI scans acquired in different planes are not typically closely aligned due to the geometric distortion introduced by magnetic susceptibility differences in each phase-encoding direction. We compensate each scan for geometric distortion by acquisition of a dual echo gradient echo field map, providing an estimate of the field inhomogeneity. We address the problem of patient motion by aligning the volumes in both space and q-space. The SRR is formulated as a maximum a posteriori problem. It relies on a volume acquisition model which describes how the acquired scans are observations of an unknown high-resolution image which we aim to recover. Our model enables the introduction of image priors that exploit spatial homogeneity and enables regularized solutions. We detail our SRR optimization procedure and report experiments including numerical simulations, synthetic SRR and real world SRR. In particular, we demonstrate that combining distortion compensation and SRR provides better results than acquisition of a single isotropic scan for the same acquisition duration time. Importantly, SRR enables DWI with resolution beyond the scanner hardware limitations. This work provides the first evidence that SRR, which employs conventional single shot EPI techniques, enables resolution enhancement in DWI, and may dramatically impact the role of DWI in both neuroscience and clinical applications. PMID:22770597

  17. A Spartan 6 FPGA-based data acquisition system for dedicated imagers in nuclear medicine

    NASA Astrophysics Data System (ADS)

    Fysikopoulos, E.; Loudos, G.; Georgiou, M.; David, S.; Matsopoulos, G.

    2012-12-01

    We present the development of a four-channel low-cost hardware system for data acquisition, with application in dedicated nuclear medicine imagers. A 12 bit octal channel high-speed analogue to digital converter, with up to 65 Msps sampling rate, was used for the digitization of analogue signals. The digitized data are fed into a field programmable gate array (FPGA), which contains an interface to a bank of double data rate 2 (DDR2)-type memory. The FPGA processes the digitized data and stores the results into the DDR2. An ethernet link was used for data transmission to a personal computer. The embedded system was designed using Xilinx's embedded development kit (EDK) and was based on Xilinx's Microblaze soft-core processor. The system has been evaluated using two different discrete optical detector arrays (a position-sensitive photomultiplier tube and a silicon photomultiplier) with two different pixelated scintillator arrays (BGO, LSO:Ce). The energy resolution for both detectors was approximately 25%. A clear identification of all crystal elements was achieved in all cases. The data rate of the system with this implementation can reach 60 Mbits s-1. The results have shown that this FPGA data acquisition system is a compact and flexible solution for single-photon-detection applications. This paper was originally submitted for inclusion in the special feature on Imaging Systems and Techniques 2011.

  18. Graph-based retrospective 4D image construction from free-breathing MRI slice acquisitions

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Ciesielski, Krzysztof C.; McDonough, Joseph M.; Mong, Andrew; Campbell, Robert M.

    2014-03-01

    4D or dynamic imaging of the thorax has many potential applications [1, 2]. CT and MRI offer sufficient speed to acquire motion information via 4D imaging. However they have different constraints and requirements. For both modalities both prospective and retrospective respiratory gating and tracking techniques have been developed [3, 4]. For pediatric imaging, x-ray radiation becomes a primary concern and MRI remains as the de facto choice. The pediatric subjects we deal with often suffer from extreme malformations of their chest wall, diaphragm, and/or spine, as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort. Moreover, we are interested in the mechanical function of their thorax in its natural form in tidal breathing. Therefore free-breathing MRI acquisition is the ideal modality of imaging for these patients. In our set up, for each coronal (or sagittal) slice position, slice images are acquired at a rate of about 200-300 ms/slice over several natural breathing cycles. This produces typically several thousands of slices which contain both the anatomic and dynamic information. However, it is not trivial to form a consistent and well defined 4D volume from these data. In this paper, we present a novel graph-based combinatorial optimization solution for constructing the best possible 4D scene from such data entirely in the digital domain. Our proposed method is purely image-based and does not need breath holding or any external surrogates or instruments to record respiratory motion or tidal volume. Both adult and children patients' data are used to illustrate the performance of the proposed method. Experimental results show that the reconstructed 4D scenes are smooth and consistent spatially and temporally, agreeing with known shape and motion of the lungs.

  19. Design of multi-mode compatible image acquisition system for HD area array CCD

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Sui, Xiubao

    2014-11-01

    Combining with the current development trend in video surveillance-digitization and high-definition, a multimode-compatible image acquisition system for HD area array CCD is designed. The hardware and software designs of the color video capture system of HD area array CCD KAI-02150 presented by Truesense Imaging company are analyzed, and the structure parameters of the HD area array CCD and the color video gathering principle of the acquisition system are introduced. Then, the CCD control sequence and the timing logic of the whole capture system are realized. The noises of the video signal (KTC noise and 1/f noise) are filtered by using the Correlated Double Sampling (CDS) technique to enhance the signal-to-noise ratio of the system. The compatible designs in both software and hardware for the two other image sensors of the same series: KAI-04050 and KAI-08050 are put forward; the effective pixels of these two HD image sensors are respectively as many as four million and eight million. A Field Programmable Gate Array (FPGA) is adopted as the key controller of the system to perform the modularization design from top to bottom, which realizes the hardware design by software and improves development efficiency. At last, the required time sequence driving is simulated accurately by the use of development platform of Quartus II 12.1 combining with VHDL. The result of the simulation indicates that the driving circuit is characterized by simple framework, low power consumption, and strong anti-interference ability, which meet the demand of miniaturization and high-definition for the current tendency.

  20. [An image acquisition & processing system of the wireless endoscope based on DSP].

    PubMed

    Zhang, Jin-hua; Peng, Cheng-lin; Zhao, De-chun; Yang-Li

    2006-07-01

    This paper covers an image acquisition & processing system of the capsule-style endoscope. Images sent by the endoscope are compressed and encoded with the digital signal processor (DSP) saving data in HD into PC for analyzing and processing in the image browser workstation. PMID:17039927

  1. Image Recognition Techniques for Gamma Spectroscopy

    SciTech Connect

    Vlachos, D. S.; Tsabaris, C. G.

    2007-12-26

    Photons, after generated from a radioactive source and before they deposit their energy in a photo detector, are subsequent to multiple scattering mechanisms. As a result, the measured energy from the photo detector is different from the energy the photon had when generated. This is known as folding of the photon energy. Moreover, statistical fluctuation inside the detector contribute to energy folding. In this work, a new method is presented for unfolding the gamma ray spectrum. The method uses a 2-dimensional representation of the measured spectrum (image) and then uses image recognition techniques, and especially differential edge detection, to generate the original spectrum.

  2. Advanced Optical Imaging Techniques for Neurodevelopment

    PubMed Central

    Wu, Yicong; Christensen, Ryan; Colón-Ramos, Daniel; Shroff, Hari

    2013-01-01

    Over the past decade, developmental neuroscience has been transformed by the widespread application of confocal and two-photon fluorescence microscopy. Even greater progress is imminent, as recent innovations in microscopy now enable imaging with increased depth, speed, and spatial resolution; reduced phototoxicity; and in some cases without external fluorescent probes. We discuss these new techniques and emphasize their dramatic impact on neurobiology, including the ability to image neurons at depths exceeding 1 mm, to observe neurodevelopment noninvasively throughout embryogenesis, and to visualize neuronal processes or structures that were previously too small or too difficult to target with conventional microscopy. PMID:23831260

  3. Research on remote sensing image pixel attribute data acquisition method in AutoCAD

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Sun, Guangtong; Liu, Jun; Liu, Hui

    2013-07-01

    The remote sensing image has been widely used in AutoCAD, but AutoCAD lack of the function of remote sensing image processing. In the paper, ObjectARX was used for the secondary development tool, combined with the Image Engine SDK to realize remote sensing image pixel attribute data acquisition in AutoCAD, which provides critical technical support for AutoCAD environment remote sensing image processing algorithms.

  4. Reference radiochromic film dosimetry in kilovoltage photon beams during CBCT image acquisition

    SciTech Connect

    Tomic, Nada; Devic, Slobodan; DeBlois, Francois; Seuntjens, Jan

    2010-03-15

    Purpose: A common approach for dose assessment during cone beam computed tomography (CBCT) acquisition is to use thermoluminescent detectors for skin dose measurements (on patients or phantoms) or ionization chamber (in phantoms) for body dose measurements. However, the benefits of a daily CBCT image acquisition such as margin reduction in planning target volume and the image quality must be weighted against the extra dose received during CBCT acquisitions. Methods: The authors describe a two-dimensional reference dosimetry technique for measuring dose from CBCT scans using the on-board imaging system on a Varian Clinac-iX linear accelerator that employs the XR-QA radiochromic film model, specifically designed for dose measurements at low energy photons. The CBCT dose measurements were performed for three different body regions (head and neck, pelvis, and thorax) using humanoid Rando phantom. Results: The authors report on both surface dose and dose profiles measurements during clinical CBCT procedures carried out on a humanoid Rando phantom. Our measurements show that the surface doses per CBCT scan can range anywhere between 0.1 and 4.7 cGy, with the lowest surface dose observed in the head and neck region, while the highest surface dose was observed for the Pelvis spot light CBCT protocol in the pelvic region, on the posterior side of the Rando phantom. The authors also present results of the uncertainty analysis of our XR-QA radiochromic film dosimetry system. Conclusions: Radiochromic film dosimetry protocol described in this work was used to perform dose measurements during CBCT acquisitions with the one-sigma dose measurement uncertainty of up to 3% for doses above 1 cGy. Our protocol is based on film exposure calibration in terms of ''air kerma in air,'' which simplifies both the calibration procedure and reference dosimetry measurements. The results from a full Monte Carlo investigation of the dose conversion of measured XR-QA film dose at the surface into

  5. Pork grade evaluation using hyperspectral imaging techniques

    NASA Astrophysics Data System (ADS)

    Zhou, Rui; Cai, Bo; Wang, Shoubing; Ji, Huihua; Chen, Huacai

    2011-11-01

    The method to evaluate the grade of the pork based on hyperspectral imaging techniques was studied. Principal component analysis (PCA) was performed on the hyperspectral image data to extract the principal components which were used as the inputs of the evaluation model. By comparing the different discriminating rates in the calibration set and the validation set under different information, the choice of the components can be optimized. Experimental results showed that the classification evaluation model was the optimal when the principal of component (PC) of spectra was 3, while the corresponding discriminating rate was 89.1% in the calibration set and 84.9% in the validation set. It was also good when the PC of images was 9, while the corresponding discriminating rate was 97.2% in the calibration set and 91.1% in the validation set. The evaluation model based on both information of spectra and images was built, in which the corresponding PCs of spectra and images were used as the inputs. This model performed very well in grade classification evaluation, and the discriminating rates of calibration set and validation set were 99.5% and 92.7%, respectively, which were better than the two evaluation models based on single information of spectra or images.

  6. Research on hyperspectral polarization imaging technique

    NASA Astrophysics Data System (ADS)

    Zhao, Haibo; Feng, Lei; Zhou, Yu; Wang, Zheng; Lin, Xuling

    2015-08-01

    The summary of hyperspectral polarization remote sensing detection is presented, including the characteristics and mechanism of polarization detection, the expression of polarization light and the detection method. The present research of hyperspectral polarization remote sensing is introduced. A novel method of hyperspectral polarization imaging technique is discussed, which is based on static modulation adding with the double refraction crystal. The static modulation is composed of one polarizer and two retarders. The double refraction crystal is used to generate interference image. The four Stokes vectors and spectral information can be detected only by one measurement. The method of static modulation is introduced in detail and is simulated by computer. The experimental system is also established in laboratory. The basic concept of the technique is verified. The simulation error of DOP (polarization degree detection) is about 1%. The experimental error of DOP is less than 5%. The merits of the novel system are no moving parts, compactness and no electrical element.

  7. Lunar surface chemistry: A new imaging technique

    USGS Publications Warehouse

    Andre, C.G.; Bielefeld, M.J.; Eliason, E.; Soderblom, L.A.; Adler, I.; Philpotts, J.A.

    1977-01-01

    Detailed chemical maps of the lunar surface have been constructed by applying a new weighted-filter imaging technique to Apollo 15 and Apollo 16 x-ray fluorescence data. The data quality improvement is amply demonstrated by (i) modes in the frequency distribution, representing highland and mare soil suites, which are not evident before data filtering and (ii) numerous examples of chemical variations which are correlated with small-scale (about 15 kilometer) lunar topographic features.

  8. Noncontrast MR techniques and imaging of cartilage.

    PubMed

    Koff, Mathew F; Potter, Hollis G

    2009-05-01

    Recent advances in noncontrast MR imaging produce images with higher quality for standardized diagnostic interpretation and in many cases may obviate the need for intra-articular contrast agents. These techniques may now be applied to all joints, and are particularly efficacious in the assessment of articular cartilage. Additional specialized noncontrast sequences enable the direct quantitative assessment of articular cartilage and other joint structures, thereby providing indirect assessment of tissue health and biochemistry. T2 mapping displays local water content and collagen fibril orientation, and the method of T1 rho mapping displays the local proteoglycan content of the tissue. Ultrashort echo imaging improves the contrast of joint structures with high tissue isotropy or low water content, such as ligament, tendon, and meniscus. PMID:19361672

  9. [Direct and indirect mucosal wave imaging techniques].

    PubMed

    Krasnodębska, Paulina; Szkiełkowska, Agata

    2016-04-01

    The vocal folds play a key role in the process of phonation. Cyclical movements of the vocal folds model a space called glottis, what leads to voice formation. The space contains surface between the vocal folds and the inner surface of the arytenoid cartilages. The best indicator of the vocal folds vibratory function is the mucosal wave. The presence and size of the mucosal wave is widely recognized as an indicator of tension and plasticity of vocal folds. It is also essential in the process of creating a proper, resonant voice. In the article, current knowledge of mucosal wave imaging techniques is given. Imaging can be carried out directly and indirectly. Among the direct methods, the following are distinguished: laryngostroboscopy, laryngovideostroboscopy, videokymography and high-speed digital imaging. Indirect methods include: electroglottography, photoglottography and ultrasonography. PMID:27137829

  10. Biometric Identification Using Holographic Radar Imaging Techniques

    SciTech Connect

    McMakin, Douglas L.; Sheen, David M.; Hall, Thomas E.; Kennedy, Mike O.; Foote, Harlan P.

    2007-04-01

    Pacific Northwest National Laboratory researchers have been at the forefront of developing innovative screening systems to enhance security and a novel imaging system to provide custom-fit clothing using holographic radar imaging techniques. First-of-a-kind cylindrical holographic imaging systems have been developed to screen people at security checkpoints for the detection of concealed, body worn, non-metallic threats such as plastic and liquid explosives, knifes and contraband. Another embodiment of this technology is capable of obtaining full sized body measurements in near real time without the person under surveillance removing their outer garments. Radar signals readily penetrate clothing and reflect off the water in skin. This full body measurement system is commercially available for best fitting ready to wear clothing, which was the first “biometric” application for this technology. One compelling feature of this technology for security biometric applications is that it can see effectively through disguises, appliances and body hair.

  11. Imaging Body Fat: Techniques and Cardiometabolic Implications

    PubMed Central

    Wang, H.; Chen, Y. E; Eitzman, D.T.

    2014-01-01

    Obesity is a world-wide epidemic and is associated with multiple comorbidities. The mechanisms underlying the relationship between obesity and adverse health outcomes remain poorly understood. This may be due to several factors including the crude measures used to estimate adiposity, the striking heterogeneity between adipose tissue depots, and the influence of fat accumulation in multiple organs. In order to advance our understanding of fat stores and associated co-morbidities in humans, it will be necessary to image adiposity throughout the body and ultimately also assess its functionality. Large clinical studies are demonstrating the prognostic importance of adipose tissue imaging. Newer techniques capable of imaging fat metabolism and other functions of adipose tissue may provide additional prognostic utility and may be useful in guiding therapeutic interventions. PMID:25147343

  12. A digital receiver module with direct data acquisition for magnetic resonance imaging systems

    NASA Astrophysics Data System (ADS)

    Tang, Weinan; Sun, Hongyu; Wang, Weimin

    2012-10-01

    A digital receiver module for magnetic resonance imaging (MRI) with detailed hardware implementations is presented. The module is based on a direct sampling scheme using the latest mixed-signal circuit design techniques. A single field-programmable gate array chip is employed to perform software-based digital down conversion for radio frequency signals. The modular architecture of the receiver allows multiple acquisition channels to be implemented on a highly integrated printed circuit board. To maintain the phase coherence of the receiver and the exciter in the context of direct sampling, an effective phase synchronization method was proposed to achieve a phase deviation as small as 0.09°. The performance of the described receiver module was verified in the experiments for both low- and high-field (0.5 T and 1.5 T) MRI scanners and was compared to a modern commercial MRI receiver system.

  13. Recovery of phase inconsistencies in continuously moving table extended field of view magnetic resonance imaging acquisitions.

    PubMed

    Kruger, David G; Riederer, Stephen J; Rossman, Phillip J; Mostardi, Petrice M; Madhuranthakam, Ananth J; Hu, Houchun H

    2005-09-01

    MR images formed using extended FOV continuously moving table data acquisition can have signal falloff and loss of lateral spatial resolution at localized, periodic positions along the direction of table motion. In this work we identify the origin of these artifacts and provide a means for correction. The artifacts are due to a mismatch of the phase of signals acquired from contiguous sampling fields of view and are most pronounced when the central k-space views are being sampled. Correction can be performed using the phase information from a periodically sampled central view to adjust the phase of all other views of that view cycle, making the net phase uniform across each axial plane. Results from experimental phantom and contrast-enhanced peripheral MRA studies show that the correction technique substantially eliminates the artifact for a variety of phase encode orders. PMID:16086304

  14. Diagnostic imaging techniques in thyroid cancer

    SciTech Connect

    Friedman, M.; Toriumi, D.M.; Mafee, M.F.

    1988-02-01

    With the refinement of fine-needle aspiration, the specific applications of thyroid imaging techniques need to be reevaluated for efficiency and cost containment. No thyroid imaging test should be routinely obtained. Radionuclide scanning is most beneficial in evaluating the functional status of thyroid nodules when fine-needle aspiration is inadequate, the findings are benign, or when there is no discrete nodule that is palpated in an enlarged gland. When fine-needle aspiration is unavailable or unreliable, radionuclide scanning becomes a first-line diagnostic tool. Ultrasonography should be used primarily for identifying a solid component of a cystic nodule, determining the size of nodules on thyroxine suppression that are not easily palpable, or for performing guided fine-needle aspiration. Computerized tomography and magnetic resonance imaging both have a definite role in the evaluation of thyroid tumors. Magnetic resonance imaging is superior to computerized tomography for the evaluation of metastatic, retrotracheal, or mediastinal involvement of large thyroid tumors or goiters. Careful selection of the diagnostic techniques will ensure more accurate diagnosis and reduce unnecessary patient costs in the treatment of thyroid cancer.

  15. Virtual reality techniques for the visualization of biomedical imaging data

    NASA Astrophysics Data System (ADS)

    Shaw, Maurice A.; Spillman, William B., Jr.; Meissner, Ken E.; Gabbard, Joseph

    2001-07-01

    The Optical Sciences & Engineering Research Center (OSER) at Virginia Polytechnic and State University investigates advanced laser surgery optics, biocompatible material for implants, and diagnostic patches and other diagnostic and drug delivery tools. The Center employs optics to provide new biological research tools for visualization, measurement, analysis and manipulation. The Center's Research into Multispectral Medical Analysis and Visualization techniques will allow human and veterinary medical professionals to diagnose various conditions of the body in much the same way that satellite information is used to study earth resources. Each pixel in the image has an associated spectra. Advanced image analysis techniques are combined with cross-correlation of the spectra with signatures of known conditions, allowing automated diagnostic assistance to physicians. The analysis and visualization system consists of five components: data acquisition, data storage, data standardization, data analysis, and data visualization. OSER research efforts will be directed toward investigations of these system components as an integrated tool for next generation medical diagnostics. OSER will research critical data quality and data storage issues, mult-spectral sensor technologies, data analysis techniques, and diagnostic visualization systems including the VT-CAVE, (www.cave.vt.edu). The VT-CAVE is Virginia Tech's configuration of Fakespace Systems, Inc Virtual Reality system.

  16. Optical replication techniques for image slicers

    NASA Astrophysics Data System (ADS)

    Schmoll, J.; Robertson, D. J.; Dubbeldam, C. M.; Bortoletto, F.; Pina, L.; Hudec, R.; Prieto, E.; Norrie, C.; Ramsay-Howat, S.

    2006-06-01

    The smart focal planes (SmartFP) activity is an European Joint Research Activity funded to develop novel optical technologies for future large telescope instrumentation [Cunningham C.R., et al., 2004. SPIE 5382, 718-726]. In this paper, we will discuss the image slicer developments being carried out as part of this initiative. Image slicing techniques have many applications in the plans for instrumentation on extremely large telescopes and will be central to the delivery of the science case. A study of a virtual multi-object multi-ifu spectrograph and imager (MOMSI) for a hypothetical OWL-class telescope reveals the need for focal plane splitting, deployable imagers and very small beam steering elements like deployable IFUs. The image slicer workpackage, lead from Durham University in collaboration with LFM Bremen, TNO Delft, UKATC Edinburgh, CRAL Lyon, LAM Marseille, Padua University and REFLEX Prague, is evaluating technologies for manufacturing micro optics in large numbers to enable multi-object integral field spectroscopy.

  17. Dynamic diffusion tensor measurements in muscle tissue using Single Line Multiple Echo Diffusion Tensor Acquisition Technique at 3T

    PubMed Central

    Baete, Steven H.; Cho, Gene; Sigmund, Eric E.

    2015-01-01

    When diffusion biomarkers display transient changes, i.e. in muscle following exercise, traditional diffusion tensor imaging (DTI) methods lack temporal resolution to resolve the dynamics. This paper presents an MRI method for dynamic diffusion tensor acquisitions on a clinical 3T scanner. This method, SL-MEDITATE (Single Line Multiple Echo Diffusion Tensor Acquisition Technique) achieves a high temporal resolution (4s) (1) by rapid diffusion encoding through the acquisition of multiple echoes with unique diffusion sensitization and (2) by limiting the readout to a single line volume. The method is demonstrated in a rotating anisotropic phantom, in a flow phantom with adjustable flow speed, and in in vivo skeletal calf muscle of healthy volunteers following a plantar flexion exercise. The rotating and flow-varying phantom experiments show that SL-MEDITATE correctly identifies the rotation of the first diffusion eigenvector and the changes in diffusion tensor parameter magnitudes, respectively. Immediately following exercise, the in vivo mean diffusivity (MD) time-courses show, before the well-known increase, an initial decrease which is not typically observed in traditional DTI. In conclusion, SL-MEDITATE can be used to capture transient changes in tissue anisotropy in a single line. Future progress might allow for dynamic DTI when combined with appropriate k-space trajectories and compressed sensing reconstruction. PMID:25900166

  18. Performing Quantitative Imaging Acquisition, Analysis and Visualization Using the Best of Open Source and Commercial Software Solutions

    PubMed Central

    Shenoy, Shailesh M.

    2016-01-01

    A challenge in any imaging laboratory, especially one that uses modern techniques, is to achieve a sustainable and productive balance between using open source and commercial software to perform quantitative image acquisition, analysis and visualization. In addition to considering the expense of software licensing, one must consider factors such as the quality and usefulness of the software’s support, training and documentation. Also, one must consider the reproducibility with which multiple people generate results using the same software to perform the same analysis, how one may distribute their methods to the community using the software and the potential for achieving automation to improve productivity. PMID:27516727

  19. Robustness of speckle imaging techniques applied to horizontal imaging scenarios

    NASA Astrophysics Data System (ADS)

    Bos, Jeremy P.

    Atmospheric turbulence near the ground severely limits the quality of imagery acquired over long horizontal paths. In defense, surveillance, and border security applications, there is interest in deploying man-portable, embedded systems incorporating image reconstruction to improve the quality of imagery available to operators. To be effective, these systems must operate over significant variations in turbulence conditions while also subject to other variations due to operation by novice users. Systems that meet these requirements and are otherwise designed to be immune to the factors that cause variation in performance are considered robust. In addition to robustness in design, the portable nature of these systems implies a preference for systems with a minimum level of computational complexity. Speckle imaging methods are one of a variety of methods recently been proposed for use in man-portable horizontal imagers. In this work, the robustness of speckle imaging methods is established by identifying a subset of design parameters that provide immunity to the expected variations in operating conditions while minimizing the computation time necessary for image recovery. This performance evaluation is made possible using a novel technique for simulating anisoplanatic image formation. I find that incorporate as few as 15 image frames and 4 estimates of the object phase per reconstructed frame provide an average reduction of 45% reduction in Mean Squared Error (MSE) and 68% reduction in deviation in MSE. In addition, the Knox-Thompson phase recovery method is demonstrated to produce images in half the time required by the bispectrum. Finally, it is shown that certain blind image quality metrics can be used in place of the MSE to evaluate reconstruction quality in field scenarios. Using blind metrics rather depending on user estimates allows for reconstruction quality that differs from the minimum MSE by as little as 1%, significantly reducing the deviation in

  20. Special feature on imaging systems and techniques

    NASA Astrophysics Data System (ADS)

    Yang, Wuqiang; Giakos, George

    2013-07-01

    The IEEE International Conference on Imaging Systems and Techniques (IST'2012) was held in Manchester, UK, on 16-17 July 2012. The participants came from 26 countries or regions: Austria, Brazil, Canada, China, Denmark, France, Germany, Greece, India, Iran, Iraq, Italy, Japan, Korea, Latvia, Malaysia, Norway, Poland, Portugal, Sweden, Switzerland, Taiwan, Tunisia, UAE, UK and USA. The technical program of the conference consisted of a series of scientific and technical sessions, exploring physical principles, engineering and applications of new imaging systems and techniques, as reflected by the diversity of the submitted papers. Following a rigorous review process, a total of 123 papers were accepted, and they were organized into 30 oral presentation sessions and a poster session. In addition, six invited keynotes were arranged. The conference not only provided the participants with a unique opportunity to exchange ideas and disseminate research outcomes but also paved a way to establish global collaboration. Following the IST'2012, a total of 55 papers, which were technically extended substantially from their versions in the conference proceeding, were submitted as regular papers to this special feature of Measurement Science and Technology . Following a rigorous reviewing process, 25 papers have been finally accepted for publication in this special feature and they are organized into three categories: (1) industrial tomography, (2) imaging systems and techniques and (3) image processing. These papers not only present the latest developments in the field of imaging systems and techniques but also offer potential solutions to existing problems. We hope that this special feature provides a good reference for researchers who are active in the field and will serve as a catalyst to trigger further research. It has been our great pleasure to be the guest editors of this special feature. We would like to thank the authors for their contributions, without which it would

  1. Seismic data acquisition techniques on loess hills in the ordos basin

    NASA Astrophysics Data System (ADS)

    Yao, Zonghui; Chen, Jianxin; Ren, Wenjun; Qian, Hanlin; Li, Maicheng

    2004-10-01

    High-resolution exploration for lithologic targets confronted with difficulties due to the original brought out from geophysical and geologic characteristics of the loess hills and the very thick deserts in Ordos. Scientific research since mid 1990s has conducted three acquisition techniques including the high-resolution crooked line survey in valleys, high-resolution multiple straight line survey and 3D survey, under different surface conditions and for different geological targets.

  2. Imaging Techniques in Acute Heart Failure.

    PubMed

    Pérez del Villar, Candelas; Yotti, Raquel; Bermejo, Javier

    2015-07-01

    In recent years, imaging techniques have revolutionized the diagnosis of heart failure. In patients with a clinical picture of acute decompensation, prognosis is largely determined by early implementation of general measures and treatment of the underlying cause. Given its diagnostic yield and portability, ultrasound has become an essential tool in the setting of acute heart failure, and is currently found in all medical departments involved in the care of the critically ill patient. Cardiac magnetic resonance and computed tomography allow detailed characterization of multiple aspects of cardiac structure and function that were previously unavailable. This helps guide and monitor many of the treatment decisions in the acute heart failure population in an entirely noninvasive way. This article aims to review the usefulness of the imaging techniques that are clinically relevant in the context of an episode of acute heart failure. We discuss the indications and limitations of these techniques in detail and describe the general principles for the appropriate interpretation of results. PMID:26002273

  3. Metrics for image-based modeling of target acquisition

    NASA Astrophysics Data System (ADS)

    Fanning, Jonathan D.

    2012-06-01

    This paper presents an image-based system performance model. The image-based system model uses an image metric to compare a given degraded image of a target, as seen through the modeled system, to the set of possible targets in the target set. This is repeated for all possible targets to generate a confusion matrix. The confusion matrix is used to determine the probability of identifying a target from the target set when using a particular system in a particular set of conditions. The image metric used in the image-based model should correspond closely to human performance. The image-based model performance is compared to human perception data on Contrast Threshold Function (CTF) tests, naked eye Triangle Orientation Discrimination (TOD), and TOD including an infrared camera system. Image-based system performance modeling is useful because it allows modeling of arbitrary image processing. Modern camera systems include more complex image processing, much of which is nonlinear. Existing linear system models, such as the TTP metric model implemented in NVESD models such as NV-IPM, assume that the entire system is linear and shift invariant (LSI). The LSI assumption makes modeling nonlinear processes difficult, such as local area processing/contrast enhancement (LAP/LACE), turbulence reduction, and image fusion.

  4. Effect of image bit depth on target acquisition modeling

    NASA Astrophysics Data System (ADS)

    Teaney, Brian P.; Reynolds, Joseph P.

    2008-04-01

    The impact of bit depth on human in the loop recognition and identification performance is of particular importance when considering trade-offs between resolution and band-width of sensor systems. This paper presents the results from two perception studies designed to measure the effects of quantization and finite bit depth on target acquisition performance. The results in this paper allow for the inclusion of limited bit depth and quantization as an additional noise term in NVESD sensor performance models.

  5. Multiresolution segmentation technique for spine MRI images

    NASA Astrophysics Data System (ADS)

    Li, Haiyun; Yan, Chye H.; Ong, Sim Heng; Chui, Cheekong K.; Teoh, Swee H.

    2002-05-01

    In this paper, we describe a hybrid method for segmentation of spinal magnetic resonance imaging that has been developed based on the natural phenomenon of stones appearing as water recedes. The candidate segmentation region corresponds to the stones with characteristics similar to that of intensity extrema, edges, intensity ridge and grey-level blobs. The segmentation method is implemented based on a combination of wavelet multiresolution decomposition and fuzzy clustering. First thresholding is performed dynamically according to local characteristic to detect possible target areas, We then use fuzzy c-means clustering in concert with wavelet multiscale edge detection to identify the maximum likelihood anatomical and functional target areas. Fuzzy C-Means uses iterative optimization of an objective function based on a weighted similarity measure between the pixels in the image and each of c cluster centers. Local extrema of this objective function are indicative of an optimal clustering of the input data. The multiscale edges can be detected and characterized from local maxima of the modulus of the wavelet transform while the noise can be reduced to some extent by enacting thresholds. The method provides an efficient and robust algorithm for spinal image segmentation. Examples are presented to demonstrate the efficiency of the technique on some spinal MRI images.

  6. Atherosclerosis staging: imaging using FLIM technique

    NASA Astrophysics Data System (ADS)

    Sicchieri, Leticia B.; Barioni, Marina Berardi; Silva, Mônica Nascimento; Monteiro, Andrea Moreira; Figueiredo Neto, Antonio Martins; Ito, Amando S.; Courrol, Lilia C.

    2014-03-01

    In this work it was used fluorescence lifetime imaging (FLIM) to analyze biochemical composition of atherosclerotic plaque. For this purpose an animal experimentation was done with New Zealand rabbits divided into two groups: a control group of 4 rabbits that received a regular diet for 0, 20, 40 and 60 days; and an experimental group of 9 rabbits, divided in 3 subgroups, that were fed with 1% cholesterol diet for 20, 40 and 60 days respectively. The aortas slices stained with europium chlortetracycline were analyzed by FLIM exciting samples at 440 nm. The results shown an increase in the lifetime imaging of rabbits fed with cholesterol. It was observed that is possible to detect the metabolic changes associated with atherosclerosis at an early stage using FLIM technique exciting the tissue around 440 nm and observing autofluorescence lifetime. Lifetimes longer than 1.75 ns suggest the presence of porphyrins in the tissue and consequently, inflammation and the presence of macrophages.

  7. Novel imaging techniques for diabetic macular edema.

    PubMed

    Lobo, C; Bernardes, R; Faria de Abreu, J R; Cunha-Vaz, J G

    1999-01-01

    Retinal edema should be defined as any increase of water of the retinal tissue resulting in an increase in its volume. It may be of cytotoxic or vasogenic origin. Development of vasogenic macular edema is dependent on a series of factors such as blood pressure, blood-retinal barrier permeability, retinal cell damage, retinal tissue osmotic pressure and retinal tissue compliance. Objective measurements of retinal thickness are now possible using the Retinal Thickness Analyser. Localised measurements of blood-retinal barrier permeability may also be obtained using the Retinal Leakage Analyser, a modified confocal scanning laser fluorometer, while obtaining simultaneously angiographic images of the choroid and retina. These new imaging techniques show that cytotoxic and vasogenic retinal edema may occur independently in the early stages of diabetic retinopathy. These findings offer new perspectives for designing novel therapeutic strategies. PMID:10896349

  8. Combined Acquisition Technique (CAT) for Neuroimaging of Multiple Sclerosis at Low Specific Absorption Rates (SAR)

    PubMed Central

    Biller, Armin; Choli, Morwan; Blaimer, Martin; Breuer, Felix A.; Jakob, Peter M.; Bartsch, Andreas J.

    2014-01-01

    Purpose To compare a novel combined acquisition technique (CAT) of turbo-spin-echo (TSE) and echo-planar-imaging (EPI) with conventional TSE. CAT reduces the electromagnetic energy load transmitted for spin excitation. This radiofrequency (RF) burden is limited by the specific absorption rate (SAR) for patient safety. SAR limits restrict high-field MRI applications, in particular. Material and Methods The study was approved by the local Medical Ethics Committee. Written informed consent was obtained from all participants. T2- and PD-weighted brain images of n = 40 Multiple Sclerosis (MS) patients were acquired by CAT and TSE at 3 Tesla. Lesions were recorded by two blinded, board-certificated neuroradiologists. Diagnostic equivalence of CAT and TSE to detect MS lesions was evaluated along with their SAR, sound pressure level (SPL) and sensations of acoustic noise, heating, vibration and peripheral nerve stimulation. Results Every MS lesion revealed on TSE was detected by CAT according to both raters (Cohen’s kappa of within-rater/across-CAT/TSE lesion detection κCAT = 1.00, at an inter-rater lesion detection agreement of κLES = 0.82). CAT reduced the SAR burden significantly compared to TSE (p<0.001). Mean SAR differences between TSE and CAT were 29.0 (±5.7) % for the T2-contrast and 32.7 (±21.9) % for the PD-contrast (expressed as percentages of the effective SAR limit of 3.2 W/kg for head examinations). Average SPL of CAT was no louder than during TSE. Sensations of CAT- vs. TSE-induced heating, noise and scanning vibrations did not differ. Conclusion T2−/PD-CAT is diagnostically equivalent to TSE for MS lesion detection yet substantially reduces the RF exposure. Such SAR reduction facilitates high-field MRI applications at 3 Tesla or above and corresponding protocol standardizations but CAT can also be used to scan faster, at higher resolution or with more slices. According to our data, CAT is no more uncomfortable than TSE scanning. PMID

  9. Imageability predicts the age of acquisition of verbs in Chinese children*

    PubMed Central

    Ma, Weiyi; Golinkoff, Roberta Michnick; Hirsh-Pasek, Kathy; McDonough, Colleen; Tardif, Twila

    2010-01-01

    Verbs are harder to learn than nouns in English and in many other languages, but are relatively easy to learn in Chinese. This paper evaluates one potential explanation for these findings by examining the construct of imageability, or the ability of a word to produce a mental image. Chinese adults rated the imageability of Chinese words from the Chinese Communicative Development Inventory (Tardif et al., in press). Imageability ratings were a reliable predictor of age of acquisition in Chinese for both nouns and verbs. Furthermore, whereas early Chinese and English nouns do not differ in imageability, verbs receive higher imageability ratings in Chinese than in English. Compared with input frequency, imageability independently accounts for a portion of the variance in age of acquisition (AoA) of verb learning in Chinese and English. PMID:18937878

  10. Data Acquisition and Image Reconstruction Systems from the miniPET Scanners to the CARDIOTOM Camera

    SciTech Connect

    Valastvan, I.; Imrek, J.; Hegyesi, G.; Molnar, J.; Novak, D.; Bone, D.; Kerek, A.

    2007-11-26

    Nuclear imaging devices play an important role in medical diagnosis as well as drug research. The first and second generation data acquisition systems and the image reconstruction library developed provide a unified hardware and software platform for the miniPET-I, miniPET-II small animal PET scanners and for the CARDIOTOM{sup TM}.

  11. Performance of reduced bit-depth acquisition for optical frequency domain imaging

    PubMed Central

    Goldberg, Brian D.; Vakoc, Benjamin J.; Oh, Wang-Yuhl; Suter, Melissa J.; Waxman, Sergio; Freilich, Mark I.; Bouma, Brett E.; Tearney, Guillermo J.

    2009-01-01

    High-speed optical frequency domain imaging (OFDI) has enabled practical wide-field microscopic imaging in the biological laboratory and clinical medicine. The imaging speed of OFDI, and therefore the field of view, of current systems is limited by the rate at which data can be digitized and archived rather than the system sensitivity or laser performance. One solution to this bottleneck is to natively digitize OFDI signals at reduced bit depths, e.g., at 8-bit depth rather than the conventional 12–14 bit depth, thereby reducing overall bandwidth. However, the implications of reduced bit-depth acquisition on image quality have not been studied. In this paper, we use simulations and empirical studies to evaluate the effects of reduced depth acquisition on OFDI image quality. We show that image acquisition at 8-bit depth allows high system sensitivity with only a minimal drop in the signal-to-noise ratio compared to higher bit-depth systems. Images of a human coronary artery acquired in vivo at 8-bit depth are presented and compared with images at higher bit-depth acquisition. PMID:19770914

  12. A Procedure of Image Acquisition and Display Based on Ov7670

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yang, Dongxuan

    Design a procedure of K60 MCU using the DMA data transfer driver with OV7670 image sensor and the collected data is transmitted through the serial port to the PC, which achieves real time synchronization of acquisition and display of image data stream.

  13. Three-dimensional ultrasonic imaging of concrete elements using different SAFT data acquisition and processing schemes

    NASA Astrophysics Data System (ADS)

    Schickert, Martin

    2015-03-01

    Ultrasonic testing systems using transducer arrays and the SAFT (Synthetic Aperture Focusing Technique) reconstruction allow for imaging the internal structure of concrete elements. At one-sided access, three-dimensional representations of the concrete volume can be reconstructed in relatively great detail, permitting to detect and localize objects such as construction elements, built-in components, and flaws. Different SAFT data acquisition and processing schemes can be utilized which differ in terms of the measuring and computational effort and the reconstruction result. In this contribution, two methods are compared with respect to their principle of operation and their imaging characteristics. The first method is the conventional single-channel SAFT algorithm which is implemented using a virtual transducer that is moved within a transducer array by electronic switching. The second method is the Combinational SAFT algorithm (C-SAFT), also named Sampling Phased Array (SPA) or Full Matrix Capture/Total Focusing Method (TFM/FMC), which is realized using a combination of virtual transducers within a transducer array. Five variants of these two methods are compared by means of measurements obtained at test specimens containing objects typical of concrete elements. The automated SAFT imaging system FLEXUS is used for the measurements which includes a three-axis scanner with a 1.0 m × 0.8 m scan range and an electronically switched ultrasonic array consisting of 48 transducers in 16 groups. On the basis of two-dimensional and three-dimensional reconstructed images, qualitative and some quantitative results of the parameters image resolution, signal-to-noise ratio, measurement time, and computational effort are discussed in view of application characteristics of the SAFT variants.

  14. Three-dimensional ultrasonic imaging of concrete elements using different SAFT data acquisition and processing schemes

    SciTech Connect

    Schickert, Martin

    2015-03-31

    Ultrasonic testing systems using transducer arrays and the SAFT (Synthetic Aperture Focusing Technique) reconstruction allow for imaging the internal structure of concrete elements. At one-sided access, three-dimensional representations of the concrete volume can be reconstructed in relatively great detail, permitting to detect and localize objects such as construction elements, built-in components, and flaws. Different SAFT data acquisition and processing schemes can be utilized which differ in terms of the measuring and computational effort and the reconstruction result. In this contribution, two methods are compared with respect to their principle of operation and their imaging characteristics. The first method is the conventional single-channel SAFT algorithm which is implemented using a virtual transducer that is moved within a transducer array by electronic switching. The second method is the Combinational SAFT algorithm (C-SAFT), also named Sampling Phased Array (SPA) or Full Matrix Capture/Total Focusing Method (TFM/FMC), which is realized using a combination of virtual transducers within a transducer array. Five variants of these two methods are compared by means of measurements obtained at test specimens containing objects typical of concrete elements. The automated SAFT imaging system FLEXUS is used for the measurements which includes a three-axis scanner with a 1.0 m × 0.8 m scan range and an electronically switched ultrasonic array consisting of 48 transducers in 16 groups. On the basis of two-dimensional and three-dimensional reconstructed images, qualitative and some quantitative results of the parameters image resolution, signal-to-noise ratio, measurement time, and computational effort are discussed in view of application characteristics of the SAFT variants.

  15. Infrared imagery acquisition process supporting simulation and real image training

    NASA Astrophysics Data System (ADS)

    O'Connor, John

    2012-05-01

    The increasing use of infrared sensors requires development of advanced infrared training and simulation tools to meet current Warfighter needs. In order to prepare the force, a challenge exists for training and simulation images to be both realistic and consistent with each other to be effective and avoid negative training. The US Army Night Vision and Electronic Sensors Directorate has corrected this deficiency by developing and implementing infrared image collection methods that meet the needs of both real image trainers and real-time simulations. The author presents innovative methods for collection of high-fidelity digital infrared images and the associated equipment and environmental standards. The collected images are the foundation for US Army, and USMC Recognition of Combat Vehicles (ROC-V) real image combat ID training and also support simulations including the Night Vision Image Generator and Synthetic Environment Core. The characteristics, consistency, and quality of these images have contributed to the success of these and other programs. To date, this method has been employed to generate signature sets for over 350 vehicles. The needs of future physics-based simulations will also be met by this data. NVESD's ROC-V image database will support the development of training and simulation capabilities as Warfighter needs evolve.

  16. Reliable Wireless Data Acquisition and Control Techniques within Nuclear Hot Cell Facilities

    SciTech Connect

    Kurtz, J.L.; Tulenko, J.

    2000-09-20

    On this NEER project the University of Florida has investigated and applied advanced communications techniques to address data acquisition and control problems within the Fuel Conditioning Facility (FCF) of Argonne National Laboratory-West (ANL-W) in Idaho Falls. The goals of this project have been to investigate and apply wireless communications techniques to solve the problem of communicating with and controlling equipment and systems within a nuclear hot cell facility with its attendant high radiation levels. Different wireless techniques, including radio frequency, infrared and power line communications were reviewed. For each technique, the challenges of radiation-hardened implementation were addressed. In addition, it has been a project goal to achieve the highest level of system reliability to ensure safe nuclear operations. Achievement of these goals would allow the eventual elimination of through-the-wall, hardwired cabling that is currently employed in the hot cell, along wit h all of the attendant problems that limit measurement mobility and flexibility.

  17. Rapid acquisition of high-volume microscopic images using predicted focal plane.

    PubMed

    Yu, Lingjie; Wang, Rongwu; Zhou, Jinfeng; Xu, Bugao

    2016-09-01

    For an automated microscopic imaging system, the image acquisition speed is one of the most critical performance features because many applications require to analyse high-volume images. This paper illustrates a novel approach for rapid acquisition of high-volume microscopic images used to count blood cells automatically. This approach firstly forms a panoramic image of the sample slide by stitching sequential images captured at a low magnification, selects a few basic points (x, y) indicating the target areas from the panoramic image, and then refocuses the slide at each of the basic points at the regular magnification to record the depth position (z). The focusing coordinates (x, y, z) at these basic points are used to calculate a predicted focal plane that defines the relationship between the focus position (z) and the stage position (x, y). Via the predicted focal plane, the system can directly focus the objective lens at any local view, and can tremendously save image-acquisition time by avoiding the autofocusing function. The experiments showed how to determine the optimal number of the basic points at a given imaging condition, and proved that there is no significant difference between the images captured using the autofocusing function or the predicted focal plane. PMID:27229441

  18. Design of area array CCD image acquisition and display system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Ning; Li, Tianting; Pan, Yue; Dai, Yuming

    2014-09-01

    With the development of science and technology, CCD(Charge-coupled Device) has been widely applied in various fields and plays an important role in the modern sensing system, therefore researching a real-time image acquisition and display plan based on CCD device has great significance. This paper introduces an image data acquisition and display system of area array CCD based on FPGA. Several key technical challenges and problems of the system have also been analyzed and followed solutions put forward .The FPGA works as the core processing unit in the system that controls the integral time sequence .The ICX285AL area array CCD image sensor produced by SONY Corporation has been used in the system. The FPGA works to complete the driver of the area array CCD, then analog front end (AFE) processes the signal of the CCD image, including amplification, filtering, noise elimination, CDS correlation double sampling, etc. AD9945 produced by ADI Corporation to convert analog signal to digital signal. Developed Camera Link high-speed data transmission circuit, and completed the PC-end software design of the image acquisition, and realized the real-time display of images. The result through practical testing indicates that the system in the image acquisition and control is stable and reliable, and the indicators meet the actual project requirements.

  19. Assessment of regularization techniques for electrocardiographic imaging

    PubMed Central

    Milanič, Matija; Jazbinšek, Vojko; MacLeod, Robert S.; Brooks, Dana H.; Hren, Rok

    2014-01-01

    A widely used approach to solving the inverse problem in electrocardiography involves computing potentials on the epicardium from measured electrocardiograms (ECGs) on the torso surface. The main challenge of solving this electrocardiographic imaging (ECGI) problem lies in its intrinsic ill-posedness. While many regularization techniques have been developed to control wild oscillations of the solution, the choice of proper regularization methods for obtaining clinically acceptable solutions is still a subject of ongoing research. However there has been little rigorous comparison across methods proposed by different groups. This study systematically compared various regularization techniques for solving the ECGI problem under a unified simulation framework, consisting of both 1) progressively more complex idealized source models (from single dipole to triplet of dipoles), and 2) an electrolytic human torso tank containing a live canine heart, with the cardiac source being modeled by potentials measured on a cylindrical cage placed around the heart. We tested 13 different regularization techniques to solve the inverse problem of recovering epicardial potentials, and found that non-quadratic methods (total variation algorithms) and first-order and second-order Tikhonov regularizations outperformed other methodologies and resulted in similar average reconstruction errors. PMID:24369741

  20. Noise-compensated homotopic non-local regularized reconstruction for rapid retinal optical coherence tomography image acquisitions

    PubMed Central

    2014-01-01

    Background Optical coherence tomography (OCT) is a minimally invasive imaging technique, which utilizes the spatial and temporal coherence properties of optical waves backscattered from biological material. Recent advances in tunable lasers and infrared camera technologies have enabled an increase in the OCT imaging speed by a factor of more than 100, which is important for retinal imaging where we wish to study fast physiological processes in the biological tissue. However, the high scanning rate causes proportional decrease of the detector exposure time, resulting in a reduction of the system signal-to-noise ratio (SNR). One approach to improving the image quality of OCT tomograms acquired at high speed is to compensate for the noise component in the images without compromising the sharpness of the image details. Methods In this study, we propose a novel reconstruction method for rapid OCT image acquisitions, based on a noise-compensated homotopic modified James-Stein non-local regularized optimization strategy. The performance of the algorithm was tested on a series of high resolution OCT images of the human retina acquired at different imaging rates. Results Quantitative analysis was used to evaluate the performance of the algorithm using two state-of-art denoising strategies. Results demonstrate significant SNR improvements when using our proposed approach when compared to other approaches. Conclusions A new reconstruction method based on a noise-compensated homotopic modified James-Stein non-local regularized optimization strategy was developed for the purpose of improving the quality of rapid OCT image acquisitions. Preliminary results show the proposed method shows considerable promise as a tool to improve the visualization and analysis of biological material using OCT. PMID:25319186

  1. Analysis of Proposed Noise Detection & Removal Technique in Degraded Fingerprint Images

    NASA Astrophysics Data System (ADS)

    Hamid, Ainul Azura Abdul; Rahim, Mohd Shafry Mohd; Al-Mazyad, Abdulaziz S.; Saba, Tanzila

    2015-12-01

    The quality of fingerprint images is important to ensure good performance of fingerprint recognition since recognition process depends heavily on the quality of fingerprint images. Fingerprint images obtained from the acquisition phase are either contaminated with noise or degraded due to poor quality machines. Several factors such as scars, moist in scanner and many more noises affect the quality of the images during scanning process. This paper performed an analysis and compared noise removal techniques reported in the literature for fingerprint images. We also implemented histogram equalization, median filter, Fourier transform, unsharp mask and grayscale enhancement techniques. The quality of enhanced images is measured by peak signal to noise ratio (PSNR) calculation for analysis and comparisons.

  2. Use of image guided radiation therapy techniques and imaging dose measurement at Indian hospitals: A survey

    PubMed Central

    Deshpande, Sudesh; Dhote, D. S.; Kumar, Rajesh; Naidu, Suresh; Sutar, A.; Kannan, V.

    2015-01-01

    A national survey was conducted to obtain information about the use of image-guided radiotherapy (IGRT) techniques and IGRT dose measurement methods being followed at Indian radiotherapy centers. A questionnaire containing parameters relevant to use of IGRT was prepared to collect the information pertaining to (i) availability and type of IGRT delivery system, (ii) frequency of image acquisition protocol and utilization of these images for different purpose, and (iii) imaging dose measurement. The questionnaire was circulated to 75 hospitals in the country having IGRT facility, and responses of 51 centers were received. Survey results showed that among surveyed hospitals, 86% centers have IGRT facility, 78% centers have kilo voltage three-dimensional volumetric imaging. 75% of hospitals in our study do not perform computed tomography dose index measurements and 89% of centers do not perform patient dose measurements. Moreover, only 29% physicists believe IGRT dose is additional radiation burden to patient. This study has brought into focus the need to design a national protocol for IGRT dose measurement and development of indigenous tools to perform IGRT dose measurements. PMID:26865758

  3. Use of image guided radiation therapy techniques and imaging dose measurement at Indian hospitals: A survey.

    PubMed

    Deshpande, Sudesh; Dhote, D S; Kumar, Rajesh; Naidu, Suresh; Sutar, A; Kannan, V

    2015-01-01

    A national survey was conducted to obtain information about the use of image-guided radiotherapy (IGRT) techniques and IGRT dose measurement methods being followed at Indian radiotherapy centers. A questionnaire containing parameters relevant to use of IGRT was prepared to collect the information pertaining to (i) availability and type of IGRT delivery system, (ii) frequency of image acquisition protocol and utilization of these images for different purpose, and (iii) imaging dose measurement. The questionnaire was circulated to 75 hospitals in the country having IGRT facility, and responses of 51 centers were received. Survey results showed that among surveyed hospitals, 86% centers have IGRT facility, 78% centers have kilo voltage three-dimensional volumetric imaging. 75% of hospitals in our study do not perform computed tomography dose index measurements and 89% of centers do not perform patient dose measurements. Moreover, only 29% physicists believe IGRT dose is additional radiation burden to patient. This study has brought into focus the need to design a national protocol for IGRT dose measurement and development of indigenous tools to perform IGRT dose measurements. PMID:26865758

  4. Quantitative assessment of the impact of biomedical image acquisition on the results obtained from image analysis and processing

    PubMed Central

    2014-01-01

    Introduction Dedicated, automatic algorithms for image analysis and processing are becoming more and more common in medical diagnosis. When creating dedicated algorithms, many factors must be taken into consideration. They are associated with selecting the appropriate algorithm parameters and taking into account the impact of data acquisition on the results obtained. An important feature of algorithms is the possibility of their use in other medical units by other operators. This problem, namely operator’s (acquisition) impact on the results obtained from image analysis and processing, has been shown on a few examples. Material and method The analysed images were obtained from a variety of medical devices such as thermal imaging, tomography devices and those working in visible light. The objects of imaging were cellular elements, the anterior segment and fundus of the eye, postural defects and others. In total, almost 200'000 images coming from 8 different medical units were analysed. All image analysis algorithms were implemented in C and Matlab. Results For various algorithms and methods of medical imaging, the impact of image acquisition on the results obtained is different. There are different levels of algorithm sensitivity to changes in the parameters, for example: (1) for microscope settings and the brightness assessment of cellular elements there is a difference of 8%; (2) for the thyroid ultrasound images there is a difference in marking the thyroid lobe area which results in a brightness assessment difference of 2%. The method of image acquisition in image analysis and processing also affects: (3) the accuracy of determining the temperature in the characteristic areas on the patient’s back for the thermal method - error of 31%; (4) the accuracy of finding characteristic points in photogrammetric images when evaluating postural defects – error of 11%; (5) the accuracy of performing ablative and non-ablative treatments in cosmetology - error of 18

  5. Image gathering, coding, and processing: End-to-end optimization for efficient and robust acquisition of visual information

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.

    1990-01-01

    Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing.

  6. A Technique for Nanoscale Plasmonic Imaging via Photoemission

    NASA Astrophysics Data System (ADS)

    Pickard, Daniel S.

    2009-03-01

    The scientific community is witnessing increased research activity on Surface Plasmon Polaritons (SPPs). The potential applications of SPPs and plasmonic structures based on their control and manipulation are truly multi-disciplinary, spanning high speed nano-scale interconnects, meta-materials, chemical and biological sensing, sub-wavelength optics and waveguides, near-field optical trapping, high-density data storage, and the enhancement of non-linear effects. Measurement of the localized optical field intensity is a critical component in validating physical models and characterizing plasmonic structures. The dominant technique employed for this task is the Scanning Near-Field Optical Microscope (SNOM) or Photon Scanning Tunneling Microscope (PSTM), whose contrast mechanism is based on measuring light scattered from the near-field with a probe. These techniques can provide high resolution images of the localized fields, but they are slow. Furthermore, tip-sample interactions can perturb the fields, yielding ambiguity between electric and magnetic fields and frustrating attempts at accurate optical characterization. One way to facilitate the advance of plasmonics is to develop new techniques for imaging and characterizing SPP behavior on the nanoscale. Recent efforts employing photoemission to reveal the localized fields have demonstrated that this technique can provide both high spatial (˜10nm) and temporal (fs) resolution when combined with a Photoelectron Emission Microscope (PEEM)[1-3]. The PEEM does not require a probe so the fields can be imaged without perturbation. It also provides a parallel image of the full field, so acquisition times are fast. We are expanding the capabilities of the PEEM to exploit a novel contrast mechanism which will broaden the spectrum of plasmonic devices observable. We present our experimental efforts in this area, detail the underlying physics of the contrast mechanism and discuss how it can be controlled to enable unique

  7. Active imaging system performance model for target acquisition

    NASA Astrophysics Data System (ADS)

    Espinola, Richard L.; Teaney, Brian; Nguyen, Quang; Jacobs, Eddie L.; Halford, Carl E.; Tofsted, David H.

    2007-04-01

    The U.S. Army RDECOM CERDEC Night Vision & Electronic Sensors Directorate has developed a laser-range-gated imaging system performance model for the detection, recognition, and identification of vehicle targets. The model is based on the established US Army RDECOM CERDEC NVESD sensor performance models of the human system response through an imaging system. The Java-based model, called NVLRG, accounts for the effect of active illumination, atmospheric attenuation, and turbulence effects relevant to LRG imagers, such as speckle and scintillation, and for the critical sensor and display components. This model can be used to assess the performance of recently proposed active SWIR systems through various trade studies. This paper will describe the NVLRG model in detail, discuss the validation of recent model components, present initial trade study results, and outline plans to validate and calibrate the end-to-end model with field data through human perception testing.

  8. Compressive image acquisition and classification via secant projections

    NASA Astrophysics Data System (ADS)

    Li, Yun; Hegde, Chinmay; Sankaranarayanan, Aswin C.; Baraniuk, Richard; Kelly, Kevin F.

    2015-06-01

    Given its importance in a wide variety of machine vision applications, extending high-speed object detection and recognition beyond the visible spectrum in a cost-effective manner presents a significant technological challenge. As a step in this direction, we developed a novel approach for target image classification using a compressive sensing architecture. Here we report the first implementation of this approach utilizing the compressive single-pixel camera system. The core of our approach rests on the design of new measurement patterns, or projections, that are tuned to objects of interest. Our measurement patterns are based on the notion of secant projections of image classes that are constructed using two different approaches. Both approaches show at least a twofold improvement in terms of the number of measurements over the conventional, data-oblivious compressive matched filter. As more noise is added to the image, the second method proves to be the most robust.

  9. High speed COMS image acquisition and transmission system based on USB

    NASA Astrophysics Data System (ADS)

    Cui, Yundong; Jiang, Jie; Zhang, Guangjun

    2008-10-01

    A high speed CMOS image acquisition and transmission system, which is composed of CMOS image sensor IBIS5-A-1300, USB 2.0 interface chip EZ-USB FX2 and FPGA (Field Programmable Gate Array), is designed and developed. The design of IBIS5-A-1300 driving timing, USB interface chip timing, firmware and application program are introduced. Experiments show that the system possesses the advantage of high resolution and high frame rate, supports single frame acquisition and video preview and fits the criterion of USB2.0 and the demand of real-time data transmission.

  10. Techniques calm fear of imaging machine

    SciTech Connect

    Van Pelt, D.

    1990-04-02

    Magnetic resonance imaging has become a valuable tool in diagnosing diseases, and the imaging devices are now used as often as 2 million times a year in the United States. But as many as 10 percent of patients advised to undergo the procedure cannot because they become overwhelmed with claustrophobialike fear triggered by having to lie motionless in the machine's tunnel-like cylinder for about 45 minutes. To counteract this fear, several hospitals now practice various techniques to help reduce the feelings of confinement. One popular method is to give a patient special eyeglasses that allow him to look beyond his feet and see the tunnel opening. Other glasses use mirrors to direct the patient's vision out the back of the unit to large wilderness photographs or murals that simulate a sense of spaciousness. Even a basic item like a set of headphones that plays music can often distract a patient, and technicians frequently hold a patient's hand or foot during the procedure. Another trick is to invite family members and friends to remain with the patient during the scan to provide company and reassurance.

  11. Balanced steady state-free precession (b-SSFP) imaging for MRCP: techniques and applications.

    PubMed

    Glockner, James F; Lee, Christine U

    2014-12-01

    Balanced steady state-free precession (b-SSFP) pulse sequences have a number of properties which can be useful in magnetic resonance cholangiopancreatography (MRCP), including short acquisition times, high signal-to-noise ratios, and T2/T1 contrast weighting. The utility and versatility of b-SSFP sequences for MRCP imaging are probably underappreciated, and this pictorial essay briefly discusses benefits and limitations of 2D and 3D b-SSFP techniques used in place of or in addition to conventional single-shot fast spin echo or 3D fast spin echo acquisitions and illustrates their appearance in several clinical cases. PMID:24811765

  12. Retrospective non-uniform illumination correction techniques in images of tuberculosis.

    PubMed

    Priya, Ebenezer; Srinivasan, Subramanian; Ramakrishnan, Swaminathan

    2014-10-01

    Image pre-processing is highly significant in automated analysis of microscopy images. In this work, non-uniform illumination correction has been attempted using the surface fitting method (SFM), multiple regression method (MRM), and bidirectional empirical mode decomposition (BEMD) in digital microscopy images of tuberculosis (TB). The sputum smear positive and negative images recorded under a standard image acquisition protocol were subjected to illumination correction techniques and evaluated by error and statistical measures. Results show that SFM performs more efficiently than MRM or BEMD. The SFM produced sharp images of TB bacilli with better contrast. To further validate the results, multifractal analysis was performed that showed distinct variation before and after implementation of illumination correction by SFM. Results demonstrate that after illumination correction, there is a 26% increase in the number of bacilli, which aids in classification of the TB images into positive and negative, as TB positivity depends on the count of bacilli. PMID:25115957

  13. Novel ultrahigh resolution data acquisition and image reconstruction for multi-detector row CT

    SciTech Connect

    Flohr, T. G.; Stierstorfer, K.; Suess, C.; Schmidt, B.; Primak, A. N.; McCollough, C. H.

    2007-05-15

    We present and evaluate a special ultrahigh resolution mode providing considerably enhanced spatial resolution both in the scan plane and in the z-axis direction for a routine medical multi-detector row computed tomography (CT) system. Data acquisition is performed by using a flying focal spot both in the scan plane and in the z-axis direction in combination with tantalum grids that are inserted in front of the multi-row detector to reduce the aperture of the detector elements both in-plane and in the z-axis direction. The dose utilization of the system for standard applications is not affected, since the grids are moved into place only when needed and are removed for standard scanning. By means of this technique, image slices with a nominal section width of 0.4 mm (measured full width at half maximum=0.45 mm) can be reconstructed in spiral mode on a CT system with a detector configuration of 32x0.6 mm. The measured 2% value of the in-plane modulation transfer function (MTF) is 20.4 lp/cm, the measured 2% value of the longitudinal (z axis) MTF is 21.5 lp/cm. In a resolution phantom with metal line pair test patterns, spatial resolution of 20 lp/cm can be demonstrated both in the scan plane and along the z axis. This corresponds to an object size of 0.25 mm that can be resolved. The new mode is intended for ultrahigh resolution bone imaging, in particular for wrists, joints, and inner ear studies, where a higher level of image noise due to the reduced aperture is an acceptable trade-off for the clinical benefit brought about by the improved spatial resolution.

  14. Simultaneous algebraic reconstruction technique based on guided image filtering.

    PubMed

    Ji, Dongjiang; Qu, Gangrong; Liu, Baodong

    2016-07-11

    The challenge of computed tomography is to reconstruct high-quality images from few-view projections. Using a prior guidance image, guided image filtering smoothes images while preserving edge features. The prior guidance image can be incorporated into the image reconstruction process to improve image quality. We propose a new simultaneous algebraic reconstruction technique based on guided image filtering. Specifically, the prior guidance image is updated in the image reconstruction process, merging information iteratively. To validate the algorithm practicality and efficiency, experiments were performed with numerical phantom projection data and real projection data. The results demonstrate that the proposed method is effective and efficient for nondestructive testing and rock mechanics. PMID:27410859

  15. Data of NODDI diffusion metrics in the brain and computer simulation of hybrid diffusion imaging (HYDI) acquisition scheme.

    PubMed

    Kodiweera, Chandana; Wu, Yu-Chien

    2016-06-01

    This article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI), "Hybrid diffusion imaging"[1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI) model, "NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain"[2]. HYDI is an extremely versatile diffusion magnetic resonance imaging (dMRI) technique that enables various analyzes methods using a single diffusion dataset. One of the diffusion data analysis methods is the NODDI computation, which models the brain tissue with three compartments: fast isotropic diffusion (e.g., cerebrospinal fluid), anisotropic hindered diffusion (e.g., extracellular space), and anisotropic restricted diffusion (e.g., intracellular space). The NODDI model produces microstructural metrics in the developing brain, aging brain or human brain with neurologic disorders. The first dataset provided here are the means and standard deviations of NODDI metrics in 48 white matter region-of-interest (ROI) averaging across 52 healthy participants. The second dataset provided here is the computer simulation with initial conditions guided by the first dataset as inputs and gold standard for model fitting. The computer simulation data provide a direct comparison of NODDI indices computed from the HYDI acquisition [1] to the NODDI indices computed from the originally proposed acquisition [2]. These data are related to the accompanying research article "Age Effects and Sex Differences in Human Brain White Matter of Young to Middle-Aged Adults: A DTI, NODDI, and q-Space Study" [3]. PMID:27115027

  16. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know

    PubMed Central

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701

  17. A Literature Review on Image Encryption Techniques

    NASA Astrophysics Data System (ADS)

    Khan, Majid; Shah, Tariq

    2014-12-01

    Image encryption plays a paramount part to guarantee classified transmission and capacity of image over web. Then again, a real-time image encryption confronts a more noteworthy test because of vast measure of information included. This paper exhibits an audit on image encryption in spatial, frequency and hybrid domains with both full encryption and selective encryption strategy.

  18. Development of an acquisition protocol and a segmentation algortihm for wounds of cutaneous Leishmaniasis in digital images

    NASA Astrophysics Data System (ADS)

    Diaz, Kristians; Castañeda, Benjamín; Miranda, César; Lavarello, Roberto; Llanos, Alejandro

    2010-03-01

    We developed a protocol for the acquisition of digital images and an algorithm for a color-based automatic segmentation of cutaneous lesions of Leishmaniasis. The protocol for image acquisition provides control over the working environment to manipulate brightness, lighting and undesirable shadows on the injury using indirect lighting. Also, this protocol was used to accurately calculate the area of the lesion expressed in mm2 even in curved surfaces by combining the information from two consecutive images. Different color spaces were analyzed and compared using ROC curves in order to determine the color layer with the highest contrast between the background and the wound. The proposed algorithm is composed of three stages: (1) Location of the wound determined by threshold and mathematical morphology techniques to the H layer of the HSV color space, (2) Determination of the boundaries of the wound by analyzing the color characteristics in the YIQ space based on masks (for the wound and the background) estimated from the first stage, and (3) Refinement of the calculations obtained on the previous stages by using the discrete dynamic contours algorithm. The segmented regions obtained with the algorithm were compared with manual segmentations made by a medical specialist. Broadly speaking, our results support that color provides useful information during segmentation and measurement of wounds of cutaneous Leishmaniasis. Results from ten images showed 99% specificity, 89% sensitivity, and 98% accuracy.

  19. Study of Beamforming Techniques for Ultrasound Imaging in Nondestructive Testing.

    NASA Astrophysics Data System (ADS)

    Ghorayeb, Sleiman Riad

    Many of the innovations in modern materials testing technology make use of ultrasound. Therefore, the theory and application of ultrasound have become of extreme importance in nondestructive inspection of complete engineered systems. However, despite the fact that most of these ultrasound inspection techniques are based on well-established phenomena, two key problems pertaining to their application still remain unresolved. These problems can be identified as (1) the material being tested is assumed to be isotropic and homogeneous by nature, and (2) the scanning/data collection process, prior to the reconstruction scheme, is very time consuming. As a result, techniques for fast, accurate testing of anisotropic and nonhomogeneous media have been the focus of attention in modern non-destructive testing research. This dissertation first describes the development and implementation of a time domain synthetic aperture focusing technique (SAFT) to reconstruct flaws imbedded within Plexiglass^{rm TM/ } and Graphite/Epoxy samples. A modification to the present SAFT algorithm is then proposed in order to improve the quality of the images produced by SAFT when applied to composites. In addition, since the finite element method (FEM) can be used to solve hyperbolic partial differential equations, which govern wave propagation, FEM solutions are used to mimic a SAFT measurement. That is, the FEM is used to simulate the action of a transducer array. This is done to study the sensitivity of parameters involved in the SAFT algorithm. Using the same FEM model as a test bed, the data independent beamformer, in its basic form, is studied to determine its performance in reducing data acquisition time. It is seen that this technique is capable of adjusting the weights of the interpolating filter (beamformer) to predict an incoming signal from a desired direction while discriminating against other signals from different directions. SAFT results indicate that the FEM model can be used as

  20. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series

    NASA Astrophysics Data System (ADS)

    Nitze, Ingmar; Barrett, Brian; Cawkwell, Fiona

    2015-02-01

    2009/2010 can alter the temporal separability pattern significantly. Due to the extensive use of the NDVI for land cover discrimination, the findings of this study should be transferrable to data from other optical sensors with a higher spatial resolution. However, the high impact of outliers from the general climatic pattern highlights the limitation of spatial transferability to locations with different climatic and land cover conditions. The use of high-temporal, moderate resolution data such as MODIS in conjunction with machine-learning techniques proved to be a good base for the prediction of image acquisition timing for optimal land cover classification results.

  1. Application of image fusion techniques in DSA

    NASA Astrophysics Data System (ADS)

    Ye, Feng; Wu, Jian; Cui, Zhiming; Xu, Jing

    2007-12-01

    Digital subtraction angiography (DSA) is an important technology in both medical diagnoses and interposal therapy, which can eliminate the interferential background and give prominence to blood vessels by computer processing. After contrast material is injected into an artery or vein, a physician produces fluoroscopic images. Using these digitized images, a computer subtracts the image made with contrast material from a series of post injection images made without background information. By analyzing the characteristics of DSA medical images, this paper provides a solution of image fusion which is in allusion to the application of DSA subtraction. We fuse the images of angiogram and subtraction, in order to obtain the new image which has more data information. The image that fused by wavelet transform can display the blood vessels and background information clearly, and medical experts gave high score on the effect of it.

  2. Hybrid Utrasound and MRI Acquisitions for High-Speed Imaging of Respiratory Organ Motion

    PubMed Central

    Preiswerk, Frank; Toews, Matthew; Hoge, W. Scott; Chiou, Jr-yuan George; Panych, Lawrence P.; Wells, William M.; Madore, Bruno

    2016-01-01

    Magnetic Resonance (MR) imaging provides excellent image quality at a high cost and low frame rate. Ultrasound (US) provides poor image quality at a low cost and high frame rate. We propose an instance-based learning system to obtain the best of both worlds: high quality MR images at high frame rates from a low cost single-element US sensor. Concurrent US and MRI pairs are acquired during a relatively brief offine learning phase involving the US transducer and MR scanner. High frame rate, high quality MR imaging of respiratory organ motion is then predicted from US measurements, even after stopping MRI acquisition, using a probabilistic kernel regression framework. Experimental results show predicted MR images to be highly representative of actual MR images. PMID:27135063

  3. Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics.

    PubMed

    Dietrich, Olaf; Raya, José G; Reeder, Scott B; Ingrisch, Michael; Reiser, Maximilian F; Schoenberg, Stefan O

    2008-07-01

    The statistical properties of background noise such as its standard deviation and mean value are frequently used to estimate the original noise level of the acquired data. This requires the knowledge of the statistical intensity distribution of the background signal, that is, the probability density of the occurrence of a certain signal intensity. The influence of many new MRI techniques and, in particular, of various parallel-imaging methods on the noise statistics has neither been rigorously investigated nor experimentally demonstrated yet. In this study, the statistical distribution of background noise was analyzed for MR acquisitions with a single-channel and a 32-channel coil, with sum-of-squares (SoS) and spatial-matched-filter (SMF) data combination, with and without parallel imaging using k-space and image-domain algorithms, with real-part and conventional magnitude reconstruction and with several reconstruction filters. Depending on the imaging technique, the background noise could be described by a Rayleigh distribution, a noncentral chi-distribution or the positive half of a Gaussian distribution. In particular, the noise characteristics of SoS-reconstructed multichannel acquisitions (with k-space-based parallel imaging or without parallel imaging) differ substantially from those with image-domain parallel imaging or SMF combination. These effects must be taken into account if mean values or standard deviations of background noise are employed for data analysis such as determination of local noise levels. Assuming a Rayleigh distribution as in conventional MR images or a noncentral chi-distribution for all multichannel acquisitions is invalid in general and may lead to erroneous estimates of the signal-to-noise ratio or the contrast-to-noise ratio. PMID:18440746

  4. A Review of Imaging Techniques for Plant Phenotyping

    PubMed Central

    Li, Lei; Zhang, Qin; Huang, Danfeng

    2014-01-01

    Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review. PMID:25347588

  5. A review of imaging techniques for plant phenotyping.

    PubMed

    Li, Lei; Zhang, Qin; Huang, Danfeng

    2014-01-01

    Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review. PMID:25347588

  6. Data of NODDI diffusion metrics in the brain and computer simulation of hybrid diffusion imaging (HYDI) acquisition scheme

    PubMed Central

    Kodiweera, Chandana; Wu, Yu-Chien

    2016-01-01

    This article provides NODDI diffusion metrics in the brains of 52 healthy participants and computer simulation data to support compatibility of hybrid diffusion imaging (HYDI), “Hybrid diffusion imaging”[1] acquisition scheme in fitting neurite orientation dispersion and density imaging (NODDI) model, “NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain”[2]. HYDI is an extremely versatile diffusion magnetic resonance imaging (dMRI) technique that enables various analyzes methods using a single diffusion dataset. One of the diffusion data analysis methods is the NODDI computation, which models the brain tissue with three compartments: fast isotropic diffusion (e.g., cerebrospinal fluid), anisotropic hindered diffusion (e.g., extracellular space), and anisotropic restricted diffusion (e.g., intracellular space). The NODDI model produces microstructural metrics in the developing brain, aging brain or human brain with neurologic disorders. The first dataset provided here are the means and standard deviations of NODDI metrics in 48 white matter region-of-interest (ROI) averaging across 52 healthy participants. The second dataset provided here is the computer simulation with initial conditions guided by the first dataset as inputs and gold standard for model fitting. The computer simulation data provide a direct comparison of NODDI indices computed from the HYDI acquisition [1] to the NODDI indices computed from the originally proposed acquisition [2]. These data are related to the accompanying research article “Age Effects and Sex Differences in Human Brain White Matter of Young to Middle-Aged Adults: A DTI, NODDI, and q-Space Study” [3]. PMID:27115027

  7. Spectral OCT techniques in eye imaging

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Andrzej; Wojtkowski, Maciej

    2002-02-01

    This contribution presents examples of images of eye in vitro obtained by spectral optical tomography (OCT). Particular interest was focused on obtaining clear images of the corneo-scleral angle and images of fundus which are both essential for diagnosing and planning of a treatment of glaucoma.

  8. New impedance and electrochemical image techniques for biological applications

    NASA Astrophysics Data System (ADS)

    Tao, N. J.

    2010-03-01

    A method to image local surface impedance and electrochemical current optically is developed for biological applications. The principle of the impedance imaging is based on sensitive dependence of surface plasmon resonance (SPR) on local surface charge density. The technique can image local surface impedance and charge while providing simultaneously a conventional surface plasmon resonance (SPR) image. By applying a potential modulation to a sensor surface, it is possible to obtain an image of the DC component, and the amplitude and phase images of the AC component. The DC image provides local molecular binding, as found in the conventional SPR imaging technique. The AC images are directly related to the local impedance of the surface. This imaging capability may be used as a new detection platform for DNA and protein microarrays, a new method for analyzing local molecular binding and interfacial processes and a new tool for imaging cells and tissues.

  9. Functional Imaging and Related Techniques: An Introduction for Rehabilitation Researchers

    PubMed Central

    Crosson, Bruce; Ford, Anastasia; McGregor, Keith M.; Meinzer, Marcus; Cheshkov, Sergey; Li, Xiufeng; Walker-Batson, Delaina; Briggs, Richard W.

    2010-01-01

    Functional neuroimaging and related neuroimaging techniques are becoming important tools for rehabilitation research. Functional neuroimaging techniques can be used to determine the effects of brain injury or disease on brain systems related to cognition and behavior and to determine how rehabilitation changes brain systems. These techniques include: functional magnetic resonance imaging (fMRI), positron emission tomography (PET), electroencephalography (EEG), magnetoencephalography (MEG), near infrared spectroscopy (NIRS), and transcranial magnetic stimulation (TMS). Related diffusion weighted magnetic resonance imaging techniques (DWI), including diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI), can quantify white matter integrity. With the proliferation of these imaging techniques in rehabilitation research, it is critical that rehabilitation researchers, as well as consumers of rehabilitation research, become familiar with neuroimaging techniques, what they can offer, and their strengths and weaknesses The purpose to this review is to provide such an introduction to these neuroimaging techniques. PMID:20593321

  10. IMAGE FUSION OF RECONSTRUCTED DIGITAL TOMOSYNTHESIS VOLUMES FROM A FRONTAL AND A LATERAL ACQUISITION.

    PubMed

    Arvidsson, Jonathan; Söderman, Christina; Allansdotter Johnsson, Åse; Bernhardt, Peter; Starck, Göran; Kahl, Fredrik; Båth, Magnus

    2016-06-01

    Digital tomosynthesis (DTS) has been used in chest imaging as a low radiation dose alternative to computed tomography (CT). Traditional DTS shows limitations in the spatial resolution in the out-of-plane dimension. As a first indication of whether a dual-plane dual-view (DPDV) DTS data acquisition can yield a fair resolution in all three spatial dimensions, a manual registration between a frontal and a lateral image volume was performed. An anthropomorphic chest phantom was scanned frontally and laterally using a linear DTS acquisition, at 120 kVp. The reconstructed image volumes were resampled and manually co-registered. Expert radiologist delineations of the mediastinal soft tissues enabled calculation of similarity metrics in regard to delineations in a reference CT volume. The fused volume produced the highest total overlap, implying that the fused volume was a more isotropic 3D representation of the examined object than the traditional chest DTS volumes. PMID:26683464