Science.gov

Sample records for image analyses monitoracao

  1. Digital image analyser for autoradiography

    SciTech Connect

    Muth, R.A.; Plotnick, J.

    1985-05-01

    The most critical parameter in quantitative autoradiography for assay of tissue concentrations of tracers is the ability to obtain precise and accurate measurements of optical density of the images. Existing high precision systems for image analysis, rotating drum densitometers, are expensive, suffer from mechanical problems and are slow. More moderately priced and reliable video camera based systems are available, but their outputs generally do not have the uniformity and stability necessary for high resolution quantitative autoradiography. The authors have designed and constructed an image analyser optimized for quantitative single and multiple tracer autoradiography which the authors refer to as a memory-mapped charged-coupled device scanner (MM-CCD). The input is from a linear array of CCD's which is used to optically scan the autoradiograph. Images are digitized into 512 x 512 picture elements with 256 gray levels and the data is stored in buffer video memory in less than two seconds. Images can then be transferred to RAM memory by direct memory-mapping for further processing. Arterial blood curve data and optical density-calibrated standards data can be entered and the optical density images can be converted automatically to tracer concentration or functional images. In double tracer studies, images produced from both exposures can be stored and processed in RAM to yield ''pure'' individual tracer concentration or functional images. Any processed image can be transmitted back to the buffer memory to be viewed on a monitor and processed for region of interest analysis.

  2. Analyses of radar images of small craters

    NASA Astrophysics Data System (ADS)

    Greeley, R.; Christensen, P. R.; McHone, J. F.

    1985-04-01

    Clouds hide the surface of Venus from all but radar imaging systems, supplemented by limited views from land spacecraft. Among the surfaces features likely to be observed by radar are craters that have formed by a variety of processes. In order to assess the radar characteristics of craters, volcanic craters and impact structures on Earth are described as imaged by the Shuttle Imaging Radar (SIR-A) experiment. Although most of the craters are small, this analysis provides insight into the ability to discriminate craters of various origins and provides some basis for interpreting radar images returned from Venus.

  3. Analysing multitemporal SAR images for forest mapping

    NASA Astrophysics Data System (ADS)

    Maghsoudi, Yasser; Collins, Michael J.; Leckie, Donald G.

    2010-10-01

    The objective of this paper is twofold: first, to presents a generic approach for the analysis of Radarsat-1 multitemporal data and, second, to presents a multi classifier schema for the classification of multitemporal images. The general approach consists of preprocessing step and classification. In the preprocessing stage, the images are calibrated and registered and then temporally filtered. The resulted multitemporally filtered images are subsequently used as the input images in the classification step. The first step in a classifier design is to pick up the most informative features from a series of multitemporal SAR images. Most of the feature selection algorithms seek only one set of features that distinguish among all the classes simultaneously and hence a limited amount of classification accuracy. In this paper, a class-based feature selection (CBFS) was proposed. In this schema, instead of using feature selection for the whole classes, the features are selected for each class separately. The selection is based on the calculation of JM distance of each class from the rest of classes. Afterwards, a maximum likelihood classifier is trained on each of the selected feature subsets. Finally, the outputs of the classifiers are combined through a combination mechanism. Experiments are performed on a set of 34 Radarsat-1 images acquired from August 1996 to February 2007. A set of 9 classes in a forest area are used in this study. Classification results confirm the effectiveness of the proposed approach compared with the case of single feature selection. Moreover, the proposed process is generic and hence is applicable in different mapping purposes for which a multitemporal set of SAR images are available.

  4. Phase contrast image segmentation using a Laue analyser crystal

    NASA Astrophysics Data System (ADS)

    Kitchen, Marcus J.; Paganin, David M.; Uesugi, Kentaro; Allison, Beth J.; Lewis, Robert A.; Hooper, Stuart B.; Pavlov, Konstantin M.

    2011-02-01

    Dual-energy x-ray imaging is a powerful tool enabling two-component samples to be separated into their constituent objects from two-dimensional images. Phase contrast x-ray imaging can render the boundaries between media of differing refractive indices visible, despite them having similar attenuation properties; this is important for imaging biological soft tissues. We have used a Laue analyser crystal and a monochromatic x-ray source to combine the benefits of both techniques. The Laue analyser creates two distinct phase contrast images that can be simultaneously acquired on a high-resolution detector. These images can be combined to separate the effects of x-ray phase, absorption and scattering and, using the known complex refractive indices of the sample, to quantitatively segment its component materials. We have successfully validated this phase contrast image segmentation (PCIS) using a two-component phantom, containing an iodinated contrast agent, and have also separated the lungs and ribcage in images of a mouse thorax. Simultaneous image acquisition has enabled us to perform functional segmentation of the mouse thorax throughout the respiratory cycle during mechanical ventilation.

  5. Analyser-based x-ray imaging for biomedical research

    NASA Astrophysics Data System (ADS)

    Suortti, Pekka; Keyriläinen, Jani; Thomlinson, William

    2013-12-01

    Analyser-based imaging (ABI) is one of the several phase-contrast x-ray imaging techniques being pursued at synchrotron radiation facilities. With advancements in compact source technology, there is a possibility that ABI will become a clinical imaging modality. This paper presents the history of ABI as it has developed from its laboratory source to synchrotron imaging. The fundamental physics of phase-contrast imaging is presented both in a general sense and specifically for ABI. The technology is dependent on the use of perfect crystal monochromator optics. The theory of the x-ray optics is developed and presented in a way that will allow optimization of the imaging for specific biomedical systems. The advancement of analytical algorithms to produce separate images of the sample absorption, refraction angle map and small-angle x-ray scattering is detailed. Several detailed applications to biomedical imaging are presented to illustrate the broad range of systems and body sites studied preclinically to date: breast, cartilage and bone, soft tissue and organs. Ultimately, the application of ABI in clinical imaging will depend partly on the availability of compact sources with sufficient x-ray intensity comparable with that of the current synchrotron environment.

  6. Colony image acquisition and genetic segmentation algorithm and colony analyses

    NASA Astrophysics Data System (ADS)

    Wang, W. X.

    2012-01-01

    Colony anaysis is used in a large number of engineerings such as food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing. In order to reduce laboring and increase analysis acuracy, many researchers and developers have made efforts for image analysis systems. The main problems in the systems are image acquisition, image segmentation and image analysis. In this paper, to acquire colony images with good quality, an illumination box was constructed. In the box, the distances between lights and dishe, camra lens and lights, and camera lens and dishe are adjusted optimally. In image segmentation, It is based on a genetic approach that allow one to consider the segmentation problem as a global optimization,. After image pre-processing and image segmentation, the colony analyses are perfomed. The colony image analysis consists of (1) basic colony parameter measurements; (2) colony size analysis; (3) colony shape analysis; and (4) colony surface measurements. All the above visual colony parameters can be selected and combined together, used to make a new engineeing parameters. The colony analysis can be applied into different applications.

  7. A review of multivariate analyses in imaging genetics

    PubMed Central

    Liu, Jingyu; Calhoun, Vince D.

    2014-01-01

    Recent advances in neuroimaging technology and molecular genetics provide the unique opportunity to investigate genetic influence on the variation of brain attributes. Since the year 2000, when the initial publication on brain imaging and genetics was released, imaging genetics has been a rapidly growing research approach with increasing publications every year. Several reviews have been offered to the research community focusing on various study designs. In addition to study design, analytic tools and their proper implementation are also critical to the success of a study. In this review, we survey recent publications using data from neuroimaging and genetics, focusing on methods capturing multivariate effects accommodating the large number of variables from both imaging data and genetic data. We group the analyses of genetic or genomic data into either a priori driven or data driven approach, including gene-set enrichment analysis, multifactor dimensionality reduction, principal component analysis, independent component analysis (ICA), and clustering. For the analyses of imaging data, ICA and extensions of ICA are the most widely used multivariate methods. Given detailed reviews of multivariate analyses of imaging data available elsewhere, we provide a brief summary here that includes a recently proposed method known as independent vector analysis. Finally, we review methods focused on bridging the imaging and genetic data by establishing multivariate and multiple genotype-phenotype-associations, including sparse partial least squares, sparse canonical correlation analysis, sparse reduced rank regression and parallel ICA. These methods are designed to extract latent variables from both genetic and imaging data, which become new genotypes and phenotypes, and the links between the new genotype-phenotype pairs are maximized using different cost functions. The relationship between these methods along with their assumptions, advantages, and limitations are discussed

  8. Labeling of virus components for advanced, quantitative imaging analyses.

    PubMed

    Sakin, Volkan; Paci, Giulia; Lemke, Edward A; Müller, Barbara

    2016-07-01

    In recent years, investigation of virus-cell interactions has moved from ensemble measurements to imaging analyses at the single-particle level. Advanced fluorescence microscopy techniques provide single-molecule sensitivity and subdiffraction spatial resolution, allowing observation of subviral details and individual replication events to obtain detailed quantitative information. To exploit the full potential of these techniques, virologists need to employ novel labeling strategies, taking into account specific constraints imposed by viruses, as well as unique requirements of microscopic methods. Here, we compare strengths and limitations of various labeling methods, exemplify virological questions that were successfully addressed, and discuss challenges and future potential of novel approaches in virus imaging. PMID:26987299

  9. Cartographic analyses of geographic information available on Google Earth Images

    NASA Astrophysics Data System (ADS)

    Oliveira, J. C.; Ramos, J. R.; Epiphanio, J. C.

    2011-12-01

    The propose was to evaluate planimetric accuracy of satellite images available on database of Google Earth. These images are referents to the vicinities of the Federal Univertisity of Viçosa, Minas Gerais - Brazil. The methodology developed evaluated the geographical information of three groups of images which were in accordance to the level of detail presented in the screen images (zoom). These groups of images were labeled to Zoom 1000 (a single image for the entire study area), Zoom 100 (formed by a mosaic of 73 images) and Zoom 100 with geometric correction (this mosaic is like before, however, it was applied a geometric correction through control points). In each group of image was measured the Cartographic Accuracy based on statistical analyses and brazilian's law parameters about planimetric mapping. For this evaluation were identified 22 points in each group of image, where the coordinates of each point were compared to the coordinates of the field obtained by GPS (Global Positioning System). The Table 1 show results related to accuracy (based on a threshold equal to 0.5 mm * mapping scale) and tendency (abscissa and ordinate) between the coordinates of the image and the coordinates of field. Table 1 The geometric correction applied to the Group Zoom 100 reduced the trends identified earlier, and the statistical tests pointed a usefulness of the data for a mapping at a scale of 1/5000 with error minor than 0.5 mm * scale. The analyses proved the quality of cartographic data provided by Google, as well as the possibility of reduce the divergences of positioning present on the data. It can be concluded that it is possible to obtain geographic information database available on Google Earth, however, the level of detail (zoom) used at the time of viewing and capturing information on the screen influences the quality cartographic of the mapping. Although cartographic and thematic potential present in the database, it is important to note that both the software

  10. Analyses of particles in beryllium by ion imaging

    SciTech Connect

    Price, C.W.; Norberg, J.C.; Evans and Associates, Redwood City, CA )

    1989-10-06

    Ion microanalysis using a {sup 133}Cs{sup +} primary ion beam and SIMS has sufficiently high sensitivity that it can be used to analyze Be for trace amounts of most elements. High sensitivity is important, because O, C, and other elements have low solubilities in Be, and reliable analyses of these elements becaome difficult as they approach their solid solubility limits (about 6 appm for O; C also is suspected to be within this range). Because of the low solubilities of these elements, major portions of their total concentrations can be contained in particles. Quantitative depth-profile analyses using ion-implanted standards are ideal to analyze the Be matrix, but if particles exist, supplementary techniques such as stereology are required to determine the amounts of the elements that are associated with the particles. This paper will demonstrate the use of ion imaging to identify various types of particles and determine their spatial distributions. 4 refs., 3 figs.

  11. Solid Hydrogen Experiments for Atomic Propellants: Image Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2002-01-01

    This paper presents the results of detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Solid particles of hydrogen were frozen in liquid helium, and observed with a video camera. The solid hydrogen particle sizes, their agglomerates, and the total mass of hydrogen particles were estimated. Particle sizes of 1.9 to 8 mm (0.075 to 0.315 in.) were measured. The particle agglomerate sizes and areas were measured, and the total mass of solid hydrogen was computed. A total mass of from 0.22 to 7.9 grams of hydrogen was frozen. Compaction and expansion of the agglomerate implied that the particles remain independent particles, and can be separated and controlled. These experiment image analyses are one of the first steps toward visually characterizing these particles, and allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  12. ["When the ad is good, the product is sold." The MonitorACAO Project and drug advertising in Brazil].

    PubMed

    Soares, Jussara Calmon Reis de Souza

    2008-04-01

    This paper presents an analysis on drug advertising in Brazil, based on the final report of the MonitorACAO Project, by the group from the Universidade Federal Fluminense, Niterói, Rio de Janeiro. Due to a partnership between the university and the National Agency for Health Surveillance (ANVISA), drug advertisements were monitored and analyzed for one year, according to the methodology defined by the Agency. The samples were collected in medical practices and hospitals, drugstores, pharmacies and in scientific magazines. TV and radio programs were monitored, in the case of OTC drugs. 159 advertisements referring to pharmaceuticals were sent to ANVISA,from a total of 263 irregular ads analyzed between October 2004 and August 2005. The main problems found were the poor quality of drug information to health professionals, as well as misleading drug use to lay population. Based on the results of this project and on other studies, the banning of drug advertising in Brazil is proposed. PMID:21936168

  13. A Guide to Analysing Tongue Motion from Ultrasound Images

    ERIC Educational Resources Information Center

    Stone, Maureen

    2005-01-01

    This paper is meant to be an introduction to and general reference for ultrasound imaging for new and moderately experienced users of the instrument. The paper consists of eight sections. The first explains how ultrasound works, including beam properties, scan types and machine features. The second section discusses image quality, including the…

  14. Imaging data analyses for hazardous waste applications. Final report

    SciTech Connect

    David, N.; Ginsberg, I.W.

    1995-12-01

    The paper presents some examples of the use of remote sensing products for characterization of hazardous waste sites. The sites are located at the Los Alamos National Laboratory (LANL) where materials associated with past weapons testing are buried. Problems of interest include delineation of strata for soil sampling, detection and delineation of buried trenches containing contaminants, seepage from capped areas and old septic drain fields, and location of faults and fractures relative to hazardous waste areas. Merging of site map and other geographic information with imagery was found by site managers to produce useful products. Merging of hydrographic and soil contaminant data aided soil sampling strategists. Overlays of suspected trench on multispectral and thermal images showed correlation between image signatures and trenches. Overlays of engineering drawings on recent and historical photos showed error in trench location and extent. A thermal image showed warm anomalies suspected to be areas of water seepage through an asphalt cap. Overlays of engineering drawings on multispectral and thermal images showed correlation between image signatures and drain fields. Analysis of aerial photography and spectral signatures of faults/fractures improved geologic maps of mixed waste areas.

  15. Biomarkers and imaging: physics and chemistry for noninvasive analyses.

    PubMed

    Moyer, Brian R; Barrett, John A

    2009-05-01

    The era of 'modern medicine' has changed its name to 'molecular medicine', and reflects a new age based on personalized medicine utilizing molecular biomarkers in the diagnosis, staging and monitoring of therapy. Alzheimer's disease has a classical biomarker determined at autopsy with the histologic staining of amyloid accumulation in the brain. Today we can diagnose Alzheimer's disease using the same classical pathologic biomarker, but now using a noninvasive imaging probe to image the amyloid deposition in a patient and potentially provide treatment strategies and measure their effectiveness. Molecular medicine is the exploitation of biomarkers to detect disease before overt expression of pathology. Physicians can now find, fight and follow disease using imaging, and the need for other disease biomarkers is in high demand. This review will discuss the innovative physical and molecular biomarker probes now being developed for imaging systems and we will introduce the concepts needed for validation and regulatory acceptance of surrogate biomarkers in the detection and treatment of disease. PMID:21083171

  16. Quantifying inter-subject agreement in brain-imaging analyses.

    PubMed

    Wong, Dik Kin; Grosenick, Logan; Uy, E Timothy; Perreau Guimaraes, Marcos; Carvalhaes, Claudio G; Desain, Peter; Suppes, Patrick

    2008-02-01

    In brain-imaging research, we are often interested in making quantitative claims about effects across subjects. Given that most imaging data consist of tens to thousands of spatially correlated time series, inter-subject comparisons are typically accomplished with simple combinations of inter-subject data, for example methods relying on group means. Further, these data are frequently taken from reduced channel subsets defined either a priori using anatomical considerations, or functionally using p-value thresholding to choose cluster boundaries. While such methods are effective for data reduction, means are sensitive to outliers, and current methods for subset selection can be somewhat arbitrary. Here, we introduce a novel "partial-ranking" approach to test for inter-subject agreement at the channel level. This non-parametric method effectively tests whether channel concordance is present across subjects, how many channels are necessary for maximum concordance, and which channels are responsible for this agreement. We validate the method on two previously published and two simulated EEG data sets. PMID:18023210

  17. The challenges of analysing blood stains with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Kuula, J.; Puupponen, H.-H.; Rinta, H.; Pölönen, I.

    2014-06-01

    Hyperspectral imaging is a potential noninvasive technology for detecting, separating and identifying various substances. In the forensic and military medicine and other CBRNE related use it could be a potential method for analyzing blood and for scanning other human based fluids. For example, it would be valuable to easily detect whether some traces of blood are from one or more persons or if there are some irrelevant substances or anomalies in the blood. This article represents an experiment of separating four persons' blood stains on a white cotton fabric with a SWIR hyperspectral camera and FT-NIR spectrometer. Each tested sample includes standardized 75 _l of 100 % blood. The results suggest that on the basis of the amount of erythrocytes in the blood, different people's blood might be separable by hyperspectral analysis. And, referring to the indication given by erythrocytes, there might be a possibility to find some other traces in the blood as well. However, these assumptions need to be verified with wider tests, as the number of samples in the study was small. According to the study there also seems to be several biological, chemical and physical factors which affect alone and together on the hyperspectral analyzing results of blood on fabric textures, and these factors need to be considered before making any further conclusions on the analysis of blood on various materials.

  18. Validating new diagnostic imaging criteria for primary progressive aphasia via anatomical likelihood estimation meta-analyses.

    PubMed

    Bisenius, S; Neumann, J; Schroeter, M L

    2016-04-01

    Recently, diagnostic clinical and imaging criteria for primary progressive aphasia (PPA) have been revised by an international consortium (Gorno-Tempini et al. Neurology 2011;76:1006-14). The aim of this study was to validate the specificity of the new imaging criteria and investigate whether different imaging modalities [magnetic resonance imaging (MRI) and fluorodeoxyglucose positron emission tomography (FDG-PET)] require different diagnostic subtype-specific imaging criteria. Anatomical likelihood estimation meta-analyses were conducted for PPA subtypes across a large cohort of 396 patients: firstly, across MRI studies for each of the three PPA subtypes followed by conjunction and subtraction analyses to investigate the specificity, and, secondly, by comparing results across MRI vs. FDG-PET studies in semantic dementia and progressive nonfluent aphasia. Semantic dementia showed atrophy in temporal, fusiform, parahippocampal gyri, hippocampus, and amygdala, progressive nonfluent aphasia in left putamen, insula, middle/superior temporal, precentral, and frontal gyri, logopenic progressive aphasia in middle/superior temporal, supramarginal, and dorsal posterior cingulate gyri. Results of the disease-specific meta-analyses across MRI studies were disjunct. Similarly, atrophic and hypometabolic brain networks were regionally dissociated in both semantic dementia and progressive nonfluent aphasia. In conclusion, meta-analyses support the specificity of new diagnostic imaging criteria for PPA and suggest that they should be specified for each imaging modality separately. PMID:26901360

  19. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    NASA Astrophysics Data System (ADS)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  20. Integrating Medical Imaging Analyses through a High-throughput Bundled Resource Imaging System

    PubMed Central

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-01-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists. PMID:21841899

  1. Integrating Medical Imaging Analyses through a High-throughput Bundled Resource Imaging System.

    PubMed

    Covington, Kelsie; Welch, E Brian; Jeong, Ha-Kyu; Landman, Bennett A

    2011-01-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists. PMID:21841899

  2. Analyses of S-Box in Image Encryption Applications Based on Fuzzy Decision Making Criterion

    NASA Astrophysics Data System (ADS)

    Rehman, Inayatur; Shah, Tariq; Hussain, Iqtadar

    2014-06-01

    In this manuscript, we put forward a standard based on fuzzy decision making criterion to examine the current substitution boxes and study their strengths and weaknesses in order to decide their appropriateness in image encryption applications. The proposed standard utilizes the results of correlation analysis, entropy analysis, contrast analysis, homogeneity analysis, energy analysis, and mean of absolute deviation analysis. These analyses are applied to well-known substitution boxes. The outcome of these analyses are additional observed and a fuzzy soft set decision making criterion is used to decide the suitability of an S-box to image encryption applications.

  3. Geologist's Field Assistant: Developing Image and Spectral Analyses Algorithms for Remote Science Exploration

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.; Morris, R. L.; Bishop, J.; Gazis, P.; Alena, R.; Sierhuis, M.

    2002-03-01

    We are developing science analyses algorithms to interface with a Geologist's Field Assistant device to allow robotic or human remote explorers to better sense their surroundings during limited surface excursions. Our algorithms will interpret spectral and imaging data obtained by various sensors.

  4. Biodistribution Analyses of a Near-Infrared, Fluorescently Labeled, Bispecific Monoclonal Antibody Using Optical Imaging.

    PubMed

    Peterson, Norman C; Wilson, George G; Huang, Qihui; Dimasi, Nazzareno; Sachsenmeier, Kris F

    2016-04-01

    In recent years, biodistribution analyses of pharmaceutical compounds in preclinical animal models have become an integral part of drug development. Here we report on the use of optical imaging biodistribution analyses in a mouse xenograft model to identify tissues that nonspecifically retained a bispecific antibody under development. Although our bispecific antibody bound both the epidermal growth factor receptor and insulin growth factor 1 receptor are expressed on H358, nonsmall-cell lung carcinoma cells, the fluorescence from labeled bispecific antibody was less intense than expected in xenografted tumors. Imaging analyses of live mice and major organs revealed that the majority of the Alexa Fluor 750 labeled bispecific antibody was sequestered in the liver within 2 h of injection. However, results varied depending on which near-infrared fluorophore was used, and fluorescence from the livers of mice injected with bispecific antibody labeled with Alexa Fluor 680 was less pronounced than those labeled with Alexa Fluor 750. The tissue distribution of control antibodies remained unaffected by label and suggests that the retention of fluorophores in the liver may differ. Given these precautions, these results support the incorporation of optical imaging biodistribution analyses in biotherapeutic development strategies. PMID:27053562

  5. Computer assisted photo-anthropometric analyses of full-face and profile facial images.

    PubMed

    Davis, Josh P; Valentine, Tim; Davis, Robert E

    2010-07-15

    Expert witnesses using facial comparison techniques are regularly required to disambiguate cases of disputed identification in CCTV images and other photographic evidence in court. This paper describes a novel software-assisted photo-anthropometric facial landmark identification system, DigitalFace tested against a database of 70 full-face and profile images of young males meeting a similar description. The system produces 37 linear and 25 angular measurements across the two viewpoints. A series of 64 analyses were conducted to examine whether separate novel probe facial images of target individuals whose face dimensions were already stored within the database would be correctly identified as the same person. Identification verification was found to be unreliable unless multiple distance and angular measurements from both profile and full-face images were included in an analysis. PMID:20570069

  6. Analysing the Image Building Effects of TV Advertisements Using Internet Community Data

    NASA Astrophysics Data System (ADS)

    Uehara, Hiroshi; Sato, Tadahiko; Yoshida, Kenichi

    This paper proposes a method to measure the effects of TV advertisements on the Internet bulletin boards. It aims to clarify how the viewes' interests on TV advertisements are reflected on their images on the promoted products. Two kinds of time series data are generated based on the proposed method. First one represents the time series fluctuation of the interests on the TV advertisements. Another one represents the time series fluctuation of the images on the products. By analysing the correlations between these two time series data, we try to clarify the implicit relationship between the viewer's interests on the TV advertisement and their images on the promoted products. By applying the proposed method to an Internet bulletin board that deals with certain cosmetic brand, we show that the images on the products vary depending on the difference of the interests on each TV advertisement.

  7. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation, Imaging, Observations, and Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2005-01-01

    This report presents particle formation observations and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Hydrogen was frozen into particles in liquid helium, and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. These newly analyzed data are from the test series held on February 28, 2001. Particle sizes from previous testing in 1999 and the testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed: microparticles and delayed particle formation. These experiment image analyses are some of the first steps toward visually characterizing these particles, and they allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  8. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation Energy and Imaging Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2002-01-01

    This paper presents particle formation energy balances and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium during the Phase II testing in 2001. Solid particles of hydrogen were frozen in liquid helium and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. The particle formation efficiency is also estimated. Particle sizes from the Phase I testing in 1999 and the Phase II testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed. These experiment image analyses are one of the first steps toward visually characterizing these particles and it allows designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  9. Fractal analyses of osseous healing using Tuned Aperture Computed Tomography images

    PubMed Central

    Seyedain, Ali; Webber, Richard L.; Nair, Umadevi P.; Piesco, Nicholas P.; Agarwal, Sudha; Mooney, Mark P.; Gröndahl, Hans-Göran

    2016-01-01

    The aim of this study was to evaluate osseous healing in mandibular defects using fractal analyses on conventional radiographs and tuned aperture computed tomography (TACT; OrthoTACT, Instrumentarium Imaging, Helsinki, Finland) images. Eighty test sites on the inferior margins of rabbit mandibles were subject to lesion induction and treated with one of the following: no treatment (controls); osteoblasts only; polymer matrix only; or osteoblast-polymer matrix (OPM) combination. Images were acquired using conventional radiography and TACT, including unprocessed TACT (TACT-U) and iteratively restored TACT (TACT-IR). Healing was followed up over time and images acquired at 3, 6, 9, and 12 weeks post-surgery. Fractal dimension (FD) was computed within regions of interest in the defects using the TACT workbench. Results were analyzed for effects produced by imaging modality, treatment modality, time after surgery and lesion location. Histomorphometric data were available to assess ground truth. Significant differences (p < 0.0001) were noted based on imaging modality with TACT-IR recording the highest mean fractal dimension (MFD), followed by TACT-U and conventional images, in that order. Sites treated with OPM recorded the highest MFDs among all treatment modalities (p < 0.0001). The highest MFD based on time was recorded at 3 weeks and differed significantly with 12 weeks (p < 0.035). Correlation of FD with results of histomorphometric data was high (r = 0.79; p < 0.001). The FD computed on TACT-IR showed the highest correlation with histomorphometric data, thus establishing the fact TACT is a more efficient and accurate imaging modality for quantification of osseous changes within healing bony defects. PMID:11519567

  10. The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data

    PubMed Central

    Hebart, Martin N.; Görgen, Kai; Haynes, John-Dylan

    2015-01-01

    The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns. PMID:25610393

  11. The Decoding Toolbox (TDT): a versatile software package for multivariate analyses of functional imaging data.

    PubMed

    Hebart, Martin N; Görgen, Kai; Haynes, John-Dylan

    2014-01-01

    The multivariate analysis of brain signals has recently sparked a great amount of interest, yet accessible and versatile tools to carry out decoding analyses are scarce. Here we introduce The Decoding Toolbox (TDT) which represents a user-friendly, powerful and flexible package for multivariate analysis of functional brain imaging data. TDT is written in Matlab and equipped with an interface to the widely used brain data analysis package SPM. The toolbox allows running fast whole-brain analyses, region-of-interest analyses and searchlight analyses, using machine learning classifiers, pattern correlation analysis, or representational similarity analysis. It offers automatic creation and visualization of diverse cross-validation schemes, feature scaling, nested parameter selection, a variety of feature selection methods, multiclass capabilities, and pattern reconstruction from classifier weights. While basic users can implement a generic analysis in one line of code, advanced users can extend the toolbox to their needs or exploit the structure to combine it with external high-performance classification toolboxes. The toolbox comes with an example data set which can be used to try out the various analysis methods. Taken together, TDT offers a promising option for researchers who want to employ multivariate analyses of brain activity patterns. PMID:25610393

  12. Study of SGD along the French Mediterranean coastline using airborne TIR images and in situ analyses

    NASA Astrophysics Data System (ADS)

    van Beek, Pieter; Stieglitz, Thomas; Souhaut, Marc

    2015-04-01

    Although submarine groundwater discharge (SGD) has been investigated in many places of the world, very few studies were conducted along the French coastline of the Mediterranean Sea. Almost no information is available on the fluxes of water and chemical elements associated with these SGD and on their potential impact on the geochemical cycling and ecosystems of the coastal zones. In this work, we combined the use of airborne thermal infrared (TIR) images with in situ analyses of salinity, temperature, radon and radium isotopes to study SGD at various sites along the French Mediterranean coastline and in coastal lagoons. These analyses allowed us to detect SGD sites and to quantify SGD fluxes (that include both the fluxes of fresh groundwater and recirculated seawater). In particular, we will show how the Ra isotopes determined in the La Palme lagoon were used to estimate i) the residence time of waters in the lagoon and ii) SGD fluxes.

  13. Computer-based image-analyses of laminated shales, carboniferous of the Midcontinent and surrounding areas

    SciTech Connect

    Archer, A.W. . Dept. of Geology)

    1993-02-01

    Computerized image-analyses of petrographic data can greatly facilitate the quantification of detailed descriptions and analyses of fine-scale fabric, or petrofabric. In thinly laminated rocks, manual measurement of successive lamina thicknesses is very time consuming, especially when applied to thick, cored sequences. In particular, images of core materials can be digitized and the resulting image then processed as a large matrix. Using such techniques, it is relatively easy to automate continuous measurements of lamina thickness and lateral continuity. This type of analyses has been applied to a variety of Carboniferous strata, particularly those siliciclastics that occur within the outside shale' portions of Kansas cyclothems. Of the various sedimentological processes capable of producing such non-random thickness variations, a model invoking tidal processes appears to be particularly robust. Tidal sedimentation could not only have resulted in the deposition of individual lamina, but in addition tidal-height variations during various phases of the lunar orbit can serve to explain the systematic variations. Comparison of these Carboniferous shales with similar laminations formed in modern high tidal-range environments indicates many similarities. These modern analogs include the Bay of Fundy in Canada, and Bay of Mont-Staint-Michel in France. Lamina-thickness variations, in specific cases, can be correlated with known tidal periodicities. In addition, in some samples, details of the tidal regime can be interpolated, such as the nature of the tidal system (i.e., diurnal or semidiurnal) and some indicators of tidal range can be ascertained based upon modern analogs.

  14. Une Technique D' Analyse D' Image Par Cellule Sur Ecran Video

    NASA Astrophysics Data System (ADS)

    Lefebvre, G.; Thorax, L.; Ducom, J.

    1985-02-01

    In packaging,vision of making process is difficult due to high speed of machines. The setting of box erecting is tedious. The origin of filling hazards tedious is often unknown. Some performances on line are not reproducible. To visualisate, decompose and analyse the fast moving phenomenons which are causing packaging troubles, the French Paper and Board Research Institute has obtained video NAC eouinment (200 pictures/sec.). An articulate stand able to move on a carriage is designed to facilitate shooting on machine. An elaborate image analysis is undertaken to find the characteristics of the hoards which are necessary to optimize making the folding box erection on the packaging lines. Actual image analysis with computer systems are large, expensive and necessitate a specific program for each problem. Important equipment are actually used exclusively for special fields. For packaging field where machines and products are diversified we have developed an easy electronical technique for picture analysis. This technique is suitable for all kinds of processes or defects, visualised by high speed video from video shooting on machine. The processes and the manufacture incidents are analysed, controled with a cell on video screen. The light intensity variations are detected and writed on self-recording apparatus. Materials move, their forming modifications and the moves of machine elements are expressed like "signature". All changes on "signature" show hazardous or reproducible variations according to defects of manufacture processes. A short time event, visible on few images only is located with normal or slower speed of the magnetic tape according to the importance of variation. This technique is used to measure in real time the packaging deformations on line. Ease for use, speed of setting and quantity of data are operating qualities of efficient image analysis.

  15. Immunochemical Micro Imaging Analyses for the Detection of Proteins in Artworks.

    PubMed

    Sciutto, Giorgia; Zangheri, Martina; Prati, Silvia; Guardigli, Massimo; Mirasoli, Mara; Mazzeo, Rocco; Roda, Aldo

    2016-06-01

    The present review is aimed at reporting on the most advanced and recent applications of immunochemical imaging techniques for the localization of proteins within complex and multilayered paint stratigraphies. Indeed, a paint sample is usually constituted by the superimposition of different layers whose characterization is fundamental in the evaluation of the state of conservation and for addressing proper restoration interventions. Immunochemical methods, which are based on the high selectivity of antigen-antibody reactions, were proposed some years ago in the field of cultural heritage. In addition to enzyme-linked immunosorbent assays for protein identification, immunochemical imaging methods have also been explored in the last decades, thanks to the possibility to localize the target analytes, thus increasing the amount of information obtained and thereby reducing the number of samples and/or analyses needed for a comprehensive characterization of the sample. In this review, chemiluminescent, spectroscopic and electrochemical imaging detection methods are discussed to illustrate potentialities and limits of advanced immunochemical imaging systems for the analysis of paint cross-sections. PMID:27573272

  16. An accessible, scalable ecosystem for enabling and sharing diverse mass spectrometry imaging analyses.

    PubMed

    Fischer, Curt R; Ruebel, Oliver; Bowen, Benjamin P

    2016-01-01

    Mass spectrometry imaging (MSI) is used in an increasing number of biological applications. Typical MSI datasets contain unique, high-resolution mass spectra from tens of thousands of spatial locations, resulting in raw data sizes of tens of gigabytes per sample. In this paper, we review technical progress that is enabling new biological applications and that is driving an increase in the complexity and size of MSI data. Handling such data often requires specialized computational infrastructure, software, and expertise. OpenMSI, our recently described platform, makes it easy to explore and share MSI datasets via the web - even when larger than 50 GB. Here we describe the integration of OpenMSI with IPython notebooks for transparent, sharable, and replicable MSI research. An advantage of this approach is that users do not have to share raw data along with analyses; instead, data is retrieved via OpenMSI's web API. The IPython notebook interface provides a low-barrier entry point for data manipulation that is accessible for scientists without extensive computational training. Via these notebooks, analyses can be easily shared without requiring any data movement. We provide example notebooks for several common MSI analysis types including data normalization, plotting, clustering, and classification, and image registration. PMID:26365033

  17. A novel high-throughput imaging system for automated analyses of avoidance behavior in zebrafish larvae

    PubMed Central

    Pelkowski, Sean D.; Kapoor, Mrinal; Richendrfer, Holly A.; Wang, Xingyue; Colwill, Ruth M.; Creton, Robbert

    2011-01-01

    Early brain development can be influenced by numerous genetic and environmental factors, with long-lasting effects on brain function and behavior. The identification of these factors is facilitated by recent innovations in high-throughput screening. However, large-scale screening in whole organisms remains challenging, in particular when studying changes in brain function or behavior in vertebrate model systems. In this study, we present a novel imaging system for high-throughput analyses of behavior in zebrafish larvae. The three-camera system can image twelve multiwell plates simultaneously and is unique in its ability to provide local visual stimuli in the wells of a multiwell plate. The acquired images are converted into a series of coordinates, which characterize the location and orientation of the larvae. The developed imaging techniques were tested by measuring avoidance behaviors in seven-day-old zebrafish larvae. The system effectively quantified larval avoidance and revealed an increased edge preference in response to a blue or red ‘bouncing ball’ stimulus. Larvae also avoid a bouncing ball stimulus when it is counter-balanced with a stationary ball, but do not avoid blinking balls counter-balanced with a stationary ball. These results indicate that the seven-day-old larvae respond specifically to movement, rather than color, size, or local changes in light intensity. The imaging system and assays for measuring avoidance behavior may be used to screen for genetic and environmental factors that cause developmental brain disorders and for novel drugs that could prevent or treat these disorders. PMID:21549762

  18. Partial correlation analyses of global diffusion tensor imaging-derived metrics in glioblastoma multiforme: Pilot study

    PubMed Central

    Cortez-Conradis, David; Rios, Camilo; Moreno-Jimenez, Sergio; Roldan-Valadez, Ernesto

    2015-01-01

    AIM: To determine existing correlates among diffusion tensor imaging (DTI)-derived metrics in healthy brains and brains with glioblastoma multiforme (GBM). METHODS: Case-control study using DTI data from brain magnetic resonance imaging of 34 controls (mean, 41.47; SD, ± 21.94 years; range, 21-80 years) and 27 patients with GBM (mean, SD; 48.41 ± 15.18 years; range, 18-78 years). Image postprocessing using FSL software calculated eleven tensor metrics: fractional (FA) and relative anisotropy; pure isotropic (p) and anisotropic diffusions (q), total magnitude of diffusion (L); linear (Cl), planar (Cp) and spherical tensors (Cs); mean (MD), axial (AD) and radial diffusivities (RD). Partial correlation analyses (controlling the effect of age and gender) and multivariate Mancova were performed. RESULTS: There was a normal distribution for all metrics. Comparing healthy brains vs brains with GBM, there were significant very strong bivariate correlations only depicted in GBM: [FA↔Cl (+)], [FA↔q (+)], [p↔AD (+)], [AD↔MD (+)], and [MD↔RD (+)]. Among 56 pairs of bivariate correlations, only seven were significantly different. The diagnosis variable depicted a main effect [F-value (11, 23) = 11.842, P ≤ 0.001], with partial eta squared = 0.850, meaning a large effect size; age showed a similar result. The age also had a significant influence as a covariate [F (11, 23) = 10.523, P < 0.001], with a large effect size (partial eta squared = 0.834). CONCLUSION: DTI-derived metrics depict significant differences between healthy brains and brains with GBM, with specific magnitudes and correlations. This study provides reference data and makes a contribution to decrease the underlying empiricism in the use of DTI parameters in brain imaging. PMID:26644826

  19. Mosquito Larval Habitats, Land Use, and Potential Malaria Risk in Northern Belize from Satellite Image Analyses

    NASA Technical Reports Server (NTRS)

    Pope, Kevin; Masuoka, Penny; Rejmankova, Eliska; Grieco, John; Johnson, Sarah; Roberts, Donald

    2004-01-01

    The distribution of Anopheles mosquito habitats and land use in northern Belize is examined with satellite data. -A land cover classification based on multispectral SPOT and multitemporal Radarsat images identified eleven land cover classes, including agricultural, forest, and marsh types. Two of the land cover types, Typha domingensis marsh and flooded forest, are Anopheles vestitipennis larval habitats. Eleocharis spp. marsh is the larval habitat for Anopheles albimanus. Geographic Information Systems (GIS) analyses of land cover demonstrate that the amount of T-ha domingensis in a marsh is positively correlated with the amount of agricultural land in the adjacent upland, and negatively correlated with the amount of adjacent forest. This finding is consistent with the hypothesis that nutrient (phosphorus) runoff from agricultural lands is causing an expansion of Typha domingensis in northern Belize. This expansion of Anopheles vestitipennis larval habitat may in turn cause an increase in malaria risk in the region.

  20. Validation of the automatic image analyser to assess retinal vessel calibre (ALTAIR): a prospective study protocol

    PubMed Central

    Garcia-Ortiz, Luis; Gómez-Marcos, Manuel A; Recio-Rodríguez, Jose I; Maderuelo-Fernández, Jose A; Chamoso-Santos, Pablo; Rodríguez-González, Sara; de Paz-Santana, Juan F; Merchan-Cifuentes, Miguel A; Corchado-Rodríguez, Juan M

    2014-01-01

    Introduction The fundus examination is a non-invasive evaluation of the microcirculation of the retina. The aim of the present study is to develop and validate (reliability and validity) the ALTAIR software platform (Automatic image analyser to assess retinal vessel calibre) in order to analyse its utility in different clinical environments. Methods and analysis A cross-sectional study in the first phase and a prospective observational study in the second with 4 years of follow-up. The study will be performed in a primary care centre and will include 386 participants. The main measurements will include carotid intima-media thickness, pulse wave velocity by Sphygmocor, cardio-ankle vascular index through the VASERA VS-1500, cardiac evaluation by a digital ECG and renal injury by microalbuminuria and glomerular filtration. The retinal vascular evaluation will be performed using a TOPCON TRCNW200 non-mydriatic retinal camera to obtain digital images of the retina, and the developed software (ALTAIR) will be used to automatically calculate the calibre of the retinal vessels, the vascularised area and the branching pattern. For software validation, the intraobserver and interobserver reliability, the concurrent validity of the vascular structure and function, as well as the association between the estimated retinal parameters and the evolution or onset of new lesions in the target organs or cardiovascular diseases will be examined. Ethics and dissemination The study has been approved by the clinical research ethics committee of the healthcare area of Salamanca. All study participants will sign an informed consent to agree to participate in the study in compliance with the Declaration of Helsinki and the WHO standards for observational studies. Validation of this tool will provide greater reliability to the analysis of retinal vessels by decreasing the intervention of the observer and will result in increased validity through the use of additional information, especially

  1. Development, Capabilities, and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, T.; Amarin, R.; Atlas, R.; Bailey, M.; Black, P.; Buckley, C.; Chen, S.; El-Nimri, S.; Hood, R.; James, M.; Johnson, J.; Jones, W.; Ruf, C.; Simmons, D.; Uhlhorn, E.; Inglish, C.

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is being designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude) with approximately 2 km resolution. This paper describes the HIRAD instrument and the physical basis for its operations, including chamber test data from the instrument. The potential value of future HIRAD observations will be illustrated with a summary of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct simulated H*Wind analyses. Evaluations will be presented on the impact on H*Wind analyses of using the HIRAD instrument observations to replace those of the SFMR instrument, and also on the impact of a future satellite-based HIRAD in comparison to instruments with more limited capabilities for observing strong winds through heavy

  2. Correlative Imaging and Analyses of Soil Organic Matter Stabilization in the Rhizosphere

    NASA Astrophysics Data System (ADS)

    Dohnalkova, Alice; Tfaily, Malak; Chu, Rosalie; Crump, Alex; Brislawn, Colin; Varga, Tamas; Chrisler, William

    2016-04-01

    Correlative Imaging and Analyses of Soil Organic Matter Stabilization in the Rhizosphere Understanding the dynamics of carbon (C) pools in soil systems is a critical area for mitigating atmospheric carbon dioxide levels and maintaining healthy soils. Although microbial contributions to stable soil carbon pools have often been regarded as low to negligible, we present evidence that microbes may play a far greater role in the stabilization of soil organic matter (SOM), thus in contributing to soil organic matter pools with longer residence time. The rhizosphere, a zone immediately surrounding the plant roots, represents a geochemical hotspot with high microbial activity and profuse SOM production. Particularly, microbially secreted extracellular polymeric substances (EPS) present a remarkable dynamic entity that plays a critical role in numerous soil processes including mineral weathering. We approach the interface of soil minerals and microbes with a focus on the organic C stabilization mechanisms. We use a suite of high-resolution imaging and analytical methods (confocal, scanning and transmission electron microscopy, Fourier transform ion cyclotron resonance mass spectrometry, DNA sequencing and X-ray diffraction), to study the living and non-living rhizosphere components. Our goal is to elucidate a pathway for the formation, storage, transformation and protection of persistent microbially-produced carbon in soils. Based on our multimodal analytical approach, we propose that persistent microbial necromass in soils accounts for considerably higher soil carbon than previously estimated.

  3. Image analyses in bauxitic ores: The case of the Apulian karst bauxites

    NASA Astrophysics Data System (ADS)

    Buccione, Roberto; Sinisi, Rosa; Mongelli, Giovanni

    2015-04-01

    This study concern two different karst bauxite deposits of the Apulia region (southern Italy). These deposits outcrop in the Murge and Salento areas: the Murge bauxite (upper Cretaceous) is a typical canyon-like deposit formed in a karst depression whereas the Salento bauxite (upper Eocene - Oligocene) is the result of the erosion, remobilization and transport of older bauxitic material from a relative distant area. This particular bauxite arrangement gave the name to all the same bauxite deposits which are thus called Salento-type deposits. Bauxite's texture is essentially made of sub-circular concentric aggregates, called ooids, dispersed in a pelitic matrix. The textural properties of the two bauxitic ores, as assessed by SEM-EDX, are different. In the bauxite from the canyon-like deposit the ooids/matrix ratio is higher than in the Salento-type bauxite. Furthermore the ooids in the Salento-like bauxite are usually made by a large core surrounded by a narrow, single, accretion layer, whereas the ooids from the canyon-like deposit have a smaller core surrounded by several alternating layers of Al-hematite and boehmite (Mongelli et al., 2014). In order to explore in more detail the textural features of both bauxite deposits, particle shape analyses were performed. Image analyses and the fractal dimension have been widely used in geological studies including economic geology (e.g. Turcotte, 1986; Meakin, 1991; Deng et al., 2011). The geometric properties evaluated are amounts of ooids, average ooids size, ooids rounding and the fractal dimension D, which depends on the ooids/matrix ratio. D is the slope of a plotting line obtained using a particular counting technique on each sample image. The fractal dimension is slightly lower for the Salento-type bauxites. Since the process which led to the formation of the ooids is related to an aggregation growth involving chemical fractionation (Mongelli, 2002) a correlation among these parameters and the contents of major

  4. Molecular cytogenetic analysis of human blastocysts andcytotrophoblasts by multi-color FISH and Spectra Imaging analyses

    SciTech Connect

    Weier, Jingly F.; Ferlatte, Christy; Baumgartner, Adolf; Jung,Christine J.; Nguyen, Ha-Nam; Chu, Lisa W.; Pedersen, Roger A.; Fisher,Susan J.; Weier, Heinz-Ulrich G.

    2006-02-08

    Numerical chromosome aberrations in gametes typically lead to failed fertilization, spontaneous abortion or a chromosomally abnormal fetus. By means of preimplantation genetic diagnosis (PGD), we now can screen human embryos in vitro for aneuploidy before transferring the embryos to the uterus. PGD allows us to select unaffected embryos for transfer and increases the implantation rate in in vitro fertilization programs. Molecular cytogenetic analyses using multi-color fluorescence in situ hybridization (FISH) of blastomeres have become the major tool for preimplantation genetic screening of aneuploidy. However, current FISH technology can test for only a small number of chromosome abnormalities and hitherto failed to increase the pregnancy rates as expected. We are in the process of developing technologies to score all 24 chromosomes in single cells within a 3 day time limit, which we believe is vital to the clinical setting. Also, human placental cytotrophoblasts (CTBs) at the fetal-maternal interface acquire aneuploidies as they differentiate to an invasive phenotype. About 20-50% of invasive CTB cells from uncomplicated pregnancies were found aneuploidy, suggesting that the acquisition of aneuploidy is an important component of normal placentation, perhaps limiting the proliferative and invasive potential of CTBs. Since most invasive CTBs are interphase cells and possess extreme heterogeneity, we applied multi-color FISH and repeated hybridizations to investigate individual CTBs. In summary, this study demonstrates the strength of Spectral Imaging analysis and repeated hybridizations, which provides a basis for full karyotype analysis of single interphase cells.

  5. Functional Magnetic Resonance Imaging Connectivity Analyses Reveal Efference-Copy to Primary Somatosensory Area, BA2

    PubMed Central

    Cui, Fang; Arnstein, Dan; Thomas, Rajat Mani; Maurits, Natasha M.; Keysers, Christian; Gazzola, Valeria

    2014-01-01

    Some theories of motor control suggest efference-copies of motor commands reach somatosensory cortices. Here we used functional magnetic resonance imaging to test these models. We varied the amount of efference-copy signal by making participants squeeze a soft material either actively or passively. We found electromyographical recordings, an efference-copy proxy, to predict activity in primary somatosensory regions, in particular Brodmann Area (BA) 2. Partial correlation analyses confirmed that brain activity in cortical structures associated with motor control (premotor and supplementary motor cortices, the parietal area PF and the cerebellum) predicts brain activity in BA2 without being entirely mediated by activity in early somatosensory (BA3b) cortex. Our study therefore provides valuable empirical evidence for efference-copy models of motor control, and shows that signals in BA2 can indeed reflect an input from motor cortices and suggests that we should interpret activations in BA2 as evidence for somatosensory-motor rather than somatosensory coding alone. PMID:24416222

  6. Autonomous Science Analyses of Digital Images for Mars Sample Return and Beyond

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Ruzon, M.; Roush, T. L.

    1999-01-01

    To adequately explore high priority landing sites, scientists require rovers with greater mobility. Therefore, future Mars missions will involve rovers capable of traversing tens of kilometers (vs. tens of meters traversed by Mars Pathfinder's Sojourner). However, the current process by which scientists interact with a rover does not scale to such distances. A single science objective is achieved through many iterations of a basic command cycle: (1) all data must be transmitted to Earth and analyzed; (2) from this data, new targets are selected and the necessary information from the appropriate instruments are requested; (3) new commands are then uplinked and executed by the spacecraft and (4) the resulting data are returned to Earth, starting the process again. Experience with rover tests on Earth shows that this time intensive process cannot be substantially shortened given the limited data downlink bandwidth and command cycle opportunities of real missions. Sending complete multicolor panoramas at several waypoints, for example, is out of the question for a single downlink opportunity. As a result, long traverses requiring many science command cycles would likely require many weeks, months or even years, perhaps exceeding rover design life or other constraints. Autonomous onboard science analyses can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands, for example acquiring and returning spectra of "interesting" rocks along with the images in which they were detected. Such approaches, coupled with appropriate navigational software, address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing algorithms to enable such intelligent decision making by autonomous spacecraft. Reflecting the ultimate level of ability we aim for, this

  7. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair

    PubMed Central

    Huang, Chunlan; Ness, Vincent P.; Yang, Xiaochuan; Chen, Hongli; Luo, Jiebo; Brown, Edward B; Zhang, Xinping

    2015-01-01

    Osteogenesis and angiogenesis are two integrated components in bone repair and regeneration. A deeper understanding of osteogenesis and angiogenesis has been hampered by technical difficulties of analyzing bone and neovasculature simultaneously in spatiotemporal scales and in three-dimensional formats. To overcome these barriers, a cranial defect window chamber model was established that enabled high-resolution, longitudinal, and real-time tracking of angiogenesis and bone defect healing via Multiphoton Laser Scanning Microscopy (MPLSM). By simultaneously probing new bone matrix via second harmonic generation (SHG), neovascular networks via intravenous perfusion of fluorophore, and osteoblast differentiation via 2.3kb collagen type I promoter driven GFP (Col2.3GFP), we examined the morphogenetic sequence of cranial bone defect healing and further established the spatiotemporal analyses of osteogenesis and angiogenesis coupling in repair and regeneration. We demonstrated that bone defect closure was initiated in the residual bone around the edge of the defect. The expansion and migration of osteoprogenitors into the bone defect occurred during the first 3 weeks of healing, coupled with vigorous microvessel angiogenesis at the leading edge of the defect. Subsequent bone repair was marked by matrix deposition and active vascular network remodeling within new bone. Implantation of bone marrow stromal cells (BMSCs) isolated from Col2.3GFP mice further showed that donor-dependent bone formation occurred rapidly within the first 3 weeks of implantation, in concert with early angiogenesis. The subsequent bone wound closure was largely host-dependent, associated with localized modest induction of angiogenesis. The establishment of a live imaging platform via cranial window provides a unique tool to understand osteogenesis and angiogenesis in repair and regeneration, enabling further elucidation of the spatiotemporal regulatory mechanisms of osteoprogenitor cell interactions

  8. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair.

    PubMed

    Huang, Chunlan; Ness, Vincent P; Yang, Xiaochuan; Chen, Hongli; Luo, Jiebo; Brown, Edward B; Zhang, Xinping

    2015-07-01

    Osteogenesis and angiogenesis are two integrated components in bone repair and regeneration. A deeper understanding of osteogenesis and angiogenesis has been hampered by technical difficulties of analyzing bone and neovasculature simultaneously in spatiotemporal scales and in 3D formats. To overcome these barriers, a cranial defect window chamber model was established that enabled high-resolution, longitudinal, and real-time tracking of angiogenesis and bone defect healing via multiphoton laser scanning microscopy (MPLSM). By simultaneously probing new bone matrix via second harmonic generation (SHG), neovascular networks via intravenous perfusion of fluorophore, and osteoblast differentiation via 2.3-kb collagen type I promoter-driven GFP (Col2.3GFP), we examined the morphogenetic sequence of cranial bone defect healing and further established the spatiotemporal analyses of osteogenesis and angiogenesis coupling in repair and regeneration. We showed that bone defect closure was initiated in the residual bone around the edge of the defect. The expansion and migration of osteoprogenitors into the bone defect occurred during the first 3 weeks of healing, coupled with vigorous microvessel angiogenesis at the leading edge of the defect. Subsequent bone repair was marked by matrix deposition and active vascular network remodeling within new bone. Implantation of bone marrow stromal cells (BMSCs) isolated from Col2.3GFP mice further showed that donor-dependent bone formation occurred rapidly within the first 3 weeks of implantation, in concert with early angiogenesis. The subsequent bone wound closure was largely host-dependent, associated with localized modest induction of angiogenesis. The establishment of a live imaging platform via cranial window provides a unique tool to understand osteogenesis and angiogenesis in repair and regeneration, enabling further elucidation of the spatiotemporal regulatory mechanisms of osteoprogenitor cell interactions with host bone

  9. X-ray digital imaging petrography of lunar mare soils: modal analyses of minerals and glasses

    NASA Technical Reports Server (NTRS)

    Taylor, L. A.; Patchen, A.; Taylor, D. H.; Chambers, J. G.; McKay, D. S.

    1996-01-01

    It is essential that accurate modal (i.e., volume) percentages of the various mineral and glass phases in lunar soils be used for addressing and resolving the effects of space weathering upon reflectance spectra, as well as for their calibration such data are also required for evaluating the resource potential of lunar minerals for use at a lunar base. However, these data are largely lacking. Particle-counting information for lunar soils, originally obtained to study formational processes, does not provide these necessary data, including the percentages of minerals locked in multi-phase lithic fragments and fused-soil particles, such as agglutinates. We have developed a technique for modal analyses, sensu stricto, of lunar soils, using digital imaging of X-ray maps obtained with an energy-dispersive spectrometer mounted on an electron microprobe. A suite of nine soils (90 to 150 micrometers size fraction) from the Apollo 11, 12, 15, and 17 mare sites was used for this study. This is the first collection of such modal data on soils from all Apollo mare sites. The abundances of free-mineral fragments in the mare soils are greater for immature and submature soils than for mature soils, largely because of the formation of agglutinitic glass as maturity progresses. In considerations of resource utilization at a lunar base, the best lunar soils to use for mineral beneficiation (i.e., most free-mineral fragments) have maturities near the immature/submature boundary (Is/FeO approximately or = 30), not the mature soils with their complications due to extensive agglutination. The particle data obtained from the nine mare soils confirm the generalizations for lunar soils predicted by L.A. Taylor and D.S. McKay (1992, Lunar Planet Sci. Conf. 23rd, pp. 1411-1412 [Abstract]).

  10. Pallasite formation after a non-destructive impact. An experimental- and image analyses-based study

    NASA Astrophysics Data System (ADS)

    Solferino, Giulio; Golabek, Gregor J.; Nimmo, Francis; Schmidt, Max W.

    2015-04-01

    The formation conditions of pallasite meteorites in the interior of terrestrial planetesimals have been matter of debate over the last 40 years. Among other characteristics, the simple mineralogical composition (i.e., olivine, FeNi, FeS +/- pyroxene) and the dualism between fragmental and rounded olivine-bearing pallasites must be successfully reproduced by a potential formation scenario. This study incorporates a series of annealing experiments with olivine plus Fe-S, and digital image analyses of slabs from Brenham, Brahin, Seymchan, and Springwater pallasites. Additionally a 1D finite-difference numerical model was employed to show that a non-destructive collision followed by mixing of the impactor's core with the target body silicate mantle could lead to the formation of both fragmental and rounded pallasite types. Specifically, an impact occurring right after the accomplishment of the target body differentiation and up to several millions of years afterwards allows for (i) average grain sizes consistent with the observed rounded olivine-bearing pallasites, (ii) a remnant magnetization of Fe-Ni olivine inclusions as measured in natural pallasites and (iii) for the metallographic cooling rates derived from Fe-Ni in pallasites. An important result of this investigation is the definition of the grain growth rate of olivine in molten Fe-S as follows: dn - d0n = k0 exp(-Ea/RT) t, where, d0 is the starting grain size, d the grain size at time t, n = 2.42(46) the growth exponent, k0 = 9.43•E06 μm n s-1 a characteristic constant, Ea = 289 kJ/mol the activation energy for a specific growth process, R the gas constant, and T the absolute temperature. The computed olivine coarsening rate is markedly faster than in olivine-FeNi and olivine-Ni systems.

  11. X-Ray Digital Imaging Petrography of Lunar Mare Soils: Modal Analyses of Minerals and Glasses

    NASA Astrophysics Data System (ADS)

    Taylor, Lawrence A.; Patchen, Allan; Taylor, Dong-Hwa S.; Chambers, John G.; McKay, David S.

    1996-12-01

    It is essential that accurate modal (i.e., volume) percentages of the various mineral and glass phases in lunar soils be used for addressing and resolving the effects of space weathering upon reflectance spectra, as well as for their calibration such data are also required for evaluating the resource potential of lunar minerals for use at a lunar base. However, these data are largely lacking. Particle-counting information for lunar soils, originally obtained to study formational processes, does not provide these necessary data, including the percentages of minerals locked in multi-phase lithic fragments and fused-soil particles, such as agglutinates. We have developed a technique for modal analyses,sensu stricto, of lunar soils, using digital imaging of X-ray maps obtained with an energy-dispersive spectrometer mounted on an electron microprobe. A suite of nine soils (90 to 150 μm size fraction) from the Apollo 11, 12, 15, and 17 mare sites was used for this study. This is the first collection of such modal data on soils from all Apollo mare sites. The abundances of free-mineral fragments in the mare soils are greater for immature and submature soils than for mature soils, largely because of the formation of agglutinitic glass as maturity progresses. In considerations of resource utilization at a lunar base, the best lunar soils to use for mineral beneficiation (i.e., most free-mineral fragments) have maturities near the immature/submature boundary (Is/FeO ≅ 30), not the mature soils with their complications due to extensive agglutination. The particle data obtained from the nine mare soils confirm the generalizations for lunar soils predicted by L. A. Taylor and D. S. McKay (1992,Lunar Planet Sci. Conf. 23rd,pp. 1411-1412 [Abstract]).

  12. Detection of melamine in milk powders based on NIR hyperspectral imaging and spectral similarity analyses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Melamine (2,4,6-triamino-1,3,5-triazine) contamination of food has become an urgent and broadly recognized topic as a result of several food safety scares in the past five years. Hyperspectral imaging techniques that combine the advantages of spectroscopy and imaging have been widely applied for a v...

  13. Edge detection and image segmentation of space scenes using fractal analyses

    NASA Technical Reports Server (NTRS)

    Cleghorn, Timothy F.; Fuller, J. J.

    1992-01-01

    A method was developed for segmenting images of space scenes into manmade and natural components, using fractal dimensions and lacunarities. Calculations of these parameters are presented. Results are presented for a variety of aerospace images, showing that it is possible to perform edge detections of manmade objects against natural background such as those seen in an aerospace environment.

  14. Maximizing Science Return from Future Mars Missions with Onboard Image Analyses

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Morris, R. L.; Bandari, E. B.; Roush, T. L.

    2000-01-01

    We have developed two new techniques to enhance science return and to decrease returned data volume for near-term Mars missions: 1) multi-spectral image compression and 2) autonomous identification and fusion of in-focus regions in an image series.

  15. Applying I-FGM to image retrieval and an I-FGM system performance analyses

    NASA Astrophysics Data System (ADS)

    Santos, Eugene, Jr.; Santos, Eunice E.; Nguyen, Hien; Pan, Long; Korah, John; Zhao, Qunhua; Xia, Huadong

    2007-04-01

    Intelligent Foraging, Gathering and Matching (I-FGM) combines a unique multi-agent architecture with a novel partial processing paradigm to provide a solution for real-time information retrieval in large and dynamic databases. I-FGM provides a unified framework for combining the results from various heterogeneous databases and seeks to provide easily verifiable performance guarantees. In our previous work, I-FGM had been implemented and validated with experiments on dynamic text data. However, the heterogeneity of search spaces requires our system having the ability to effectively handle various types of data. Besides texts, images are the most significant and fundamental data for information retrieval. In this paper, we extend the I-FGM system to incorporate images in its search spaces using a region-based Wavelet Image Retrieval algorithm called WALRUS. Similar to what we did for text retrieval, we modified the WALRUS algorithm to partially and incrementally extract the regions from an image and measure the similarity value of this image. Based on the obtained partial results, we refine our computational resources by updating the priority values of image documents. Experiments have been conducted on I-FGM system with image retrieval. The results show that I-FGM outperforms its control systems. Also, in this paper we present theoretical analysis of the systems with a focus on performance. Based on probability theory, we provide models and predictions of the average performance of the I-FGM system and its two control systems, as well as the systems without partial processing.

  16. The Neglected Side of the Coin: Quantitative Benefit-risk Analyses in Medical Imaging.

    PubMed

    Zanzonico, Pat B

    2016-03-01

    While it is implicitly recognized that the benefits of diagnostic imaging far outweigh any theoretical radiogenic risks, quantitative estimates of the benefits are rarely, if ever, juxtaposed with quantitative estimates of risk. This alone - expression of benefit in purely qualitative terms versus expression of risk in quantitative, and therefore seemingly more certain, terms - may well contribute to a skewed sense of the relative benefits and risks of diagnostic imaging among healthcare providers as well as patients. The current paper, therefore, briefly compares the benefits of diagnostic imaging in several cases, based on actual mortality or morbidity data if ionizing radiation were not employed, with theoretical estimates of radiogenic cancer mortality based on the "linear no-threshold" (LNT) dose-response model. PMID:26808890

  17. Formal Distinctiveness of High- and Low-Imageability Nouns: Analyses and Theoretical Implications

    ERIC Educational Resources Information Center

    Reilly, Jamie; Kean, Jacob

    2007-01-01

    Words associated with perceptually salient, highly imageable concepts are learned earlier in life, more accurately recalled, and more rapidly named than abstract words (R. W. Brown, 1976; Walker & Hulme, 1999). Theories accounting for this concreteness effect have focused exclusively on semantic properties of word referents. A novel possibility is…

  18. Three-dimensional imaging system for analyses of dynamic droplet impaction and deposition formation on leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A system was developed to assess the dynamic processes of droplet impact, rebound and retention on leaf surfaces with three-dimensional (3-D) images. The system components consisted of a uniform-size droplet generator, two high speed digital video cameras, a constant speed track, a leaf holder, and ...

  19. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Weber, T.; Bartl, P.; Durst, J.; Haas, W.; Michel, T.; Ritter, A.; Anton, G.

    2011-08-01

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary.With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases.These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool “SPHINX”, combining both wave and particle contributions of the simulated photons.The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant.Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements.This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  20. Optimizing Laguerre expansion based deconvolution methods for analysing bi-exponential fluorescence lifetime images.

    PubMed

    Zhang, Yongliang; Chen, Yu; Li, David Day-Uei

    2016-06-27

    Fast deconvolution is an essential step to calibrate instrument responses in big fluorescence lifetime imaging microscopy (FLIM) image analysis. This paper examined a computationally effective least squares deconvolution method based on Laguerre expansion (LSD-LE), recently developed for clinical diagnosis applications, and proposed new criteria for selecting Laguerre basis functions (LBFs) without considering the mutual orthonormalities between LBFs. Compared with the previously reported LSD-LE, the improved LSD-LE allows to use a higher laser repetition rate, reducing the acquisition time per measurement. Moreover, we extended it, for the first time, to analyze bi-exponential fluorescence decays for more general FLIM-FRET applications. The proposed method was tested on both synthesized bi-exponential and realistic FLIM data for studying the endocytosis of gold nanorods in Hek293 cells. Compared with the previously reported constrained LSD-LE, it shows promising results. PMID:27410552

  1. Three-Dimensional Acoustic Tissue Model: A Computational Tissue Phantom for Image Analyses

    NASA Astrophysics Data System (ADS)

    Mamou, J.; Oelze, M. L.; O'Brien, W. D.; Zachary, J. F.

    A novel methodology to obtain three-dimensional (3D) acoustic tissue models (3DATMs) is introduced. 3DATMs can be used as computational tools for ultrasonic imaging algorithm development and analysis. In particular, 3D models of biological structures can provide great benefit to better understand fundamentally how ultrasonic waves interact with biological materials. As an example, such models were used to generate ultrasonic images that characterize tumor tissue microstructures. 3DATMs can be used to evaluate a variety of tissue types. Typically, excised tissue is fixed, embedded, serially sectioned, and stained. The stained sections are digitally imaged (24-bit bitmap) with light microscopy. Contrast of each stained section is equalized and an automated registration algorithm aligns consecutive sections. The normalized mutual information is used as a similarity measure, and simplex optimization is conducted to find the best alignment. Both rigid and non-rigid registrations are performed. During tissue preparation, some sections are generally lost; thus, interpolation prior to 3D reconstruction is performed. Interpolation is conducted after registration using cubic Hermite polynoms. The registered (with interpolated) sections yield a 3D histologic volume (3DHV). Acoustic properties are then assigned to each tissue constituent of the 3DHV to obtain the 3DATMs. As an example, a 3D acoustic impedance tissue model (3DZM) was obtained for a solid breast tumor (EHS mouse sarcoma) and used to estimate ultrasonic scatterer size. The 3DZM results yielded an effective scatterer size of 32.9 (±6.1) μm. Ultrasonic backscatter measurements conducted on the same tumor tissue in vivo yielded an effective scatterer size of 33 (±8) μm. This good agreement shows that 3DATMs may be a powerful modeling tool for acoustic imaging applications

  2. Functional connectivity analyses in imaging genetics: considerations on methods and data interpretation.

    PubMed

    Bedenbender, Johannes; Paulus, Frieder M; Krach, Sören; Pyka, Martin; Sommer, Jens; Krug, Axel; Witt, Stephanie H; Rietschel, Marcella; Laneri, Davide; Kircher, Tilo; Jansen, Andreas

    2011-01-01

    Functional magnetic resonance imaging (fMRI) can be combined with genotype assessment to identify brain systems that mediate genetic vulnerability to mental disorders ("imaging genetics"). A data analysis approach that is widely applied is "functional connectivity". In this approach, the temporal correlation between the fMRI signal from a pre-defined brain region (the so-called "seed point") and other brain voxels is determined. In this technical note, we show how the choice of freely selectable data analysis parameters strongly influences the assessment of the genetic modulation of connectivity features. In our data analysis we exemplarily focus on three methodological parameters: (i) seed voxel selection, (ii) noise reduction algorithms, and (iii) use of additional second level covariates. Our results show that even small variations in the implementation of a functional connectivity analysis can have an impact on the connectivity pattern that is as strong as the potential modulation by genetic allele variants. Some effects of genetic variation can only be found for one specific implementation of the connectivity analysis. A reoccurring difficulty in the field of psychiatric genetics is the non-replication of initially promising findings, partly caused by the small effects of single genes. The replication of imaging genetic results is therefore crucial for the long-term assessment of genetic effects on neural connectivity parameters. For a meaningful comparison of imaging genetics studies however, it is therefore necessary to provide more details on specific methodological parameters (e.g., seed voxel distribution) and to give information how robust effects are across the choice of methodological parameters. PMID:22220190

  3. Hyperspectral and Chlorophyll Fluorescence Imaging to Analyse the Impact of Fusarium culmorum on the Photosynthetic Integrity of Infected Wheat Ears

    PubMed Central

    Bauriegel, Elke; Giebel, Antje; Herppich, Werner B.

    2011-01-01

    Head blight on wheat, caused by Fusarium spp., is a serious problem for both farmers and food production due to the concomitant production of highly toxic mycotoxins in infected cereals. For selective mycotoxin analyses, information about the on-field status of infestation would be helpful. Early symptom detection directly on ears, together with the corresponding geographic position, would be important for selective harvesting. Hence, the capabilities of various digital imaging methods to detect head blight disease on winter wheat were tested. Time series of images of healthy and artificially Fusarium-infected ears were recorded with a laboratory hyperspectral imaging system (wavelength range: 400 nm to 1,000 nm). Disease-specific spectral signatures were evaluated with an imaging software. Applying the ‘Spectral Angle Mapper’ method, healthy and infected ear tissue could be clearly classified. Simultaneously, chlorophyll fluorescence imaging of healthy and infected ears, and visual rating of the severity of disease was performed. Between six and eleven days after artificial inoculation, photosynthetic efficiency of infected compared to healthy ears decreased. The severity of disease highly correlated with photosynthetic efficiency. Above an infection limit of 5% severity of disease, chlorophyll fluorescence imaging reliably recognised infected ears. With this technique, differentiation of the severity of disease was successful in steps of 10%. Depending on the quality of chosen regions of interests, hyperspectral imaging readily detects head blight 7 d after inoculation up to a severity of disease of 50%. After beginning of ripening, healthy and diseased ears were hardly distinguishable with the evaluated methods. PMID:22163820

  4. Use of Very High-Resolution Airborne Images to Analyse 3d Canopy Architecture of a Vineyard

    NASA Astrophysics Data System (ADS)

    Burgos, S.; Mota, M.; Noll, D.; Cannelle, B.

    2015-08-01

    Differencing between green cover and grape canopy is a challenge for vigour status evaluation in viticulture. This paper presents the acquisition methodology of very high-resolution images (4 cm), using a Sensefly Swinglet CAM unmanned aerial vehicle (UAV) and their processing to construct a 3D digital surface model (DSM) for the creation of precise digital terrain models (DTM). The DTM was obtained using python processing libraries. The DTM was then subtracted to the DSM in order to obtain a differential digital model (DDM) of a vineyard. In the DDM, the vine pixels were then obtained by selecting all pixels with an elevation higher than 50 [cm] above the ground level. The results show that it was possible to separate pixels from the green cover and the vine rows. The DDM showed values between -0.1 and + 1.5 [m]. A manually delineation of polygons based on the RGB image belonging to the green cover and to the vine rows gave a highly significant differences with an average value of 1.23 [m] and 0.08 [m] for the vine and the ground respectively. The vine rows elevation is in good accordance with the topping height of the vines 1.35 [m] measured on the field. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.

  5. Contextualising and Analysing Planetary Rover Image Products through the Web-Based PRoGIS

    NASA Astrophysics Data System (ADS)

    Morley, Jeremy; Sprinks, James; Muller, Jan-Peter; Tao, Yu; Paar, Gerhard; Huber, Ben; Bauer, Arnold; Willner, Konrad; Traxler, Christoph; Garov, Andrey; Karachevtseva, Irina

    2014-05-01

    The international planetary science community has launched, landed and operated dozens of human and robotic missions to the planets and the Moon. They have collected various surface imagery that has only been partially utilized for further scientific purposes. The FP7 project PRoViDE (Planetary Robotics Vision Data Exploitation) is assembling a major portion of the imaging data gathered so far from planetary surface missions into a unique database, bringing them into a spatial context and providing access to a complete set of 3D vision products. Processing is complemented by a multi-resolution visualization engine that combines various levels of detail for a seamless and immersive real-time access to dynamically rendered 3D scenes. PRoViDE aims to (1) complete relevant 3D vision processing of planetary surface missions, such as Surveyor, Viking, Pathfinder, MER, MSL, Phoenix, Huygens, and Lunar ground-level imagery from Apollo, Russian Lunokhod and selected Luna missions, (2) provide highest resolution & accuracy remote sensing (orbital) vision data processing results for these sites to embed the robotic imagery and its products into spatial planetary context, (3) collect 3D Vision processing and remote sensing products within a single coherent spatial data base, (4) realise seamless fusion between orbital and ground vision data, (5) demonstrate the potential of planetary surface vision data by maximising image quality visualisation in 3D publishing platform, (6) collect and formulate use cases for novel scientific application scenarios exploiting the newly introduced spatial relationships and presentation, (7) demonstrate the concepts for MSL, (9) realize on-line dissemination of key data & its presentation by a web-based GIS and rendering tool named PRoGIS (Planetary Robotics GIS). PRoGIS is designed to give access to rover image archives in geographical context, using projected image view cones, obtained from existing meta-data and updated according to

  6. Normal development of the tomato clownfish Amphiprion frenatus: live imaging and in situ hybridization analyses of mesodermal and neurectodermal development.

    PubMed

    Ghosh, J; Wilson, R W; Kudoh, T

    2009-12-01

    The normal embryonic development of the tomato clownfish Amphiprion frenatus was analysed using live imaging and by in situ hybridization for detection of mesodermal and neurectodermal development. Both morphology of live embryos and tissue-specific staining revealed significant differences in the gross developmental programme of A. frenatus compared with better-known teleost fish models, in particular, initiation of somitogenesis before complete epiboly, initiation of narrowing of the neurectoderm (neurulation) before somitogenesis, relatively early pigmentation of melanophores at the 10-15 somite stage and a distinctive pattern of melanophore distribution. These results suggest evolutionary adaptability of the teleost developmental programme. The ease of obtaining eggs, in vitro culture of the embryo, in situ staining analyses and these reported characteristics make A. frenatus a potentially important model marine fish species for studying embryonic development, physiology, ecology and evolution. PMID:20738687

  7. Capabilities and Impact on Wind Analyses of the Hurricane Imaging Radiometer (HIRAD)

    NASA Technical Reports Server (NTRS)

    Miller, Timothy L.; Amarin, Ruba; Atlas, Robert; Bailey, M. C.; Black, Peter; Buckley, Courtney; James, Mark; Johnson, James; Jones, Linwood; Ruf, Christopher; Simmons, David; Uhlhorn, Eric

    2010-01-01

    The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. The instrument is being test flown in January and is expected to participate in or collaborate with the tropical cyclone experiment GRIP (Genesis and Rapid Intensification Processes) in the 2010 season. HIRAD is designed to study the wind field in some detail within strong hurricanes and to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft currently using the operational Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track at a single point directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approx.3 x the aircraft altitude) with approx.2 km resolution. See Figure 1, which depicts a simulated HIRAD swath versus the line of data obtained by SFMR.

  8. Color Mosaics and Multispectral Analyses of Mars Reconnaissance Orbit Mars Color Imager (MARCI) Observations

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Anderson, R. B.; Kressler, K.; Wolff, M. J.; Cantor, B.; Science; Operations Teams, M.

    2008-12-01

    The Mars Color Imager (MARCI) on the Mars Reconnaissance Orbiter (MRO) spacecraft is a is a wide-angle, multispectral Charge-Coupled Device (CCD) "push-frame" imaging camera designed to provide frequent, synoptic-scale imaging of Martian atmospheric and surface features and phenomena. MARCI uses a 1024x1024 pixel interline transfer CCD detector that has seven narrowband interference filters bonded directly to the CCD. Five of the filters are in the visible to short-wave near-IR wavelength range (MARCI-VIS: 437, 546, 604, 653, and 718 nm) and two are in the UV (MARCI-UV: 258 and 320 nm). During the MRO primary mission (November 2006 through November 2008), the instrument has acquired data swaths on the dayside of the planet, at an equator-crossing local solar time of about 3:00 p.m. We are analyzing the MARCI-VIS multispectral imaging data from the MRO primary mission in order to investigate (a) color variations in the surface and their potential relationship to variations in iron mineralogy; and (b) the time variability of surface albedo features at the approx. 1 km/pixel scale typical of MARCI nadir-pointed observations. Raw MARCI images were calibrated to radiance factor (I/F) using pre-flight and in-flight calibration files and a pipeline calibration process developed by the science team. We are using these calibrated MARCI files to generate map-projected mosaics of each of the 30 USGS standard quadrangles on Mars in each of the five MARCI-VIS bands. Our mosaicking software searches the MARCI data set to identify files that match a user- defined set of limits such as latitude, longitude, Ls, incidence angle, emission angle, and year. Each of the files matching the desired criteria is then map-projected and inserted in series into an output mosaic covering the desired lat/lon range. In cases of redundant coverage of the same pixels by different files, the user can set the program to use the pixel with the lowest I/F value for each individual MARCI-VIS band, thus

  9. X-ray fluorescence and imaging analyses of paintings by the Brazilian artist Oscar Pereira Da Silva

    NASA Astrophysics Data System (ADS)

    Campos, P. H. O. V.; Kajiya, E. A. M.; Rizzutto, M. A.; Neiva, A. C.; Pinto, H. P. F.; Almeida, P. A. D.

    2014-02-01

    Non-destructive analyses, such as EDXRF (Energy-Dispersive X-Ray Fluorescence) spectroscopy, and imaging were used to characterize easel paintings. The analyzed objects are from the collection of the Pinacoteca do Estado de São Paulo. EDXRF results allowed us to identify the chemical elements present in the pigments, showing the use of many Fe-based pigments, modern pigments, such as cobalt blue and cadmium yellow, as well as white pigments containing lead and zinc used by the artist in different layers. Imaging analysis was useful to identify the state of conservation, the localization of old and new restorations and also to detect and unveil the underlying drawings revealing the artist's creative processes.

  10. Emotion Estimation Algorithm from Facial Image Analyses of e-Learning Users

    NASA Astrophysics Data System (ADS)

    Shigeta, Ayuko; Koike, Takeshi; Kurokawa, Tomoya; Nosu, Kiyoshi

    This paper proposes an emotion estimation algorithm from e-Learning user's facial image. The algorithm characteristics are as follows: The criteria used to relate an e-Learning use's emotion to a representative emotion were obtained from the time sequential analysis of user's facial expressions. By examining the emotions of the e-Learning users and the positional change of the facial expressions from the experiment results, the following procedures are introduce to improve the estimation reliability; (1) some effective features points are chosen by the emotion estimation (2) dividing subjects into two groups by the change rates of the face feature points (3) selection of the eigenvector of the variance-co-variance matrices (cumulative contribution rate>=95%) (4) emotion calculation using Mahalanobis distance.

  11. Accelerating Large Scale Image Analyses on Parallel, CPU-GPU Equipped Systems

    PubMed Central

    Teodoro, George; Kurc, Tahsin M.; Pan, Tony; Cooper, Lee A.D.; Kong, Jun; Widener, Patrick; Saltz, Joel H.

    2014-01-01

    The past decade has witnessed a major paradigm shift in high performance computing with the introduction of accelerators as general purpose processors. These computing devices make available very high parallel computing power at low cost and power consumption, transforming current high performance platforms into heterogeneous CPU-GPU equipped systems. Although the theoretical performance achieved by these hybrid systems is impressive, taking practical advantage of this computing power remains a very challenging problem. Most applications are still deployed to either GPU or CPU, leaving the other resource under- or un-utilized. In this paper, we propose, implement, and evaluate a performance aware scheduling technique along with optimizations to make efficient collaborative use of CPUs and GPUs on a parallel system. In the context of feature computations in large scale image analysis applications, our evaluations show that intelligently co-scheduling CPUs and GPUs can significantly improve performance over GPU-only or multi-core CPU-only approaches. PMID:25419545

  12. Crustal diversity of the Moon: Compositional analyses of Galileo solid state imaging data

    NASA Astrophysics Data System (ADS)

    Pieters, C. M.; Sunshine, J. M.; Fischer, E. M.; Murchie, S. L.; Belton, M.; McEwen, A.; Gaddis, L.; Greeley, R.; Neukum, G.; Jaumann, R.; Hoffmann, H.

    1993-09-01

    The multispectral images of the lunar limb and farside obtained by the solid state imaging (SSI) system on board the Galileo spacecraft provide the first new pulse of compositional data of the Moon by a spacecraft in well over a decade. The wavelength range covered by SSI filters (0.4-1.0 μm) is particularly sensitive to the composition of mare basalts, the abundance of mafic (ferrous) minerals, and the maturity of the regolith. To a first order, the limb and farside material is consistent with previous characterization of nearside lunar spectral types for mare and highland soils and craters. Most basalts are of an intermediate TiO2 composition and most of the highland crust is feldspathic with local variations in mafic content identified principally at impact craters. Dark mantling material on the farside can be interpreted in terms of known properties of lunar pyroclastic glass. Regions of cryptomare are shown to have spectral properties intermediate between those of highland and mare soils, as would be expected from mixture of the two. There are several important exceptions and surprises, however. Unlike the basalt types identified on the nearside, limb and farside basalts exhibit an exceptionally weak 1 μm ferrous absorption band. This may indicate a compositionally distinct lunar basalt group that, for example, is more Mg-rich than most basalts of the nearside. Some of the most notable compositional anomalies are associated with South Pole-Aitken Basin. This large region has a much lower albedo than surrounding highlands. The inner, darkest, portion of the basin exhibits optical properties indistinguishable from low-Ti basalts. Deposits to the south exhibit unique properties with a strong and broad ferrous 1 μm absorption, most consistent with abundant olivine. The unusual compositions associated with South Pole-Aitken and their spatial extent suggests the impact creating this huge lunar basin excavated mafic-rich lower crust or perhaps mantle material.

  13. Statistical Improvements in Functional Magnetic Resonance Imaging Analyses Produced by Censoring High-Motion Data Points

    PubMed Central

    Siegel, Joshua S.; Power, Jonathan D.; Dubis, Joseph W.; Vogel, Alecia C.; Church, Jessica A.; Schlaggar, Bradley L.; Petersen, Steven E.

    2013-01-01

    Subject motion degrades the quality of task functional magnetic resonance imaging (fMRI) data. Here, we test two classes of methods to counteract the effects of motion in task fMRI data: (1) a variety of motion regressions and (2) motion censoring (“motion scrubbing”). In motion regression, various regressors based on realignment estimates were included as nuisance regressors in general linear model (GLM) estimation. In motion censoring, volumes in which head motion exceeded a threshold were withheld from GLM estimation. The effects of each method were explored in several task fMRI data sets and compared using indicators of data quality and signal-to-noise ratio. Motion censoring decreased variance in parameter estimates within- and across-subjects, reduced residual error in GLM estimation, and increased the magnitude of statistical effects. Motion censoring performed better than all forms of motion regression and also performed well across a variety of parameter spaces, in GLMs with assumed or unassumed response shapes. We conclude that motion censoring improves the quality of task fMRI data and can be a valuable processing step in studies involving populations with even mild amounts of head movement. PMID:23861343

  14. A 10 year intercomparison between collocated Special Sensor Microwave Imager oceanic surface wind speed retrievals and global analyses

    NASA Astrophysics Data System (ADS)

    Meissner, T.; Smith, D.; Wentz, F.

    2001-06-01

    To evaluate the scalar ocean surface wind speeds obtained from the Special Sensor Microwave Imager (SSM/I), we compare them over the time period from July 1987 through December 1997 with those from two global analyses: the National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) Annual Reanalysis and the European Center for Medium-Range Weather Forecasts (ECMWF)/Tropical Ocean-Global Atmosphere Global Surface Analysis. We perform a statistical analysis for the whole globe and present time series analyses for selected geographical regions in connection with collocated wind speed difference maps. In order to evaluate further geographical biases observed in the SSM/I versus analyses comparisons we use wind speeds from the NASA scatterometer (NSCAT) for the 10 month period from September 1996 through June 1997 as a third data source. The value of the standard deviation for all collocated SSM/I - ECMWF wind speed differences is 2.1 m s-1 and for all collocated SSM/I - NCEP/NCAR reanalyis wind speed differences is 2.4 m s-1. When taking monthly or yearly averages in each pixel, which has the effect of cancelling out small timescale wind speed fluctuations, the values are between 0.8 and 1.2 m s-1, respectively. Global biases range between -0.05 and +0.55 m s-1 for the various SSM/I satellites. Our analysis allows us to identify regional biases for both the SSM/I and analyses winds. The NCEP/NCAR reanalysis wind speeds appear underestimated in the tropical Pacific and tropical Atlantic. ECMWF wind speeds appear underestimated near the southern Pacific islands NE of Australia. The analyses wind speeds are higher than the SSM/I wind speeds near the Argentinean coast. The SSM/I wind speeds appear high in the extratropical central and eastern Pacific and low in certain coastal regions with eastern boundary currents and in the Arabian Sea. The size of some of these biases are seasonally dependent.

  15. Structure and clay mineralogy: borehole images, log interpretation and sample analyses at Site C0002 Nankai Trough accretionary prism

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Schleicher, Anja

    2015-04-01

    Our research focused on the characterization of fracture and fault structures from the deep Nankai Trough accretionary prism in Japan. Logging Data and cuttings samples from the two most recent International Ocean Discovery Program (IODP) Expeditions 338 and 348 of the NanTroSEIZE project were analyzed by Logging While Drilling (LWD) oriented images, geophysical logs and clay mineralogy. Both expeditions took place at Site C0002, but whereas Hole C0002F (Expedition 338) was drilled down to 2004.5 mbsf, Hole C0002N and C0002P (Expedition 348) reached a depth of 2325.5 mbsf and 3058.8 mbsf respectively. The structural interpretation of borehole imaging data illustrates the deformation within the fractured and faulted sections of the accretionary prism. All drill holes show distinct areas of intense fracturing and faulting within a very clay-dominated lithology. Here, smectite and illite are the most common clay minerals, but the properties and the role they may play in influencing the fractures, faults and folds in the accretionary prism is still not well understood. When comparing clay mineralogy and fracture/fault areas in hole C0002F (Expedition 338), a trend in the abundance of illite and smectite, and in particular the swelling behavior of smectite is recognizable. In general, the log data provided a good correlation with the actual mineralogy and the relative abundance of clay. Ongoing postcruise preliminary research on hole C0002 N and C0002P (Expedition 348) should confirm these results. The relationship between fracture and fault structures and the changes in clay mineralogy could be explained by the deformation of specific areas with different compaction features, fluid-rock interaction processes, but could also be related to beginning diagenetic processes related to depth. Our results show the integration of logging data and cutting sample analyses as a valuable tool for characterization of petrophysical and mineralogical changes of the structures of the

  16. Analyses of Magnetic Resonance Imaging of Cerebrospinal Fluid Dynamics Pre and Post Short and Long-Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Alperin, Noam; Barr, Yael; Lee, Sang H.; Mason,Sara; Bagci, Ahmet M.

    2015-01-01

    Preliminary results are based on analyses of data from 17 crewmembers. The initial analysis compares pre to post-flight changes in total cerebral blood flow (CBF) and craniospinal CSF flow volume. Total CBF is obtained by summation of the mean flow rates through the 4 blood vessels supplying the brain (right and left internal carotid and vertebral arteries). Volumetric flow rates were obtained using an automated lumen segmentation technique shown to have 3-4-fold improved reproducibility and accuracy over manual lumen segmentation (6). Two cohorts, 5 short-duration and 8 long-duration crewmembers, who were scanned within 3 to 8 days post landing were included (4 short-duration crewmembers with MRI scans occurring beyond 10 days post flight were excluded). The VIIP Clinical Practice Guideline (CPG) classification is being used initially as a measure for VIIP syndrome severity. Median CPG scores of the short and long-duration cohorts were similar, 2. Mean preflight total CBF for the short and long-duration cohorts were similar, 863+/-144 and 747+/-119 mL/min, respectively. Percentage CBF changes for all short duration crewmembers were 11% or lower, within the range of normal physiological fluctuations in healthy individuals. In contrast, in 4 of the 8 long-duration crewmembers, the change in CBF exceeded the range of normal physiological fluctuation. In 3 of the 4 subjects an increase in CBF was measured. Large pre to post-flight changes in the craniospinal CSF flow volume were found in 6 of the 8 long-duration crewmembers. Box-Whisker plots of the CPG and the percent CBF and CSF flow changes for the two cohorts are shown in Figure 4. Examples of CSF flow waveforms for a short and two long-duration (CPG 0 and 3) are shown in Figure 5. Changes in CBF and CSF flow dynamics larger than normal physiological fluctuations were observed in the long-duration crewmembers. Changes in CSF flow were more pronounced than changes in CBF. Decreased CSF flow dynamics were observed

  17. Coupling MODIS images and agrometeorological data for agricultural water productivity analyses in the Mato Grosso State, Brazil

    NASA Astrophysics Data System (ADS)

    de C. Teixeira, Antônio H.; Victoria, Daniel C.; Andrade, Ricardo G.; Leivas, Janice F.; Bolfe, Edson L.; Cruz, Caroline R.

    2014-10-01

    Mato Grosso state, Central West Brazil, has been highlighted by the grain production, mainly soybean and corn, as first (November-March) and second (April-August) harvest crops, respectively. For water productivity (WP) analyses, MODIS products together with a net of weather stations were used. Evapotranspiration (ET) and biomass production (BIO) were acquired during the year 2012 and WP was considered as the ratio of BIO to ET. The SAFER (Simple Algorithm For Evapotranspiration Retrieving) for ET and the Monteith's radiation model for BIO were applied together, considering a mask which separated the crops from other surface types. In relation to the first harvest crop ET, BIO and WP values above of those for other surface types, happened only from November to January with incremental values reaching to 1.2 mm day-1; 67 kg ha-1 day-1; and 0.7 kg m-3, respectively; and between March and May for the second harvest crops, with incremental values attaining 0.5 mm day-1; 27 kg ha-1 day-1; and 0.3 kg m-3, respectively. In both cases, during the growing seasons, the highest WP parameters in cropped areas corresponded, in general, to the blooming to grain filling transition. Considering corn crop, which nowadays is increasing in terms of cultivated areas in the Brazilian Central West region, and crop water productivity (CWP) the ratio of yield to the amount of water consumed, the main growing regions North, Southeast and Northeast were analyzed. Southeast presented the highest annual pixel averages for ET, BIO and CWP (1.7 mm day-1, 78 kg ha-1 day-1 and 2.2 kg m-3, respectively); while for Northeast they were the lowest ones (1.2 mm day-1, 52 kg ha-1 dia-1 and 1.9 kg m-3). Throughout a soil moisture indicator, the ratio of precipitation (P) to ET, it was indeed noted that rainfall was enough for a good grain yield, with P/ET lower than 1.00 only outside the crop growing seasons. The combination of MODIS images and weather stations proved to be useful for monitoring

  18. Comparison of in vitro breast cancer visibility in analyser-based computed tomography with histopathology, mammography, computed tomography and magnetic resonance imaging.

    PubMed

    Keyriläinen, Jani; Fernández, Manuel; Bravin, Alberto; Karjalainen-Lindsberg, Marja Liisa; Leidenius, Marjut; von Smitten, Karl; Tenhunen, Mikko; Kangasmäki, Aki; Sipilä, Petri; Nemoz, Christian; Virkkunen, Pekka; Suortti, Pekka

    2011-09-01

    High-resolution analyser-based X-ray imaging computed tomography (HR ABI-CT) findings on in vitro human breast cancer are compared with histopathology, mammography, computed tomography (CT) and magnetic resonance imaging. The HR ABI-CT images provided significantly better low-contrast visibility compared with the standard radiological images. Fine cancer structures indistinguishable and superimposed in mammograms were seen, and could be matched with the histopathological results. The mean glandular dose was less than 1 mGy in mammography and 12-13 mGy in CT and ABI-CT. The excellent visibility of in vitro breast cancer suggests that HR ABI-CT may have a valuable role in the future as an adjunct or even alternative to current breast diagnostics, when radiation dose is further decreased, and compact synchrotron radiation sources become available. PMID:21862846

  19. VIDEO IMAGE ANALYSES OF THE CROSS-STREAM DISTRIBUTION OF SMOKE IN THE NEAR WAKE OF A BUILDING

    EPA Science Inventory

    In a wind-tunnel study, recorded video images of the top view of smoke dispersion in the wake of a building were analyzed. A continuous source of smoke was emitted at floor level, midway along the leeward side of the building. The technique and usefulness of analyzing video image...

  20. Comparison of genetic-algorithm and emissivity-ratio analyses of image data from OMEGA implosion cores

    SciTech Connect

    Nagayama, T.; Mancini, R. C.; Florido, R.; Tommasini, R.; Koch, J. A.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A.; Welser-Sherrill, L. A.; Golovkin, I. E.

    2008-10-15

    Detailed analysis of x-ray narrow-band images from argon-doped deuterium-filled inertial confinement fusion implosion experiments yields information about the temperature spatial structure in the core at the collapse of the implosion. We discuss the analysis of direct-drive implosion experiments at OMEGA, in which multiple narrow-band images were recorded with a multimonochromatic x-ray imaging instrument. The temperature spatial structure is investigated by using the sensitivity of the Ly{beta}/He{beta} line emissivity ratio to the temperature. Three analysis methods that consider the argon He{beta} and Ly{beta} image data are discussed and the results compared. The methods are based on a ratio of image intensities, ratio of Abel-inverted emissivities, and a search and reconstruction technique driven by a Pareto genetic algorithm.

  1. Comparison of genetic-algorithm and emissivity-ratio analyses of image data from OMEGA implosion cores.

    PubMed

    Nagayama, T; Mancini, R C; Florido, R; Tommasini, R; Koch, J A; Delettrez, J A; Regan, S P; Smalyuk, V A; Welser-Sherrill, L A; Golovkin, I E

    2008-10-01

    Detailed analysis of x-ray narrow-band images from argon-doped deuterium-filled inertial confinement fusion implosion experiments yields information about the temperature spatial structure in the core at the collapse of the implosion. We discuss the analysis of direct-drive implosion experiments at OMEGA, in which multiple narrow-band images were recorded with a multimonochromatic x-ray imaging instrument. The temperature spatial structure is investigated by using the sensitivity of the Ly beta/He beta line emissivity ratio to the temperature. Three analysis methods that consider the argon He beta and Ly beta image data are discussed and the results compared. The methods are based on a ratio of image intensities, ratio of Abel-inverted emissivities, and a search and reconstruction technique driven by a Pareto genetic algorithm. PMID:19044576

  2. Rapid specimen preparation to improve the throughput of electron microscopic volume imaging for three-dimensional analyses of subcellular ultrastructures with serial block-face scanning electron microscopy.

    PubMed

    Thai, Truc Quynh; Nguyen, Huy Bang; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Elewa, Yaser Hosny Ali; Ichii, Osamu; Kon, Yasuhiro; Takaki, Takashi; Joh, Kensuke; Ohno, Nobuhiko

    2016-09-01

    Serial block-face imaging using scanning electron microscopy enables rapid observations of three-dimensional ultrastructures in a large volume of biological specimens. However, such imaging usually requires days for sample preparation to reduce charging and increase image contrast. In this study, we report a rapid procedure to acquire serial electron microscopic images within 1 day for three-dimensional analyses of subcellular ultrastructures. This procedure is based on serial block-face with two major modifications, including a new sample treatment device and direct polymerization on the rivets, to reduce the time and workload needed. The modified procedure without uranyl acetate can produce tens of embedded samples observable under serial block-face scanning electron microscopy within 1 day. The serial images obtained are similar to the block-face images acquired by common procedures, and are applicable to three-dimensional reconstructions at a subcellular resolution. Using this approach, regional immune deposits and the double contour or heterogeneous thinning of basement membranes were observed in the glomerular capillary loops of an autoimmune nephropathy model. These modifications provide options to improve the throughput of three-dimensional electron microscopic examinations, and will ultimately be beneficial for the wider application of volume imaging in life science and clinical medicine. PMID:26867664

  3. Tract-Specific Analyses of Diffusion Tensor Imaging Show Widespread White Matter Compromise in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Shukla, Dinesh K.; Keehn, Brandon; Muller, Ralph-Axel

    2011-01-01

    Background: Previous diffusion tensor imaging (DTI) studies have shown white matter compromise in children and adults with autism spectrum disorder (ASD), which may relate to reduced connectivity and impaired function of distributed networks. However, tract-specific evidence remains limited in ASD. We applied tract-based spatial statistics (TBSS)…

  4. Quantifying the complexity of excised larynx vibrations from high-speed imaging using spatiotemporal and nonlinear dynamic analyses

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.; Tao, Chao; Bieging, Erik; MacCallum, Julia K.

    2007-12-01

    In this paper, we investigate the biomechanical applications of spatiotemporal analysis and nonlinear dynamic analysis to quantitatively describe regular and irregular vibrations of twelve excised larynges from high-speed image recordings. Regular vibrations show simple spatial symmetry, temporal periodicity, and discrete frequency spectra, while irregular vibrations show complex spatiotemporal plots, aperiodic time series, and broadband spectra. Furthermore, the global entropy and correlation length from spatiotemporal analysis and the correlation dimension from nonlinear dynamic analysis reveal a statistical difference between regular and irregular vibrations. In comparison with regular vibrations, the global entropy and correlation dimension of irregular vibrations are statistically higher, while the correlation length is significantly lower. These findings show that spatiotemporal analysis and nonlinear dynamic analysis are capable of describing the complex dynamics of vocal fold vibrations from high-speed imaging and may potentially be helpful for understanding disordered behaviors in biomedical laryngeal systems.

  5. Combined magnetic resonance and diffusion tensor imaging analyses provide a powerful tool for in vivo assessment of deformation along human muscle fibers.

    PubMed

    Pamuk, Uluç; Karakuzu, Agah; Ozturk, Cengizhan; Acar, Burak; Yucesoy, Can A

    2016-10-01

    Muscle fiber direction strain provides invaluable information for characterizing muscle function. However, methods to study this for human muscles in vivo are lacking. Using magnetic resonance (MR) imaging based deformation analyses and diffusion tensor (DT) imaging based tractography combined, we aimed to assess muscle fiber direction local tissue deformations within the human medial gastrocnemius (GM) muscle. Healthy female subjects (n=5, age=27±1 years) were positioned prone within the MR scanner in a relaxed state with the ankle angle fixed at 90°. The knee was brought to flexion (140.8±3.0°) (undeformed state). Sets of 3D high resolution MR, and DT images were acquired. This protocol was repeated at extended knee joint position (177.0±1.0°) (deformed state). Tractography and Demons nonrigid registration algorithm was utilized to calculate local deformations along muscle fascicles. Undeformed state images were also transformed by a synthetic rigid body motion to calculate strain errors. Mean strain errors were significantly smaller then mean fiber direction strains (lengthening: 0.2±0.1% vs. 8.7±8.5%; shortening: 3.3±0.9% vs. 7.5±4.6%). Shortening and lengthening (up to 23.3% and 116.7%, respectively) occurs simultaneously along individual fascicles despite imposed GM lengthening. Along-fiber shear strains confirm the presence of much shearing between fascicles. Mean fiber direction strains of different tracts also show non-uniform distribution. Inhomogeneity of fiber strain indicates epimuscular myofascial force transmission. We conclude that MR and DT imaging analyses combined provide a powerful tool for quantifying deformation along human muscle fibers in vivo. This can help substantially achieving a better understanding of normal and pathological muscle function and mechanisms of treatment techniques. PMID:27429070

  6. Unsupervised clustering analyses of features extraction for a caries computer-assisted diagnosis using dental fluorescence images

    NASA Astrophysics Data System (ADS)

    Bessani, Michel; da Costa, Mardoqueu M.; Lins, Emery C. C. C.; Maciel, Carlos D.

    2014-02-01

    Computer-assisted diagnoses (CAD) are performed by systems with embedded knowledge. These systems work as a second opinion to the physician and use patient data to infer diagnoses for health problems. Caries is the most common oral disease and directly affects both individuals and the society. Here we propose the use of dental fluorescence images as input of a caries computer-assisted diagnosis. We use texture descriptors together with statistical pattern recognition techniques to measure the descriptors performance for the caries classification task. The data set consists of 64 fluorescence images of in vitro healthy and carious teeth including different surfaces and lesions already diagnosed by an expert. The texture feature extraction was performed on fluorescence images using RGB and YCbCr color spaces, which generated 35 different descriptors for each sample. Principal components analysis was performed for the data interpretation and dimensionality reduction. Finally, unsupervised clustering was employed for the analysis of the relation between the output labeling and the diagnosis of the expert. The PCA result showed a high correlation between the extracted features; seven components were sufficient to represent 91.9% of the original feature vectors information. The unsupervised clustering output was compared with the expert classification resulting in an accuracy of 96.88%. The results show the high accuracy of the proposed approach in identifying carious and non-carious teeth. Therefore, the development of a CAD system for caries using such an approach appears to be promising.

  7. Functional assessment of glioma pathogenesis by in vivo multi-parametric magnetic resonance imaging and in vitro analyses

    PubMed Central

    Yao, Nai-Wei; Chang, Chen; Lin, Hsiu-Ting; Yen, Chen-Tung; Chen, Jeou-Yuan

    2016-01-01

    Gliomas are aggressive brain tumors with poor prognosis. In this study, we report a novel approach combining both in vivo multi-parametric MRI and in vitro cell culture assessments to evaluate the pathogenic development of gliomas. Osteopontin (OPN), a pleiotropic factor, has been implicated in the formation and progression of various human cancers, including gliomas, through its functions in regulating cell proliferation, survival, angiogenesis, and migration. Using rat C6 glioma model, the combined approach successfully monitors the acquisition and decrease of cancer hallmarks. We show that knockdown of the expression of OPN reduces C6 cell proliferation, survival, viability and clonogenicity in vitro, and reduces tumor burden and prolongs animal survival in syngeneic rats. OPN depletion is associated with reduced tumor growth, decreased angiogenesis, and an increase of tumor-associated metabolites, as revealed by T2-weighted images, diffusion-weighted images, Ktrans maps, and 1H-MRS, respectively. These strategies allow us to define an important role of OPN in conferring cancer hallmarks, which can be further applied to assess the functional roles of other candidate genes in glioma. In particular, the non-invasive multi-parametric MRI measurement of cancer hallmarks related to proliferation, angiogenesis and altered metabolism may serve as a useful tool for diagnosis and for patient management. PMID:27198662

  8. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    PubMed Central

    Wang, Yuanmin; Sevinc, Papatya C.; Balchik, Sara M.; Fridrickson, Jim; Shi, Liang; Lu, H. Peter

    2013-01-01

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant ΔmtrC or mutant ΔomcA > double mutant (ΔomcA-ΔmtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes. PMID:23249294

  9. Single-Cell Imaging and Spectroscopic Analyses of Cr(VI) Reduction on the Surface of Bacterial Cells

    SciTech Connect

    Wang, Yuanmin; Sevinc, Papatya C.; Belchik, Sara M.; Fredrickson, Jim K.; Shi, Liang; Lu, H. Peter

    2013-01-22

    We investigate single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic and highly soluble Cr(VI) can be efficiently reduced to the less toxic and non-soluble Cr2O3 nanoparticles by MR-1. Cr2O3 is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr2O3 and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of the MR-1 is: wild type > single mutant @mtrC or mutant @omcA > double mutant (@omcA-@mtrC). Moreover, our results also suggest that the direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may co-exist in the reduction processes.

  10. Functional assessment of glioma pathogenesis by in vivo multi-parametric magnetic resonance imaging and in vitro analyses.

    PubMed

    Yao, Nai-Wei; Chang, Chen; Lin, Hsiu-Ting; Yen, Chen-Tung; Chen, Jeou-Yuan

    2016-01-01

    Gliomas are aggressive brain tumors with poor prognosis. In this study, we report a novel approach combining both in vivo multi-parametric MRI and in vitro cell culture assessments to evaluate the pathogenic development of gliomas. Osteopontin (OPN), a pleiotropic factor, has been implicated in the formation and progression of various human cancers, including gliomas, through its functions in regulating cell proliferation, survival, angiogenesis, and migration. Using rat C6 glioma model, the combined approach successfully monitors the acquisition and decrease of cancer hallmarks. We show that knockdown of the expression of OPN reduces C6 cell proliferation, survival, viability and clonogenicity in vitro, and reduces tumor burden and prolongs animal survival in syngeneic rats. OPN depletion is associated with reduced tumor growth, decreased angiogenesis, and an increase of tumor-associated metabolites, as revealed by T2-weighted images, diffusion-weighted images, K(trans) maps, and 1H-MRS, respectively. These strategies allow us to define an important role of OPN in conferring cancer hallmarks, which can be further applied to assess the functional roles of other candidate genes in glioma. In particular, the non-invasive multi-parametric MRI measurement of cancer hallmarks related to proliferation, angiogenesis and altered metabolism may serve as a useful tool for diagnosis and for patient management. PMID:27198662

  11. Calibration of remote mineralogy algorithms using modal analyses of Apollo soils by X-ray diffraction and microscopic spectral imaging

    NASA Astrophysics Data System (ADS)

    Crites, S. T.; Taylor, J.; Martel, L.; Lucey, P. G.; Blake, D. F.

    2012-12-01

    We have launched a project to determine the modal mineralogy of over 100 soils from all Apollo sites using quantitative X-ray diffraction (XRD) and microscopic hyperspectral imaging at visible, near-IR and thermal IR wavelengths. The two methods are complementary: XRD is optimal for obtaining the major mineral modes because its measurement is not limited to the surfaces of grains, whereas the hyperspectral imaging method allows us to identify minerals present even down to a single grain, well below the quantitative detection limit of XRD. Each soil is also sent to RELAB to obtain visible, near-IR, and thermal-IR reflectance spectra. The goal is to use quantitative mineralogy in comparison with spectra of the same soils and with remote sensing data of the sampling stations to improve our ability to extract quantitative mineralogy from remote sensing observations. Previous groups have demonstrated methods for using lab mineralogy to validate remote sensing. The LSCC pioneered the method of comparing mineralogy to laboratory spectra of the same soils (Pieters et al. 2002); Blewett et al. (1997) directly compared remote sensing results for sample sites with lab measurements of representative soils from those sites. We are building upon the work of both groups by expanding the number of soils measured to 128, with an emphasis on immature soils to support recent work studying fresh exposures like crater central peaks, and also by incorporating the recent high spatial and spectral resolution data sets over expanded wavelength ranges (e.g. Diviner TIR, M3 hyperspectral VNIR) not available at the time of the previous studies. We have thus far measured 32 Apollo 16 soils using quantitative XRD and are continuing with our collection of soils from the other landing sites. We have developed a microscopic spectral imaging system that includes TIR, VIS, and NIR capabilities and have completed proof-of-concept scans of mineral separates and preliminary lunar soil scans with plans

  12. Evaluating Climate Causation of Conflict in Darfur Using Multi-temporal, Multi-resolution Satellite Image Datasets With Novel Analyses

    NASA Astrophysics Data System (ADS)

    Brown, I.; Wennbom, M.

    2013-12-01

    Climate change, population growth and changes in traditional lifestyles have led to instabilities in traditional demarcations between neighboring ethic and religious groups in the Sahel region. This has resulted in a number of conflicts as groups resort to arms to settle disputes. Such disputes often centre on or are justified by competition for resources. The conflict in Darfur has been controversially explained by resource scarcity resulting from climate change. Here we analyse established methods of using satellite imagery to assess vegetation health in Darfur. Multi-decadal time series of observations are available using low spatial resolution visible-near infrared imagery. Typically normalized difference vegetation index (NDVI) analyses are produced to describe changes in vegetation ';greenness' or ';health'. Such approaches have been widely used to evaluate the long term development of vegetation in relation to climate variations across a wide range of environments from the Arctic to the Sahel. These datasets typically measure peak NDVI observed over a given interval and may introduce bias. It is furthermore unclear how the spatial organization of sparse vegetation may affect low resolution NDVI products. We develop and assess alternative measures of vegetation including descriptors of the growing season, wetness and resource availability. Expanding the range of parameters used in the analysis reduces our dependence on peak NDVI. Furthermore, these descriptors provide a better characterization of the growing season than the single NDVI measure. Using multi-sensor data we combine high temporal/moderate spatial resolution data with low temporal/high spatial resolution data to improve the spatial representativity of the observations and to provide improved spatial analysis of vegetation patterns. The approach places the high resolution observations in the NDVI context space using a longer time series of lower resolution imagery. The vegetation descriptors

  13. Characterization of structures of the Nankai Trough accretionary prism from integrated analyses of LWD log response, resistivity images and clay mineralogy of cuttings: Expedition 338 Site C0002

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Schleicher, Anja

    2014-05-01

    The objective of our research is a detailed characterization of structures on the basis of LWD oriented images and logs,and clay mineralogy of cuttings from Hole C0002F of the Nankai Trough accretionary prism. Our results show an integrated interpretation of structures derived from borehole images, petrophysical characterization on LWD logs and cuttings mineralogy. The geometry of the structure intersected at Hole C0002F has been characterized by the interpretation of oriented borehole resistivity images acquired during IODP Expedition 338. The characterization of structural features, faults and fracture zones is based on a detailed post-cruise interpretation of bedding and fractures on borehole images and also on the analysis of Logging While Drilling (LWD) log response (gamma radioactivity, resistivity and sonic logs). The interpretation and complete characterization of structures (fractures, fracture zones, fault zones, folds) was achieved after detailed shorebased reprocessing of resistivity images, which allowed to enhance bedding and fracture's imaging for geometry and orientation interpretation. In order to characterize distinctive petrophysical properties based on LWD log response, it could be compared with compositional changes derived from cuttings analyses. Cuttings analyses were used to calibrate and to characterize log response and to verify interpretations in terms of changes in composition and texture at fractures and fault zones defined on borehole images. Cuttings were taken routinely every 5 m during Expedition 338, indicating a clay-dominated lithology of silty claystone with interbeds of weakly consolidated, fine sandstones. The main mineralogical components are clay minerals, quartz, feldspar and calcite. Selected cuttings were taken from areas of interest as defined on LWD logs and images. The clay mineralogy was investigated on the <2 micron clay-size fraction, with special focus on smectite and illite minerals. Based on X-ray diffraction

  14. Comparison of meta-analyses among elastosonography (ES) and positron emission tomography/computed tomography (PET/CT) imaging techniques in the application of prostate cancer diagnosis.

    PubMed

    Ouyang, Qiaohong; Duan, Zhongxiang; Lei, Jixiao; Jiao, Guangli

    2016-03-01

    The early diagnosis of prostate cancer (PCa) appears to be of vital significance for the provision of appropriate treatment programs. Even though several sophisticated imaging techniques such as positron emission tomography/computed tomography (PET/CT) and elastosonography (ES) have already been developed for PCa diagnosis, the diagnostic accuracy of these imaging techniques is still controversial to some extent. Therefore, a comprehensive meta-analysis in this study was performed to compare the accuracy of various diagnostic imaging methods for PCa, including 11C-choline PET/CT, 11C-acetate PET/CT, 18F-fluorocholine PET/CT, 18F-fluoroglucose PET/CT, transrectal real-time elastosonography (TRTE), and shear-wave elastosonography (SWE). The eligible studies were identified through systematical searching for the literature in electronic databases including PubMed, Cochrane, and Web of Science. On the basis of the fixed-effects model, the pooled sensitivity (SEN), specificity (SPE), and area under the receiver operating characteristics curve (AUC) were calculated to estimate the diagnostic accuracy of 11C-choline PET/CT, 11C-acetate PET/CT, 18F-fluorocholine (FCH) PET/CT, 18F-fluoroglucose (FDG) PET/CT, TRTE, and SWE. All the statistical analyses were conducted with R language Software. The present meta-analysis incorporating a total of 82 studies demonstrated that the pooled sensitivity of the six imaging techniques were sorted as follows: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 11C-acetate PET/CT > 18F-FDG PET/CT; the pooled specificity were also compared: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 18F-FDG PET/CT > 11C-acetate PET/CT; finally, the pooled diagnostic accuracy of the six imaging techniques based on AUC were ranked as below: SWE > 18F-FCH PET/CT > 11C-choline PET/CT > TRTE > 11C-acetate PET/CT > 18F-FDG PET/CT. SWE and 18F-FCH PET/CT imaging could offer more assistance in the

  15. Nonintrusive Finger-Vein Recognition System Using NIR Image Sensor and Accuracy Analyses According to Various Factors

    PubMed Central

    Pham, Tuyen Danh; Park, Young Ho; Nguyen, Dat Tien; Kwon, Seung Yong; Park, Kang Ryoung

    2015-01-01

    Biometrics is a technology that enables an individual person to be identified based on human physiological and behavioral characteristics. Among biometrics technologies, face recognition has been widely used because of its advantages in terms of convenience and non-contact operation. However, its performance is affected by factors such as variation in the illumination, facial expression, and head pose. Therefore, fingerprint and iris recognitions are preferred alternatives. However, the performance of the former can be adversely affected by the skin condition, including scarring and dryness. In addition, the latter has the disadvantages of high cost, large system size, and inconvenience to the user, who has to align their eyes with the iris camera. In an attempt to overcome these problems, finger-vein recognition has been vigorously researched, but an analysis of its accuracies according to various factors has not received much attention. Therefore, we propose a nonintrusive finger-vein recognition system using a near infrared (NIR) image sensor and analyze its accuracies considering various factors. The experimental results obtained with three databases showed that our system can be operated in real applications with high accuracy; and the dissimilarity of the finger-veins of different people is larger than that of the finger types and hands. PMID:26184214

  16. Characterization of Influenza Vaccine Hemagglutinin Complexes by Cryo-Electron Microscopy and Image Analyses Reveals Structural Polymorphisms.

    PubMed

    McCraw, Dustin M; Gallagher, John R; Harris, Audray K

    2016-06-01

    Influenza virus afflicts millions of people worldwide on an annual basis. There is an ever-present risk that animal viruses will cross the species barrier to cause epidemics and pandemics resulting in great morbidity and mortality. Zoonosis outbreaks, such as the H7N9 outbreak, underscore the need to better understand the molecular organization of viral immunogens, such as recombinant influenza virus hemagglutinin (HA) proteins, used in influenza virus subunit vaccines in order to optimize vaccine efficacy. Here, using cryo-electron microscopy and image analysis, we show that recombinant H7 HA in vaccines formed macromolecular complexes consisting of variable numbers of HA subunits (range, 6 to 8). In addition, HA complexes were distributed across at least four distinct structural classes (polymorphisms). Three-dimensional (3D) reconstruction and molecular modeling indicated that HA was in the prefusion state and suggested that the oligomerization and the structural polymorphisms observed were due to hydrophobic interactions involving the transmembrane regions. These experiments suggest that characterization of the molecular structures of influenza virus HA complexes used in subunit vaccines will lead to better understanding of the differences in vaccine efficacy and to the optimization of subunit vaccines to prevent influenza virus infection. PMID:27074939

  17. Utilizing magnetic resonance imaging logs, openhole logs, and sidewall core analyses to evaluate shaly sands for water-free production

    SciTech Connect

    Taylor, D.A.; Morganti, J.K.; White, H.J. ); Noblett, B.R. )

    1996-01-01

    Nuclear magnetic resonance (NMR) logging using the new C Series Magnetic Resonance Imaging Log (MRIL) system is rapidly enhancing formation evaluation throughout the industry. By measuring irreducible water saturations, permeabilities, and effective porosities, MRIL data can help petrophysicists evaluate low-resistivity pays. In these environments, conventional openhole logs may not define all of the pay intervals. The MRIL system can also reduce the number of unnecessary completions in zones of potentially high water cut. MRIL tool theory and log presentations used with conventional logs and sidewall cores are presented along with field examples. Scanning electron microscope (SEM) analysis shows good correlation of varying grain size in sandstones with the T2 distribution and bulk volume irreducible water determined from the MRIL measurements. Analysis of each new well drilled in the study area shows how water-free production zones were defined. Because the MRIL data were not recorded on one of the wells, predictions from the conventional logs and the MRIL data collected on the other two wells were used to estimate productive zones in the first well. Discussion of additional formation characteristics, completion procedures, actual production, and predicted producibility of the shaly sands is presented. Integrated methodologies resulted in the perforation of 3 new wells for a gross initial potential of 690 BOPD and 0 BWPD.

  18. Utilizing magnetic resonance imaging logs, openhole logs, and sidewall core analyses to evaluate shaly sands for water-free production

    SciTech Connect

    Taylor, D.A.; Morganti, J.K.; White, H.J.; Noblett, B.R.

    1996-12-31

    Nuclear magnetic resonance (NMR) logging using the new C Series Magnetic Resonance Imaging Log (MRIL) system is rapidly enhancing formation evaluation throughout the industry. By measuring irreducible water saturations, permeabilities, and effective porosities, MRIL data can help petrophysicists evaluate low-resistivity pays. In these environments, conventional openhole logs may not define all of the pay intervals. The MRIL system can also reduce the number of unnecessary completions in zones of potentially high water cut. MRIL tool theory and log presentations used with conventional logs and sidewall cores are presented along with field examples. Scanning electron microscope (SEM) analysis shows good correlation of varying grain size in sandstones with the T2 distribution and bulk volume irreducible water determined from the MRIL measurements. Analysis of each new well drilled in the study area shows how water-free production zones were defined. Because the MRIL data were not recorded on one of the wells, predictions from the conventional logs and the MRIL data collected on the other two wells were used to estimate productive zones in the first well. Discussion of additional formation characteristics, completion procedures, actual production, and predicted producibility of the shaly sands is presented. Integrated methodologies resulted in the perforation of 3 new wells for a gross initial potential of 690 BOPD and 0 BWPD.

  19. Characterization of Influenza Vaccine Hemagglutinin Complexes by Cryo-Electron Microscopy and Image Analyses Reveals Structural Polymorphisms

    PubMed Central

    McCraw, Dustin M.; Gallagher, John R.

    2016-01-01

    Influenza virus afflicts millions of people worldwide on an annual basis. There is an ever-present risk that animal viruses will cross the species barrier to cause epidemics and pandemics resulting in great morbidity and mortality. Zoonosis outbreaks, such as the H7N9 outbreak, underscore the need to better understand the molecular organization of viral immunogens, such as recombinant influenza virus hemagglutinin (HA) proteins, used in influenza virus subunit vaccines in order to optimize vaccine efficacy. Here, using cryo-electron microscopy and image analysis, we show that recombinant H7 HA in vaccines formed macromolecular complexes consisting of variable numbers of HA subunits (range, 6 to 8). In addition, HA complexes were distributed across at least four distinct structural classes (polymorphisms). Three-dimensional (3D) reconstruction and molecular modeling indicated that HA was in the prefusion state and suggested that the oligomerization and the structural polymorphisms observed were due to hydrophobic interactions involving the transmembrane regions. These experiments suggest that characterization of the molecular structures of influenza virus HA complexes used in subunit vaccines will lead to better understanding of the differences in vaccine efficacy and to the optimization of subunit vaccines to prevent influenza virus infection. PMID:27074939

  20. Seasonal forcing of image-analysed mesozooplankton community composition along the salinity gradient of the Guadalquivir estuary

    NASA Astrophysics Data System (ADS)

    Taglialatela, Simone; Ruiz, Javier; Prieto, Laura; Navarro, Gabriel

    2014-08-01

    The composition and distribution of the mesozooplankton was studied monthly from April 2008 to June 2009 in the Guadalquivir estuary using a fast image analysis technique as well as with traditional microscope counting. The mesozooplankton showed a very clear temporal and spatial pattern with peaks of abundance in late-Spring/early-Summer 2008 and Spring 2009 in the inner estuary. The abundances peaked at 135 × 103 ind. m-3. Calanipeda aquaedulcis was the most abundant species in the fresh and brackish waters (salinity between 0.5 and 7), accounting in many cases for up to 100% of the individuals. Acartia clausi instead was identified as the most abundant species in the middle part of the estuary (salinity between 10 and 30). Cyclopoida of the family Cyclopidae (possibly Acanthocyclops spp.) were occasionally abundant there as well as some species of freshwater Cladocera. At the mouth, the mesozooplanktonic community included appendicularians, chaetognaths, copepods and Cladocera. Canonical Correspondence Analysis (CCA) indicates that the changes observed in the taxonomic composition along the estuary were strictly correlated with the salinity gradient. Furthermore, no evidence of seasonal species substitution was observed in the Guadalquivir estuary, whereas a clear spatial displacement of C. aquaedulcis and A. clausi populations was observed after large discharges from the dam in Alcala del Rio.

  1. Nonintrusive Finger-Vein Recognition System Using NIR Image Sensor and Accuracy Analyses According to Various Factors.

    PubMed

    Pham, Tuyen Danh; Park, Young Ho; Nguyen, Dat Tien; Kwon, Seung Yong; Park, Kang Ryoung

    2015-01-01

    Biometrics is a technology that enables an individual person to be identified based on human physiological and behavioral characteristics. Among biometrics technologies, face recognition has been widely used because of its advantages in terms of convenience and non-contact operation. However, its performance is affected by factors such as variation in the illumination, facial expression, and head pose. Therefore, fingerprint and iris recognitions are preferred alternatives. However, the performance of the former can be adversely affected by the skin condition, including scarring and dryness. In addition, the latter has the disadvantages of high cost, large system size, and inconvenience to the user, who has to align their eyes with the iris camera. In an attempt to overcome these problems, finger-vein recognition has been vigorously researched, but an analysis of its accuracies according to various factors has not received much attention. Therefore, we propose a nonintrusive finger-vein recognition system using a near infrared (NIR) image sensor and analyze its accuracies considering various factors. The experimental results obtained with three databases showed that our system can be operated in real applications with high accuracy; and the dissimilarity of the finger-veins of different people is larger than that of the finger types and hands. PMID:26184214

  2. An automatic generation of non-uniform mesh for CFD analyses of image-based multiscale human airway models

    NASA Astrophysics Data System (ADS)

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long

    2014-11-01

    The authors have developed a method to automatically generate non-uniform CFD mesh for image-based human airway models. The sizes of generated tetrahedral elements vary in both radial and longitudinal directions to account for boundary layer and multiscale nature of pulmonary airflow. The proposed method takes advantage of our previously developed centerline-based geometry reconstruction method. In order to generate the mesh branch by branch in parallel, we used the open-source programs Gmsh and TetGen for surface and volume meshes, respectively. Both programs can specify element sizes by means of background mesh. The size of an arbitrary element in the domain is a function of wall distance, element size on the wall, and element size at the center of airway lumen. The element sizes on the wall are computed based on local flow rate and airway diameter. The total number of elements in the non-uniform mesh (10 M) was about half of that in the uniform mesh, although the computational time for the non-uniform mesh was about twice longer (170 min). The proposed method generates CFD meshes with fine elements near the wall and smooth variation of element size in longitudinal direction, which are required, e.g., for simulations with high flow rate. NIH Grants R01-HL094315, U01-HL114494, and S10-RR022421. Computer time provided by XSEDE.

  3. Textural analyses of carbon fiber materials by 2D-FFT of complex images obtained by high frequency eddy current imaging (HF-ECI)

    NASA Astrophysics Data System (ADS)

    Schulze, Martin H.; Heuer, Henning

    2012-04-01

    Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.

  4. Grain-size and grain-shape analyses using digital imaging technology: Application to the fluvial formation of the Ngandong paleoanthropological site in Central Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Sipola, Maija

    2013-04-01

    This study implements grain-size and grain-shape analyses to better understand the fluvial processes responsible for forming the Ngandong paleoanthropological site along the Solo River in Central Java. The site was first discovered and excavated by the Dutch Geological Survey in the early 1930's, during which fourteen Homo erectus fossils and thousands of other macrofaunal remains were uncovered. The Homo erectus fossils discovered at Ngandong are particularly interesting to paleoanthropologists because the morphology of the excavated crania suggests they are from a recently-living variety of the species. The primary scientific focus for many years has been to determine the absolute age of the Ngandong fossils, while the question of exactly how the Ngandong site itself formed has been frequently overlooked. In this study I use Retsch CAMSIZER digital imaging technology to conduct grain-size and grain-shape analyses of sediments from the terrace stratigraphy at the Ngandong site to understand if there are significant differences between sedimentary layers in grain-size and/or grain-shape, and what these differences mean in terms of local paleoflow dynamics over time. Preliminary analyses indicate there are four distinct sedimentary layers present at Ngandong with regard to size sorting, with the fossil-bearing layers proving to be the most poorly-sorted and most similar to debris-flow deposits. These results support hypotheses by geoarchaeologists that the fossil-bearing layers present at Ngandong were deposited during special flow events rather than under normal stream flow conditions.

  5. Surface Roughness and Critical Exponent Analyses of Boron-Doped Diamond Films Using Atomic Force Microscopy Imaging: Application of Autocorrelation and Power Spectral Density Functions

    NASA Astrophysics Data System (ADS)

    Gupta, S.; Vierkant, G. P.

    2014-09-01

    The evolution of the surface roughness of growing metal or semiconductor thin films provides much needed information about their growth kinetics and corresponding mechanism. While some systems show stages of nucleation, coalescence, and growth, others exhibit varying microstructures for different process conditions. In view of these classifications, we report herein detailed analyses based on atomic force microscopy (AFM) characterization to extract the surface roughness and growth kinetics exponents of relatively low boron-doped diamond (BDD) films by utilizing the analytical power spectral density (PSD) and autocorrelation function (ACF) as mathematical tools. The machining industry has applied PSD for a number of years for tool design and analysis of wear and machined surface quality. Herein, we present similar analyses at the mesoscale to study the surface morphology as well as quality of BDD films grown using the microwave plasma-assisted chemical vapor deposition technique. PSD spectra as a function of boron concentration (in gaseous phase) are compared with those for samples grown without boron. We find that relatively higher boron concentration yields higher amplitudes of the longer-wavelength power spectral lines, with amplitudes decreasing in an exponential or power-law fashion towards shorter wavelengths, determining the roughness exponent ( α ≈ 0.16 ± 0.03) and growth exponent ( β ≈ 0.54), albeit indirectly. A unique application of the ACF, which is widely used in signal processing, was also applied to one-dimensional or line analyses (i.e., along the x- and y-axes) of AFM images, revealing surface topology datasets with varying boron concentration. Here, the ACF was used to cancel random surface "noise" and identify any spatial periodicity via repetitive ACF peaks or spatially correlated noise. Periodicity at shorter spatial wavelengths was observed for no doping and low doping levels, while smaller correlations were observed for relatively

  6. Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses.

    PubMed

    Chiastra, Claudio; Wu, Wei; Dickerhoff, Benjamin; Aleiou, Ali; Dubini, Gabriele; Otake, Hiromasa; Migliavacca, Francesco; LaDisa, John F

    2016-07-26

    The optimal stenting technique for coronary artery bifurcations is still debated. With additional advances computational simulations can soon be used to compare stent designs or strategies based on verified structural and hemodynamics results in order to identify the optimal solution for each individual's anatomy. In this study, patient-specific simulations of stent deployment were performed for 2 cases to replicate the complete procedure conducted by interventional cardiologists. Subsequent computational fluid dynamics (CFD) analyses were conducted to quantify hemodynamic quantities linked to restenosis. Patient-specific pre-operative models of coronary bifurcations were reconstructed from CT angiography and optical coherence tomography (OCT). Plaque location and composition were estimated from OCT and assigned to models, and structural simulations were performed in Abaqus. Artery geometries after virtual stent expansion of Xience Prime or Nobori stents created in SolidWorks were compared to post-operative geometry from OCT and CT before being extracted and used for CFD simulations in SimVascular. Inflow boundary conditions based on body surface area, and downstream vascular resistances and capacitances were applied at branches to mimic physiology. Artery geometries obtained after virtual expansion were in good agreement with those reconstructed from patient images. Quantitative comparison of the distance between reconstructed and post-stent geometries revealed a maximum difference in area of 20.4%. Adverse indices of wall shear stress were more pronounced for thicker Nobori stents in both patients. These findings verify structural analyses of stent expansion, introduce a workflow to combine software packages for solid and fluid mechanics analysis, and underscore important stent design features from prior idealized studies. The proposed approach may ultimately be useful in determining an optimal choice of stent and position for each patient. PMID:26655589

  7. Histological analyses by matrix-assisted laser desorption/ionization-imaging mass spectrometry reveal differential localization of sphingomyelin molecular species regulated by particular ceramide synthase in mouse brains.

    PubMed

    Sugimoto, Masayuki; Shimizu, Yoichi; Yoshioka, Takeshi; Wakabayashi, Masato; Tanaka, Yukari; Higashino, Kenichi; Numata, Yoshito; Sakai, Shota; Kihara, Akio; Igarashi, Yasuyuki; Kuge, Yuji

    2015-12-01

    Sphingomyelin (SM) is synthesized by SM synthase (SMS) from ceramide (Cer). SM regulates signaling pathways and maintains organ structure. SM comprises a sphingoid base and differing lengths of acyl-chains, but the importance of its various forms and regulatory synthases is not known. It has been reported that Cer synthase (CerS) has restricted substrate specificity, whereas SMS has no specificity for different lengths of acyl-chains. We hypothesized that the distribution of each SM molecular species was regulated by expression of the CerS family. Thus, we compared the distribution of SM species and CerS mRNA expression using molecular imaging. Spatial distribution of each SM molecular species was investigated using ultra-high-resolution imaging mass spectrometry (IMS). IMS revealed that distribution of SM molecular species varied according to the lengths of acyl-chains found in each brain section. Furthermore, a combination study using in situ hybridization and IMS revealed the spatial expression of CerS1 to be associated with the localization of SM (d18:1/18:0) in cell body-rich gray matter, and CerS2 to be associated with SM (d18:1/24:1) in myelin-rich white matter. Our study is the first comparison of spatial distribution between SM molecular species and CerS isoforms, and revealed their distinct association in the brain. These observations were demonstrated by suppression of CerS2 using siRNA in HepG2 cells; that is, siRNA for CerS2 specifically decreased C22 very long-chain fatty acid (VLCFA)- and C24 VLCFA-containing SMs. Thus, histological analyses of SM species by IMS could be a useful approach to consider their molecular function and regulative mechanism. PMID:26398595

  8. A SPITZER IRAC IMAGING SURVEY FOR T DWARF COMPANIONS AROUND M, L, AND T DWARFS: OBSERVATIONS, RESULTS, AND MONTE CARLO POPULATION ANALYSES

    SciTech Connect

    Carson, J. C.; Marengo, M.; Patten, B. M.; Hora, J. L.; Schuster, M. T.; Fazio, G. G.; Luhman, K. L.; Sonnett, S. M.; Allen, P. R.; Stauffer, J. R.; Schnupp, C.

    2011-12-20

    We report observational techniques, results, and Monte Carlo population analyses from a Spitzer Infrared Array Camera imaging survey for substellar companions to 117 nearby M, L, and T dwarf systems (median distance of 10 pc, mass range of 0.6 to {approx}0.05 M{sub Sun }). The two-epoch survey achieves typical detection sensitivities to substellar companions of [4.5 {mu}m] {<=} 17.2 mag for angular separations between about 7'' and 165''. Based on common proper motion analysis, we find no evidence for new substellar companions. Using Monte Carlo orbital simulations (assuming random inclination, random eccentricity, and random longitude of pericenter), we conclude that the observational sensitivities translate to an ability to detect 600-1100 K brown dwarf companions at semimajor axes {approx}>35 AU and to detect 500-600 K companions at semimajor axes {approx}>60 AU. The simulations also estimate a 600-1100 K T dwarf companion fraction of <3.4% for 35-1200 AU separations and <12.4% for the 500-600 K companions for 60-1000 AU separations.

  9. Sociopolitical Analyses.

    ERIC Educational Resources Information Center

    Van Galen, Jane, Ed.; And Others

    1992-01-01

    This theme issue of the serial "Educational Foundations" contains four articles devoted to the topic of "Sociopolitical Analyses." In "An Interview with Peter L. McLaren," Mary Leach presented the views of Peter L. McLaren on topics of local and national discourses, values, and the politics of difference. Landon E. Beyer's "Educational Studies and…

  10. Geologic analyses of LANDSAT-1 multispectral imagery of a possible power plant site employing digital and analog image processing. [in Pennsylvania

    NASA Technical Reports Server (NTRS)

    Lovegreen, J. R.; Prosser, W. J.; Millet, R. A.

    1975-01-01

    A site in the Great Valley subsection of the Valley and Ridge physiographic province in eastern Pennsylvania was studied to evaluate the use of digital and analog image processing for geologic investigations. Ground truth at the site was obtained by a field mapping program, a subsurface exploration investigation and a review of available published and unpublished literature. Remote sensing data were analyzed using standard manual techniques. LANDSAT-1 imagery was analyzed using digital image processing employing the multispectral Image 100 system and using analog color processing employing the VP-8 image analyzer. This study deals primarily with linears identified employing image processing and correlation of these linears with known structural features and with linears identified manual interpretation; and the identification of rock outcrops in areas of extensive vegetative cover employing image processing. The results of this study indicate that image processing can be a cost-effective tool for evaluating geologic and linear features for regional studies encompassing large areas such as for power plant siting. Digital image processing can be an effective tool for identifying rock outcrops in areas of heavy vegetative cover.

  11. A study on quantitative analyses before and after injection of contrast medium in spine examinations performed by using diffusion weighted image

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Kim, Yong-Kyun; Dong, Kyung-Rae; Chung, Woon-Kwan; Joo, Kyu-Ji

    2013-02-01

    This study examined the changes in the signal-to-noise ratio (SNR), the contrast-to-noise ratio (CNR) and the apparent diffusion coefficient (ADC) of metastatic cancer in the lumbar region by using diffusion weighted image taken with a 1.5 T (Tesla) magnetic resonance (MR) scanner before and after injecting a contrast medium. The study enrolled 30 healthy people and 30 patients with metastatic spine cancer from patients who underwent a lumbar MRI scan from January 2011 to October 2012. A 1.5 T MR scanner was used to obtain the diffusion weighted images (DWIs) before and after injecting the contrast medium. In the group with metastatic spine cancer, the SNR and the CNR were measured in three parts among the L1-L5 lumbar vertebrae, which included the part with metastatic spine cancer, the area of the spine with spine cancer, and the area of spine under the region with cancer. In the acquired ADC map image, the SNRs and the ADCs of the three parts were measured in ADC map images. Among the healthy subjects, the measurements were conducted for the lumbar regions of L3-L5. According to the results, in the group with metastatic spine cancer, the SNR in the DWI before the contrast medium had been injected was lowest in the part with spine cancer. In the DWI after the contrast medium had been injected, the SNR and the CNR were increased in all three parts. In the ADC map image after the contrast medium had been injected, the SNR decreased in all three parts compared to the SNR before the contrast had been injected. The ADC after had been injected the contrast medium was decreased in all three parts compared to that before the contrast medium had been injected. In the healthy group, the SNR was increased in the L3-L5 lumbar regions in the DWI. In the ADC map image, the SNR in all the three parts was decreased in the DWI after injecting the contrast medium had been injected. The ADC in the ADC map image was also decreased in all three parts.

  12. Analyses of requirements for computer control and data processing experiment subsystems: Image data processing system (IDAPS) software description (7094 version), volume 2

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A description of each of the software modules of the Image Data Processing System (IDAPS) is presented. The changes in the software modules are the result of additions to the application software of the system and an upgrade of the IBM 7094 Mod(1) computer to a 1301 disk storage configuration. Necessary information about IDAPS sofware is supplied to the computer programmer who desires to make changes in the software system or who desires to use portions of the software outside of the IDAPS system. Each software module is documented with: module name, purpose, usage, common block(s) description, method (algorithm of subroutine) flow diagram (if needed), subroutines called, and storage requirements.

  13. Image

    Energy Science and Technology Software Center (ESTSC)

    2007-08-31

    The computer side of the IMAGE project consists of a collection of Perl scripts that perform a variety of tasks; scripts are available to insert, update and delete data from the underlying Oracle database, download data from NCBI's Genbank and other sources, and generate data files for download by interested parties. Web scripts make up the tracking interface, and various tools available on the project web-site (image.llnl.gov) that provide a search interface to the database.

  14. Characteristics and Origin of a Cratered Unit near the MSL Bradbury Landing Site (Gale Crater, Mars) Based on Analyses of Surface Data and Orbital Images

    NASA Astrophysics Data System (ADS)

    Jacob, S.; Rowland, S. K.; Edgett, K. S.; Kah, L. C.; Wiens, R. C.; Day, M. D.; Calef, F.; Palucis, M. C.; Anderson, R. B.

    2014-12-01

    Using orbiter images, the Curiosity landing ellipse was mapped as six distinct units based mainly on geomorphic characteristics. These units are the alluvial fan material (ALF), fractured light-toned surface (FLT), cratered plains/surfaces (CS), smooth hummocky plains (SH), rugged unit (RU) and striated light-toned outcrops (SLT) (Grotzinger et al., 2014; DOI: 10.1126/science.1242777). The goal of this project was to characterize and determine the origin of the CS. The CS is a thin, nearly horizontal, erosion resistant capping unit. HiRISE mosaics were utilized to subdivide the CS into four geomorphic sub-units. Crater densities were calculated for each sub-unit to provide a quantifiable parameter that could aid in understanding how the sub-units differ. Mastcam images from many locations along Curiosity's traverse show fields of dark, massive boulders, which are presumably erosional remnants of the CS. This indicates that the CS was likely more laterally extensive in the past. In situ CS outcrops, seen at Shaler and multiple locations near the Zabriskie Plateau, appear to have a rough, wind-sculpted surface and may consist of two distinct lithologies. The lower lithology displays hints of layering that have been enhanced by differential weathering, whereas the upper lithology consists of dark, massive rock. When present, the outcrops can extend laterally for several meters, but Mastcam images of outcrops do not always reveal both sections. ChemCam data show that CS targets have concentrations of Al, Na, and K that are indicative of an alkali feldspar phase. The physical and chemical characteristics of the CS suggest a massive deposit that has seen little to no chemical alteration. Physical characteristics of the CS do not allow us to unambiguously determine its geologic origin; possible emplacement mechanisms would require the ability to spread laterally over a nearly horizontal surface, and include inflating lava (e.g., pāhoehoe) or a distal delta deposit. The

  15. Expression of the G2-M checkpoint regulators cyclin B1 and cdc2 in nonmalignant and malignant human breast lesions: immunocytochemical and quantitative image analyses.

    PubMed Central

    Kawamoto, H.; Koizumi, H.; Uchikoshi, T.

    1997-01-01

    We investigated the in vivo expression of cyclin B1 and Cdc2 (key molecules for G2-M transition during the cell cycle) in nonmalignant and cancerous human breast lesions using immunohistochemistry and quantitative proliferative index (PI) analysis. Breast epithelial cells co-expressed cyclin B1 and Cdc2 in their cytoplasm in the G2 phase and in their nuclei in the M phase. Cyclin B1, but not Cdc2, immunostaining rapidly disappeared from the nuclei during the mitotic metaphase to anaphase transition. Static image analysis revealed the mean proliferative index for cyclin B1/cdc2 for each type of lesion to be as follows: normal glands (n = 20), 2.0/2.5%; benign lesions, including typical ductal hyperplasia (n = 76), 2.5/5.8%; atypical ductal hyperplasia (n = 21), 3.0/6.6%; carcinomas in situ (n = 70), 7.4/14.0%; and invasive carcinomas (n = 58), 10.0/22.9%. Proliferative index data for atypical hyperplasia were virtually identical to those for benign lesions and were significantly lower than those for breast cancer, suggesting that expression levels of cyclin B1 and Cdc2 may be used to distinguish premalignant human breast lesions from advanced disease. Furthermore, the proliferative index for cyclin B1 for comedo-type ductal carcinomas in situ agreed with that for invasive ductal carcinomas (mean, 10.1% versus 9.5%), apparently explaining the clinicopathological aggressiveness of this tumor at the molecular level. Images Figure 1 Figure 2 Figure 3 PMID:9006317

  16. Images.

    ERIC Educational Resources Information Center

    Barr, Catherine, Ed.

    1997-01-01

    The theme of this month's issue is "Images"--from early paintings and statuary to computer-generated design. Resources on the theme include Web sites, CD-ROMs and software, videos, books, and others. A page of reproducible activities is also provided. Features include photojournalism, inspirational Web sites, art history, pop art, and myths. (AEF)

  17. 3D object-oriented image analysis in 3D geophysical modelling: Analysing the central part of the East African Rift System

    NASA Astrophysics Data System (ADS)

    Fadel, I.; van der Meijde, M.; Kerle, N.; Lauritsen, N.

    2015-03-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D interactive modelling environment IGMAS+, and their density contrast values were calculated using an object-based inversion technique to calculate the forward signal of the objects and compare it with the measured satellite gravity. Thus, a new object-based approach was implemented to interpret and extract the 3D subsurface objects from 3D geophysical data. We also introduce a new approach to constrain the interpretation of the satellite gravity measurements that can be applied using any 3D geophysical model.

  18. IDATEN and G-SITENNO: GUI-assisted software for coherent X-ray diffraction imaging experiments and data analyses at SACLA.

    PubMed

    Sekiguchi, Yuki; Yamamoto, Masaki; Oroguchi, Tomotaka; Takayama, Yuki; Suzuki, Shigeyuki; Nakasako, Masayoshi

    2014-11-01

    Using our custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors, cryogenic coherent X-ray diffraction imaging experiments have been undertaken at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility. To efficiently perform experiments and data processing, two software suites with user-friendly graphical user interfaces have been developed. The first is a program suite named IDATEN, which was developed to easily conduct four procedures during experiments: aligning KOTOBUKI-1, loading a flash-cooled sample into the cryogenic goniometer stage inside the vacuum chamber of KOTOBUKI-1, adjusting the sample position with respect to the X-ray beam using a pair of telescopes, and collecting diffraction data by raster scanning the sample with X-ray pulses. Named G-SITENNO, the other suite is an automated version of the original SITENNO suite, which was designed for processing diffraction data. These user-friendly software suites are now indispensable for collecting a large number of diffraction patterns and for processing the diffraction patterns immediately after collecting data within a limited beam time. PMID:25343809

  19. Utilizing magnetic resonance imaging logs, open hole logs and sidewall core analyses to evaluate shaly sands for water-free production

    SciTech Connect

    Taylor, D.; Morganti, J.; White, H.

    1995-06-01

    NMR logging using the new C series Magnetic Resonance Imaging Logging (MRIL){trademark} is rapidly enhancing formation evaluation throughout the industry. By measuring irreducible water saturations, permeability and effective porosities, MRIL data can help petrophysicists evaluate low resistivity pays. In these instances, conventional open hole logs may not define all of the pay intervals. MRIL can also minimize unnecessary completions in zones of potentially high water-cut. This case study will briefly discuss MRIL tool theory and log presentations used with the conventional logs and sidewall cores. SEM analysis will show a good correlation of varying grain size sands with the T{sub 2} distribution and bulk volume irreducible from MRIL. Discussions of each well in the study area will show how water-free production zones were defined. Because the MRIL data was not recorded on one of the wells, the advanced petrophysical program HORIZON was used to predict the MRIL bulk volume irreducible and effective porosity to estimate productive zones. Discussion of additional formation characteristics, completion procedures, actual production and predicted producibility of the shaly sands will be presented.

  20. Flow modification in canine intracranial aneurysm model by an asymmetric stent: studies using digital subtraction angiography (DSA) and image-based computational fluid dynamics (CFD) analyses

    PubMed Central

    Hoi, Yiemeng; Ionita, Ciprian N.; Tranquebar, Rekha V.; Hoffmann, Kenneth R.; Woodward, Scott, H.; Taulbee, Dale B.; Meng, Hui; Rudin, Stephen

    2011-01-01

    An asymmetric stent with low porosity patch across the intracranial aneurysm neck and high porosity elsewhere is designed to modify the flow to result in thrombogenesis and occlusion of the aneurysm and yet to reduce the possibility of also occluding adjacent perforator vessels. The purposes of this study are to evaluate the flow field induced by an asymmetric stent using both numerical and digital subtraction angiography (DSA) methods and to quantify the flow dynamics of an asymmetric stent in an in vivo aneurysm model. We created a vein-pouch aneurysm model on the canine carotid artery. An asymmetric stent was implanted at the aneurysm, with 25% porosity across the aneurysm neck and 80% porosity elsewhere. The aneurysm geometry, before and after stent implantation, was acquired using cone beam CT and reconstructed for computational fluid dynamics (CFD) analysis. Both steady-state and pulsatile flow conditions using the measured waveforms from the aneurysm model were studied. To reduce computational costs, we modeled the asymmetric stent effect by specifying a pressure drop over the layer across the aneurysm orifice where the low porosity patch was located. From the CFD results, we found the asymmetric stent reduced the inflow into the aneurysm by 51%, and appeared to create a stasis-like environment which favors thrombus formation. The DSA sequences also showed substantial flow reduction into the aneurysm. Asymmetric stents may be a viable image guided intervention for treating intracranial aneurysms with desired flow modification features. PMID:21666881

  1. Use of INSAT-3D sounder and imager radiances in the 4D-VAR data assimilation system and its implications in the analyses and forecasts

    NASA Astrophysics Data System (ADS)

    Indira Rani, S.; Taylor, Ruth; George, John P.; Rajagopal, E. N.

    2016-05-01

    INSAT-3D, the first Indian geostationary satellite with sounding capability, provides valuable information over India and the surrounding oceanic regions which are pivotal to Numerical Weather Prediction. In collaboration with UK Met Office, NCMRWF developed the assimilation capability of INSAT-3D Clear Sky Brightness Temperature (CSBT), both from the sounder and imager, in the 4D-Var assimilation system being used at NCMRWF. Out of the 18 sounder channels, radiances from 9 channels are selected for assimilation depending on relevance of the information in each channel. The first three high peaking channels, the CO2 absorption channels and the three water vapor channels (channel no. 10, 11, and 12) are assimilated both over land and Ocean, whereas the window channels (channel no. 6, 7, and 8) are assimilated only over the Ocean. Measured satellite radiances are compared with that from short range forecasts to monitor the data quality. This is based on the assumption that the observed satellite radiances are free from calibration errors and the short range forecast provided by NWP model is free from systematic errors. Innovations (Observation - Forecast) before and after the bias correction are indicative of how well the bias correction works. Since the biases vary with air-masses, time, scan angle and also due to instrument degradation, an accurate bias correction algorithm for the assimilation of INSAT-3D sounder radiance is important. This paper discusses the bias correction methods and other quality controls used for the selected INSAT-3D sounder channels and the impact of bias corrected radiance in the data assimilation system particularly over India and surrounding oceanic regions.

  2. Beta Adrenergic Receptor Stimulation Suppresses Cell Migration in Association with Cell Cycle Transition in Osteoblasts-Live Imaging Analyses Based on FUCCI System.

    PubMed

    Katsumura, Sakie; Ezura, Yoichi; Izu, Yayoi; Shirakawa, Jumpei; Miyawaki, Atsushi; Harada, Kiyoshi; Noda, Masaki

    2016-02-01

    Osteoporosis affects over 20 million patients in the United States. Among those, disuse osteoporosis is serious as it is induced by bed-ridden conditions in patients suffering from aging-associated diseases including cardiovascular, neurological, and malignant neoplastic diseases. Although the phenomenon that loss of mechanical stress such as bed-ridden condition reduces bone mass is clear, molecular bases for the disuse osteoporosis are still incompletely understood. In disuse osteoporosis model, bone loss is interfered by inhibitors of sympathetic tone and adrenergic receptors that suppress bone formation. However, how beta adrenergic stimulation affects osteoblastic migration and associated proliferation is not known. Here we introduced a live imaging system, fluorescent ubiquitination-based cell cycle indicator (FUCCI), in osteoblast biology and examined isoproterenol regulation of cell cycle transition and cell migration in osteoblasts. Isoproterenol treatment suppresses the levels of first entry peak of quiescent osteoblastic cells into cell cycle phase by shifting from G1 /G0 to S/G2 /M and also suppresses the levels of second major peak population that enters into S/G2 /M. The isoproterenol regulation of osteoblastic cell cycle transition is associated with isoproterenol suppression on the velocity of migration. This isoproterenol regulation of migration velocity is cell cycle phase specific as it suppresses migration velocity of osteoblasts in G1 phase but not in G1 /S nor in G2 /M phase. Finally, these observations on isoproterenol regulation of osteoblastic migration and cell cycle transition are opposite to the PTH actions in osteoblasts. In summary, we discovered that sympathetic tone regulates osteoblastic migration in association with cell cycle transition by using FUCCI system. PMID:26192605

  3. Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging

    NASA Astrophysics Data System (ADS)

    Mastroianni, S.; Heinz, F. D.; Im, J.-H.; Veurman, W.; Padilla, M.; Schubert, M. C.; Würfel, U.; Grätzel, M.; Park, N.-G.; Hinsch, A.

    2015-11-01

    CH3NH3PbI3 perovskite solar cells with a mesoporous TiO2 layer and spiro-MeOTAD as a hole transport layer (HTL) with three different CH3NH3I concentrations (0.032 M, 0.044 M and 0.063 M) were investigated. Strong variations in crystal size and morphology resulting in diversified cell efficiencies (9.2%, 16.9% and 12.3%, respectively) were observed. The physical origin of this behaviour was analysed by detailed characterization combining current-voltage curves with photo- and electroluminescence (PL and EL) imaging as well as light beam induced current measurements (LBIC). It was found that the most efficient cell shows the highest luminescence and the least efficient cell is most strongly limited by non-radiative recombination. Crystal size, morphology and distribution in the capping layer and in the porous scaffold strongly affect the non-radiative recombination. Moreover, the very non-uniform crystal structure with multiple facets, as evidenced by SEM images of the 0.032 M device, suggests the creation of a large number of grain boundaries and crystal dislocations. These defects give rise to increased trap-assisted non-radiative recombination as is confirmed by high-resolution μ-PL images. The different imaging techniques used in this study prove to be well-suited to spatially investigate and thus correlate the crystal morphology of the perovskite layer with the electrical and radiative properties of the solar cells and thus with their performance.CH3NH3PbI3 perovskite solar cells with a mesoporous TiO2 layer and spiro-MeOTAD as a hole transport layer (HTL) with three different CH3NH3I concentrations (0.032 M, 0.044 M and 0.063 M) were investigated. Strong variations in crystal size and morphology resulting in diversified cell efficiencies (9.2%, 16.9% and 12.3%, respectively) were observed. The physical origin of this behaviour was analysed by detailed characterization combining current-voltage curves with photo- and electroluminescence (PL and EL) imaging as

  4. Evolution of 3-D subduction-induced mantle flow around lateral slab edges in analogue models of free subduction analysed by stereoscopic particle image velocimetry technique

    NASA Astrophysics Data System (ADS)

    Strak, Vincent; Schellart, Wouter P.

    2014-10-01

    We present analogue models of free subduction in which we investigate the three-dimensional (3-D) subduction-induced mantle flow focusing around the slab edges. We use a stereoscopic Particle Image Velocimetry (sPIV) technique to map the 3-D mantle flow on 4 vertical cross-sections for one experiment and on 3 horizontal depth-sections for another experiment. On each section the in-plane components are mapped as well as the out-of-plane component for several experimental times. The results indicate that four types of maximum upwelling are produced by the subduction-induced mantle flow. The first two are associated with the poloidal circulation occurring in the mantle wedge and in the sub-slab domain. A third type is produced by horizontal motion and deformation of the frontal part of the slab lying on the 660 km discontinuity. The fourth type results from quasi-toroidal return flow around the lateral slab edges, which produces a maximum upwelling located slightly laterally away from the sub-slab domain and can have another maximum upwelling located laterally away from the mantle wedge. These upwellings occur during the whole subduction process. In contrast, the poloidal circulation in the mantle wedge produces a zone of upwelling that is vigorous during the free falling phase of the slab sinking but that decreases in intensity when reaching the steady-state phase. The position of the maximum upward component and horizontal components of the mantle flow velocity field has been tracked through time. Their time-evolving magnitude is well correlated to the trench retreat rate. The maximum upwelling velocity located laterally away from the subducting plate is ∼18-24% of the trench retreat rate during the steady-state subduction phase. It is observed in the mid upper mantle but upwellings are produced throughout the whole upper mantle thickness, potentially promoting decompression melting. It could thereby provide a source for intraplate volcanism, such as Mount Etna in

  5. DATA AND ANALYSES

    EPA Science Inventory

    In order to promote transparency and clarity of the analyses performed in support of EPA's Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens, the data and the analyses are now available on this web site. The data is presented in two diffe...

  6. SNS shielding analyses overview

    SciTech Connect

    Popova, Irina; Gallmeier, Franz; Iverson, Erik B; Lu, Wei; Remec, Igor

    2015-01-01

    This paper gives an overview on on-going shielding analyses for Spallation Neutron Source. Presently, the most of the shielding work is concentrated on the beam lines and instrument enclosures to prepare for commissioning, save operation and adequate radiation background in the future. There is on-going work for the accelerator facility. This includes radiation-protection analyses for radiation monitors placement, designing shielding for additional facilities to test accelerator structures, redesigning some parts of the facility, and designing test facilities to the main accelerator structure for component testing. Neutronics analyses are required as well to support spent structure management, including waste characterisation analyses, choice of proper transport/storage package and shielding enhancement for the package if required.

  7. Spacelab Charcoal Analyses

    NASA Technical Reports Server (NTRS)

    Slivon, L. E.; Hernon-Kenny, L. A.; Katona, V. R.; Dejarme, L. E.

    1995-01-01

    This report describes analytical methods and results obtained from chemical analysis of 31 charcoal samples in five sets. Each set was obtained from a single scrubber used to filter ambient air on board a Spacelab mission. Analysis of the charcoal samples was conducted by thermal desorption followed by gas chromatography/mass spectrometry (GC/MS). All samples were analyzed using identical methods. The method used for these analyses was able to detect compounds independent of their polarity or volatility. In addition to the charcoal samples, analyses of three Environmental Control and Life Support System (ECLSS) water samples were conducted specifically for trimethylamine.

  8. Wavelet Analyses and Applications

    ERIC Educational Resources Information Center

    Bordeianu, Cristian C.; Landau, Rubin H.; Paez, Manuel J.

    2009-01-01

    It is shown how a modern extension of Fourier analysis known as wavelet analysis is applied to signals containing multiscale information. First, a continuous wavelet transform is used to analyse the spectrum of a nonstationary signal (one whose form changes in time). The spectral analysis of such a signal gives the strength of the signal in each…

  9. Apollo 14 microbial analyses

    NASA Technical Reports Server (NTRS)

    Taylor, G. R.

    1972-01-01

    Extensive microbiological analyses that were performed on the Apollo 14 prime and backup crewmembers and ancillary personnel are discussed. The crewmembers were subjected to four separate and quite different environments during the 137-day monitoring period. The relation between each of these environments and observed changes in the microflora of each astronaut are presented.

  10. Geomorphic analyses from space imagery

    NASA Technical Reports Server (NTRS)

    Morisawa, M.

    1985-01-01

    One of the most obvious applications of space imagery to geomorphological analyses is in the study of drainage patterns and channel networks. LANDSAT, high altitude photography and other types of remote sensing imagery are excellent for depicting stream networks on a regional scale because of their broad coverage in a single image. They offer a valuable tool for comparing and analyzing drainage patterns and channel networks all over the world. Three aspects considered in this geomorphological study are: (1) the origin, evolution and rates of development of drainage systems; (2) the topological studies of network and channel arrangements; and (3) the adjustment of streams to tectonic events and geologic structure (i.e., the mode and rate of adjustment).

  11. Information Omitted From Analyses.

    PubMed

    2015-08-01

    In the Original Article titled “Higher- Order Genetic and Environmental Structure of Prevalent Forms of Child and Adolescent Psychopathology” published in the February 2011 issue of JAMA Psychiatry (then Archives of General Psychiatry) (2011;68[2]:181-189), there were 2 errors. Although the article stated that the dimensions of psychopathology were measured using parent informants for inattention, hyperactivity-impulsivity, and oppositional defiant disorder, and a combination of parent and youth informants for conduct disorder, major depression, generalized anxiety disorder, separation anxiety disorder, social phobia, specific phobia, agoraphobia, and obsessive-compulsive disorder, all dimensional scores used in the reported analyses were actually based on parent reports of symptoms; youth reports were not used. In addition, whereas the article stated that each symptom dimension was residualized on age, sex, age-squared, and age by sex, the dimensions actually were only residualized on age, sex, and age-squared. All analyses were repeated using parent informants for inattention, hyperactivity-impulsivity, and oppositional defiant disorder, and a combination of parent and youth informants for conduct disorder,major depression, generalized anxiety disorder, separation anxiety disorder, social phobia, specific phobia, agoraphobia, and obsessive-compulsive disorder; these dimensional scores were residualized on age, age-squared, sex, sex by age, and sex by age-squared. The results of the new analyses were qualitatively the same as those reported in the article, with no substantial changes in conclusions. The only notable small difference was that major depression and generalized anxiety disorder dimensions had small but significant loadings on the internalizing factor in addition to their substantial loadings on the general factor in the analyses of both genetic and non-shared covariances in the selected models in the new analyses. Corrections were made to the

  12. Systematic Processing of Clementine Data for Scientific Analyses

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1993-01-01

    If fully successful, the Clementine mission will return about 3,000,000 lunar images and more than 5000 images of Geographos. Effective scientific analyses of such large datasets require systematic processing efforts. Concepts for two such efforts are described: glogal multispectral imaging of the moon; and videos of Geographos.

  13. [Network analyses in neuroimaging studies].

    PubMed

    Hirano, Shigeki; Yamada, Makiko

    2013-06-01

    Neurons are anatomically and physiologically connected to each other, and these connections are involved in various neuronal functions. Multiple important neural networks involved in neurodegenerative diseases can be detected using network analyses in functional neuroimaging. First, the basic methods and theories of voxel-based network analyses, such as principal component analysis, independent component analysis, and seed-based analysis, are described. Disease- and symptom-specific brain networks have been identified using glucose metabolism images in patients with Parkinson's disease. These networks enable us to objectively evaluate individual patients and serve as diagnostic tools as well as biomarkers for therapeutic interventions. Many functional MRI studies have shown that "hub" brain regions, such as the posterior cingulate cortex and medial prefrontal cortex, are deactivated by externally driven cognitive tasks; such brain regions form the "default mode network." Recent studies have shown that this default mode network is disrupted from the preclinical phase of Alzheimer's disease and is associated with amyloid deposition in the brain. Some recent studies have shown that the default mode network is also impaired in Parkinson's disease, whereas other studies have shown inconsistent results. These incongruent results could be due to the heterogeneous pharmacological status, differences in mesocortical dopaminergic impairment status, and concomitant amyloid deposition. Future neuroimaging network analysis studies will reveal novel and interesting findings that will uncover the pathomechanisms of neurological and psychiatric disorders. PMID:23735528

  14. Development of a systematic computer vision-based method to analyse and compare images of false identity documents for forensic intelligence purposes-Part I: Acquisition, calibration and validation issues.

    PubMed

    Auberson, Marie; Baechler, Simon; Zasso, Michaël; Genessay, Thibault; Patiny, Luc; Esseiva, Pierre

    2016-03-01

    Following their detection and seizure by police and border guard authorities, false identity and travel documents are usually scanned, producing digital images. This research investigates the potential of these images to classify false identity documents, highlight links between documents produced by a same modus operandi or same source, and thus support forensic intelligence efforts. Inspired by previous research work about digital images of Ecstasy tablets, a systematic and complete method has been developed to acquire, collect, process and compare images of false identity documents. This first part of the article highlights the critical steps of the method and the development of a prototype that processes regions of interest extracted from images. Acquisition conditions have been fine-tuned in order to optimise reproducibility and comparability of images. Different filters and comparison metrics have been evaluated and the performance of the method has been assessed using two calibration and validation sets of documents, made up of 101 Italian driving licenses and 96 Portuguese passports seized in Switzerland, among which some were known to come from common sources. Results indicate that the use of Hue and Edge filters or their combination to extract profiles from images, and then the comparison of profiles with a Canberra distance-based metric provides the most accurate classification of documents. The method appears also to be quick, efficient and inexpensive. It can be easily operated from remote locations and shared amongst different organisations, which makes it very convenient for future operational applications. The method could serve as a first fast triage method that may help target more resource-intensive profiling methods (based on a visual, physical or chemical examination of documents for instance). Its contribution to forensic intelligence and its application to several sets of false identity documents seized by police and border guards will be

  15. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Model calculations and analyses have been carried out to compare with several sets of data (dose, induced radioactivity in various experiment samples and spacecraft components, fission foil measurements, and LET spectra) from passive radiation dosimetry on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The calculations and data comparisons are used to estimate the accuracy of current models and methods for predicting the ionizing radiation environment in low earth orbit. The emphasis is on checking the accuracy of trapped proton flux and anisotropy models.

  16. Broadband rotor noise analyses

    NASA Astrophysics Data System (ADS)

    George, A. R.; Chou, S. T.

    1984-04-01

    The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise.

  17. Broadband rotor noise analyses

    NASA Technical Reports Server (NTRS)

    George, A. R.; Chou, S. T.

    1984-01-01

    The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise.

  18. IMAGES, IMAGES, IMAGES

    SciTech Connect

    Marcus, A.

    1980-07-01

    The role of images of information (charts, diagrams, maps, and symbols) for effective presentation of facts and concepts is expanding dramatically because of advances in computer graphics technology, increasingly hetero-lingual, hetero-cultural world target populations of information providers, the urgent need to convey more efficiently vast amounts of information, the broadening population of (non-expert) computer users, the decrease of available time for reading texts and for decision making, and the general level of literacy. A coalition of visual performance experts, human engineering specialists, computer scientists, and graphic designers/artists is required to resolve human factors aspects of images of information. The need for, nature of, and benefits of interdisciplinary effort are discussed. The results of an interdisciplinary collaboration are demonstrated in a product for visualizing complex information about global energy interdependence. An invited panel will respond to the presentation.

  19. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    This report covers work performed by Science Applications International Corporation (SAIC) under contract NAS8-39386 from the NASA Marshall Space Flight Center entitled LDEF Satellite Radiation Analyses. The basic objective of the study was to evaluate the accuracy of present models and computational methods for defining the ionizing radiation environment for spacecraft in Low Earth Orbit (LEO) by making comparisons with radiation measurements made on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The emphasis of the work here is on predictions and comparisons with LDEF measurements of induced radioactivity and Linear Energy Transfer (LET) measurements. These model/data comparisons have been used to evaluate the accuracy of current models for predicting the flux and directionality of trapped protons for LEO missions.

  20. EEG analyses with SOBI.

    SciTech Connect

    Glickman, Matthew R.; Tang, Akaysha

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  1. Network Class Superposition Analyses

    PubMed Central

    Pearson, Carl A. B.; Zeng, Chen; Simha, Rahul

    2013-01-01

    Networks are often used to understand a whole system by modeling the interactions among its pieces. Examples include biomolecules in a cell interacting to provide some primary function, or species in an environment forming a stable community. However, these interactions are often unknown; instead, the pieces' dynamic states are known, and network structure must be inferred. Because observed function may be explained by many different networks (e.g., for the yeast cell cycle process [1]), considering dynamics beyond this primary function means picking a single network or suitable sample: measuring over all networks exhibiting the primary function is computationally infeasible. We circumvent that obstacle by calculating the network class ensemble. We represent the ensemble by a stochastic matrix , which is a transition-by-transition superposition of the system dynamics for each member of the class. We present concrete results for derived from Boolean time series dynamics on networks obeying the Strong Inhibition rule, by applying to several traditional questions about network dynamics. We show that the distribution of the number of point attractors can be accurately estimated with . We show how to generate Derrida plots based on . We show that -based Shannon entropy outperforms other methods at selecting experiments to further narrow the network structure. We also outline an experimental test of predictions based on . We motivate all of these results in terms of a popular molecular biology Boolean network model for the yeast cell cycle, but the methods and analyses we introduce are general. We conclude with open questions for , for example, application to other models, computational considerations when scaling up to larger systems, and other potential analyses. PMID:23565141

  2. NOAA's National Snow Analyses

    NASA Astrophysics Data System (ADS)

    Carroll, T. R.; Cline, D. W.; Olheiser, C. M.; Rost, A. A.; Nilsson, A. O.; Fall, G. M.; Li, L.; Bovitz, C. T.

    2005-12-01

    NOAA's National Operational Hydrologic Remote Sensing Center (NOHRSC) routinely ingests all of the electronically available, real-time, ground-based, snow data; airborne snow water equivalent data; satellite areal extent of snow cover information; and numerical weather prediction (NWP) model forcings for the coterminous U.S. The NWP model forcings are physically downscaled from their native 13 km2 spatial resolution to a 1 km2 resolution for the CONUS. The downscaled NWP forcings drive an energy-and-mass-balance snow accumulation and ablation model at a 1 km2 spatial resolution and at a 1 hour temporal resolution for the country. The ground-based, airborne, and satellite snow observations are assimilated into the snow model's simulated state variables using a Newtonian nudging technique. The principle advantages of the assimilation technique are: (1) approximate balance is maintained in the snow model, (2) physical processes are easily accommodated in the model, and (3) asynoptic data are incorporated at the appropriate times. The snow model is reinitialized with the assimilated snow observations to generate a variety of snow products that combine to form NOAA's NOHRSC National Snow Analyses (NSA). The NOHRSC NSA incorporate all of the available information necessary and available to produce a "best estimate" of real-time snow cover conditions at 1 km2 spatial resolution and 1 hour temporal resolution for the country. The NOHRSC NSA consist of a variety of daily, operational, products that characterize real-time snowpack conditions including: snow water equivalent, snow depth, surface and internal snowpack temperatures, surface and blowing snow sublimation, and snowmelt for the CONUS. The products are generated and distributed in a variety of formats including: interactive maps, time-series, alphanumeric products (e.g., mean areal snow water equivalent on a hydrologic basin-by-basin basis), text and map discussions, map animations, and quantitative gridded products

  3. On study design in neuroimaging heritability analyses

    NASA Astrophysics Data System (ADS)

    Koran, Mary Ellen; Li, Bo; Jahanshad, Neda; Thornton-Wells, Tricia A.; Glahn, David C.; Thompson, Paul M.; Blangero, John; Nichols, Thomas E.; Kochunov, Peter; Landman, Bennett A.

    2014-03-01

    Imaging genetics is an emerging methodology that combines genetic information with imaging-derived metrics to understand how genetic factors impact observable structural, functional, and quantitative phenotypes. Many of the most well-known genetic studies are based on Genome-Wide Association Studies (GWAS), which use large populations of related or unrelated individuals to associate traits and disorders with individual genetic factors. Merging imaging and genetics may potentially lead to improved power of association in GWAS because imaging traits may be more sensitive phenotypes, being closer to underlying genetic mechanisms, and their quantitative nature inherently increases power. We are developing SOLAR-ECLIPSE (SE) imaging genetics software which is capable of performing genetic analyses with both large-scale quantitative trait data and family structures of variable complexity. This program can estimate the contribution of genetic commonality among related subjects to a given phenotype, and essentially answer the question of whether or not the phenotype is heritable. This central factor of interest, heritability, offers bounds on the direct genetic influence over observed phenotypes. In order for a trait to be a good phenotype for GWAS, it must be heritable: at least some proportion of its variance must be due to genetic influences. A variety of family structures are commonly used for estimating heritability, yet the variability and biases for each as a function of the sample size are unknown. Herein, we investigate the ability of SOLAR to accurately estimate heritability models based on imaging data simulated using Monte Carlo methods implemented in R. We characterize the bias and the variability of heritability estimates from SOLAR as a function of sample size and pedigree structure (including twins, nuclear families, and nuclear families with grandparents).

  4. Analysing the Metaphorical Images of Turkish Preschool Teachers

    ERIC Educational Resources Information Center

    Kabadayi, Abdulkadir

    2008-01-01

    The metaphorical basis of teacher reflection about teaching and learning has been a rich area of theory and research. This is a study of metaphor as a shared system of interpretation and classification, which teachers and student teachers and their supervising teachers can cooperatively explore. This study employs metaphor as a means of research…

  5. Characterization of high-speed video systems: tests and analyses

    NASA Astrophysics Data System (ADS)

    Carlton, Patrick N.; Chenette, Eugene R.; Rowe, W. J.; Snyder, Donald R.

    1992-01-01

    The current method of munitions systems testing uses film cameras to record airborne events such as store separation. After film exposure, much time is spent in developing the film and analyzing the images. If the analysis uses digital methods, additional time is required to digitize the images preparatory to the analysis phase. Because airborne equipment parameters such as exposure time cannot be adjusted in flight, images often suffer as a result of changing lighting conditions. Image degradation from other sources may occur in the film development process, and during digitizing. Advances in the design of charge-coupled device (CCD) cameras and mass storage devices, coupled with sophisticated data compression and transmission systems, provide the means to overcome these shortcomings. A system can be developed where the image sensor provides an analog electronic signal and, consequently, images can be digitized and stored using digital mass storage devices or transmitted to a ground station for immediate viewing and analysis. All electronic imaging and processing offers the potential for improved data quality, rapid response time and closed loop operation. This paper examines high speed, high resolution imaging system design issues assuming an electronic image sensor will be used. Experimental data and analyses are presented on the resolution capability of current film and digital image processing technology. Electrical power dissipation in a high speed, high resolution CCD array is also analyzed.

  6. Feed analyses and their interpretation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Compositional analysis is central to determining the nutritional value of feedstuffs. The utility of the values and how they should be used depends on how representative the feed subsample is, the nutritional relevance of the assays, analytical variability of the analyses, and whether a feed is suit...

  7. Analysing Children's Drawings: Applied Imagination

    ERIC Educational Resources Information Center

    Bland, Derek

    2012-01-01

    This article centres on a research project in which freehand drawings provided a richly creative and colourful data source of children's imagined, ideal learning environments. Issues concerning the analysis of the visual data are discussed, in particular, how imaginative content was analysed and how the analytical process was dependent on an…

  8. FORTRAN Algorithm for Image Processing

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Hull, David R.

    1987-01-01

    FORTRAN computer algorithm containing various image-processing analysis and enhancement functions developed. Algorithm developed specifically to process images of developmental heat-engine materials obtained with sophisticated nondestructive evaluation instruments. Applications of program include scientific, industrial, and biomedical imaging for studies of flaws in materials, analyses of steel and ores, and pathology.

  9. Workload analyse of assembling process

    NASA Astrophysics Data System (ADS)

    Ghenghea, L. D.

    2015-11-01

    The workload is the most important indicator for managers responsible of industrial technological processes no matter if these are automated, mechanized or simply manual in each case, machines or workers will be in the focus of workload measurements. The paper deals with workload analyses made to a most part manual assembling technology for roller bearings assembling process, executed in a big company, with integrated bearings manufacturing processes. In this analyses the delay sample technique have been used to identify and divide all bearing assemblers activities, to get information about time parts from 480 minutes day work time that workers allow to each activity. The developed study shows some ways to increase the process productivity without supplementary investments and also indicated the process automation could be the solution to gain maximum productivity.

  10. Supplementary report on antilock analyses

    NASA Technical Reports Server (NTRS)

    Zellner, J. W.

    1985-01-01

    Generic modulator analysis was performed to quantify the effects of dump and reapply pressure rates on antilock stability and performance. Analysis will include dump and reapply rates, and lumped modulator delay. Based on the results of the generic modulator analysis and earlier toggle optimization analysis (with Mitsubishi modulator), a recommended preliminary antilock design was synthesized and its response and performance simulated. The results of these analyses are documented.

  11. Mitogenomic analyses of eutherian relationships.

    PubMed

    Arnason, U; Janke, A

    2002-01-01

    Reasonably correct phylogenies are fundamental to the testing of evolutionary hypotheses. Here, we present phylogenetic findings based on analyses of 67 complete mammalian mitochondrial (mt) genomes. The analyses, irrespective of whether they were performed at the amino acid (aa) level or on nucleotides (nt) of first and second codon positions, placed Erinaceomorpha (hedgehogs and their kin) as the sister group of remaining eutherians. Thus, the analyses separated Erinaceomorpha from other traditional lipotyphlans (e.g., tenrecs, moles, and shrews), making traditional Lipotyphla polyphyletic. Both the aa and nt data sets identified the two order-rich eutherian clades, the Cetferungulata (comprising Pholidota, Carnivora, Perissodactyla, Artiodactyla, and Cetacea) and the African clade (Tenrecomorpha, Macroscelidea, Tubulidentata, Hyracoidea, Proboscidea, and Sirenia). The study corroborated recent findings that have identified a sister-group relationship between Anthropoidea and Dermoptera (flying lemurs), thereby making our own order, Primates, a paraphyletic assembly. Molecular estimates using paleontologically well-established calibration points, placed the origin of most eutherian orders in Cretaceous times, 70-100 million years before present (MYBP). The same estimates place all primate divergences much earlier than traditionally believed. For example, the divergence between Homo and Pan is estimated to have taken place approximately 10 MYBP, a dating consistent with recent findings in primate paleontology. PMID:12438776

  12. Biological aerosol warner and analyser

    NASA Astrophysics Data System (ADS)

    Schlemmer, Harry; Kürbitz, Gunther; Miethe, Peter; Spieweck, Michael

    2006-05-01

    The development of an integrated sensor device BiSAM (Biological Sampling and Analysing Module) is presented which is designed for rapid detection of aerosol or dust particles potentially loaded with biological warfare agents. All functional steps from aerosol collection via immuno analysis to display of results are fully automated. The core component of the sensor device is an ultra sensitive rapid analyser PBA (Portable Benchtop Analyser) based on a 3 dimensional immuno filtration column of large internal area, Poly HRP marker technology and kinetic optical detection. High sensitivity despite of the short measuring time, high chemical stability of the micro column and robustness against interferents make the PBA an ideal tool for fielded sensor devices. It is especially favourable to combine the PBA with a bio collector because virtually no sample preparation is necessary. Overall, the BiSAM device is capable to detect and identify living micro organisms (bacteria, spores, viruses) as well as toxins in a measuring cycle of typically half an hour duration. In each batch up to 12 different tests can be run in parallel together with positive and negative controls to keep the false alarm rate low.

  13. Mars periglacial punctual features analyses

    NASA Astrophysics Data System (ADS)

    Machado, Adriane; Barata, Teresa; Ivo Alves, E.; Cunha, Pedro P.

    2012-11-01

    The presence of patterned grounds on Mars has been reported in several papers, especially the study of polygons distribution, size and formation processes. In the last years, the presence of basketball terrains has been noticed on Mars. Studies were made to recognize these terrains on Mars through the analysis of Mars Orbiter Camera (MOC) images. We have been developing an algorithm that recognizes automatically and extracts the hummocky patterns on Mars related to landforms generated by freeze-thaw cycles such as mud boils features. The algorithm is based on remote sensing data that establishes a comparison between the hummocks and mud boils morphology and size from Adventdalen at Longyearbyen (Svalbard - Norway) and hummocky patterns on Mars using High Resolution Imaging Science Experiment (HiRISE) imagery.

  14. Summary of LDEF battery analyses

    NASA Technical Reports Server (NTRS)

    Johnson, Chris; Thaller, Larry; Bittner, Harlin; Deligiannis, Frank; Tiller, Smith; Sullivan, David; Bene, James

    1992-01-01

    Tests and analyses of NiCd, LiSO2, and LiCf batteries flown on the Long Duration Exposure Facility (LDEF) includes results from NASA, Aerospace, and commercial labs. The LiSO2 cells illustrate six-year degradation of internal components acceptable for space applications, with up to 85 percent battery capacity remaining on discharge of some returned cells. LiCf batteries completed their mission, but lost any remaining capacity due to internal degradation. Returned NiCd batteries tested an GSFC showed slight case distortion due to pressure build up, but were functioning as designed.

  15. Analysing photonic structures in plants

    PubMed Central

    Vignolini, Silvia; Moyroud, Edwige; Glover, Beverley J.; Steiner, Ullrich

    2013-01-01

    The outer layers of a range of plant tissues, including flower petals, leaves and fruits, exhibit an intriguing variation of microscopic structures. Some of these structures include ordered periodic multilayers and diffraction gratings that give rise to interesting optical appearances. The colour arising from such structures is generally brighter than pigment-based colour. Here, we describe the main types of photonic structures found in plants and discuss the experimental approaches that can be used to analyse them. These experimental approaches allow identification of the physical mechanisms producing structural colours with a high degree of confidence. PMID:23883949

  16. Magnetic Imaging

    NASA Astrophysics Data System (ADS)

    Petford-Long, A. K.

    Spin-transport effects, such as giant magnetoresistance, rely on the fact that there is a difference in scattering between the spin-up and spin-down electrons in a ferromagnetic material. The degree to which each electron channel is scattered depends on the magnetisation direction within the material, and thus on the local magnetic domain structure. It is therefore of importance when analysing spin-transport devices to understand their magnetic domain structure, both as a bulk property and locally. The aim of this chapter is to review a number of the techniques currently used to image magnetic domain structure in materials. Although a considerable amount of information about the magnetic properties and behaviour of a piece of material, for example a thin ferromagnetic film, can be obtained from bulk magnetometry measurements, it is often extremely useful to image the magnetic domain structure of the film and thus gain information about its magnetic properties at a local level. The various magnetic imaging techniques yet to be described can be extended, by the application of in-situ magnetic fields which allow not only the magnetic domains but also the magnetisation reversal process to be followed in real-time.

  17. Uncertainty and Sensitivity Analyses Plan

    SciTech Connect

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project.

  18. Chemical analyses of provided samples

    NASA Technical Reports Server (NTRS)

    Becker, Christopher H.

    1993-01-01

    Two batches of samples were received and chemical analysis was performed of the surface and near surface regions of the samples by the surface analysis by laser ionization (SALI) method. The samples included four one-inch optics and several paint samples. The analyses emphasized surface contamination or modification. In these studies, pulsed sputtering by 7 keV Ar+ and primarily single-photon ionization (SPI) by coherent 118 nm radiation (at approximately 5 x 10(exp 5) W/cm(sup 2) were used. For two of the samples, also multiphoton ionization (MPI) at 266 nm (approximately 5 x 10(exp 11) W/cm(sup 2) was used. Most notable among the results was the silicone contamination on Mg2 mirror 28-92, and that the Long Duration Exposure Facility (LDEF) paint sample had been enriched in K and Na and depleted in Zn, Si, B, and organic compounds relative to the control paint.

  19. Analyses to improve operational flexibility

    SciTech Connect

    Trikouros, N.G.

    1986-01-01

    Operational flexibility is greatly enhanced if the technical bases for plant limits and design margins are fully understood, and the analyses necessary to evaluate the effect of plant modifications or changes in operating modes on these parameters can be performed as required. If a condition should arise that might jeopardize a plant limit or reduce operational flexibility, it would be necessary to understand the basis for the limit or the specific condition limiting operational flexibility and be capable of performing a reanalysis to either demonstrate that the limit will not be violated or to change the limit. This paper provides examples of GPU Nuclear efforts in this regard. Examples of Oyster Creek and Three Mile Island operating experiences are discussed.

  20. 3-D Cavern Enlargement Analyses

    SciTech Connect

    EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.

    2002-03-01

    Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.

  1. Isotopic signatures by bulk analyses

    SciTech Connect

    Efurd, D.W.; Rokop, D.J.

    1997-12-01

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally.

  2. imageMCR

    SciTech Connect

    2011-09-27

    imageMCR is a user friendly software package that consists of a variety inputs to preprocess and analyze the hyperspectral image data using multivariate algorithms such as Multivariate Curve Resolution (MCR), Principle Component Analysis (PCA), Classical Least Squares (CLS) and Parallel Factor Analysis (PARAFAC). MCR provides a relative quantitative analysis of the hyperspectral image data without the need for standards, and it discovers all the emitting species (spectral pure components) present in an image, even those in which there is no a priori information. Once the spectral components are discovered, these spectral components can be used for future MCR analyses or used with CLS algorithms to quickly extract concentration image maps for each component within spectral image data sets.

  3. imageMCR

    Energy Science and Technology Software Center (ESTSC)

    2011-09-27

    imageMCR is a user friendly software package that consists of a variety inputs to preprocess and analyze the hyperspectral image data using multivariate algorithms such as Multivariate Curve Resolution (MCR), Principle Component Analysis (PCA), Classical Least Squares (CLS) and Parallel Factor Analysis (PARAFAC). MCR provides a relative quantitative analysis of the hyperspectral image data without the need for standards, and it discovers all the emitting species (spectral pure components) present in an image, even thosemore » in which there is no a priori information. Once the spectral components are discovered, these spectral components can be used for future MCR analyses or used with CLS algorithms to quickly extract concentration image maps for each component within spectral image data sets.« less

  4. 7 CFR 94.102 - Analyses available.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Analyses available. 94.102 Section 94.102 Agriculture... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.102 Analyses available. A wide array of analyses for voluntary egg product samples is available. Voluntary egg product samples include...

  5. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uncertainty analyses. 436.24 Section 436.24 Energy... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... by conducting additional analyses using any standard engineering economics method such as...

  6. 7 CFR 94.102 - Analyses available.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Analyses available. 94.102 Section 94.102 Agriculture... POULTRY AND EGG PRODUCTS Voluntary Analyses of Egg Products § 94.102 Analyses available. A wide array of analyses for voluntary egg product samples is available. Voluntary egg product samples include...

  7. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Uncertainty analyses. 436.24 Section 436.24 Energy... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... by conducting additional analyses using any standard engineering economics method such as...

  8. APXS ANALYSES OF BOUNCE ROCK: THE FIRST SHERGOTTITE ON MARS

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Zipfel, J.; Anderson, R.; Brueckner, J.; Clark, B. C.; Dreibus, G.; Economou, T.; Gellert, R.; Lugmair, G. W.; Klingelhoefer, G.

    2005-01-01

    During the MER Mission, an isolated rock at Meridiani Planum was analyzed by the Athena instrument suite [1]. Remote sensing instruments noticed its distinct appearance. Two areas on the untreated rock surface and one area that was abraded with the Rock Abrasion Tool were analyzed by Microscopic Imager, Mossbauer Mimos II [2], and Alpha Particle X-ray Spectrometer (APXS). Results of all analyses revealed a close relationship of this rock with known basaltic shergottites.

  9. Helicopter tail rotor noise analyses

    NASA Technical Reports Server (NTRS)

    George, A. R.; Chou, S. T.

    1986-01-01

    A study was made of helicopter tail rotor noise, particularly that due to interactions with the main rotor tip vortices, and with the fuselage separation mean wake. The tail rotor blade-main rotor tip vortex interaction is modelled as an airfoil of infinite span cutting through a moving vortex. The vortex and the geometry information required by the analyses are obtained through a free wake geometry analysis of the main rotor. The acoustic pressure-time histories for the tail rotor blade-vortex interactions are then calculated. These acoustic results are compared to tail rotor loading and thickness noise, and are found to be significant to the overall tail rotor noise generation. Under most helicopter operating conditions, large acoustic pressure fluctuations can be generated due to a series of skewed main rotor tip vortices passing through the tail rotor disk. The noise generation depends strongly upon the helicopter operating conditions and the location of the tail rotor relative to the main rotor.

  10. Imprecise probabilities in engineering analyses

    NASA Astrophysics Data System (ADS)

    Beer, Michael; Ferson, Scott; Kreinovich, Vladik

    2013-05-01

    Probabilistic uncertainty and imprecision in structural parameters and in environmental conditions and loads are challenging phenomena in engineering analyses. They require appropriate mathematical modeling and quantification to obtain realistic results when predicting the behavior and reliability of engineering structures and systems. But the modeling and quantification is complicated by the characteristics of the available information, which involves, for example, sparse data, poor measurements and subjective information. This raises the question whether the available information is sufficient for probabilistic modeling or rather suggests a set-theoretical approach. The framework of imprecise probabilities provides a mathematical basis to deal with these problems which involve both probabilistic and non-probabilistic information. A common feature of the various concepts of imprecise probabilities is the consideration of an entire set of probabilistic models in one analysis. The theoretical differences between the concepts mainly concern the mathematical description of the set of probabilistic models and the connection to the probabilistic models involved. This paper provides an overview on developments which involve imprecise probabilities for the solution of engineering problems. Evidence theory, probability bounds analysis with p-boxes, and fuzzy probabilities are discussed with emphasis on their key features and on their relationships to one another. This paper was especially prepared for this special issue and reflects, in various ways, the thinking and presentation preferences of the authors, who are also the guest editors for this special issue.

  11. Speed analyses of stimulus equivalence.

    PubMed Central

    Spencer, T J; Chase, P N

    1996-01-01

    The functional substitutability of stimuli in equivalence classes was examined through analyses of the speed of college students' accurate responding. After training subjects to respond to 18 conditional relations, subjects' accuracy and speed of accurate responding were compared across trial types (baseline, symmetry, transitivity, and combined transitivity and symmetry) and nodal distance (one- through five-node transitive and combined transitive and symmetric relations). Differences in accuracy across nodal distance and trial type were significant only on the first tests of equivalence, whereas differences in speed were significant even after extended testing. Response speed was inversely related to the number of nodes on which the tested relations were based. Significant differences in response speed were also found across trial types, except between transitivity and combined trials. To determine the generality of these comparisons, three groups of subjects were included: An instructed group was given an instruction that specified the interchangeability of stimuli related through training; a queried group was queried about the basis for test-trial responding: and a standard group was neither instructed nor queried. There were no significant differences among groups. These results suggest the use of response speed and response accuracy to measure the strength of matching relations. PMID:8636663

  12. Network analyses in systems pharmacology

    PubMed Central

    Berger, Seth I.; Iyengar, Ravi

    2009-01-01

    Systems pharmacology is an emerging area of pharmacology which utilizes network analysis of drug action as one of its approaches. By considering drug actions and side effects in the context of the regulatory networks within which the drug targets and disease gene products function, network analysis promises to greatly increase our knowledge of the mechanisms underlying the multiple actions of drugs. Systems pharmacology can provide new approaches for drug discovery for complex diseases. The integrated approach used in systems pharmacology can allow for drug action to be considered in the context of the whole genome. Network-based studies are becoming an increasingly important tool in understanding the relationships between drug action and disease susceptibility genes. This review discusses how analysis of biological networks has contributed to the genesis of systems pharmacology and how these studies have improved global understanding of drug targets, suggested new targets and approaches for therapeutics, and provided a deeper understanding of the effects of drugs. Taken together, these types of analyses can lead to new therapeutic options while improving the safety and efficacy of existing medications. Contact: ravi.iyengar@mssm.edu PMID:19648136

  13. Comparison between Inbreeding Analyses Methodologies.

    PubMed

    Esparza, Mireia; Martínez-Abadías, Neus; Sjøvold, Torstein; González-José, Rolando; Hernández, Miquel

    2015-12-01

    Surnames are widely used in inbreeding analysis, but the validity of results has often been questioned due to the failure to comply with the prerequisites of the method. Here we analyze inbreeding in Hallstatt (Austria) between the 17th and the 19th centuries both using genealogies and surnames. The high and significant correlation of the results obtained by both methods demonstrates the validity of the use of surnames in this kind of studies. On the other hand, the inbreeding values obtained (0.24 x 10⁻³ in the genealogies analysis and 2.66 x 10⁻³ in the surnames analysis) are lower than those observed in Europe for this period and for this kind of population, demonstrating the falseness of the apparent isolation of Hallstatt's population. The temporal trend of inbreeding in both analyses does not follow the European general pattern, but shows a maximum in 1850 with a later decrease along the second half of the 19th century. This is probably due to the high migration rate that is implied by the construction of transport infrastructures around the 1870's. PMID:26987150

  14. Consumption patterns and perception analyses of hangwa.

    PubMed

    Kwock, Chang Geun; Lee, Min A; Park, So Hyun

    2012-03-01

    Hangwa is a traditional food, corresponding to the current consumption trend, in need of marketing strategies to extend its consumption. Therefore, the purpose of this study was to analyze consumers' consumption patterns and perception of Hangwa to increase consumption in the market. A questionnaire was sent to 250 consumers by e-mail from Oct 8∼23, 2009 and the data from 231 persons were analyzed in this study. Statistical, descriptive, paired samples t-test, and importance-performance analyses were conducted using SPSS WIN 17.0. According to the results, Hangwa was purchased mainly 'for present' (39.8%) and the main reasons for buying it were 'traditional image' (33.3%) and 'taste' (22.5%). When importance and performance of attributes considered in purchasing Hangwa were evaluated, performance was assessed to be lower than importance for all attributes. The attributes in the first quadrant with a high importance and a high performance were 'a sanitary process', 'a rigorous quality mark' and 'taste', which were related with quality of the products. In addition, those with a high importance but a low performance were 'popularization through advertisement', 'promotion through mass media', 'conversion of thought on traditional foods', 'a reasonable price' and 'a wide range of price'. In conclusion, Hangwa manufacturers need to diversify products and extend the expiration date based on technologies to promote its consumption. In terms of price, Hangwa should become more available by lowering the price barrier for consumers who are sensitive to price. PMID:24471065

  15. The relationship among sea surface roughness variations, oceanographic analyses, and airborne remote sensing analyses

    NASA Technical Reports Server (NTRS)

    Oertel, G. F.; Wade, T. L.

    1981-01-01

    The synthetic aperture radar (SAR) was studied to determine whether it could image large scale estuaries and oceanic features such as fronts and to explain the electromagnetic interaction between SAR and the individual surface front features. Fronts were observed to occur at the entrance to the Chesapeake Bay. The airborne measurements consisted of data collection by SAR onboard an F-4 aircraft and real aperture side looking radar (SLAR) in Mohawk aircraft. A total of 89 transects were flown. Surface roughness and color as well as temperature and salinity were evaluated. Cross-frontal surveys were made. Frontal shear and convergence flow were obtained. Surface active organic materials, it was indicated, are present at the air-sea interface. In all, 2000 analyses were conducted to characterize the spatial and temporal variabilities associated with water mass boundaries.

  16. Image Gallery

    MedlinePlus

    ... R S T U V W X Y Z Image Gallery Share: The Image Gallery contains high-quality digital photographs available from ... Select a category below to view additional thumbnail images. Images are available for direct download in 2 ...

  17. Cancer Imaging

    MedlinePlus

    ... I/II Trials CIP ARRA-Funded Clinical Trials Informatics The Cancer Imaging Archive TCGA Imaging Genomics Quantitative Imaging Network LIDC-IDRI Imaging Informatics Resources News & Events News and Announcements Events – Meetings ...

  18. NOx analyser interefence from alkenes

    NASA Astrophysics Data System (ADS)

    Bloss, W. J.; Alam, M. S.; Lee, J. D.; Vazquez, M.; Munoz, A.; Rodenas, M.

    2012-04-01

    Nitrogen oxides (NO and NO2, collectively NOx) are critical intermediates in atmospheric chemistry. NOx abundance controls the levels of the primary atmospheric oxidants OH, NO3 and O3, and regulates the ozone production which results from the degradation of volatile organic compounds. NOx are also atmospheric pollutants in their own right, and NO2 is commonly included in air quality objectives and regulations. In addition to their role in controlling ozone formation, NOx levels affect the production of other pollutants such as the lachrymator PAN, and the nitrate component of secondary aerosol particles. Consequently, accurate measurement of nitrogen oxides in the atmosphere is of major importance for understanding our atmosphere. The most widely employed approach for the measurement of NOx is chemiluminescent detection of NO2* from the NO + O3 reaction, combined with NO2 reduction by either a heated catalyst or photoconvertor. The reaction between alkenes and ozone is also chemiluminescent; therefore alkenes may contribute to the measured NOx signal, depending upon the instrumental background subtraction cycle employed. This interference has been noted previously, and indeed the effect has been used to measure both alkenes and ozone in the atmosphere. Here we report the results of a systematic investigation of the response of a selection of NOx analysers, ranging from systems used for routine air quality monitoring to atmospheric research instrumentation, to a series of alkenes ranging from ethene to the biogenic monoterpenes, as a function of conditions (co-reactants, humidity). Experiments were performed in the European Photoreactor (EUPHORE) to ensure common calibration, a common sample for the monitors, and to unequivocally confirm the alkene (via FTIR) and NO2 (via DOAS) levels present. The instrument responses ranged from negligible levels up to 10 % depending upon the alkene present and conditions used. Such interferences may be of substantial importance

  19. Analyses of the LMC Novae

    NASA Astrophysics Data System (ADS)

    Vanlandingham, K. M.; Schwarz, G. J.; Starrfield, S.; Hauschildt, P. H.; Shore, S. N.; Sonneborn, G.

    In the past 10 years, 6 classical novae have been observed in the Large Magellanic Cloud (LMC). We have begun a study of these objects using ultraviolet spectra obtained by IUE and optical spectra from nova surveys. We are using the results of this study to further our understanding of novae and stellar evolution. Our study includes analysis of both the early, optically thick spectra using model atmospheres, and the later nebular spectra using optimization of photoionization codes. By analysing of all the LMC novae in a consistent manner, we can compare their individual results and use their combined properties to calibrate Galactic novae. In addition, our studies can be used to determine the elemental abundances of the nova ejecta, the amount of mass ejected, and the contribution of novae to the ISM abundances. To date we have analyzed Nova LMC 1988#1 and Nova LMC 1990#1, and have obtained preliminary results for Nova LMC 1991. The results of this work are presented in this poster. The metal content of the LMC is known to be sub-solar and varies as a function of location within the cloud. A detailed abundance analysis of the ejecta of the LMC novae provides important information concerning the effect of initial metal abundances on energetics of the nova outburst. Since the distance to the LMC is well known, many important parameters of the outburst, such as the luminosity, can be absolutely determined. Both galactic and extragalactic novae have been proposed as potential standard candles. Recent work by Della Valle & Livio (1995) has improved on the standard relations (e.g., Schmidt 1957; Pfau 1976; Cohen 1985; Livio 1992) by including novae from the LMC and M31. Unfortunately, the dependence of the nova outburst on metallicity has not been well-studied. Recent theoretical work by Starrfield et al. (1998) indicates that the luminosity of the outburst increases with decreasing metal abundances. If there is a dependence of luminosity on metallicity, it will have to

  20. Analyses of Transistor Punchthrough Failures

    NASA Technical Reports Server (NTRS)

    Nicolas, David P.

    1999-01-01

    The failure of two transistors in the Altitude Switch Assembly for the Solid Rocket Booster followed by two additional failures a year later presented a challenge to failure analysts. These devices had successfully worked for many years on numerous missions. There was no history of failures with this type of device. Extensive checks of the test procedures gave no indication for a source of the cause. The devices were manufactured more than twenty years ago and failure information on this lot date code was not readily available. External visual exam, radiography, PEID, and leak testing were performed with nominal results Electrical testing indicated nearly identical base-emitter and base-collector characteristics (both forward and reverse) with a low resistance short emitter to collector. These characteristics are indicative of a classic failure mechanism called punchthrough. In failure analysis punchthrough refers to an condition where a relatively low voltage pulse causes the device to conduct very hard producing localized areas of thermal runaway or "hot spots". At one or more of these hot spots, the excessive currents melt the silicon. Heavily doped emitter material diffuses through the base region to the collector forming a diffusion pipe shorting the emitter to base to collector. Upon cooling, an alloy junction forms between the pipe and the base region. Generally, the hot spot (punch-through site) is under the bond and no surface artifact is visible. The devices were delidded and the internal structures were examined microscopically. The gold emitter lead was melted on one device, but others had anomalies in the metallization around the in-tact emitter bonds. The SEM examination confirmed some anomalies to be cosmetic defects while other anomalies were artifacts of the punchthrough site. Subsequent to these analyses, the contractor determined that some irregular testing procedures occurred at the time of the failures heretofore unreported. These testing

  1. Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run

    2016-03-01

    A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.

  2. Quantum Image Encryption Algorithm Based on Quantum Image XOR Operations

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; He, Xiang-Tao; Cheng, Shan; Hua, Tian-Xiang; Zhou, Nan-Run

    2016-07-01

    A novel encryption algorithm for quantum images based on quantum image XOR operations is designed. The quantum image XOR operations are designed by using the hyper-chaotic sequences generated with the Chen's hyper-chaotic system to control the control-NOT operation, which is used to encode gray-level information. The initial conditions of the Chen's hyper-chaotic system are the keys, which guarantee the security of the proposed quantum image encryption algorithm. Numerical simulations and theoretical analyses demonstrate that the proposed quantum image encryption algorithm has larger key space, higher key sensitivity, stronger resistance of statistical analysis and lower computational complexity than its classical counterparts.

  3. Statistical image analysis of longitudinal RAVENS images

    PubMed Central

    Lee, Seonjoo; Zipunnikov, Vadim; Reich, Daniel S.; Pham, Dzung L.

    2015-01-01

    Regional analysis of volumes examined in normalized space (RAVENS) are transformation images used in the study of brain morphometry. In this paper, RAVENS images are analyzed using a longitudinal variant of voxel-based morphometry (VBM) and longitudinal functional principal component analysis (LFPCA) for high-dimensional images. We demonstrate that the latter overcomes the limitations of standard longitudinal VBM analyses, which does not separate registration errors from other longitudinal changes and baseline patterns. This is especially important in contexts where longitudinal changes are only a small fraction of the overall observed variability, which is typical in normal aging and many chronic diseases. Our simulation study shows that LFPCA effectively separates registration error from baseline and longitudinal signals of interest by decomposing RAVENS images measured at multiple visits into three components: a subject-specific imaging random intercept that quantifies the cross-sectional variability, a subject-specific imaging slope that quantifies the irreversible changes over multiple visits, and a subject-visit specific imaging deviation. We describe strategies to identify baseline/longitudinal variation and registration errors combined with covariates of interest. Our analysis suggests that specific regional brain atrophy and ventricular enlargement are associated with multiple sclerosis (MS) disease progression. PMID:26539071

  4. Pawnee Nation Energy Option Analyses

    SciTech Connect

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  5. 49 CFR 1180.7 - Market analyses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 8 2010-10-01 2010-10-01 false Market analyses. 1180.7 Section 1180.7..., TRACKAGE RIGHTS, AND LEASE PROCEDURES General Acquisition Procedures § 1180.7 Market analyses. (a) For major and significant transactions, applicants shall submit impact analyses (exhibit 12) describing...

  6. 10 CFR 61.13 - Technical analyses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Technical analyses. 61.13 Section 61.13 Energy NUCLEAR....13 Technical analyses. The specific technical information must also include the following analyses... air, soil, groundwater, surface water, plant uptake, and exhumation by burrowing animals. The...

  7. 49 CFR 1180.7 - Market analyses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 8 2011-10-01 2011-10-01 false Market analyses. 1180.7 Section 1180.7..., TRACKAGE RIGHTS, AND LEASE PROCEDURES General Acquisition Procedures § 1180.7 Market analyses. (a) For major and significant transactions, applicants shall submit impact analyses (exhibit 12) describing...

  8. 10 CFR 61.13 - Technical analyses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Technical analyses. 61.13 Section 61.13 Energy NUCLEAR....13 Technical analyses. The specific technical information must also include the following analyses... air, soil, groundwater, surface water, plant uptake, and exhumation by burrowing animals. The...

  9. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Uncertainty analyses. 436.24 Section 436.24 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION FEDERAL ENERGY MANAGEMENT AND PLANNING PROGRAMS Methodology and Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or timing of cash flows are uncertain and...

  10. Integrated Field Analyses of Thermal Springs

    NASA Astrophysics Data System (ADS)

    Shervais, K.; Young, B.; Ponce-Zepeda, M. M.; Rosove, S.

    2011-12-01

    A group of undergraduate researchers through the SURE internship offered by the Southern California Earthquake Center (SCEC) have examined thermal springs in southern Idaho, northern Utah as well as mud volcanoes in the Salton Sea, California. We used an integrated approach to estimate the setting and maximum temperature, including water chemistry, Ipad-based image and data-base management, microbiology, and gas analyses with a modified Giggenbach sampler.All springs were characterized using GISRoam (tmCogent3D). We are performing geothermometry calculations as well as comparisons with temperature gradient data on the results while also analyzing biological samples. Analyses include water temperature, pH, electrical conductivity, and TDS measured in the field. Each sample is sealed and chilled and delivered to a water lab within 12 hours.Temperatures are continuously monitored with the use of Solinst Levelogger Juniors. Through partnership with a local community college geology club, we receive results on a monthly basis and are able to process initial data earlier in order to evaluate data over a longer time span. The springs and mudpots contained microbial organisms which were analyzed using methods of single colony isolation, polymerase chain reaction, and DNA sequencing showing the impact of the organisms on the springs or vice versa. Soon we we will collect gas samples at sites that show signs of gas. This will be taken using a hybrid of the Giggenbach method and our own methods. Drawing gas samples has proven a challenge, however we devised a method to draw out gas samples utilizing the Giggenbach flask, transferring samples to glass blood sample tubes, replacing NaOH in the Giggenbach flask, and evacuating it in the field for multiple samples using a vacuum pump. We also use a floating platform devised to carry and lower a levelogger, to using an in-line fuel filter from a tractor in order to keep mud from contaminating the equipment.The use of raster

  11. On categorizations in analyses of alcohol teratogenesis.

    PubMed Central

    Sampson, P D; Streissguth, A P; Bookstein, F L; Barr, H M

    2000-01-01

    In biomedical scientific investigations, expositions of findings are conceptually simplest when they comprise comparisons of discrete groups of individuals or involve discrete features or characteristics of individuals. But the descriptive benefits of categorization become outweighed by their limitations in studies involving dose-response relationships, as in many teratogenic and environmental exposure studies. This article addresses a pair of categorization issues concerning the effects of prenatal alcohol exposure that have important public health consequences: the labeling of individuals as fetal alcohol syndrome (FAS) versus fetal alcohol effects (FAE) or alcohol-related neurodevelopmental disorder (ARND), and the categorization of prenatal exposure dose by thresholds. We present data showing that patients with FAS and others with FAE do not have meaningfully different behavioral performance, standardized scores of IQ, arithmetic and adaptive behavior, or secondary disabilities. Similarly overlapping distributions on measures of executive functioning offer a basis for identifying alcohol-affected individuals in a manner that does not simply reflect IQ deficits. At the other end of the teratological continuum, we turn to the reporting of threshold effects in dose-response relationships. Here we illustrate the importance of multivariate analyses using data from the Seattle, Washington, longitudinal prospective study on alcohol and pregnancy. Relationships between many neurobehavioral outcomes and measures of prenatal alcohol exposure are monotone without threshold down to the lowest nonzero levels of exposure, a finding consistent with reports from animal studies. In sum, alcohol effects on the developing human brain appear to be a continuum without threshold when dose and behavioral effects are quantified appropriately. Images Figure 1 Figure 3 PMID:10852839

  12. Pipeline for macro- and microarray analyses.

    PubMed

    Vicentini, R; Menossi, M

    2007-05-01

    The pipeline for macro- and microarray analyses (PMmA) is a set of scripts with a web interface developed to analyze DNA array data generated by array image quantification software. PMmA is designed for use with single- or double-color array data and to work as a pipeline in five classes (data format, normalization, data analysis, clustering, and array maps). It can also be used as a plugin in the BioArray Software Environment, an open-source database for array analysis, or used in a local version of the web service. All scripts in PMmA were developed in the PERL programming language and statistical analysis functions were implemented in the R statistical language. Consequently, our package is a platform-independent software. Our algorithms can correctly select almost 90% of the differentially expressed genes, showing a superior performance compared to other methods of analysis. The pipeline software has been applied to 1536 expressed sequence tags macroarray public data of sugarcane exposed to cold for 3 to 48 h. PMmA identified thirty cold-responsive genes previously unidentified in this public dataset. Fourteen genes were up-regulated, two had a variable expression and the other fourteen were down-regulated in the treatments. These new findings certainly were a consequence of using a superior statistical analysis approach, since the original study did not take into account the dependence of data variability on the average signal intensity of each gene. The web interface, supplementary information, and the package source code are available, free, to non-commercial users at http://ipe.cbmeg.unicamp.br/pub/PMmA. PMID:17464422

  13. TRMM-Based Merged Precipitation Analyses

    NASA Technical Reports Server (NTRS)

    Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric; Curtis, Scott

    1999-01-01

    This paper describes results of using Tropical Rainfall Measuring Mission (TRMM) information as the key calibration tool in a merged analysis on a 1X1 latitude/longitude monthly scale based on multiple satellite sources and raingauge analyses. The TRMM-based product is compared with surface-based validation data sets and the community-based 20-year Global Precipitation Climatology Project (GPCP)monthly analyses. The TRMM-based merged analysis uses the TRMM information to calibrate the estimates from SSM/I and geosynchronous IR observations and merges those estimates together with the TRMM and gauge information to produce accurate rainfall estimates with the increased sampling provided by the combined satellite information. This TRMM merged analysis uses the combined instrument (Precipitation Radar [PR] and TRMM Microwave Imager [TMI]) retrieval of Haddad as the TRMM estimate with which to calibrate the other satellite estimates. This TRMM Combined instrument (TCI) estimate is shown to produce very similar absolute values to the other main TRMM products. The TRMM and other satellites merged analysis compares favorably to the atoll data set of Morrissey for the months of 1998 with a very small positive bias of 2%. However, comparison with the preliminary results from the TRMM ground validation radar information at Kwajalein atoll in the western Pacific Ocean shows a 26% positive bias. Therefore, absolute magnitudes from TRMM and/or the ground validation need to be treated with care at this point. A month by month comparison of the TRMM merged analysis and the GPCP analysis indicates very similar patterns, but with subtle differences in magnitude. Focusing on the Pacific Ocean ITCZ one can see the TRMM-based estimates having higher peak values and lower values in the ITCZ periphery. These attributes also show up in the statistics, where GPCP>TRMM at low values (below 10 mm/d) and TRMM>GPCP at high values (greater than 15 mm/d). Integrated over the 37N-37S belt for all

  14. Imaging medical imaging

    NASA Astrophysics Data System (ADS)

    Journeau, P.

    2015-03-01

    This paper presents progress on imaging the research field of Imaging Informatics, mapped as the clustering of its communities together with their main results by applying a process to produce a dynamical image of the interactions between their results and their common object(s) of research. The basic side draws from a fundamental research on the concept of dimensions and projective space spanning several streams of research about three-dimensional perceptivity and re-cognition and on their relation and reduction to spatial dimensionality. The application results in an N-dimensional mapping in Bio-Medical Imaging, with dimensions such as inflammatory activity, MRI acquisition sequencing, spatial resolution (voxel size), spatiotemporal dimension inferred, toxicity, depth penetration, sensitivity, temporal resolution, wave length, imaging duration, etc. Each field is represented through the projection of papers' and projects' `discriminating' quantitative results onto the specific N-dimensional hypercube of relevant measurement axes, such as listed above and before reduction. Past published differentiating results are represented as red stars, achieved unpublished results as purple spots and projects at diverse progress advancement levels as blue pie slices. The goal of the mapping is to show the dynamics of the trajectories of the field in its own experimental frame and their direction, speed and other characteristics. We conclude with an invitation to participate and show a sample mapping of the dynamics of the community and a tentative predictive model from community contribution.

  15. Image Calibration

    NASA Technical Reports Server (NTRS)

    Peay, Christopher S.; Palacios, David M.

    2011-01-01

    Calibrate_Image calibrates images obtained from focal plane arrays so that the output image more accurately represents the observed scene. The function takes as input a degraded image along with a flat field image and a dark frame image produced by the focal plane array and outputs a corrected image. The three most prominent sources of image degradation are corrected for: dark current accumulation, gain non-uniformity across the focal plane array, and hot and/or dead pixels in the array. In the corrected output image the dark current is subtracted, the gain variation is equalized, and values for hot and dead pixels are estimated, using bicubic interpolation techniques.

  16. Indexing Images.

    ERIC Educational Resources Information Center

    Rasmussen, Edie M.

    1997-01-01

    Focuses on access to digital image collections by means of manual and automatic indexing. Contains six sections: (1) Studies of Image Systems and their Use; (2) Approaches to Indexing Images; (3) Image Attributes; (4) Concept-Based Indexing; (5) Content-Based Indexing; and (6) Browsing in Image Retrieval. Contains 105 references. (AEF)

  17. Image intensification

    SciTech Connect

    Csorba, I.P.

    1989-01-01

    These proceedings discuss the papers on image intensification. The topics discussed are : High speed optical detector tube technology; image tube camera technology; microchannel plate technology; high resolution x-ray imaging device; and process and evaluation techniques.

  18. MELCOR analyses for accident progression issues

    SciTech Connect

    Dingman, S.E.; Shaffer, C.J.; Payne, A.C.; Carmel, M.K. )

    1991-01-01

    Results of calculations performed with MELCOR and HECTR in support of the NUREG-1150 study are presented in this report. The analyses examined a wide range of issues. The analyses included integral calculations covering an entire accident sequence, as well as calculations that addressed specific issues that could affect several accident sequences. The results of the analyses for Grand Gulf, Peach Bottom, LaSalle, and Sequoyah are described, and the major conclusions are summarized. 23 refs., 69 figs., 8 tabs.

  19. Electron/proton spectrometer certification documentation analyses

    NASA Technical Reports Server (NTRS)

    Gleeson, P.

    1972-01-01

    A compilation of analyses generated during the development of the electron-proton spectrometer for the Skylab program is presented. The data documents the analyses required by the electron-proton spectrometer verification plan. The verification plan was generated to satisfy the ancillary hardware requirements of the Apollo Applications program. The certification of the spectrometer requires that various tests, inspections, and analyses be documented, approved, and accepted by reliability and quality control personnel of the spectrometer development program.

  20. The ASSET intercomparison of ozone analyses: method and first results

    NASA Astrophysics Data System (ADS)

    Geer, A. J.; Lahoz, W. A.; Bekki, S.; Bormann, N.; Errera, Q.; Eskes, H. J.; Fonteyn, D.; Jackson, D. R.; Juckes, M. N.; Massart, S.; Peuch, V.-H.; Rharmili, S.; Segers, A.

    2006-12-01

    This paper aims to summarise the current performance of ozone data assimilation (DA) systems, to show where they can be improved, and to quantify their errors. It examines 11 sets of ozone analyses from 7 different DA systems. Two are numerical weather prediction (NWP) systems based on general circulation models (GCMs); the other five use chemistry transport models (CTMs). The systems examined contain either linearised or detailed ozone chemistry, or no chemistry at all. In most analyses, MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) ozone data are assimilated; two assimilate SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography) observations instead. Analyses are compared to independent ozone observations covering the troposphere, stratosphere and lower mesosphere during the period July to November 2003. Biases and standard deviations are largest, and show the largest divergence between systems, in the troposphere, in the upper-troposphere/lower-stratosphere, in the upper-stratosphere and mesosphere, and the Antarctic ozone hole region. However, in any particular area, apart from the troposphere, at least one system can be found that agrees well with independent data. In general, none of the differences can be linked to the assimilation technique (Kalman filter, three or four dimensional variational methods, direct inversion) or the system (CTM or NWP system). Where results diverge, a main explanation is the way ozone is modelled. It is important to correctly model transport at the tropical tropopause, to avoid positive biases and excessive structure in the ozone field. In the southern hemisphere ozone hole, only the analyses which correctly model heterogeneous ozone depletion are able to reproduce the near-complete ozone destruction over the pole. In the upper-stratosphere and mesosphere (above 5 hPa), some ozone photochemistry schemes caused large but easily remedied biases. The diurnal cycle of ozone in the

  1. Comparative Analyses Of Multi-Frequency PSI Ground Deformation Measurements

    NASA Astrophysics Data System (ADS)

    Duro, Javier; Sabater, Jose R.; Albiol, David; Koudogbo, Fifame N.; Arnaud, Alain

    2012-01-01

    In recent years many new developments have been made in the field of SAR image analysis. The wider diversity of available SAR imagery gives the possibility of covering wide ranges of applications in the domain of ground motion monitoring for risk management and damage assessment. The work proposed is based on the evaluation of differences in ground deformation measurements derived from multi-frequency PSI analyses. The objectives of the project are the derivation of rules and the definition of criteria for the selection of the appropriate SAR sensor for a particular type of region of interest. Key selection factors are the satellite characteristics (operating frequency, spatial resolution, and revisit time), the geographic localization of AOI, the land cover type and the extension of the monitoring period. All presented InSAR analyses have been performed using the Stable Point Network (SPN) PSI software developed by Altamira Information [1].

  2. Oncological image analysis: medical and molecular image analysis

    NASA Astrophysics Data System (ADS)

    Brady, Michael

    2007-03-01

    This paper summarises the work we have been doing on joint projects with GE Healthcare on colorectal and liver cancer, and with Siemens Molecular Imaging on dynamic PET. First, we recall the salient facts about cancer and oncological image analysis. Then we introduce some of the work that we have done on analysing clinical MRI images of colorectal and liver cancer, specifically the detection of lymph nodes and segmentation of the circumferential resection margin. In the second part of the paper, we shift attention to the complementary aspect of molecular image analysis, illustrating our approach with some recent work on: tumour acidosis, tumour hypoxia, and multiply drug resistant tumours.

  3. Amplitude analyses of charmless B decays

    NASA Astrophysics Data System (ADS)

    Latham, Thomas

    2016-05-01

    We present recent results from the LHCb experiment of Amplitude Analyses of charmless decays of B0 and BS0 mesons to two vector mesons. Measurements obtained include the branching fractions and polarization fractions, as well as CP asymmetries. The analyses use the data recorded by the LHCb experiment during Run 1 of the LHC.

  4. Aviation System Analysis Capability Executive Assistant Analyses

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Kostiuk, Peter

    1999-01-01

    This document describes the analyses that may be incorporated into the Aviation System Analysis Capability Executive Assistant. The document will be used as a discussion tool to enable NASA and other integrated aviation system entities to evaluate, discuss, and prioritize analyses.

  5. 49 CFR 1572.107 - Other analyses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... conviction for a serious crime not listed in 49 CFR 1572.103, or a period of foreign or domestic imprisonment... 49 Transportation 9 2011-10-01 2011-10-01 false Other analyses. 1572.107 Section 1572.107... ASSESSMENTS Standards for Security Threat Assessments § 1572.107 Other analyses. (a) TSA may determine that...

  6. 49 CFR 1572.107 - Other analyses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... conviction for a serious crime not listed in 49 CFR 1572.103, or a period of foreign or domestic imprisonment... 49 Transportation 9 2010-10-01 2010-10-01 false Other analyses. 1572.107 Section 1572.107... ASSESSMENTS Standards for Security Threat Assessments § 1572.107 Other analyses. (a) TSA may determine that...

  7. 49 CFR 1180.7 - Market analyses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 8 2012-10-01 2012-10-01 false Market analyses. 1180.7 Section 1180.7..., TRACKAGE RIGHTS, AND LEASE PROCEDURES General Acquisition Procedures § 1180.7 Market analyses. (a) For... identify and address relevant markets and issues, and provide additional information as requested by...

  8. 49 CFR 1180.7 - Market analyses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 8 2014-10-01 2014-10-01 false Market analyses. 1180.7 Section 1180.7..., TRACKAGE RIGHTS, AND LEASE PROCEDURES General Acquisition Procedures § 1180.7 Market analyses. (a) For... identify and address relevant markets and issues, and provide additional information as requested by...

  9. 49 CFR 1180.7 - Market analyses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 8 2013-10-01 2013-10-01 false Market analyses. 1180.7 Section 1180.7..., TRACKAGE RIGHTS, AND LEASE PROCEDURES General Acquisition Procedures § 1180.7 Market analyses. (a) For... identify and address relevant markets and issues, and provide additional information as requested by...

  10. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle...

  11. 10 CFR 436.24 - Uncertainty analyses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Procedures for Life Cycle Cost Analyses § 436.24 Uncertainty analyses. If particular items of cost data or... impact of uncertainty on the calculation of life cycle cost effectiveness or the assignment of rank order... and probabilistic analysis. If additional analysis casts substantial doubt on the life cycle...

  12. 10 CFR 61.13 - Technical analyses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... air, soil, groundwater, surface water, plant uptake, and exhumation by burrowing animals. The analyses... expected exposures due to routine operations and likely accidents during handling, storage, and disposal of... 10 Energy 2 2013-01-01 2013-01-01 false Technical analyses. 61.13 Section 61.13 Energy...

  13. [Brain metastases imaging].

    PubMed

    Delmaire, C; Savatovsky, J; Boulanger, T; Dhermain, F; Le Rhun, E; Météllus, P; Gerber, S; Carsin-Nicole, B; Petyt, G

    2015-02-01

    The therapeutic management of brain metastases depends upon their diagnosis and characteristics. It is therefore imperative that imaging provides accurate diagnosis, identification, size and localization information of intracranial lesions in patients with presumed cerebral metastatic disease. MRI exhibits superior sensitivity to CT for small lesions identification and to evaluate their precise anatomical location. The CT-scan will be made only in case of MRI's contraindication or if MRI cannot be obtained in an acceptable delay for the management of the patient. In clinical practice, the radiologic metastasis evaluation is based on visual image analyses. Thus, a particular attention is paid to the imaging protocol with the aim to optimize the diagnosis of small lesions and to evaluate their evolution. The MRI protocol must include: 1) non-contrast T1, 2) diffusion, 3) T2* or susceptibility-weighted imaging, 4) dynamic susceptibility contrast perfusion, 5) FLAIR with contrast injection, 6) T1 with contrast injection preferentially using the 3D spin echo images. The role of the nuclear medicine imaging is still limited in the diagnosis of brain metastasis. The Tc-sestamibi brain imaging or PET with amino acid tracers can differentiate local brain metastasis recurrence from radionecrosis but still to be evaluated. PMID:25649387

  14. Infrared imaging of comets

    NASA Technical Reports Server (NTRS)

    Telesco, Charles M.

    1988-01-01

    Thermal infrared imaging of comets provides fundamental information about the distribution of dust in their comae and tails. The imaging program at NASA Marshall Space Flight Center (MSFC) uses a unique 20-pixel bolometer array that was developed to image comets at 8 to 30 micrometer. These images provide the basis for: (1) characterizing the composition and size distribution of particles, (2) determining the mass-loss rates from cometary nuclei, and (3) describing the dynamics of the interaction between the dust and the solar radiation. Since the array became operational in 1985, researchers have produced a unique series of IR images of comets Giacobini-Zinner (GZ), Halley, and Wilson. That of GZ was the first groundbased thermal image ever made of a comet and was used to construct, with visible observations, an albedo map. Those data and dynamical analyses showed that GZ contained a population of large (approximately 300 micrometer), fluffy dust grains that formed a distinict inner tail. The accumulating body of images of various comets has also provided a basis for fruitfully intercomparing comet properties. Researchers also took advantage of the unique capabilities of the camera to resolve the inner, possible protoplanetary, disk of the star Beta Pictoris, while not a comet research program, that study is a fruitful additional application of the array to solar system astronomy.

  15. Functional analyses and treatment of precursor behavior.

    PubMed

    Najdowski, Adel C; Wallace, Michele D; Ellsworth, Carrie L; MacAleese, Alicia N; Cleveland, Jackie M

    2008-01-01

    Functional analysis has been demonstrated to be an effective method to identify environmental variables that maintain problem behavior. However, there are cases when conducting functional analyses of severe problem behavior may be contraindicated. The current study applied functional analysis procedures to a class of behavior that preceded severe problem behavior (precursor behavior) and evaluated treatments based on the outcomes of the functional analyses of precursor behavior. Responding for all participants was differentiated during the functional analyses, and individualized treatments eliminated precursor behavior. These results suggest that functional analysis of precursor behavior may offer an alternative, indirect method to assess the operant function of severe problem behavior. PMID:18468282

  16. Image processing technology

    SciTech Connect

    Van Eeckhout, E.; Pope, P.; Balick, L.

    1996-07-01

    This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The primary objective of this project was to advance image processing and visualization technologies for environmental characterization. This was effected by developing and implementing analyses of remote sensing data from satellite and airborne platforms, and demonstrating their effectiveness in visualization of environmental problems. Many sources of information were integrated as appropriate using geographic information systems.

  17. Anthocyanin analyses of Vaccinium fruit dietary supplements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vaccinium fruit ingredients within dietary supplements were identified by comparisons with anthocyanin analyses of known Vaccinium profiles (demonstration of anthocyanin fingerprinting). Available Vaccinium supplements were purchased and analyzed; their anthocyanin profiles (based on HPLC separation...

  18. SCM Forcing Data Derived from NWP Analyses

    DOE Data Explorer

    Jakob, Christian

    2008-01-15

    Forcing data, suitable for use with single column models (SCMs) and cloud resolving models (CRMs), have been derived from NWP analyses for the ARM (Atmospheric Radiation Measurement) Tropical Western Pacific (TWP) sites of Manus Island and Nauru.

  19. Comparison with Russian analyses of meteor impact

    SciTech Connect

    Canavan, G.H.

    1997-06-01

    The inversion model for meteor impacts is used to discuss Russian analyses and compare principal results. For common input parameters, the models produce consistent estimates of impactor parameters. Directions for future research are discussed and prioritized.

  20. 7 CFR 94.102 - Analyses available.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... analyses for total ash, fat by acid hydrolysis, moisture, salt, protein, beta-carotene, catalase... glycol, SLS, and zeolex. There are also be tests for starch, total sugars, sugar profile, whey,...

  1. 7 CFR 94.102 - Analyses available.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... analyses for total ash, fat by acid hydrolysis, moisture, salt, protein, beta-carotene, catalase... glycol, SLS, and zeolex. There are also be tests for starch, total sugars, sugar profile, whey,...

  2. Quality control considerations in performing washability analyses

    SciTech Connect

    Graham, R.D.

    1984-10-01

    The author describes, in considerable detail, the procedures for carrying out washability analyses as laid down in ASTM Standard Test Method D4371. These include sampling, sample preparation, hydrometer standardisation, washability testing, and analysis of specific gravity fractions.

  3. 10 CFR 61.13 - Technical analyses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements of part 20 of this chapter. (d) Analyses of the long-term stability of the disposal site and the... processes such as erosion, mass wasting, slope failure, settlement of wastes and backfill,...

  4. 10 CFR 61.13 - Technical analyses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements of part 20 of this chapter. (d) Analyses of the long-term stability of the disposal site and the... processes such as erosion, mass wasting, slope failure, settlement of wastes and backfill,...

  5. A History of Rotorcraft Comprehensive Analyses

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2013-01-01

    A history of the development of rotorcraft comprehensive analyses is presented. Comprehensive analyses are digital computer programs that calculate the aeromechanical behavior of the rotor and aircraft, bringing together the most advanced models of the geometry, structure, dynamics, and aerodynamics available in rotary wing technology. The development of the major codes of the last five decades from industry, government, and universities is described. A number of common themes observed in this history are discussed.

  6. Analyses and forecasts with LAWS winds

    NASA Technical Reports Server (NTRS)

    Wang, Muyin; Paegle, Jan

    1994-01-01

    Horizontal fluxes of atmospheric water vapor are studied for summer months during 1989 and 1992 over North and South America based on analyses from European Center for Medium Range Weather Forecasts, US National Meteorological Center, and United Kingdom Meteorological Office. The calculations are performed over 20 deg by 20 deg box-shaped midlatitude domains located to the east of the Rocky Mountains in North America, and to the east of the Andes Mountains in South America. The fluxes are determined from operational center gridded analyses of wind and moisture. Differences in the monthly mean moisture flux divergence determined from these analyses are as large as 7 cm/month precipitable water equivalent over South America, and 3 cm/month over North America. Gridded analyses at higher spatial and temporal resolution exhibit better agreement in the moisture budget study. However, significant discrepancies of the moisture flux divergence computed from different gridded analyses still exist. The conclusion is more pessimistic than Rasmusson's estimate based on station data. Further analysis reveals that the most significant sources of error result from model surface elevation fields, gaps in the data archive, and uncertainties in the wind and specific humidity analyses. Uncertainties in the wind analyses are the most important problem. The low-level jets, in particular, are substantially different in the different data archives. Part of the reason for this may be due to the way the different analysis models parameterized physical processes affecting low-level jets. The results support the inference that the noise/signal ratio of the moisture budget may be improved more rapidly by providing better wind observations and analyses than by providing better moisture data.

  7. Quantitative analyses for elucidating mechanisms of cell fate commitment in the mouse blastocyst

    NASA Astrophysics Data System (ADS)

    Saiz, Néstor; Kang, Minjung; Puliafito, Alberto; Schrode, Nadine; Xenopoulos, Panagiotis; Lou, Xinghua; Di Talia, Stefano; Hadjantonakis, Anna-Katerina

    2015-03-01

    In recent years we have witnessed a shift from qualitative image analysis towards higher resolution, quantitative analyses of imaging data in developmental biology. This shift has been fueled by technological advances in both imaging and analysis software. We have recently developed a tool for accurate, semi-automated nuclear segmentation of imaging data from early mouse embryos and embryonic stem cells. We have applied this software to the study of the first lineage decisions that take place during mouse development and established analysis pipelines for both static and time-lapse imaging experiments. In this paper we summarize the conclusions from these studies to illustrate how quantitative, single-cell level analysis of imaging data can unveil biological processes that cannot be revealed by traditional qualitative studies.

  8. Albedo Pattern Recognition and Time-Series Analyses in Malaysia

    NASA Astrophysics Data System (ADS)

    Salleh, S. A.; Abd Latif, Z.; Mohd, W. M. N. Wan; Chan, A.

    2012-07-01

    Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000-2009) MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools). There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI) and aerosol optical depth (AOD). There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high negative linear

  9. Computer techniques used for some enhancements of ERTS images

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.; Goetz, A. F. H.

    1973-01-01

    The JPL VICAR image processing system has been used for the enhancement of images received from the ERTS for the Arizona geology mapping experiment. This system contains flexible capabilities for reading and repairing MSS digital tape images, for geometric corrections and interpicture registration, for various enhancements and analyses of the data, and for display of the images in black and white and color.

  10. Diagnostic Imaging

    MedlinePlus

    Diagnostic imaging lets doctors look inside your body for clues about a medical condition. A variety of machines and ... and activities inside your body. The type of imaging your doctor uses depends on your symptoms and ...

  11. Medical Imaging.

    ERIC Educational Resources Information Center

    Barker, M. C. J.

    1996-01-01

    Discusses four main types of medical imaging (x-ray, radionuclide, ultrasound, and magnetic resonance) and considers their relative merits. Describes important recent and possible future developments in image processing. (Author/MKR)

  12. Measuring image quality in overlapping areas of panoramic composed images

    NASA Astrophysics Data System (ADS)

    Mitjà, Carles; Bover, Toni; Escofet, Jaume

    2012-06-01

    Several professional photographic applications uses the merging of consecutive overlapping images in order to obtain bigger files by means of stitching techniques or extended field of view (FOV) for panoramic images. All of those applications share the fact that the final composed image is obtained by overlapping the neighboring areas of consecutive individual images taken as a mosaic or a series of tiles over the scene, from the same point of view. Any individual image taken with a given lens can carry residual aberrations and several of them will affect more probably the borders of the image frame. Furthermore, the amount of distortion aberration present in the images of a given lens will be reversed in position for the two overlapping areas of a pair of consecutive takings. Finally, the different images used in composing the final one have corresponding overlapping areas taken with different perspective. From all the previously stated can be derived that the software employed must remap all the pixel information in order to resize and match image features in those overlapping areas, providing a final composed image with the desired perspective projection. The work presented analyse two panoramic format images taken with a pair of lenses and composed by means of a state of the art stitching software. Then, a series of images are taken to cover an FOV three times the original lens FOV, the images are merged by means of a software of common use in professional panoramic photography and the final image quality is evaluated through a series of targets positioned in strategic locations over the whole taking field of view. That allows measuring the resulting Resolution and Modulation Transfer Function (MTF). The results are shown compared with the previous measures on the original individual images.

  13. Fractal and Lacunarity Analyses: Quantitative Characterization of Hierarchical Surface Topographies.

    PubMed

    Ling, Edwin J Y; Servio, Phillip; Kietzig, Anne-Marie

    2016-02-01

    Biomimetic hierarchical surface structures that exhibit features having multiple length scales have been used in many technological and engineering applications. Their surface topographies are most commonly analyzed using scanning electron microscopy (SEM), which only allows for qualitative visual assessments. Here we introduce fractal and lacunarity analyses as a method of characterizing the SEM images of hierarchical surface structures in a quantitative manner. Taking femtosecond laser-irradiated metals as an example, our results illustrate that, while the fractal dimension is a poor descriptor of surface complexity, lacunarity analysis can successfully quantify the spatial texture of an SEM image; this, in turn, provides a convenient means of reporting changes in surface topography with respect to changes in processing parameters. Furthermore, lacunarity plots are shown to be sensitive to the different length scales present within a hierarchical structure due to the reversal of lacunarity trends at specific magnifications where new features become resolvable. Finally, we have established a consistent method of detecting pattern sizes in an image from the oscillation of lacunarity plots. Therefore, we promote the adoption of lacunarity analysis as a powerful tool for quantitative characterization of, but not limited to, multi-scale hierarchical surface topographies. PMID:26758776

  14. Web-based cephalometric procedure for craniofacial and dentition analyses

    NASA Astrophysics Data System (ADS)

    Arun Kumar, N. S.; Kamath, Srijit R.; Ram, S.; Muthukumaran, B.; Venkatachalapathy, A.; Nandakumar, A.; Jayakumar, P.

    2000-05-01

    Craniofacial analysis is a very important and widely used procedure in orthodontic caphalometry, which plays a key role in diagnosis and treatment planning. This involves establishing reference standards and specification of landmarks and variables. The manual approach takes up a tremendous amount of the orthodontist's time. In this paper, we developed a web-based approach for the craniofacial and dentition analyses. A digital computed radiography (CR) system is utilized for obtaining the craniofacial image, which is stored as a bitmap file. The system comprises of two components - a server and a client. The server component is a program that runs on a remote machine. To use the system, the user has to connect to the website. The client component is now activated, which uploads the image from the PC and displays it on the canvas area. The landmarks are identified using a mouse interface. The reference lines are generated. The resulting image is then sent to the server which performs all measurement and calculates the mean, standard deviation, etc. of the variables. The results generated are sent immediately to the client where it is displayed on a separate frame along with the standard values for comparison. This system eliminates the need for every user to load other expensive programs on his machine.

  15. Dynamic and static error analyses of neutron radiography testing

    SciTech Connect

    Joo, H.; Glickstein, S.S.

    1999-03-01

    Neutron radiography systems are being used for real-time visualization of the dynamic behavior as well as time-averaged measurements of spatial vapor fraction distributions for two phase fluids. The data in the form of video images are typically recorded on videotape at 30 frames per second. Image analysis of he video pictures is used to extract time-dependent or time-averaged data. The determination of the average vapor fraction requires averaging of the logarithm of time-dependent intensity measurements of the neutron beam (gray scale distribution of the image) that passes through the fluid. This could be significantly different than averaging the intensity of the transmitted beam and then taking the logarithm of that term. This difference is termed the dynamic error (error in the time-averaged vapor fractions due to the inherent time-dependence of the measured data) and is separate from the static error (statistical sampling uncertainty). Detailed analyses of both sources of errors are discussed.

  16. Image tubes

    SciTech Connect

    Csorba, I.P.

    1985-01-01

    This text provides a wealth of valuable, hard-to-find data on electron optics, imaging, and image intensification systems. The author explains details of image tube theory, design, construction, and components. He includes material on the design and operation of camera tubes, power components, and secondary electron emitters, as well as data on photomultiplier tubes and electron guns.

  17. Proof Image

    ERIC Educational Resources Information Center

    Kidron, Ivy; Dreyfus, Tommy

    2014-01-01

    The emergence of a proof image is often an important stage in a learner's construction of a proof. In this paper, we introduce, characterize, and exemplify the notion of proof image. We also investigate how proof images emerge. Our approach starts from the learner's efforts to construct a justification without (or before) attempting any…

  18. Image alignment

    DOEpatents

    Dowell, Larry Jonathan

    2014-04-22

    Disclosed is a method and device for aligning at least two digital images. An embodiment may use frequency-domain transforms of small tiles created from each image to identify substantially similar, "distinguishing" features within each of the images, and then align the images together based on the location of the distinguishing features. To accomplish this, an embodiment may create equal sized tile sub-images for each image. A "key" for each tile may be created by performing a frequency-domain transform calculation on each tile. A information-distance difference between each possible pair of tiles on each image may be calculated to identify distinguishing features. From analysis of the information-distance differences of the pairs of tiles, a subset of tiles with high discrimination metrics in relation to other tiles may be located for each image. The subset of distinguishing tiles for each image may then be compared to locate tiles with substantially similar keys and/or information-distance metrics to other tiles of other images. Once similar tiles are located for each image, the images may be aligned in relation to the identified similar tiles.

  19. Canonical Images

    ERIC Educational Resources Information Center

    Hewitt, Dave

    2007-01-01

    In this article, the author offers two well-known mathematical images--that of a dot moving around a circle; and that of the tens chart--and considers their power for developing mathematical thinking. In his opinion, these images each contain the essence of a particular topic of mathematics. They are contrasting images in the sense that they deal…

  20. Finite element analyses of CCAT preliminary design

    NASA Astrophysics Data System (ADS)

    Sarawit, Andrew T.; Kan, Frank W.

    2014-07-01

    This paper describes the development of the CCAT telescope finite element model (FEM) and the analyses performed to support the preliminary design work. CCAT will be a 25 m diameter telescope operating in the 0.2 to 2 mm wavelength range. It will be located at an elevation of 5600 m on Cerro Chajnantor in Northern Chile, near ALMA. The telescope will be equipped with wide-field cameras and spectrometers mounted at the two Nasmyth foci. The telescope will be inside an enclosure to protect it from wind buffeting, direct solar heating, and bad weather. The main structures of the telescope include a steel Mount and a carbon-fiber-reinforced-plastic (CFRP) primary truss. The finite element model developed in this study was used to perform modal, frequency response, seismic response spectrum, stress, and deflection analyses of telescope. Modal analyses of telescope were performed to compute the structure natural frequencies and mode shapes and to obtain reduced order modal output at selected locations in the telescope structure to support the design of the Mount control system. Modal frequency response analyses were also performed to compute transfer functions at these selected locations. Seismic response spectrum analyses of the telescope subject to the Maximum Likely Earthquake were performed to compute peak accelerations and seismic demand stresses. Stress analyses were performed for gravity load to obtain gravity demand stresses. Deflection analyses for gravity load, thermal load, and differential elevation drive torque were performed so that the CCAT Observatory can verify that the structures meet the stringent telescope surface and pointing error requirements.

  1. Prismatic analyser concept for neutron spectrometers.

    PubMed

    Birk, Jonas O; Markó, Márton; Freeman, Paul G; Jacobsen, Johan; Hansen, Rasmus L; Christensen, Niels B; Niedermayer, Christof; Månsson, Martin; Rønnow, Henrik M; Lefmann, Kim

    2014-11-01

    Developments in modern neutron spectroscopy have led to typical sample sizes decreasing from few cm to several mm in diameter samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can readily be combined with advanced focussing geometries and with multiplexing instrument designs. We present a combination of simulations and data showing three different energies simultaneously reflected from one analyser. Experiments were performed on a cold triple axis instrument and on a prototype inverse geometry Time-of-flight spectrometer installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2.0 times finer resolution and a factor of 1.9 in flux gain compared to a focussing Rowland geometry, or of 3.3 times finer resolution and a factor of 2.4 in flux gain compared to a single flat analyser slab. PMID:25430125

  2. Prismatic analyser concept for neutron spectrometers

    SciTech Connect

    Birk, Jonas O.; Jacobsen, Johan; Hansen, Rasmus L.; Lefmann, Kim; Markó, Márton; Niedermayer, Christof; Freeman, Paul G.; Christensen, Niels B.; Månsson, Martin; Rønnow, Henrik M.

    2014-11-15

    Developments in modern neutron spectroscopy have led to typical sample sizes decreasing from few cm to several mm in diameter samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can readily be combined with advanced focussing geometries and with multiplexing instrument designs. We present a combination of simulations and data showing three different energies simultaneously reflected from one analyser. Experiments were performed on a cold triple axis instrument and on a prototype inverse geometry Time-of-flight spectrometer installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2.0 times finer resolution and a factor of 1.9 in flux gain compared to a focussing Rowland geometry, or of 3.3 times finer resolution and a factor of 2.4 in flux gain compared to a single flat analyser slab.

  3. Quality assurance of ultrasound imaging instruments by monitoring the monitor.

    PubMed

    Walker, J B; Thorne, G C; Halliwell, M

    1993-11-01

    Ultrasound quality assurance (QA) is a means of assuring the constant performance of an ultrasound instrument. A novel 'ultrasound image analyser' has been developed to allow objective, accurate and repeatable measurement of the image displayed on the ultrasound screen, i.e. as seen by the operator. The analyser uses a television camera/framestore combination to digitize and analyse this image. A QA scheme is described along with the procedures necessary to obtain a repeatable measurement of the image so that comparisons with earlier good images can be made. These include repositioning the camera and resetting the video display characteristics. The advantages of using the analyser over other methods are discussed. It is concluded that the analyser has distinct advantages over subjective image assessment methods and will be a valuable addition to current ultrasound QA programmes. PMID:8272435

  4. Ultrasonic colour flow imaging.

    PubMed

    Wells, P N

    1994-12-01

    Real-time ultrasonic colour flow imaging, which was first demonstrated to be feasible only about a decade ago, has come into widespread clinical use. Ultrasound is scattered by ensembles of red blood cells. The ultrasonic frequency that gives the best signal-to-noise ratio for backscattering from blood depends on the required penetration. The frequency of ultrasound backscattered from flowing blood is shifted by the Doppler effect. The direction of flow can be determined by phase quadrature detection, and range selectivity can be provided by pulse-echo time-delay measurements. The Doppler frequency spectrum can be determined by Fourier analysis. Early two- and three-dimensional flow-imaging systems used slow manual scanning; velocity colour coding was introduced. Real-time colour flow imaging first became feasible when autocorrelation detection was used to extract the Doppler signal. Time-domain processing, which is a broad-band technique, was also soon shown to be practicable, for analysing both radio-frequency pulse-echo wavetrains and two-dimensional image speckle. Frequency- and time-domain processing both require effective cancellation of stationary echoes. The time-domain approach seems to have advantages in relation to both aliasing and the effects of attenuation in overlying tissues. Colour-coding schemes that can be interpreted without the need to refer to keys have been adopted, for both velocity and flow disturbance. Colour coding according to signal power has also been reintroduced. Three-dimensional display has been demonstrated. In interpreting colour flow images, it is important to understand the functions of critical system controls and the origins of artifacts. Various strategies can be adopted to increase the image frame rate. The problems of performance measurement and safety need to be kept under review. There are numerous opportunities for further development of ultrasonic colour flow imaging, including improvements in system design, methods of

  5. A qualitative method for analysing multivoicedness

    PubMed Central

    Aveling, Emma-Louise; Gillespie, Alex; Cornish, Flora

    2015-01-01

    ‘Multivoicedness’ and the ‘multivoiced Self’ have become important theoretical concepts guiding research. Drawing on the tradition of dialogism, the Self is conceptualised as being constituted by a multiplicity of dynamic, interacting voices. Despite the growth in literature and empirical research, there remains a paucity of established methodological tools for analysing the multivoiced Self using qualitative data. In this article, we set out a systematic, practical ‘how-to’ guide for analysing multivoicedness. Using theoretically derived tools, our three-step method comprises: identifying the voices of I-positions within the Self’s talk (or text), identifying the voices of ‘inner-Others’, and examining the dialogue and relationships between the different voices. We elaborate each step and illustrate our method using examples from a published paper in which data were analysed using this method. We conclude by offering more general principles for the use of the method and discussing potential applications. PMID:26664292

  6. Geomagnetic local and regional harmonic analyses.

    USGS Publications Warehouse

    Alldredge, L.R.

    1982-01-01

    Procedures are developed for using rectangular and cylindrical harmonic analyses in local and regional areas. Both the linear least squares analysis, applicable when component data are available, and the nonlinear least squares analysis, applicable when only total field data are available, are treated. When component data are available, it is advantageous to work with residual fields obtained by subtracting components derived from a harmonic potential from the observed components. When only total field intensity data are available, they must be used directly. Residual values cannot be used. Cylindrical harmonic analyses are indicated when fields tend toward cylindrical symmetry; otherwise, rectangular harmonic analyses will be more advantageous. Examples illustrating each type of analysis are given.-Author

  7. Advanced laser stratospheric monitoring systems analyses

    NASA Technical Reports Server (NTRS)

    Larsen, J. C.

    1984-01-01

    This report describes the software support supplied by Systems and Applied Sciences Corporation for the study of Advanced Laser Stratospheric Monitoring Systems Analyses under contract No. NAS1-15806. This report discusses improvements to the Langley spectroscopic data base, development of LHS instrument control software and data analyses and validation software. The effect of diurnal variations on the retrieved concentrations of NO, NO2 and C L O from a space and balloon borne measurement platform are discussed along with the selection of optimum IF channels for sensing stratospheric species from space.

  8. Imaging Biomarkers or Biomarker Imaging?

    PubMed Central

    Mitterhauser, Markus; Wadsak, Wolfgang

    2014-01-01

    Since biomarker imaging is traditionally understood as imaging of molecular probes, we highly recommend to avoid any confusion with the previously defined term “imaging biomarkers” and, therefore, only use “molecular probe imaging (MPI)” in that context. Molecular probes (MPs) comprise all kinds of molecules administered to an organism which inherently carry a signalling moiety. This review highlights the basic concepts and differences of molecular probe imaging using specific biomarkers. In particular, PET radiopharmaceuticals are discussed in more detail. Specific radiochemical and radiopharmacological aspects as well as some legal issues are presented. PMID:24967536

  9. Hyperspectral imaging in medicine: image pre-processing problems and solutions in Matlab.

    PubMed

    Koprowski, Robert

    2015-11-01

    The paper presents problems and solutions related to hyperspectral image pre-processing. New methods of preliminary image analysis are proposed. The paper shows problems occurring in Matlab when trying to analyse this type of images. Moreover, new methods are discussed which provide the source code in Matlab that can be used in practice without any licensing restrictions. The proposed application and sample result of hyperspectral image analysis. PMID:25676816

  10. Cosmetology: Task Analyses. Competency-Based Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    These task analyses are designed to be used in combination with the "Trade and Industrial Education Service Area Resource" in order to implement competency-based education in the cosmetology program in Virginia. The task analysis document contains the task inventory, suggested task sequence lists, and content outlines for the secondary courses…