Science.gov

Sample records for image cloud patterns

  1. 4-D display of satellite cloud images

    NASA Technical Reports Server (NTRS)

    Hibbard, William L.

    1987-01-01

    A technique has been developed to display GOES satellite cloud images in perspective over a topographical map. Cloud heights are estimated using temperatures from an infrared (IR) satellite image, surface temperature observations, and a climatological model of vertical temperature profiles. Cloud levels are discriminated from each other and from the ground using a pattern recognition algorithm based on the brightness variance technique of Coakley and Bretherton. The cloud regions found by the pattern recognizer are rendered in three-dimensional perspective over a topographical map by an efficient remap of the visible image. The visible shades are mixed with an artificial shade based on the geometry of the cloud-top surface, in order to enhance the texture of the cloud top.

  2. Detailed Cloud Patterns in Martian Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Cold and cloudy mornings; cool, hazy afternoons. High winds aloft and weather fronts moving slowly to the east. It is winter in the Martian northern hemisphere. One of the many reasons to study Mars is that, at times, its weather is very 'Earth-like.' At this time of the Martian year, clouds are abundant, especially in the morning and especially in the high northern latitudes. Clouds and fogs are also observed in low-lying areas farther to the south, in some lowlands they are as far south as the equator.

    The above color composite images, obtained by Mars Global Surveyor's camera on June 4, 1998, illustrate this Martian 'weather report.' Most of the thick, white clouds seen here occur north of latitude 35oN (roughly equivalent to Albuquerque NM, Memphis TN, and Charlotte, NC). Fog (seen as bright orange because it is lighter than the ground but some of the ground is still visible) occupies the lowest portions of the Kasei Valles outflow channel around 30oN and at 25oN.

    Several different types of cloud features are seen. The repetitious, wash-board pattern of parallel lines are 'gravity wave clouds'. These commonly form, in the lee--downwind side-- of topographic features such as mountain ranges (on Earth) or crater rims (on Mars), under very specific atmospheric conditions (low temperatures, high humidity, and high wind speeds). In this area, the wave clouds are lower in the atmosphere than some of the other clouds. These other clouds show attributes reflecting more the regional weather pattern, occasionally showing the characteristic 'slash' shape (southwest to northeast) of a weather front. These clouds probably contain mostly crystals of water ice but, depending on the temperature at high altitude (and more likely closer to the pole), some could also contain frozen carbon dioxide ('dry ice').

    MOC images 34501 (the red wide angle image) and 34502 (the blue wide angle image) were obtained on Mars Global Surveyor's 345th orbit about the planet

  3. Waves, advection, and cloud patterns on Venus

    NASA Technical Reports Server (NTRS)

    Schinder, Paul J.; Gierasch, Peter J.; Leroy, Stephen S.; Smith, Michael D.

    1990-01-01

    The stable layers adjacent to the nearly neutral layer within the Venus clouds are found to be capable of supporting vertically trapped, horizontally propagating waves with horizontal wavelengths of about 10 km and speeds of a few meters per second relative to the mean wind in the neutral layer. These waves may possibly be excited by turbulence within the neutral layer. Here, the properties of the waves, and the patterns which they might produce within the visible clouds if excited near the subsolar point are examined. The patterns can be in agreement with many features in images. The waves are capable of transferring momentum latitudinally to help maintain the general atmospheric spin, but at present we are not able to evaluate wave amplitudes. We also examine an alternative possibility that the cloud patterns are produced by advection and shearing by the mean zonal and meridional flow of blobs formed near the equator. It is concluded that advection and shearing by the mean flow is the most likely explanation for the general pattern of small scale striations.

  4. Determine precipitation rates from visible and infrared satellite images of clouds by pattern recognition technique. Progress Report, 1 Jul. 1985 - 31 Mar. 1987 Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Weinman, James A.; Garan, Louis

    1987-01-01

    A more advanced cloud pattern analysis algorithm was subsequently developed to take the shape and brightness of the various clouds into account in a manner that is more consistent with the human analyst's perception of GOES cloud imagery. The results of that classification scheme were compared with precipitation probabilities observed from ships of opportunity off the U.S. east coast to derive empirical regressions between cloud types and precipitation probability. The cloud morphology was then quantitatively and objectively used to map precipitation probabilities during two winter months during which severe cold air outbreaks were observed over the northwest Atlantic. Precipitation probabilities associated with various cloud types are summarized. Maps of precipitation probability derived from the cloud morphology analysis program for two months and the precipitation probability derived from thirty years of ship observation were observed.

  5. Cloud computing in medical imaging.

    PubMed

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing. PMID:23822402

  6. Interpretation of MODIS Cloud Images by CloudSat/CALIPSO Cloud Vertical Profiles

    NASA Astrophysics Data System (ADS)

    Wang, T.; Fetzer, E. J.; Wong, S.; Yue, Q.

    2015-12-01

    Clouds observed by passive remote-sensing imager (Aqua-MODIS) are collocated to cloud vertical profiles observed by active profiling sensors (CloudSat radar and CALIPSO lidar) at the pixel-scale. By comparing different layers of cloud types classified in the 2B-CLDCLASS-LIDAR product from CloudSat+CALIPSO to those cloud properties observed by MODIS, we evaluate the occurrence frequencies of cloud types and cloud-overlap in CloudSat+CALIPSO for each MODIS cloud regime defined by cloud optical depth (τ) and cloud-top pressure (P) histograms. We find that about 70% of MODIS clear sky agrees with the clear category in CloudSat+CALIPSO; whereas the remainder is either single layer (~25%) cirrus (Ci), low-level cumulus (Cu), stratocumulus (Sc), or multi-layer (<5%) clouds in CloudSat+CALIPSO. Under MODIS cloudy conditions, 60%, 28%, and 8% of the occurrences show single-, double-, and triple-layer clouds, respectively in CloudSat+CALIPSO. When MODIS identifies single-layer clouds, 50-60% of the MODIS low-level clouds are categorized as stratus (Sc) in CloudSat+CALIPSO. Over the tropics, ~70% of MODIS high and optically thin clouds (considered as cirrus in the histogram) is also identified as Ci in CloudSat+CALIPSO, and ~40% of MODIS high and optically thick clouds (considered as convective in the histogram) agrees with CloudSat+CALIPSO deep convections (DC). Over mid-latitudes these numbers drop to 45% and 10%, respectively. The best agreement occurs in tropical single-layer cloud regimes, where 90% of MODIS high-thin clouds are identified as Ci by CloudSat+CALIPSO and 60% of MODIS high-thick clouds are identified as DC. Worst agreement is found for multi-layer clouds, where cirrus on top of low- and mid-level clouds in MODIS are frequently categorized as high-thick clouds by passive imaging - among these only 5-12% are DC in CloudSat+CALIPSO. It is encouraging that both MODIS low-level clouds (regardless of optical thickness) and high-level thin clouds are consistently

  7. Cloud Ozone Dust Imager (CODI)

    NASA Astrophysics Data System (ADS)

    Clancy, R. Todd; Dusenbery, Paul; Wolff, Michael; James, Phil; Allen, Mark; Goguen, Jay; Kahn, Ralph; Gladstone, Rany; Murphy, Jim

    1995-01-01

    The Cloud Ozone Dust Imager (CODI) is proposed to investigate the current climatic balance of the Mars atmosphere, with particular emphasis on the important but poorly understood roles which dust and water ice aerosols play in this balance. The large atmospheric heating (20-50 K) resulting from global dust storms around Mars perihelion is well recognized. However, groundbased observations of Mars atmospheric temperatures, water vapor, and clouds since the Viking missions have identified a much colder, cloudier atmosphere around Mars aphelion that may prove as important as global dust storms in determining the interannual and long-term behavior of the Mars climate. The key climate issues CODI is designed to investigate are: 1) the degree to which non-linear interactions between atmospheric dust heating, water vapor saturation, and cloud nucleation influence the seasonal and interannual variability of the Mars atmosphere, and 2) whether the strong orbital forcing of atmospheric dust loading, temperatures and water vapor saturation determines the long-term balance of Mars water, as reflected in the north-south hemispheric asymmetries of atmospheric water vapor and polar water ice abundances. The CODI experiment will measure the daily, seasonal and (potentially) interannual variability of atmospheric dust and cloud opacities, and the key physical properties of these aerosols which determine their role in the climate cycles of Mars. CODI is a small (1.2 kg), fixed pointing camera, in which four wide-angle (+/- 70 deg) lenses illuminate fixed filters and CCD arrays. Simultaneous sky/surface imaging of Mars is obtained at an angular resolution of 0.28 deg/pixel for wavelengths of 255, 336, 502, and 673 nm (similar to Hubble Space Telescope filters). These wavelengths serve to measure atmospheric ozone (255 and 336 nm), discriminate ice and dust aerosols (336 and 673 nm), and construct color images (336, 502, and 673 nm). The CODI images are detected on four 512 x 512

  8. High S/N Keck and Gemini AO imaging of Uranus during 2012-2014: New cloud patterns, increasing activity, and improved wind measurements

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; de Pater, I.; Fry, P. M.; Hammel, H. B.; Marcus, P.

    2015-09-01

    We imaged Uranus in the near infrared from 2012 into 2014, using the Keck/NIRC2 camera and Gemini/NIRI camera, both with adaptive optics. We obtained exceptional signal to noise ratios by averaging 8-16 individual exposures in a planet-fixed coordinate system. These noise-reduced images revealed many low-contrast discrete features and large scale cloud patterns not seen before, including scalloped waveforms just south of the equator, and an associated transverse ribbon wave near 6°S. In all three years numerous small (600-700 km wide) and mainly bright discrete features were seen within the north polar region (north of about 55°N). Two small dark spots with bright companions were seen at middle latitudes. Over 850 wind measurements were made, the vast majority of which were in the northern hemisphere. Winds at high latitudes were measured with great precision, revealing an extended region of solid body rotation between 62°N and at least 83°N, at a rate of 4.08 ± 0.015°/h westward relative to the planet's interior (radio) rotation of 20.88°/h westward. Near-equatorial speeds measured with high accuracy give different results for waves and small discrete features, with eastward drift rates of 0.4°/h and 0.1°/h respectively. The region of polar solid body rotation is a close match to the region of small-scale polar cloud features, suggesting a dynamical relationship. The winds from prior years and those from 2012-2014 are consistent with a mainly symmetric wind profile up to middle latitudes, with a small asymmetric component of ∼0.09°/h peaking near ±30°, and about 60% greater amplitude if only prior years are included, suggesting a declining mid-latitude asymmetry. While winds at high southern latitudes (50-90°S) are unconstrained by groundbased observations, a recent reanalysis of 1986 Voyager 2 observations by Karkoschka (Karkoschka [2015]. Icarus 250, 294-307) has revealed an extremely large north-south asymmetry in this region, which might be

  9. Jupiter's Great Red Spot: Fine-scale matches of model vorticity patterns to prevailing cloud patterns

    NASA Astrophysics Data System (ADS)

    Morales-Juberías, Raúl; Dowling, Timothy E.

    2013-07-01

    We report on a set of six new matches between fine-scale features in the vorticity field of a three-dimensional (3D), primitive-equation, finite-difference model of Jupiter's Great Red Spot that includes no clouds or cloud physics, and quasi-permanent structures in reflected visible-band images of the clouds. These add to similar success by Cho et al. (Cho, J., de la Torre Juárez, M., Ingersoll, A.P., Dritschel, D.G. [2001]. J. Geophys. Res. 106, 5099-5106), who earlier captured four characteristic features of the GRS, also reproduced here, using a 3D quasi-geostrophic, cloud-free contour-dynamics model. In that study and this, the key enabling model attribute is sufficient horizontal resolution, rather than the moist-convective and cloud-microphysics processes often required to match the patterns of clouds in terrestrial hurricanes. The only significant feature that these dry models do not capture is the episodic moist-convective plumes seen in the northwest quadrant adjacent to the GRS. We initialize with Jupiter's averaged zonal winds plus an approximately balanced, smooth 3D ellipsoidal anticyclone. The threshold horizontal grid-resolution to obtain the fine-scale matches is approximately Δy/Ld ≲ 0.15, where Δy ≲ 300 km is the meridional grid spacing and Ld ˜ 2000 km the Rossby deformation length. For models with this or finer horizontal resolution, the best correspondence with observations is reached after about six vortex turnaround times from initialization (˜30 Earth days), but good facsimiles of nearly all the studied features appear after only 1.5 turnaround times (˜7-8 days). We conclude that in images of Jupiter, it is not accurate to associate clouds with upward motion, since these dry models reproduce the observed cloud patterns without this association, and indeed the synoptic-scale vertical motions in the model, as well as those deduced from observations, do not at all correspond to the observed cloud patterns. Instead, Jupiter's cloud

  10. Pattern recognition of satellite cloud imagery for improved weather prediction

    NASA Technical Reports Server (NTRS)

    Gautier, Catherine; Somerville, Richard C. J.; Volfson, Leonid B.

    1986-01-01

    The major accomplishment was the successful development of a method for extracting time derivative information from geostationary meteorological satellite imagery. This research is a proof-of-concept study which demonstrates the feasibility of using pattern recognition techniques and a statistical cloud classification method to estimate time rate of change of large-scale meteorological fields from remote sensing data. The cloud classification methodology is based on typical shape function analysis of parameter sets characterizing the cloud fields. The three specific technical objectives, all of which were successfully achieved, are as follows: develop and test a cloud classification technique based on pattern recognition methods, suitable for the analysis of visible and infrared geostationary satellite VISSR imagery; develop and test a methodology for intercomparing successive images using the cloud classification technique, so as to obtain estimates of the time rate of change of meteorological fields; and implement this technique in a testbed system incorporating an interactive graphics terminal to determine the feasibility of extracting time derivative information suitable for comparison with numerical weather prediction products.

  11. Cloud Imaging Using the NRL WARLOC Radar

    NASA Astrophysics Data System (ADS)

    Fliflet, A. W.; Manheimer, W. M.; Germain, K. St.; Linde, G.; Cheung, W. J.; Gregers-Hansen, V.; Danly, B. G.; Ngo, M. T.

    2003-12-01

    The Naval Research Laboratory has recently developed a 3-10 kW average, 80 kW peak power 94 GHz radar with scanning capability, WARLOC. This radar is powered by a gyroklystron developed by a team led by NRL. One application has been to image clouds. New capabilities of WARLOC include imaging with greatly improved sensitivity and detail as well as the ability to detect much lower strength cloud returns. Here we show how pulse averaging enhances the sensitivity of WARLOC. Since the available power is so high, it can be used in moderate rain to both measure the rainfall rate and to image the cloud above the rain.

  12. Patterns of Diurnal Marine Stratocumulus Cloud Fraction Variability

    SciTech Connect

    Burleyson, Casey D.; Yuter, S. E.

    2015-04-01

    The spatial patterns of subtropical marine stratocumulus cloud fraction variability on diurnal time scales are examined using high temporal resolution cloud masks based on 30-min 4 km x 4 km geosynchronous IR data for the period 2003-2010. This data set permits comparison of low cloud fraction variability characteristics among the three marine stratocumulus regions in the southeast Pacific, southeast Atlantic and northeast Pacific. In all three regions, the largest diurnal cycles and earliest time of cloud break up occur on the edges of the cloud field where cloud fractions are in general lower. During the peak season of cloudiness in the southeast Pacific and southeast Atlantic the amplitude of the diurnal cycle on the edges of the cloud deck was greater than 40%, more than double the value found in the center of each cloud deck. The rate at which the cloud breaks up during the day is closely tied to starting cloud fraction at dawn and the shortwave radiative flux. The maximum rate of cloud breakup occurs near 1200 LT. Cloud fraction begins to increase at 1600 LT (before the sun sets) and reaches its maximum value just before dawn. The diurnal cycle characteristics of the southeast Pacific and southeast Atlantic marine stratocumulus cloud decks are more similar to each other than to those in the northeast Pacific. The northeast Pacific cloud deck has weaker diurnal variation, slower rates of cloud breakup during the day for a given cloud fraction at dawn, and higher probabilities for cloud break up overnight.

  13. Effect of Clouds on Shuttle Imaging

    NASA Technical Reports Server (NTRS)

    Short, David A.; Lane, Robert E., Jr.

    2005-01-01

    This report describes the results of the AMU's task for determining the effect of clouds on optical imaging of the Space Shuttle launch vehicle during its ascent phase from lift-off to Solid Rocket Booster (SRB) Separation. This effort was motivated by Recommendation R3.4-1 from the Columbia Accident Investigation Board Report. The AMU developed a 3-dimensional (3D) model to forecast the probability that at any time from lift-off to SRB separation, at least three of the ascent imaging cameras would have a view of the Shuttle unobstructed by cloud. Because current observational and modeling capabilities do not permit accurate forecasts of cloud morphology and location, the AMU simulated obscuration of the lines-of-sight (LOS) from a network of cameras to the Shuttle by idealized cloud-fields placed randomly within the 3D domain. For each random realization of numerous cloud-field scenarios the number of simultaneous views of the Shuttle was computed from the LOS data between lift-off and SRB separation. The percent of time with 3 simultaneous views was averaged from 100 random realizations of each scenario. Analyses of the percent of time viewable were made to determine its sensitivity to cloud amount, cloud base height, cloud thickness, cloud horizontal dimensions, and an upgrade of the camera network.

  14. Global patterns of cloud optical thickness variation with temperature

    NASA Technical Reports Server (NTRS)

    Tselioudis, George; Rossow, William B.; Rind, David

    1992-01-01

    The International Satellite Cloud Climatology Project dataset is used to correlate variations of cloud optical thickness and cloud temperature in today's atmosphere. The analysis focuses on low clouds in order to limit the importance of changes in cloud vertical extent, particle size, and water phase. Coherent patterns of change are observed on several time and space scales. On the planetary scale, clouds in colder, higher latitudes are found to be optically thicker than clouds in warmer, lower latitudes. On the seasonal scale, winter clouds are, for the most part, optically thicker than summer clouds. The logarithmic derivative of cloud optical thickness with temperature is used to describe the sign and magnitude of the optical thickness-temperature correlation. The seasonal, latitudinal, and day-to-day variations of this relation are examined for Northern Hemisphere clouds in 1984. In cold continental clouds, optical thickness increases with temperature, consistent with the temperature variation of the adiabatic cloud water content. In warm continental and in almost all maritime clouds, however, optical thickness decreases with temperature.

  15. Cloud Optimized Image Format and Compression

    NASA Astrophysics Data System (ADS)

    Becker, P.; Plesea, L.; Maurer, T.

    2015-04-01

    Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.

  16. Male pattern baldness (image)

    MedlinePlus

    Male pattern baldness is a sex-linked characteristic that is passed from mother to child. A man can more accurately predict his chances of developing male pattern baldness by observing his mother's father than by looking ...

  17. Male pattern baldness (image)

    MedlinePlus

    Male pattern baldness is a sex-linked characteristic that is passed from mother to child. A man can more accurately predict his chances of developing male pattern baldness by observing his mother's father than ...

  18. First image of clouds over Mars

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is the first image ever taken from the surface of Mars of an overcast sky. Featured are stratus clouds coming from the northeast at about 15 miles per hour (6.7 meters/second) at an approximate height of ten miles (16 kilometers) above the surface. The 'you are here' notation marks where Earth was situated in the sky at the time the image was taken. Scientists had hoped to see Earth in this image, but the cloudy conditions prevented a clear viewing. Similar images will be taken in the future with the hope of capturing a view of Earth. From Mars, Earth would appear as a tiny blue dot as a star would appear to an Earthbound observer. Pathfinder's imaging system will not be able to resolve Earth's moon. The clouds consist of water ice condensed on reddish dust particles suspended in the atmosphere. Clouds on Mars are sometimes localized and can sometimes cover entire regions, but have not yet been observed to cover the entire planet. The image was taken about an hour and forty minutes before sunrise by the Imager for Mars Pathfinder (IMP) on Sol 16 at about ten degrees up from the eastern Martian horizon.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages and Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  19. Pattern recognition analysis of polar clouds during summer and winter

    NASA Technical Reports Server (NTRS)

    Ebert, Elizabeth E.

    1992-01-01

    A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.

  20. Cloud motion estimation using a sky imager

    NASA Astrophysics Data System (ADS)

    Chauvin, R.; Nou, J.; Thil, S.; Grieu, S.

    2016-05-01

    The present paper deals with an image processing methodology based on a sky-imaging system developed at the PROMES-CNRS laboratory (France). It is part of a project which aims at improving solar plant control procedures using Direct Normal Irradiance (DNI) forecasts under various sky conditions at short term horizon (5-30 minutes) and high spatial resolution (~1 km2). This work focuses on estimating cloud motion, based on a block-wise cross correlation algorithm. The choice of the algorithm is explained in the first section of this paper. The second section aims at optimizing the algorithm parameters in order to reduce as much as possible the computational time while keeping the best possible accuracy. The paper ends with the spatial and temporal filtering processes that allow estimating the mean cloud motion. The stability of the estimation over time tends to validate the proposed approach.

  1. An efficient framework for modeling clouds from Landsat8 images

    NASA Astrophysics Data System (ADS)

    Yuan, Chunqiang; Guo, Jing

    2015-03-01

    Cloud plays an important role in creating realistic outdoor scenes for video game and flight simulation applications. Classic methods have been proposed for cumulus cloud modeling. However, these methods are not flexible for modeling large cloud scenes with hundreds of clouds in that the user must repeatedly model each cloud and adjust its various properties. This paper presents a meteorologically based method to reconstruct cumulus clouds from high resolution Landsat8 satellite images. From these input satellite images, the clouds are first segmented from the background. Then, the cloud top surface is estimated from the temperature of the infrared image. After that, under a mild assumption of flat base for cumulus cloud, the base height of each cloud is computed by averaging the top height for pixels on the cloud edge. Then, the extinction is generated from the visible image. Finally, we enrich the initial shapes of clouds using a fractal method and represent the recovered clouds as a particle system. The experimental results demonstrate our method can yield realistic cloud scenes resembling those in the satellite images.

  2. CloudSat Image of Tropical Thunderstorms Over Africa

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    CloudSat image of a horizontal cross-section of tropical clouds and thunderstorms over east Africa. The red colors are indicative of highly reflective particles such as water (rain) or ice crystals, which the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudS at Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The brown line below the image indicates the relative elevation of the land surface. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) visible image taken at nearly the same time.

  3. A cloud-based medical image repository

    NASA Astrophysics Data System (ADS)

    Maeder, Anthony J.; Planitz, Birgit M.; El Rifai, Diaa

    2012-02-01

    Many widely used digital medical image collections have been established but these are generally used as raw data sources without related image analysis toolsets. Providing associated functionality to allow specific types of operations to be performed on these images has proved beneficial in some cases (e.g. brain image registration and atlases). However, toolset development to provide generic image analysis functions on medical images has tended to be ad hoc, with Open Source options proliferating (e.g. ITK). Our Automated Medical Image Collection Annotation (AMICA) system is both an image repository, to which the research community can contribute image datasets, and a search/retrieval system that uses automated image annotation. AMICA was designed for the Windows Azure platform to leverage the flexibility and scalability of the cloud. It is intended that AMICA will expand beyond its initial pilot implementation (for brain CT, MR images) to accommodate a wide range of modalities and anatomical regions. This initiative aims to contribute to advances in clinical research by permitting a broader use and reuse of medical image data than is currently attainable. For example, cohort studies for cases with particular physiological or phenotypical profiles will be able to source and include enough cases to provide high statistical power, allowing more individualised risk factors to be assessed and thus allowing screening and staging processes to be optimised. Also, education, training and credentialing of clinicians in image interpretation, will be more effective because it will be possible to select instances of images with specific visual aspects, or correspond to types of cases where reading performance improvement is desirable.

  4. MISR Stereo Imaging Distinguishes Smoke from Cloud

    NASA Technical Reports Server (NTRS)

    2000-01-01

    These views of western Alaska were acquired by MISR on June 25, 2000 during Terra orbit 2775. The images cover an area of about 150 kilometers x 225 kilometers, and have been oriented with north to the left. The left image is from the vertical-viewing (nadir) camera, whereas the right image is a stereo 'anaglyph' that combines data from the forward-viewing 45-degree and 60-degree cameras. This image appears three-dimensional when viewed through red/blue glasses with the red filter over the left eye. It may help to darken the room lights when viewing the image on a computer screen.

    The Yukon River is seen wending its way from upper left to lower right. A forest fire in the Kaiyuh Mountains produced the long smoke plume that originates below and to the right of image center. In the nadir view, the high cirrus clouds at the top of the image and the smoke plume are similar in appearance, and the lack of vertical information makes them hard to differentiate. Viewing the righthand image with stereo glasses, on the other hand, demonstrates that the scene consists of several vertically-stratified layers, including the surface terrain, the smoke, some scattered cumulus clouds, and streaks of high, thin cirrus. This added dimensionality is one of the ways MISR data helps scientists identify and classify various components of terrestrial scenes.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  5. Global patterns of solar influence on high cloud cover

    NASA Astrophysics Data System (ADS)

    Dima, Mihai; Voiculescu, Mirela

    2016-07-01

    One of the main sources of uncertainty in climate projections is represented by clouds, which have a profound influence on the Earth's radiation budget through the feedbacks in which they are involved. The improvement of clouds representation in General Circulation Models relies largely on constraints derived from observations and on correct identification of processes that influence cloud formation or lifetime. Here we identify solar forced high cloud cover (HCC) patterns in reanalysis and observed data extending over the 1871-2009 period, based on their associations with known fingerprints of the same forcing on surface air temperature, sea surface temperature (SST) and sea level pressure fields. The solar influence on HCC has maximum amplitudes over the Pacific basin, where HCC anomalies are distributed in bands of alternating polarities. The colocation of the HCC and SST anomalies bands indicates a thermal influence on high clouds through convection and an amplification of the HCC anomalies by a positive feedback of long-wave fluxes, which increases the solar signal. Consistent with numerical simulations, the solar forced HCC pattern appears to be generated through a constructive interference between the so-called "top-down" and "bottom-up" mechanisms of solar influence on climate and is amplified by ocean-atmosphere positive feedbacks.

  6. Capturing and analyzing wheelchair maneuvering patterns with mobile cloud computing.

    PubMed

    Fu, Jicheng; Hao, Wei; White, Travis; Yan, Yuqing; Jones, Maria; Jan, Yih-Kuen

    2013-01-01

    Power wheelchairs have been widely used to provide independent mobility to people with disabilities. Despite great advancements in power wheelchair technology, research shows that wheelchair related accidents occur frequently. To ensure safe maneuverability, capturing wheelchair maneuvering patterns is fundamental to enable other research, such as safe robotic assistance for wheelchair users. In this study, we propose to record, store, and analyze wheelchair maneuvering data by means of mobile cloud computing. Specifically, the accelerometer and gyroscope sensors in smart phones are used to record wheelchair maneuvering data in real-time. Then, the recorded data are periodically transmitted to the cloud for storage and analysis. The analyzed results are then made available to various types of users, such as mobile phone users, traditional desktop users, etc. The combination of mobile computing and cloud computing leverages the advantages of both techniques and extends the smart phone's capabilities of computing and data storage via the Internet. We performed a case study to implement the mobile cloud computing framework using Android smart phones and Google App Engine, a popular cloud computing platform. Experimental results demonstrated the feasibility of the proposed mobile cloud computing framework. PMID:24110214

  7. Cloud Imagers Offer New Details on Earth's Health

    NASA Technical Reports Server (NTRS)

    2009-01-01

    A stunning red sunset or purple sunrise is an aesthetic treat with a scientific explanation: The colors are a direct result of the absorption or reflectance of solar radiation by atmospheric aerosols, minute particles (either solid or liquid) in the Earth s atmosphere that occur both naturally and because of human activity. At the beginning or end of the day, the Sun s rays travel farther through the atmosphere to reach an observer s eyes and more green and yellow light is scattered, making the Sun appear red. Sunset and sunrise are especially colorful when the concentration of atmospheric particles is high. This ability of aerosols to absorb and reflect sunlight is not just pretty; it also determines the amount of radiation and heat that reaches the Earth s surface, and can profoundly affect climate. In the atmosphere, aerosols are also important as nuclei for the condensation of water droplets and ice crystals. Clouds with fewer aerosols cannot form as many water droplets (called cloud particles), and consequently, do not scatter light well. In this case, more sunlight reaches the Earth s surface. When aerosol levels in clouds are high, however, more nucleation points can form small liquid water droplets. These smaller cloud particles can reflect up to 90 percent of visible radiation to space, keeping the heat from ever reaching Earth s surface. The tendency for these particles to absorb or reflect the Sun s energy - called extinction by astronomers - depends on a number of factors, including chemical composition and the humidity and temperature in the surrounding air; because cloud particles are so small, they are affected quickly by minute changes in the atmosphere. Because of this sensitivity, atmospheric scientists study cloud particles to anticipate patterns and shifts in climate. Until recently, NASA s study of atmospheric aerosols and cloud particles has been focused primarily on satellite images, which, while granting large-scale atmospheric analysis

  8. Cloud classification using whole-sky imager data

    SciTech Connect

    Buch, K.A. Jr.; Sun, C.H.; Thorne, L.R.

    1996-04-01

    Clouds are one of the most important moderators of the earth radiation budget and one of the least understood. The effect that clouds have on the reflection and absorption of solar and terrestrial radiation is strongly influenced by their shape, size, and composition. Physically accurate parameterization of clouds is necessary for any general circulation model (GCM) to yield meaningful results. The work presented here is part of a larger project that is aimed at producing realistic three-dimensional (3D) volume renderings of cloud scenes based on measured data from real cloud scenes. These renderings will provide the important shape information for parameterizing GCMs. The specific goal of the current study is to develop an algorithm that automatically classifies (by cloud type) the clouds observed in the scene. This information will assist the volume rendering program in determining the shape of the cloud. Much work has been done on cloud classification using multispectral satellite images. Most of these references use some kind of texture measure to distinguish the different cloud types and some also use topological features (such as cloud/sky connectivity or total number of clouds). A wide variety of classification methods has been used, including neural networks, various types of clustering, and thresholding. The work presented here uses binary decision trees to distinguish the different cloud types based on cloud features vectors.

  9. Impact of Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask interpretation on cloud amount estimation

    NASA Astrophysics Data System (ADS)

    Kotarba, Andrzej Z.

    2015-09-01

    Cloud masks serve as a basis for estimates of cloud amount, which is an essential parameter for studying the Earth's radiation budget. The most commonly used cloud mask is a simple thematic classification, which includes qualitative information on the presence of clouds in the satellite's instantaneous field of view (IFOV). Cloud mask classes have to be "translated" into a quantitative measure, in order to be used for cloud amount calculations. The assignment of cloud fractions to cloud mask classes is a subjective process and increases uncertainty in cloud amount estimates. We evaluated this degree of uncertainty using the Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask product. Together with the operational MODIS cloud mask interpretation, we investigated two extreme alternatives: "rigorous" (only "confident cloudy" IFOVs were 100% cloudy) and "tolerant" (only "confident clear" IFOVs were 0% cloudy). Results showed that the range of uncertainty was 14.3% in Europe and controlled by the frequency of small convective clouds. Comparison with surface-based observations suggests that the rigorous interpretation of the cloud mask is more accurate than that used operationally for MODIS level 3 product generation. The rigorous approach resulted in the smallest bias (-0.7%), the smallest root-mean-square error (4.6%), the small standard deviation (6%), and the strongest correlation (0.935). These results suggest that for climatological applications the rigorous scenario should be considered as a more accurate "best guess" over land.

  10. Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.

    PubMed

    Shaw, Joseph; Nugent, Paul; Pust, Nathan; Thurairajah, Brentha; Mizutani, Kohei

    2005-07-25

    An uncooled microbolometer-array thermal infrared camera has been incorporated into a remote sensing system for radiometric sky imaging. The radiometric calibration is validated and improved through direct comparison with spectrally integrated data from the Atmospheric Emitted Radiance Interferometer (AERI). With the improved calibration, the Infrared Cloud Imager (ICI) system routinely obtains sky images with radiometric uncertainty less than 0.5 W/(m(2 )sr) for extended deployments in challenging field environments. We demonstrate the infrared cloud imaging technique with still and time-lapse imagery of clear and cloudy skies, including stratus, cirrus, and wave clouds. PMID:19498585

  11. A Population of Dark Clouds Detected in Radio Continuum Images

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, Farhad

    2013-01-01

    Using the VLA and GBT, radio continuum images of the inner Galaxy reveal the presence of numerous dark features. These dark features coincide with dense molecular and dust clouds. Unlike infrared dark clouds or extinction clouds at optical wavelengths, these features which we call ``radio dark clouds'' are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic ray particles. The contribution of the continuum emission along different pathlengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the strength of diffuse magnetic field of molecular clouds. We present several examples of radio dark clouds and demonstrate an anti-correlation between the distributions of radio continuum and molecular line and dust emission. The level at which the continuum flux is suppressed in these sources suggests that the depth of the molecular cloud is similar to the size of the continuum emission within a factor of two. These examples suggest that radio continuum survey images can be powerful probes of interacting molecular clouds with massive stars and supernova remnants in the Galaxy as well as in the nuclei of active galaxies.

  12. Restoration of cloud contaminated ocean color images using numerical simulation

    NASA Astrophysics Data System (ADS)

    Yang, Xuefei; Mao, Zhihua; Chen, Jianyu; Huang, Haiqing

    2015-10-01

    It is very hard to access cloud-free remote sensing data, especially for the ocean color images. A cloud removal approach from ocean color satellite images based on numerical modeling is introduced. The approach removes cloud-contaminated portions and then reconstructs the missing data utilizing model simulated values. The basic idea is to create the relationship between cloud-free patches and cloud-contaminated patches under the assumption that both of them are influenced by the same marine hydrodynamic conditions. Firstly, we find cloud-free GOCI (the Geostationary Ocean Color Imager) retrieved suspended sediment concentrations (SSC) in the East China Sea before and after the time of cloudy images, which are set as initial field and validation data for numerical model, respectively. Secondly, a sediment transport model based on COHERENS, a coupled hydrodynamic-ecological ocean model for regional and shelf seas, is configured. The comparison between simulated results and validation images show that the sediment transport model can be used to simulate actual sediment distribution and transport in the East China Sea. Then, the simulated SSCs corresponding to the cloudy portions are used to remove the cloud and replace the missing values. Finally, the accuracy assessments of the results are carried out by visual and statistical analysis. The experimental results demonstrate that the proposed method can effectively remove cloud from GOCI images and reconstruct the missing data, which is a new way to enhance the effectiveness and availability of ocean color data, and is of great practical significance.

  13. Data and image fusion for geometrical cloud characterization

    SciTech Connect

    Thorne, L.R.; Buch, K.A.; Sun, Chen-Hui; Diegert, C.

    1997-04-01

    Clouds have a strong influence on the Earth`s climate and therefore on climate change. An important step in improving the accuracy of models that predict global climate change, general circulation models, is improving the parameterization of clouds and cloud-radiation interactions. Improvements in the next generation models will likely include the effect of cloud geometry on the cloud-radiation parameterizations. We have developed and report here methods for characterizing the geometrical features and three-dimensional properties of clouds that could be of significant value in developing these new parameterizations. We developed and report here a means of generating and imaging synthetic clouds which we used to test our characterization algorithms; a method for using Taylor`s hypotheses to infer spatial averages from temporal averages of cloud properties; a computer method for automatically classifying cloud types in an image; and a method for producing numerical three-dimensional renderings of cloud fields based on the fusion of ground-based and satellite images together with meteorological data.

  14. Development of a sky imager for cloud cover assessment.

    PubMed

    Cazorla, A; Olmo, F J; Alados-Arboledas, L

    2008-01-01

    Based on a CCD camera, we have developed an in-house sky imager system for the purpose of cloud cover estimation and characterization. The system captures a multispectral image every 5 min, and the analysis is done with a method based on an optimized neural network classification procedure and a genetic algorithm. The method discriminates between clear sky and two cloud classes: opaque and thin clouds. It also divides the image into sectors and finds the percentage of clouds in those different regions. We have validated the classification algorithm on two levels: image level, using the cloud observations included in the METAR register performed at the closest meteorological station, and pixel level, determining whether the final classification is correct. PMID:18157209

  15. Cloud morphology and motions from Pioneer Venus images

    NASA Technical Reports Server (NTRS)

    Rossow, W. B.; Del Genio, A. D.; Limaye, S. S.; Travis, L. D.; Stone, P. H.

    1980-01-01

    The horizontal and vertical cloud structures, atmospheric waves, and wind velocities at the cloud top level were determined by the Pioneer Venus photopolarimeter images in the UV from January through March 1979. The images indicate long-term evolution of cloud characteristics, the atmospheric dynamics, and rapid small changes in cloud morphology. The clouds show a globally coordinated oscillation relative to latitude circles; retrograde zonal winds of 100 m/s near the equator are determined from the tracking of small-scale cloud properties, but two hemispheres show important variations. The zonal wind velocity in the southern hemisphere is reduced toward the poles at a rate similar to solid body rotation; the midlatitude jet stream noted by Mariner 10 is not observed.

  16. Gridless, pattern-driven point cloud completion and extension

    NASA Astrophysics Data System (ADS)

    Gravey, Mathieu; Mariethoz, Gregoire

    2016-04-01

    While satellites offer Earth observation with a wide coverage, other remote sensing techniques such as terrestrial LiDAR can acquire very high-resolution data on an area that is limited in extension and often discontinuous due to shadow effects. Here we propose a numerical approach to merge these two types of information, thereby reconstructing high-resolution data on a continuous large area. It is based on a pattern matching process that completes the areas where only low-resolution data is available, using bootstrapped high-resolution patterns. Currently, the most common approach to pattern matching is to interpolate the point data on a grid. While this approach is computationally efficient, it presents major drawbacks for point clouds processing because a significant part of the information is lost in the point-to-grid resampling, and that a prohibitive amount of memory is needed to store large grids. To address these issues, we propose a gridless method that compares point clouds subsets without the need to use a grid. On-the-fly interpolation involves a heavy computational load, which is met by using a GPU high-optimized implementation and a hierarchical pattern searching strategy. The method is illustrated using data from the Val d'Arolla, Swiss Alps, where high-resolution terrestrial LiDAR data are fused with lower-resolution Landsat and WorldView-3 acquisitions, such that the density of points is homogeneized (data completion) and that it is extend to a larger area (data extension).

  17. Cloud Detection of Optical Satellite Images Using Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lee, Kuan-Yi; Lin, Chao-Hung

    2016-06-01

    Cloud covers are generally present in optical remote-sensing images, which limit the usage of acquired images and increase the difficulty of data analysis, such as image compositing, correction of atmosphere effects, calculations of vegetation induces, land cover classification, and land cover change detection. In previous studies, thresholding is a common and useful method in cloud detection. However, a selected threshold is usually suitable for certain cases or local study areas, and it may be failed in other cases. In other words, thresholding-based methods are data-sensitive. Besides, there are many exceptions to control, and the environment is changed dynamically. Using the same threshold value on various data is not effective. In this study, a threshold-free method based on Support Vector Machine (SVM) is proposed, which can avoid the abovementioned problems. A statistical model is adopted to detect clouds instead of a subjective thresholding-based method, which is the main idea of this study. The features used in a classifier is the key to a successful classification. As a result, Automatic Cloud Cover Assessment (ACCA) algorithm, which is based on physical characteristics of clouds, is used to distinguish the clouds and other objects. In the same way, the algorithm called Fmask (Zhu et al., 2012) uses a lot of thresholds and criteria to screen clouds, cloud shadows, and snow. Therefore, the algorithm of feature extraction is based on the ACCA algorithm and Fmask. Spatial and temporal information are also important for satellite images. Consequently, co-occurrence matrix and temporal variance with uniformity of the major principal axis are used in proposed method. We aim to classify images into three groups: cloud, non-cloud and the others. In experiments, images acquired by the Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and images containing the landscapes of agriculture, snow area, and island are tested. Experiment results demonstrate the detection

  18. Hazardous cloud imaging: a new way of using passive infrared.

    PubMed

    Flanigan, D F

    1997-09-20

    A modeling and simulation study of the limits of remote detection by passive IR has led to a new concept for the remote detection of hazardous clouds. A passive IR signature model was developed with the Edgewood Research, Development, and Engineering Center IR spectral data bases used as input for chemicals and biologicals and with the atmospheric transmittance model used for MODTRAN. The cloud travel and dispersion model, VLSTRACK, was used to simulate chemical and biological clouds. An easily applied spectral discrimination technique was developed with a standard Mathematica version of linear programming. All these were melded with Mathematica to produce images of three threat clouds: Sarin, mustard, and an unnamed biological. The hazardous cloud imager is a spatially scanning Fourier transform IR on the same level of complexity as conventional remote detectors, but is capable of greater sensitivity and moving operation. PMID:18259578

  19. Mesopause Horizontal wind estimates based on AIM CIPS polar mesospheric cloud pattern matching

    NASA Astrophysics Data System (ADS)

    Rong, P.; Yue, J.; Russell, J. M.; Gong, J.; Wu, D. L.; Randall, C. E.

    2013-12-01

    A cloud pattern matching approach is used to estimate horizontal winds in the mesopause region using Polar Mesospheric Cloud (PMC) albedo data measured by the Cloud Imaging and Particle Size instrument on the AIM satellite. Measurements for all 15 orbits per day throughout July 2007 are used to achieve statistical significance. For each orbit, eighteen out of the twenty-seven scenes are used for the pattern matching operation. Some scenes at the lower latitudes are not included because there is barely any cloud coverage for these scenes. The frame-size chosen is about 12 degrees in longitude and 3 degrees in latitude. There is no strict criterion in choosing the frame size since PMCs are widespread in the polar region and most local patterns do not have a clearly defined boundary. The frame moves at a step of 1/6th of the frame size in both the longitudinal and latitudinal directions to achieve as many 'snap-shots' as possible. A 70% correlation is used as a criterion to define an acceptable match between two patterns at two time frames; in this case the time difference is about 3.6 minutes that spans every 5 'bowtie' scenes. A 70% criterion appears weak if the chosen pattern is expected to act like a tracer. It is known that PMC brightness varies rapidly with a changing temperature and water vapor environment or changing nucleation conditions, especially on smaller spatial scales; therefore PMC patterns are not ideal tracers. Nevertheless, within a short time span such as 3.6 minutes a 70% correlation is sufficient to identify two cloud patterns that come from the same source region, although the two patterns may exhibit a significant difference in the actual brightness. Analysis of a large number of matched cloud patterns indicates that over the 3.6-minute time span about 70% of the patterns remain in the same locations. Given the 25-km2 horizontal resolution of CIPS data, this suggests that the overall magnitude of horizontal wind at PMC altitudes (~80-87 km) in

  20. Image transfer through cirrus clouds. II. Wave-front segmentation and imaging.

    PubMed

    Landesman, Barbara T; Matson, Charles L

    2002-12-20

    A hybrid technique to simulate the imaging of space-based objects through cirrus clouds is presented. The method makes use of standard Huygens-Fresnel propagation beyond the cloud boundary and a novel vector trace approach within the cloud. At the top of the cloud, the wave front is divided into an array of input gradient vectors, which are in turn transmitted through the cloud model by use of the Coherent Illumination Ray Trace and Imaging Software for Cirrus. At the bottom of the cloud, the output vector distribution is used to reconstruct a wave front that continues propagating to the ground receiver. Images of the object as seen through cirrus clouds with different optical depths are compared with a diffraction-limited image. Turbulence effects from the atmospheric propagation are not included. PMID:12510928

  1. Imprints of Molecular Clouds in Radio Continuum Images

    NASA Astrophysics Data System (ADS)

    Yusef-Zadeh, F.

    2012-11-01

    We show radio continuum images of several molecular complexes in the inner Galaxy and report the presence of dark features that coincide with dense molecular clouds. Unlike infrared dark clouds, these features which we call "radio dark clouds" are produced by a deficiency in radio continuum emission from molecular clouds that are embedded in a bath of UV radiation field or synchrotron emitting cosmic-ray particles. The contribution of the continuum emission along different path lengths results in dark features that trace embedded molecular clouds. The new technique of identifying cold clouds can place constraints on the depth and the magnetic field of molecular clouds when compared to those of the surrounding hot plasma radiating at radio wavelengths. The study of five molecular complexes in the inner Galaxy, Sgr A, Sgr B2, radio Arc, the Snake filament, and G359.75-0.13 demonstrates an anti-correlation between the distributions of radio continuum and molecular line and dust emission. Radio dark clouds are identified in Green Bank Telescope maps and Very Large Array images taken with uniform sampling of uv coverage. The level at which the continuum flux is suppressed in these sources suggests that the depth of the molecular cloud is similar to the size of the continuum emission within a factor of two. These examples suggest that high-resolution, high-dynamic-range continuum images can be powerful probes of interacting molecular clouds with massive stars and supernova remnants in regions where the kinematic distance estimates are ambiguous as well as in the nuclei of active galaxies.

  2. A holistic image segmentation framework for cloud detection and extraction

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Xu, Haotian; Blasch, Erik; Horvath, Gregory; Pham, Khanh; Zheng, Yufeng; Ling, Haibin; Chen, Genshe

    2013-05-01

    Atmospheric clouds are commonly encountered phenomena affecting visual tracking from air-borne or space-borne sensors. Generally clouds are difficult to detect and extract because they are complex in shape and interact with sunlight in a complex fashion. In this paper, we propose a clustering game theoretic image segmentation based approach to identify, extract, and patch clouds. In our framework, the first step is to decompose a given image containing clouds. The problem of image segmentation is considered as a "clustering game". Within this context, the notion of a cluster is equivalent to a classical equilibrium concept from game theory, as the game equilibrium reflects both the internal and external (e.g., two-player) cluster conditions. To obtain the evolutionary stable strategies, we explore three evolutionary dynamics: fictitious play, replicator dynamics, and infection and immunization dynamics (InImDyn). Secondly, we use the boundary and shape features to refine the cloud segments. This step can lower the false alarm rate. In the third step, we remove the detected clouds and patch the empty spots by performing background recovery. We demonstrate our cloud detection framework on a video clip provides supportive results.

  3. Female-pattern baldness (image)

    MedlinePlus

    Female-pattern baldness is a pattern of hair loss (alopecia) caused by hormones, aging and genetics. Unlike male-pattern baldness, female-pattern baldness is an over-all thinning which maintains the ...

  4. Female-pattern baldness (image)

    MedlinePlus

    Female-pattern baldness is a pattern of hair loss (alopecia) caused by hormones, aging and genetics. Unlike male-pattern baldness, female-pattern baldness is an over-all thinning which maintains the normal ...

  5. An enhanced neighborhood similar pixel interpolator approach for removing thick clouds in landsat images

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thick cloud contaminations in Landsat images limit their regular usage for land applications. A few methods have been developed to remove thick clouds using additional cloud-free images. Unfortunately, the cloud-free composition image produced by existing methods commonly lacks from the desired spat...

  6. Skin lesions image analysis utilizing smartphones and cloud platforms.

    PubMed

    Doukas, Charalampos; Stagkopoulos, Paris; Maglogiannis, Ilias

    2015-01-01

    This chapter presents the state of the art on mobile teledermoscopy applications, utilizing smartphones able to store digital images of skin areas depicting regions of interest (lesions) and perform self-assessment or communicate the captured images with expert physicians. Mobile teledermoscopy systems consist of a mobile application that can acquire and identify moles in skin images and classify them according their severity and Cloud infrastructure exploiting computational and storage resources. The chapter presents some indicative mobile applications for skin lesions assessment and describes a proposed system developed by our team that can perform skin lesion evaluation both on the phone and on the Cloud, depending on the network availability. PMID:25626556

  7. Jupiter's Cloud Distribution Between the Voyager 1 and 2 Encounters: Results from 5-Micrometer Imaging.

    PubMed

    Terrile, R J; Capps, R W; Becklin, E E; Cruikshank, D P

    1979-11-23

    As part of a continuing effort of ground-based support for Voyager target selection, infrared images in the 5-micrometer wavelength region were acquired in preparation for the Voyager 2 flyby of Jupiter. Observations were made during May 1979 from the Palomar 5-meter telescope and the new 3-meter NASA Infrared Telescope Facility at Mauna Kea and are compared to previous observations. Variations seen in the 5-micrometer flux distribution suggest global patterns of clouding over of some Jovian belts and clearing ofothers. These data were used to predict the Jovian cloud distribution at the time of the Voyager 2 encounter in order to target the imaging and infrared experiments to areas free of high obscuring clouds. PMID:17733922

  8. The Radiative Consistency of Atmospheric Infrared Sounder and Moderate Resolution Imaging Spectroradiometer Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Kahn, Brian H.; Fishbein, Evan; Nasiri, Shaima L.; Eldering, Annmarie; Fetzer, Eric J.; Garay, Michael J.; Lee, Sung-Yung

    2007-01-01

    The consistency of cloud top temperature (Tc) and effective cloud fraction (f) retrieved by the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU) observation suite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on the EOS-Aqua platform are investigated. Collocated AIRS and MODIS TC and f are compared via an 'effective scene brightness temperature' (Tb,e). Tb,e is calculated with partial field of view (FOV) contributions from TC and surface temperature (TS), weighted by f and 1-f, respectively. AIRS reports up to two cloud layers while MODIS reports up to one. However, MODIS reports TC, TS, and f at a higher spatial resolution than AIRS. As a result, pixel-scale comparisons of TC and f are difficult to interpret, demonstrating the need for alternatives such as Tb,e. AIRS-MODIS Tb,e differences ((Delta)Tb,e) for identical observing scenes are useful as a diagnostic for cloud quantity comparisons. The smallest values of DTb,e are for high and opaque clouds, with increasing scatter in (Delta)Tb,e for clouds of smaller opacity and lower altitude. A persistent positive bias in DTb,e is observed in warmer and low-latitude scenes, characterized by a mixture of MODIS CO2 slicing and 11-mm window retrievals. These scenes contain heterogeneous cloud cover, including mixtures of multilayered cloudiness and misplaced MODIS cloud top pressure. The spatial patterns of (Delta)Tb,e are systematic and do not correlate well with collocated AIRS-MODIS radiance differences, which are more random in nature and smaller in magnitude than (Delta)Tb,e. This suggests that the observed inconsistencies in AIRS and MODIS cloud fields are dominated by retrieval algorithm differences, instead of differences in the observed radiances. The results presented here have implications for the validation of cloudy satellite retrieval algorithms, and use of cloud products in quantitative analyses.

  9. Images from Galileo of the Venus cloud deck

    NASA Technical Reports Server (NTRS)

    Belton, Michael J. S.; Gierasch, Peter J.; Smith, Michael D.; Helfenstein, Paul; Schinder, Paul J.; Pollack, James B.; Rages, Kathy A.; Morrison, David; Klaasen, Kenneth P.; Pilcher, Carl B.

    1991-01-01

    Images of Venus taken at 418 and 986 nm show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR. In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flowfield shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.

  10. Images from Galileo of the Venus cloud deck

    USGS Publications Warehouse

    Belton, M.J.S.; Gierasch, P.J.; Smith, M.D.; Helfenstein, P.; Schinder, P.J.; Pollack, James B.; Rages, K.A.; Ingersoll, A.P.; Klaasen, K.P.; Veverka, J.; Anger, C.D.; Carr, M.H.; Chapman, C.R.; Davies, M.E.; Fanale, F.P.; Greeley, R.; Greenberg, R.; Head, J. W., III; Morrison, D.; Neukum, G.; Pilcher, C.B.

    1991-01-01

    Images of Venus taken at 418 (violet) and 986 [near-infrared (NIR)] nanometers show that the morphology and motions of large-scale features change with depth in the cloud deck. Poleward meridional velocities, seen in both spectral regions, are much reduced in the NIR. In the south polar region the markings in the two wavelength bands are strongly anticorrelated. The images follow the changing state of the upper cloud layer downwind of the subsolar point, and the zonal flow field shows a longitudinal periodicity that may be coupled to the formation of large-scale planetary waves. No optical lightning was detected.

  11. Secure public cloud platform for medical images sharing.

    PubMed

    Pan, Wei; Coatrieux, Gouenou; Bouslimi, Dalel; Prigent, Nicolas

    2015-01-01

    Cloud computing promises medical imaging services offering large storage and computing capabilities for limited costs. In this data outsourcing framework, one of the greatest issues to deal with is data security. To do so, we propose to secure a public cloud platform devoted to medical image sharing by defining and deploying a security policy so as to control various security mechanisms. This policy stands on a risk assessment we conducted so as to identify security objectives with a special interest for digital content protection. These objectives are addressed by means of different security mechanisms like access and usage control policy, partial-encryption and watermarking. PMID:25991144

  12. Cloud screening Coastal Zone Color Scanner images using channel 5

    NASA Technical Reports Server (NTRS)

    Eckstein, B. A.; Simpson, J. J.

    1991-01-01

    Clouds are removed from Coastal Zone Color Scanner (CZCS) data using channel 5. Instrumentation problems require pre-processing of channel 5 before an intelligent cloud-screening algorithm can be used. For example, at intervals of about 16 lines, the sensor records anomalously low radiances. Moreover, the calibration equation yields negative radiances when the sensor records zero counts, and pixels corrupted by electronic overshoot must also be excluded. The remaining pixels may then be used in conjunction with the procedure of Simpson and Humphrey to determine the CZCS cloud mask. These results plus in situ observations of phytoplankton pigment concentration show that pre-processing and proper cloud-screening of CZCS data are necessary for accurate satellite-derived pigment concentrations. This is especially true in the coastal margins, where pigment content is high and image distortion associated with electronic overshoot is also present. The pre-processing algorithm is critical to obtaining accurate global estimates of pigment from spacecraft data.

  13. Auotomatic Classification of Point Clouds Extracted from Ultracam Stereo Images

    NASA Astrophysics Data System (ADS)

    Modiri, M.; Masumi, M.; Eftekhari, A.

    2015-12-01

    Automatic extraction of building roofs, street and vegetation are a prerequisite for many GIS (Geographic Information System) applications, such as urban planning and 3D building reconstruction. Nowadays with advances in image processing and image matching technique by using feature base and template base image matching technique together dense point clouds are available. Point clouds classification is an important step in automatic features extraction. Therefore, in this study, the classification of point clouds based on features color and shape are implemented. We use two images by proper overlap getting by Ultracam-x camera in this study. The images are from Yasouj in IRAN. It is semi-urban area by building with different height. Our goal is classification buildings and vegetation in these points. In this article, an algorithm is developed based on the color characteristics of the point's cloud, using an appropriate DEM (Digital Elevation Model) and points clustering method. So that, firstly, trees and high vegetation are classified by using the point's color characteristics and vegetation index. Then, bare earth DEM is used to separate ground and non-ground points. Non-ground points are then divided into clusters based on height and local neighborhood. One or more clusters are initialized based on the maximum height of the points and then each cluster is extended by applying height and neighborhood constraints. Finally, planar roof segments are extracted from each cluster of points following a region-growing technique.

  14. Integration of Images and LIDAR Point Clouds for Building FAÇADE Texturing

    NASA Astrophysics Data System (ADS)

    Chen, L. C.; Chan, L. L.; Chang, W. C.

    2016-06-01

    This paper proposes a model-based method for texture mapping using close-range images and Lidar point clouds. Lidar point clouds are used to aid occlusion detection. For occluded areas, we compensate the occlusion by different view-angle images. Considering the authenticity of façade with repeated patterns under different illumination conditions, a selection of optimum pattern is suggested. In the selection, both geometric shape and texture are analyzed. The grey level co-occurrence matrix analysis is applied for the selection of the optimal façades texture to generate of photorealistic building models. Experimental results show that the proposed method provides high fidelity textures in the generation of photorealistic building models. It is demonstrated that the proposed method is also practical in the selection of the optimal texture.

  15. Dense 3d Point Cloud Generation from Uav Images from Image Matching and Global Optimazation

    NASA Astrophysics Data System (ADS)

    Rhee, S.; Kim, T.

    2016-06-01

    3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.

  16. Cloud Detection with the Earth Polychromatic Imaging Camera (EPIC)

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Marshak, Alexander; Lyapustin, Alexei; Torres, Omar; Wang, Yugie

    2011-01-01

    The Earth Polychromatic Imaging Camera (EPIC) on board the Deep Space Climate Observatory (DSCOVR) would provide a unique opportunity for Earth and atmospheric research due not only to its Lagrange point sun-synchronous orbit, but also to the potential for synergistic use of spectral channels in both the UV and visible spectrum. As a prerequisite for most applications, the ability to detect the presence of clouds in a given field of view, known as cloud masking, is of utmost importance. It serves to determine both the potential for cloud contamination in clear-sky applications (e.g., land surface products and aerosol retrievals) and clear-sky contamination in cloud applications (e.g., cloud height and property retrievals). To this end, a preliminary cloud mask algorithm has been developed for EPIC that applies thresholds to reflected UV and visible radiances, as well as to reflected radiance ratios. This algorithm has been tested with simulated EPIC radiances over both land and ocean scenes, with satisfactory results. These test results, as well as algorithm sensitivity to potential instrument uncertainties, will be presented.

  17. Cloud Image Data Center for Healthcare Network in Taiwan.

    PubMed

    Weng, Shao-Jen; Lai, Lai-Shiun; Gotcher, Donald; Wu, Hsin-Hung; Xu, Yeong-Yuh; Yang, Ching-Wen

    2016-04-01

    This paper investigates how a healthcare network in Taiwan uses a practical cloud image data center (CIDC) to communicate with its constituent hospital branches. A case study approach was used. The study was carried out in the central region of Taiwan, with four hospitals belonging to the Veterans Hospital healthcare network. The CIDC provides synchronous and asynchronous consultation among these branches. It provides storage, platforms, and services on demand to the hospitals. Any branch-client can pull up the patient's medical images from any hospital off this cloud. Patients can be examined at the branches, and the images and reports can be further evaluated by physicians in the main Taichung Veterans General Hospital (TVGH) to enhance the usage and efficiency of equipment in the various branches, thereby shortening the waiting time of patients. The performance of the CIDC over 5 years shows: (1) the total number of cross-hospital images accessed with CDC in the branches was 132,712; and (2) TVGH assisted the branches in keying in image reports using the CIDC 4,424 times; and (3) Implementation of the system has improved management, efficiency, speed and quality of care. Therefore, the results lead to the recommendation of continuing and expanding the cloud computing architecture to improve information sharing among branches in the healthcare network. PMID:26846750

  18. High-resolution Images of Diffuse Neutral Clouds in the Milky Way. I. Observations, Imaging, and Basic Cloud Properties

    NASA Astrophysics Data System (ADS)

    Pidopryhora, Y.; Lockman, Felix J.; Dickey, J. M.; Rupen, M. P.

    2015-08-01

    A set of diffuse interstellar clouds in the inner Galaxy within a few hundred parsecs of the Galactic plane has been observed at an angular resolution of ≈1&farcm0 combining data from the NRAO Green Bank Telescope and the Very Large Array. At the distance of the clouds, the linear resolution ranges from ˜1.9 to ˜2.8 pc. These clouds have been selected to be somewhat outside of the Galactic plane, and thus are not confused with unrelated emission, but in other respects they are a Galactic population. They are located near the tangent points in the inner Galaxy, and thus at a quantifiable distance: 2.3≤slant R≤slant 6.0 kpc from the Galactic Center and -1000≤slant z≤slant +610 pc from the Galactic plane. These are the first images of the diffuse neutral H i clouds that may constitute a considerable fraction of the interstellar medium (ISM). Peak H i column densities lie in the range NH i = 0.8-2.9 × 1020 cm-2. Cloud diameters vary between about 10 and 100 pc, and their H i mass spans the range from less than a hundred to a few thousands M⊙. The clouds show no morphological consistency of any kind, except that their shapes are highly irregular. One cloud may lie within the hot wind from the nucleus of the Galaxy, and some clouds show evidence of two distinct thermal phases as would be expected from equilibrium models of the ISM.

  19. The algorithm to generate color point-cloud with the registration between panoramic image and laser point-cloud

    NASA Astrophysics Data System (ADS)

    Zeng, Fanyang; Zhong, Ruofei

    2014-03-01

    Laser point cloud contains only intensity information and it is necessary for visual interpretation to obtain color information from other sensor. Cameras can provide texture, color, and other information of the corresponding object. Points with color information of corresponding pixels in digital images can be used to generate color point-cloud and is conducive to the visualization, classification and modeling of point-cloud. Different types of digital cameras are used in different Mobile Measurement Systems (MMS).the principles and processes for generating color point-cloud in different systems are not the same. The most prominent feature of the panoramic images is the field of 360 degrees view angle in the horizontal direction, to obtain the image information around the camera as much as possible. In this paper, we introduce a method to generate color point-cloud with panoramic image and laser point-cloud, and deduce the equation of the correspondence between points in panoramic images and laser point-clouds. The fusion of panoramic image and laser point-cloud is according to the collinear principle of three points (the center of the omnidirectional multi-camera system, the image point on the sphere, the object point). The experimental results show that the proposed algorithm and formulae in this paper are correct.

  20. A secure online image trading system for untrusted cloud environments.

    PubMed

    Munadi, Khairul; Arnia, Fitri; Syaryadhi, Mohd; Fujiyoshi, Masaaki; Kiya, Hitoshi

    2015-01-01

    In conventional image trading systems, images are usually stored unprotected on a server, rendering them vulnerable to untrusted server providers and malicious intruders. This paper proposes a conceptual image trading framework that enables secure storage and retrieval over Internet services. The process involves three parties: an image publisher, a server provider, and an image buyer. The aim is to facilitate secure storage and retrieval of original images for commercial transactions, while preventing untrusted server providers and unauthorized users from gaining access to true contents. The framework exploits the Discrete Cosine Transform (DCT) coefficients and the moment invariants of images. Original images are visually protected in the DCT domain, and stored on a repository server. Small representation of the original images, called thumbnails, are generated and made publicly accessible for browsing. When a buyer is interested in a thumbnail, he/she sends a query to retrieve the visually protected image. The thumbnails and protected images are matched using the DC component of the DCT coefficients and the moment invariant feature. After the matching process, the server returns the corresponding protected image to the buyer. However, the image remains visually protected unless a key is granted. Our target application is the online market, where publishers sell their stock images over the Internet using public cloud servers. PMID:26090324

  1. Forbidden coronal iron line images of Puppis A - Cloud evaporation or shocked cloud?

    NASA Technical Reports Server (NTRS)

    Teske, Richard G.; Petre, Robert

    1987-01-01

    Calibrated CCD images of the eastern X-ray knot in Puppis A, made in the forbidden red and green coronal Fe lines, are discussed. They show the high-temperature gas to have a rich morphology, with the scale of some features approaching the 2.6 arcsec resolution of the data. The pictures have been compared with an Einstein HRI soft X-ray image; there is close correspondence in the position and size of structures seen in the optical forbidden lines and in the X-rays. Located near the shock front a cloud of about 0.4 pc x 0.9 pc dimension shines brilliantly in the 5303 A line. To test the hypothesis that the cloud might be evaporating into the remnant interior, the 5303 A and 6374 A intensity distributions expected for a steady state, one-fluid evaporatig model have been computed.

  2. Forbidden coronal iron line images of Puppis A - cloud evaporation or shocked cloud

    SciTech Connect

    Teske, R.G.; Petre, R.

    1987-03-01

    Calibrated CCD images of the eastern X-ray knot in Puppis A, made in the forbidden red and green coronal Fe lines, are discussed. They show the high-temperature gas to have a rich morphology, with the scale of some features approaching the 2.6 arcsec resolution of the data. The pictures have been compared with an Einstein HRI soft X-ray image; there is close correspondence in the position and size of structures seen in the optical forbidden lines and in the X-rays. Located near the shock front a cloud of about 0.4 pc x 0.9 pc dimension shines brilliantly in the 5303 A line. To test the hypothesis that the cloud might be evaporating into the remnant interior, the 5303 A and 6374 A intensity distributions expected for a steady state, one-fluid evaporatig model have been computed. 28 references.

  3. Leveraging the Cloud for Robust and Efficient Lunar Image Processing

    NASA Technical Reports Server (NTRS)

    Chang, George; Malhotra, Shan; Wolgast, Paul

    2011-01-01

    The Lunar Mapping and Modeling Project (LMMP) is tasked to aggregate lunar data, from the Apollo era to the latest instruments on the LRO spacecraft, into a central repository accessible by scientists and the general public. A critical function of this task is to provide users with the best solution for browsing the vast amounts of imagery available. The image files LMMP manages range from a few gigabytes to hundreds of gigabytes in size with new data arriving every day. Despite this ever-increasing amount of data, LMMP must make the data readily available in a timely manner for users to view and analyze. This is accomplished by tiling large images into smaller images using Hadoop, a distributed computing software platform implementation of the MapReduce framework, running on a small cluster of machines locally. Additionally, the software is implemented to use Amazon's Elastic Compute Cloud (EC2) facility. We also developed a hybrid solution to serve images to users by leveraging cloud storage using Amazon's Simple Storage Service (S3) for public data while keeping private information on our own data servers. By using Cloud Computing, we improve upon our local solution by reducing the need to manage our own hardware and computing infrastructure, thereby reducing costs. Further, by using a hybrid of local and cloud storage, we are able to provide data to our users more efficiently and securely. 12 This paper examines the use of a distributed approach with Hadoop to tile images, an approach that provides significant improvements in image processing time, from hours to minutes. This paper describes the constraints imposed on the solution and the resulting techniques developed for the hybrid solution of a customized Hadoop infrastructure over local and cloud resources in managing this ever-growing data set. It examines the performance trade-offs of using the more plentiful resources of the cloud, such as those provided by S3, against the bandwidth limitations such use

  4. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    NASA Astrophysics Data System (ADS)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  5. Feeding People's Curiosity: Leveraging the Cloud for Automatic Dissemination of Mars Images

    NASA Technical Reports Server (NTRS)

    Knight, David; Powell, Mark

    2013-01-01

    Smartphones and tablets have made wireless computing ubiquitous, and users expect instant, on-demand access to information. The Mars Science Laboratory (MSL) operations software suite, MSL InterfaCE (MSLICE), employs a different back-end image processing architecture compared to that of the Mars Exploration Rovers (MER) in order to better satisfy modern consumer-driven usage patterns and to offer greater server-side flexibility. Cloud services are a centerpiece of the server-side architecture that allows new image data to be delivered automatically to both scientists using MSLICE and the general public through the MSL website (http://mars.jpl.nasa.gov/msl/).

  6. Voyager imaging of Triton's clouds and hazes

    NASA Technical Reports Server (NTRS)

    Rages, Kathy; Pollack, James B.

    1992-01-01

    Results are presented from a detailed analysis of Voyager images of Triton obtained at the highest solar phase angles; these have been fit to Mie scattering models in order to obtain the mean particle sizes, number densities, and the vertical extent of the two different scattering components of the Triton atmosphere. The 0.001-0.01 optical depths of about 0.17 micron particles are vertically distributed with scale heights of about 10 km throughout Triton. A number of properties of the haze particles in question suggest that they are composed of photochemically produced gases which have condensed in the cold lower atmosphere of Triton.

  7. Influence of atmospheric circulation patterns on local cloud and solar variability in Bergen, Norway

    NASA Astrophysics Data System (ADS)

    Parding, Kajsa; Olseth, Jan Asle; Liepert, Beate G.; Dagestad, Knut-Frode

    2016-08-01

    In a previous paper, we have shown that long-term cloud and solar observations (1965-2013) in Bergen, Norway (60.39°N, 5.33°E) are compatible with a largely cloud dominated radiative climate. Here, we explicitly address the relationship between the large scale circulation over Europe and local conditions in Bergen, identifying specific circulation shifts that have contributed to the observed cloud and solar variations. As a measure of synoptic weather patterns, we use the Grosswetterlagen (GWL), a daily classification of European weather for 1881-2013. Empirical models of cloud cover, cloud base, relative sunshine duration, and normalised global irradiance are constructed based on the GWL frequencies, extending the observational time series by more than 70 years. The GWL models successfully reproduce the observed increase in cloud cover and decrease in solar irradiance during the 1970s and 1980s. This cloud-induced dimming is traced to an increasing frequency of cyclonic and decreasing frequency of anticyclonic weather patterns over northern Europe. The changing circulation patterns in winter can be understood as a shift from the negative to the positive phase of the North Atlantic and Arctic Oscillation. A recent period of increasing solar irradiance is observed but not reproduce by the GWL models, suggesting this brightening is associated with factors other than large scale atmospheric circulation, possibly decreasing aerosol loads and local cloud shifts.

  8. Modified control software for imaging ultracold atomic clouds

    NASA Astrophysics Data System (ADS)

    Whitaker, D. L.; Sharma, A.; Brown, J. M.

    2006-12-01

    A charge-coupled device (CCD) camera capable of taking high-quality images of ultracold atomic samples can often represent a significant portion of the equipment costs in atom trapping experiment. We have modified the commercial control software of a CCD camera designed for astronomical imaging to take absorption images of ultracold rubidium clouds. This camera is sensitive at 780 nm and has been modified to take three successive 16-bit images at full resolution. The control software can be integrated into a Matlab graphical user interface with fitting routines written as Matlab functions. This camera is capable of recording high-quality images at a fraction of the cost of similar cameras typically used in atom trapping experiments.

  9. Cloud based toolbox for image analysis, processing and reconstruction tasks.

    PubMed

    Bednarz, Tomasz; Wang, Dadong; Arzhaeva, Yulia; Lagerstrom, Ryan; Vallotton, Pascal; Burdett, Neil; Khassapov, Alex; Szul, Piotr; Chen, Shiping; Sun, Changming; Domanski, Luke; Thompson, Darren; Gureyev, Timur; Taylor, John A

    2015-01-01

    This chapter describes a novel way of carrying out image analysis, reconstruction and processing tasks using cloud based service provided on the Australian National eResearch Collaboration Tools and Resources (NeCTAR) infrastructure. The toolbox allows users free access to a wide range of useful blocks of functionalities (imaging functions) that can be connected together in workflows allowing creation of even more complex algorithms that can be re-run on different data sets, shared with others or additionally adjusted. The functions given are in the area of cellular imaging, advanced X-ray image analysis, computed tomography and 3D medical imaging and visualisation. The service is currently available on the website www.cloudimaging.net.au . PMID:25381109

  10. An X-ray image of the large magellanic cloud

    NASA Technical Reports Server (NTRS)

    Snowden, S. L.; Petre, R.

    1994-01-01

    We have used archival ROSAT Position Sensitive Proportional Counter (PSPC) pointed observations to construct maps of the Large Magellanic Cloud (LMC) in four energy bands between 0.5 and 2.0 keV. These represent the most complete, deepest, and most detailed X-ray images of the LMC to date. While confirming the general morphology of the diffuse LMC emission observed by Wang et al. with Einstein IPC data, these images reveal a wealth of detailed structure of high statistical significance on angular scales from a few arcminutes to a few degrees. In addition, at least twice as many discrete sources are detected as were found using the IPC.

  11. Operational cloud-motion winds from Meteosat infrared images

    SciTech Connect

    Schmetz, J.; Holmlund, K.; Mason, B.; Gaertner, V.; Koch, A.; Van De Berg, L. ); Hoffman, J. ); Strauss, B. )

    1993-07-01

    The displacements of clouds in successive satellite images reflects the atmospheric circulation at various scales. The main application of the satellite-derived cloud-motion vectors is their use as winds in the data analysis for numerical weather prediction. At low latitudes in particular they constitute an indispensible data source for numerical weather prediction. This paper describes the operational method of deriving cloud-motion winds (CMW) from the IR images (10.5-12.5 [mu]m) of the European geostationary Meteosat satellites. The method is automatic, that is, the cloud tracking uses cross correlation and the height assignment is based on satellite observed brightness temperature and a forecast temperature profile. Semitransparent clouds undergo a height correction based on radiative forward calculations and simultaneous radiance observations in both the IR and water vapor (5.7-7.1 [mu]m) channel. Cloud-motion winds are subject to various quality checks that include manual quality controls as the last step. Typically about 3000 wind vectors are produced per day over four production cycles. This paper documents algorithm changes and improvements made to the operational CMWs over the last five years. The improvements are shown by long-term comparisons with both collocated radiosondes and the first guess of the forecast model of the European Centre for Medium-Range Weather Forecasts. In particular, the height assignment of a wind vector and radiance filtering techniques preceding the cloud tracking have ameliorated the errors in Meteosat winds. The slow speed bias of high-level CMWs (<400 hPa) in comparison to radiosonde winds has been reduced from about 4 to 1.3 m s[sup [minus]1] for a mean wind speed of 24 m s[sup [minus]1]. Correspondingly, the rms vector error of Meteosat high-level CMWs decreased from about 7.8 to 5 m s[sup [minus]1]. Medium-and low-level CMWs were also significantly improved. 56 refs., 12 figs., 2 tabs.

  12. CloudSat First Image of a Warm Front Storm Over the Norwegian Sea

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    CloudSat's first image, of a warm front storm over the Norwegian Sea, was obtained on May 20, 2006. In this horizontal cross-section of clouds, warm air is seen rising over colder air as the satellite travels from right to left. The red colors are indicative of highly reflective particles such as water droplets (or rain) or larger ice crystals (or snow), while the blue indicates thinner clouds (such as cirrus). The flat green/blue lines across the bottom represent the ground signal. The vertical scale on the CloudSat Cloud Profiling Radar image is approximately 30 kilometers (19 miles). The blue line below the Cloud Profiling Radar image indicates that the data were taken over water. The inset image shows the CloudSat track relative to a Moderate Resolution Imaging Spectroradiometer (MODIS) infrared image taken at nearly the same time.

  13. Cassini Imaging Science Subsystem observations of Titan's south polar cloud

    NASA Astrophysics Data System (ADS)

    West, R. A.; Del Genio, A. D.; Barbara, J. M.; Toledo, D.; Lavvas, P.; Rannou, P.; Turtle, E. P.; Perry, J.

    2016-05-01

    In May of 2012 images of Titan obtained by the Cassini Imaging Science Subsystem (ISS) showed a newly-formed cloud patch near the southern pole. The cloud has unusual morphology and texture suggesting that it is formed by condensation at an altitude much higher than expected for any of the known organics in Titan's atmosphere. We measured the altitude to be 300 ± 10 km from images when the feature was on the limb. Limb images suggest that the initial stages of the formation began in late 2011. It was just visible in images obtained in 2014 but is not expected to be visible in the future due to enveloping darkness as the season progresses. The feature has a slightly different color than the surrounding haze. Its optical thickness is near 2 at 889 nm wavelength and the particle imaginary refractive index must be less than 5 × 10-4 at that wavelength. Wind vectors derived from a time series show that it is rotating about a center offset by 4.5° from Titan's solid-body spin axis, consistent with that found from the temperature field by Achterberg et al. (Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A. [2008a]. Icarus 197, 549-555) and subsequent measurements. The feature rotates at an angular velocity near the rate expected for transport of angular momentum from the low latitudes to the pole. The clumpy texture of the feature resembles that of terrestrial cloud fields undergoing open cell convection, an unusual configuration initiated by downwelling.

  14. Enabling outsourcing XDS for imaging on the public cloud.

    PubMed

    Ribeiro, Luís S; Rodrigues, Renato P; Costa, Carlos; Oliveira, José Luís

    2013-01-01

    Picture Archiving and Communication System (PACS) has been the main paradigm in supporting medical imaging workflows during the last decades. Despite its consolidation, the appearance of Cross-Enterprise Document Sharing for imaging (XDS-I), within IHE initiative, constitutes a great opportunity to readapt PACS workflow for inter-institutional data exchange. XDS-I provides a centralized discovery of medical imaging and associated reports. However, the centralized XDS-I actors (document registry and repository) must be deployed in a trustworthy node in order to safeguard patient privacy, data confidentiality and integrity. This paper presents XDS for Protected Imaging (XDS-p), a new approach to XDS-I that is capable of being outsourced (e.g. Cloud Computing) while maintaining privacy, confidentiality, integrity and legal concerns about patients' medical information. PMID:23920510

  15. The Earth Clouds and Radiation Explorer (EarthCARE) Mission: Cloud and Aerosol Lidar and Imager algorithms.

    NASA Astrophysics Data System (ADS)

    Donovan, David; van Zadelhoff, Gerd-Jan; Wandinger, Ulla; Hünerbein, Anjah; Fischer, Jurgen; von Bismarck, Jonas; Eisinger, Michael; Lajas, Dulce; Wehr, Tobias

    2015-04-01

    The value of multi-sensor remote sensing applied to clouds and aerosol has become clear in recent years. For example, combinations of instruments including passive radiometers, lidars and cloud radars have proved invaluable for their ability to retrieve profiles of cloud macrophysical and microphysical properties. This is amply illustrated by various results from the US-DoE ARM (and similar) surface sites as well as results from data collected by sensors aboard the A-train satellites CloudSat, CALIPSO, and Terra. The Earth Clouds Aerosol and Radiation Explorer (EarthCARE) mission is a combined ESA/JAXA mission to be launched in 2018 which has been designed with sensor-synergy playing a key role. The mission consists of a cloud-profiling radar (CPR), a high-spectral resolution cloud/aerosol lidar (ATLID), a cloud/aerosol multi-spectral imager (MSI), and a three-view broad-band radiometer (BBR). The mission will deliver cloud, aerosol and radiation products focusing on horizontal scales ranging from 1 km to 10 km. EarthCARE data will be used in multiple ways ranging from model evaluation studies, to GCM-orientated cloud microphysical property parameterization development, to data assimilation activities. Recently a number of activities, funded by ESA, have kicked-off which will ultimately deliver operational algorithms for EarthCARE. One of these activities is the "Atmospheric Products from Imager and Lidar" (APRIL) project which focuses on the development of lidar, imager and combined lidar-imager cloud and aerosol algorithms. In this presentation an overview of the APRIL algorithms within the wider context of the planned EarthCARE processing chain will be given.

  16. Imaging sensor constellation for tomographic chemical cloud mapping.

    PubMed

    Cosofret, Bogdan R; Konno, Daisei; Faghfouri, Aram; Kindle, Harry S; Gittins, Christopher M; Finson, Michael L; Janov, Tracy E; Levreault, Mark J; Miyashiro, Rex K; Marinelli, William J

    2009-04-01

    A sensor constellation capable of determining the location and detailed concentration distribution of chemical warfare agent simulant clouds has been developed and demonstrated on government test ranges. The constellation is based on the use of standoff passive multispectral infrared imaging sensors to make column density measurements through the chemical cloud from two or more locations around its periphery. A computed tomography inversion method is employed to produce a 3D concentration profile of the cloud from the 2D line density measurements. We discuss the theoretical basis of the approach and present results of recent field experiments where controlled releases of chemical warfare agent simulants were simultaneously viewed by three chemical imaging sensors. Systematic investigations of the algorithm using synthetic data indicate that for complex functions, 3D reconstruction errors are less than 20% even in the case of a limited three-sensor measurement network. Field data results demonstrate the capability of the constellation to determine 3D concentration profiles that account for ~?86%? of the total known mass of material released. PMID:19340137

  17. Analysis of interstellar cloud structure based on IRAS images

    NASA Technical Reports Server (NTRS)

    Scalo, John M.

    1992-01-01

    The goal of this project was to develop new tools for the analysis of the structure of densely sampled maps of interstellar star-forming regions. A particular emphasis was on the recognition and characterization of nested hierarchical structure and fractal irregularity, and their relation to the level of star formation activity. The panoramic IRAS images provided data with the required range in spatial scale, greater than a factor of 100, and in column density, greater than a factor of 50. In order to construct densely sampled column density maps of star-forming clouds, column density images of four nearby cloud complexes were constructed from IRAS data. The regions have various degrees of star formation activity, and most of them have probably not been affected much by the disruptive effects of young massive stars. The largest region, the Scorpius-Ophiuchus cloud complex, covers about 1000 square degrees (it was subdivided into a few smaller regions for analysis). Much of the work during the early part of the project focused on an 80 square degree region in the core of the Taurus complex, a well-studied region of low-mass star formation.

  18. Spatial and temporal patterns of cloud cover and fog inundation in coastal California: Ecological implications

    USGS Publications Warehouse

    Rastogi, Bharat; Williams, A. Park; Fischer, Douglas T.; Iacobellis, Sam F.; McEachern, Kathryn; Carvalho, Leila; Jones, Charles Leslie; Baguskas, Sara A.; Still, Christopher J.

    2016-01-01

    The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in coastal California where forests are frequently shaded by low-lying clouds or immersed in fog during otherwise warm and dry summer months. Summer fog and stratus can ameliorate summer drought stress and enhance soil water budgets, and often have different spatial and temporal patterns. Here we use remote sensing datasets to characterize the spatial and temporal patterns of cloud cover over California’s northern Channel Islands. We found marine stratus to be persistent from May through September across the years 2001-2012. Stratus clouds were both most frequent and had the greatest spatial extent in July. Clouds typically formed in the evening, and dissipated by the following early afternoon. We present a novel method to downscale satellite imagery using atmospheric observations and discriminate patterns of fog from those of stratus and help explain patterns of fog deposition previously studied on the islands. The outcomes of this study contribute significantly to our ability to quantify the occurrence of coastal fog at biologically meaningful spatial and temporal scales that can improve our understanding of cloud-ecosystem interactions, species distributions and coastal ecohydrology.

  19. Neptune's Wind Speeds Obtained by Tracking Clouds in Voyager Images.

    PubMed

    Hammel, H B; Beebe, R F; De Jong, E M; Hansen, C J; Howell, C D; Ingersoll, A P; Johnson, T V; Limaye, S S; Magalhaes, J A; Pollack, J B; Sromovsky, L A; Suomi, V E; Swift, C E

    1989-09-22

    Images of Neptune obtained by the narrow-angle camera of the Voyager 2 spacecraft reveal large-scale cloud features that persist for several months or longer. The features' periods of rotation about the planetary axis range from 15.8 to 18.4 hours. The atmosphere equatorward of -53 degrees rotates with periods longer than the 16.05-hour period deduced from Voyager's planetary radio astronomy experiment (presumably the planet's internal rotation period). The wind speeds computed with respect to this radio period range from 20 meters per second eastward to 325 meters per second westward. Thus, the cloud-top wind speeds are roughly the same for all the planets ranging from Venus to Neptune, even though the solar energy inputs to the atmospheres vary by a factor of 1000. PMID:17798743

  20. High Quality Typhoon Cloud Image Restoration by Combining Genetic Algorithm with Contourlet Transform

    SciTech Connect

    Zhang Changjiang; Wang Xiaodong

    2008-11-06

    An efficient typhoon cloud image restoration algorithm is proposed. Having implemented contourlet transform to a typhoon cloud image, noise is reduced in the high sub-bands. Weight median value filter is used to reduce the noise in the contourlet domain. Inverse contourlet transform is done to obtain the de-noising image. In order to enhance the global contrast of the typhoon cloud image, in-complete Beta transform (IBT) is used to determine non-linear gray transform curve so as to enhance global contrast for the de-noising typhoon cloud image. Genetic algorithm is used to obtain the optimal gray transform curve. Information entropy is used as the fitness function of the genetic algorithm. Experimental results show that the new algorithm is able to well enhance the global for the typhoon cloud image while well reducing the noises in the typhoon cloud image.

  1. Multiscale image enhancement of chromosome banding patterns

    NASA Astrophysics Data System (ADS)

    Wu, Qiang; Castleman, Kenneth R.

    1996-10-01

    Visual examination of chromosome banding patterns is an important means of chromosome analysis. Cytogeneticists compare their patient's chromosome image against the prototype normal/abnormal human chromosome banding patterns. Automated chromosome analysis instruments facilitate this by digitally enhancing the chromosome images. Currently available systems employing traditional highpass/bandpass filtering and/or histogram equalization are approximately equivalent to photomicroscopy in their ability to support the detection of band pattern alterations. Improvements in chromosome image display quality, particularly in the detail of the banding pattern, would significantly increase the cost-effectiveness of these systems. In this paper we present our work on the use of multiscale transform and derivative filtering for image enhancement of chromosome banding patterns. A steerable pyramid representation of the chromosome image is generated by a multiscale transform. The derivative filters are designed to detect the bands of a chromosome, and the steerable pyramid transform is chosen based on its desirable properties of shift and rotation invariance. By processing the transform coefficients that correspond to the bands of the chromosome in the pyramid representation, contrast enhancement of the chromosome bands can be achieved with designed flexibility in scale, orientation and location. Compared with existing chromosome image enhancement techniques, this new approach offers the advantage of selective chromosome banding pattern enhancement that allows designated detail analysis. Experimental results indicate improved enhancement capabilities and promise more effective visual aid to comparison of chromosomes to the prototypes and to each other. This will increase the ability of automated chromosome analysis instruments to assist the evaluation of chromosome abnormalities in clinical samples.

  2. Pattern recognition of clouds and ice in polar regions

    NASA Technical Reports Server (NTRS)

    Welch, R. M.; Sengupta, S. K.; Sundar, C. A.; Kuo, K. S.; Carsey, F. D.

    1990-01-01

    The study is based on AVHRR imagery and results from Landsat high-spatial-resolution scenes. Among the textual features investigated are the gray level difference vector (GLDV), and sum and difference histogram (SADH) approaches as well as gray level run length, spatial-coherence, and spectral-histogram measures. The traditional stepwise discriminant analysis and neural-network analysis are used for the identification of 20 Arctic surface and cloud classes. A principal-component analysis and hybrid architecture employing a modularized competitive learning layer are utilized. It is pointed out that the cloud-classification accuracy comparable to that of back-propagation could be achieved with a training time two orders of magnitude faster.

  3. A Routing Mechanism for Cloud Outsourcing of Medical Imaging Repositories.

    PubMed

    Godinho, Tiago Marques; Viana-Ferreira, Carlos; Bastião Silva, Luís A; Costa, Carlos

    2016-01-01

    Web-based technologies have been increasingly used in picture archive and communication systems (PACS), in services related to storage, distribution, and visualization of medical images. Nowadays, many healthcare institutions are outsourcing their repositories to the cloud. However, managing communications between multiple geo-distributed locations is still challenging due to the complexity of dealing with huge volumes of data and bandwidth requirements. Moreover, standard methodologies still do not take full advantage of outsourced archives, namely because their integration with other in-house solutions is troublesome. In order to improve the performance of distributed medical imaging networks, a smart routing mechanism was developed. This includes an innovative cache system based on splitting and dynamic management of digital imaging and communications in medicine objects. The proposed solution was successfully deployed in a regional PACS archive. The results obtained proved that it is better than conventional approaches, as it reduces remote access latency and also the required cache storage space. PMID:25343773

  4. Reflections on current and future applications of multiangle imaging to aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, David

    2010-05-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been collecting global Earth data from NASA's Terra satellite since February 2000. With its 9 along-track view angles, 4 spectral bands, intrinsic spatial resolution of 275 m, and stable radiometric and geometric calibration, no instrument that combines MISR's attributes has previously flown in space, nor is there is a similar capability currently available on any other satellite platform. Multiangle imaging offers several tools for remote sensing of aerosol and cloud properties, including bidirectional reflectance and scattering measurements, stereoscopic pattern matching, time lapse sequencing, and potentially, optical tomography. Current data products from MISR employ several of these techniques. Observations of the intensity of scattered light as a function of view angle and wavelength provide accurate measures of aerosol optical depths (AOD) over land, including bright desert and urban source regions. Partitioning of AOD according to retrieved particle classification and incorporation of height information improves the relationship between AOD and surface PM2.5 (fine particulate matter, a regulated air pollutant), constituting an important step toward a satellite-based particulate pollution monitoring system. Stereoscopic cloud-top heights provide a unique metric for detecting interannual variability of clouds and exceptionally high quality and sensitivity for detection and height retrieval for low-level clouds. Using the several-minute time interval between camera views, MISR has enabled a pole-to-pole, height-resolved atmospheric wind measurement system. Stereo imagery also makes possible global measurement of the injection heights and advection speeds of smoke plumes, volcanic plumes, and dust clouds, for which a large database is now available. To build upon what has been learned during the first decade of MISR observations, we are evaluating algorithm updates that not only refine retrieval

  5. Cloud Retrieval Information Content Studies with the Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Ocean Color Imager (OCI)

    NASA Astrophysics Data System (ADS)

    Coddington, Odele; Platnick, Steven; Pilewskie, Peter; Schmidt, Sebastian

    2016-04-01

    The NASA Pre-Aerosol, Cloud and ocean Ecosystem (PACE) Science Definition Team (SDT) report released in 2012 defined imager stability requirements for the Ocean Color Instrument (OCI) at the sub-percent level. While the instrument suite and measurement requirements are currently being determined, the PACE SDT report provided details on imager options and spectral specifications. The options for a threshold instrument included a hyperspectral imager from 350-800 nm, two near-infrared (NIR) channels, and three short wave infrared (SWIR) channels at 1240, 1640, and 2130 nm. Other instrument options include a variation of the threshold instrument with 3 additional spectral channels at 940, 1378, and 2250 nm and the inclusion of a spectral polarimeter. In this work, we present cloud retrieval information content studies of optical thickness, droplet effective radius, and thermodynamic phase to quantify the potential for continuing the low cloud climate data record established by the MOderate Resolution and Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) missions with the PACE OCI instrument (i.e., non-polarized cloud reflectances and in the absence of midwave and longwave infrared channels). The information content analysis is performed using the GEneralized Nonlinear Retrieval Analysis (GENRA) methodology and the Collection 6 simulated cloud reflectance data for the common MODIS/VIIRS algorithm (MODAWG) for Cloud Mask, Cloud-Top, and Optical Properties. We show that using both channels near 2 microns improves the probability of cloud phase discrimination with shortwave-only cloud reflectance retrievals. Ongoing work will extend the information content analysis, currently performed for dark ocean surfaces, to different land surface types.

  6. Characterizing Spatial Patterns of Cloud Cover And Fog Inundation in the California Channel Islands

    NASA Astrophysics Data System (ADS)

    Rastogi, B.; Fischer, D. T.; Williams, P.; Iacobellis, S.; McEachern, K.; Still, C. J.

    2013-12-01

    Coastal forests in Mediterranean climates are frequently covered by clouds or immersed in fog. Previous studies suggest that clouds strongly modulate forest distributions as well as carbon and water budgets in these semi-arid environments. Both low level stratocumulus cloud cover and fog can enhance the water status of vegetation along the Californian coast and the Channel Islands by reducing insolation and raising relative humidity and thus reducing evapotranspiration, while also potentially supplying water directly to the landscape from fog-drip during otherwise warm and rainless summers. While cloud cover and fog can ameliorate summer drought stress and enhance soil water budgets, they often have different spatial and temporal patterns. The resulting shifts in relative ecological importance of fog and stratus are largely unknown. The overall objective of this project was to map spatial and temporal distributions of daytime cloud cover frequency for the California Channel Islands, and to predict probabilities of surface cloud (fog) contact and immersion for these islands. Daytime cloud cover maps were generated for the northern Channel Islands using GOES satellite imagery for the years 1996-2012. To discriminate fog from stratus the base of the cloud height was constrained by using airport cloud ceiling data and topographic information. In order to observe variation in fog frequency at scales relevant to species distributions on the Channel Islands the native GOES resolution was downscaled by using radiosonde and reanalysis data. Satellite derived estimates of cloud cover and fog were correlated with field measurements of insolation, fog drip and leaf wetness on Santa Rosa and Santa Cruz islands. This enabled spatial and temporal extrapolation to understand seasonal and inter-annual variations in cloud cover frequency and fog inundation and drip and will be important for future water balance modeling, studies of coastal vegetation distributions and for better

  7. How the clear-sky angle of polarization pattern continues underneath clouds: full-sky measurements and implications for animal orientation.

    PubMed

    Pomozi, I; Horváth, G; Wehner, R

    2001-09-01

    One of the biologically most important parameters of the cloudy sky is the proportion P of the celestial polarization pattern available for use in animal navigation. We evaluated this parameter by measuring the polarization patterns of clear and cloudy skies using 180 degrees (full-sky) imaging polarimetry in the red (650 nm), green (550 nm) and blue (450 nm) ranges of the spectrum under clear and partly cloudy conditions. The resulting data were compared with the corresponding celestial polarization patterns calculated using the single-scattering Rayleigh model. We show convincingly that the pattern of the angle of polarization (e-vectors) in a clear sky continues underneath clouds if regions of the clouds and parts of the airspace between the clouds and the earth surface (being shady at the position of the observer) are directly lit by the sun. The scattering and polarization of direct sunlight on the cloud particles and in the air columns underneath the clouds result in the same e-vector pattern as that present in clear sky. This phenomenon can be exploited for animal navigation if the degree of polarization is higher than the perceptual threshold of the visual system, because the angle rather than the degree of polarization is the most important optical cue used in the polarization compass. Hence, the clouds reduce the extent of sky polarization pattern that is useful for animal orientation much less than has hitherto been assumed. We further demonstrate quantitatively that the shorter the wavelength, the greater the proportion of celestial polarization that can be used by animals under cloudy-sky conditions. As has already been suggested by others, this phenomenon may solve the ultraviolet paradox of polarization vision in insects such as hymenopterans and dipterans. The present study extends previous findings by using the technique of 180 degrees imaging polarimetry to measure and analyse celestial polarization patterns. PMID:11551983

  8. Imaging Spatial Correlations of Rydberg Excitations in Cold Atom Clouds

    SciTech Connect

    Schwarzkopf, A.; Sapiro, R. E.; Raithel, G.

    2011-09-02

    We use direct spatial imaging of cold {sup 85}Rb Rydberg atom clouds to measure the Rydberg-Rydberg correlation function. The results are in qualitative agreement with theoretical predictions [F. Robicheaux and J. V. Hernandez, Phys. Rev. A 72, 063403 (2005)]. We determine the blockade radius for states 44D{sub 5/2}, 60D{sub 5/2}, and 70D{sub 5/2} and investigate the dependence of the correlation behavior on excitation conditions and detection delay. Experimental data hint at the existence of long-range order.

  9. ESA's Ice Cloud Imager on Metop Second Generation

    NASA Astrophysics Data System (ADS)

    Klein, Ulf; Loiselet, Marc; Mason, Graeme; Gonzalez, Raquel; Brandt, Michael

    2016-04-01

    Since 2006, the European contribution to operational meteorological observations from polar orbit has been provided by the Meteorological Operational (MetOp) satellites, which is the space segment of the EUMETSAT Polar System (EPS). The first MetOp satellite was launched in 2006, 2nd 2012 and 3rd satellite is planned for launch in 2018. As part of the next generation EUMETSAT Polar System (EPS-SG), the MetOp Second Generation (MetOp-SG) satellites will provide continuity and enhancement of these observations in the 2021 - 2042 timeframe. The noel Ice Cloud Imager (ICI) is one of the instruments selected to be on-board the MetOp-SG satellite "B". The main objective of the ICI is to enable cloud ice retrieval, with emphasis on cirrus clouds. ICI will provide information on cloud ice mean altitude, cloud ice water path and cloud ice effective radius. In addition, it will provide water vapour profile measurement capability. ICI is a 13-channel microwave/sub-millimetre wave radiometer, covering the frequency range from 183 GHz up to 664 GHz. The instrument is composed of a rotating part and a fixed part. The rotating part includes the main antenna, the feed assembly and the receiver electronics. The fixed part contains the hot calibration target, the reflector for viewing the cold sky and the electronics for the instrument control and interface with the platform. Between the fixed and the rotating part is the scan mechanism. Scan mechanism is not only responsible of rotating the instrument and providing its angular position, but it will also have pass through the power and data lines. The Scan mechanism is controlled by the fully redundant Control and Drive Electronics ICI is calibrated using an internal hot target and a cold sky mirror, which are viewed once per rotation. The internal hot target is a traditional pyramidal target. The hot target is covered by an annular shield during rotation with only a small opening for the feed horns to guarantee a stable environment

  10. Edge features extraction from 3D laser point cloud based on corresponding images

    NASA Astrophysics Data System (ADS)

    Li, Xin-feng; Zhao, Zi-ming; Xu, Guo-qing; Geng, Yan-long

    2013-09-01

    An extraction method of edge features from 3D laser point cloud based on corresponding images was proposed. After the registration of point cloud and corresponding image, the sub-pixel edge can be extracted from the image using gray moment algorithm. Then project the sub-pixel edge to the point cloud in fitting scan-lines. At last the edge features were achieved by linking the crossing points. The experimental results demonstrate that the method guarantees accurate fine extraction.

  11. Design patterns in medical imaging information systems

    NASA Astrophysics Data System (ADS)

    Hoo, Kent S., Jr.; Wong, Stephen T. C.; Laxer, Kenneth D.; Knowlton, Robert C.; Ching, Wan

    2000-05-01

    The purpose of this paper is to introduce a new and important conceptual framework of software design for the medical imaging community using design patterns. Use cases are created to summarize operational scenarios of clinicians using the system to complete certain tasks such as image segmentation. During design the Unified Modeling Language is used to translate the use cases into modeling diagrams that describe how the system functions. Next, design patterns are applied to build models that describe how software components interoperate to deliver that functionality. The software components are implemented using the Java language, CORBA architecture, and other web technologies. The biomedical image information system is used in epilepsy neurosurgical planning and diagnosis. This article proposes the use of proven software design models for solving medical imaging informatics design problems. Design patterns provide an excellent vehicle to leverage design solutions that have worked in the past to solve the problems we face in building user-friendly, reliable, and efficient information systems. This work introduces this new technology for building increasing complex medical image information systems. The rigorous application of software design techniques is essential in building information systems that are easy to use, rich in functionality, maintainable, reliable, and updatable.

  12. Automatic seagrass pattern identification on sonar images

    NASA Astrophysics Data System (ADS)

    Rahnemoonfar, Maryam; Rahman, Abdullah

    2016-05-01

    Natural and human-induced disturbances are resulting in degradation and loss of seagrass. Freshwater flooding, severe meteorological events and invasive species are among the major natural disturbances. Human-induced disturbances are mainly due to boat propeller scars in the shallow seagrass meadows and anchor scars in the deeper areas. Therefore, there is a vital need to map seagrass ecosystems in order to determine worldwide abundance and distribution. Currently there is no established method for mapping the pothole or scars in seagrass. One of the most precise sensors to map the seagrass disturbance is side scan sonar. Here we propose an automatic method which detects seagrass potholes in sonar images. Side scan sonar images are notorious for having speckle noise and uneven illumination across the image. Moreover, disturbance presents complex patterns where most segmentation techniques will fail. In this paper, by applying mathematical morphology technique and calculating the local standard deviation of the image, the images were enhanced and the pothole patterns were identified. The proposed method was applied on sonar images taken from Laguna Madre in Texas. Experimental results show the effectiveness of the proposed method.

  13. Medical image segmentation using object atlas versus object cloud models

    NASA Astrophysics Data System (ADS)

    Phellan, Renzo; Falcão, Alexandre X.; Udupa, Jayaram K.

    2015-03-01

    Medical image segmentation is crucial for quantitative organ analysis and surgical planning. Since interactive segmentation is not practical in a production-mode clinical setting, automatic methods based on 3D object appearance models have been proposed. Among them, approaches based on object atlas are the most actively investigated. A key drawback of these approaches is that they require a time-costly image registration process to build and deploy the atlas. Object cloud models (OCM) have been introduced to avoid registration, considerably speeding up the whole process, but they have not been compared to object atlas models (OAM). The present paper fills this gap by presenting a comparative analysis of the two approaches in the task of individually segmenting nine anatomical structures of the human body. Our results indicate that OCM achieve a statistically significant better accuracy for seven anatomical structures, in terms of Dice Similarity Coefficient and Average Symmetric Surface Distance.

  14. Image transfer through cirrus clouds. I. Ray trace analysis and wave-front reconstruction.

    PubMed

    Landesman, B T; Kindilien, P J; Matson, C L; Caudill, T R

    2000-10-20

    A new technique for modeling image transfer through cirrus clouds is presented. The technique uses a ray trace to model beam propagation through a three-dimensional volume of polydisperse, hexagonal ice crystals. Beyond the cloud, the technique makes use of standard Huygens-Fresnel propagation methods. At the air-cloud interface, each wave front is resolved into a ray distribution for input to the ray trace software. Similarly, a wave front is reconstructed from the output ray distribution at the cloud-air interface. Simulation output from the ray trace program is presented and the modulation transfer function for stars imaged through cirrus clouds of varying depths is discussed. PMID:18354542

  15. Congruence analysis of point clouds from unstable stereo image sequences

    NASA Astrophysics Data System (ADS)

    Jepping, C.; Bethmann, F.; Luhmann, T.

    2014-06-01

    This paper deals with the correction of exterior orientation parameters of stereo image sequences over deformed free-form surfaces without control points. Such imaging situation can occur, for example, during photogrammetric car crash test recordings where onboard high-speed stereo cameras are used to measure 3D surfaces. As a result of such measurements 3D point clouds of deformed surfaces are generated for a complete stereo sequence. The first objective of this research focusses on the development and investigation of methods for the detection of corresponding spatial and temporal tie points within the stereo image sequences (by stereo image matching and 3D point tracking) that are robust enough for a reliable handling of occlusions and other disturbances that may occur. The second objective of this research is the analysis of object deformations in order to detect stable areas (congruence analysis). For this purpose a RANSAC-based method for congruence analysis has been developed. This process is based on the sequential transformation of randomly selected point groups from one epoch to another by using a 3D similarity transformation. The paper gives a detailed description of the congruence analysis. The approach has been tested successfully on synthetic and real image data.

  16. Body image and eating patterns among adolescents

    PubMed Central

    2013-01-01

    Background Data on the association between body self-perception and eating patterns among adolescents are scarce. This study assessed the association between body image and eating patterns among normal-weight, overweight and obese adolescents. Methods A cross-sectional survey (n = 1231; 12–17 years old) was carried out in the Balearic Islands, Spain. Anthropometry, body image, socio-economic determinants, and food consumption were studied. Results Fifty-one percent of boys and sixty percent of girls that wished to be thinner had less than or equal to 3 eating occasions per day. Overfat girls that wish to be thinner skipped breakfast more frequently than normal-fat girls. Overfat boys and girls that wished a thinner body reported lower consumption of several food groups than normal-fat adolescents and overfat boys satisfied with their own body image (i.e. breakfast cereals, pasta and rice dishes, other oils and fats, high fat foods, soft drinks and chocolates in boys; and dairy products and chocolates in girls).A restriction of Western diet foods and energy intake was associated with a wish to be thinner among overfat adolescents. Conclusions Many overfat boys were satisfied with their body image while practically all overfat girls reported wishing a thinner body. Meal patterns and food consumption were associated with body dissatisfaction and overfat status among adolescents. PMID:24289180

  17. A structural-stochastic model for the analysis and synthesis of cloud images

    NASA Technical Reports Server (NTRS)

    Garand, L.; Weinman, J. A.

    1986-01-01

    A structural-stochastic image model is developed for the analysis and synthesis of cloud images. The ability of the model to characterize the visual appearance of cloud fields observed by satellite with a limited number of parameters is demonstrated. The model merges structural and stochastic information, the stochastic model acting as a local statistical operator applied to the output of the structural model. The structural or large-scale organization of the scene is retrieved from the two-dimensional Fourier representation of the digital image. The pattern generated by the major Fourier components provides a first guess of the scene. The stochastic aspect is described by a Markov model of texture that assumes a binomial probability distribution for the local grey-level variability. This Markov model provides four parameters that represent the clustering strength in the horizontal, vertical and diagonal directions. These parameters are estimated by a standard maximum-likelihood technique. The image can be reproduced with a fair degree of verisimilitude from these parameters. The data compression factor is of the order of one hundred to several hundreds.

  18. Microwave Imager Measures Sea Surface Temperature Through Clouds

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image was acquired over Tropical Atlantic and U.S. East Coast regions on Aug. 22 - Sept. 23, 1998. Cloud data were collected by the Geostationary Operational Environmental Satellite (GOES). Sea Surface Temperature (SST) data were collected aboard the NASA/NASDA Tropical Rainfall Measuring Mission (TRMM) satellite by The TRMM Microwave Imager (TMI). TMI is the first satellite microwave sensor capable of accurately measuring sea surface temperature through clouds, as shown in this scene. For years scientists have known there is a strong correlation between sea surface temperature and the intensity of hurricanes. But one of the major stumbling blocks for forecasters has been the precise measurement of those temperatures when a storm begins to form. In this scene, clouds have been made translucent to allow an unobstructed view of the surface. Notice Hurricane Bonnie approaching the Carolina Coast (upper left) and Hurricane Danielle following roughly in its path (lower right). The ocean surface has been falsely colored to show a map of water temperature--dark blues are around 75oF, light blues are about 80oF, greens are about 85oF, and yellows are roughly 90oF. A hurricane gathers energy from warm waters found at tropical latitudes. In this image we see Hurricane Bonnie cross the Atlantic, leaving a cooler trail of water in its wake. As Hurricane Danielle followed in Bonnie's path, the wind speed of the second storm dropped markedly, as available energy to fuel the storm dropped off. But when Danielle left Bonnie's wake, wind speeds increased due to temperature increases in surface water around the storm. As a hurricane churns up the ocean, it's central vortex draws surface heat and water into the storm. That suction at the surface causes an upwelling of deep water. At depth, tropical ocean waters are significantly colder than water found near the surface. As they're pulled up to meet the storm, those colder waters essentially leave a footprint in the storm's wake

  19. Venus: Cloud level circulation during 1982 as determined from Pioneer cloud photopolarimeter images. II - Solar longitude dependent circulation

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.

    1988-01-01

    Pioneer Venus Orbiter images obtained in 1982 indicate a marked solar-locked dependence of cloud level circulation in both averaged cloud motions and cloud layer UV reflectivity. An apparent relationship is noted between horizontal divergence and UV reflectivity: the highest reflectivities are associated with regions of convergence at high latitudes, while lower values are associated with equatorial latitude regions where the motions are divergent. In solar-locked coordinates, the rms deviation of normalized UV brightness is higher at 45-deg latitudes than in equatorial regions.

  20. Astronomy In The Cloud: Using Mapreduce For Image Coaddition

    NASA Astrophysics Data System (ADS)

    Wiley, Keith; Connolly, A.; Gardner, J.; Krughoff, S.; Balazinska, M.; Howe, B.; Kwon, Y.; Bu, Y.

    2011-01-01

    In the coming decade, astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. The study of these sources will involve computational challenges such as anomaly detection, classification, and moving object tracking. Since such studies require the highest quality data, methods such as image coaddition, i.e., registration, stacking, and mosaicing, will be critical to scientific investigation. With a requirement that these images be analyzed on a nightly basis to identify moving sources, e.g., asteroids, or transient objects, e.g., supernovae, these datastreams present many computational challenges. Given the quantity of data involved, the computational load of these problems can only be addressed by distributing the workload over a large number of nodes. However, the high data throughput demanded by these applications may present scalability challenges for certain storage architectures. One scalable data-processing method that has emerged in recent years is MapReduce, and in this paper we focus on its popular open-source implementation called Hadoop. In the Hadoop framework, the data is partitioned among storage attached directly to worker nodes, and the processing workload is scheduled in parallel on the nodes that contain the required input data. A further motivation for using Hadoop is that it allows us to exploit cloud computing resources, i.e., platforms where Hadoop is offered as a service. We report on our experience implementing a scalable image-processing pipeline for the SDSS imaging database using Hadoop. This multi-terabyte imaging dataset provides a good testbed for algorithm development since its scope and structure approximate future surveys. First, we describe MapReduce and how we adapted image coaddition to the MapReduce framework. Then we describe a number of optimizations to our basic approach and report experimental results compring their performance. This work is funded by

  1. Cloud elevations in near real time. [from geosynchronous satellite stereographic imaging

    NASA Technical Reports Server (NTRS)

    Shull, C. W.; Stephens, J. M.

    1977-01-01

    The paper shows how cloud elevations can be obtained from geosynchronous satellites within 15 min of an event and to an accuracy of less than 250 m. After careful consideration of pertinent factors, it is decided that a dual satellite system in parallel geosynchronous orbits would be the most feasible configuration for stereographic imaging of cloud systems. The discussion covers tracking accuracy, choice of imaging systems, data transmission and processing, image correlation, and proposed cloud heighting system. The described partially man-interactive system is substantially within the present state of the art and could be the basis for an interim system for cloud height determination.

  2. Analysis of Point Cloud Generation from UAS Images

    NASA Astrophysics Data System (ADS)

    Ostrowski, S.; Jóźków, G.; Toth, C.; Vander Jagt, B.

    2014-11-01

    Unmanned Aerial Systems (UAS) allow for the collection of low altitude aerial images, along with other geospatial information from a variety of companion sensors. The images can then be processed using sophisticated algorithms from the Computer Vision (CV) field, guided by the traditional and established procedures from photogrammetry. Based on highly overlapped images, new software packages which were specifically developed for UAS technology can easily create ground models, such as Point Clouds (PC), Digital Surface Model (DSM), orthoimages, etc. The goal of this study is to compare the performance of three different software packages, focusing on the accuracy of the 3D products they produce. Using a Nikon D800 camera installed on an ocotocopter UAS platform, images were collected during subsequent field tests conducted over the Olentangy River, north from the Ohio State University campus. Two areas around bike bridges on the Olentangy River Trail were selected because of the challenge the packages would have in creating accurate products; matching pixels over the river and dense canopy on the shore presents difficult scenarios to model. Ground Control Points (GCP) were gathered at each site to tie the models to a local coordinate system and help assess the absolute accuracy for each package. In addition, the models were also relatively compared to each other using their PCs.

  3. High-resolution reconstruction of objects from cloud-covered infrared images

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Ralph, Jason F.; Goulermas, John Y.

    2009-05-01

    FLIR images are essential for the detection and recognition of ground targets. Small targets can be enhanced using super-resolution techniques to improve the effective resolution of the target area using a sequence of low-resolution images. However, when there is significant cloud cover, several problems can arise: clouds can obscure a target (partially or fully), they can affect the accuracy of image registration algorithms, and they can reduce the contrast of the object against the background. To reconstruct an image in the presence of cloud cover, image correlation metrics from optical flow and a robust super-resolution algorithm have been used to compile a 'best' frame.

  4. Aerosol patterns and aerosol-cloud-interactions off the West African Coast based on the A-train formation

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Bendix, Jörg; Cermak, Jan

    2013-04-01

    In this study, spatial and temporal aerosol patterns off the Western African coast are characterized and related to cloud properties, based on satellite data Atmospheric aerosols play a key role in atmospheric processes and influence our environmental system in a complex way. Their identification, characterization, transport patterns as well as their interactions with clouds pose major challenges. Especially the last aspect reveals major uncertainties in terms of the Earth's radiation budget as reported in the IPCC's Fourth Assessment Report (IPCC, 2007). Western and Southern Africa are dominated by two well-known source types of atmospheric aerosols. First, the Saharan Desert is the world's largest aeolian dust emitting source region. Second, biomass burning aerosol is commonly transported off-shore further south (Kaufman et al., 2005). Both aerosol types influence Earth's climate in different manners and can be detected by the MODIS (MODerate resolution Imaging Spectrometer) sensor onboard the EOS platforms as they propagate to the Central and Southern Atlantic. The motivation of this study was to reveal the seasonal pattern of the Saharan dust transport based on an observation period of 11 years and trying to explain the meteorological mechanisms. North African dust plumes are transported along a latitude of 19°N in July and 6°N in January. The seasonally fluctuating intensities adapt to the annual cycle of wind and precipitation regimes. A strong relationship is found between the spatial shift of the Azores High and the Saharan dust load over the middle Atlantic Ocean. Monthly Aerosol Optical Thickness products of Terra MODIS and NCEP-DOE (National Centers for Environmental Predictions) Reanalysis II data are used for this purpose. The relationship between aerosol and cloud droplet parameters is blurred by high sensitivities to aerosol size and composition (Feingold, 2003; McFiggans et al., 2006) as well as meteorological context (Ackerman et al., 2004

  5. Radar imaging of ocean surface patterns

    NASA Technical Reports Server (NTRS)

    Brown, W. E., Jr.; Elachi, C.; Thompson, T. W.

    1976-01-01

    The paper presents some examples of imaging radar oceanographic observations and discusses physical phenomena on the surface that may cause the radar image. The different ocean scattering theories are briefly discussed, including the tangent plane model, the Bragg-Rice model, and the Rayleigh scattering model. All but one of the images presented were obtained with an L-band HH-polarized radar; they include deep-ocean swells, coastal swells, wave refractions, internal waves, ship wakes, abrupt transitions in open-ocean surface roughness, surface slicks, island wind shadowing, and currents. Analyses are shown to suggest that the primary source of the L-band imagery of ocean surface patterns is the variation of small-scale surface roughness and local tilt angle. It is also noted that surface irregularities behave as isotropic scatterers for a radar wavelength of 25 cm.

  6. How consistent are precipitation patterns predicted by GCMs in the absence of cloud radiative effects?

    NASA Astrophysics Data System (ADS)

    Popke, Dagmar; Bony, Sandrine; Mauritsen, Thorsten; Stevens, Bjorn

    2015-04-01

    Model simulations with state-of-the-art general circulation models reveal a strong disagreement concerning the simulated regional precipitation patterns and their changes with warming. The deviating precipitation response even persists when reducing the model experiment complexity to aquaplanet simulation with forced sea surface temperatures (Stevens and Bony, 2013). To assess feedbacks between clouds and radiation on precipitation responses we analyze data from 5 models performing the aquaplanet simulations of the Clouds On Off Klima Intercomparison Experiment (COOKIE), where the interaction of clouds and radiation is inhibited. Although cloud radiative effects are then disabled, the precipitation patterns among models are as diverse as with cloud radiative effects switched on. Disentangling differing model responses in such simplified experiments thus appears to be key to better understanding the simulated regional precipitation in more standard configurations. By analyzing the local moisture and moist static energy budgets in the COOKIE experiments we investigate likely causes for the disagreement among models. References Stevens, B. & S. Bony: What Are Climate Models Missing?, Science, 2013, 340, 1053-1054

  7. An automated cloud detection method based on the green channel of total-sky visible images

    NASA Astrophysics Data System (ADS)

    Yang, J.; Min, Q.; Lu, W.; Yao, W.; Ma, Y.; Du, J.; Lu, T.; Liu, G.

    2015-11-01

    Obtaining an accurate cloud-cover state is a challenging task. In the past, traditional two-dimensional red-to-blue band methods have been widely used for cloud detection in total-sky images. By analyzing the imaging principle of cameras, the green channel has been selected to replace the 2-D red-to-blue band for detecting cloud pixels from partly cloudy total-sky images in this study. The brightness distribution in a total-sky image is usually nonuniform, because of forward scattering and Mie scattering of aerosols, which results in increased detection errors in the circumsolar and near-horizon regions. This paper proposes an automatic cloud detection algorithm, "green channel background subtraction adaptive threshold" (GBSAT), which incorporates channel selection, background simulation, computation of solar mask and cloud mask, subtraction, an adaptive threshold, and binarization. Five experimental cases show that the GBSAT algorithm produces more accurate retrieval results for all these test total-sky images.

  8. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  9. The analysis of polar clouds from AVHRR satellite data using pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Ebert, Elizabeth

    1990-01-01

    The cloud cover in a set of summertime and wintertime AVHRR data from the Arctic and Antarctic regions was analyzed using a pattern recognition algorithm. The data were collected by the NOAA-7 satellite on 6 to 13 Jan. and 1 to 7 Jul. 1984 between 60 deg and 90 deg north and south latitude in 5 spectral channels, at the Global Area Coverage (GAC) resolution of approximately 4 km. This data embodied a Polar Cloud Pilot Data Set which was analyzed by a number of research groups as part of a polar cloud algorithm intercomparison study. This study was intended to determine whether the additional information contained in the AVHRR channels (beyond the standard visible and infrared bands on geostationary satellites) could be effectively utilized in cloud algorithms to resolve some of the cloud detection problems caused by low visible and thermal contrasts in the polar regions. The analysis described makes use of a pattern recognition algorithm which estimates the surface and cloud classification, cloud fraction, and surface and cloudy visible (channel 1) albedo and infrared (channel 4) brightness temperatures on a 2.5 x 2.5 deg latitude-longitude grid. In each grid box several spectral and textural features were computed from the calibrated pixel values in the multispectral imagery, then used to classify the region into one of eighteen surface and/or cloud types using the maximum likelihood decision rule. A slightly different version of the algorithm was used for each season and hemisphere because of differences in categories and because of the lack of visible imagery during winter. The classification of the scene is used to specify the optimal AVHRR channel for separating clear and cloudy pixels using a hybrid histogram-spatial coherence method. This method estimates values for cloud fraction, clear and cloudy albedos and brightness temperatures in each grid box. The choice of a class-dependent AVHRR channel allows for better separation of clear and cloudy pixels than

  10. Differently patterned airflows induced by 1-kHz femtosecond laser filaments in a cloud chamber

    NASA Astrophysics Data System (ADS)

    Sun, Haiyi; Liang, Hong; Liu, Yonghong; Ju, Jingjing; Wei, Yingxia; Wang, Cheng; Wang, Tiejun; Liu, Jiansheng; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2015-11-01

    Airflow induced by femtosecond laser (800 nm/1 kHz/25 fs) filamentation with different lengths was investigated in a laboratory cloud chamber. Various filament lengths were generated by adjusting laser energy and lens focal length. It was found that airflow patterns are closely related to filament intensity and length. Intense and long filaments are beneficial in updraft generation with large vortices above the filament, while intense and short filaments tend to promote the formation of well-contacted vortices below the filament. Differently patterned airflows induced elliptical snow piles with different masses. We simulated airflow in a cloud chamber numerically taking laser filaments as heat sources. The mechanisms of differently patterned airflow and snow formation induced by filaments were discussed.

  11. Interpretation techniques. [image enhancement and pattern recognition

    NASA Technical Reports Server (NTRS)

    Dragg, J. L.

    1974-01-01

    The image enhancement and geometric correction and registration techniques developed and/or demonstrated on ERTS data are relatively mature and greatly enhance the utility of the data for a large variety of users. Pattern recognition was improved by the use of signature extension, feature extension, and other classification techniques. Many of these techniques need to be developed and generalized to become operationally useful. Advancements in the mass precision processing of ERTS were demonstrated, providing the hope for future earth resources data to be provided in a more readily usable state. Also in evidence is an increasing and healthy interaction between the techniques developers and the user/applications investigators.

  12. Statistical pattern recognition algorithms for autofluorescence imaging

    NASA Astrophysics Data System (ADS)

    Kulas, Zbigniew; Bereś-Pawlik, Elżbieta; Wierzbicki, Jarosław

    2009-02-01

    In cancer diagnostics the most important problems are the early identification and estimation of the tumor growth and spread in order to determine the area to be operated. The aim of the work was to design of statistical algorithms helping doctors to objectively estimate pathologically changed areas and to assess the disease advancement. In the research, algorithms for classifying endoscopic autofluorescence images of larynx and intestine were used. The results show that the statistical pattern recognition offers new possibilities for endoscopic diagnostics and can be of a tremendous help in assessing the area of the pathological changes.

  13. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    PubMed Central

    Naz, M. Y.; Sulaiman, S. A.; Ariwahjoedi, B.; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit. PMID:24307881

  14. Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles.

    PubMed

    Naz, M Y; Sulaiman, S A; Ariwahjoedi, B; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit. PMID:24307881

  15. OpenID connect as a security service in Cloud-based diagnostic imaging systems

    NASA Astrophysics Data System (ADS)

    Ma, Weina; Sartipi, Kamran; Sharghi, Hassan; Koff, David; Bak, Peter

    2015-03-01

    The evolution of cloud computing is driving the next generation of diagnostic imaging (DI) systems. Cloud-based DI systems are able to deliver better services to patients without constraining to their own physical facilities. However, privacy and security concerns have been consistently regarded as the major obstacle for adoption of cloud computing by healthcare domains. Furthermore, traditional computing models and interfaces employed by DI systems are not ready for accessing diagnostic images through mobile devices. RESTful is an ideal technology for provisioning both mobile services and cloud computing. OpenID Connect, combining OpenID and OAuth together, is an emerging REST-based federated identity solution. It is one of the most perspective open standards to potentially become the de-facto standard for securing cloud computing and mobile applications, which has ever been regarded as "Kerberos of Cloud". We introduce OpenID Connect as an identity and authentication service in cloud-based DI systems and propose enhancements that allow for incorporating this technology within distributed enterprise environment. The objective of this study is to offer solutions for secure radiology image sharing among DI-r (Diagnostic Imaging Repository) and heterogeneous PACS (Picture Archiving and Communication Systems) as well as mobile clients in the cloud ecosystem. Through using OpenID Connect as an open-source identity and authentication service, deploying DI-r and PACS to private or community clouds should obtain equivalent security level to traditional computing model.

  16. Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images

    NASA Astrophysics Data System (ADS)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.

    2014-11-01

    We have investigated the cloud top structure of Venus by analyzing ground-based images taken at the mid-infrared wavelengths of 8.66 μm and 11.34 μm. Venus at a solar phase angle of ∼90°, with the morning terminator in view, was observed by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope, during the period October 25-29, 2007. The disk-averaged brightness temperatures for the observation period are ∼230 K and ∼238 K at 8.66 μm and 11.34 μm, respectively. The obtained images with good signal-to-noise ratio and with high spatial resolution (∼200 km at the sub-observer point) provide several important findings. First, we present observational evidence, for the first time, of the possibility that the westward rotation of the polar features (the hot polar spots and the surrounding cold collars) is synchronized between the northern and southern hemispheres. Second, after high-pass filtering, the images reveal that streaks and mottled and patchy patterns are distributed over the entire disk, with typical amplitudes of ∼0.5 K, and vary from day to day. The detected features, some of which are similar to those seen in past UV images, result from inhomogeneities of both the temperature and the cloud top altitude. Third, the equatorial center-to-limb variations of brightness temperatures have a systematic day-night asymmetry, except those on October 25, that the dayside brightness temperatures are higher than the nightside brightness temperatures by 0-4 K under the same viewing geometry. Such asymmetry would be caused by the propagation of the migrating semidiurnal tide. Finally, by applying the lapse rates deduced from previous studies, we demonstrate that the equatorial center-to-limb curves in the two spectral channels give access to two parameters: the cloud scale height H and the cloud top altitude zc. The acceptable models for data on October 25 are obtained at H = 2.4-4.3 km and zc = 66-69 km; this supports

  17. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  18. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE PAGESBeta

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  19. Image pattern recognition supporting interactive analysis and graphical visualization

    NASA Technical Reports Server (NTRS)

    Coggins, James M.

    1992-01-01

    Image Pattern Recognition attempts to infer properties of the world from image data. Such capabilities are crucial for making measurements from satellite or telescope images related to Earth and space science problems. Such measurements can be the required product itself, or the measurements can be used as input to a computer graphics system for visualization purposes. At present, the field of image pattern recognition lacks a unified scientific structure for developing and evaluating image pattern recognition applications. The overall goal of this project is to begin developing such a structure. This report summarizes results of a 3-year research effort in image pattern recognition addressing the following three principal aims: (1) to create a software foundation for the research and identify image pattern recognition problems in Earth and space science; (2) to develop image measurement operations based on Artificial Visual Systems; and (3) to develop multiscale image descriptions for use in interactive image analysis.

  20. Imaging fictive locomotor patterns in larval Drosophila

    PubMed Central

    Bayley, Timothy G.; Taylor, Adam L.; Berni, Jimena; Bate, Michael; Hedwig, Berthold

    2015-01-01

    We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca2+ indicators. The Ca2+ signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca2+ signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca2+ signals were normally initiated did not eliminate production of Ca2+ waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques. PMID:26311188

  1. Imaging fictive locomotor patterns in larval Drosophila.

    PubMed

    Pulver, Stefan R; Bayley, Timothy G; Taylor, Adam L; Berni, Jimena; Bate, Michael; Hedwig, Berthold

    2015-11-01

    We have established a preparation in larval Drosophila to monitor fictive locomotion simultaneously across abdominal and thoracic segments of the isolated CNS with genetically encoded Ca(2+) indicators. The Ca(2+) signals closely followed spiking activity measured electrophysiologically in nerve roots. Three motor patterns are analyzed. Two comprise waves of Ca(2+) signals that progress along the longitudinal body axis in a posterior-to-anterior or anterior-to-posterior direction. These waves had statistically indistinguishable intersegmental phase delays compared with segmental contractions during forward and backward crawling behavior, despite being ∼10 times slower. During these waves, motor neurons of the dorsal longitudinal and transverse muscles were active in the same order as the muscle groups are recruited during crawling behavior. A third fictive motor pattern exhibits a left-right asymmetry across segments and bears similarities with turning behavior in intact larvae, occurring equally frequently and involving asymmetry in the same segments. Ablation of the segments in which forward and backward waves of Ca(2+) signals were normally initiated did not eliminate production of Ca(2+) waves. When the brain and subesophageal ganglion (SOG) were removed, the remaining ganglia retained the ability to produce both forward and backward waves of motor activity, although the speed and frequency of waves changed. Bilateral asymmetry of activity was reduced when the brain was removed and abolished when the SOG was removed. This work paves the way to studying the neural and genetic underpinnings of segmentally coordinated motor pattern generation in Drosophila with imaging techniques. PMID:26311188

  2. Accuracy assessment of building point clouds automatically generated from iphone images

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Lindenbergh, R.

    2014-06-01

    Low-cost sensor generated 3D models can be useful for quick 3D urban model updating, yet the quality of the models is questionable. In this article, we evaluate the reliability of an automatic point cloud generation method using multi-view iPhone images or an iPhone video file as an input. We register such automatically generated point cloud on a TLS point cloud of the same object to discuss accuracy, advantages and limitations of the iPhone generated point clouds. For the chosen example showcase, we have classified 1.23% of the iPhone point cloud points as outliers, and calculated the mean of the point to point distances to the TLS point cloud as 0.11 m. Since a TLS point cloud might also include measurement errors and noise, we computed local noise values for the point clouds from both sources. Mean (μ) and standard deviation (σ) of roughness histograms are calculated as (μ1 = 0.44 m., σ1 = 0.071 m.) and (μ2 = 0.025 m., σ2 = 0.037 m.) for the iPhone and TLS point clouds respectively. Our experimental results indicate possible usage of the proposed automatic 3D model generation framework for 3D urban map updating, fusion and detail enhancing, quick and real-time change detection purposes. However, further insights should be obtained first on the circumstances that are needed to guarantee a successful point cloud generation from smartphone images.

  3. Prediction of optical communication link availability: real-time observation of cloud patterns using a ground-based thermal infrared camera

    NASA Astrophysics Data System (ADS)

    Bertin, Clément; Cros, Sylvain; Saint-Antonin, Laurent; Schmutz, Nicolas

    2015-10-01

    The growing demand for high-speed broadband communications with low orbital or geostationary satellites is a major challenge. Using an optical link at 1.55 μm is an advantageous solution which potentially can increase the satellite throughput by a factor 10. Nevertheless, cloud cover is an obstacle for this optical frequency. Such communication requires an innovative management system to optimize the optical link availability between a satellite and several Optical Ground Stations (OGS). The Saint-Exupery Technological Research Institute (France) leads the project ALBS (French acronym for BroadBand Satellite Access). This initiative involving small and medium enterprises, industrial groups and research institutions specialized in aeronautics and space industries, is currently developing various solutions to increase the telecommunication satellite bandwidth. This paper presents the development of a preliminary prediction system preventing the cloud blockage of an optical link between a satellite and a given OGS. An infrared thermal camera continuously observes (night and day) the sky vault. Cloud patterns are observed and classified several times a minute. The impact of the detected clouds on the optical beam (obstruction or not) is determined by the retrieval of the cloud optical depth at the wavelength of communication. This retrieval is based on realistic cloud-modelling on libRadtran. Then, using subsequent images, cloud speed and trajectory are estimated. Cloud blockage over an OGS can then be forecast up to 30 minutes ahead. With this information, the preparation of the new link between the satellite and another OGS under a clear sky can be prepared before the link breaks due to cloud blockage.

  4. Improving Assimilation of Microwave Radiances in Cloudy Situations with Collocated High Resolution Imager Cloud Mask

    NASA Astrophysics Data System (ADS)

    Han, H.; Li, J.; Goldberg, M.; Wang, P.; Li, Z.

    2014-12-01

    Tropical cyclones (TCs) accompanied with heavy rainfall and strong wind are high impact weather systems, often causing extensive property damage and even fatalities when landed. Better prediction of TCs can lead to substantial reduction of social and economic damage; there are growing interests in the enhanced satellite data assimilation for improving TC forecasts. Accurate cloud detection is one of the most important factors in satellite data assimilation due to the uncertainties of cloud properties and their impacts on satellite observed radiances. To enhance the accuracy of cloud detection and improve the TC forecasting, microwave measurements are collocated with high spatial resolution imager cloud mask. The collocated advanced microwave sounder measurements are assimilated for the hurricane Sandy (2012) and typhoon Haiyan (2013) forecasting using the Weather Research and Forecasting (WRF) model and the 3DVAR-based Gridpoint Statistical Interpolation (GSI) data assimilation system. Experiments will be carried out to determine a cloud cover threshold to distinguish between cloud affected and cloud unaffected footprints. The results indicate that the use of the high spatial resolution imager cloud mask can improve the accuracy of TC forecasts by eliminating cloud contaminated pixels. The methodology used in this study is applicable to advanced microwave sounders and high spatial resolution imagers, such as ATMS/VIIRS onboard NPP and JPSS, and IASI/AVHRR from Metop, for the improved TC track and intensity forecasts.

  5. Searching for pulsars using image pattern recognition

    SciTech Connect

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M. E-mail: berndsen@phas.ubc.ca; and others

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  6. Searching for Pulsars Using Image Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Cohen, S.; Dartez, L. P.; Flanigan, J.; Lunsford, G.; Martinez, J. G.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F. A.; Kaplan, D. L.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Venkataraman, A.

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ~9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  7. A Medical Image Backup Architecture Based on a NoSQL Database and Cloud Computing Services.

    PubMed

    Santos Simões de Almeida, Luan Henrique; Costa Oliveira, Marcelo

    2015-01-01

    The use of digital systems for storing medical images generates a huge volume of data. Digital images are commonly stored and managed on a Picture Archiving and Communication System (PACS), under the DICOM standard. However, PACS is limited because it is strongly dependent on the server's physical space. Alternatively, Cloud Computing arises as an extensive, low cost, and reconfigurable resource. However, medical images contain patient information that can not be made available in a public cloud. Therefore, a mechanism to anonymize these images is needed. This poster presents a solution for this issue by taking digital images from PACS, converting the information contained in each image file to a NoSQL database, and using cloud computing to store digital images. PMID:26262231

  8. A method of periodic pattern localization on document images

    NASA Astrophysics Data System (ADS)

    Chernov, Timofey S.; Nikolaev, Dmitry P.; Kliatskine, Vitali M.

    2015-12-01

    Periodic patterns often present on document images as holograms, watermarks or guilloche elements which are mostly used for fraud protection. Localization of such patterns lets an embedded OCR system to vary its settings depending on pattern presence in particular image regions and improves the precision of pattern removal to preserve as much useful data as possible. Many document images' noise detection and removal methods deal with unstructured noise or clutter on documents with simple background. In this paper we propose a method of periodic pattern localization on document images which uses discrete Fourier transform that works well on documents with complex background.

  9. Weekly Cycle of Lightning and Associated Patterns of Rainfall, Cloud, and Aerosols over Korea and Adjacent Oceans during Boreal Summer

    NASA Technical Reports Server (NTRS)

    Kim, Ji-In; Kim, Kyu-Myong

    2011-01-01

    In this study, we analyze the weekly cycle of lightning over Korea and adjacent oceans and associated variations of aerosols, clouds, precipitation, and atmospheric circulations, using aerosol optical depth (AOD) from the NASA Moderate resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), cloud properties from MODIS, precipitation and storm height from Tropical Rainfall Measuring Mission (TRMM) satellite, and lightning data from the Korean Lightning Detection Network (KLDN) during 9-year from 2002 to 2010. Lightning data was divided into three approximately equal areas, land area of Korea, and two adjacent oceans, Yellow Sea and South Sea. Preliminary results show that the number of lightning increases during the middle of the week over Yellow Sea. AOD data also shows moderately significant midweek increase at about the same time as lightning peaks. These results are consistent with the recent studies showing the invigoration of storms with more ice hydrometeors by aerosols, and subsequently wash out of aerosols by rainfall. Frequency of lightning strokes tend to peak at weekend in land area and over South Sea, indicating local weekly anomalous circulation between land and adjacent ocean. On the other hand, lightning frequency over Yellow Sea appears to have very strong weekly cycle with midweek peak on around Wednesday. It is speculated that the midweek peak of lightning over Yellow Sea was related with aerosol transport from adjacent land area. AOD data also suggests midweek peak over Yellow Sea, however, the weekly cycle of AOD was not statistically significant. Changes in weekly cycle of lightning from pre-monsoon to monsoon season, as well as associated clouds and circulation patterns are also discussed.

  10. Analysis of dust cloud combustion using FAST Infrared Imaging

    NASA Astrophysics Data System (ADS)

    Marcotte, Frederick; Farley, Vincent; Savary, Simon

    2013-05-01

    Dust cloud combustion is unfortunately at risk in many working environments, jeopardizing several workers. The heat and shock waves resulting from the flame propagation into the dust cloud are harmful and lead to major endangerment or casualties. More precisely, dust cloud (small particles) explosions are even more malicious since they often result from ordinary materials such as coal, flour or pollen. Also, many metal powdered (such as aluminum oxide and magnesium) can form dangerous dust cloud when they are in suspensions in air. The understanding of this particular type of combustion is critical for the preventive care of sites and workers afflicted to such conditions. This paper presents the results of a dynamic flow analysis of metal particles combustion in a dust cloud. The ignition points, the flow rate as well as the propagation direction of the flow have been characterized using fast infrared imagery.

  11. Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment

    NASA Astrophysics Data System (ADS)

    Pal, Jayanti; Chaudhuri, Sutapa; Chowdhury, Arumita Roy; Bandyopadhyay, Tanuka

    2016-06-01

    The present study attempts to identify the land - ocean contrast in cloud - aerosol relation during lightning and non-lightning days and its effect on subsequent precipitation pattern. The thermal hypothesis in view of Convective Available Potential Energy (CAPE) behind the land - ocean contrast is observed to be insignificant in the present study region. The result shows that the lightning activities are significantly and positively correlated with aerosols over both land and ocean in case of low aerosol loading whereas for high aerosol loading the correlation is significant but, only over land. The study attempts to comprehend the mechanism through which the aerosol and lightning interact using the concept of aerosol indirect effect that includes the study of cloud effective radius, cloud fraction and precipitation rate. The result shows that the increase in lightning activity over ocean might have been caused due to the first aerosol indirect effect, while over land the aerosol indirect effect might have been suppressed due to lightning. Thus, depending on the region and relation between cloud parameters it is observed that the precipitation rate decreases (increases) over ocean during lightning (non-lightning) days. On the other hand during non-lightning days, the precipitation rate decreases over land.

  12. A novel approach for the extraction of cloud motion vectors using airglow imager measurements

    NASA Astrophysics Data System (ADS)

    Satheesh Kumar, S.; Narayana Rao, T.; Taori, A.

    2015-09-01

    The paper explores the possibility of implementing an advanced photogrammetric technique, generally employed for satellite measurements, on airglow imager, a ground-based remote sensing instrument primarily used for upper atmospheric studies, measurements of clouds for the extraction of cloud motion vectors (CMVs). The major steps involved in the algorithm remain the same, including image processing for better visualization of target elements and noise removal, identification of target cloud, setting a proper search window for target cloud tracking, estimation of cloud height, and employing 2-D cross-correlation to estimate the CMVs. Nevertheless, the implementation strategy at each step differs from that of satellite, mainly to suit airglow imager measurements. For instance, climatology of horizontal winds at the measured site has been used to fix the search window for target cloud tracking. The cloud height is estimated very accurately, as required by the algorithm, using simultaneous collocated lidar measurements. High-resolution, both in space and time (4 min), cloud imageries are employed to minimize the errors in retrieved CMVs. The derived winds are evaluated against MST radar-derived winds by considering it as a reference. A very good correspondence is seen between these two wind measurements, both showing similar wind variation. The agreement is also found to be good in both the zonal and meridional wind velocities with RMSEs < 2.4 m s-1. Finally, the strengths and limitations of the algorithm are discussed, with possible solutions, wherever required.

  13. Deep infrared images of the Small Magellanic Cloud and comparison with the distribution of ultraviolet emission

    NASA Technical Reports Server (NTRS)

    Okumura, K.; Viallefond, F.; Viton, M.; Rice, W.

    1992-01-01

    Deep infrared images of the Small Magellanic Cloud have been produced and compared to an ultraviolet image at an angular resolution of 8 min. There is a strong correlation between the far infrared and the ultraviolet emission but the dispersion in this correlation is unrelated to infrared colors. Comparing with the results for the nearby spiral M33 at different radial distances, it is suggested that the population of dust grains in the Small Magellanic Cloud has very different properties.

  14. Cloud Removal from SENTINEL-2 Image Time Series Through Sparse Reconstruction from Random Samples

    NASA Astrophysics Data System (ADS)

    Cerra, D.; Bieniarz, J.; Müller, R.; Reinartz, P.

    2016-06-01

    In this paper we propose a cloud removal algorithm for scenes within a Sentinel-2 satellite image time series based on synthetisation of the affected areas via sparse reconstruction. For this purpose, a clouds and clouds shadow mask must be given. With respect to previous works, the process has an increased automation degree. Several dictionaries, on the basis of which the data are reconstructed, are selected randomly from cloud-free areas around the cloud, and for each pixel the dictionary yielding the smallest reconstruction error in non-corrupted images is chosen for the restoration. The values below a cloudy area are therefore estimated by observing the spectral evolution in time of the non-corrupted pixels around it. The proposed restoration algorithm is fast and efficient, requires minimal supervision and yield results with low overall radiometric and spectral distortions.

  15. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)

    NASA Astrophysics Data System (ADS)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2016-04-01

    This paper presents an investigation of the expected uncertainties of a single-channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud-temperature-threshold-based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC Sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single-channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single-channel COT retrieval is feasible for EPIC. For ice clouds, single-channel retrieval errors are minimal (< 2 %) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10 %, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.

  16. Brute Force Matching Between Camera Shots and Synthetic Images from Point Clouds

    NASA Astrophysics Data System (ADS)

    Boerner, R.; Kröhnert, M.

    2016-06-01

    3D point clouds, acquired by state-of-the-art terrestrial laser scanning techniques (TLS), provide spatial information about accuracies up to several millimetres. Unfortunately, common TLS data has no spectral information about the covered scene. However, the matching of TLS data with images is important for monoplotting purposes and point cloud colouration. Well-established methods solve this issue by matching of close range images and point cloud data by fitting optical camera systems on top of laser scanners or rather using ground control points. The approach addressed in this paper aims for the matching of 2D image and 3D point cloud data from a freely moving camera within an environment covered by a large 3D point cloud, e.g. a 3D city model. The key advantage of the free movement affects augmented reality applications or real time measurements. Therefore, a so-called real image, captured by a smartphone camera, has to be matched with a so-called synthetic image which consists of reverse projected 3D point cloud data to a synthetic projection centre whose exterior orientation parameters match the parameters of the image, assuming an ideal distortion free camera.

  17. Stereo Reconstruction of Atmospheric Cloud Surfaces from Fish-Eye Camera Images

    NASA Astrophysics Data System (ADS)

    Katai-Urban, G.; Otte, V.; Kees, N.; Megyesi, Z.; Bixel, P. S.

    2016-06-01

    In this article a method for reconstructing atmospheric cloud surfaces using a stereo camera system is presented. The proposed camera system utilizes fish-eye lenses in a flexible wide baseline camera setup. The entire workflow from the camera calibration to the creation of the 3D point set is discussed, but the focus is mainly on cloud segmentation and on the image processing steps of stereo reconstruction. Speed requirements, geometric limitations, and possible extensions of the presented method are also covered. After evaluating the proposed method on artificial cloud images, this paper concludes with results and discussion of possible applications for such systems.

  18. The identification of cloud types in LANDSAT MSS images. [Great Britain

    NASA Technical Reports Server (NTRS)

    Barrett, E. C. (Principal Investigator); Grant, C. K.

    1976-01-01

    The author has identified the following significant results. Five general families of clouds were identified: cumulonimbiform, cumuliform, stratiform, stratocumuliform, and cirriform. Four members of this five-fold primary division of clouds were further divided into a number of subgroups. The MSS observed and recorded earth radiation in four different wavebands. Two of these bands (4 and 5) image in the visible portion of the electromagnetic spectrum, while the others (6 and 7) image the short wave portion, or just into the infrared. The main differences between the appearances of clouds in the four wavebands are related to the background brightness of land and sea surfaces.

  19. Estimation of cloud optical thickness by processing SEVIRI images and implementing a semi analytical cloud property retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Pandey, P.; De Ridder, K.; van Lipzig, N.

    2009-04-01

    Clouds play a very important role in the Earth's climate system, as they form an intermediate layer between Sun and the Earth. Satellite remote sensing systems are the only means to provide information about clouds on large scales. The geostationary satellite, Meteosat Second Generation (MSG) has onboard an imaging radiometer, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). SEVIRI is a 12 channel imager, with 11 channels observing the earth's full disk with a temporal resolution of 15 min and spatial resolution of 3 km at nadir, and a high resolution visible (HRV) channel. The visible channels (0.6 µm and 0.81 µm) and near infrared channel (1.6µm) of SEVIRI are being used to retrieve the cloud optical thickness (COT). The study domain is over Europe covering the region between 35°N - 70°N and 10°W - 30°E. SEVIRI level 1.5 images over this domain are being acquired from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) archive. The processing of this imagery, involves a number of steps before estimating the COT. The steps involved in pre-processing are as follows. First, the digital count number is acquired from the imagery. Image geo-coding is performed in order to relate the pixel positions to the corresponding longitude and latitude. Solar zenith angle is determined as a function of latitude and time. The radiometric conversion is done using the values of offsets and slopes of each band. The values of radiance obtained are then used to calculate the reflectance for channels in the visible spectrum using the information of solar zenith angle. An attempt is made to estimate the COT from the observed radiances. A semi analytical algorithm [Kokhanovsky et al., 2003] is implemented for the estimation of cloud optical thickness from the visible spectrum of light intensity reflected from clouds. The asymptotical solution of the radiative transfer equation, for clouds with large optical thickness, is the basis of

  20. OpenID Connect as a security service in cloud-based medical imaging systems.

    PubMed

    Ma, Weina; Sartipi, Kamran; Sharghigoorabi, Hassan; Koff, David; Bak, Peter

    2016-04-01

    The evolution of cloud computing is driving the next generation of medical imaging systems. However, privacy and security concerns have been consistently regarded as the major obstacles for adoption of cloud computing by healthcare domains. OpenID Connect, combining OpenID and OAuth together, is an emerging representational state transfer-based federated identity solution. It is one of the most adopted open standards to potentially become the de facto standard for securing cloud computing and mobile applications, which is also regarded as "Kerberos of cloud." We introduce OpenID Connect as an authentication and authorization service in cloud-based diagnostic imaging (DI) systems, and propose enhancements that allow for incorporating this technology within distributed enterprise environments. The objective of this study is to offer solutions for secure sharing of medical images among diagnostic imaging repository (DI-r) and heterogeneous picture archiving and communication systems (PACS) as well as Web-based and mobile clients in the cloud ecosystem. The main objective is to use OpenID Connect open-source single sign-on and authorization service and in a user-centric manner, while deploying DI-r and PACS to private or community clouds should provide equivalent security levels to traditional computing model. PMID:27340682

  1. Robust cloud estimation for GMS images considering the dynamic changes on VIS/IR data

    NASA Astrophysics Data System (ADS)

    Hiranaka, Hiroshi; Van, An Ngoc; Aoki, Yoshimitsu

    2008-10-01

    This paper proposes a method that estimates the position of clouds from VIS images (visible), and IR images (infrared) of GMS (Geostationary Meteorological Satellite). In estimating the position of clouds, because the brightness value of land and sea is lower than cloud, and the brightness value of land and sea is continually varied by altitude of sun, the cloud area cannot be estimated by threshold processing. In this study, Variation character of brightness value is classified in each area, and the processing method of each area is proposed based on this variation character. In land area, there is correlation between brightness value of VIS and IR image if the area is not covered by cloud. Thus, the object domain is estimated cloud area using the correlation between them. In sea area, due to temperature is stable, cloud area is estimated by background subtraction method. This method was used to estimate and evaluated in the 202 GMS-5 images. The evaluated results shown that the proposed method is more accurate than the previous method, which estimated by threshold processing (Omi, 2003).

  2. Space radar image of Western Pacific rain clouds

    NASA Technical Reports Server (NTRS)

    1995-01-01

    surrounding ocean is blue to green plus black. Winds and currents cause the ocean surface to be rough and those variations on the surface affect how the radar signals bounce off the surface. The bright areas on the image correspond to areas where the wind speed is high. The highest winds are seen as the yellow-green region of the large rain cell. The lowest winds are seen inside the atoll as dark areas. Outside the rain cell, the winds are moderately low, which is indicated by the puff-like, blue patterns surrounding the cell and extending into the atoll. The long, thin, dark lines extending across the ocean are surface currents. Here the currents are likely accumulating natural oils caused by small marine biological organisms. The oils cause the small, wind-generated waves to be reduced in size or damped which produces a smooth, dark zone on the radar image.

  3. Parallel optimization of pixel purity index algorithm for massive hyperspectral images in cloud computing environment

    NASA Astrophysics Data System (ADS)

    Chen, Yufeng; Wu, Zebin; Sun, Le; Wei, Zhihui; Li, Yonglong

    2016-04-01

    With the gradual increase in the spatial and spectral resolution of hyperspectral images, the size of image data becomes larger and larger, and the complexity of processing algorithms is growing, which poses a big challenge to efficient massive hyperspectral image processing. Cloud computing technologies distribute computing tasks to a large number of computing resources for handling large data sets without the limitation of memory and computing resource of a single machine. This paper proposes a parallel pixel purity index (PPI) algorithm for unmixing massive hyperspectral images based on a MapReduce programming model for the first time in the literature. According to the characteristics of hyperspectral images, we describe the design principle of the algorithm, illustrate the main cloud unmixing processes of PPI, and analyze the time complexity of serial and parallel algorithms. Experimental results demonstrate that the parallel implementation of the PPI algorithm on the cloud can effectively process big hyperspectral data and accelerate the algorithm.

  4. Cloud Remote Sensing with Sideways-Looks : Theory and First Results Using Multispectral Thermal Imager Data

    SciTech Connect

    Davis, A. B.

    2002-01-01

    In operational remote sensing, the implicit model for cloud geometry is a homogeneous plane-parallel slab of infinite horizontal extent. Each pixel is indeed processed as if it exchanged no radiant energy whatsoever with its neighbors. The shortcomings of this conceptual model have been well documented in the specialized literature but rarely mitigated. The worst-case scenario is probably high-resolution imagery where dense isolated clouds are visible, often both bright (reflective) and dark (transmissive) sides being apparent from the same satellite viewing angle: the low transmitted radiance could conceivably be interpreted in plane-parallel theory as no cloud at all. An alternative to the plane-parallel cloud model is introduced here that has the same appeal of being analytically tractable, at least in the diffusion limit: the spherical cloud. This new geometrical paradigm is applied to radiances from cumulus clouds captured by DOE's Multispectral Thermal Imager (MTI). Estimates of isolated cloud opacities are a necessary first step in correcting radiances from surface targets that are visible in the midst of a broken-cloud field. This type of advanced atmospheric correction is badly needed in remote sensing applications such as nonproliferation detection were waiting for a cloud-free look in the indefinite future is not a viable option.

  5. Genetic refinement of cloud-masking algorithms for the multi-spectral thermal imager (MTI)

    SciTech Connect

    Hirsch, K. L.; Davis, A. B.; Harvey, N. R.; Rohde, C. A.; Brumby, Steven P.

    2001-01-01

    The Multi-spectral Thermal Imager (MTI) is a high-performance remote-sensing satellite designed, owned and operated by the U.S. Department of Energy, with a dual mission in environmental studies and in nonproliferation. It has enhanced spatial and radiometric resolutions and state-of-the-art calibration capabilities. This instrumental development puts a new burden on retrieval algorithm developers to pass this accuracy on to the inferred geophysical parameters. In particular, the atmospheric correction scheme assumes the intervening atmosphere will be modeled as a plane-parallel horizontally-homogeneous medium. A single dense-enough cloud in view of the ground target can easily offset reality from the calculations, hence the need for a reliable cloud-masking algorithm. Pixel-scale cloud detection relies on the simple facts that clouds are generally whiter, brighter, and colder than the ground below; spatially, dense clouds are generally large on some scale. This is a good basis for searching multispectral datacubes for cloud signatures. However, the resulting cloud mask can be very sensitive to the choice of thresholds in whiteness, brightness, temperature, and connectivity. We have used a genetic algorithm trained on (MODIS Airborne Simulator-based) simulated MTI data to design a cloud-mask. Its performance is compared quantitatively to hand-drawn training data and to the EOS/Terra MODIS cloud mask.

  6. Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images

    NASA Astrophysics Data System (ADS)

    Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Vosselman, George

    2015-07-01

    Point clouds generated from airborne oblique images have become a suitable source for detailed building damage assessment after a disaster event, since they provide the essential geometric and radiometric features of both roof and façades of the building. However, they often contain gaps that result either from physical damage or from a range of image artefacts or data acquisition conditions. A clear understanding of those reasons, and accurate classification of gap-type, are critical for 3D geometry-based damage assessment. In this study, a methodology was developed to delineate buildings from a point cloud and classify the present gaps. The building delineation process was carried out by identifying and merging the roof segments of single buildings from the pre-segmented 3D point cloud. This approach detected 96% of the buildings from a point cloud generated using airborne oblique images. The gap detection and classification methods were tested using two other data sets obtained with Unmanned Aerial Vehicle (UAV) images with a ground resolution of around 1-2 cm. The methods detected all significant gaps and correctly identified the gaps due to damage. The gaps due to damage were identified based on the surrounding damage pattern, applying Gabor wavelets and a histogram of gradient orientation features. Two learning algorithms - SVM and Random Forests were tested for mapping the damaged regions based on radiometric descriptors. The learning model based on Gabor features with Random Forests performed best, identifying 95% of the damaged regions. The generalization performance of the supervised model, however, was less successful: quality measures decreased by around 15-30%.

  7. Investigation into Cloud Computing for More Robust Automated Bulk Image Geoprocessing

    NASA Technical Reports Server (NTRS)

    Brown, Richard B.; Smoot, James C.; Underwood, Lauren; Armstrong, C. Duane

    2012-01-01

    Geospatial resource assessments frequently require timely geospatial data processing that involves large multivariate remote sensing data sets. In particular, for disasters, response requires rapid access to large data volumes, substantial storage space and high performance processing capability. The processing and distribution of this data into usable information products requires a processing pipeline that can efficiently manage the required storage, computing utilities, and data handling requirements. In recent years, with the availability of cloud computing technology, cloud processing platforms have made available a powerful new computing infrastructure resource that can meet this need. To assess the utility of this resource, this project investigates cloud computing platforms for bulk, automated geoprocessing capabilities with respect to data handling and application development requirements. This presentation is of work being conducted by Applied Sciences Program Office at NASA-Stennis Space Center. A prototypical set of image manipulation and transformation processes that incorporate sample Unmanned Airborne System data were developed to create value-added products and tested for implementation on the "cloud". This project outlines the steps involved in creating and testing of open source software developed process code on a local prototype platform, and then transitioning this code with associated environment requirements into an analogous, but memory and processor enhanced cloud platform. A data processing cloud was used to store both standard digital camera panchromatic and multi-band image data, which were subsequently subjected to standard image processing functions such as NDVI (Normalized Difference Vegetation Index), NDMI (Normalized Difference Moisture Index), band stacking, reprojection, and other similar type data processes. Cloud infrastructure service providers were evaluated by taking these locally tested processing functions, and then

  8. Single-shot three-dimensional imaging of dilute atomic clouds.

    PubMed

    Sakmann, Kaspar; Kasevich, Mark

    2014-09-15

    Light field microscopy methods together with three-dimensional (3D) deconvolution can be used to obtain single-shot 3D images of atomic clouds. We demonstrate the method using a test setup that extracts 3D images from a fluorescent Rb87 atomic vapor. PMID:26466260

  9. Vacuum Ultraviolet Images of the Large Magellanic Cloud: Erratum

    NASA Astrophysics Data System (ADS)

    Smith, Andrew M.; Cornett, Robert H.; Hill, Robert S.

    1990-06-01

    In the paper "Vacuum Ultraviolet Images of the Large Magellanic Cloud" by Andrew M. Smith, Robert H. Cornett, and Robert S. Hill (Ap. J., 320, 609 [1987]), an error was made in the dereddening formulae for vacuum ultraviolet (VUV) magnitudes on page 613. For 30 Dor dereddening, the formulae should be m_0(1500)_ = m_1500_ - 10.47 x E(B - V)_LMC_ - 8.05 x E(B - V)_Gal_, and m_0(1900)_ = m_1900_ - 8.87 x E(B - V)_LMC_ - 8.28 x E(B - V)_Gal_. For non-30 Dor dereddening, the formulae should be m_0(1500)_ = m_1500_ -8.72 x E(B - V)_LMC_ - 8.05 x E(B - V)_Gal_, and m_0(1900) = m_1900_ - 8.21 x E(B - V)_LMC_ - 8.28 x E(B - V)_Gal_. The ramifications of this error spread through several results. However, it must be noted that the overall effect is to make our original estimates of intrinsic VUV flux too low. As a result, our primary argument on energetics actually becomes stronger: there is ample energy flux in the southwestern Large Magellanic Cloud (LMC) to sustain into the next generation of stars the star-formation front visible in our VUV images. The three tables of observational results are replaced by the results given here in Table 1, in which intrinsic VUV fluxes are corrected (other quantities remain as they were). The discussion of Table 2 needs to be amended. This table compares ionizing fluxes computed by different methods for VUV sources (OB associations) that can be identified with 6 cm radio sources (H II regions). The aggregate ionizing fluxes for this set of objects derived from the two wavelength regimes are no longer so nearly equal as they were. However, as we pointed out, any such equality would be fortuitous, since the two derivations yield results differing by typically a factor of 2 for any given individual association. The discussion of Table 3 also needs to be amended. This table combines ionizing fluxes from OB associations (derived from VU photometry) with ionizing fluxes from 6 cm sources that do not coincide with any OB association. In this

  10. Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager

    NASA Astrophysics Data System (ADS)

    Ishida, Haruma; Nakajima, Takashi Y.

    2009-04-01

    A new concept for cloud detection from observations by multispectral spaceborne imagers is proposed, and an algorithm comprising many pixel-by-pixel threshold tests is developed. Since in nature the thickness of clouds tends to vary continuously and the border between cloud and clear sky is thus vague, it is unrealistic to label pixels as either cloudy or clear sky. Instead, the extraction of ambiguous areas is considered to be useful and informative. We refer to the multiple threshold method employed in the MOD35 algorithm that is used for Moderate Resolution Imaging Spectroradiometer (MODIS) standard data analysis, but drastically reconstruct the structure of the algorithm to meet our aim of sustaining the neutral position. The concept of a clear confidence level, which represents certainty of the clear or cloud condition, is applied to design a neutral cloud detection algorithm that is not biased to either clear or cloudy. The use of the clear confidence level with neutral position also makes our algorithm structure very simple. Several examples of cloud detection from satellite data are tested using our algorithm and are validated by visual inspection and comparison to previous cloud mask data. The results indicate that our algorithm is capable of reasonable discrimination between cloudy and clear-sky areas over ocean with and without Sun glint, forest, and desert, and is able to extract areas with ambiguous cloudiness condition.

  11. The impact of clouds on image parameters in IACT at very high energies

    NASA Astrophysics Data System (ADS)

    Sobczyńska, Dorota; Bednarek, Włodek

    2015-03-01

    The effective observation time with the Cherenkov telescopes arrays is limited to clear sky conditions due to considerable absorption of Cherenkov light by the possible presence of clouds. However below the cloud altitude the primary particles with high energies can still produce enough Cherenkov photons to allow the detection by the large telescopes. In this paper, using the standard CORSIKA code, we investigate the changes of image parameters due to the absorption of Cherenkov radiation by the cloud (for γ-ray and proton showers with various energies - from 2 TeV to 100 TeV and from 10 TeV to 200 TeV, respectively). We consider the clouds with different transmissions located at various altitudes above the ground level (between 8 km and 3 km). We show that, for both simulated primary particles at fixed energy, the WIDTH and the DIST distributions are shifted towards larger values in the presence of clouds in comparison to the clear sky simulations. This shift decreases with the cloud altitude. The LENGTH distributions are shifted towards smaller values for images of primary γ-rays, while for primary protons this shift is not observed. We conclude that the large Cherenkov telescopes with large camera FOV could be used for observation of γ-ray showers with high energies in the presence of clouds.

  12. Automatic Detection of Clouds and Shadows Using High Resolution Satellite Image Time Series

    NASA Astrophysics Data System (ADS)

    Champion, Nicolas

    2016-06-01

    Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel) with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pl

  13. Diurnal, Seasonal, and Interannual Variations of Cloud Properties Derived for CERES From Imager Data

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Brown, Richard R.; Gibson, Sharon; Heck, Patrick W.

    2004-01-01

    Simultaneous measurement of the radiation and cloud fields on a global basis is a key component in the effort to understand and model the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project, begun in 1998, is meeting this need. Broadband shortwave (SW) and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth OD from the TRMM Visible Infrared Scanner (VIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Besides aiding the interpretation of the broadband radiances, the CERES cloud properties are valuable for understanding cloud variations at a variety of scales. In this paper, the resulting CERES cloud data taken to date are averaged at several temporal scales to examine the temporal and spatial variability of the cloud properties on a global scale at a 1 resolution.

  14. A comparison of cloud motion winds from ATS 6 images with coinciding SMS 1 winds

    NASA Technical Reports Server (NTRS)

    Kuhlow, W. W.; Chatters, G. C.

    1978-01-01

    A methodology is developed for accurate measurement of cloud motion winds from the geosynchronous ATS 6 image data. Attitude changes between consecutive images (as a function of scan-line number) are accounted for in wind computations through measurement of the earth-edge displacements between the successive infrared images. Also, an image matching procedure is used to remove obvious and distracting image distortions. The availability of SMS imagery coinciding with ATS 6 imagery makes SMS an excellent reference against which the quality of ATS 6 winds can be tested. The resulting winds inferred from cloud displacement measurements taken from a sequence of the corrected images are found to agree better than 2 m/sec rms with winds measured from coincident SMS 1 imagery.

  15. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  16. Color Image Magnification: Geometrical Pattern Classification Approach

    NASA Astrophysics Data System (ADS)

    Yong, Tien Fui; Choo, Wou Onn; Meian Kok, Hui

    In an era where technology keeps advancing, it is vital that high-resolution images are available to produce high-quality displayed images and fine-quality prints. The problem is that it is quite impossible to produce high-resolution images with acceptable clarity even with the latest digital cameras. Therefore, there is a need to enlarge the original images using an effective and efficient algorithm. The main contribution of this paper is to produce an enlarge color image with high visual quality, up to four times the original size of 100x100 pixels image. In the classification phase, the basic idea is to separate the interpolation region in the form of geometrical shape. Then, in the intensity determination phase, the interpolator assigns a proper color intensity value to the undefined pixel inside the interpolation region. This paper will discuss about problem statement, literature review, research methodology, research outcome, initial results, and finally, the conclusion.

  17. Wide-angle imaging lidar (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds

    NASA Astrophysics Data System (ADS)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Ho, Cheng

    2001-09-01

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  18. Fingerprint pattern restoration by digital image processing techniques.

    PubMed

    Wen, Che-Yen; Yu, Chiu-Chung

    2003-09-01

    Fingerprint evidence plays an important role in solving criminal problems. However, defective (lacking information needed for completeness) or contaminated (undesirable information included) fingerprint patterns make identifying and recognizing processes difficult. Unfortunately. this is the usual case. In the recognizing process (enhancement of patterns, or elimination of "false alarms" so that a fingerprint pattern can be searched in the Automated Fingerprint Identification System (AFIS)), chemical and physical techniques have been proposed to improve pattern legibility. In the identifying process, a fingerprint examiner can enhance contaminated (but not defective) fingerprint patterns under guidelines provided by the Scientific Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST), the Scientific Working Group on Imaging Technology (SWGIT), and an AFIS working group within the National Institute of Justice. Recently, the image processing techniques have been successfully applied in forensic science. For example, we have applied image enhancement methods to improve the legibility of digital images such as fingerprints and vehicle plate numbers. In this paper, we propose a novel digital image restoration technique based on the AM (amplitude modulation)-FM (frequency modulation) reaction-diffusion method to restore defective or contaminated fingerprint patterns. This method shows its potential application to fingerprint pattern enhancement in the recognizing process (but not for the identifying process). Synthetic and real images are used to show the capability of the proposed method. The results of enhancing fingerprint patterns by the manual process and our method are evaluated and compared. PMID:14535661

  19. Peering through Jupiter’s clouds with radio spectral imaging

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Sault, R. J.; Butler, Bryan; DeBoer, David; Wong, Michael H.

    2016-06-01

    Radio wavelengths can probe altitudes in Jupiter’s atmosphere below its visible cloud layers. We used the Very Large Array to map this unexplored region down to ~8 bar, ~100 kilometers below the visible clouds. Our maps reveal a dynamically active planet at pressures less than 2 to 3 bar. A radio-hot belt exists, consisting of relatively transparent regions (a low ammonia concentration, NH3 being the dominant source of opacity) probing depths to over ~8 bar; these regions probably coincide with 5-micrometer hot spots. Just to the south we distinguish an equatorial wave, bringing up ammonia gas from Jupiter’s deep atmosphere. This wave has been theorized to produce the 5-micrometer hot spots; we observed the predicted radio counterpart of such hot spots.

  20. Peering through Jupiter's clouds with radio spectral imaging.

    PubMed

    de Pater, Imke; Sault, R J; Butler, Bryan; DeBoer, David; Wong, Michael H

    2016-06-01

    Radio wavelengths can probe altitudes in Jupiter's atmosphere below its visible cloud layers. We used the Very Large Array to map this unexplored region down to ~8 bar, ~100 kilometers below the visible clouds. Our maps reveal a dynamically active planet at pressures less than 2 to 3 bar. A radio-hot belt exists, consisting of relatively transparent regions (a low ammonia concentration, NH3 being the dominant source of opacity) probing depths to over ~8 bar; these regions probably coincide with 5-micrometer hot spots. Just to the south we distinguish an equatorial wave, bringing up ammonia gas from Jupiter's deep atmosphere. This wave has been theorized to produce the 5-micrometer hot spots; we observed the predicted radio counterpart of such hot spots. PMID:27257253

  1. ImageGREP: fast visual pattern matching in image databases

    NASA Astrophysics Data System (ADS)

    White, David A.; Jain, Ramesh C.

    1997-01-01

    Most current image retrieval systems use holistic comparison that require a global match between images or presegmented object in images. However, often the user of an image database system is interested in a local match between images. For example, `Find images from the database with something like this anywhere in the image,' or `Fine images with something like this in some region of any image in the database,' or `Find images with this spatial configuration of regions like this.' In this paper, we provide an overview of a new framework that should help to allow these types of queries to be answered efficiently. In order to illustrate the usefulness of our framework, we have developed a complete image retrieval system based on local color information. Our system features fully automatic insertion and very efficient query execution, rivaling the efficiency of systems that can only handle global image comparisons. The query execution engine, called the ImageGREP Engine, can process queries at a speed of approximately 3000 images per second (or better) on a standard workstation when the index can be stored in main memory. In the future, we believe our framework should be used in other domains and applications, to handle queries based on texture or other material properties and perhaps domain specific image properties.

  2. D Point Cloud Model Colorization by Dense Registration of Digital Images

    NASA Astrophysics Data System (ADS)

    Crombez, N.; Caron, G.; Mouaddib, E.

    2015-02-01

    Architectural heritage is a historic and artistic property which has to be protected, preserved, restored and must be shown to the public. Modern tools like 3D laser scanners are more and more used in heritage documentation. Most of the time, the 3D laser scanner is completed by a digital camera which is used to enrich the accurate geometric informations with the scanned objects colors. However, the photometric quality of the acquired point clouds is generally rather low because of several problems presented below. We propose an accurate method for registering digital images acquired from any viewpoints on point clouds which is a crucial step for a good colorization by colors projection. We express this image-to-geometry registration as a pose estimation problem. The camera pose is computed using the entire images intensities under a photometric visual and virtual servoing (VVS) framework. The camera extrinsic and intrinsic parameters are automatically estimated. Because we estimates the intrinsic parameters we do not need any informations about the camera which took the used digital image. Finally, when the point cloud model and the digital image are correctly registered, we project the 3D model in the digital image frame and assign new colors to the visible points. The performance of the approach is proven in simulation and real experiments on indoor and outdoor datasets of the cathedral of Amiens, which highlight the success of our method, leading to point clouds with better photometric quality and resolution.

  3. Automatic registration of Iphone images to LASER point clouds of the urban structures using shape features

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Lindenbergh, R. C.; Menenti, M.

    2013-10-01

    Fusion of 3D airborne laser (LIDAR) data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images which are taken in front of the interested urban structure by the application user and the high resolution LIDAR point clouds of the acquired by an airborne laser sensor. After finding the photo capturing position and orientation from the iPhone photograph metafile, we automatically select the area of interest in the point cloud and transform it into a range image which has only grayscale intensity levels according to the distance from the image acquisition position. We benefit from local features for registering the iPhone image to the generated range image. In this article, we have applied the registration process based on local feature extraction and graph matching. Finally, the registration result is used for facade texture mapping on the 3D building surface mesh which is generated from the LIDAR point cloud. Our experimental results indicate possible usage of the proposed algorithm framework for 3D urban map updating and enhancing purposes.

  4. Orientation of Airborne Laser Scanning Point Clouds with Multi-View, Multi-Scale Image Blocks

    PubMed Central

    Rönnholm, Petri; Hyyppä, Hannu; Hyyppä, Juha; Haggrén, Henrik

    2009-01-01

    Comprehensive 3D modeling of our environment requires integration of terrestrial and airborne data, which is collected, preferably, using laser scanning and photogrammetric methods. However, integration of these multi-source data requires accurate relative orientations. In this article, two methods for solving relative orientation problems are presented. The first method includes registration by minimizing the distances between of an airborne laser point cloud and a 3D model. The 3D model was derived from photogrammetric measurements and terrestrial laser scanning points. The first method was used as a reference and for validation. Having completed registration in the object space, the relative orientation between images and laser point cloud is known. The second method utilizes an interactive orientation method between a multi-scale image block and a laser point cloud. The multi-scale image block includes both aerial and terrestrial images. Experiments with the multi-scale image block revealed that the accuracy of a relative orientation increased when more images were included in the block. The orientations of the first and second methods were compared. The comparison showed that correct rotations were the most difficult to detect accurately by using the interactive method. Because the interactive method forces laser scanning data to fit with the images, inaccurate rotations cause corresponding shifts to image positions. However, in a test case, in which the orientation differences included only shifts, the interactive method could solve the relative orientation of an aerial image and airborne laser scanning data repeatedly within a couple of centimeters. PMID:22454569

  5. Improvements in Near-Terminator and Nocturnal Cloud Masks using Satellite Image Data over the Atmospheric Radiation Measurement Sites

    NASA Technical Reports Server (NTRS)

    Trepte, Q. Z.; Minnis, P.; Heck, R. W.; Palikonda, R.

    2005-01-01

    Cloud detection using satellite measurements presents a big challenge near the terminator where the visible (VIS; 0.65 (micro)m) channel becomes less reliable and the reflected solar component of the solar infrared 3.9-(micro)m channel reaches very low signal-to-noise ratio levels. As a result, clouds are underestimated near the terminator and at night over land and ocean in previous Atmospheric Radiation Measurement (ARM) Program cloud retrievals using Geostationary Operational Environmental Satellite (GOES) imager data. Cloud detection near the terminator has always been a challenge. For example, comparisons between the CLAVR-x (Clouds from Advanced Very High Resolution Radiometer (AVHRR)) cloud coverage and Geoscience Laser Altimeter System (GLAS) measurements north of 60 degrees N indicate significant amounts of missing clouds from AVHRR because this part of the world was near the day/night terminator viewed by AVHRR. Comparisons between MODIS cloud products and GLAS at the same regions also shows the same difficulty in the MODIS cloud retrieval (Pavolonis and Heidinger 2005). Consistent detection of clouds at all times of day is needed to provide reliable cloud and radiation products for ARM and other research efforts involving the modeling of clouds and their interaction with the radiation budget. To minimize inconsistencies between daytime and nighttime retrievals, this paper develops an improved twilight and nighttime cloud mask using GOES-9, 10, and 12 imager data over the ARM sites and the continental United States (CONUS).

  6. Improvements in Near-Terminator and Nocturnal Cloud Masks using Satellite Imager Data over the Atmospheric Radiation Measurement Sites

    SciTech Connect

    Trepte, Q.Z.; Minnis, P.; Heck, P.W.; Palikonda, R.

    2005-03-18

    Cloud detection using satellite measurements presents a big challenge near the terminator where the visible (VIS; 0.65 {micro}m) channel becomes less reliable and the reflected solar component of the solar infrared 3.9-{micro}m channel reaches very low signal-to-noise ratio levels. As a result, clouds are underestimated near the terminator and at night over land and ocean in previous Atmospheric Radiation Measurement (ARM) Program cloud retrievals using Geostationary Operational Environmental Satellite (GOES) imager data. Cloud detection near the terminator has always been a challenge. For example, comparisons between the CLAVR-x (Clouds from Advanced Very High Resolution Radiometer [AVHRR]) cloud coverage and Geoscience Laser Altimeter System (GLAS) measurements north of 60{sup o}N indicate significant amounts of missing clouds from AVHRR because this part of the world was near the day/night terminator viewed by AVHRR. Comparisons between MODIS cloud products and GLAS at the same regions also shows the same difficulty in the MODIS cloud retrieval (Pavolonis and Heidinger 2005). Consistent detection of clouds at all times of day is needed to provide reliable cloud and radiation products for ARM and other research efforts involving the modeling of clouds and their interaction with the radiation budget. To minimize inconsistencies between daytime and nighttime retrievals, this paper develops an improved twilight and nighttime cloud mask using GOES-9, 10, and 12 imager data over the ARM sites and the continental United States (CONUS).

  7. On the camparability of cloud fractions derived from whole sky imager and ceilometer data

    SciTech Connect

    Rodriguez, D.

    1998-01-30

    The Atmospheric Radiation Measurement (ARM) Program`s most heavily instrumented site is its central facility in Lamont, OK. With respect to cloud observations, the instrumentation included a whole sky imager, ceilometers, lidar, millimeter cloud radar, microwave profilers, and radiosondes. Data from three of these instrument--the Whole Sky Imager (WSI), Belfort Laser Ceilometer (BLC) and Micropulse Lidar (MPL)-- are used in this study primarily to investigate the utility of using ceilometers, now strategically emplaced at four additional locations along the perimeter of the site.

  8. Detection and tracking of gas clouds in an urban area by imaging infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Sabbah, Samer; Rusch, Peter; Gerhard, Jörn-Hinnrich; Harig, Roland

    2013-05-01

    The release of toxic industrial compounds in urban areas is a threat for the population and the environment. In order to supply emergency response forces with information about the released compounds after accidents or terrorist attacks, monitoring systems such as the scanning imaging spectrometer SIGIS 2 or the hyperspectral imager HI 90 were developed. Both systems are based on the method of infrared spectroscopy. The systems were deployed to monitor gas clouds released in the harbor area of Hamburg. The gas clouds were identified, visualized and quantified from a distance in real time. Using data of two systems it was possible to identify contaminated areas and to determine the source location.

  9. Active probing of cloud thickness and optical depth using wide-angle imaging LIDAR.

    SciTech Connect

    Love, Steven P.; Davis, A. B.; Rohde, C. A.; Tellier, L. L.; Ho, Cheng,

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60{sup o} full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Section 2 covers the up-to-date evolution of the nighttime WAIL instrument at LANL. Section 3 reports our progress towards daytime capability for WAIL, an important extension to full diurnal cycle monitoring by means of an ultra-narrow magneto-optic atomic line filter. Section 4 describes briefly how the important cloud properties can be inferred from WAIL signals.

  10. High Speed Imaging of Bubble Clouds Generated in Pulsed Ultrasound Cavitational Therapy—Histotripsy

    PubMed Central

    Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L.; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J. Brian; Cain, Charles A.

    2009-01-01

    Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (<20 μs), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: 1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; 2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and 3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions. PMID:18019247

  11. Biometric Authentication Using Infrared Imaging of Hand Vein Patterns

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Debnath; Shrotri, A.; Rethrekar, S. C.; Patil, M. H.; Alisherov, Farkhod A.; Kim, Tai-Hoon

    Hand vein patterns are unique and universal. Vein pattern is used as biometric feature in recent years. But, it is not very much popular biometric system as compared to other systems like fingerprint, iris etc, because of the higher cost. For conventional algorithm, it is necessary to use high quality images, which demand high-priced collection devices. There are two approaches for vein authentication, these are hand dorsa and hand ventral. Currently we are working on hand dorsa vein patterns. Here we are putting forward the new approach for low cost hand dorsa vein pattern acquisition using low cost device and proposing a algorithm to extract features from these low quality images.

  12. Optical Imaging of Flow Pattern and Phantom

    NASA Technical Reports Server (NTRS)

    Galland, Pierre A.; Liang, X.; Wang, L.; Ho, P. P.; Alfano, R. R.; Breisacher, K.

    1999-01-01

    Time-resolved optical imaging technique has been used to image the spatial distribution of small droplets and jet sprays in a highly scattering environment. The snake and ballistic components of the transmitted pulse are less scattered, and contain direct information about the sample to facilitate image formation as opposed to the diffusive components which are due to multiple collisions as a light pulse propagates through a scattering medium. In a time-gated imaging scheme, these early-arriving, image-bearing components of the incident pulse are selected by opening a gate for an ultrashort period of time and a shadowgram image is detected. Using a single shot cooled CCD camera system, the formation of water droplets is monitored as a function of time. Picosecond time-gated image of drop in scattering cells, spray droplets as a function of let speed and gas pressure, and model calcification samples consisted of calcium carbonate particles of irregular shapes ranging in size from 0. 1 to 1.5 mm affixed to a microscope slide have been measured. Formation produced by an impinging jet will be further monitored using a CCD with 1 kHz framing illuminated with pulsed light. The desired image resolution of the fuel droplets is on the 20 pm scale using early light through a highly scattering medium. A 10(exp -6)m displacement from a jet spray with a flow speed of 100 m/sec introduced by the ns grating pulse used in the imaging is negligible. Early ballistic/snake light imaging offers nondestructive and noninvasive method to observe the spatial distribution of hidden objects inside a highly scattering environment for space, biomedical, and materials applications. In this paper, the techniques we will present are time-resolved K-F transillumination imaging and time-gated scattered light imaging. With a large dynamic range and high resolution, time-gated early light imaging has the potential for improving rocket/aircraft design by determining jets shape and particle sizes

  13. Characterization of aerosol-containing chemical simulant clouds using a sensitive, thermal infrared imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Hall, Jeffrey L.; D'Amico, Francis M.; Kolodzey, Steven J.; Qian, Jun; Polak, Mark L.; Westerberg, Karl; Chang, Clement S.

    2011-05-01

    A sensitive, ground-based thermal imaging spectrometer was deployed at the Army's Dugway Proving Ground to remotely monitor explosively released chemical-warfare-agent-simulant clouds from stand-off ranges of a few kilometers. The sensor has 128 spectral bands covering the 7.6 to 13.5 micron region. The measured cloud spectra clearly showed scattering of high-elevation-angle sky radiance by liquid aerosols or dust in the clouds: we present arguments that show why the scattering is most likely due to dust. This observation has significant implications for early detection of dust-laden chemical clouds. On one hand, detection algorithms must properly account for the scattered radiation component, which would include out-of-scene radiation components as well as a dust signature; on the other hand, this scattering gives rise to an enhanced "delta-T" for detection by a ground-based sensor.

  14. Remote sensing of cloud thickness and liquid water content with Wide-Angle Imaging Lidar

    NASA Astrophysics Data System (ADS)

    Love, Steven P.; Davis, Anthony B.; Ho, Cheng; Rohde, Charles A.

    We describe a new type of lidar instrument, Wide-Angle Imaging Lidar (WAIL), designed to study and directly make use of multiple scattering in clouds. Providing time-resolved imagery over a 60° field of view, the new instrument captures returns at virtually all orders of scattering in a ground-based measurement. We report the first retrievals of cloud properties using this system, from measurements of a moderately opaque altostratus. Following insights from photon diffusion theory, we are able to infer the physical thickness and optical depth of the cloud layer, and, from there, obtain an estimate of the volume-averaged liquid water content. Performance of the new instrument is discussed and it is compared with other active techniques in cloud remote sensing.

  15. Observation of a cavitation cloud in tissue using correlation between ultrafast ultrasound images.

    PubMed

    Prieur, Fabrice; Zorgani, Ali; Catheline, Stefan; Souchon, Rémi; Mestas, Jean-Louis; Lafond, Maxime; Lafon, Cyril

    2015-07-01

    The local application of ultrasound is known to improve drug intake by tumors. Cavitating bubbles are one of the contributing effects. A setup in which two ultrasound transducers are placed confocally is used to generate cavitation in ex vivo tissue. As the transducers emit a series of short excitation bursts, the evolution of the cavitation activity is monitored using an ultrafast ultrasound imaging system. The frame rate of the system is several thousands of images per second, which provides several tens of images between consecutive excitation bursts. Using the correlation between consecutive images for speckle tracking, a decorrelation of the imaging signal appears due to the creation, fast movement, and dissolution of the bubbles in the cavitation cloud. By analyzing this area of decorrelation, the cavitation cloud can be localized and the spatial extent of the cavitation activity characterized. PMID:26168172

  16. Automated estimation of mass eruption rate of volcanic eruption on satellite imagery using a cloud pattern recognition algorithm

    NASA Astrophysics Data System (ADS)

    Pouget, Solene; Jansons, Emile; Bursik, Marcus; Tupper, Andrew; Patra, Abani; Pitman, Bruce; Carn, Simon

    2014-05-01

    The need to detect and track the position of ash in the atmosphere has been highlighted in the past few years following the eruption Eyjafjallajokull. As a result, Volcanic Ash Advisory Centers (VAACs) are using Volcanic Ash Transport and Dispersion models (VATD) to estimate and predict the whereabouts of the ash in the atmosphere. However, these models require inputs of eruption source parameters, such as the mass eruption rate (MER), and wind fields, which are vital to properly model the ash movements. These inputs might change with time as the eruption enters different phases. This implies tracking the ash movement as conditions change, and new satellite imagery comes in. Thus, ultimately, the eruption must be detectable, regardless of changing eruption source and meteorological conditions. Volcanic cloud recognition can be particularly challenging, especially when meteorological clouds are present, which is typically the case in the tropics. Given the fact that a large fraction of the eruptions in the world happen in a tropical environment, we have based an automated volcanic cloud recognition algorithm on the fact that meteorological clouds and volcanic clouds behave differently. As a result, the pattern definition algorithm detects and defines volcanic clouds as different object types from meteorological clouds on satellite imagery. Following detection and definition, the algorithm then estimates the area covered by the ash. The area is then analyzed with respect to a plume growth rate methodology to get estimation of the volumetric and mass growth with time. This way, we were able to get an estimation of the MER with time, as plume growth is dependent on MER. To test our approach, we used the examples of two eruptions of different source strength, in two different climatic regimes, and for which therefore the weather during the eruption was quite different: Manam (Papua New Guinea) January 27 2005, which produced a stratospheric umbrella cloud and was

  17. Machine learning patterns for neuroimaging-genetic studies in the cloud.

    PubMed

    Da Mota, Benoit; Tudoran, Radu; Costan, Alexandru; Varoquaux, Gaël; Brasche, Goetz; Conrod, Patricia; Lemaitre, Herve; Paus, Tomas; Rietschel, Marcella; Frouin, Vincent; Poline, Jean-Baptiste; Antoniu, Gabriel; Thirion, Bertrand

    2014-01-01

    Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a 2 weeks deployment on hundreds of virtual machines. PMID:24782753

  18. Machine learning patterns for neuroimaging-genetic studies in the cloud

    PubMed Central

    Da Mota, Benoit; Tudoran, Radu; Costan, Alexandru; Varoquaux, Gaël; Brasche, Goetz; Conrod, Patricia; Lemaitre, Herve; Paus, Tomas; Rietschel, Marcella; Frouin, Vincent; Poline, Jean-Baptiste; Antoniu, Gabriel; Thirion, Bertrand

    2014-01-01

    Brain imaging is a natural intermediate phenotype to understand the link between genetic information and behavior or brain pathologies risk factors. Massive efforts have been made in the last few years to acquire high-dimensional neuroimaging and genetic data on large cohorts of subjects. The statistical analysis of such data is carried out with increasingly sophisticated techniques and represents a great computational challenge. Fortunately, increasing computational power in distributed architectures can be harnessed, if new neuroinformatics infrastructures are designed and training to use these new tools is provided. Combining a MapReduce framework (TomusBLOB) with machine learning algorithms (Scikit-learn library), we design a scalable analysis tool that can deal with non-parametric statistics on high-dimensional data. End-users describe the statistical procedure to perform and can then test the model on their own computers before running the very same code in the cloud at a larger scale. We illustrate the potential of our approach on real data with an experiment showing how the functional signal in subcortical brain regions can be significantly fit with genome-wide genotypes. This experiment demonstrates the scalability and the reliability of our framework in the cloud with a 2 weeks deployment on hundreds of virtual machines. PMID:24782753

  19. Characterizing spatial and temporal patterns of cloud cover and fog inundation for the Northern Channel islands of California

    NASA Astrophysics Data System (ADS)

    Rastogi, Bharat

    The presence of low-lying stratocumulus clouds and fog has been known to modify biophysical and ecological properties in a variety of ecosystems in different climates. This is especially true for California's Channel Islands, where forests are frequently shaded by low-lying clouds or immersed in fog during warm and dry summer months. Previous studies suggest that clouds strongly modulate forest distributions as well as carbon and water budgets in these semi-arid environments by reducing solar insolation and raising relative humidity and thus reducing evapotranspiration, while also potentially supplying water directly to the landscape from fog-drip. While summertime fog and stratus cover in California's Channel Islands can ameliorate summer drought stress and enhance soil water budgets, they often have different spatial and temporal patterns. These differing patterns and the resulting shifts in relative ecological importance of fog and stratus are understudied. The overall objective of this study is to map spatial and temporal distributions of daytime cloud cover frequency for the California Channel Islands, and to predict probabilities of surface cloud (fog) contact and immersion for these islands. The results of this research are significant for water balance modeling, help explain vegetation patterns on the islands, and better identify locations where native vegetation restoration efforts are likely to be most successful.

  20. Imaging patterns of fatty liver in pediatric patients

    PubMed Central

    Özcan, H. Nursun; Oğuz, Berna; Haliloğlu, Mithat; Orhan, Diclehan; Karçaaltıncaba, Muşturay

    2015-01-01

    Fatty liver can present as focal, diffuse, heterogeneous, and multinodular forms. Being familiar with various patterns of steatosis can enable correct diagnosis. In patients with equivocal findings on ultrasonography, magnetic resonance imaging can be used as a problem solving tool. New techniques are promising for diagnosis and follow-up. We review imaging patterns of steatosis and new quantitative methods such as proton density fat fraction and magnetic resonance elastography for diagnosis of nonalcoholic fatty liver disease in children. PMID:26027765

  1. Evaluation of Methods for Coregistration and Fusion of Rpas-Based 3d Point Clouds and Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Hoegner, L.; Tuttas, S.; Xu, Y.; Eder, K.; Stilla, U.

    2016-06-01

    This paper discusses the automatic coregistration and fusion of 3d point clouds generated from aerial image sequences and corresponding thermal infrared (TIR) images. Both RGB and TIR images have been taken from a RPAS platform with a predefined flight path where every RGB image has a corresponding TIR image taken from the same position and with the same orientation with respect to the accuracy of the RPAS system and the inertial measurement unit. To remove remaining differences in the exterior orientation, different strategies for coregistering RGB and TIR images are discussed: (i) coregistration based on 2D line segments for every single TIR image and the corresponding RGB image. This method implies a mainly planar scene to avoid mismatches; (ii) coregistration of both the dense 3D point clouds from RGB images and from TIR images by coregistering 2D image projections of both point clouds; (iii) coregistration based on 2D line segments in every single TIR image and 3D line segments extracted from intersections of planes fitted in the segmented dense 3D point cloud; (iv) coregistration of both the dense 3D point clouds from RGB images and from TIR images using both ICP and an adapted version based on corresponding segmented planes; (v) coregistration of both image sets based on point features. The quality is measured by comparing the differences of the back projection of homologous points in both corrected RGB and TIR images.

  2. Fluorescence imaging for visualization of the ion cloud in a quadrupole ion trap mass spectrometer.

    PubMed

    Talbot, Francis O; Sciuto, Stephen V; Jockusch, Rebecca A

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial (r) and axial (z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6% of r0 and ~3% of z0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/z (higher qz) are located in the center of the trapping region, effectively excluding higher m/z (lower qz) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution. PMID:24092629

  3. Fluorescence Imaging for Visualization of the Ion Cloud in a Quadrupole Ion Trap Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Talbot, Francis O.; Sciuto, Stephen V.; Jockusch, Rebecca A.

    2013-12-01

    Laser-induced fluorescence is used to visualize populations of gaseous ions stored in a quadrupole ion trap (QIT) mass spectrometer. Presented images include the first fluorescence image of molecular ions collected under conditions typically used in mass spectrometry experiments. Under these "normal" mass spectrometry conditions, the radial ( r) and axial ( z) full-width at half maxima (FWHM) of the detected ion cloud are 615 and 214 μm, respectively, corresponding to ~6 % of r 0 and ~3 % of z 0 for the QIT used. The effects on the shape and size of the ion cloud caused by varying the pressure of helium bath gas, the number of trapped ions, and the Mathieu parameter q z are visualized and discussed. When a "tickle voltage" is applied to the exit end-cap electrode, as is done in collisionally activated dissociation, a significant elongation in the axial, but not the radial, dimension of the ion cloud is apparent. Finally, using spectroscopically distinguishable fluorophores of two different m/ z values, images are presented that illustrate stratification of the ion cloud; ions of lower m/ z (higher q z ) are located in the center of the trapping region, effectively excluding higher m/ z (lower q z ) ions, which form a surrounding layer. Fluorescence images such as those presented here provide a useful reference for better understanding the collective behavior of ions in radio frequency (rf) trapping devices and how phenomena such as collisions and space-charge affect ion distribution.

  4. Automatic Registration of Terrestrial Laser Scanning Point Clouds using Panoramic Reflectance Images

    PubMed Central

    Kang, Zhizhong; Li, Jonathan; Zhang, Liqiang; Zhao, Qile; Zlatanova, Sisi

    2009-01-01

    This paper presents a new approach to the automatic registration of terrestrial laser scanning (TLS) point clouds using panoramic reflectance images. The approach follows a two-step procedure that includes both pair-wise registration and global registration. The pair-wise registration consists of image matching (pixel-to-pixel correspondence) and point cloud registration (point-to-point correspondence), as the correspondence between the image and the point cloud (pixel-to-point) is inherent to the reflectance images. False correspondences are removed by a geometric invariance check. The pixel-to-point correspondence and the computation of the rigid transformation parameters (RTPs) are integrated into an iterative process that allows for the pair-wise registration to be optimised. The global registration of all point clouds is obtained by a bundle adjustment using a circular self-closure constraint. Our approach is tested with both indoor and outdoor scenes acquired by a FARO LS 880 laser scanner with an angular resolution of 0.036° and 0.045°, respectively. The results show that the pair-wise and global registration accuracies are of millimetre and centimetre orders, respectively, and that the process is fully automatic and converges quickly. PMID:22574036

  5. Cloud top structure of Venus revealed by Subaru/COMICS mid-infrared images

    NASA Astrophysics Data System (ADS)

    Sato, T. M.; Sagawa, H.; Kouyama, T.; Mitsuyama, K.; Satoh, T.; Ohtsuki, S.; Ueno, M.; Kasaba, Y.; Nakamura, M.; Imamura, T.

    2014-04-01

    We have investigated the cloud top structure of Venus by analyzing ground-based images obtained by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope. In this presentation, we will overview the observational results and discuss their interpretations.

  6. Imaging diffuse clouds: bright and dark gas mapped in CO

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.; Pety, J.

    2012-05-01

    Aims: We wish to relate the degree scale structure of galactic diffuse clouds to sub-arcsecond atomic and molecular absorption spectra obtained against extragalactic continuum background sources. Methods: We used the ARO 12 m telescope to map J = 1-0 CO emission at 1' resolution over 30' fields around the positions of 11 background sources occulted by 20 molecular absorption line components, of which 11 had CO emission counterparts. We compared maps of CO emission to sub-arcsec atomic and molecular absorption spectra and to the large-scale distribution of interstellar reddening. Results: 1) The same clouds, identified by their velocity, were seen in absorption and emission and atomic and molecular phases, not necessarily in the same direction. Sub-arcsecond absorption spectra are a preview of what is seen in CO emission away from the continuum. 2) The CO emission structure was amorphous in 9 cases, quasi-periodic or wave-like around B0528+134 and tangled and filamentary around BL Lac. 3) Strong emission, typically 4-5 K at EB - V ≤ 0.15 mag and up to 10-12 K at EB - V ≲ 0.3 mag was found, much brighter than toward the background targets. Typical covering factors of individual features at the 1 K km s-1 level were 20%. 4) CO-H2 conversion factors as much as 4-5 times below the mean value N(H2)/WCO = 2 × 1020 H2 cm-2 (K km s-1)-1 are required to explain the luminosity of CO emission at/above the level of 1 K km s-1. Small conversion factors and sharp variability of the conversion factor on arcminute scales are due primarily to CO chemistry and need not represent unresolved variations in reddening or total column density. Conclusions: Like Fermi and Planck we see some gas that is dark in CO and other gas in which CO is overluminous per H2. A standard CO-H2 conversion factor applies overall owing to balance between the luminosities per H2 and surface covering factors of bright and dark CO, but with wide variations between sightlines and across the faces of

  7. A Multi-Frequency Wide-Swath Spaceborne Cloud and Precipitation Imaging Radar

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Racette, Paul; Heymsfield, Gary; McLinden, Matthew; Venkatesh, Vijay; Coon, Michael; Perrine, Martin; Park, Richard; Cooley, Michael; Stenger, Pete; Spence, Thomas; Retelny, Tom

    2016-01-01

    Microwave and millimeter-wave radars have proven their effectiveness in cloud and precipitation observations. The NASA Earth Science Decadal Survey (DS) Aerosol, Cloud and Ecosystems (ACE) mission calls for a dual-frequency cloud radar (W band 94 GHz and Ka-band 35 GHz) for global measurements of cloud microphysical properties. Recently, there have been discussions of utilizing a tri-frequency (KuKaW-band) radar for a combined ACE and Global Precipitation Measurement (GPM) follow-on mission that has evolved into the Cloud and Precipitation Process Mission (CaPPM) concept. In this presentation we will give an overview of the technology development efforts at the NASA Goddard Space Flight Center (GSFC) and at Northrop Grumman Electronic Systems (NGES) through projects funded by the NASA Earth Science Technology Office (ESTO) Instrument Incubator Program (IIP). Our primary objective of this research is to advance the key enabling technologies for a tri-frequency (KuKaW-band) shared-aperture spaceborne imaging radar to provide unprecedented, simultaneous multi-frequency measurements that will enhance understanding of the effects of clouds and precipitation and their interaction on Earth climate change. Research effort has been focused on concept design and trade studies of the tri-frequency radar; investigating architectures that provide tri-band shared-aperture capability; advancing the development of the Ka band active electronically scanned array (AESA) transmitreceive (TR) module, and development of the advanced radar backend electronics.

  8. Traffic sign detection in MLS acquired point clouds for geometric and image-based semantic inventory

    NASA Astrophysics Data System (ADS)

    Soilán, Mario; Riveiro, Belén; Martínez-Sánchez, Joaquín; Arias, Pedro

    2016-04-01

    Nowadays, mobile laser scanning has become a valid technology for infrastructure inspection. This technology permits collecting accurate 3D point clouds of urban and road environments and the geometric and semantic analysis of data became an active research topic in the last years. This paper focuses on the detection of vertical traffic signs in 3D point clouds acquired by a LYNX Mobile Mapper system, comprised of laser scanning and RGB cameras. Each traffic sign is automatically detected in the LiDAR point cloud, and its main geometric parameters can be automatically extracted, therefore aiding the inventory process. Furthermore, the 3D position of traffic signs are reprojected on the 2D images, which are spatially and temporally synced with the point cloud. Image analysis allows for recognizing the traffic sign semantics using machine learning approaches. The presented method was tested in road and urban scenarios in Galicia (Spain). The recall results for traffic sign detection are close to 98%, and existing false positives can be easily filtered after point cloud projection. Finally, the lack of a large, publicly available Spanish traffic sign database is pointed out.

  9. Multiscale vector fields for image pattern recognition

    NASA Technical Reports Server (NTRS)

    Low, Kah-Chan; Coggins, James M.

    1990-01-01

    A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.

  10. Arctic Clouds

    Atmospheric Science Data Center

    2013-04-19

    ...     View Larger Image Stratus clouds are common in the Arctic during the summer months, and are ... formats available at JPL August 23, 2000 - Stratus clouds help modulate the arctic climate. project:  ...

  11. Relating Spatial Patterns in Image Data to Scene Characteristics

    NASA Technical Reports Server (NTRS)

    Strahler, A. H.; Woodcock, C. E.

    1983-01-01

    In remote sensing, the primary goal is accurate scene inference, in which characteristics of the scene are inferred from the image data. More effective inference of scene characteristics can be accomplished through the use of techniques that use explicit models of spatial pattern. Spatial patterns in image data are functionally related to the size and spacing of elements in the scene and to the spatial resolution of the image data. At resolutions where variance is high, scene inference techniques should rely heavily on data from the spatial domain. As variance decreases, effective scene inference will increasingly rely on spectral data.

  12. Color image segmentation considering human sensitivity for color pattern variations

    NASA Astrophysics Data System (ADS)

    Yoon, Kuk-Jin; Kweon, In-So

    2001-10-01

    Color image segmentation plays an important role in the computer vision and image processing area. In this paper, we propose a novel color image segmentation algorithm in consideration of human visual sensitivity for color pattern variations by generalizing K-means clustering. Human visual system has different color perception sensitivity according to the spatial color pattern variation. To reflect this effect, we define the CCM (Color Complexity Measure) by calculating the absolute deviation with Gaussian weighting within the local mask and assign weight value to each color vector using the CCM values.

  13. A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point Clouds

    NASA Astrophysics Data System (ADS)

    Salvaggio, Katie N.

    and no rays passed through the area). Voids in the voxel space are manifested as unsampled voxels. A similar line-of-sight analysis can then be used to pinpoint locations at aircraft altitude at which the voids in the point clouds could theoretically be imaged. This work is based on the assumption that inclusion of more images of the void areas in the 3D reconstruction process will reduce the number of voids in the point cloud that were a result of lack of coverage. Voids resulting from texturally difficult areas will not benefit from more imagery in the reconstruction process, and thus are identified and removed prior to the determination of future potential imaging locations.

  14. An Objective Classification of Saturn Cloud Features from Cassini ISS Images

    NASA Technical Reports Server (NTRS)

    Del Genio, Anthony D.; Barbara, John M.

    2016-01-01

    A k -means clustering algorithm is applied to Cassini Imaging Science Subsystem continuum and methane band images of Saturn's northern hemisphere to objectively classify regional albedo features and aid in their dynamical interpretation. The procedure is based on a technique applied previously to visible- infrared images of Earth. It provides a new perspective on giant planet cloud morphology and its relationship to the dynamics and a meteorological context for the analysis of other types of simultaneous Saturn observations. The method identifies 6 clusters that exhibit distinct morphology, vertical structure, and preferred latitudes of occurrence. These correspond to areas dominated by deep convective cells; low contrast areas, some including thinner and thicker clouds possibly associated with baroclinic instability; regions with possible isolated thin cirrus clouds; darker areas due to thinner low level clouds or clearer skies due to downwelling, or due to absorbing particles; and fields of relatively shallow cumulus clouds. The spatial associations among these cloud types suggest that dynamically, there are three distinct types of latitude bands on Saturn: deep convectively disturbed latitudes in cyclonic shear regions poleward of the eastward jets; convectively suppressed regions near and surrounding the westward jets; and baro-clinically unstable latitudes near eastward jet cores and in the anti-cyclonic regions equatorward of them. These are roughly analogous to some of the features of Earth's tropics, subtropics, and midlatitudes, respectively. This classification may be more useful for dynamics purposes than the traditional belt-zone partitioning. Temporal variations of feature contrast and cluster occurrence suggest that the upper tropospheric haze in the northern hemisphere may have thickened by 2014. The results suggest that routine use of clustering may be a worthwhile complement to many different types of planetary atmospheric data analysis.

  15. An objective classification of Saturn cloud features from Cassini ISS images

    NASA Astrophysics Data System (ADS)

    Del Genio, Anthony D.; Barbara, John M.

    2016-06-01

    A k-means clustering algorithm is applied to Cassini Imaging Science Subsystem continuum and methane band images of Saturn's northern hemisphere to objectively classify regional albedo features and aid in their dynamical interpretation. The procedure is based on a technique applied previously to visible-infrared images of Earth. It provides a new perspective on giant planet cloud morphology and its relationship to the dynamics and a meteorological context for the analysis of other types of simultaneous Saturn observations. The method identifies 6 clusters that exhibit distinct morphology, vertical structure, and preferred latitudes of occurrence. These correspond to areas dominated by deep convective cells; low contrast areas, some including thinner and thicker clouds possibly associated with baroclinic instability; regions with possible isolated thin cirrus clouds; darker areas due to thinner low level clouds or clearer skies due to downwelling, or due to absorbing particles; and fields of relatively shallow cumulus clouds. The spatial associations among these cloud types suggest that dynamically, there are three distinct types of latitude bands on Saturn: deep convectively disturbed latitudes in cyclonic shear regions poleward of the eastward jets; convectively suppressed regions near and surrounding the westward jets; and baroclinically unstable latitudes near eastward jet cores and in the anti-cyclonic regions equatorward of them. These are roughly analogous to some of the features of Earth's tropics, subtropics, and midlatitudes, respectively. This classification may be more useful for dynamics purposes than the traditional belt-zone partitioning. Temporal variations of feature contrast and cluster occurrence suggest that the upper tropospheric haze in the northern hemisphere may have thickened by 2014. The results suggest that routine use of clustering may be a worthwhile complement to many different types of planetary atmospheric data analysis.

  16. Effects of clouds on the Earth radiation budget; Seasonal and inter-annual patterns

    NASA Technical Reports Server (NTRS)

    Dhuria, Harbans L.

    1992-01-01

    Seasonal and regional variations of clouds and their effects on the climatological parameters were studied. The climatological parameters surface temperature, solar insulation, short-wave absorbed, long wave emitted, and net radiation were considered. The data of climatological parameters consisted of about 20 parameters of Earth radiation budget and clouds of 2070 target areas which covered the globe. It consisted of daily and monthly averages of each parameter for each target area for the period, Jun. 1979 - May 1980. Cloud forcing and black body temperature at the top of the atmosphere were calculated. Interactions of clouds, cloud forcing, black body temperature, and the climatological parameters were investigated and analyzed.

  17. Radionuclide cerebral perfusion imaging: Normal pattern

    SciTech Connect

    Goldsmith, S.J.; Stritzke, P.; Losonczy, M.; Vallabhajosula, S.; Holan, V.; DaCosta, M.; Muzinic, M.

    1991-12-31

    Regional cerebral perfusion imaging using a new class of {sup 99m}Tc and {sup 123}I labeled compounds which traverse the blood brain barrier and SPECT imaging technology provides an opportunity to assess this physiologic phenomenon during normal cerebral function and as a manifestation of disease in the central nervous system disease. These applications pose a challenge to the nuclear medicine physician for several reasons: (a) the complex and somewhat unfamiliar functional anatomy, (b) the marked regional differences in regional cerebral perfusion at rest, (c) the lack of understanding of the effect of variations in ambient conditions on regional cerebral perfusion. The difficulties in interpretation are augmented by the display itself. There is frequently no difficulty in differentiating between gray and white matter. However, the frequently used {open_quotes}hot body{close_quotes} color maps, introduce a good deal of contrast, producing displays with apparent interruption in regional cortical perfusion whereas black and white displays provide minimal contrast in the regional cortical activity. The authors sought to define how much variation in regional cerebral perfusion is {open_quotes}allowed{close_quotes} under controlled conditions, to establish a basis to interpret if changes in the environment, psychological interventions, or disease states are accompanied by a measurable change. 2 figs., 1 tab.

  18. Automatic Cloud Detection from Multi-Temporal Satellite Images: Towards the Use of PLÉIADES Time Series

    NASA Astrophysics Data System (ADS)

    Champion, N.

    2012-08-01

    Contrary to aerial images, satellite images are often affected by the presence of clouds. Identifying and removing these clouds is one of the primary steps to perform when processing satellite images, as they may alter subsequent procedures such as atmospheric corrections, DSM production or land cover classification. The main goal of this paper is to present the cloud detection approach, developed at the French Mapping agency. Our approach is based on the availability of multi-temporal satellite images (i.e. time series that generally contain between 5 and 10 images) and is based on a region-growing procedure. Seeds (corresponding to clouds) are firstly extracted through a pixel-to-pixel comparison between the images contained in time series (the presence of a cloud is here assumed to be related to a high variation of reflectance between two images). Clouds are then delineated finely using a dedicated region-growing algorithm. The method, originally designed for panchromatic SPOT5-HRS images, is tested in this paper using time series with 9 multi-temporal satellite images. Our preliminary experiments show the good performances of our method. In a near future, the method will be applied to Pléiades images, acquired during the in-flight commissioning phase of the satellite (launched at the end of 2011). In that context, this is a particular goal of this paper to show to which extent and in which way our method can be adapted to this kind of imagery.

  19. Optimizing Cloud Based Image Storage, Dissemination and Processing Through Use of Mrf and Lerc

    NASA Astrophysics Data System (ADS)

    Becker, Peter; Plesea, Lucian; Maurer, Thomas

    2016-06-01

    The volume and numbers of geospatial images being collected continue to increase exponentially with the ever increasing number of airborne and satellite imaging platforms, and the increasing rate of data collection. As a result, the cost of fast storage required to provide access to the imagery is a major cost factor in enterprise image management solutions to handle, process and disseminate the imagery and information extracted from the imagery. Cloud based object storage offers to provide significantly lower cost and elastic storage for this imagery, but also adds some disadvantages in terms of greater latency for data access and lack of traditional file access. Although traditional file formats geoTIF, JPEG2000 and NITF can be downloaded from such object storage, their structure and available compression are not optimum and access performance is curtailed. This paper provides details on a solution by utilizing a new open image formats for storage and access to geospatial imagery optimized for cloud storage and processing. MRF (Meta Raster Format) is optimized for large collections of scenes such as those acquired from optical sensors. The format enables optimized data access from cloud storage, along with the use of new compression options which cannot easily be added to existing formats. The paper also provides an overview of LERC a new image compression that can be used with MRF that provides very good lossless and controlled lossy compression.

  20. Terrestrial laser scanning point clouds time series for the monitoring of slope movements: displacement measurement using image correlation and 3D feature tracking

    NASA Astrophysics Data System (ADS)

    Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti

    2016-04-01

    Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the

  1. Pattern based 3D image Steganography

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, P.; Natarajan, V.; Aghila, G.; Prasanna Venkatesan, V.; Anitha, R.

    2013-03-01

    This paper proposes a new high capacity Steganographic scheme using 3D geometric models. The novel algorithm re-triangulates a part of a triangle mesh and embeds the secret information into newly added position of triangle meshes. Up to nine bits of secret data can be embedded into vertices of a triangle without causing any changes in the visual quality and the geometric properties of the cover image. Experimental results show that the proposed algorithm is secure, with high capacity and low distortion rate. Our algorithm also resists against uniform affine transformations such as cropping, rotation and scaling. Also, the performance of the method is compared with other existing 3D Steganography algorithms. [Figure not available: see fulltext.

  2. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 micron water vapor band

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Goetz, Alexander F. H.; Wiscombe, Warren J.

    1993-01-01

    Using special images acquired by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at 20 km altitude, we show that wavelengths close to the center of the strong 1.38 micron water vapor band are useful for detecting thin cirrus clouds. The detection makes use of the fact that cirrus clouds are located above almost all the atmospheric water vapor. Because of the strong water vapor absorption in the lower atmosphere, AVIRIS channels near 1.38 micron receive little scattered solar radiance from the surface of low level clouds. When cirrus clouds are present, however, these channels receive large amounts of scattered solar radiance from the cirrus clouds. Our ability to determine cirrus cloud cover using space-based remote sensing will be improved if channels near the center of the 1.38 micron water vapor band are added to future satellites.

  3. Case Studies of The Dynamical Development of Polar Stratospheric Clouds Using Multistatic Imaging

    NASA Astrophysics Data System (ADS)

    Enell, C.-F.; Stebel, K.; Gustavsson, B.; Kirkwood, S.; Brändström, U.; Steen, Å.

    The important role of polar stratospheric clouds (PSCs) in stratospheric chemistry is firmly established. The formation of PSCs is closely related to temperature, which is affected by wave activity on different scales. PSC occurrence thus reflects radiative and/or dynamical stratospheric temperature changes. The most obvious indication of PSC presence is the visual observation of mother-of- pearl clouds. We present case studies of the development of visual PSCs undertaken by means of ground-based cameras. Our observations show that the presence of mother- of-pearl clouds varies on a scale smaller than that of typical mesoscale models. The images are studied further in the context of the meteorological, dynamical situa- tion, and visibility conditions (solar elevation and tropospheric cloudiness).

  4. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Tucker, Deanne (Technical Monitor)

    1994-01-01

    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  5. Low Clouds and Fog Characterization over Iberian Peninsula using Meteosat Second Generation Images

    NASA Astrophysics Data System (ADS)

    Sánchez, Beatriz; Maqueda, Gregorio

    2014-05-01

    Fog is defined as a collection of suspended water droplets or ice crystals in the air near the Earth's surface that lead to a reduction of horizontal visibility below 1 km (National Oceanic and Atmospheric Administration, 1995). Fog is a stratiform cloud with similar radiative characteristics, for this reason the difference between fog and low stratus clouds is of little importance for remote sensing applications. Fog and low clouds are important atmospheric phenomena, mainly because of their impact on traffic safety and air quality, acting as an obstruction to traffic at land, sea and in the air. The purpose of this work is to develop the method of fog/low clouds detection and analysis on nighttime using Meteosat Second Generation data. This study is focused on the characterization of these atmospheric phenomena in different study cases over the Iberian Peninsula with distinct orography. Firstly, fog/low clouds detection is implemented as a composition of three infrared channels 12.0, 10.8 and 3.9 µm from SEVIRI radiometer on board European geostationary satellite Meteosat (Meteosat-9). The algorithm of detection makes use of a combination of these channels and their differences by creating RGB composites images. On this way, it displays the spatial coverage and location of fog entities. Secondly, this technique allows separating pixels which are indicated as fog/low clouds from clear pixels, assessing the properties of individual pixels using appropriated thresholds of brightness temperature. Thus, it achieves a full analysis of the extent and distribution of fog and its evolution over time. The results of this study have been checked by using ground-based point measurements available as METAR data. Despite the flaws in this sort of inter-comparison approach, the outcome produces to accurate fog/low clouds detection. This work encompasses the way to obtain spatial information from this atmospheric phenomenon by means of satellite imagery.

  6. Influence of clouds on the parameters of images measured by IACT at very high energies

    NASA Astrophysics Data System (ADS)

    Sobczyńska, Dorota; Bednarek, Włodek

    2014-12-01

    Observations with the Cherenkov telescopes are in principle limited to clear sky conditions due to significant absorption of Cherenkov light by clouds. If the cloud level is high enough or the atmospheric transmission of the cloud is high, then high energy showers (with TeV energies) can still produce enough Cherenkov photons allowing detection by telescopes with large sizes and cameras with large field of view (FOV). In this paper, we study the possibility of observations of showers, induced by high-energy particles in the atmosphere, in the presence of clouds that are completely or partially opaque for Cherenkov radiation. We show how the image parameters of the Cherenkov light distribution on the telescope camera are influenced for different opacity and altitude of the cloud. By applying the Monte Carlo simulations, we calculate the scaled LENGTH and WIDTH parameters with the purpose to separate γ-ray and proton initiated showers in real data. We show, that the high level of the night sky background effects the selection efficiency of the γ-ray initiated showers. However, application of the higher image-cleaning level significantly improves expected quality factors. The estimated γ-ray selection efficiency for the detector with the camera field of view (FOV) limited to 8{^\\circ } is slightly better than for the camera with an unlimited FOV, although the number of identified γ-ray events is lower. We conclude that large Cherenkov telescopes with large FOV cameras can be used for observations of very high energy γ-rays in the presence of clouds. Consequently, the amount of useful data can be significantly enlarged.

  7. Diurnal cloud-to-ground lightning patterns in Arizona during the southwest monsoon

    SciTech Connect

    Watson, A.I.; Lopez, R.E.; Holle, R.L.

    1994-08-01

    Cloud-to-ground (CG) lightning shows great variability across Arizona from one year to the next as well as from one day to the next. Availability of moisture, location of the subtropical ridge axis, transitory troughs in both the westerlies and easterlies, and low-level moisture surges from the Gulf of California can affect thunderstorm occurrence, which, in turn, will affect lightning production. Diurnal CG lightning patterns in Arizona are also determined by daily heating cycles and topography. Six years of Bureau of Land Management CG flash data are used in this investigation. In Arizona, lightning usually starts first, on a daily basis, in the plateau region and extends in an arc from the White Mountains of eastern Arizona westward across the Mogollon Rim and then northward onto the Kaibab Plateau of northern Arizona. Flash activity moves in a more or less continuous fashion off the plateau, south and westward down the topography gradient, and enters the lower desert by early evening. At the same time, flash activity develops in the highlands of southeast Arizona and moves west-northwestward, reaching the lower desert by late afternoon. Precipitation and lightning are well correlated, except that precipitation seems to linger longer than lightning, probably due to the occasional development of mesoscale convective systems, which produce light stratiform precipitation during their dissipation stage.

  8. Automatic registration of terrestrial point clouds based on panoramic reflectance images and efficient BaySAC

    NASA Astrophysics Data System (ADS)

    Kang, Zhizhong

    2013-10-01

    This paper presents a new approach to automatic registration of terrestrial laser scanning (TLS) point clouds utilizing a novel robust estimation method by an efficient BaySAC (BAYes SAmpling Consensus). The proposed method directly generates reflectance images from 3D point clouds, and then using SIFT algorithm extracts keypoints to identify corresponding image points. The 3D corresponding points, from which transformation parameters between point clouds are computed, are acquired by mapping the 2D ones onto the point cloud. To remove false accepted correspondences, we implement a conditional sampling method to select the n data points with the highest inlier probabilities as a hypothesis set and update the inlier probabilities of each data point using simplified Bayes' rule for the purpose of improving the computation efficiency. The prior probability is estimated by the verification of the distance invariance between correspondences. The proposed approach is tested on four data sets acquired by three different scanners. The results show that, comparing with the performance of RANSAC, BaySAC leads to less iterations and cheaper computation cost when the hypothesis set is contaminated with more outliers. The registration results also indicate that, the proposed algorithm can achieve high registration accuracy on all experimental datasets.

  9. Accelerating statistical image reconstruction algorithms for fan-beam x-ray CT using cloud computing

    NASA Astrophysics Data System (ADS)

    Srivastava, Somesh; Rao, A. Ravishankar; Sheinin, Vadim

    2011-03-01

    Statistical image reconstruction algorithms potentially offer many advantages to x-ray computed tomography (CT), e.g. lower radiation dose. But, their adoption in practical CT scanners requires extra computation power, which is traditionally provided by incorporating additional computing hardware (e.g. CPU-clusters, GPUs, FPGAs etc.) into a scanner. An alternative solution is to access the required computation power over the internet from a cloud computing service, which is orders-of-magnitude more cost-effective. This is because users only pay a small pay-as-you-go fee for the computation resources used (i.e. CPU time, storage etc.), and completely avoid purchase, maintenance and upgrade costs. In this paper, we investigate the benefits and shortcomings of using cloud computing for statistical image reconstruction. We parallelized the most time-consuming parts of our application, the forward and back projectors, using MapReduce, the standard parallelization library on clouds. From preliminary investigations, we found that a large speedup is possible at a very low cost. But, communication overheads inside MapReduce can limit the maximum speedup, and a better MapReduce implementation might become necessary in the future. All the experiments for this paper, including development and testing, were completed on the Amazon Elastic Compute Cloud (EC2) for less than $20.

  10. Retrieval of Cloud Phase Using the Moderate Resolution Imaging Spectroradiometer Data during the Mixed-Phase Arctic Cloud Experiment

    SciTech Connect

    Spangenberg, D.; Minnis, P.; Shupe, M.; Uttal, T.; Poellot, M.

    2005-03-18

    Improving climate model predictions over Earth's polar regions requires a comprehensive knowledge of polar cloud microphysics. Over the Arctic, there is minimal contrast between the clouds and background snow surface, making it difficult to detect clouds and retrieve their phase from space. Snow and ice cover, temperature inversions, and the predominance of mixed-phase clouds make it even more difficult to determine cloud phase. Also, since determining cloud phase is the first step toward analyzing cloud optical depth, particle size, and water content, it is vital that the phase be correct in order to obtain accurate microphysical and bulk properties. Changes in these cloud properties will, in turn, affect the Arctic climate since clouds are expected to play a critical role in the sea ice albedo feedback. In this paper, the IR trispectral technique (IRTST) is used as a starting point for a WV and 11-{micro}m brightness temperature (T11) parameterization (WVT11P) of cloud phase using MODIS data. In addition to its ability to detect mixed-phase clouds, the WVT11P also has the capability to identify thin cirrus clouds overlying mixed or liquid phase clouds (multiphase ice). Results from the Atmospheric Radiation Measurement (ARM) MODIS phase model (AMPHM) are compared to the surface-based cloud phase retrievals over the ARM North Slope of Alaska (NSA) Barrow site and to in-situ data taken from University of North Dakota Citation (CIT) aircraft which flew during the Mixed-Phase Arctic Cloud Experiment (MPACE). It will be shown that the IRTST and WVT11P combined to form the AMPHM can achieve a relative high accuracy of phase discrimination compared to the surface-based retrievals. Since it only uses MODIS WV and IR channels, the AMPHM is robust in the sense that it can be applied to daytime, twilight, and nighttime scenes with no discontinuities in the output phase.

  11. Eye motion corrected OCT imaging with Lissajous scan pattern

    NASA Astrophysics Data System (ADS)

    Hong, Young-Joo; Chen, Yiwei; Li, En; Miura, Masahiro; Makita, Shuichi; Yasuno, Yoshiaki

    2016-03-01

    Ophthalmic optical coherence tomography (OCT) is a powerful tool which provides high resolution three dimensional (3D) volumetric image of human retina. However, the measurement data of OCT suffer motion artifact due to the involuntary eye motion during data acquisition. To eliminate this motion artifact and provide the true shape of retinal image, an eye motion corrected OCT imaging method based on Lissajous scan pattern is proposed in this paper. In this approach, we adopted Lissajous scan pattern for 3D-OCT imaging and developed motion correction algorithm. To verify the effectiveness of this method, we compare our method with single raster scan method by the experimental results. The experimental results show that the eye motion can be corrected by our method effectively.

  12. High-speed imaging of blood splatter patterns

    SciTech Connect

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J.; Levine, G.F.

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  13. High-speed imaging of blood splatter patterns

    SciTech Connect

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J. ); Levine, G.F. . Bureau of Forensic Services)

    1993-01-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  14. Image Description with Local Patterns: An Application to Face Recognition

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Ahrary, Alireza; Kamata, Sei-Ichiro

    In this paper, we propose a novel approach for presenting the local features of digital image using 1D Local Patterns by Multi-Scans (1DLPMS). We also consider the extentions and simplifications of the proposed approach into facial images analysis. The proposed approach consists of three steps. At the first step, the gray values of pixels in image are represented as a vector giving the local neighborhood intensity distrubutions of the pixels. Then, multi-scans are applied to capture different spatial information on the image with advantage of less computation than other traditional ways, such as Local Binary Patterns (LBP). The second step is encoding the local features based on different encoding rules using 1D local patterns. This transformation is expected to be less sensitive to illumination variations besides preserving the appearance of images embedded in the original gray scale. At the final step, Grouped 1D Local Patterns by Multi-Scans (G1DLPMS) is applied to make the proposed approach computationally simpler and easy to extend. Next, we further formulate boosted algorithm to extract the most discriminant local features. The evaluated results demonstrate that the proposed approach outperforms the conventional approaches in terms of accuracy in applications of face recognition, gender estimation and facial expression.

  15. Local structure co-occurrence pattern for image retrieval

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Zhang, Fan; Lu, Jia; Lu, Yinghua; Kong, Jun; Zhang, Ming

    2016-03-01

    Image description and annotation is an active research topic in content-based image retrieval. How to utilize human visual perception is a key approach to intelligent image feature extraction and representation. This paper has proposed an image feature descriptor called the local structure co-occurrence pattern (LSCP). LSCP extracts the whole visual perception for an image by building a local binary structure, and it is represented by a color-shape co-occurrence matrix which explores the relationship of multivisual feature spaces according to visual attention mechanism. As a result, LSCP not only describes low-level visual features integrated with texture feature, color feature, and shape feature but also bridges high-level semantic comprehension. Extensive experimental results on an image retrieval task on the benchmark datasets, corel-10,000, MIT VisTex, and INRIA Holidays, have demonstrated the usefulness, effectiveness, and robustness of the proposed LSCP.

  16. Image analysis of dye stained patterns in soils

    NASA Astrophysics Data System (ADS)

    Bogner, Christina; Trancón y Widemann, Baltasar; Lange, Holger

    2013-04-01

    Quality of surface water and groundwater is directly affected by flow processes in the unsaturated zone. In general, it is difficult to measure or model water flow. Indeed, parametrization of hydrological models is problematic and often no unique solution exists. To visualise flow patterns in soils directly dye tracer studies can be done. These experiments provide images of stained soil profiles and their evaluation demands knowledge in hydrology as well as in image analysis and statistics. First, these photographs are converted to binary images classifying the pixels in dye stained and non-stained ones. Then, some feature extraction is necessary to discern relevant hydrological information. In our study we propose to use several index functions to extract different (ideally complementary) features. We associate each image row with a feature vector (i.e. a certain number of image function values) and use these features to cluster the image rows to identify similar image areas. Because images of stained profiles might have different reasonable clusterings, we calculate multiple consensus clusterings. An expert can explore these different solutions and base his/her interpretation of predominant flow mechanisms on quantitative (objective) criteria. The complete workflow from reading-in binary images to final clusterings has been implemented in the free R system, a language and environment for statistical computing. The calculation of image indices is part of our own package Indigo, manipulation of binary images, clustering and visualization of results are done using either build-in facilities in R, additional R packages or the LATEX system.

  17. Partial difference operators on weighted graphs for image processing on surfaces and point clouds.

    PubMed

    Lozes, Francois; Elmoataz, Abderrahim; Lezoray, Olivier

    2014-09-01

    Partial difference equations (PDEs) and variational methods for image processing on Euclidean domains spaces are very well established because they permit to solve a large range of real computer vision problems. With the recent advent of many 3D sensors, there is a growing interest in transposing and solving PDEs on surfaces and point clouds. In this paper, we propose a simple method to solve such PDEs using the framework of PDEs on graphs. This latter approach enables us to transcribe, for surfaces and point clouds, many models and algorithms designed for image processing. To illustrate our proposal, three problems are considered: (1) p -Laplacian restoration and inpainting; (2) PDEs mathematical morphology; and (3) active contours segmentation. PMID:25020095

  18. BOREAS AFM-6 NOAA/ETL 35 GHz Cloud/Turbulence Radar GIF Images

    NASA Technical Reports Server (NTRS)

    Martner, Brooks E.; Newcomer, Jeffrey A. (Editor); Hall, Forrest G.; Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Administration/Environment Technology Laboratory (NOAA/ETL) operated a 35-GHz cloud-sensing radar in the Northern Study Area (NSA) near the Old Jack Pine (OJP) tower from 16 Jul 1994 to 08 Aug 1994. This data set contains a time series of GIF images that show the structure of the lower atmosphere. The NOAA/ETL 35-GHz cloud/turbulence radar GIF images are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  19. Cloud patterns lee of Hawaii Island: A synthesis of satellite observations and numerical simulation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Xie, Shang-Ping; Hafner, Jan

    2008-08-01

    Standing well above the trade wind inversion, Hawaii Island (maximum elevation ˜4.2 km) splits the northeast trade winds and induces a westerly reverse flow in the wake. Satellite observations and regional model simulations are used to investigate circulation effects on lee cloud formation during summer. Over the island, the cloud distribution is consistent with orographic-induced vertical motions. Over the lee ocean, our analysis reveals a cloud band that extends southwestward over a few tens of kilometers from the southwest coast of the island. This southwest lee cloud band is most pronounced in the afternoon, anchored by strong convergence and maintained by in situ cloud production in the upward motion. Such an offshore cloud band is not found off the northwest coast, an asymmetry possibly due to the Coriolis effect on the orographic flow. Off the Kona coast, the dynamically induced westerly reverse flow keeps the wake cool and nearly free of clouds during the day. Along the Kona coast, clouds are blown offshore from the island by the easterly trades in the afternoon in a layer above the reverse flow. Deprived of in situ production, these afternoon Kona coast clouds dissipate rapidly offshore. At night, the offshore land/valley breezes converge onto the onshore reverse flow, and a cloud deck forms on and off the Kona coast, bringing nighttime rain as observed at land stations. To illustrate the circulation effect, lee cloud formation is compared between tall Hawaii and short Kauai/Oahu Islands, which feature the flow-around and flow-over regimes, respectively. Effects of trade wind strength on the leeside cloudiness are also studied.

  20. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority

  1. Infrared Cloud Imager Development for Atmospheric Optical Communication Characterization, and Measurements at the JPL Table Mountain Facility

    NASA Astrophysics Data System (ADS)

    Nugent, P. W.; Shaw, J. A.; Piazzolla, S.

    2013-02-01

    The continuous demand for high data return in deep space and near-Earth satellite missions has led NASA and international institutions to consider alternative technologies for high-data-rate communications. One solution is the establishment of wide-bandwidth Earth-space optical communication links, which require (among other things) a nearly obstruction-free atmospheric path. Considering the atmospheric channel, the most common and most apparent impairments on Earth-space optical communication paths arise from clouds. Therefore, the characterization of the statistical behavior of cloud coverage for optical communication ground station candidate sites is of vital importance. In this article, we describe the development and deployment of a ground-based, long-wavelength infrared cloud imaging system able to monitor and characterize the cloud coverage. This system is based on a commercially available camera with a 62-deg diagonal field of view. A novel internal-shutter-based calibration technique allows radiometric calibration of the camera, which operates without a thermoelectric cooler. This cloud imaging system provides continuous day-night cloud detection with constant sensitivity. The cloud imaging system also includes data-processing algorithms that calculate and remove atmospheric emission to isolate cloud signatures, and enable classification of clouds according to their optical attenuation. Measurements of long-wavelength infrared cloud radiance are used to retrieve the optical attenuation (cloud optical depth due to absorption and scattering) in the wavelength range of interest from visible to near-infrared, where the cloud attenuation is quite constant. This article addresses the specifics of the operation, calibration, and data processing of the imaging system that was deployed at the NASA/JPL Table Mountain Facility (TMF) in California. Data are reported from July 2008 to July 2010. These data describe seasonal variability in cloud cover at the TMF site

  2. Hiding a checkered-pattern carrier-screen image in a camouflaged halftone image

    NASA Astrophysics Data System (ADS)

    Shogenji, Rui; Ohtsubo, Junji

    2014-05-01

    As carrier-screen images, we have developed checkered-pattern carrier-screen images, which can be physically decoded by superimposing a checkered pattern. We also proposed a decoding method by image sampling with an ordinary compact digital camera. To obtain a better decoding result, each carrier-screen image should be output at a low resolution. However, secret information can be detected when you observe the image carefully. Thus, a hiding process is an important technique. In this paper, we propose an advanced hiding method by embedding the carrier-screen image into another significant image to generate a camouflaged halftone image. The proposed embedding method can be performed through a simple sequential process of blending and halftoning.

  3. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo.

    PubMed

    McCoy, Daniel T; Burrows, Susannah M; Wood, Robert; Grosvenor, Daniel P; Elliott, Scott M; Ma, Po-Lun; Rasch, Phillip J; Hartmann, Dennis L

    2015-07-01

    Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties-ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration N d of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed N d. Enhanced N d is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in N d is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35(o) to 45(o)S) and by organic matter in sea spray aerosol at higher latitudes (45(o) to 55(o)S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m(-2) over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere. PMID:26601216

  4. Natural Aerosols Explain Seasonal and Spatial Patterns of Southern Ocean Cloud Albedo

    SciTech Connect

    McCoy, Daniel; Burrows, Susannah M.; Wood, R.; Grosvenor, Daniel P.; Elliott, Scott; Ma, Po-Lun; Rasch, Philip J.; Hartmann, Dennis L.

    2015-07-17

    Small particles called aerosols act as nucleation sites for cloud drop formation, affecting clouds and cloud properties – ultimately influencing the cloud dynamics, lifetime, water path and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations not only affect cloud properties themselves, but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. Here, it is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd over regions of high biological activity is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35-45°S) and by organic matter in sea spray aerosol at higher latitudes (45-55°S). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m-2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere.

  5. Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo

    PubMed Central

    McCoy, Daniel T.; Burrows, Susannah M.; Wood, Robert; Grosvenor, Daniel P.; Elliott, Scott M.; Ma, Po-Lun; Rasch, Phillip J.; Hartmann, Dennis L.

    2015-01-01

    Atmospheric aerosols, suspended solid and liquid particles, act as nucleation sites for cloud drop formation, affecting clouds and cloud properties—ultimately influencing the cloud dynamics, lifetime, water path, and areal extent that determine the reflectivity (albedo) of clouds. The concentration Nd of droplets in clouds that influences planetary albedo is sensitive to the availability of aerosol particles on which the droplets form. Natural aerosol concentrations affect not only cloud properties themselves but also modulate the sensitivity of clouds to changes in anthropogenic aerosols. It is shown that modeled natural aerosols, principally marine biogenic primary and secondary aerosol sources, explain more than half of the spatiotemporal variability in satellite-observed Nd. Enhanced Nd is spatially correlated with regions of high chlorophyll a, and the spatiotemporal variability in Nd is found to be driven primarily by high concentrations of sulfate aerosol at lower Southern Ocean latitudes (35o to 45oS) and by organic matter in sea spray aerosol at higher latitudes (45o to 55oS). Biogenic sources are estimated to increase the summertime mean reflected solar radiation in excess of 10 W m–2 over parts of the Southern Ocean, which is comparable to the annual mean increases expected from anthropogenic aerosols over heavily polluted regions of the Northern Hemisphere. PMID:26601216

  6. Cloud Ozone Dust Imager (CODI). Volume 1; Investigation and Technical Plan

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Dusenbery, Paul; Wolff, Michael; James, Phil; Allen, Mark; Goguen, Jay; Kahn, Ralph; Gladstone, Rany; Murphy, Jim

    1995-01-01

    The Cloud Ozone Dust Imager (CODI) is proposed to investigate the current climatic balance of the Mars atmosphere, with particular emphasis on the important but poorly understood roles which dust and water ice aerosols play in this balance. The large atmospheric heating (20-50 K) resulting from global dust storms around Mars perihelion is well recognized. However, groundbased observations of Mars atmospheric temperatures, water vapor, and clouds since the Viking missions have identified a much colder, cloudier atmosphere around Mars aphelion that may prove as important as global dust storms in determining the interannual and long-term behavior of the Mars climate. The key climate issues CODI is designed to investigate are: 1) the degree to which non-linear interactions between atmospheric dust heating, water vapor saturation, and cloud nucleation influence the seasonal and interannual variability of the Mars atmosphere, and 2) whether the strong orbital forcing of atmospheric dust loading, temperatures and water vapor saturation determines the long-term balance of Mars water, as reflected in the north-south hemispheric asymmetries of atmospheric water vapor and polar water ice abundances. The CODI experiment will measure the daily, seasonal and (potentially) interannual variability of atmospheric dust and cloud opacities, and the key physical properties of these aerosols which determine their role in the climate cycles of Mars. CODI is a small (1.2 kg), fixed pointing camera, in which four wide-angle (+/- 70 deg) lenses illuminate fixed filters and CCD arrays. Simultaneous sky/surface imaging of Mars is obtained at an angular resolution of 0.28 deg/pixel for wavelengths of 255, 336, 502, and 673 nm (similar to Hubble Space Telescope filters). These wavelengths serve to measure atmospheric ozone (255 and 336 nm), discriminate ice and dust aerosols (336 and 673 nm), and construct color images (336, 502, and 673 nm). The CODI images are detected on four 512 x 512

  7. Local mesh quantized extrema patterns for image retrieval.

    PubMed

    Koteswara Rao, L; Venkata Rao, D; Reddy, L Pratap

    2016-01-01

    In this paper, we propose a new feature descriptor, named local mesh quantized extrema patterns (LMeQEP) for image indexing and retrieval. The standard local quantized patterns collect the spatial relationship in the form of larger or deeper texture pattern based on the relative variations in the gray values of center pixel and its neighbors. Directional local extrema patterns explore the directional information in 0°, 90°, 45° and 135° for a pixel positioned at the center. A mesh structure is created from a quantized extrema to derive significant textural information. Initially, the directional quantized data from the mesh structure is extracted to form LMeQEP of given image. Then, RGB color histogram is built and integrated with the LMeQEP to enhance the performance of the system. In order to test the impact of proposed method, experimentation is done with bench mark image repositories such as MIT VisTex and Corel-1k. Avg. retrieval rate and avg. retrieval precision are considered as the evaluation metrics to record the performance level. The results from experiments show a considerable improvement when compared to other recent techniques in the image retrieval. PMID:27429886

  8. Directional binary wavelet patterns for biomedical image indexing and retrieval.

    PubMed

    Murala, Subrahmanyam; Maheshwari, R P; Balasubramanian, R

    2012-10-01

    A new algorithm for medical image retrieval is presented in the paper. An 8-bit grayscale image is divided into eight binary bit-planes, and then binary wavelet transform (BWT) which is similar to the lifting scheme in real wavelet transform (RWT) is performed on each bitplane to extract the multi-resolution binary images. The local binary pattern (LBP) features are extracted from the resultant BWT sub-bands. Three experiments have been carried out for proving the effectiveness of the proposed algorithm. Out of which two are meant for medical image retrieval and one for face retrieval. It is further mentioned that the database considered for three experiments are OASIS magnetic resonance imaging (MRI) database, NEMA computer tomography (CT) database and PolyU-NIRFD face database. The results after investigation shows a significant improvement in terms of their evaluation measures as compared to LBP and LBP with Gabor transform. PMID:21822675

  9. Reconstruction of Indoor Models Using Point Clouds Generated from Single-Lens Reflex Cameras and Depth Images

    NASA Astrophysics Data System (ADS)

    Tsai, F.; Wu, T.-S.; Lee, I.-C.; Chang, H.; Su, A. Y. S.

    2015-05-01

    This paper presents a data acquisition system consisting of multiple RGB-D sensors and digital single-lens reflex (DSLR) cameras. A systematic data processing procedure for integrating these two kinds of devices to generate three-dimensional point clouds of indoor environments is also developed and described. In the developed system, DSLR cameras are used to bridge the Kinects and provide a more accurate ray intersection condition, which takes advantage of the higher resolution and image quality of the DSLR cameras. Structure from Motion (SFM) reconstruction is used to link and merge multiple Kinect point clouds and dense point clouds (from DSLR color images) to generate initial integrated point clouds. Then, bundle adjustment is used to resolve the exterior orientation (EO) of all images. Those exterior orientations are used as the initial values to combine these point clouds at each frame into the same coordinate system using Helmert (seven-parameter) transformation. Experimental results demonstrate that the design of the data acquisition system and the data processing procedure can generate dense and fully colored point clouds of indoor environments successfully even in featureless areas. The accuracy of the generated point clouds were evaluated by comparing the widths and heights of identified objects as well as coordinates of pre-set independent check points against in situ measurements. Based on the generated point clouds, complete and accurate three-dimensional models of indoor environments can be constructed effectively.

  10. A method to transfer speckle patterns for digital image correlation

    NASA Astrophysics Data System (ADS)

    Chen, Zhenning; Quan, Chenggen; Zhu, Feipeng; He, Xiaoyuan

    2015-09-01

    A simple and repeatable speckle creation method based on water transfer printing (WTP) is proposed to reduce artificial measurement error for digital image correlation (DIC). This technique requires water, brush, and a piece of transfer paper that is made of prefabricated decal paper, a protected sheet, and printed speckle patterns. The speckle patterns are generated and optimized via computer simulations, and then printed on the decal paper. During the experiments, operators can moisten the basement with water and the brush, so that digital patterns can be simply transferred to the carriers’ surfaces. Tensile experiments with an extended three-dimensional (3D) DIC system are performed to test and verify the validity of WTP patterns. It is shown that by comparing with a strain gage, the strain error is less than 50με in a uniform tensile test. From five carbon steel tensile experiments, Lüders bands in both WTP patterns and spray paint patterns are demonstrated to propagate symmetrically. In the necking part where the strain is up to 66%, WTP patterns are proved to adhere to the specimens well. Hence, WTP patterns are capable of maintaining coherence and adherence to the specimen surface. The transfer paper, working as the role of strain gage in the electrometric method, will contribute to speckle creation.

  11. Global pattern analysis and classification of dermoscopic images using textons

    NASA Astrophysics Data System (ADS)

    Sadeghi, Maryam; Lee, Tim K.; McLean, David; Lui, Harvey; Atkins, M. Stella

    2012-02-01

    Detecting and classifying global dermoscopic patterns are crucial steps for detecting melanocytic lesions from non-melanocytic ones. An important stage of melanoma diagnosis uses pattern analysis methods such as 7-point check list, Menzies method etc. In this paper, we present a novel approach to investigate texture analysis and classification of 5 classes of global lesion patterns (reticular, globular, cobblestone, homogeneous, and parallel pattern) in dermoscopic images. Our statistical approach models the texture by the joint probability distribution of filter responses using a comprehensive set of the state of the art filter banks. This distribution is represented by the frequency histogram of filter response cluster centers called textons. We have also examined other two methods: Joint Distribution of Intensities (JDI) and Convolutional Restricted Boltzmann Machine (CRBM) to learn the pattern specific features to be used for textons. The classification performance is compared over the Leung and Malik filters (LM), Root Filter Set (RFS), Maximum Response Filters (MR8), Schmid, Laws and our proposed filter set as well as CRBM and JDI. We analyzed 375 images of the 5 classes of the patterns. Our experiments show that the joint distribution of color (JDC) in the L*a*b* color space outperforms the other color spaces with a correct classification rate of 86.8%.

  12. CIMIDx: Prototype for a Cloud-Based System to Support Intelligent Medical Image Diagnosis With Efficiency

    PubMed Central

    2015-01-01

    Background The Internet has greatly enhanced health care, helping patients stay up-to-date on medical issues and general knowledge. Many cancer patients use the Internet for cancer diagnosis and related information. Recently, cloud computing has emerged as a new way of delivering health services but currently, there is no generic and fully automated cloud-based self-management intervention for breast cancer patients, as practical guidelines are lacking. Objective We investigated the prevalence and predictors of cloud use for medical diagnosis among women with breast cancer to gain insight into meaningful usage parameters to evaluate the use of generic, fully automated cloud-based self-intervention, by assessing how breast cancer survivors use a generic self-management model. The goal of this study was implemented and evaluated with a new prototype called “CIMIDx”, based on representative association rules that support the diagnosis of medical images (mammograms). Methods The proposed Cloud-Based System Support Intelligent Medical Image Diagnosis (CIMIDx) prototype includes two modules. The first is the design and development of the CIMIDx training and test cloud services. Deployed in the cloud, the prototype can be used for diagnosis and screening mammography by assessing the cancers detected, tumor sizes, histology, and stage of classification accuracy. To analyze the prototype’s classification accuracy, we conducted an experiment with data provided by clients. Second, by monitoring cloud server requests, the CIMIDx usage statistics were recorded for the cloud-based self-intervention groups. We conducted an evaluation of the CIMIDx cloud service usage, in which browsing functionalities were evaluated from the end-user’s perspective. Results We performed several experiments to validate the CIMIDx prototype for breast health issues. The first set of experiments evaluated the diagnostic performance of the CIMIDx framework. We collected medical information

  13. Digital analysis of the fringe pattern images from biomedical objects

    NASA Astrophysics Data System (ADS)

    Jaronski, Jaroslaw W.; Podbielska, Halina; Kasprzak, Henryk T.

    1995-03-01

    Recent developments in optical, optoelectronic, and digital electronic imaging and metrology are creating opportunities for a new type of diagnostics methods and systems. Some of these techniques, established already in the field of technical and industrial non-destructive testing, have increasingly gained importance in biomedical research and may enter the clinical scene, as well. Even the laboratory investigations can have strong impact for further developments in this field. However, in experimental medicine the quantitative analysis of experimental data is sometimes required. When applying different interferometric methods, the obtained results are in the form of fringe pattern images. In this paper some of these methods, including holographic interferometry, laser interferometry and moire techniques are described and illustrated by experimental results. For acquisition and evaluation of the fringe pattern images, the Bioscan Optimas package from Bioscan, Incorporated of Edmonds, Wash., running under Microsoft Windows was used.

  14. Hubble space telescope imaging of decoupled dust clouds in the ram pressure stripped Virgo spirals NGC 4402 and NGC 4522

    SciTech Connect

    Abramson, Anne; Kenney, Jeffrey D. P. E-mail: jeff.kenney@yale.edu

    2014-03-01

    We present the highest-resolution study to date of the interstellar medium (ISM) in galaxies undergoing ram pressure stripping, using Hubble Space Telescope BVI imaging of NGC 4522 and NGC 4402, Virgo Cluster spirals that are well known to be experiencing intracluster medium (ICM) ram pressure. We find that throughout most of both galaxies, the main dust lane has a fairly well-defined edge, with a population of giant molecular cloud (GMC) sized (tens- to hundreds-of-pc scale), isolated, highly extincting dust clouds located up to ∼1.5 kpc radially beyond it. Outside of these dense clouds, the area has little or no diffuse dust extinction, indicating that the clouds have decoupled from the lower-density ISM material that has already been stripped. Several of the dust clouds have elongated morphologies that indicate active ram pressure, including two large (kpc scale) filaments in NGC 4402 that are elongated in the projected ICM wind direction. We calculate a lower limit on the H I + H{sub 2} masses of these clouds based on their dust extinctions and find that a correction factor of ∼10 gives cloud masses consistent with those measured in CO for clouds of similar diameters, probably due to the complicating factors of foreground light, cloud substructure, and resolution limitations. Assuming that the clouds' actual masses are consistent with those of GMCs of similar diameters (∼10{sup 4}-10{sup 5} M {sub ☉}), we estimate that only a small fraction (∼1%-10%) of the original H I + H{sub 2} remains in the parts of the disks with decoupled clouds. Based on Hα images, a similar fraction of star formation persists in these regions, 2%-3% of the estimated pre-stripping star formation rate. We find that the decoupled cloud lifetimes may be up to 150-200 Myr.

  15. Ice Cloud Optical and Microphysical Properties from the CALIPSO Imaging Infrared Radiometer

    NASA Astrophysics Data System (ADS)

    Garnier, A.; Pelon, J.; Dubuisson, P.; Yang, P.; Vaughan, M.; Avery, M. A.; Winker, D. M.

    2013-12-01

    We will present cirrus cloud optical and microphysical properties as retrieved from the operational analysis of the Imaging Infrared Radiometer (IIR) data in synergy with the CALIOP lidar co-located observations collected in the framework of the CALIPSO mission. The IIR data provides nighttime and daytime independent retrievals of optical depth and effective diameter, from which the cloud layer ice water path is inferred. The technique takes advantage of the vertical information provided by CALIOP to select suitable scenes and compute effective emissivity and optical depth. Effective diameters are retrieved through microphysical indices defined as the ratio of the effective infrared optical depths in the two pairs of channels 10.6-12.05 μm and 8.65-12.05 μm, and are related to the ice crystal effective diameter and shape through pre-computed Look-Up Tables. Sources of uncertainty are discussed and possible biases are assessed through internal consistency checks. Comparisons of IIR and CALIOP cirrus optical depths show the very good sensitivity of the IIR retrievals, down to 0.05 visible optical depth. It is shown that particle effective diameter and cloud layer ice water path of single-layered cirrus clouds can be retrieved over ocean, land, as well as over low opaque clouds, for thin to dense clouds of visible optical depth ranging between 0.1 and 6 and of ice water path found typically between 1 and 150 g.m-2. Taking advantage of the cloud boundaries simultaneously derived by CALIOP, IIR power law relationships between mean ice water content (IWC, in g.m-3) and mean extinction coefficient (α, in m-1) are established for cloud temperatures between 190 and 233 K. An average global power law relationship IWC = 75. α1.23 is obtained, which compares well with parameterizations derived from in-situ observations at mid-latitude and in the tropics. However, the IWCs reported in our study are lower by about 40% than those derived from the power law relationship used

  16. IMAGE RELEASE: New Hydrogen Clouds in the M81 Group of Galaxies

    NASA Astrophysics Data System (ADS)

    2008-01-01

    A composite radio-optical image shows five new clouds of hydrogen gas discovered using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT). The spiral galaxy M81 and its satellite, M82, are seen in visible light (white); intergalactic hydrogen gas revealed by the GBT is shown in red; and additional hydrogen gas earlier detected by the Very Large Array is shown in green. The M81 Group of galaxies, 11.8 million light-years from Earth, are interacting gravitationally with each other, as shown clearly by the gas streaming among them. The newly-discovered gas clouds, each containing from 14 to 57 million times the mass of our Sun, are similar to gas clouds also found near our own Milky Way Galaxy. Astronomers analyzing these M81 Group clouds conclude that they are likely remnants of earlier interactions among the galaxies and that this indicates that their analogs near the Milky Way had a similar origin. The research team is: Katie Chynoweth, a graduate student at Vanderbilt University; Glen Langston of the National Radio Astronomy Observatory (NRAO); Min Yun of the University of Massachusetts; Felix J. Lockman of NRAO; Kate Rubin of Lick Observatory; and Sarah Scoles of Cornell University. The astronomers presented their findings to the American Astronomical Society's meeting in Austin, Texas. Credit: Chynoweth et al., NRAO/AUI/NSF, Digital Sky Survey. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

  17. Automatic Detection of Building Points from LIDAR and Dense Image Matching Point Clouds

    NASA Astrophysics Data System (ADS)

    Maltezos, E.; Ioannidis, C.

    2015-08-01

    This study aims to detect automatically building points: (a) from LIDAR point cloud using simple techniques of filtering that enhance the geometric properties of each point, and (b) from a point cloud which is extracted applying dense image matching at high resolution colour-infrared (CIR) digital aerial imagery using the stereo method semi-global matching (SGM). At first step, the removal of the vegetation is carried out. At the LIDAR point cloud, two different methods are implemented and evaluated using initially the normals and the roughness values afterwards: (1) the proposed scan line smooth filtering and a thresholding process, and (2) a bilateral filtering and a thresholding process. For the case of the CIR point cloud, a variation of the normalized differential vegetation index (NDVI) is computed for the same purpose. Afterwards, the bare-earth is extracted using a morphological operator and removed from the rest scene so as to maintain the buildings points. The results of the extracted buildings applying each approach at an urban area in northern Greece are evaluated using an existing orthoimage as reference; also, the results are compared with the corresponding classified buildings extracted from two commercial software. Finally, in order to verify the utility and functionality of the extracted buildings points that achieved the best accuracy, the 3D models in terms of Level of Detail 1 (LoD 1) and a 3D building change detection process are indicatively performed on a sub-region of the overall scene.

  18. Design and characterization of specMACS, a multipurpose hyperspectral cloud and sky imager

    NASA Astrophysics Data System (ADS)

    Ewald, Florian; Kölling, Tobias; Baumgartner, Andreas; Zinner, Tobias; Mayer, Bernhard

    2016-05-01

    The new spectrometer of the Munich Aerosol Cloud Scanner (specMACS) is a multipurpose hyperspectral cloud and sky imager designated, but is not limited to investigations of cloud-aerosol interactions in Earth's atmosphere. With its high spectral and spatial resolution, the instrument is designed to measure solar radiation in the visible and shortwave infrared region that is reflected from, or transmitted through clouds and aerosol layers. It is based on two hyperspectral cameras that measure in the solar spectral range between 400 and 2500 nm with a spectral bandwidth between 2.5 and 12.0 nm. The instrument was operated in ground-based campaigns as well as aboard the German High Altitude LOng Range (HALO) research aircraft, e.g., during the ACRIDICON-CHUVA campaign in Brazil during summer 2014. This paper describes the specMACS instrument hardware and software design and characterizes the instrument performance. During the laboratory characterization of the instrument, the radiometric response as well as the spatial and spectral resolution was assessed. Since the instrument is primarily intended for retrievals of atmospheric quantities by inversion of radiative models using measured radiances, a focus is placed on the determination of its radiometric response. Radiometric characterization was possible for both spectrometers, with an absolute accuracy of 3 % at their respective central wavelength regions. First measurements are presented which demonstrate the wide applicability of the instrument. They show that key demands are met regarding the radiometric and spectral accuracy which is required for the intended remote sensing techniques.

  19. Cloud Images and Turbulent Spectra Taken by the NRL 94 GHz WARLOC Radar

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace

    2003-10-01

    Gyroklystron development has been reported at APS DPP meetings for years. One of these, a 94 GHz, 100 kW gyroklystron has been incorporated into an NRL radar system called WARLOC, situated on the west shore of Chesapeake Bay. One application of WARLOC has been the study of clouds[1,2]. The added power of the gyroklystron has made possible the rapid resolution of cloud structure with about 10 meter resolution. Images of a variety of clouds have been rapidly acquired. With this fine resolution, it is possible to measure density correlation functions and turbulent spectra, and there are a number of interesting results here which we believe have been obtained for the first time. While there have been many measurements of turbulent spectra in the atmosphere, some with a wide range of wavelength, vitually all (at least with fine resolution) have been in one dimension. WARLOC has to measured turbulent correlation functions with good resolution in 2 dimensions. It confirms that the spectral index is about -5/3 as the Kolmogorov theory predicts, but it also shows that the spectrum is quite anisotropic, in contradiction to one of the principle assumptions of the theory. Furthermore, it shows that unlike mosts fluid instabilities in stratified media (for instance Rayleigh Taylor or Kelvin Helmholtz) , the spectrum is wavelike parallel to the stratification and random perpendicular to it. It has more like a Weibel instability structure, perhaps suggesting that velocity stream lines in clouds attract one another as do current elements in a plasma.

  20. a Robust Registration Algorithm for Point Clouds from Uav Images for Change Detection

    NASA Astrophysics Data System (ADS)

    Al-Rawabdeh, A.; Al-Gurrani, H.; Al-Durgham, K.; Detchev, I.; He, F.; El-Sheimy, N.; Habib, A.

    2016-06-01

    Landslides are among the major threats to urban landscape and manmade infrastructure. They often cause economic losses, property damages, and loss of lives. Temporal monitoring data of landslides from different epochs empowers the evaluation of landslide progression. Alignment of overlapping surfaces from two or more epochs is crucial for the proper analysis of landslide dynamics. The traditional methods for point-cloud-based landslide monitoring rely on using a variation of the Iterative Closest Point (ICP) registration procedure to align any reconstructed surfaces from different epochs to a common reference frame. However, sometimes the ICP-based registration can fail or may not provide sufficient accuracy. For example, point clouds from different epochs might fit to local minima due to lack of geometrical variability within the data. Also, manual interaction is required to exclude any non-stable areas from the registration process. In this paper, a robust image-based registration method is introduced for the simultaneous evaluation of all registration parameters. This includes the Interior Orientation Parameters (IOPs) of the camera and the Exterior Orientation Parameters (EOPs) of the involved images from all available observation epochs via a bundle block adjustment with self-calibration. Next, a semi-global dense matching technique is implemented to generate dense 3D point clouds for each epoch using the images captured in a particular epoch separately. The normal distances between any two consecutive point clouds can then be readily computed, because the point clouds are already effectively co-registered. A low-cost DJI Phantom II Unmanned Aerial Vehicle (UAV) was customised and used in this research for temporal data collection over an active soil creep area in Lethbridge, Alberta, Canada. The customisation included adding a GPS logger and a Large-Field-Of-View (LFOV) action camera which facilitated capturing high-resolution geo-tagged images in two epochs

  1. Watershed image segmentation and cloud classification from multispectral MSG-SEVIRI imagery

    NASA Astrophysics Data System (ADS)

    González, Albano; Pérez, Juan C.; Muñoz, Jonathan; Méndez, Zebensui; Armas, Montserrat

    2012-01-01

    In this work a technique for cloud detection and classification from MSG-SEVIRI (Meteosat Second Generation-Spinning Enhanced Visible and Infra-red Imager) imagery is presented. It is based on the segmentation of the multispectral images using order-invariant watershed algorithms, which are applied to the corresponding gradient images, computed by a multi-dimensional morphological operator. To reduce the over-segmentation produced by the watershed method, a RAG (Region Adjacency Graph) based region merging technique is applied, using region dissimilarity functions. Once the objects present in the image have been segmented, they are classified using a multi-threshold method based on physical considerations that takes into account the statistical parameters inside each region.

  2. Day/night whole sky imagers for 24-h cloud and sky assessment: history and overview.

    PubMed

    Shields, Janet E; Karr, Monette E; Johnson, Richard W; Burden, Art R

    2013-03-10

    A family of fully automated digital whole sky imagers (WSIs) has been developed at the Marine Physical Laboratory over many years, for a variety of research and military applications. The most advanced of these, the day/night whole sky imagers (D/N WSIs), acquire digital imagery of the full sky down to the horizon under all conditions from full sunlight to starlight. Cloud algorithms process the imagery to automatically detect the locations of cloud for both day and night. The instruments can provide absolute radiance distribution over the full radiance range from starlight through daylight. The WSIs were fielded in 1984, followed by the D/N WSIs in 1992. These many years of experience and development have resulted in very capable instruments and algorithms that remain unique. This article discusses the history of the development of the D/N WSIs, system design, algorithms, and data products. The paper cites many reports with more detailed technical documentation. Further details of calibration, day and night algorithms, and cloud free line-of-sight results will be discussed in future articles. PMID:23478763

  3. Multi Spectral Pushbroom Imaging Radiometer (MPIR) for remote sensing cloud studies

    SciTech Connect

    Phipps, G.S.; Grotbeck, C.L.

    1995-10-01

    A Multi Spectral Pushbroom Imaging Radiometer (MPIR) has been developed as are relatively inexpensive ({approximately}$IM/copy), well-calibrated,imaging radiometer for aircraft studies of cloud properties. The instrument is designed to fly on an Unmanned Aerospace Vehicle (UAV) platform at altitudes from the surface up to 20 km. MPIR is being developed to support the Unmanned Aerospace Vehicle portion of the Department of Energy`s Atmospheric Radiation Measurements program (ARM/UAV). Radiation-cloud interactions are the dominant uncertainty in the current General Circulation Models used for atmospheric climate studies. Reduction of this uncertainty is a top scientific priority of the US Global Change Research Program and the ARM program. While the DOE`s ARM program measures a num-ber of parameters from the ground-based Clouds and Radiation Testbed sites, it was recognized from the outset that other key parameters are best measured by sustained airborne data taking. These measurements are critical in our understanding of global change issues as well as for improved atmospheric and near space weather forecasting applications.

  4. Comparison of eye imaging pattern recognition using neural network

    NASA Astrophysics Data System (ADS)

    Bukhari, W. M.; Syed A., M.; Nasir, M. N. M.; Sulaima, M. F.; Yahaya, M. S.

    2015-05-01

    The beauty of eye recognition system that it is used in automatic identifying and verifies a human weather from digital images or video source. There are various behaviors of the eye such as the color of the iris, size of pupil and shape of the eye. This study represents the analysis, design and implementation of a system for recognition of eye imaging. All the eye images that had been captured from the webcam in RGB format must through several techniques before it can be input for the pattern and recognition processes. The result shows that the final value of weight and bias after complete training 6 eye images for one subject is memorized by the neural network system and be the reference value of the weight and bias for the testing part. The target classifies to 5 different types for 5 subjects. The eye images can recognize the subject based on the target that had been set earlier during the training process. When the values between new eye image and the eye image in the database are almost equal, it is considered the eye image is matched.

  5. Investigating the Effects of Water Ice Cloud Radiative Forcing on the Predicted Patterns and Strength of Dust Lifting on Mars

    NASA Astrophysics Data System (ADS)

    Kahre, Melinda A.; Hollingsworth, Jeffery L.; Haberle, Robert M.

    2014-11-01

    The dust cycle is critical for the current Mars climate system because airborne dust significantly influences the thermal and dynamical structure of the atmosphere. The atmospheric dust loading varies with season and exhibits variability on a range of spatial and temporal scales. Until recently, interactive dust cycle modeling studies that include the lifting, transport, and sedimentation of radiatively active dust have not included the formation or radiative effects of water ice clouds. While the simulated patterns of dust lifting and global dust loading from these investigations of the dust cycle in isolation reproduce some characteristics of the observed dust cycle, there are also marked differences between the predictions and the observations. Water ice clouds can influence when, where, and how much dust is lifted from the surface by altering the thermal structure of the atmosphere and the character and strength of the general circulation. Using an updated version of the NASA Ames Mars Global Climate Model (GCM), we show that including water ice cloud formation and their radiative effects affect the magnitude and spatial extent of dust lifting, particularly in the northern hemisphere during the pre- and post- winter solstitial seasons. Feedbacks between dust lifting, cloud formation, circulation intensification and further dust lifting are isolated and shown to be important for improving the behavior of the simulated dust cycle.

  6. Spatial distribution of jovian clouds, hazes and colors from Cassini ISS multi-spectral images

    NASA Astrophysics Data System (ADS)

    Ordonez-Etxeberria, I.; Hueso, R.; Sánchez-Lavega, A.; Pérez-Hoyos, S.

    2016-03-01

    The Cassini spacecraft made a gravity assist flyby of Jupiter in December 2000. The Imaging Science Subsystem (ISS) acquired images of the planet that covered the visual range with filters sensitive to the distribution of clouds and hazes, their altitudes and color. We use a selection of these images to build high-resolution cylindrical maps of the planet in 9 wavelengths. We explore the spatial distribution of the planet reflectivity examining the distribution of color and altitudes of hazes as well as their relation. A variety of analyses is presented: (a) Principal Component Analysis (PCA); (b) color-altitude indices; and (c) chromaticity diagrams (for a quantitative characterization of Jupiter "true" colors as they would be perceived by a human observer). PCA of the full dataset indicates that six components are required to explain the data. These components are likely related to the distribution of cloud opacity at the main cloud, the distribution of two types of hazes, two chromophores or coloring processes and the distribution of convective storms. While the distribution of a single chromophore can explain most of the color variations in the atmosphere, a second coloring agent is required to explain the brownish cyclones in the North Equatorial Belt (NEB). This second colorant could be caused by a different chromophore or by the same chromophore located in structures deeper in the atmosphere. Color indices separate different dynamical regions where cloud color and altitude are correlated from those where they are not. The Great Red Spot (GRS) appears as a well separated region in terms of its position in a global color-altitude scatter diagram and different families of vortices are examined, including the red cyclones which are located deeper in the atmosphere. Finally, a chromaticity diagram of Jupiter nearly true color images quantifies the color variations in Jupiter's clouds from the perspective of a visual observer and helps to quantify how different

  7. Monthly and Seasonal Cloud Cover Patterns at the Manila Observatory (14.64°N, 121.08°E)

    NASA Astrophysics Data System (ADS)

    Antioquia, C. T.; Lagrosas, N.; Caballa, K.

    2014-12-01

    A ground based sky imaging system was developed at the Manila Observatory in 2012 to measure cloud occurrence and to analyse seasonal variation of cloud cover over Metro Manila. Ground-based cloud occurrence measurements provide more reliable results compared to satellite observations. Also, cloud occurrence data aid in the analysis of radiation budget in the atmosphere. In this study, a GoPro Hero 2 with almost 180o field of view is employed to take pictures of the atmosphere. These pictures are taken continuously, having a temporal resolution of 1min. Atmospheric images from April 2012 to June 2013 (excluding the months of September, October, and November 2012) were processed to determine cloud cover. Cloud cover in an image is measured as the ratio of the number of pixels with clouds present in them to the total number of pixels. The cloud cover values were then averaged over each month to know its monthly and seasonal variation. In Metro Manila, the dry season occurs in the months of November to May of the next year, while the wet season occurs in the months of June to October of the same year. Fig 1 shows the measured monthly variation of cloud cover. No data was collected during the months of September (wherein the camera was used for the 7SEAS field campaign), October, and November 2012 (due to maintenance and repairs). Results show that there is high cloud cover during the wet season months (80% on average) while there is low cloud cover during the dry season months (62% on average). The lowest average cloud cover for a wet season month occurred in June 2012 (73%) while the highest average cloud cover for a wet season month occurred in June 2013 (86%). The variations in cloud cover average in this season is relatively smaller compared to that of the dry season wherein the lowest average cloud cover in a month was during April 2012 (38%) while the highest average cloud cover in a month was during January 2013 (77%); minimum and maximum averages being 39

  8. Deep Imaging Surveys of Star-forming Clouds. III. Herbig-Haro Objects in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Walawender, Josh; Bally, John; Reipurth, Bo

    2005-05-01

    We present a catalog of 72 new Herbig-Haro (HH) objects discovered in the Perseus molecular cloud. There are 69 previously cataloged HH objects in this region, and the new discoveries bring the total number of known HH objects in Perseus to 141. Individual outflows often contain several distinct HH objects. These observations demonstrate that the Perseus molecular cloud is one of the most active star-forming regions in the solar vicinity. We explore different methods for probing the momentum injection rate of outflows and examine whether outflows can drive turbulence within the molecular cloud. On the scale of the entire Perseus cloud, the shocks produced by outflows from young stars may not inject momentum at a sufficient rate to counter the rate at which momentum decays. However, intense outflow activity within individual cloud cores with high star formation rates, such as NGC 1333, may be sufficient to locally support or even disrupt the core.

  9. Two Methods for Retrieving UV Index for All Cloud Conditions from Sky Imager Products or Total SW Radiation Measurements

    SciTech Connect

    Badosa, Jordi; Calbo, J.; McKenzie, R. L.; Liley, Ben; Gonzalez, J. A.; Forgan, B. W.; Long, Charles N.

    2014-07-01

    In the present study, we assess the cloud effects on UV Index (UVI) and total solar radiation (TR) as a function of cloud cover estimations and sunny conditions (from sky imaging products) as well as of solar zenith angle (SZA). These analyses are undertaken for a southern-hemisphere mid-latitude site where a 10-years dataset is available. It is confirmed that clouds reduce TR more than UV, in particular for obscured Sun conditions, low cloud fraction (< 60%) and large SZA (> 60º). Similarly, clouds enhance TR more than UV, mainly for visible Sun conditions, large cloud fraction and large SZA. Two methods to estimate UVI are developed: 1) from sky imaging cloud cover and sunny conditions, and 2) from TR measurements. Both methods may be used in practical operational applications, although Method 2 shows overall the best performance, since TR allows accounting for cloud optical properties. The mean absolute differences of Method 2 estimations with respect to measured values are 0.17 UVI units (for 1-minute data) and 0.79 Standard Erythemal Dose (SED) units (for daily integrations). Method 1 shows less accurate results but it is still suitable to estimate UVI: mean absolute differences are 0.37 UVI units and 1.6 SED.

  10. Moving image analysis to the cloud: A case study with a genome-scale tomographic study

    NASA Astrophysics Data System (ADS)

    Mader, Kevin; Stampanoni, Marco

    2016-01-01

    Over the last decade, the time required to measure a terabyte of microscopic imaging data has gone from years to minutes. This shift has moved many of the challenges away from experimental design and measurement to scalable storage, organization, and analysis. As many scientists and scientific institutions lack training and competencies in these areas, major bottlenecks have arisen and led to substantial delays and gaps between measurement, understanding, and dissemination. We present in this paper a framework for analyzing large 3D datasets using cloud-based computational and storage resources. We demonstrate its applicability by showing the setup and costs associated with the analysis of a genome-scale study of bone microstructure. We then evaluate the relative advantages and disadvantages associated with local versus cloud infrastructures.

  11. Calibrated fisheye imaging systems for determination of cloud-top radiances from a UAV

    NASA Astrophysics Data System (ADS)

    Shields, Janet E.; Johnson, Richard W.; Karr, Monette E.; Burden, Art R.; Baker, Justin G.

    2003-11-01

    In order to measure cloud top radiances from Unmanned Aerial Vehicles (UAVs) or other light aircraft, two small calibrated fisheye imaging systems have recently been developed. One of these systems uses a visible-wavelength CCD and is optically filtered to measure cloud top and ground radiances near 645 nm. The other uses an InGaAs detector and is optically filtered to measure radiances near 1610 nm. These sensors are specifically designed for use with DOE's Atmospheric Radiation Measurement (ARM) Program UAV Project, and it is anticipated that they will be used for comparison with a variety of satellite-borne radiance measurements. Radiometric calibration of solid-state imagers is never trivial, as the effects of exposure time, system non-linearities, temperature, gain and other system characteristics must be adequately measured and characterized. Much experience has been gained with the ground-based Day/Night Whole Sky Imagers and the Daylight Visible/NIR Whole Sky Imagers developed and used by the group for many years. New techniques for the radiometric calibration of the two new airborne systems are being developed based on this experience and the characteristics of the sensors involved. In addition, new techniques for a more accurate angular calibration have been developed.

  12. Measurement of Aerosol and Cloud Particles with PACS and HARP Hyperangular Imaging Polarimeters

    NASA Astrophysics Data System (ADS)

    Martins, J.; Fernandez-Borda, R.; Remer, L. A.; Sparr, L.; Buczkowski, S.; Munchak, L. A.

    2013-12-01

    PACS is new hyper-angular imaging polarimeter for aeorosol and cloud measurerents designed to meet the requirements of the proposed ACE decadal survey mission. The full PACS system consists of three wide field of view (110deg cross track) telescopes covering the UV, VNIR, and SWIR spectral ranges with angular coverage between +55 deg forward to -55deg backwards. The angular density can be selected to cover up to 100 different viewing angles at selected wavelengths. PACS_VNIR is a prototype airborne instrument designed to demonstrate PACS capability by deploying just one of the three wavelength modules of the full PACS. With wavelengths at 470, 550, 675, 760 and 875nm, PACS_VNIR flew for the first time during the PODEX experiment in January/February 2013 aboard the NASA ER-2 aircraft. PACS SWIR (1.64, 1.88, 2.1, and 2.25um) is currently under construction and should be operational in the lab by Fall/2013. PACS_ UV has been fully designed, but is not yet under construction. During the PODEX flights PACS_VNIR collected data for aerosol and clouds over variable surface types including, water, vegetation, urban areas, and snow. The data is currently being calibrated, geolocated and prepared for the inversion of geophysical parameters including water cloud size distribution and aerosol microphysical parameters. The large density of angles in PACS allows for the characterization of cloudbow features in relatively high spatial resolution in a pixel to pixel basis. This avoids the need for assumptions of cloud homogeneity over any distance. The hyperangle capability also allows detailed observation of cloud ice particles, surface characterization, and optimum selection of the number of angles desired for aerosol retrievals. The aerosol and cloud retrieval algorithms under development for the retrieval of particle microphysical properties from the PACS data will be discussed in this presentation. As an extension of the PACS concept we are currently developing the HARP (Hyper

  13. Mitigating illumination gradients in a SAR image based on the image data and antenna beam pattern

    SciTech Connect

    Doerry, Armin W.

    2013-04-30

    Illumination gradients in a synthetic aperture radar (SAR) image of a target can be mitigated by determining a correction for pixel values associated with the SAR image. This correction is determined based on information indicative of a beam pattern used by a SAR antenna apparatus to illuminate the target, and also based on the pixel values associated with the SAR image. The correction is applied to the pixel values associated with the SAR image to produce corrected pixel values that define a corrected SAR image.

  14. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.

    1998-01-01

    Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely independent of scale. Self-similarity is defined as a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. An ideal fractal (or monofractal) curve or surface has a constant dimension over all scales, although it may not be an integer value. This is in contrast to Euclidean or topological dimensions, where discrete one, two, and three dimensions describe curves, planes, and volumes. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution. However, most geographical phenomena are not strictly self-similar at all scales, but they can often be modeled by a stochastic fractal in which the scaling and self-similarity properties of the fractal have inexact patterns that can be described by statistics. Stochastic fractal sets relax the monofractal self-similarity assumption and measure many scales and resolutions in order to represent the varying form of a phenomenon as a function of local variables across space. In image interpretation, pattern is defined as the overall spatial form of related features, and the repetition of certain forms is a characteristic pattern found in many cultural objects and some natural features. Texture is the visual impression of coarseness or smoothness caused by the variability or uniformity of image tone or color. A potential use of fractals concerns the analysis of image texture. In these situations it is commonly observed that the degree of roughness or inexactness in an image or surface is a function of scale and not of experimental technique. The fractal dimension of remote sensing data could yield quantitative insight on the spatial complexity and

  15. Etiology of the obstructive pattern in hepatobiliary imaging

    SciTech Connect

    Hughes, K.S.; Marrangoni, A.G.; Turbiner, E.

    1984-04-01

    The records of all patients undergoing hepatobiliary imaging with technetion radioisotopes at our hospital from January 1980 to March 1983 were reviewed and 29 scans met the criteria for a pattern consistent with complete biliary tract obstruction. Biliary tract obstruction (due to choledocholithiasis, primary or secondary carcinoma involving the common bile duct, and pancreatitis) was documented in 24 of these patients. However, the remaining five patients had a patent common bile duct, and the etiologic factor was intrahepatic cholestasis secondary to sepsis in four and peritonitis in one. A classification of altered biliary dynamics in hepatobiliary imaging, which is based on the classification of jaundice, is proposed.

  16. Component pattern analysis of chemicals using multispectral THz imaging system

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuki

    2004-04-01

    We have developed a novel basic technology for terahertz (THz) imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral transillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  17. Pattern Recognition Using Statistical Properties Of Sectors Of An Image

    NASA Astrophysics Data System (ADS)

    Pantelio, Dejan V.; Janevski, Zoran D.

    1989-03-01

    We are proposing a new type of transformation that closely relates to Chord and Hough transform, and which can be very useful in recognition of binary images. In this method we are using lines of various positions and directions, which intersect the area of interest. Each line divides the image into two parts - sectors. Areas of the sectors are assigned to the line, and statistic of the sectors is calculated (for the set of lines). Calculations have shown that this new transformation is insensitive to noise (to a certain extent). Therefore, it can be used for noise insensitive pattern recognition.

  18. Pattern recognition of transillumination images for diagnosis of rheumatoid arthritis

    NASA Astrophysics Data System (ADS)

    Bauer, Joanna; Boerner, Ewa; Podbielska, Halina; Suchwalko, Artur

    2005-09-01

    In this work the statistical pattern recognition methods were applied for evaluation of transillumination images of interphalangeal joints of patients suffering from rheumatoid arthritis. Special portable apparatus was constructed for performing the transillumination examination. It consisted of He-Ne laser with optics for collimated illumination, special holder for placing the finger (perpendicular to optical axis, dorsal site towards camera), and CCD camera with memory stick. 20 ill patients and 20 healthy volunteers were examined. The captured images with 1152x864 resolution were converted into the gray level pictures and analyzed by means of statistical pattern recognition method. Principal Component Analysis (PCA) and cluster analysis by use of 1-NN method (1 Nearest Neighbour) were applied for classification. The recognition system was able to differentiate correctly between healthy and ill subjects with 72.35% accuracy in case the data base composed of 40 persons.

  19. Imaging patterns of brain development and their relationship to cognition.

    PubMed

    Erus, Guray; Battapady, Harsha; Satterthwaite, Theodore D; Hakonarson, Hakon; Gur, Raquel E; Davatzikos, Christos; Gur, Ruben C

    2015-06-01

    We present a brain development index (BDI) that concisely summarizes complex imaging patterns of structural brain maturation along a single dimension using a machine learning methodology. The brain was found to follow a remarkably consistent developmental trajectory in a sample of 621 subjects of ages 8-22 participating in the Philadelphia Neurodevelopmental Cohort, reflected by a cross-validated correlation coefficient between chronologic age and the BDI of r = 0.89. Critically, deviations from this trajectory related to cognitive performance. Specifically, subjects whose BDI was higher than their chronological age displayed significantly superior cognitive processing speed compared with subjects whose BDI was lower than their actual age. These results indicate that the multiparametric imaging patterns summarized by the BDI can accurately delineate trajectories of brain development and identify individuals with cognitive precocity or delay. PMID:24421175

  20. Thin cloud removal from remote sensing images using multidirectional dual tree complex wavelet transform and transfer least square support vector regression

    NASA Astrophysics Data System (ADS)

    Hu, Gensheng; Li, Xiaoyi; Liang, Dong

    2015-01-01

    The existence of clouds affects the interpretation and utilization of remote sensing images. A thin cloud removal algorithm for cloud-contaminated remote sensing images is proposed by combining a multidirectional dual tree complex wavelet transform (M-DTCWT) with domain adaptation transfer least square support vector regression (T-LSSVR). First, M-DTCWT is constructed by using the hourglass filter bank in combination with DTCWT, which is used to decompose remote sensing images into multiscale and multidirectional subbands. Then the low-frequency subband coefficients of the cloud-free regions on target images and source domain images are used as samples for a T-LSSVR model, which can be used to predict those of the cloud regions on cloud-contaminated images. Finally, by enhancing the high-frequency coefficients and replacing the low-frequency coefficients, the thin clouds on cloud-contaminated images are removed. Experimental results show that M-DTCWT contributes to keeping the details of the ground objects of cloud-contaminated images, and the T-LSSVR model can effectively learn the contour information from multisource and multitemporal images, therefore, the proposed method achieves a good effect of thin cloud removal.

  1. 3D CARS image reconstruction and pattern recognition on SHG images

    NASA Astrophysics Data System (ADS)

    Medyukhina, Anna; Vogler, Nadine; Latka, Ines; Dietzek, Benjamin; Cicchi, Riccardo; Pavone, Francesco S.; Popp, Jürgen

    2012-06-01

    Nonlinear optical imaging techniques based e.g. on coherent anti-Stokes Raman scattering (CARS) or second-harmonic generation (SHG) show great potential for in-vivo investigations of tissue. While the microspectroscopic imaging tools are established, automized data evaluation, i.e. image pattern recognition and automized image classification, of nonlinear optical images still bares great possibilities for future developments towards an objective clinical diagnosis. This contribution details the capability of nonlinear microscopy for both 3D visualization of human tissues and automated discrimination between healthy and diseased patterns using ex-vivo human skin samples. By means of CARS image alignment we show how to obtain a quasi-3D model of a skin biopsy, which allows us to trace the tissue structure in different projections. Furthermore, the potential of automated pattern and organization recognition to distinguish between healthy and keloidal skin tissue is discussed. A first classification algorithm employs the intrinsic geometrical features of collagen, which can be efficiently visualized by SHG microscopy. The shape of the collagen pattern allows conclusions about the physiological state of the skin, as the typical wavy collagen structure of healthy skin is disturbed e.g. in keloid formation. Based on the different collagen patterns a quantitative score characterizing the collagen waviness - and hence reflecting the physiological state of the tissue - is obtained. Further, two additional scoring methods for collagen organization, respectively based on a statistical analysis of the mutual organization of fibers and on FFT, are presented.

  2. Reconstruction of 3D Shapes of Opaque Cumulus Clouds from Airborne Multiangle Imaging: A Proof-of-Concept

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Bal, G.; Chen, J.

    2015-12-01

    Operational remote sensing of microphysical and optical cloud properties is invariably predicated on the assumption of plane-parallel slab geometry for the targeted cloud. The sole benefit of this often-questionable assumption about the cloud is that it leads to one-dimensional (1D) radiative transfer (RT)---a textbook, computationally tractable model. We present new results as evidence that, thanks to converging advances in 3D RT, inverse problem theory, algorithm implementation, and computer hardware, we are at the dawn of a new era in cloud remote sensing where we can finally go beyond the plane-parallel paradigm. Granted, the plane-parallel/1D RT assumption is reasonable for spatially extended stratiform cloud layers, as well as the smoothly distributed background aerosol layers. However, these 1D RT-friendly scenarios exclude cases that are critically important for climate physics. 1D RT---whence operational cloud remote sensing---fails catastrophically for cumuliform clouds that have fully 3D outer shapes and internal structures driven by shallow or deep convection. For these situations, the first order of business in a robust characterization by remote sensing is to abandon the slab geometry framework and determine the 3D geometry of the cloud, as a first step toward bone fide 3D cloud tomography. With this specific goal in mind, we deliver a proof-of-concept for an entirely new kind of remote sensing applicable to 3D clouds. It is based on highly simplified 3D RT and exploits multi-angular suites of cloud images at high spatial resolution. Airborne sensors like AirMSPI readily acquire such data. The key element of the reconstruction algorithm is a sophisticated solution of the nonlinear inverse problem via linearization of the forward model and an iteration scheme supported, where necessary, by adaptive regularization. Currently, the demo uses a 2D setting to show how either vertical profiles or horizontal slices of the cloud can be accurately reconstructed

  3. Cirrus cloud characteristics derived from volume imaging lidar, high spectral resolution lidar, HIS radiometer, and satellite

    NASA Technical Reports Server (NTRS)

    Grund, Christian J.; Ackerman, Steven A.; Eloranta, Edwin W.; Knutsen, Robert O.; Revercomb, Henry E.; Smith, William L.; Wylie, Donald P.

    1990-01-01

    Preliminary measurement results are presented from the Cirrus Remote Sensing Pilot Experiment which used a unique suite of instruments to simultaneously retrieve cirrus cloud visible and IR optical properties, while addressing the disparities between satellite volume averages and local point measurements. The experiment employed a ground-based high resolution interferometer sounder (HIS) and a second Fourier transform spectrometer to measure the spectral radiance in the 4-20 micron band, a correlated high spectral resolution lidar, a volume imaging lidar, a CLASS radiosonde system, the Scripps Whole Sky Imager, and multispectral VAS, HIRS, and AVHRR satellite data from polar orbiting and geostationary satellites. Data acquired during the month long experiment included continuous daytime monitoring with the Whole Sky Imager.

  4. Bistatic imaging lidar measurements of aerosols, fogs, and clouds in the lower atmosphere

    NASA Astrophysics Data System (ADS)

    Lin, Jinming; Mishima, Hidetsugu; Kawahara, Takuya D.; Saito, Yasunori; Nomura, Akio; Yamaguchi, Kenji; Morikawa, Kimio

    1998-08-01

    We have been developing a bistatic imaging lidar using a high sensitive CCD camera with an image intensifier as a high speed shutter for measuring spatial distributions of aerosols, fogs and clouds in the lower atmosphere at daytime as well as at nighttime. The bistatic imaging lidar was applied to two field observation campaigns. One was made cooperatively with a wind profiler and a radiosonde at Moriya (36 km north of Tokyo) for five days from May 26 to 30, 1997 and another cooperatively with a monostatic lidar at Hakuba alpine ski area of Nagano for 10 days from February 7 to 16, 1998 during the period of the 18th Winter Olympic Games in Japan. We report the results obtained at both campaigns and discuss the ability of this system in measuring the meteorological features of the local lower atmosphere under different conditions.

  5. InSAR imaging of volcanic deformation over cloud-prone areas - Aleutian islands

    USGS Publications Warehouse

    Lu, Zhong

    2007-01-01

    Interferometric synthetic aperture radar (INSAR) is capable of measuring ground-surface deformation with centimeter-tosubcentimeter precision and spatial resolution of tens-of meters over a relatively large region. With its global coverage and all-weather imaging capability, INSAR is an important technique for measuring ground-surface deformation of volcanoes over cloud-prone and rainy regions such as the Aleutian Islands, where only less than 5 percent of optical imagery is usable due to inclement weather conditions. The spatial distribution of surface deformation data, derived from INSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper reviews the basics of INSAR for volcanic deformation mapping and the INSAR studies of ten Aleutian volcanoes associated with both eruptive and noneruptive activity. These studies demonstrate that all-weather INSAR imaging can improve our understanding of how the Aleutian volcanoes work and enhance our capability to predict future eruptions and associated hazards.

  6. Optical imaging of cloud-to-stratosphere/mesosphere lightning over the Amazon Basin (CS/LAB)

    NASA Technical Reports Server (NTRS)

    Sentman, Davis D.; Wescott, Eugene M.

    1995-01-01

    The purpose of the CS/LAB project was to obtain images of cloud to stratosphere lightning discharges from aboard NASA's DC-8 Airborne Laboratory while flying in the vicinity of thunderstorms over the Amazon Basin. We devised a low light level imaging package as an add-on experiment to an airborne Laboratory deployment to South America during May-June, 1993. We were not successful in obtaining the desired images during the South American deployment. However, in a follow up flight over the American Midwest during the night of July 8-9, 1993 we recorded nineteen examples of the events over intense thunderstorms. From the observations were estimated absolute brightness, terminal altitudes, flash duration, horizontal extents, emission volumes, and frequencies relative to negative and positive ground strokes.

  7. Robust Texture Image Representation by Scale Selective Local Binary Patterns.

    PubMed

    Guo, Zhenhua; Wang, Xingzheng; Zhou, Jie; You, Jane

    2016-02-01

    Local binary pattern (LBP) has successfully been used in computer vision and pattern recognition applications, such as texture recognition. It could effectively address grayscale and rotation variation. However, it failed to get desirable performance for texture classification with scale transformation. In this paper, a new method based on dominant LBP in scale space is proposed to address scale variation for texture classification. First, a scale space of a texture image is derived by a Gaussian filter. Then, a histogram of pre-learned dominant LBPs is built for each image in the scale space. Finally, for each pattern, the maximal frequency among different scales is considered as the scale invariant feature. Extensive experiments on five public texture databases (University of Illinois at Urbana-Champaign, Columbia Utrecht Database, Kungliga Tekniska Högskolan-Textures under varying Illumination, Pose and Scale, University of Maryland, and Amsterdam Library of Textures) validate the efficiency of the proposed feature extraction scheme. Coupled with the nearest subspace classifier, the proposed method could yield competitive results, which are 99.36%, 99.51%, 99.39%, 99.46%, and 99.71% for UIUC, CUReT, KTH-TIPS, UMD, and ALOT, respectively. Meanwhile, the proposed method inherits simple and efficient merits of LBP, for example, it could extract scale-robust feature for a 200×200 image within 0.24 s, which is applicable for many real-time applications. PMID:26685235

  8. Pattern recognition via multispectral, hyperspectral, and polarization-based imaging

    NASA Astrophysics Data System (ADS)

    El-Saba, Aed; Alam, Mohammad S.; Sakla, Wesam A.

    2010-04-01

    Pattern recognition deals with the detection and identification of a specific target in an unknown input scene. Target features such as shape, color, surface dynamics, and material characteristics are common target attributes used for identification and detection purposes. Pattern recognition using multispectral (MS), hyperspectral (HS), and polarization-based spectral (PS) imaging can be effectively exploited to highlight one or more of these attributes for more efficient target identification and detection. In general, pattern recognition involves two steps: gathering target information from sensor data and identifying and detecting the desired target from sensor data in the presence of noise, clutter, and other artifacts. Multispectral and hyperspectral imaging (MSI/HSI) provide both spectral and spatial information about the target. As the reflection or emission spectral signatures depend on the elemental composition of objects residing within the scene, the polarization state of radiation is sensitive to the surface features such as relative smoothness or roughness, surface material, shapes and edges, etc. Therefore, polarization information imparted by surface reflections of the target yields unique and discriminatory signatures which could be used to augment spectral target detection techniques, through the fusion of sensor data. Sensor data fusion is currently being used to effectively recognize and detect one or more of the target attributes. However, variations between sensors and temporal changes within sensors can introduce noise in the measurements, contributing to additional target variability that hinders the detection process. This paper provides a quick overview of target identification and detection using MSI/HSI, highlighting the advantages and disadvantages of each. It then discusses the effectiveness of using polarization-based imaging in highlighting some of the target attributes at single and multiple spectral bands using polarization

  9. Analysis of breathing air flow patterns in thermal imaging.

    PubMed

    Fei, Jin; Pavlidis, Ioannis

    2006-01-01

    We introduce a novel methodology to characterize breathing patterns based on thermal infrared imaging. We have retrofitted a Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO(2) absorption band (4130 - 4427 nm). We use this system to record the radiation information from within the breathing flow region. Based on this information we compute the mean dynamic thermal signal of breath. The breath signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then filter the high frequency noise due to tracking instability. We detect the breathing cycles through zero cross thresholding, which is insensitive to noise around the zero line. We normalize the breathing cycles and align them at the transition point from inhalation to exhalation. Then, we compute the mean breathing cycle. We use the first eight (8) harmonic components of the mean cycle to characterize the breathing pattern. The harmonic analysis highlights the intra-individual similarity of breathing patterns. Our method opens the way for desktop, unobtrusive monitoring of human respiration and may find widespread applications in clinical studies of chronic ailments. It also brings up the intriguing possibility of using breathing patterns as a novel biometric. PMID:17945610

  10. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Xu, F.; Garay, M. J.; Martonchik, J. V.; Rheingans, B. E.; Geier, S.; Davis, A.; Hancock, B. R.; Jovanovic, V. M.; Bull, M. A.; Capraro, K.; Chipman, R. A.; McClain, S. C.

    2013-08-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ±67° along-track range. The instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI employs a photoelastic modulator-based polarimetric imaging technique to enable accurate measurements of the degree and angle of linear polarization in addition to spectral intensity. A description of the AirMSPI instrument and ground data processing approach is presented. Example images of clear, hazy, and cloudy scenes over the Pacific Ocean and California land targets obtained during flights between 2010 and 2012 are shown, and quantitative interpretations of the data using vector radiative transfer theory and scene models are provided to highlight the instrument's capabilities for determining aerosol and cloud microphysical properties and cloud 3-D spatial distributions. Sensitivity to parameters such as aerosol particle size distribution, ocean surface wind speed and direction, cloud-top and cloud-base height, and cloud droplet size is discussed. AirMSPI represents a major step toward realization of the type of imaging polarimeter envisioned to fly on NASA's Aerosol-Cloud-Ecosystem (ACE) mission in the next decade.

  11. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): a new tool for aerosol and cloud remote sensing

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Xu, F.; Garay, M. J.; Martonchik, J. V.; Rheingans, B. E.; Geier, S.; Davis, A.; Hancock, B. R.; Jovanovic, V. M.; Bull, M. A.; Capraro, K.; Chipman, R. A.; McClain, S. C.

    2013-02-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an eight-band (355, 380, 445, 470, 555, 660, 865, 935 nm) pushbroom camera, measuring polarization in the 470, 660, and 865 nm bands, mounted on a gimbal to acquire multiangular observations over a ± 67° along-track range. The instrument has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. AirMSPI employs a photoelastic modulator-based polarimetric imaging technique to enable accurate measurements of the degree and angle of linear polarization in addition to spectral intensity. A description of the AirMSPI instrument and ground data processing approach is presented. Example images of clear, hazy, and cloudy scenes over the Pacific Ocean and California land targets obtained during flights between 2010 and 2012 are shown, and quantitative interpretations of the data using vector radiative transfer theory and scene models are provided to highlight the instrument's capabilities for determining aerosol and cloud microphysical properties and cloud 3-D spatial distributions. Sensitivity to parameters such as aerosol particle size distribution, ocean surface wind speed and direction, cloud-top and cloud-base height, and cloud droplet size is discussed. AirMSPI represents a major step toward realization of the type of imaging polarimeter envisioned to fly on NASA's Aerosol-Cloud-Ecosystem (ACE) mission in the next decade.

  12. A geometric photography model for determining cloud top heights using MISR images

    NASA Astrophysics Data System (ADS)

    He, Yongjian; Qiu, Xinfa; Sun, Zhian; Li, Qiang

    2015-10-01

    Cloud top height (CTH) is an important factor in weather forecasting and monitoring. An accurate CTH has scientific significance for improving the quality of both weather analyses and numerical weather prediction. The three-dimensional geometric method has been widely recognized as a CTH calculation method that provides relatively high accuracy. In this paper, we used the theory of digital photogrammetry and remote sensing technology to establish a geometric photography model (GPM) that can simultaneously determine CTHs and cloud movement speed (CMS) by introducing the CMS into the collinearity equation of photogrammetry. The CTH is derived by constructing three-dimensional image pairs of multitemporal Multiangle Imaging Spectroradiometer (MISR) red spectral band images from three angles. Compared with CTHs observed by ground-based lidar at the United States Southern Great Plains, the difference of CTHs using the GPM relative to the reference value was less than 300 m. By analyzing the ground control points, the GPM error is estimated to be approximately 300 m. Compared with MISR CTH data, the CTHs calculated in this study were similar to that of MISR without wind.

  13. Parallel high resolution imaging of diffuse objects in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Walsh, Jeremy

    1996-07-01

    The Magellanic Clouds, because of their well-determined distance and small extinction, allow an unprecedented opportunity to observe many ISM phenomena occurring in a whole galaxy. The HST resolution {0.1" = 0.025 pc} offers detail hitherto poorly studied in the extragalactic context on the morphology and spatial relationships in various ISM processes associated with the evolution of Population I and Population II systems. This long term {11 cycles} parallel program exploits these opportunities by obtaining WFPC2 images of appropriate targets that are accessible at the same time as primary pointings. The number of priority parallel observations per Cycle is estimated at 20; and our intent is to accumulate a significant archive of Magellanic Cloud direct images over the life of the program. The parallel targets, to be specified in crafting rules executed as part of the Phase II planning of each HST Cycle, will include {or search for} compact H II regions and young clusters, proto-stellar and maser regions, reflection nebulae, Herbig-Haro objects, stellar ejecta, SNR and wind-driven shells, shells, planetary nebulae and Very Low Excitation nebulae. The observations will be primarily in the Balmer lines and the stronger forbidden lines, with supplemental continuum images.

  14. Security authentication using the reflective glass pattern imaging effect.

    PubMed

    Zhu, Ji Cheng; Shen, Su; Wu, Jian Hong

    2015-11-01

    The reflective glass pattern imaging effect is investigated experimentally for the utility in forming a synthetic 3D image as a security authentication device in this Letter. An array of homogeneously randomly distributed reflective elements and a corresponding micropattern array are integrated onto a thin layer of polyester film aiming to create a vivid image floating over a substrate surface, which can be clearly visible to the naked eye. By using the reflective-type configuration, the micro-optic system can be realized on a thinner substrate and is immune to external stain due to its flat working plane. A novel gravure-like doctor blading technique can realize a resolution up to 12,000 dpi and a stringent 2D alignment requirement should be imposed. Such devices can find applications in document security and banknotes or other valuable items to protect them against forgery. PMID:26512494

  15. Symbolic document image compression based on pattern matching techniques

    NASA Astrophysics Data System (ADS)

    Shiah, Chwan-Yi; Yen, Yun-Sheng

    2011-10-01

    In this paper, a novel compression algorithm for Chinese document images is proposed. Initially, documents are segmented into readable components such as characters and punctuation marks. Similar patterns within the text are found by shape context matching and grouped to form a set of prototype symbols. Text redundancies can be removed by replacing repeated symbols by their corresponding prototype symbols. To keep the compression visually lossless, we use a multi-stage symbol clustering procedure to group similar symbols and to ensure that there is no visible error in the decompressed image. In the encoding phase, the resulting data streams are encoded by adaptive arithmetic coding. Our results show that the average compression ratio is better than the international standard JBIG2 and the compressed form of a document image is suitable for a content-based keyword searching operation.

  16. High-resolution imaging and target designation through clouds or smoke

    DOEpatents

    Perry, Michael D.

    2003-01-01

    A method and system of combining gated intensifiers and advances in solid-state, short-pulse laser technology, compact systems capable of producing high resolution (i.e., approximately less than 20 centimeters) optical images through a scattering medium such as dense clouds, fog, smoke, etc. may be achieved from air or ground based platforms. Laser target designation through a scattering medium is also enabled by utilizing a short pulse illumination laser and a relatively minor change to the detectors on laser guided munitions.

  17. Visualisation of Complex 3d City Models on Mobile Webbrowsers Using Cloud-Based Image Provisioning

    NASA Astrophysics Data System (ADS)

    Christen, M.; Nebiker, S.

    2015-08-01

    Rendering large city models with high polygon count and a vast amount of textures at interactive frame rates is a rather difficult to impossible task as it highly depends on the client hardware, which is often insufficient, even if out-of-core rendering techniques and level of detail approaches are used. Rendering complex city models on mobile devices is even more challenging. An approach of rendering and caching very large city models in the cloud using ray-tracing based image provisioning is introduced. This allows rendering large scenes efficiently, including on mobile devices. With this approach, it is possible to render cities with nearly unlimited number of polygons and textures.

  18. Comparison Between Two Generic 3d Building Reconstruction Approaches - Point Cloud Based VS. Image Processing Based

    NASA Astrophysics Data System (ADS)

    Dahlke, D.; Linkiewicz, M.

    2016-06-01

    This paper compares two generic approaches for the reconstruction of buildings. Synthesized and real oblique and vertical aerial imagery is transformed on the one hand into a dense photogrammetric 3D point cloud and on the other hand into photogrammetric 2.5D surface models depicting a scene from different cardinal directions. One approach evaluates the 3D point cloud statistically in order to extract the hull of structures, while the other approach makes use of salient line segments in 2.5D surface models, so that the hull of 3D structures can be recovered. With orders of magnitudes more analyzed 3D points, the point cloud based approach is an order of magnitude more accurate for the synthetic dataset compared to the lower dimensioned, but therefor orders of magnitude faster, image processing based approach. For real world data the difference in accuracy between both approaches is not significant anymore. In both cases the reconstructed polyhedra supply information about their inherent semantic and can be used for subsequent and more differentiated semantic annotations through exploitation of texture information.

  19. Spatial-temporal change in precipitation patterns based on the cloud model across the Wei River Basin, China

    NASA Astrophysics Data System (ADS)

    Huang, Shengzhi; Hou, Beibei; Chang, Jianxia; Huang, Qiang; Chen, Yutong

    2015-04-01

    It is of significant importance to investigate the spatial-temporal change in precipitation patterns due to its great effects on droughts, floods, soil erosion and water resource management. A complete investigation of precipitation structure and its distribution pattern based on daily precipitation covering 1960-2005 at 21 meteorological stations in the Wei River Basin has been performed. In order to comprehensively and objectively describe the changing pattern of precipitation, the cloud model is employed to quantitatively analyse the average, uniformity and stability of precipitation. Results indicate the following: (1) the occurrence of different precipitation durations exhibits a positive exponential curve with the decrease in precipitation durations, and 1-3-day events are the predominant precipitation events which have an increasing trend; (2) precipitation and its non-uniformity is increasingly reducing, while its stability increases initially then decreases; (3) mean precipitation reduces from southeast to northwest, and the precipitation of the Guanzhong Plain has a low uniformity and stability due to its location and increasingly intensifying human activities. The cloud model provides a new idea and quantitative measure for the evaluation of the uniformity and stability of precipitation.

  20. Proceedings of the Second Annual Symposium on Mathematical Pattern Recognition and Image Analysis Program

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1984-01-01

    Several papers addressing image analysis and pattern recognition techniques for satellite imagery are presented. Texture classification, image rectification and registration, spatial parameter estimation, and surface fitting are discussed.

  1. Calibration and Laboratory Test of the Department of Energy Cloud Particle Imager

    SciTech Connect

    McFarquhar, GM; Um, J

    2012-02-17

    Calibration parameters from the Connolly et al. (2007) algorithm cannot be applied to the Department of Energy's (DOE) CPI because the DOE CPI is version 2.0. Thus, Dr. Junshik Um and Prof. Greg McFarquhar brought the DOE CPI to the University of Manchester, UK, where facilities for calibrating it were available. In addition, two other versions of CPIs (1.0 and 1.5) were available on-site at the University of Manchester so that an intercomparison of three different versions of the CPI was possible. The three CPIs (versions 1.0, 1.5, and 2.0) were calibrated by moving glass calibration beads and ice analogues of known size parallel to the object plane. The distance between the object plane and a particle, the particle's focus, its apparent maximum dimension, and a background image were measured in order to derive calibration parameters for each CPI version. The calibration parameters are used in two empirical equations that are applied to in situ CPI data to determine particle size and depth of field, and hence particle size distributions (PSDs). After the tests with the glass calibration beads to derive the calibration parameters, the three CPIs were installed at the base of the Manchester Ice Cloud Chamber and connected to air pumps that drew cloud through the sample volume. Warm liquid clouds at a temperature of 1-2 C and ice clouds at a temperature of -5 C were generated, and the resulting PSDs for each of the CPIs were determined by applying the results of each calibration.

  2. A QR code based zero-watermarking scheme for authentication of medical images in teleradiology cloud.

    PubMed

    Seenivasagam, V; Velumani, R

    2013-01-01

    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)-Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks. PMID:23970943

  3. Laser point cloud diluting and refined 3D reconstruction fusing with digital images

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Zhang, Jianqing

    2007-06-01

    This paper shows a method to combine the imaged-based modeling technique and Laser scanning data to rebuild a realistic 3D model. Firstly use the image pair to build a relative 3D model of the object, and then register the relative model to the Laser coordinate system. Project the Laser points to one of the images and extract the feature lines from that image. After that fit the 2D projected Laser points to lines in the image and constrain their corresponding 3D points to lines in the 3D Laser space to keep the features of the model. Build TIN and cancel the redundant points, which don't impact the curvature of their neighborhood areas. Use the diluting Laser point cloud to reconstruct the geometry model of the object, and then project the texture of corresponding image onto it. The process is shown to be feasible and progressive proved by experimental results. The final model is quite similar with the real object. This method cuts down the quantity of data in the precondition of keeping the features of model. The effect of it is manifest.

  4. A QR Code Based Zero-Watermarking Scheme for Authentication of Medical Images in Teleradiology Cloud

    PubMed Central

    Seenivasagam, V.; Velumani, R.

    2013-01-01

    Healthcare institutions adapt cloud based archiving of medical images and patient records to share them efficiently. Controlled access to these records and authentication of images must be enforced to mitigate fraudulent activities and medical errors. This paper presents a zero-watermarking scheme implemented in the composite Contourlet Transform (CT)—Singular Value Decomposition (SVD) domain for unambiguous authentication of medical images. Further, a framework is proposed for accessing patient records based on the watermarking scheme. The patient identification details and a link to patient data encoded into a Quick Response (QR) code serves as the watermark. In the proposed scheme, the medical image is not subjected to degradations due to watermarking. Patient authentication and authorized access to patient data are realized on combining a Secret Share with the Master Share constructed from invariant features of the medical image. The Hu's invariant image moments are exploited in creating the Master Share. The proposed system is evaluated with Checkmark software and is found to be robust to both geometric and non geometric attacks. PMID:23970943

  5. Characterizing Spatial Patterns of Cloud Cover and Fog Inundation in the Northern Channel Islands Using Satellite Datasets and Comparison to Ground Measurements

    NASA Astrophysics Data System (ADS)

    Rastogi, B.; Still, C. J.; Fischer, D. T.; Iacobellis, S. F.; Toomey, M. P.; Greer, B.; Baguskas, S. A.; Williams, P.; McEachern, K.

    2012-12-01

    Coastal forests in Mediterranean climates are frequently covered by clouds or immersed in fog. Previous studies suggest that clouds strongly modulate forest distributions as well as carbon budgets in these semi-arid environments. Both low level stratocumulus cloud cover and fog can enhance the water status of vegetation along the Californian coast and the Channel Islands by reducing solar insolation, raising relative humidity and supplying water directly to the landscape during otherwise warm and rainless summers. While summertime fog and stratus cover in California's Channel Islands can ameliorate summer drought stress and enhance soil water budgets, they have different spatial patterns. These differing spatial patterns and the resulting shifts in relative ecological importance of fog and stratus are largely unknown. The overall objective of this project was to map spatial distributions of daytime cloud cover frequency for the California Channel Islands, and to predict probabilities of surface cloud (fog) contact and immersion for these islands. Daytime cloud cover maps were generated for the Channel Islands using data from GOES satellite imagery. Cloud frequency maps were compared and found to be in agreement with solar insolation data collected at several sites on Santa Cruz and Santa Rosa islands for the summer of 2005. These cloud frequency maps were then combined with airport cloud height data and topographic data to map estimated weekly and monthly fog inundation. The fog inundation maps were then compared to fog drip data collected at several sites on the two islands. Correlation between fog inundation and fog drip accumulation enabled spatial and temporal extrapolation to understand seasonal and inter-annual variations in cloud cover frequency and fog inundation and drip. Future studies will use these cloud and fog distributions for water balance modeling and studies of plant geography and forest distributions.

  6. Robust image region descriptor using local derivative ordinal binary pattern

    NASA Astrophysics Data System (ADS)

    Shang, Jun; Chen, Chuanbo; Pei, Xiaobing; Liang, Hu; Tang, He; Sarem, Mudar

    2015-05-01

    Binary image descriptors have received a lot of attention in recent years, since they provide numerous advantages, such as low memory footprint and efficient matching strategy. However, they utilize intermediate representations and are generally less discriminative than floating-point descriptors. We propose an image region descriptor, namely local derivative ordinal binary pattern, for object recognition and image categorization. In order to preserve more local contrast and edge information, we quantize the intensity differences between the central pixels and their neighbors of the detected local affine covariant regions in an adaptive way. These differences are then sorted and mapped into binary codes and histogrammed with a weight of the sum of the absolute value of the differences. Furthermore, the gray level of the central pixel is quantized to further improve the discriminative ability. Finally, we combine them to form a joint histogram to represent the features of the image. We observe that our descriptor preserves more local brightness and edge information than traditional binary descriptors. Also, our descriptor is robust to rotation, illumination variations, and other geometric transformations. We conduct extensive experiments on the standard ETHZ and Kentucky datasets for object recognition and PASCAL for image classification. The experimental results show that our descriptor outperforms existing state-of-the-art methods.

  7. Integration of Point Clouds Originated from Laser Scaner and Photogrammetric Images for Visualization of Complex Details of Historical Buildings

    NASA Astrophysics Data System (ADS)

    Altuntas, C.

    2015-02-01

    Three-dimensional (3D) models of historical buildings are created for documentation and virtual realization of them. Laser scanning and photogrammetry are extensively used to perform for these aims. The selection of the method that will be used in threedimensional modelling study depends on the scale and shape of the object, and also applicability of the method. Laser scanners are high cost instruments. However, the cameras are low cost instruments. The off-the-shelf cameras are used for taking the photogrammetric images. The camera is imaging the object details by carrying on hand while the laser scanner makes ground based measurement. Laser scanner collect high density spatial data in a short time from the measurement area. On the other hand, image based 3D (IB3D) measurement uses images to create 3D point cloud data. The image matching and the creation of the point cloud can be done automatically. Historical buildings include more complex details. Thus, all details cannot be measured by terrestrial laser scanner (TLS) due to the blocking the details with each others. Especially, the artefacts which have complex shapes cannot be measured in full details. They cause occlusion on the point cloud model. However it is possible to record photogrammetric images and creation IB3D point cloud for these areas. Thus the occlusion free 3D model is created by the integration of point clouds originated from the TLS and photogrammetric images. In this study, usability of laser scanning in conjunction with image based modelling for creation occlusion free three-dimensional point cloud model of historical building was evaluated. The IB3D point cloud was created in the areas that could not been measured by TLS. Then laser scanning and IB3D point clouds were integrated in the common coordinate system. The registration point clouds were performed with the iterative closest point (ICP) and georeferencing methods. Accuracy of the registration was evaluated by convergency and its

  8. Pattern imaging of primary and secondary electrohydrodynamic instabilities

    NASA Astrophysics Data System (ADS)

    Vega Reyes, Francisco; García, Francisco J.

    A little known electrohydrodynamic instability, which we call a rose window, is observed in air/liquid interfaces in electric fields with unipolar space charge distributions. Depending on the liquid properties, the rose window may appear from an initial rest state (primary instability) or on top of another instability, the classical unipolar-injection-induced instability, destroying its pattern (secondary instability). After imaging of the rose window, we use an edge-detection filter to find the instability threshold and study the characteristic pattern as a function of the liquid properties. Results show that the specific properties of the electric field, due to charge injection, are the cause of the rose-window and that the primary and secondary rose windows are essentially different instabilities.

  9. A 10-year climatology of Northern Hemisphere tropical cloud plumes and their composite flow patterns

    SciTech Connect

    Iskenderian, H.

    1995-06-01

    A 10-year cool season climatology of tropical cloud plumes in the Northern Hemisphere was generated by visual inspection of infrared satellite imagery. The sample included 1062 plume events during the months of October to May for the years 1974 to 1984. The results show that the westerly ducts of the tropical eastern Pacific and central Atlantic are preferred regions for tropical cloud plume development. Composite fields of streamfunction and outgoing longwave radiation for eastern Pacific plumes indicate that both low-latitude westerlies in the planetary-scale basic-state flow and the presence of synoptic-scale transients appear to be favorable for plume formation. With a knowledge of these features, some of the interannual and intraannual variability shown in the climatology can be explained. 14 refs., 6 figs.

  10. Co-Registration Airborne LIDAR Point Cloud Data and Synchronous Digital Image Registration Based on Combined Adjustment

    NASA Astrophysics Data System (ADS)

    Yang, Z. H.; Zhang, Y. S.; Zheng, T.; Lai, W. B.; Zou, Z. R.; Zou, B.

    2016-06-01

    Aim at the problem of co-registration airborne laser point cloud data with the synchronous digital image, this paper proposed a registration method based on combined adjustment. By integrating tie point, point cloud data with elevation constraint pseudo observations, using the principle of least-squares adjustment to solve the corrections of exterior orientation elements of each image, high-precision registration results can be obtained. In order to ensure the reliability of the tie point, and the effectiveness of pseudo observations, this paper proposed a point cloud data constrain SIFT matching and optimizing method, can ensure that the tie points are located on flat terrain area. Experiments with the airborne laser point cloud data and its synchronous digital image, there are about 43 pixels error in image space using the original POS data. If only considering the bore-sight of POS system, there are still 1.3 pixels error in image space. The proposed method regards the corrections of the exterior orientation elements of each image as unknowns and the errors are reduced to 0.15 pixels.

  11. Segmentation of interstitial lung disease patterns in HRCT images

    NASA Astrophysics Data System (ADS)

    Dash, Jatindra K.; Madhavi, Vaddepalli; Mukhopadhyay, Sudipta; Khandelwal, Niranjan; Kumar, Prafulla

    2015-03-01

    Automated segmentation of pathological bearing region is the first step towards the development of lung CAD. Most of the work reported in the literature related to automated analysis of lung tissue aims towards classification of fixed sized block into one of the classes. This block level classification of lung tissues in the image never results in accurate or smooth boundaries between different regions. In this work, effort is taken to investigate the performance of three automated image segmentation algorithms those results in smooth boundaries among lung tissue patterns commonly encountered in HRCT images of the thorax. A public database that consists of HRCT images taken from patients affected with Interstitial Lung Diseases (ILDs) is used for the evaluation. The algorithms considered are Markov Random Field (MRF), Gaussian Mixture Model (GMM) and Mean Shift (MS). 2-fold cross validation approach is followed for the selection of the best parameter value for individual algorithm as well as to evaluate the performance of all the algorithms. Mean shift algorithm is observed as the best performer in terms of Jaccard Index, Modified Hausdorff Distance, accuracy, Dice Similarity Coefficient and execution speed.

  12. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging lidar

    NASA Astrophysics Data System (ADS)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry; Ho, Cheng

    2002-09-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data on various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  13. Astronomy in the Cloud: Using MapReduce for Image Co-Addition

    NASA Astrophysics Data System (ADS)

    Wiley, K.; Connolly, A.; Gardner, J.; Krughoff, S.; Balazinska, M.; Howe, B.; Kwon, Y.; Bu, Y.

    2011-03-01

    In the coming decade, astronomical surveys of the sky will generate tens of terabytes of images and detect hundreds of millions of sources every night. The study of these sources will involve computation challenges such as anomaly detection and classification and moving-object tracking. Since such studies benefit from the highest-quality data, methods such as image co-addition, i.e., astrometric registration followed by per-pixel summation, will be a critical preprocessing step prior to scientific investigation. With a requirement that these images be analyzed on a nightly basis to identify moving sources such as potentially hazardous asteroids or transient objects such as supernovae, these data streams present many computational challenges. Given the quantity of data involved, the computational load of these problems can only be addressed by distributing the workload over a large number of nodes. However, the high data throughput demanded by these applications may present scalability challenges for certain storage architectures. One scalable data-processing method that has emerged in recent years is MapReduce, and in this article we focus on its popular open-source implementation called Hadoop. In the Hadoop framework, the data are partitioned among storage attached directly to worker nodes, and the processing workload is scheduled in parallel on the nodes that contain the required input data. A further motivation for using Hadoop is that it allows us to exploit cloud computing resources: i.e., platforms where Hadoop is offered as a service. We report on our experience of implementing a scalable image-processing pipeline for the SDSS imaging database using Hadoop. This multiterabyte imaging data set provides a good testbed for algorithm development, since its scope and structure approximate future surveys. First, we describe MapReduce and how we adapted image co-addition to the MapReduce framework. Then we describe a number of optimizations to our basic approach

  14. Characterization of image transfer patterns in a regional trauma network.

    PubMed

    Neuhaus, Philipp; Weber, Thomas; Dugas, Martin; Juhra, Christian; Breil, Bernhard

    2014-11-01

    Trauma Networks are currently founded in Germany to improve patient care of severely injured persons. To assure appropriate patient treatment in a short time, the transfer of radiological image data between the connected hospitals over the internet is an important method. This paper characterizes radiological image transfer patterns in a regional trauma network and analyzes various compression options. Within the "TraumaNetwork NorthWest" in Germany, the web-based platform "MedSix" was developed. MedSix is able to transfer DICOM-data quickly and easily between connected hospitals and can be directly connected to the local PACS. Audit data of the routine system between the 01.01.2012 and the 31.12.2012 were analyzed to identify typical characteristics of radiological image exchanges. Five different compression methods were compared by a simulation. MedSix has been used by 12 hospitals. 87 % of the transfers were uploaded within 15 min. Lossless compression is able to save about 50 % bandwidth. 82 % of the transfers have a data volume of less than 200 MB. Temporary accounts for non-regular users were used regularly. Most transfers were done from small to maximum care hospitals. It is feasible to substitute physical image exchange in a trauma network with electronic exchange of radiological images between the connected hospitals. Even large datasets are transferred within an acceptable time frame. Most transfers occur from small to large hospitals. The possibility of temporary accounts seems to be a key feature for the user acceptance. PMID:25265903

  15. An Investigation of the Detectability of Cloud-to-Ground Strokes by the Lightning Imaging Sensor

    NASA Astrophysics Data System (ADS)

    Franklin, V.; Bitzer, P. M.; Christian, H. J.

    2012-12-01

    Lightning data from the Lightning Imaging Sensor (LIS) is compared with several ground based sensing networks in order to determine the percentage of cloud-to-ground lightning strokes detected from space. Diverging from previous research, stroke level data from the National Lightning Detection Network (NLDN) is compared to LIS groups. A LIS group is considered a match if it lies within 10 ms and 50 km of the NLDN stroke. In addition, VLF/LF sources detected by the Huntsville Alabama Marx Meter Array (HAMMA) and VHF sources detected by the North Alabama Lightning Mapping Array (NALMA) are used to differentiate between lightning events detected or not detected by LIS. The electric field change measurements from HAMMA allow for the analysis of individual electric field waveforms of both intracloud and cloud-to-ground lightning. We investigate if and how properties such as the peak current, height, and stroke type determine whether or not an event is detected by LIS. Additionally, examining the timing and location differences between the ground based sensors and LIS provides a better understanding of which component of the discharge is detected by each.

  16. Near-IR Imaging Polarimetry toward a Bright-rimmed Cloud: Magnetic Field in SFO 74

    NASA Astrophysics Data System (ADS)

    Kusune, Takayoshi; Sugitani, Koji; Miao, Jingqi; Tamura, Motohide; Sato, Yaeko; Kwon, Jungmi; Watanabe, Makoto; Nishiyama, Shogo; Nagayama, Takahiro; Sato, Shuji

    2015-01-01

    We have made near-infrared (JHK s) imaging polarimetry of a bright-rimmed cloud (SFO 74). The polarization vector maps clearly show that the magnetic field in the layer just behind the bright rim is running along the rim, quite different from its ambient magnetic field. The direction of the magnetic field just behind the tip rim is almost perpendicular to that of the incident UV radiation, and the magnetic field configuration appears to be symmetric as a whole with respect to the cloud symmetry axis. We estimated the column and number densities in the two regions (just inside and far inside the tip rim) and then derived the magnetic field strength, applying the Chandrasekhar-Fermi method. The estimated magnetic field strength just inside the tip rim, ~90 μG, is stronger than that far inside, ~30 μG. This suggests that the magnetic field strength just inside the tip rim is enhanced by the UV-radiation-induced shock. The shock increases the density within the top layer around the tip and thus increases the strength of the magnetic field. The magnetic pressure seems to be comparable to the turbulent one just inside the tip rim, implying a significant contribution of the magnetic field to the total internal pressure. The mass-to-flux ratio was estimated to be close to the critical value just inside the tip rim. We speculate that the flat-topped bright rim of SFO 74 could be formed by the magnetic field effect.

  17. Imaging Dot Patterns for Measuring Gossamer Space Structures

    NASA Technical Reports Server (NTRS)

    Dorrington, A. A.; Danehy, P. M.; Jones, T. W.; Pappa, R. S.; Connell, J. W.

    2005-01-01

    A paper describes a photogrammetric method for measuring the changing shape of a gossamer (membrane) structure deployed in outer space. Such a structure is typified by a solar sail comprising a transparent polymeric membrane aluminized on its Sun-facing side and coated black on the opposite side. Unlike some prior photogrammetric methods, this method does not require an artificial light source or the attachment of retroreflectors to the gossamer structure. In a basic version of the method, the membrane contains a fluorescent dye, and the front and back coats are removed in matching patterns of dots. The dye in the dots absorbs some sunlight and fluoresces at a longer wavelength in all directions, thereby enabling acquisition of high-contrast images from almost any viewing angle. The fluorescent dots are observed by one or more electronic camera(s) on the Sun side, the shade side, or both sides. Filters that pass the fluorescent light and suppress most of the solar spectrum are placed in front of the camera(s) to increase the contrast of the dots against the background. The dot image(s) in the camera(s) are digitized, then processed by use of commercially available photogrammetric software.

  18. Cloud-to-ground lightning in Portugal: patterns and dynamical forcing

    NASA Astrophysics Data System (ADS)

    Santos, J. A.; Reis, M. A.; Sousa, J.; Leite, S. M.; Correia, S.; Janeira, M.; Fragoso, M.

    2012-03-01

    An analysis of the cloud-to-ground discharges (CGD) over Portugal is carried out using data collected by a network of sensors maintained by the Portuguese Meteorological Institute for 2003-2009 (7 yr). Only cloud-to-ground flashes are considered and negative polarity CGD are largely dominant. The total number of discharges reveals a considerable interannual variability and a large irregularity in their distribution throughout the year. However, it is shown that a large number of discharges occur in the May-September period (71%), with a bimodal distribution that peaks in May and September, with most of the lightning activity recorded in the afternoon (from 16:00 to 18:00 UTC). In spring and autumn the lightning activity tends to be scattered throughout the country, whereas in summer it tends to be more concentrated over northeastern Portugal. Winter generally presents low lightning activity. Furthermore, two significant couplings between the monthly number of days with discharges and the large-scale atmospheric circulation are isolated: a regional forcing, predominantly in summer, and a remote forcing. In fact, the identification of daily lightning regimes revealed three important atmospheric conditions for triggering lightning activity: regional cut-off lows, cold troughs induced by remote low pressure systems and summertime regional low pressures at low-tropospheric levels combined with a mid-tropospheric cold trough.

  19. Online self-service processing system of ZY-3 satellite: a prospective study of image cloud services

    NASA Astrophysics Data System (ADS)

    Wang, Hongyan; Wang, Huabin; Shi, Shaoyu

    2015-12-01

    The strong demands for satellite images are increasing not only in professional fields, but also in the non-professionals. But the online map services with up-to-date satellite images can serve few demands. One challenge is how to provide online processing service, which need to handle real-time online data-intensive geospatial computation and visualization. Under the background of the development of cloud computing technology, the problem can be figured out partly. The other challenge is how to implement user-customized online processing without professional background and knowledge. An online self-service processing system of ZY-3 Satellite images is designed to implement an on-demand service mode in this paper. It will work with only some simple parameters being set up for the non-professionals without having to care about the specific processing steps. And the professionals can assemble the basic processing services to a service chain, which can work out a more complex processing and a better result. This intelligent self-service online system for satellite images processing, which is called the prototype of satellite image cloud service in this paper, is accelerated under the development of cloud computing technology and researches on data-intensive computing. To realize the goal, the service mode and framework of the online self-service processing system of ZY-3 Satellite images are figured out in this paper. The details of key technologies are also discussed, including user space virtualization management, algorithm-level parallel image processing, image service chain construction, etc. And the experimental system is built up as a prospective study of image cloud services.

  20. Application of Cloude's target decomposition theorem to polarimetric imaging radar data

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.

    1993-01-01

    In this paper we applied Cloude's decomposition to imaging radar polarimetry. We show in detail how the decomposition results can guide the interpretation of scattering from vegetated areas. For multifrequency polarimetric radar measurements of a clear-cut area, the decomposition leads us to conclude that the vegetation is probably thin compared to even the C-band radar wavelength of 6 cm. For a frosted area, we notice an increased amount of even number of reflection scattering at P-band and L-band, probably the result of penetration through the coniferous canopy resulting in trunk-ground double reflection scattering. However, the scattering for the forested area is still dominated by scattering from randomly oriented cylinders. It is found that these cylinders are thicker than in the case of clear-cut areas, leading us to conclude that scattering from the branches probably dominates in this case.

  1. Determining ice water content from 2D crystal images in convective cloud systems

    NASA Astrophysics Data System (ADS)

    Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter

    2016-04-01

    Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values

  2. Remote sensing of cloud, aerosol and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    King, M. D.

    1992-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) is an Earth-viewing sensor being developed as a facility instrument for the Earth Observing System (EOS) to be launched in the late 1990s. MODIS consists of two separate instruments that scan a swath width sufficient to provide nearly complete global coverage every two days from a polar-orbiting, Sun-synchronous, platform at an altitude of 705 km. Of primary interest for studies of atmospheric physics is the MODIS-N (nadir) instrument which will provide images in 36 spectral bands between 0.415 and 14.235 micrometers with spatial resoulutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to enable advanced studies of land, ocean and atmosperhic processes. The intent of this lecture is to describe the current status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning radiometer with 32 uniformly spaced channels between 0.410 and 0.875 micrometers, and to describe the physical principles behind the development of MODIS for the remote sensing of atmospheric properties. Primary emphasis will be placed on the main atmospheric applications of determining the optical, microphysical and physical properties of clouds and aerosol particles form spectral-reflection and thermal-emission measurements. In addition to cloud and aerosol properties, MODIS-N will be utilized for the determination of the total precipitable water vapor over land and atmospheric stability. The physical principles behind the determination of each of these atmospheric products will be described herein.

  3. Water vapor motion signal extraction from FY-2E longwave infrared window images for cloud-free regions: The temporal difference technique

    NASA Astrophysics Data System (ADS)

    Yang, Lu; Wang, Zhenhui; Chu, Yanli; Zhao, Hang; Tang, Min

    2014-11-01

    The aim of this study is to calculate the low-level atmospheric motion vectors (AMVs) in clear areas with FY-2E IR2 window (11.59-12.79 μm) channel imagery, where the traditional cloud motion wind technique fails. A new tracer selection procedure, which we call the temporal difference technique, is demonstrated in this paper. This technique makes it possible to infer low-level wind by tracking features in the moisture pattern that appear as brightness temperature ( T B) differences between consecutive sequences of 30-min-interval FY-2E IR2 images over cloud-free regions. The T B difference corresponding to a 10% change in water vapor density is computed with the Moderate Resolution Atmospheric Transmission (MODTRAN4) radiative transfer model. The total contribution from each of the 10 layers is analyzed under four typical atmospheric conditions: tropical, midlatitude summer, U.S. standard, and midlatitude winter. The peak level of the water vapor weighting function for the four typical atmospheres is assigned as a specific height to the T B "wind". This technique is valid over cloud-free ocean areas. The proposed algorithm exhibits encouraging statistical results in terms of vector difference (VD), speed bias (BIAS), mean vector difference (MVD), standard deviation (SD), and root-mean-square error (RMSE), when compared with the wind field of NCEP reanalysis data and rawinsonde observations.

  4. Polarization of Directly Imaged Young Giant Planets as a Probe of Mass, Rotation, and Clouds

    NASA Technical Reports Server (NTRS)

    Marley, Mark Scott; Sengupta, Sujan

    2012-01-01

    Young, hot gas giant planets at large separations from their primaries have been directly imaged around several nearby stars. More such planets will likely be detected by ongoing and new imaging surveys with instruments such as the Gemini Planet Imager (GPI). Efforts continue to model the spectra of these planets in order to constrain their masses, effective temperatures, composition, and cloud structure. One potential tool for analyzing these objects, which has received relatively less attention, is polarization. Linear polarization of gas giant exoplanets can arise from the combined influences of light scattering by atmospheric dust and a rotationally distorted shape. The oblateness of gas giant planet increases of course with rotation rate and for fixed rotation also rises with decreasing gravity. Thus young, lower mass gas giant planets with youthful inflated radii could easily have oblateness greater than that of Saturn s 10%. We find that polarizations of over 1% may easily be produced in the near-infrared in such cases. This magnitude of polarization may be measurable by GPI and other instruments. Thus if detected, polarization of a young Jupiter places constraints on the combination of its gravity, rotation rate, and degree of cloudiness. We will present results of our multiple scattering analysis coupled with a self-consistent dusty atmospheric models to demonstrate the range of polarizations that might be expected from resolved exoplanets and the range of parameter space that such observations may inform.

  5. a Semi-Automatic Procedure for Texturing of Laser Scanning Point Clouds with Google Streetview Images

    NASA Astrophysics Data System (ADS)

    Lichtenauer, J. F.; Sirmacek, B.

    2015-08-01

    We introduce a method to texture 3D urban models with photographs that even works for Google Streetview images and can be done with currently available free software. This allows realistic texturing, even when it is not possible or cost-effective to (re)visit a scanned site to take textured scans or photographs. Mapping a photograph onto a 3D model requires knowledge of the intrinsic and extrinsic camera parameters. The common way to obtain intrinsic parameters of a camera is by taking several photographs of a calibration object with a priori known structure. The extra challenge of using images from a database such as Google Streetview, rather than your own photographs, is that it does not allow for any controlled calibration. To overcome this limitation, we propose to calibrate the panoramic viewer of Google Streetview using Structure from Motion (SfM) on any structure of which Google Streetview offers views from multiple angles. After this, the extrinsic parameters for any other view can be calculated from 3 or more tie points between the image from Google Streetview and a 3D model of the scene. These point correspondences can either be obtained automatically or selected by manual annotation. We demonstrate how this procedure provides realistic 3D urban models in an easy and effective way, by using it to texture a publicly available point cloud from a terrestrial laser scan made in Bremen, Germany, with a screenshot from Google Streetview, after estimating the focal length from views from Paris, France.

  6. Complex Clouds

    Atmospheric Science Data Center

    2013-04-16

    ...     View Larger Image The complex structure and beauty of polar clouds are highlighted by these images acquired ... Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and every 9 days views the entire globe ...

  7. Pattern Recognition Of Blood Vessel Networks In Ocular Fundus Images

    NASA Astrophysics Data System (ADS)

    Akita, K.; Kuga, H.

    1982-11-01

    We propose a computer method of recognizing blood vessel networks in color ocular fundus images which are used in the mass diagnosis of adult diseases such as hypertension and diabetes. A line detection algorithm is applied to extract the blood vessels, and the skeleton patterns of them are made to analyze and describe their structures. The recognition of line segments of arteries and/or veins in the vessel networks consists of three stages. First, a few segments which satisfy a certain constraint are picked up and discriminated as arteries or veins. This is the initial labeling. Then the remaining unknown ones are labeled by utilizing the physical level knowledge. We propose two schemes for this stage : a deterministic labeling and a probabilistic relaxation labeling. Finally the label of each line segment is checked so as to minimize the total number of labeling contradictions. Some experimental results are also presented.

  8. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera.

    PubMed

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems' SOCET SET classical commercial photogrammetric software and another is built using Microsoft(®)'s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  9. Point Cloud Generation from Aerial Image Data Acquired by a Quadrocopter Type Micro Unmanned Aerial Vehicle and a Digital Still Camera

    PubMed Central

    Rosnell, Tomi; Honkavaara, Eija

    2012-01-01

    The objective of this investigation was to develop and investigate methods for point cloud generation by image matching using aerial image data collected by quadrocopter type micro unmanned aerial vehicle (UAV) imaging systems. Automatic generation of high-quality, dense point clouds from digital images by image matching is a recent, cutting-edge step forward in digital photogrammetric technology. The major components of the system for point cloud generation are a UAV imaging system, an image data collection process using high image overlaps, and post-processing with image orientation and point cloud generation. Two post-processing approaches were developed: one of the methods is based on Bae Systems’ SOCET SET classical commercial photogrammetric software and another is built using Microsoft®’s Photosynth™ service available in the Internet. Empirical testing was carried out in two test areas. Photosynth processing showed that it is possible to orient the images and generate point clouds fully automatically without any a priori orientation information or interactive work. The photogrammetric processing line provided dense and accurate point clouds that followed the theoretical principles of photogrammetry, but also some artifacts were detected. The point clouds from the Photosynth processing were sparser and noisier, which is to a large extent due to the fact that the method is not optimized for dense point cloud generation. Careful photogrammetric processing with self-calibration is required to achieve the highest accuracy. Our results demonstrate the high performance potential of the approach and that with rigorous processing it is possible to reach results that are consistent with theory. We also point out several further research topics. Based on theoretical and empirical results, we give recommendations for properties of imaging sensor, data collection and processing of UAV image data to ensure accurate point cloud generation. PMID:22368479

  10. Superresolution imaging with optical fluctuation using speckle patterns illumination

    PubMed Central

    Kim, MinKwan; Park, ChungHyun; Rodriguez, Christophe; Park, YongKeun; Cho, Yong-Hoon

    2015-01-01

    Superresolution fluorescence microscopy possesses an important role for the study of processes in biological cells with subdiffraction resolution. Recently, superresolution methods employing the emission properties of fluorophores have rapidly evolved due to their technical simplicity and direct applicability to existing microscopes. However, the application of these methods has been limited to samples labeled with fluorophores that can exhibit intrinsic emission properties at a restricted timescale, especially stochastic blinking. Here, we present a superresolution method that can be performed using general fluorophores, regardless of this intrinsic property. Utilizing speckle patterns illumination, temporal emission fluctuation of fluorophores is induced and controlled, from which a superresolution image can be obtained exploiting its statistical property. Using this method, we demonstrate, theoretically and experimentally, the capability to produce subdiffraction resolution images. A spatial resolution of 500 nm, 300 nm and 140 nm with 0.4, 0.5 and 1.4 NA objective lenses respectively was achieved in various samples with an enhancement factor of 1.6 compared to conventional fluorescence microscopy. PMID:26572283

  11. Photogrammetry and photo interpretation applied to analyses of cloud cover, cloud type, and cloud motion

    NASA Technical Reports Server (NTRS)

    Larsen, P. A.

    1972-01-01

    A determination was made of the areal extent of terrain obscured by clouds and cloud shadows on a portion of an Apollo 9 photograph at the instant of exposure. This photogrammetrically determined area was then compared to the cloud coverage reported by surface weather observers at approximately the same time and location, as a check on result quality. Stereograms prepared from Apollo 9 vertical photographs, illustrating various percentages of cloud coverage, are presented to help provide a quantitative appreciation of the degradation of terrain photography by clouds and their attendant shadows. A scheme, developed for the U.S. Navy, utilizing pattern recognition techniques for determining cloud motion from sequences of satellite photographs, is summarized. Clouds, turbulence, haze, and solar altitude, four elements of our natural environment which affect aerial photographic missions, are each discussed in terms of their effects on imagery obtained by aerial photography. Data of a type useful to aerial photographic mission planners, expressing photographic ground coverage in terms of flying height above terrain and camera focal length, for a standard aerial photograph format, are provided. Two oblique orbital photographs taken during the Apollo 9 flight are shown, and photo-interpretations, discussing the cloud types imaged and certain visible geographical features, are provided.

  12. ENVI Services Engine: Earth and Planetary Image Processing for the Cloud

    NASA Astrophysics Data System (ADS)

    O'Connor, A. S.; Lausten, K.; Heightley, K.; Harris, T.

    2012-12-01

    The geospatial imagery analysis and exploitation community has a growing need for online analytic capabilities. Work previously done on desktop workstations must migrate to a web-accessible environment to mitigate growing data volumetrics, bandwidth usage, and end user requirements. Web based applications (or 'apps') are intended to apply analytic methods, procedures, and routines to image datasets stored within centralized server repositories. Exelis Visual information Solutions (VIS) developed an enterprise-enabled processing engine that provides remote users access to the power of ENVI image analysis and IDL applications from a web or mobile client interface. The working name for this capability is the ENVI and IDL Services Engine (ESE). This engine now enables the remote user to gain access to the same compiled ENVI and IDL functions and procedures that remote sensing scientists have utilized for decades at the desktop level. ESE operates in a RESTful state, listening for http calls to arrive that initiate a data processing operation once those messages are registered. ESE is middleware agnostic, meaning users can implement this capability using their current enterprise architecture such as ArcGIS Server or GeoServer. Flexibility and openness in middleware components is achieved through the use of OGC standards for message and data transfer. ESE represents bringing long term earth science monitoring analysis capabilities to the cloud, harnessing existing ENVI and IDL tools and deploying them to the enterprise, and improving access to earth and planetary science data.

  13. ABrIL - Advanced Brain Imaging Lab : a cloud based computation environment for cooperative neuroimaging projects.

    PubMed

    Neves Tafula, Sérgio M; Moreira da Silva, Nádia; Rozanski, Verena E; Silva Cunha, João Paulo

    2014-01-01

    Neuroscience is an increasingly multidisciplinary and highly cooperative field where neuroimaging plays an important role. Neuroimaging rapid evolution is demanding for a growing number of computing resources and skills that need to be put in place at every lab. Typically each group tries to setup their own servers and workstations to support their neuroimaging needs, having to learn from Operating System management to specific neuroscience software tools details before any results can be obtained from each setup. This setup and learning process is replicated in every lab, even if a strong collaboration among several groups is going on. In this paper we present a new cloud service model - Brain Imaging Application as a Service (BiAaaS) - and one of its implementation - Advanced Brain Imaging Lab (ABrIL) - in the form of an ubiquitous virtual desktop remote infrastructure that offers a set of neuroimaging computational services in an interactive neuroscientist-friendly graphical user interface (GUI). This remote desktop has been used for several multi-institution cooperative projects with different neuroscience objectives that already achieved important results, such as the contribution to a high impact paper published in the January issue of the Neuroimage journal. The ABrIL system has shown its applicability in several neuroscience projects with a relatively low-cost, promoting truly collaborative actions and speeding up project results and their clinical applicability. PMID:25570014

  14. Three-Dimensional Transcranial Ultrasound Imaging of Microbubble Clouds Using a Sparse Hemispherical Array

    PubMed Central

    O'Reilly, Meaghan A.; Jones, Ryan M.; Hynynen, Kullervo

    2014-01-01

    There is an increasing interest in bubble-mediated focused ultrasound (FUS) interventions in the brain. However, current technology lacks the ability to spatially monitor the interaction of the microbubbles with the applied acoustic field, something which is critical for safe clinical translation of these treatments. Passive acoustic mapping could offer a means for spatially monitoring microbubble emissions that relate to bubble activity and associated bioeffects. In this study a hemispherical receiver array was integrated within an existing transcranial therapy array to create a device capable of both delivering therapy and monitoring the process via passive imaging of bubble clouds. A 128-element receiver array was constructed and characterized for varying bubble concentrations and source spacings. Initial in vivo feasibility testing was performed. The system was found to be capable of monitoring bubble emissions down to single bubble events through an ex vivo human skull. The lateral resolution of the system was found to be between 1.25-2 mm and the axial resolution between 2-3.5 mm, comparable to the resolution of MRI-based temperature monitoring during thermal FUS treatments in the brain. The results of initial in vivo experiments show that bubble activity can be mapped starting at pressure levels below the threshold for Blood-Brain barrier disruption. This study presents a feasible solution for imaging bubble activity during cavitation-mediated FUS treatments in the brain. PMID:24658252

  15. NEAR-IR IMAGING POLARIMETRY TOWARD A BRIGHT-RIMMED CLOUD: MAGNETIC FIELD IN SFO 74

    SciTech Connect

    Kusune, Takayoshi; Sugitani, Koji; Miao, Jingqi; Tamura, Motohide; Kwon, Jungmi; Sato, Yaeko; Watanabe, Makoto; Nishiyama, Shogo; Nagayama, Takahiro; Sato, Shuji

    2015-01-01

    We have made near-infrared (JHK {sub s}) imaging polarimetry of a bright-rimmed cloud (SFO 74). The polarization vector maps clearly show that the magnetic field in the layer just behind the bright rim is running along the rim, quite different from its ambient magnetic field. The direction of the magnetic field just behind the tip rim is almost perpendicular to that of the incident UV radiation, and the magnetic field configuration appears to be symmetric as a whole with respect to the cloud symmetry axis. We estimated the column and number densities in the two regions (just inside and far inside the tip rim) and then derived the magnetic field strength, applying the Chandrasekhar-Fermi method. The estimated magnetic field strength just inside the tip rim, ∼90 μG, is stronger than that far inside, ∼30 μG. This suggests that the magnetic field strength just inside the tip rim is enhanced by the UV-radiation-induced shock. The shock increases the density within the top layer around the tip and thus increases the strength of the magnetic field. The magnetic pressure seems to be comparable to the turbulent one just inside the tip rim, implying a significant contribution of the magnetic field to the total internal pressure. The mass-to-flux ratio was estimated to be close to the critical value just inside the tip rim. We speculate that the flat-topped bright rim of SFO 74 could be formed by the magnetic field effect.

  16. Imaging patterns with 99mTc-PIPIDA in evaluating abdominal pain

    SciTech Connect

    Curtis, R.F.; Gordon, L.; Selby, J.B. Sr.

    1983-11-01

    A random retrospective review of hepatobiliary scans on 86 adult patients with abdominal pain revealed four distinct imaging patterns: normal, cystic duct obstruction, obstructive, and sick liver pattern. A normal pattern was found to exclude acute cholecystitis and was the pattern most frequently observed.

  17. Evaluation of a cloud-based local-read paradigm for imaging evaluations in oncology clinical trials for lung cancer

    PubMed Central

    Kobayashi, Naomi; Bonnard, Eric; Charbonnier, Colette; Yamamichi, Junta; Mizobe, Hideaki; Kimura, Shinya

    2015-01-01

    Background Although tumor response evaluated with radiological imaging is frequently used as a primary endpoint in clinical trials, it is difficult to obtain precise results because of inter- and intra-observer differences. Purpose To evaluate usefulness of a cloud-based local-read paradigm implementing software solutions that standardize imaging evaluations among international investigator sites for clinical trials of lung cancer. Material and Methods Two studies were performed: KUMO I and KUMO I Extension. KUMO I was a pilot study aiming at demonstrating the feasibility of cloud implementation and identifying issues regarding variability of evaluations among sites. Chest CT scans at three time-points from baseline to progression, from 10 patients with lung cancer who were treated with EGFR tyrosine kinase inhibitors, were evaluated independently by two oncologists (Japan) and one radiologist (France), through a cloud-based software solution. The KUMO I Extension was performed based on the results of KUMO I. Results KUMO I showed discordance rates of 40% for target lesion selection, 70% for overall response at the first time-point, and 60% for overall response at the second time-point. Since the main reason for the discordance was differences in the selection of target lesions, KUMO I Extension added a cloud-based quality control service to achieve a consensus on the selection of target lesions, resulting in an improved rate of agreement of response evaluations. Conclusion The study shows the feasibility of imaging evaluations at investigator sites, based on cloud services for clinical studies involving multiple international sites. This system offers a step forward in standardizing evaluations of images among widely dispersed sites. PMID:26668754

  18. The Seasonal and Diurnal Patterns of net Ecosystem CO2 Exchange in a Subtropical Montane Cloud Forest.

    NASA Astrophysics Data System (ADS)

    Chu, H.; Lai, C.; Wu, C.; Hsia, Y.

    2008-12-01

    CO2 fluxes were measured by an open/closed path eddy covariance system at a natural regenerated 50-years-old yellow cypress (Chamaecyparis obtusa var. formosana) forest at Chi-Lan Mountain site (CLM site, 24°35'N, 121°25'E, 1650 m elevation), north-eastern Taiwan. CLM site is located at a relative uniform south-eastern-facing valley slope (15°) characterized with year round fog occurrence and diurnal mountain-valley wind and can be classified as subtropical montane cloud forest. Based on measurement from July 2007 to June 2008, seasonal and diurnal patterns of CO2 fluxes were described and patterns under different cloudiness and foggy conditions were presented. Comparing with other cypress forests in temperate region, there is only a weak seasonal pattern of the CO2 fluxes at CLM site. Throughout the year, average incident photosynthetically active radiation in summer was almost the double of that in winter, whereas the difference of mean daytime CO2 fluxes among seasons was much less than the seasonal light difference. During summer when light intensity was higher, mean daytime CO2 fluxes reached -7.5 μmol/m2/s in July and -8.8 μmol/m2/s in August. As heavy fog accounted for 64% and 67% of the time in November and February, mean daytime CO2 fluxes dropped to -6.9 and -6.1 μmol/m2/s respectively. With comparable higher incident radiation intensity (>1000 μmol/m2/s), the CO2 fluxes were higher in overcast days than in clear days. In July 2007, clear days accounted for 30% of the month, light intensity reached its peak at midday, and however, CO2 fluxes didn't reach its highest value in the meanwhile. Canopy conductance calculated from the Penman-Monteith equation and measured latent heat fluxes both showed a midday depression at clear days, which indicated the regulation of transpiration by plant physiological mechanism. With comparable lower incident radiation intensity (<1000 μmol/m2/s), the CO2 fluxes were higher in overcast days than in foggy days. The

  19. Characterizing growth patterns in longitudinal MRI using image contrast

    NASA Astrophysics Data System (ADS)

    Vardhan, Avantika; Prastawa, Marcel; Vachet, Clement; Piven, Joseph; Gerig, Guido

    2014-03-01

    Understanding the growth patterns of the early brain is crucial to the study of neuro-development. In the early stages of brain growth, a rapid sequence of biophysical and chemical processes take place. A crucial component of these processes, known as myelination, consists of the formation of a myelin sheath around a nerve fiber, enabling the effective transmission of neural impulses. As the brain undergoes myelination, there is a subsequent change in the contrast between gray matter and white matter as observed in MR scans. In this work, gray-white matter contrast is proposed as an effective measure of appearance which is relatively invariant to location, scanner type, and scanning conditions. To validate this, contrast is computed over various cortical regions for an adult human phantom. MR (Magnetic Resonance) images of the phantom were repeatedly generated using different scanners, and at different locations. Contrast displays less variability over changing conditions of scan compared to intensity-based measures, demonstrating that it is less dependent than intensity on external factors. Additionally, contrast is used to analyze longitudinal MR scans of the early brain, belonging to healthy controls and Down's Syndrome (DS) patients. Kernel regression is used to model subject-specific trajectories of contrast changing with time. Trajectories of contrast changing with time, as well as time-based biomarkers extracted from contrast modeling, show large differences between groups. The preliminary applications of contrast based analysis indicate its future potential to reveal new information not covered by conventional volumetric or deformation-based analysis, particularly for distinguishing between normal and abnormal growth patterns.

  20. Thermal neutron image intensifier tube provides brightly visible radiographic pattern

    NASA Technical Reports Server (NTRS)

    Berger, H.; Kraska, I.; Niklas, W.; Schmidt, A.

    1967-01-01

    Vacuum-type neutron image intensifier tube improves image detection in thermal neutron radiographic inspection. This system converts images to an electron image, and with electron acceleration and demagnification between the input target and output screen, produces a bright image viewed through a closed circuit television system.

  1. Fusion of airborne laserscanning point clouds and images for supervised and unsupervised scene classification

    NASA Astrophysics Data System (ADS)

    Gerke, Markus; Xiao, Jing

    2014-01-01

    Automatic urban object detection from airborne remote sensing data is essential to process and efficiently interpret the vast amount of airborne imagery and Laserscanning (ALS) data available today. This paper combines ALS data and airborne imagery to exploit both: the good geometric quality of ALS and the spectral image information to detect the four classes buildings, trees, vegetated ground and sealed ground. A new segmentation approach is introduced which also makes use of geometric and spectral data during classification entity definition. Geometric, textural, low level and mid level image features are assigned to laser points which are quantified into voxels. The segment information is transferred to the voxels and those clusters of voxels form the entity to be classified. Two classification strategies are pursued: a supervised method, using Random Trees and an unsupervised approach, embedded in a Markov Random Field framework and using graph-cuts for energy optimization. A further contribution of this paper concerns the image-based point densification for building roofs which aims to mitigate the accuracy problems related to large ALS point spacing. Results for the ISPRS benchmark test data show that to rely on color information to separate vegetation from non-vegetation areas does mostly lead to good results, but in particular in shadow areas a confusion between classes might occur. The unsupervised classification strategy is especially sensitive in this respect. As far as the point cloud densification is concerned, we observe similar sensitivity with respect to color which makes some planes to be missed out, or false detections still remain. For planes where the densification is successful we see the expected enhancement of the outline.

  2. Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae).

    PubMed

    Eller, Cleiton B; Burgess, Stephen S O; Oliveira, Rafael S

    2015-04-01

    Trees from tropical montane cloud forest (TMCF) display very dynamic patterns of water use. They are capable of downwards water transport towards the soil during leaf-wetting events, likely a consequence of foliar water uptake (FWU), as well as high rates of night-time transpiration (Enight) during drier nights. These two processes might represent important sources of water losses and gains to the plant, but little is known about the environmental factors controlling these water fluxes. We evaluated how contrasting atmospheric and soil water conditions control diurnal, nocturnal and seasonal dynamics of sap flow in Drimys brasiliensis (Miers), a common Neotropical cloud forest species. We monitored the seasonal variation of soil water content, micrometeorological conditions and sap flow of D. brasiliensis trees in the field during wet and dry seasons. We also conducted a greenhouse experiment exposing D. brasiliensis saplings under contrasting soil water conditions to deuterium-labelled fog water. We found that during the night D. brasiliensis possesses heightened stomatal sensitivity to soil drought and vapour pressure deficit, which reduces night-time water loss. Leaf-wetting events had a strong suppressive effect on tree transpiration (E). Foliar water uptake increased in magnitude with drier soil and during longer leaf-wetting events. The difference between diurnal and nocturnal stomatal behaviour in D. brasiliensis could be attributed to an optimization of carbon gain when leaves are dry, as well as minimization of nocturnal water loss. The leaf-wetting events on the other hand seem important to D. brasiliensis water balance, especially during soil droughts, both by suppressing tree transpiration (E) and as a small additional water supply through FWU. Our results suggest that decreases in leaf-wetting events in TMCF might increase D. brasiliensis water loss and decrease its water gains, which could compromise its ecophysiological performance and survival

  3. Local binary patterns for stromal area removal in histology images

    NASA Astrophysics Data System (ADS)

    Alomari, Raja S.; Ghosh, Subarna; Chaudhary, Vipin; Al-Kadi, Omar

    2012-03-01

    Nuclei counting in epithelial cells is an indication for tumor proliferation rate which is useful to rank tumors and select an appropriate treatment schedule for the patient. However, due to the high interand intra- observer variability in nuclei counting, pathologists seek a deterministic proliferation rate estimate. Histology tissue contains epithelial and stromal cells. However, nuclei counting is clinically restricted to epithelial cells because stromal cells do not become cancerous themselves since they remain genetically normal. Counting nuclei existing within the stromal tissue is one of the major causes of the proliferation rate non-deterministic estimation. Digitally removing stromal tissue will eliminate a major cause in pathologist counting variability and bring the clinical pathologist a major step closer toward a deterministic proliferation rate estimation. To that end, we propose a computer aided diagnosis (CAD) system for eliminating stromal cells from digital histology images based on the local binary patterns, entropy measurement, and statistical analysis. We validate our CAD system on a set of fifty Ki-67-stained histology images. Ki-67-stained histology images are among the clinically approved methods for proliferation rate estimation. To test our CAD system, we prove that the manual proliferation rate estimation performed by the expert pathologist does not change before and after stromal removal. Thus, stromal removal does not affect the expert pathologist estimation clinical decision. Hence, the successful elimination of the stromal area highly reduces the false positive nuclei which are the major confusing cause for the less experienced pathologists and thus accounts for the non-determinism in the proliferation rate estimation. Our experimental setting shows statistical insignificance (paired student t-test shows ρ = 0.74) in the manual nuclei counting before and after our automated stromal removal. This means that the clinical decision of

  4. Road Signs Detection and Recognition Utilizing Images and 3d Point Cloud Acquired by Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Li, Y. H.; Shinohara, T.; Satoh, T.; Tachibana, K.

    2016-06-01

    High-definition and highly accurate road maps are necessary for the realization of automated driving, and road signs are among the most important element in the road map. Therefore, a technique is necessary which can acquire information about all kinds of road signs automatically and efficiently. Due to the continuous technical advancement of Mobile Mapping System (MMS), it has become possible to acquire large number of images and 3d point cloud efficiently with highly precise position information. In this paper, we present an automatic road sign detection and recognition approach utilizing both images and 3D point cloud acquired by MMS. The proposed approach consists of three stages: 1) detection of road signs from images based on their color and shape features using object based image analysis method, 2) filtering out of over detected candidates utilizing size and position information estimated from 3D point cloud, region of candidates and camera information, and 3) road sign recognition using template matching method after shape normalization. The effectiveness of proposed approach was evaluated by testing dataset, acquired from more than 180 km of different types of roads in Japan. The results show a very high success in detection and recognition of road signs, even under the challenging conditions such as discoloration, deformation and in spite of partial occlusions.

  5. A method of using commercial virtual satellite image to check the pattern painting spot effect

    NASA Astrophysics Data System (ADS)

    Wang, Zheng-gang; Kang, Qing; Shen, Zhi-qiang; Cui, Chang-bin

    2014-02-01

    A method of using commercial virtual satellite image to check the pattern painting spot effect contrast with the satellite images before painting and after painting have been discussed. Using a housetop as the testing platform analyses and discusses the factors' influence such as resolution of satellite image, spot size and color of pattern painting spot and pattern painting camouflage method choosing to the plan implement. The pattern painting design and spot size used in the testing has been ensured, and housetop pattern painting has been painted. Finally, the small spot pattern painting camouflage effect of engineering using upon painting pattern size, color and texture have been checked, contrasting with the satellite image before painting and after painting.

  6. Uranus' Persistent Patterns and Features from High-SNR Imaging in 2012-2014

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, Lawrence A.; de Pater, Imke; Hammel, Heidi B.; Marcus, Phillip

    2015-11-01

    Since 2012, Uranus has been the subject of an observing campaign utilizing high signal-to-noise imaging techniques at Keck Observatory (Fry et al. 2012, Astron. J. 143, 150-161). High quality observing conditions on four observing runs of consecutive nights allowed longitudinally-complete coverage of the atmosphere over a period of two years (Sromovsky et al. 2015, Icarus 258, 192-223). Global mosaic maps made from images acquired on successive nights in August 2012, November 2012, August 2013, and August 2014, show persistent patterns, and six easily distinguished long-lived cloud features, which we were able to track for long periods that ranged from 5 months to over two years. Two at similar latitudes are associated with dark spots, and move with the atmospheric zonal flow close to the location of their associated dark spot instead of following the flow at the latitude of the bright features. These features retained their morphologies and drift rates in spite of several close interactions. A second pair of features at similar latitudes also survived several close approaches. Several of the long-lived features also exhibited equatorward drifts and latitudinal oscillations. Also persistent are a remarkable near-equatorial wave feature and global zonal band structure. We will present imagery, maps, and analyses of these phenomena.PMF and LAS acknowledge support from NASA Planetary Astronomy Program; PMF and LAS acknowledge funding and technical support from W. M. Keck Observatory. We thank those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality none of our groundbased observations would have been possible.

  7. Application of Cloude's target decomposition theorem to polarimetric imaging radar data

    NASA Technical Reports Server (NTRS)

    Vanzyl, Jakob J.

    1993-01-01

    We apply Cloude's decomposition to imaging radar polarimetry. We derive the general expressions for the eigenvalues and eigenvectors for the case of terrain with reflection symmetry, and show in detail how the decomposition results can guide the interpretation of scattering from vegetated areas. For multi-frequency polarimetric radar measurements of a clear-cut area, the decomposition leads us to conclude that the vegetation is probably thin compared to even the C-band radar wavelength of 6 cm. For a forested area, we notice an increased amount of even number of reflection scattering at P-band and L-band, probably the result of penetration through the coniferous canopy resulting in trunk-ground double reflection scattering. The scattering for the forested area is still dominated by scattering from randomly oriented cylinders, however. It is found that these cylinders are thicker than in the case of clear-cut areas, leading us to conclude that scattering from the branches probably dominate in this case.

  8. An objective regional cloud mask algorithm for GOES infrared imager with regime-dependent thresholds for direct radiance assimilation

    NASA Astrophysics Data System (ADS)

    Da, Cheng

    A local, regime-dependent cloud mask (CM) algorithm is developed for isolating cloud-free pixels from cloudy pixels for Geostationary Operational Environmental Satellite (GOES) imager radiance assimilation using mesoscale forecast models. In this CM algorithm, thresholds for six different CM tests are determined by a one-dimensional optimization approach based on probability distribution functions of the nearby cloudy and clear-sky pixels within a 10ox10o box centered at a target pixel. It is shown that the optimized thresholds over land are in general larger and display more spatial variations than over ocean. The performance of the proposed CM algorithm is compared with Moderate Resolution Imaging Spectroradiometer (MODIS) CM for a one-week period from 19 to 23 May 2008. Based on MODIS CM results, the average Probability of Correct Typing (PCT) reaches 92.94% and 91.50% over land and ocean, respectively.

  9. Closed Small Cell Clouds

    Atmospheric Science Data Center

    2013-04-19

    article title:  Closed Small Cell Clouds in the South Pacific     ... the Multi-angle Imaging SpectroRadiometer (MISR). Closed cell clouds are formed under conditions of widespread sinking of the air above. ...

  10. Workshop on Standards for Image Pattern Recognition. Computer Seience & Technology Series.

    ERIC Educational Resources Information Center

    Evans, John M. , Ed.; And Others

    Automatic image pattern recognition techniques have been successfully applied to improving productivity and quality in both manufacturing and service applications. Automatic Image Pattern Recognition Algorithms are often developed and tested using unique data bases for each specific application. Quantitative comparison of different approaches and…

  11. UV contrasts and microphysical properties of the upper clouds of Venus from the UV and NIR VMC/VEx images

    NASA Astrophysics Data System (ADS)

    Petrova, Elena V.; Shalygina, Oksana S.; Markiewicz, Wojciech J.

    2015-11-01

    The nature of UV contrasts observed on the upper cloud deck of Venus is still not known. To constrain better the properties of particles that may cause the UV contrasts, the phase dependences of brightness of the venusian clouds measured by the ultraviolet and near-infrared channels of the Venus Express Venus Monitoring Camera (VMC) in the UV dark and bright regions are jointly analyzed. The range of small phase angles, where the glory phenomenon is observed, is of key importance, since the properties of cloud particles can be reliably estimated from the shape and position of glory. However, from more than 2500 orbits of the mission, only in ten orbits the images were taken simultaneously in UV and near-IR channels at small phase angles. Their analysis have yielded the following results. In the UV dark and bright clouds of the equatorial region near the local noon, the derived radii of cloud particles turned out to be the same and rather large, 1.3-1.6 μm. No unambiguous connection between the UV contrasts and the brightness in the near-IR channel was found. In some cases, the regions that appear contrasting in UV show no difference in the near-IR brightness. This means that the properties of 1-μm mode particles are the same in these regions and only the contribution of small submicron particles differs, because the near-IR channel is weakly sensitive to the presence of particles smaller than ≈0.3 μm in radius. The difference in the composition of 10% of the number of submicron particles (if sulfur and sulfuric acid compositions are considered as probable for the submicron mode) is enough to produce the observed UV contrasts. In the other cases, the UV contrasts are accompanied by the differences in near-IR brightness. This suggests that the cloud particles of the 1-μm mode contribute to these contrasts as well. However, the modeling showed that exactly the variations in the composition of submicron particles in the clouds produce a key effect on the UV

  12. Improving Cloud Detection in Satellite Images of Coral Reef Environments Using Space Shuttle Photographs and High-Definition Television

    NASA Technical Reports Server (NTRS)

    Andrefeouet, Serge; Robinson, Julie

    2000-01-01

    Coral reefs worldwide are suffering from severe and rapid degradation (Bryant et A, 1998; Hoegh-Guldberg, 1999). Quick, consistent, large-scale assessment is required to assess and monitor their status (e.g., USDOC/NOAA NESDIS et al., 1999). On-going systematic collection of high resolution digital satellite data will exhaustively complement the relatively small number of SPOT, Landsat 4-5, and IRS scenes acquired for coral reefs the last 20 years. The workhorse for current image acquisition is the Landsat 7 ETM+ Long Term Acquisition Plan (Gasch et al. 2000). Coral reefs are encountered in tropical areas and cloud contamination in satellite images is frequently a problem (Benner and Curry 1998), despite new automated techniques of cloud cover avoidance (Gasch and Campana 2000). Fusion of multidate acquisitions is a classical solution to solve the cloud problems. Though elegant, this solution is costly since multiple images must be purchased for one location; the cost may be prohibitive for institutions in developing countries. There are other difficulties associated with fusing multidate images as well. For example, water quality or surface state can significantly change through time in coral reef areas making the bathymetric processing of a mosaiced image strenuous. Therefore, another strategy must be selected to detect clouds and improve coral reefs mapping. Other supplemental data could be helpful and cost-effective for distinguishing clouds and generating the best possible reef maps in the shortest amount of time. Photographs taken from the 1960s to the present from the Space Shuttle and other human-occupied spacecraft are one under-used source of alternative multitemporal data (Lulla et al. 1996). Nearly 400,000 photographs have been acquired during this period, an estimated 28,000 of these taken to date are of potential value for reef remote sensing (Robinson et al. 2000a). The photographic images can be digitized into three bands (red, green and blue) and

  13. Hierarchical wavelet-based image model for pattern analysis and synthesis

    NASA Astrophysics Data System (ADS)

    Scott, Clayton D.; Nowak, Robert D.

    2000-12-01

    Despite their success in other areas of statistical signal processing, current wavelet-based image models are inadequate for modeling patterns in images, due to the presence of unknown transformations inherent in most pattern observations. In this paper we introduce a hierarchical wavelet-based framework for modeling patterns in digital images. This framework takes advantage of the efficient image representations afforded by wavelets, while accounting for unknown pattern transformations. Given a trained model, we can use this framework to synthesize pattern observations. If the model parameters are unknown, we can infer them from labeled training data using TEMPLAR, a novel template learning algorithm with linear complexity. TEMPLAR employs minimum description length complexity regularization to learn a template with a sparse representation in the wavelet domain. We illustrate template learning with examples, and discuss how TEMPLAR applies to pattern classification and denoising from multiple, unaligned observations.

  14. Multi-Focus Raw Bayer Pattern Image Fusion for Single-Chip Camera

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Chen, Jibin

    2015-12-01

    In this paper, an efficient patch-based image fusion approach for raw images of single-chip imaging devices incorporated with the Bayer CFA pattern is presented. The multi-source raw Bayer pattern images are firstly parted into half overlapped patches. Then, the patches with maximum clarity measurement defined for raw Bayer pattern image are selected as the fused patches. Next, all the fused local patches are merged with weighted average method in order to reduce the blockness effect of fused raw Bayer pattern image. Finally, the real color fused image is obtained by gradient based demosaicing technology. The multi-source raw Bayer pattern data is fused before demosaicing, so that the multi-sensor system will be more efficient and the artifacts introduced in demosaicing processing do not accumulate in image fusion processing. For comparison, the raw images are also interpolated firstly, and then various image fusion methods are used to get the fused color images. Experimental results show that the proposed algorithm is valid and very effective.

  15. Cloud Screening and Quality Control Algorithm for Star Photometer Data: Assessment with Lidar Measurements and with All-sky Images

    NASA Technical Reports Server (NTRS)

    Ramirez, Daniel Perez; Lyamani, H.; Olmo, F. J.; Whiteman, D. N.; Navas-Guzman, F.; Alados-Arboledas, L.

    2012-01-01

    This paper presents the development and set up of a cloud screening and data quality control algorithm for a star photometer based on CCD camera as detector. These algorithms are necessary for passive remote sensing techniques to retrieve the columnar aerosol optical depth, delta Ae(lambda), and precipitable water vapor content, W, at nighttime. This cloud screening procedure consists of calculating moving averages of delta Ae() and W under different time-windows combined with a procedure for detecting outliers. Additionally, to avoid undesirable Ae(lambda) and W fluctuations caused by the atmospheric turbulence, the data are averaged on 30 min. The algorithm is applied to the star photometer deployed in the city of Granada (37.16 N, 3.60 W, 680 ma.s.l.; South-East of Spain) for the measurements acquired between March 2007 and September 2009. The algorithm is evaluated with correlative measurements registered by a lidar system and also with all-sky images obtained at the sunset and sunrise of the previous and following days. Promising results are obtained detecting cloud-affected data. Additionally, the cloud screening algorithm has been evaluated under different aerosol conditions including Saharan dust intrusion, biomass burning and pollution events.

  16. Definition of the oxygen A-band channels of ENVISAT's Medium Resolution Imaging Spectrometer for cloud monitoring

    NASA Astrophysics Data System (ADS)

    Kollewe, M.; Fischer, Juergen

    1994-12-01

    During the `European Lidar Airborne Campaign' in 1990 the backscattered sunlight in the region of the O2 A-band at 0.76 micrometers was measured above various clouds. The multispectral radiance measurements were performed with a nadir-looking device with a spectral resolution of (Delta) (lambda) equals 0.42 nm. A `Principal Component Analysis' was applied to about 140000 spectra, each consisting of 320 channels. It turns out that above clouds with optical depths (delta) c > 10 or above clouds over oceans three spectral regions with (Delta) (lambda) approximately equals 2.5 - 5 nm contain the entire information of the high- resolved spectra. One of these intervals is located near the absorption band (window channel) while the remaining two cover the R- and the P-branch of the O2 A-band, respectively. Based on this finding, the O2 A-band channels of the planned `Medium Resolution Imaging Spectrometer' (MERIS, ESA), dedicated to the detection of the cloud-top height, are defined.

  17. Remote sensing of cloud droplet size distributions in DC3 with the UMBC-LACO Rainbow Polarimetric Imager (RPI)

    NASA Astrophysics Data System (ADS)

    Buczkowski, S.; Martins, J.; Fernandez-Borda, R.; Cieslak, D.; Hall, J.

    2013-12-01

    The UMBC Rainbow Polarimetric Imager is a small form factor VIS imaging polarimeter suitable for use on a number of platforms. An optical system based on a Phillips prism with three Bayer filter color detectors, each detecting a separate polarization state, allows simultaneous detection of polarization and spectral information. A Mueller matrix-like calibration scheme corrects for polarization artifacts in the optical train and allows retrieval of the polarization state of incoming light to better than 0.5%. Coupled with wide field of view optics (~90°), RPI can capture images of cloudbows over a wide range of aircraft headings and solar zenith angles for retrieval of cloud droplet size distribution (DSD) parameters. In May-June 2012, RPI was flown in a nadir port on the NASA DC-8 during the DC3 field campaign. We will show examples of cloudbow DSD parameter retrievals from the campaign to demonstrate the efficacy of such a system to terrestrial atmospheric remote sensing. RPI image from DC3 06/15/2012 flight. Left panel is raw image from the RPI 90° camera. Middle panel is Stokes 'q' parameter retrieved from full three camera dataset. Right panel is a horizontal cut in 'q' through the glory. Both middle and right panels clearly show cloudbow features which can be fit to infer cloud DSD parameters.

  18. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.

    1999-01-01

    Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images is the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimension-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.

  19. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Lam, Nina Siu-Ngan; Quattrochi, Dale A.

    1999-01-01

    Analyses of the fractal dimension of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed (10 to 80 meters). A similar analysis of Landsat Thematic Mapper images of the East Humboldt Range in Nevada taken four months apart show a more complex relation between pixel size and fractal dimension. The major visible difference between the spring and late summer NDVI images of the absence of high elevation snow cover in the summer image. This change significantly alters the relation between fractal dimension and pixel size. The slope of the fractal dimensional-resolution relation provides indications of how image classification or feature identification will be affected by changes in sensor spatial resolution.

  20. Object Based Image Analysis Combining High Spatial Resolution Imagery and Laser Point Clouds for Urban Land Cover

    NASA Astrophysics Data System (ADS)

    Zou, Xiaoliang; Zhao, Guihua; Li, Jonathan; Yang, Yuanxi; Fang, Yong

    2016-06-01

    With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA) combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way to combine high

  1. Cloud Computing for radiologists.

    PubMed

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future. PMID:23599560

  2. Saturn’s Zonal Winds at Cloud Level between 2004-2013 from Cassini ISS Images

    NASA Astrophysics Data System (ADS)

    Blalock, John J.; Sayanagi, Kunio M.; Dyudina, Ulyana A.; Ewald, Shawn P.; Ingersoll , Andrew P.

    2014-11-01

    We examine images of Saturn returned by Cassini orbiter’s Imaging Science Subsystem (ISS) camera between 2004 to 2013 to analyze the temporal evolution of the zonal mean wind speed as a function of latitude. Our study primarily examines the images captured in the 752-nm continuum band using the CB2 filter. Images captured using the CB2 filter sense the upper troposphere of Saturn between 350 mbar and 500 mbar (Pérez-Hoyos and Sánchez-Lavega, 2006; Sánchez-Lavega et al, 2006; García-Melendo et al, 2009). We measure the wind speed using a two-dimensional Correlation Imaging Velocimetry (CIV) technique. The wind vectors are computed using pairs of images separated in time by up to two planetary rotations, and binned in latitude to determine the zonal mean wind profile, which typically covers a limited range of latitude. To achieve pole-to-pole coverage, we systematically merge all the wind measurements during each of the calendar years in order to compile a yearly, near-global record of Saturn's zonal wind structure. Using our wind measurements, we analyze the temporal evolution of the zonal wind. We specifically focus on changes in the wind profile after the 2009 equinox; we predict that changes in the insolation pattern caused by the shifting ring shadows affect the horizontal temperature gradient, and change the zonal mean wind through the thermal wind relationship. Furthermore, we also extend the zonal wind analysis by Sayanagi et al (2013), who detected changes in the zonal wind related to the Great Storm of 2010-2011, to study the subsequent evolution of the region affected by the storm. We compare our results with previously published zonal wind profiles obtained from Voyager 1 and 2 (Sánchez-Lavega et al, 2000) and Cassini (García-Melendo et al, 2011). Out study is supported by the Cassini Project, and our investigation is funded by NASA Outer Planets Research Program grant NNX12AR38G and NSF Astronomy and Astrophysics grant 1212216 to KMS.

  3. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  4. Data management in pattern recognition and image processing systems

    NASA Technical Reports Server (NTRS)

    Zobrist, A. L.; Bryant, N. A.

    1976-01-01

    Data management considerations are important to any system which handles large volumes of data or where the manipulation of data is technically sophisticated. A particular problem is the introduction of image-formatted files into the mainstream of data processing application. This report describes a comprehensive system for the manipulation of image, tabular, and graphical data sets which involve conversions between the various data types. A key characteristic is the use of image processing technology to accomplish data management tasks. Because of this, the term 'image-based information system' has been adopted.

  5. Fragmentary area repairing on the edge of 3D laser point cloud based on edge extracting of images and LS-SVM

    NASA Astrophysics Data System (ADS)

    Zhao, Ziming; Hao, Xiangyang; Liu, Songlin; Zhao, Song

    2011-06-01

    In the process of hole-repairing in point cloud, it's difficult to repair by the indeterminate boundary of fragmentary area in the edge of point cloud. In view of this condition, the article advances a method of Fragmentary area repairing on the edge of point cloud based on edge extracting of image and LS-SVM. After the registration of point cloud and corresponding image, the sub-pixel edge can be extracted from the image. Then project the training points and sub-pixel edge to the characteristic plane that has being constructed to confirm the bound and position for re-sampling. At last get the equation of fragmentary area to accomplish the repairing by Least-Squares Support Vector Machines. The experimental results demonstrate that the method guarantees accurate fine repairing.

  6. Adaptive algorithm for cloud cover estimation from all-sky images over the sea

    NASA Astrophysics Data System (ADS)

    Krinitskiy, M. A.; Sinitsyn, A. V.

    2016-05-01

    A new algorithm for cloud cover estimation has been formulated and developed based on the synthetic control index, called the grayness rate index, and an additional algorithm step of adaptive filtering of the Mie scattering contribution. A setup for automated cloud cover estimation has been designed, assembled, and tested under field conditions. The results shows a significant advantage of the new algorithm over currently commonly used procedures.

  7. Imaging polychromator for density measurements of polystyrene pellet cloud on the Large Helical Device.

    PubMed

    Sharov, I A; Sergeev, V Yu; Miroshnikov, I V; Tamura, N; Kuteev, B V; Sudo, S

    2015-04-01

    Experimental data on spatial distributions of a pellet cloud electron density are necessary for the development of many applications of pellet injection, namely, plasma fuelling, discharge control, and plasma diagnostics. An improved approach of electron density measurements inside the cloud of a polystyrene pellet ablating in hot plasma of the large helical device is described. Density values of (1-30) × 10(16) cm(-3) depending on the background plasma parameters and distance from the solid pellet were measured. PMID:25933860

  8. Cloud image retrieval and characterization using ground-based dual-wavelength radar at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Colon-Diaz, Nivia; Cruz-Pol, Sandra L.; Sekelsky, Stephen M.

    2003-04-01

    Characterization of the microphysical properties of non-precipitating stratus clouds including their suspended-water droplet size distribution and the cloud's liquid water content are estimated in this work. The dual wavelength ratio, DWR, and the differential extinction, DE, were computed at two millimeter frequencies, 33 GHz and 95 GHz, using UMass Cloud Profiling Radar System (CPRS) to estimate the drop size distribution. Data from radiosonde observations (Raob) is used as input in a recently calibrated model for estimation of the gaseous attenuation at Ka.-band and Liebe's model at W-band. Integrated specific humidity from a radiometer is used to constrain the radiosonde specific humidity. The radar reflectivity is corrected to take into account the effect of the wind speed, the difference of beamwidth at both frequencies and the difference in sampled range cells. Radar reflectivity and ancillary data are combined to obtain the differential extinction and the estimated cloud's liquid water density. Profiles of the processed data, such as DE, the DWR and the cloud's liquid water density are presented. Cloud's water density and radar reflectivity were used for the size distribution estimation of the suspended water droplets and the median drop diameter.

  9. Cloud Front

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02171 Cloud Front

    These clouds formed in the south polar region. The faintness of the cloud system likely indicates that these are mainly ice clouds, with relatively little dust content.

    Image information: VIS instrument. Latitude -86.7N, Longitude 212.3E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Short range tracking of rainy clouds by multi-image flow processing of X-band radar data

    NASA Astrophysics Data System (ADS)

    Mesin, Luca

    2011-12-01

    Two innovative algorithms for motion tracking and monitoring of rainy clouds from radar images are proposed. The methods are generalizations of classical optical flow techniques, including a production term (modelling formation, growth or depletion of clouds) in the model to be fit to the data. Multiple images are processed and different smoothness constraints are introduced. When applied to simulated maps (including additive noise up to 10 dB of SNR) showing formation and propagation of objects with different directions and velocities, the algorithms identified correctly the production and the flow, and were stable to noise when the number of images was sufficiently high (about 10). The average error was about 0.06 pixels (px) per sampling interval (Δ T) in identifying the modulus of the flow (velocities between 0.25 and 2 px/Δ T were simulated) and about 1° in detecting its direction (varying between 0° and 90°). An example of application to X-band radar rainfall rate images detected during a stratiform rainfall is shown. Different directions of the flow were detected when investigating short (10 min) or long time ranges (8 h), in line with the chaotic behaviour of the weather condition. The algorithms can be applied to investigate the local stability of meteorological conditions with potential future applications in nowcasting.

  11. A comparison of performance of automatic cloud coverage assessment algorithm for Formosat-2 image using clustering-based and spatial thresholding methods

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2012-11-01

    Formosat-2 image is a kind of high-spatial-resolution (2 meters GSD) remote sensing satellite data, which includes one panchromatic band and four multispectral bands (Blue, Green, Red, near-infrared). An essential sector in the daily processing of received Formosat-2 image is to estimate the cloud statistic of image using Automatic Cloud Coverage Assessment (ACCA) algorithm. The information of cloud statistic of image is subsequently recorded as an important metadata for image product catalog. In this paper, we propose an ACCA method with two consecutive stages: preprocessing and post-processing analysis. For pre-processing analysis, the un-supervised K-means classification, Sobel's method, thresholding method, non-cloudy pixels reexamination, and cross-band filter method are implemented in sequence for cloud statistic determination. For post-processing analysis, Box-Counting fractal method is implemented. In other words, the cloud statistic is firstly determined via pre-processing analysis, the correctness of cloud statistic of image of different spectral band is eventually cross-examined qualitatively and quantitatively via post-processing analysis. The selection of an appropriate thresholding method is very critical to the result of ACCA method. Therefore, in this work, We firstly conduct a series of experiments of the clustering-based and spatial thresholding methods that include Otsu's, Local Entropy(LE), Joint Entropy(JE), Global Entropy(GE), and Global Relative Entropy(GRE) method, for performance comparison. The result shows that Otsu's and GE methods both perform better than others for Formosat-2 image. Additionally, our proposed ACCA method by selecting Otsu's method as the threshoding method has successfully extracted the cloudy pixels of Formosat-2 image for accurate cloud statistic estimation.

  12. Roughness Estimation from Point Clouds - A Comparison of Terrestrial Laser Scanning and Image Matching by Unmanned Aerial Vehicle Acquisitions

    NASA Astrophysics Data System (ADS)

    Rutzinger, Martin; Bremer, Magnus; Ragg, Hansjörg

    2013-04-01

    Recently, terrestrial laser scanning (TLS) and matching of images acquired by unmanned arial vehicles (UAV) are operationally used for 3D geodata acquisition in Geoscience applications. However, the two systems cover different application domains in terms of acquisition conditions and data properties i.e. accuracy and line of sight. In this study we investigate the major differences between the two platforms for terrain roughness estimation. Terrain roughness is an important input for various applications such as morphometry studies, geomorphologic mapping, and natural process modeling (e.g. rockfall, avalanche, and hydraulic modeling). Data has been collected simultaneously by TLS using an Optech ILRIS3D and a rotary UAV using an octocopter from twins.nrn for a 900 m² test site located in a riverbed in Tyrol, Austria (Judenbach, Mieming). The TLS point cloud has been acquired from three scan positions. These have been registered using iterative closest point algorithm and a target-based referencing approach. For registration geometric targets (spheres) with a diameter of 20 cm were used. These targets were measured with dGPS for absolute georeferencing. The TLS point cloud has an average point density of 19,000 pts/m², which represents a point spacing of about 5 mm. 15 images where acquired by UAV in a height of 20 m using a calibrated camera with focal length of 18.3 mm. A 3D point cloud containing RGB attributes was derived using APERO/MICMAC software, by a direct georeferencing approach based on the aircraft IMU data. The point cloud is finally co-registered with the TLS data to guarantee an optimal preparation in order to perform the analysis. The UAV point cloud has an average point density of 17,500 pts/m², which represents a point spacing of 7.5 mm. After registration and georeferencing the level of detail of roughness representation in both point clouds have been compared considering elevation differences, roughness and representation of different grain

  13. Convolution Comparison Pattern: An Efficient Local Image Descriptor for Fingerprint Liveness Detection

    PubMed Central

    Gottschlich, Carsten

    2016-01-01

    We present a new type of local image descriptor which yields binary patterns from small image patches. For the application to fingerprint liveness detection, we achieve rotation invariant image patches by taking the fingerprint segmentation and orientation field into account. We compute the discrete cosine transform (DCT) for these rotation invariant patches and attain binary patterns by comparing pairs of two DCT coefficients. These patterns are summarized into one or more histograms per image. Each histogram comprises the relative frequencies of pattern occurrences. Multiple histograms are concatenated and the resulting feature vector is used for image classification. We name this novel type of descriptor convolution comparison pattern (CCP). Experimental results show the usefulness of the proposed CCP descriptor for fingerprint liveness detection. CCP outperforms other local image descriptors such as LBP, LPQ and WLD on the LivDet 2013 benchmark. The CCP descriptor is a general type of local image descriptor which we expect to prove useful in areas beyond fingerprint liveness detection such as biological and medical image processing, texture recognition, face recognition and iris recognition, liveness detection for face and iris images, and machine vision for surface inspection and material classification. PMID:26844544

  14. Convolution Comparison Pattern: An Efficient Local Image Descriptor for Fingerprint Liveness Detection.

    PubMed

    Gottschlich, Carsten

    2016-01-01

    We present a new type of local image descriptor which yields binary patterns from small image patches. For the application to fingerprint liveness detection, we achieve rotation invariant image patches by taking the fingerprint segmentation and orientation field into account. We compute the discrete cosine transform (DCT) for these rotation invariant patches and attain binary patterns by comparing pairs of two DCT coefficients. These patterns are summarized into one or more histograms per image. Each histogram comprises the relative frequencies of pattern occurrences. Multiple histograms are concatenated and the resulting feature vector is used for image classification. We name this novel type of descriptor convolution comparison pattern (CCP). Experimental results show the usefulness of the proposed CCP descriptor for fingerprint liveness detection. CCP outperforms other local image descriptors such as LBP, LPQ and WLD on the LivDet 2013 benchmark. The CCP descriptor is a general type of local image descriptor which we expect to prove useful in areas beyond fingerprint liveness detection such as biological and medical image processing, texture recognition, face recognition and iris recognition, liveness detection for face and iris images, and machine vision for surface inspection and material classification. PMID:26844544

  15. TiLIA: a software package for image analysis of firefly flash patterns.

    PubMed

    Konno, Junsuke; Hatta-Ohashi, Yoko; Akiyoshi, Ryutaro; Thancharoen, Anchana; Silalom, Somyot; Sakchoowong, Watana; Yiu, Vor; Ohba, Nobuyoshi; Suzuki, Hirobumi

    2016-05-01

    As flash signaling patterns of fireflies are species specific, signal-pattern analysis is important for understanding this system of communication. Here, we present time-lapse image analysis (TiLIA), a free open-source software package for signal and flight pattern analyses of fireflies that uses video-recorded image data. TiLIA enables flight path tracing of individual fireflies and provides frame-by-frame coordinates and light intensity data. As an example of TiLIA capabilities, we demonstrate flash pattern analysis of the fireflies Luciola cruciata and L. lateralis during courtship behavior. PMID:27069594

  16. RIM-13: A high-resolution imaging tool for aerial image monitoring of patterned and blank EUV reticles

    NASA Astrophysics Data System (ADS)

    Booth, M.; Brunton, A.; Cashmore, J.; Elbourn, P.; Elliner, G.; Gower, M.; Greuters, J.; Hirsch, J.; Kling, L.; McEntee, N.; Richards, P.; Truffert, V.; Wallhead, I.; Whitfield, M.

    2006-03-01

    Key features of the RIM-13 EUV actinic reticle imaging microscope are summarised. This is a tool which generates aerial images from blank or patterned EUV masks, emulating the illumination and projection optics of an exposure tool. Such images of mask defects, acquired by a CCD camera, are analysed using the tool software to predict their effect on resist exposure. Optical, mechanical and software performance of the tool are reported.

  17. Pixel patterns for voxels in a contact-type three-dimensional imaging system for full-parallax image display

    SciTech Connect

    Son, Jung-Young; Saveljev, Vladmir V.; Javidi, Bahram; Kim, Dae-Sik; Park, Min-Chul

    2006-06-20

    Incomplete voxels, which can be seen only at a part of the viewing zone's cross section in the optical configuration of a full parallax multiview imaging system based on a two-dimensional point light source array, are identified. Their corresponding pixel patterns are found to maximize the space where the voxels can exist in the configuration and to increase the voxel resolution of the displayable three-dimensional images. Furthermore, the pixel patterns for the rhomb-shaped pixel cells are also defined, and some problems related to voxel-based image synthesis are discussed.

  18. Content based image retrieval using local binary pattern operator and data mining techniques.

    PubMed

    Vatamanu, Oana Astrid; Frandeş, Mirela; Lungeanu, Diana; Mihalaş, Gheorghe-Ioan

    2015-01-01

    Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used. PMID:25991105

  19. Optical time-domain analog pattern correlator for high-speed real-time image recognition.

    PubMed

    Kim, Sang Hyup; Goda, Keisuke; Fard, Ali; Jalali, Bahram

    2011-01-15

    The speed of image processing is limited by image acquisition circuitry. While optical pattern recognition techniques can reduce the computational burden on digital image processing, their image correlation rates are typically low due to the use of spatial optical elements. Here we report a method that overcomes this limitation and enables fast real-time analog image recognition at a record correlation rate of 36.7 MHz--1000 times higher rates than conventional methods. This technique seamlessly performs image acquisition, correlation, and signal integration all optically in the time domain before analog-to-digital conversion by virtue of optical space-to-time mapping. PMID:21263506

  20. Multi-Scale Fractal Analysis of Image Texture and Pattern

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Quattrochi, Dale A.; Luvall, Jeffrey C.

    1997-01-01

    Fractals embody important ideas of self-similarity, in which the spatial behavior or appearance of a system is largely scale-independent. Self-similarity is a property of curves or surfaces where each part is indistinguishable from the whole. The fractal dimension D of remote sensing data yields quantitative insight on the spatial complexity and information content contained within these data. Analyses of Normalized Difference Vegetation Index (NDVI) images of homogeneous land covers near Huntsville, Alabama revealed that the fractal dimension of an image of an agricultural land cover indicates greater complexity as pixel size increases, a forested land cover gradually grows smoother, and an urban image remains roughly self-similar over the range of pixel sizes analyzed(l0 to 80 meters). The forested scene behaves as one would expect-larger pixel sizes decrease the complexity of the image as individual clumps of trees are averaged into larger blocks. The increased complexity of the agricultural image with increasing pixel size results from the loss of homogeneous groups of pixels in the large fields to mixed pixels composed of varying combinations of NDVI values that correspond to roads and vegetation. The same process occur's in the urban image to some extent, but the lack of large, homogeneous areas in the high resolution NDVI image means the initially high D value is maintained as pixel size increases. The slope of the fractal dimension-resolution relationship provides indications of how image classification or feature identification will be affected by changes in sensor resolution.

  1. Evidence for island effects and diurnal signals in satellite images of clouds over the tropical western pacific

    SciTech Connect

    Barr-Kumarakulasinghe, S.A.; Reynolds, R.M.; Minnett, P.J.

    1996-04-01

    Instruments to measure atmospheric radiation and ancillary meteorological variables will be set up on Manus Island as the first site of the tropical western pacific (TWP) locale of the Atmospheric Radiation Measurements (ARM) program. Manus is in the {open_quotes}warm pool{close_quotes} region of the TWP. This region is critical in establishing global atmospheric circulation patterns and is a primary energy source for the Hadley and Walker cells. The myriad islands and enclosed seas in the immediate vicinity of Manus have been referred to as the {open_quotes}maritime continent{close_quotes}, which has the deepest convective activity in the world. Manus is in a region having a global impact on climate and where island effects on clouds are likely to be important. In this preliminary analysis we have sought evidence of island effects in the cloud fields around Manus and have studied the variability of the diurnal cycles of cloud cover over Manus and over other islands and areas of open sea in the region.

  2. Wind sets from SMS images - An assessment of quality for GATE. [Synchronous Meteorological Satellite cloud monitoring for GARP Atlantic Tropical Experiment

    NASA Technical Reports Server (NTRS)

    Suchman, D.; Martin, D. W.

    1976-01-01

    The paper analyzes the accuracy, representativeness, and reproducibility of tracer winds in the 1974 GARP Atlantic Tropical Experiment whose data are used as ground truth. The tracer winds were generated by tracking clouds in SMS (Synchronous Meteorological Satellite) images. Data availability limits comparisons to satellite winds with ship winds at the surface and at 250 mb. Attention is focused on how accurately the cloud displacements can be measured and on the extent to which the cloud displacements represent the wind field. Operator errors in obtaining the cloud displacements are examined in a series of reproducibility tests and wind sets. Differences between proximate satellite and ship winds were all under 3 m/sec. Representativeness of cloud tracers for cumulus and cirrus level flow is found to be good within the accuracy of currently available ground truth data.

  3. Proceedings of the NASA Symposium on Mathematical Pattern Recognition and Image Analysis

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.

    1983-01-01

    The application of mathematical and statistical analyses techniques to imagery obtained by remote sensors is described by Principal Investigators. Scene-to-map registration, geometric rectification, and image matching are among the pattern recognition aspects discussed.

  4. Image quality improvement for a 3D structure exhibiting multiple 2D patterns and its implementation.

    PubMed

    Hirayama, Ryuji; Nakayama, Hirotaka; Shiraki, Atsushi; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-04-01

    A three-dimensional (3D) structure designed by our proposed algorithm can simultaneously exhibit multiple two-dimensional patterns. The 3D structure provides multiple patterns having directional characteristics by distributing the effects of the artefacts. In this study, we proposed an iterative algorithm to improve the image quality of the exhibited patterns and have verified the effectiveness of the proposed algorithm using numerical simulations. Moreover, we fabricated different 3D glass structures (an octagonal prism, a cube and a sphere) using the proposed algorithm. All 3D structures exhibit four patterns, and different patterns can be observed depending on the viewing direction. PMID:27137021

  5. Constraining Methane Abundance and Cloud Properties from the Reflected Light Spectra of Directly Imaged Exoplanets

    NASA Astrophysics Data System (ADS)

    Lupu, R.; Marley, M. S.; Lewis, N. K.

    2015-12-01

    We have assembled an atmospheric retrieval package for the reflected light spectra of gas- and ice- giants in order to inform the design and estimate the scientific return of future space-based coronagraph instruments. Such instruments will have a working bandpass of ~0.4-1 μm and a resolving power R~70, and will enable the characterization of tens of exoplanets in the Solar neighborhood. The targets will be chosen form known RV giants, with estimated effective temperatures of ~100-600 K and masses between 0.3 and 20 MJupiter. In this regime, both methane and clouds will have the largest effects on the observed spectra. Our retrieval code is the first to include cloud properties in the core set of parameters, along with methane abundance and surface gravity. We consider three possible cloud structure scenarios, with 0, 1 or 2 cloud layers, respectively. The best-fit parameters for a given model are determined using a Monte Carlo Markov Chain ensemble sampler, and the most favored cloud structure is chosen by calculating the Bayes factors between different models. We present the performance of our retrieval technique applied to a set of representative model spectra, covering a SNR range form 5 to 20 and including possible noise correlations over a 25 or 100 nanometer scale. Further, we apply the technique to more realistic cases, namely simulated observations of Jupiter, Saturn, Uranus, and the gas-giant HD99492c. In each case, we determine the confidence levels associated with the methane and cloud detections, as a function of SNR and noise properties.

  6. A new classification algorithm based on multi-kernel Support Vector Machine on infrared cloud background image

    NASA Astrophysics Data System (ADS)

    Wang, Tiebing; Zhou, Yiyu; Xu, Shenda; Cheng, Chuxiong

    2015-11-01

    A new classification algorithm based on multi-kernel support vector machine (SVM) was proposed for classification problems on infrared cloud background image. The experimental results show that the method integrates the advantages of polynomial kernel functions, Gaussian radial kernel functions and multilayer perception kernel functions. Compared with the traditional single-kernel SVM classification method, the proposed method has better performance both in local interpolation and global extrapolation, and is more suitable for SVM classification problems when the training sample size is small. Experimental results show the superiority of the proposed algorithm..

  7. Two Levels Fusion Decision for Multispectral Image Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Elmannai, H.; Loghmari, M. A.; Naceur, M. S.

    2015-10-01

    Major goal of multispectral data analysis is land cover classification and related applications. The dimension drawback leads to a small ratio of the remote sensing training data compared to the number of features. Therefore robust methods should be associated to overcome the dimensionality curse. The presented work proposed a pattern recognition approach. Source separation, feature extraction and decisional fusion are the main stages to establish an automatic pattern recognizer. The first stage is pre-processing and is based on non linear source separation. The mixing process is considered non linear with gaussians distributions. The second stage performs feature extraction for Gabor, Wavelet and Curvelet transform. Feature information presentation provides an efficient information description for machine vision projects. The third stage is a decisional fusion performed in two steps. The first step assign the best feature to each source/pattern using the accuracy matrix obtained from the learning data set. The second step is a source majority vote. Classification is performed by Support Vector Machine. Experimentation results show that the proposed fusion method enhances the classification accuracy and provide powerful tool for pattern recognition.

  8. The embedded young stars in the Taurus-Auriga molecular cloud. II - Models for scattered light images

    NASA Technical Reports Server (NTRS)

    Kenyon, Scott J.; Whitney, Barbara A.; Gomez, Mercedes; Hartmann, Lee

    1993-01-01

    We describe NIR imaging observations of embedded young stars in the Taurus-Auriga molecular cloud. We find a large range in J-K and H-K colors for these class I sources. The bluest objects have colors similar to the reddest T Tauri stars in the cloud; redder objects lie slightly above the reddening line for standard ISM dust and have apparent K extinctions of up to 5 mag. Most of these sources also show extended NIR emission on scales of 10-20 arcsec which corresponds to linear sizes of 1500-3000 AU. The NIR colors and nebular morphologies for this sample and the magnitude of linear polarization in several sources suggest scattered light produces most of the NIR emission in these objects. We present modeling results that suggest mass infall rates that agree with predictions for cold clouds and are generally consistent with rates estimated from radiative equilibrium models. For reasonable dust grain parameters, the range of colors and extinctions require flattened density distributions with polar cavities evacuated by bipolar outflows. These results support the idea that infall and outflow occur simultaneously in deeply embedded bipolar outflow sources. The data also indicate fairly large centrifugal radii and large inclinations to the rotational axis for a typical source.

  9. Imaging polychromator for density measurements of polystyrene pellet cloud on the Large Helical Device

    SciTech Connect

    Sharov, I. A. Sergeev, V. Yu.; Miroshnikov, I. V.; Tamura, N.; Sudo, S.; Kuteev, B. V.

    2015-04-15

    Experimental data on spatial distributions of a pellet cloud electron density are necessary for the development of many applications of pellet injection, namely, plasma fuelling, discharge control, and plasma diagnostics. An improved approach of electron density measurements inside the cloud of a polystyrene pellet ablating in hot plasma of the large helical device is described. Density values of (1-30) × 10{sup 16} cm{sup −3} depending on the background plasma parameters and distance from the solid pellet were measured.

  10. Linear Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03667 Linear Clouds

    These clouds are located near the edge of the south polar region. The cloud tops are the puffy white features in the bottom half of the image.

    Image information: VIS instrument. Latitude -80.1N, Longitude 52.1E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  11. Magnetic Resonance Imaging by Synergistic Diffusion-Diffraction Patterns

    NASA Astrophysics Data System (ADS)

    Shemesh, Noam; Westin, Carl-Fredrik; Cohen, Yoram

    2012-02-01

    Inferring on the geometry of an object from its frequency spectrum is highly appealing since the object could then be imaged noninvasively or from a distance (as famously put by Kac, “can one hear the shape of a drum?”). In nuclear magnetic resonance of porous systems, the shape of the drum is represented by the pore density function that bears all the information on the collective pore microstructure. So far, conventional magnetic resonance imaging (MRI) could only detect the pore autocorrelation function, which inherently obscures fine details on the pore structure. Here, for the first time, we report on a unique imaging mechanism arising from synergistic diffusion-diffractions that directly yields the pore density function. This mechanism offers substantially higher spatial resolution compared to conventional MRI while retaining all fine details on the collective pore morphology. Thus, using these unique synergistic diffusion-diffractions, the “shape of the drum” can be inferred.

  12. The degenerative spine: pattern recognition and guidelines to image interpretation.

    PubMed

    Parizel, P M; Van Hoyweghen, A J L; Bali, A; Van Goethem, J; Van Den Hauwe, L

    2016-01-01

    Degenerative disease of the spine, in the form of intervertebral disc degeneration and bony growth, causing osteophytes and impinging upon the spinal canal and neural foramina, is the most frequent disorder affecting the spine. In this chapter we first discuss briefly the indications for computed tomography or magnetic resonance imaging in suspected degenerative spine disease. We then describe changes of disc height, signal intensity, and disc contour with aging and repeated microtrauma, as well as the imaging techniques most appropriate to image them. A grading system for lumbar disc changes is provided. Stenosis of the canal and neural foramina is reviewed next, concluding with a description of degenerative changes affecting the vertebral endplates and bone marrow. PMID:27430442

  13. Semantic Concept Co-Occurrence Patterns for Image Annotation and Retrieval.

    PubMed

    Feng, Linan; Bhanu, Bir

    2016-04-01

    Describing visual image contents by semantic concepts is an effective and straightforward way to facilitate various high level applications. Inferring semantic concepts from low-level pictorial feature analysis is challenging due to the semantic gap problem, while manually labeling concepts is unwise because of a large number of images in both online and offline collections. In this paper, we present a novel approach to automatically generate intermediate image descriptors by exploiting concept co-occurrence patterns in the pre-labeled training set that renders it possible to depict complex scene images semantically. Our work is motivated by the fact that multiple concepts that frequently co-occur across images form patterns which could provide contextual cues for individual concept inference. We discover the co-occurrence patterns as hierarchical communities by graph modularity maximization in a network with nodes and edges representing concepts and co-occurrence relationships separately. A random walk process working on the inferred concept probabilities with the discovered co-occurrence patterns is applied to acquire the refined concept signature representation. Through experiments in automatic image annotation and semantic image retrieval on several challenging datasets, we demonstrate the effectiveness of the proposed concept co-occurrence patterns as well as the concept signature representation in comparison with state-of-the-art approaches. PMID:26959678

  14. Sensitivity of Satellite-Retrieved Cloud Properties to the Effective Variance of Cloud Droplet Size Distribution

    SciTech Connect

    Arduini, R.F.; Minnis, P.; Smith, W.L.Jr.; Ayers, J.K.; Khaiyer, M.M.; Heck, P.

    2005-03-18

    Cloud reflectance models currently used in cloud property retrievals from satellites have been developed using size distributions defined by a set of fixed effective radii with a fixed effective variance. The satellite retrievals used for the Atmospheric Radiation Measurement (ARM) program assume droplet size distributions with an effective variance value of 0.10 (Minnis et al. 1998); the International Satellite Cloud Climatology Project uses 0.15 (Rossow and Schiffer 1999); and the Moderate Resolution Imaging Spectroradiometer (MODIS) team uses 0.13 (Nakajima and King 1990). These distributions are not necessarily representative of the actual sizes present in the clouds being observed. Because the assumed distributions can affect the reflectance patterns and near-infrared absorption, even for the same droplet effective radius reff, it is desirable to use the optimal size distributions in satellite retrievals of cloud properties. Collocated observations of the same clouds from different geostationary satellites, at different viewing angles, indicate that the current models may not be optimal (Ayers et al. 2005). Similarly, hour-to-hour variations in effective radius and optical depth reveal an unexplained dependence on scattering angle. To explore this issue, this paper examines the sensitivity of the cloud reflectance at 0.65 and 3.90-{micro}m to changes in the effective variance, or the spectral dispersion, of the modeled size distributions. The effects on the scattering phase functions and on the cloud reflectances are presented, as well as some resultant effects on the retrieved cloud properties.

  15. Automatic Procedure for the Registration of Thermographic Images with Point Clouds

    NASA Astrophysics Data System (ADS)

    Lagüela, S.; Armesto, J.; Arias, P.; Zakhor, A.

    2012-07-01

    This paper presents a procedure for the automatic registration of thermographies with laser scanning point clouds. Given the heterogeneous nature of the two modalities, we propose a feature-based approach, satisfying the requisite that extracted features have to be invariant not only to rotation, translation and scale but also to changes in illumination and dimensionality. As speed and minimum operator interaction are prerequisites for the viability of the process in the building industry, our automatic registration procedure includes automatic feature extraction with no human intervention. With this aim, a line segment detector is used to extract 2D lines from thermographies, and 3D lines are extracted through segmentation of the point cloud. Feature-matching and the relative pose between thermographies and point cloud are obtained from an iterative procedure applied to detect and reject outliers; this includes rotation matrix and translation vector calculation and the application of the RANSAC algorithm to find a consistent set of matches. An automatically textured thermographic 3D model is the expected result of these procedures once the point cloud is filtered and triangulated.

  16. Case study of the development of polar stratospheric clouds using bistatic imaging

    NASA Astrophysics Data System (ADS)

    Enell, C.-F.; Brändström, U.; Gustavsson, B.; Kirkwood, S.; Stebel, K.; Steen, A.

    2003-08-01

    The formation of polar stratospheric clouds (PSCs) is closely related to wave activity on different scales since waves propagating into the stratosphere perturb the temperature profile. We present here a case study of the development of visible PSCs (mother-of-pearl clouds), appearing at the polar vortex edge on 9 January 1997, under-taken by means of ground-based cameras. It is shown that the presence of stratospheric clouds may be detected semi-automatically and that short-term dynamics such as altitude variations can be tracked in three dimensions. The PSC field showed distinct features separated by approximately 20 km, which implies wave-induced temperature variations on that scale. The wave-induced characteristics were further emphasised by the fact that the PSCs moved within a sloping spatial surface. The appearance of visible mother-of-pearl clouds seems to be related to leewave-induced cooling of air masses, where the synoptic temperature has been close to (but not necessarily below) the threshold temperatures for PSC condensation.

  17. Genetic Algorithm-Based Relevance Feedback for Image Retrieval Using Local Similarity Patterns.

    ERIC Educational Resources Information Center

    Stejic, Zoran; Takama, Yasufumi; Hirota, Kaoru

    2003-01-01

    Proposes local similarity pattern (LSP) as a new method for computing digital image similarity. Topics include optimizing similarity computation based on genetic algorithm; relevance feedback; and an evaluation of LSP on five databases that showed an increase in retrieval precision over other methods for computing image similarity. (Author/LRW)

  18. Simultaneous imaging of blood flow and hemoglobin concentration change in skin tissue using NIR speckle patterns

    NASA Astrophysics Data System (ADS)

    Aizu, Yoshihisa; Hirata, Tatsuya; Maeda, Takaaki; Nishidate, Izumi; Yokoi, Naomichi

    2009-07-01

    We propose a method for imaging simultaneously blood flow and hemoglobin concentration change in skin tissue using speckle patterns acquired at two wavelengths of 780 and 830 nm. Experimental results demonstrate that the method is useful for time-varying analysis of blood circulation in human forearm skin tissue from one set of sequential speckle images.

  19. Gender and Age Patterns in Emotional Expression, Body Image, and Self-Esteem: A Qualitative Analysis.

    ERIC Educational Resources Information Center

    Polce-Lynch, Mary; Myers, Barbara J.; Kilmartin, Christopher T.; Forssmann-Falck, Renate; Kliewer, Wendy

    1998-01-01

    Used written narratives to examine gender and age patterns in body image, emotional expression, and self-esteem for 209 students in grades 5, 8, and 12. Results indicate that boys restrict emotional expression in adolescence, whereas girls increase emotional expression in the same period. Girls also are more influenced by body image. (SLD)

  20. HOLOGondel: A novel in-situ cloud measurement platform on a cable car with a digital holographic imager

    NASA Astrophysics Data System (ADS)

    Beck, Alexander; Henneberger, Jan; Kanji, Zamin; Lohmann, Ulrike

    2015-04-01

    Cloud particle properties observed in-situ are commonly conducted from airborne or ground-based measurements. When compared to airborne measurements, the advantages of ground-based measurements are a higher spatial resolution and much less costly to perform. However, ground-based observations allow only single-point measurements within a cloud. To overcome this disadvantage, a novel measurement platform with a digital holographic imager has been developed to allow in-situ cloud observations on the roof of a cable car cabin. With a traveling velocity of a cable car of a few m/s, such a measurement platform yields a spatial resolution comparable to those of ground-based measurements. In addition, it is possible to obtain vertical profiles of the microphysical properties within the cloud, because of the vertical distance covered by the cable car of approximately 800m. The major technical challenges for such a measurement platform are the lack of an external power supply and the additional weight constrain on a cable car cabin. To allow continuous operation for eight hours with a battery and to stay within the weight limit of 25kg at the same time, a compact design with carefully chosen material and components with a low power consumption was necessary. The new measurement platform HOLOGondel is equipped with a HOLographic Imager for Microscopic Objects (HOLIMO 3G). Digital in-line holography offers the advantages of measuring simultaneously an ensemble of cloud particles within a well-defined detection volume over a large range of particle size. The image captured, a hologram, yields information about the three-dimensional position, size and a shadow-graph of each particle within the detection volume. The HOLIMO 3G instrument is equipped with a 30MP camera and a 1.8 times magnifying, both-sided telecentric lens system. At a frame rate of six pictures per second a sample volume rate of about 100 cm3s-1 at a maximum resolution of 7 µm is achieved. This configuration

  1. Microphysical Analysis using Airborne 2-D Cloud and Precipitation Imaging Probe Data

    NASA Astrophysics Data System (ADS)

    Guy, N.; Jorgensen, D.; Witte, M.; Chuang, P. Y.; Black, R. A.

    2013-12-01

    The NOAA P-3 instrumented aircraft provided in-situ cloud and precipitation microphysical observations during the DYNAMO (Dynamics of the Madden-Julian Oscillation) field experiment. The Particle Measuring System 2D cloud (2D-C) and precipitation (2D-P) probes collected data for particles between 12.5 μm - 1.55 mm (25 μm resolution) and 100 μm - 6.2 mm (100 μm resolution), respectively. Spectra from each instrument were combined to provide a broad distribution of precipitation particle sizes. The 'method of moments' technique was used to analyze drop size distribution (DSD) spectra, which were modeled by fitting a three-parameter (slope, shape, and intercept) gamma distribution to the spectra. The characteristic shape of the mean spectrum compares to previous maritime measurements. DSD variability will be presented with respect to the temporal evolution of cloud populations during a Madden-Julian Oscillation (MJO) event, as well as in-situ aircraft vertical wind velocity measurements. Using the third and sixth moments, rainfall rate (R) and equivalent radar reflectivity factor (Z), respectively, were computed for each DSD. Linear regression was applied to establish a Z-R relationship for the data for the estimation of precipitation. The study indicated unique characteristics of microphysical processes for this region. These results are important to continue to define the cloud population characteristics in the climatological MJO region. Improved representation of the cloud characteristics on the microphysical scale will serve as a check to model parameterizations, helping to improve numerical simulations.

  2. Phase retrieval from single frame projection fringe pattern with variational image decomposition

    NASA Astrophysics Data System (ADS)

    Zhu, Xinjun; Tang, Chen; Li, Biyuan; Sun, Chen; Wang, Linlin

    2014-08-01

    Phase retrieval from single frame projection fringe pattern is of fundamental importance, and is also a challenging problem in fringe projection measurement. In this paper, we present a new method for phase retrieval from a single frame projection fringe pattern based on variational image decomposition (VID) methods. We propose a new image decomposition model TV-G-Shearlet in order to effectively split a projection fringe pattern into background part, fringe part and noise part. The performance of the proposed approach is verified by simulated and real projection fringes as well as the comparison with the widely used and well-known Fourier transform method and wavelet transform method.

  3. Direct imaging of periodic subwavelength patterns generated by optical phase masks

    SciTech Connect

    Tonyushkin, Alexei; Sleator, Tycho

    2006-11-15

    We have demonstrated direct imaging of interference fringes of total atomic density with periods {lambda}/4 and {lambda}/2 for optical wavelength {lambda} that have been produced in a de Broglie wave atom interferometer. The imaging was done by means of an 'optical mask' technique, which allowed us to observe subwavelength periodic patterns with a resolution of up to {lambda}/16. In addition, the dependence of the fringe pattern on the recoil phase and pulse area reveals quantum dynamics in the atomic center-of-mass motion. The behavior of the fringe patterns near the interference times distinguishes the effects of phase gratings from those of amplitude gratings.

  4. Cassini Imaging Observations of Lakes and Clouds at Titan's High Latitudes and the Implications of the Changes Therein

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Perry, J. E.; McEwen, A. S.; Del Genio, A. D.; Barbara, J.; West, R. A.; Dawson, D. D.; Porco, C. C.

    2008-12-01

    Cassini's Imaging Science Subsystem (ISS) imaged Titan's south polar region in July 2004 and June 2005, revealing convective cloud systems and dark surface features interpreted to be hydrocarbon lakes, e.g. 235- km-long Ontario Lacus (McEwen et al., B.A.A.S. 37, 2005). Recent evidence from Cassini's Visual and Infrared Mapping Spectrometer supports the interpretation that Ontario Lacus contains liquid ethane and methane (Brown et al., Nature 454, 2008). Although diffuse clouds or atmospheric scattering could play a role, differences between the two ISS observations taken a year apart may be due to changes in the lakes as a result of precipitation from a large cloud system observed in Fall 2004 (Schaller et al., Icarus 182, 2006). ISS observations of northern latitudes just emerging from northern winter have revealed much larger dark areas, including Mare Kraken (>1100 km long), as well as myriad smaller dark spots. Many of these features coincide with liquid-filled areas identified by Cassini RADAR (e.g., Lopes et al., EOS 88, 2007). Combined these features cover well over 600,000 km2, ~1% of Titan's surface area; however, as shown by Lorenz et al. (GRL 35, 2008), even if all were filled with liquid, they would not provide enough methane to keep Titan's atmosphere resupplied for a substantial amount of time, unless they are unexpectedly deep or other subsurface reservoirs exist. Intriguingly the surface coverage is unevenly distributed, with more total area and much larger seas occurring around the North (recently winter) Pole. The extents to which this variation depends on the season and/or local geology and its effects on atmospheric circulation may be revealed with the advent of northern spring and summer.

  5. Observations and Modeling of 3-Dimensional Cloud and Aerosol Fields from the Multiangle SpectroPolarimetric Imager (MSPI)

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Diner, D. J.; Martonchik, J. V.; Davis, A. B.

    2011-12-01

    Knowledge of the detailed 3-dimensional structure of clouds and atmospheric aerosols is vital for correctly modeling their radiative effects and interpreting optical remote sensing measurements of scattered sunlight. We will describe a set of new observations made by the Multiangle SpectroPolarimetric Imager (MSPI) from the ground and from the NASA ER-2 aircraft. MSPI is being developed and tested at JPL as a payload for the preliminary Aerosol-Cloud-Ecosystems (PACE) satellite mission, which is expected to fly near the end of the decade. MSPI builds upon experience gained from the Multi-angle Imaging SpectroRadiometer (MISR) currently orbiting on NASA's Terra satellite. Ground-MSPI and Air-MSPI are two prototype cameras operating in the ultraviolet (UV) to the visible/near-infrared (VNIR) range mounted on gimbals that acquire imagery in a pushbroom fashion, including polarization in selected spectral bands with demonstrated high polarimetric accuracy (0.5% uncertainty in degree of linear polarization). The spatial resolution of Ground-MSPI is 1 m for objects at a distance of 3 km. From the operational altitude of the ER-2, Air-MSPI has a ground resolution of approximately 10 m at nadir. This resolution, coupled with good calibration and high polarimetric performance means that MSPI can be used to derive radiatively important parameters of aerosols and clouds using intensity and polarization information together. As part of the effort for developing retrieval algorithms for the instrument, we have employed an extremely flexible 3-dimensional vector radiative transfer code. We will show example imagery from both MSPI cameras and describe how these scenes are modeled using this code. We will also discuss some of the important unknowns and limitations of this observational approach.

  6. Investigation of mesoscale cloud features viewed by LANDSAT

    NASA Technical Reports Server (NTRS)

    Sherr, P. E. (Principal Investigator); Feteris, P. J.; Lisa, A. S.; Bowley, C. J.; Fowler, M. G.; Barnes, J. C.

    1976-01-01

    The author has identified the following significant results. Some 50 LANDSAT images displaying mesoscale cloud features were analyzed. This analysis was based on the Rayleigh-Kuettner model describing the formation of that type of mesoscale cloud feature. This model lends itself to computation of the average wind speed in northerly flow from the dimensions of the cloud band configurations measured from a LANDSAT image. In nearly every case, necessary conditions of a curved wind profile and orientation of the cloud streets within 20 degrees of the direction of the mean wind in the convective layer were met. Verification of the results by direct observation was hampered, however, by the incompatibility of the resolution of conventional rawinsonde observations with the scale of the banded cloud patterns measured from LANDSAT data. Comparison seems to be somewhat better in northerly flows than in southerly flows, with the largest discrepancies in wind speed being within 8m/sec, or a factor of two.

  7. Automatic Assessment and Reduction of Noise using Edge Pattern Analysis in Non-Linear Image Enhancement

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.; Hines, Glenn D.

    2004-01-01

    Noise is the primary visibility limit in the process of non-linear image enhancement, and is no longer a statistically stable additive noise in the post-enhancement image. Therefore novel approaches are needed to both assess and reduce spatially variable noise at this stage in overall image processing. Here we will examine the use of edge pattern analysis both for automatic assessment of spatially variable noise and as a foundation for new noise reduction methods.

  8. Coupling sky images with three-dimensional radiative transfer models: a new method to estimate cloud optical depth

    NASA Astrophysics Data System (ADS)

    Mejia, F. A.; Kurtz, B.; Murray, K.; Hinkelman, L. M.; Sengupta, M.; Xie, Y.; Kleissl, J.

    2015-10-01

    A method for retrieving cloud optical depth (τc) using a ground-based sky imager (USI) is presented. The Radiance Red-Blue Ratio (RRBR) method is motivated from the analysis of simulated images of various τc produced by a 3-D Radiative Transfer Model (3DRTM). From these images the basic parameters affecting the radiance and RBR of a pixel are identified as the solar zenith angle (θ0), τc, solar pixel angle/scattering angle (ϑs), and pixel zenith angle/view angle (ϑz). The effects of these parameters are described and the functions for radiance, Iλ(τc, θ0, ϑs, ϑz) and the red-blue ratio, RBR(τc, θ0, ϑs, ϑz) are retrieved from the 3DRTM results. RBR, which is commonly used for cloud detection in sky images, provides non-unique solutions for τc, where RBR increases with τc up to about τc = 1 (depending on other parameters) and then decreases. Therefore, the RRBR algorithm uses the measured Iλmeas(ϑs, ϑz), in addition to RBRmeas(ϑs, ϑz) to obtain a unique solution for τc. The RRBR method is applied to images taken by a USI at the Oklahoma Atmospheric Radiation Measurement program (ARM) site over the course of 220 days and validated against measurements from a microwave radiometer (MWR); output from the Min method for overcast skies, and τc retrieved by Beer's law from direct normal irradiance (DNI) measurements. A τc RMSE of 5.6 between the Min method and the USI are observed. The MWR and USI have an RMSE of 2.3 which is well within the uncertainty of the MWR. An RMSE of 0.95 between the USI and DNI retrieved τc is observed. The procedure developed here provides a foundation to test and develop other cloud detection algorithms.

  9. Imaging outside the box: Resolution enhancement in X-ray coherent diffraction imaging by extrapolation of diffraction patterns

    SciTech Connect

    Latychevskaia, Tatiana Fink, Hans-Werner; Chushkin, Yuriy; Zontone, Federico

    2015-11-02

    Coherent diffraction imaging is a high-resolution imaging technique whose potential can be greatly enhanced by applying the extrapolation method presented here. We demonstrate the enhancement in resolution of a non-periodical object reconstructed from an experimental X-ray diffraction record which contains about 10% missing information, including the pixels in the center of the diffraction pattern. A diffraction pattern is extrapolated beyond the detector area and as a result, the object is reconstructed at an enhanced resolution and better agreement with experimental amplitudes is achieved. The optimal parameters for the iterative routine and the limits of the extrapolation procedure are discussed.

  10. Fan fault diagnosis based on symmetrized dot pattern analysis and image matching

    NASA Astrophysics Data System (ADS)

    Xu, Xiaogang; Liu, Haixiao; Zhu, Hao; Wang, Songling

    2016-07-01

    To detect the mechanical failure of fans, a new diagnostic method based on the symmetrized dot pattern (SDP) analysis and image matching is proposed. Vibration signals of 13 kinds of running states are acquired on a centrifugal fan test bed and reconstructed by the SDP technique. The SDP pattern templates of each running state are established. An image matching method is performed to diagnose the fault. In order to improve the diagnostic accuracy, the single template, multiple templates and clustering fault templates are used to perform the image matching.

  11. Development of microscale pattern for digital image correlation up to 1400 °C

    NASA Astrophysics Data System (ADS)

    Dong, Yali; Kakisawa, Hideki; Kagawa, Yutaka

    2015-05-01

    Speckle patterns to be used for digital image correlation (DIC) at the micrometer level up to 1400 °C were fabricated by several methods. The quality of the patterns before and after heating was evaluated in terms of the mean intensity gradient (MIG) and the speckle size distribution. The displacement accuracy in simulative translation of images showed that the MIG alone was not enough to evaluate the pattern properties; a large MIG, an even speckle size distribution, and a wide speckle size range pattern were required for a good DIC. The reaction between the patterning material and substrate, the cracking of speckles, and the plastic flow of patterning material may cause changes in the pattern morphology at high temperature. Two patterning methods, spraying a mixture of ceramics powder and binder by a fine-nozzle air brush and abrading a polished surface, yielded a small pattern with high MIG values and even size distributions that was stable at 1400 °C. The potential of the fabricated patterns was shown by measuring the coefficient of thermal expansion of polycrystalline Al2O3 from 800 °C to 1400 °C.

  12. Content-addressable holographic data storage system for invariant pattern recognition of gray-scale images.

    PubMed

    Joseph, Joby; Bhagatji, Alpana; Singh, Kehar

    2010-01-20

    Conventionally a holographic data storage system uses binary digital data as the input pages. We propose and demonstrate the use of a holographic data storage system for the purpose of invariant pattern recognition of gray-scale images. To improve the correlation accuracy for gray-scale images, we present a coding technique, phase Fourier transform (phase-FT) coding, to code a gray-scale image into a random and balanced digital binary image. In addition to the fact that a digital data page is obtained for incorporation into a holographic data storage system, this phase-FT coded image produces dc-free homogenized Fourier spectrum. This coded image can also be treated as an image for further processing, such as synthesis of distortion-invariant filters for invariant pattern recognition. A space-domain synthetic discriminant function (SDF) filter has been synthesized using these phase-FT coded images for rotation-invariant pattern recognition. Both simulation and experimental results are presented. The results show good correlation accuracy in comparison to correlation results obtained for SDF filter synthesized using the original gray-scale images themselves. PMID:20090813

  13. Ammonia Clouds on Jupiter

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] Click on the image for movie of Ammonia Ice Clouds on Jupiter

    In this movie, put together from false-color images taken by the New Horizons Ralph instrument as the spacecraft flew past Jupiter in early 2007, show ammonia clouds (appearing as bright blue areas) as they form and disperse over five successive Jupiter 'days.' Scientists noted how the larger cloud travels along with a small, local deep hole.

  14. Integration of Color and Local Derivative Pattern Features for Content-Based Image Indexing and Retrieval

    NASA Astrophysics Data System (ADS)

    Vipparthi, Santosh Kumar; Nagar, Shyam Krishna

    2014-09-01

    This paper presents two new feature descriptors for content based image retrieval (CBIR) application. The proposed two descriptors are named as color local derivative patterns (CLDP) and inter color local derivative pattern (ICLDP). In order to reduce the computational complexity the uniform patterns are applied to both CLDP and ICLDP. Further, uniform CLDP (CLDPu2) and uniform ICLDP (ICLDPu2) are generated respectively. The proposed descriptors are able to exploit individual (R, G and B) spectral channel information and co-relating pair (RG, GB, BR, etc.) of spectral channel information. The retrieval performances of the proposed descriptors (CLDP and ICLDP) are tested by conducting two experiments on Corel-5000 and Corel-10000 benchmark databases. The results after investigation show a significant improvement in terms of precision, average retrieval precision (ARP), recall and average retrieval rate (ARR) as compared to local binary patterns (LBP), local derivative patterns (LDP) and other state-of-the-art techniques for image retrieval.

  15. Ionic liquids: nondestructive, nonvolatile imaging fluids for submicrometer-scale monolayer patterns.

    PubMed

    Hozumi, Atsushi; Bien, Pei; McCarthy, Thomas J

    2010-04-28

    A method for visualizing submicrometer-scale patterns of approximately 1.0-nm-thick monolayers terminated with CF(3) and CH(3) groups using an ionic liquid (IL) is described. Bis(hydroxyethyl)dimethylammonium methanesulfonate (BHDAMS) was spin-cast onto the photolithographically patterned samples. The BHDAMS wetted the photodecomposed regions selectively. Pattern widths of the mask ranged from 500 nm to 10 microm, and the IL-replicated patterns were observed using optical and laser microscopy. The nonvolatile BHDAMS had sufficient contrast to image submicrometer-scale patterns of monolayers over large areas. We note that this imaging technique involves no damage and is compatible with readily available laboratory equipment. PMID:20373769

  16. Integration of Color and Local Derivative Pattern Features for Content-Based Image Indexing and Retrieval

    NASA Astrophysics Data System (ADS)

    Vipparthi, Santosh Kumar; Nagar, Shyam Krishna

    2015-09-01

    This paper presents two new feature descriptors for content based image retrieval (CBIR) application. The proposed two descriptors are named as color local derivative patterns (CLDP) and inter color local derivative pattern (ICLDP). In order to reduce the computational complexity the uniform patterns are applied to both CLDP and ICLDP. Further, uniform CLDP (CLDPu2) and uniform ICLDP (ICLDPu2) are generated respectively. The proposed descriptors are able to exploit individual (R, G and B) spectral channel information and co-relating pair (RG, GB, BR, etc.) of spectral channel information. The retrieval performances of the proposed descriptors (CLDP and ICLDP) are tested by conducting two experiments on Corel-5000 and Corel-10000 benchmark databases. The results after investigation show a significant improvement in terms of precision, average retrieval precision (ARP), recall and average retrieval rate (ARR) as compared to local binary patterns (LBP), local derivative patterns (LDP) and other state-of-the-art techniques for image retrieval.

  17. Cloud Interactions

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration

  18. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Kaufman, Yoram J.; Menzel, W. Paul; Tanre, Didier D.

    1992-01-01

    The authors describe the status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning spectrometer with 32 uniformly spaced channels between 0.410 and 0.875 micron. They review the various methods being developed for the remote sensing of atmospheric properties using MODIS, placing primary emphasis on the principal atmospheric applications of determining the optical, microphysical, and physical properties of clouds and aerosol particles from spectral reflection and thermal emission measurements. In addition to cloud and aerosol properties, MODIS-N will be used for determining the total precipitable water vapor and atmospheric stability. The physical principles behind the determination of each of these atmospheric products are described, together with an example of their application to aircraft and/or satellite measurements.

  19. Spatial uncertainty modeling of fuzzy information in images for pattern classification.

    PubMed

    Pham, Tuan D

    2014-01-01

    The modeling of the spatial distribution of image properties is important for many pattern recognition problems in science and engineering. Mathematical methods are needed to quantify the variability of this spatial distribution based on which a decision of classification can be made in an optimal sense. However, image properties are often subject to uncertainty due to both incomplete and imprecise information. This paper presents an integrated approach for estimating the spatial uncertainty of vagueness in images using the theory of geostatistics and the calculus of probability measures of fuzzy events. Such a model for the quantification of spatial uncertainty is utilized as a new image feature extraction method, based on which classifiers can be trained to perform the task of pattern recognition. Applications of the proposed algorithm to the classification of various types of image data suggest the usefulness of the proposed uncertainty modeling technique for texture feature extraction. PMID:25157744

  20. A Novel Strategy for Quantum Image Steganography Based on Moiré Pattern

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Wang, Luo

    2015-03-01

    Image steganography technique is widely used to realize the secrecy transmission. Although its strategies on classical computers have been extensively researched, there are few studies on such strategies on quantum computers. Therefore, in this paper, a novel, secure and keyless steganography approach for images on quantum computers is proposed based on Moiré pattern. Algorithms based on the Moiré pattern are proposed for binary image embedding and extraction. Based on the novel enhanced quantum representation of digital images (NEQR), recursive and progressively layered quantum circuits for embedding and extraction operations are designed. In the end, experiments are done to verify the validity and robustness of proposed methods, which confirms that the approach in this paper is effective in quantum image steganography strategy.

  1. Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds

    NASA Astrophysics Data System (ADS)

    Mecikalski, John R.; Watts, Philip D.; Koenig, Marianne

    2011-10-01

    This study develops an understanding on how retrieved cloud parameter fields from the Optimal Cloud Analysis (OCA) algorithm, operating on Meteosat Second Generation (MSG), Spinning Enhanced Visible and Infrared Imager (SEVIRI) data, behave at 5-min time resolutions for growing cumulus clouds. Fields retrieved by the OCA algorithm include cloud optical thickness (τ), cloud-top particle effective radius (r e), cloud-top pressure (p c), and cloud-top phase. OCA is based on a one-dimensional optimal estimation methodology, and a measure of radiance fit, the cost function (J m), is a quantity developed as part of the retrieval process and is shown to be useful in delineating mixed phase clouds; it too is evaluated (at 5-min intervals) for the information it provides. Data for 94 growing cumulus cloud events are processed. An "event" is defined as a cumulus cloud that is monitored at 5-min intervals with OCA, as it grows from the "fair weather" or "towering cumulus" stage to near the cumulonimbus stage when precipitation begins. The hypothesis is that OCA products are of high-enough quality to provide unique information about microphysical processes occurring at and near cloud top. The goal through analysis of the 94 events is to identify consistent, repeating patterns in OCA fields during cloud growth that can be in turn used to infer physical processes. Data from the Convective and Orographically-induced Precipitation Study (June and July 2007) and in four regions of Europe on 25 May 2009 are used. The validity of the OCA data is presented with a comparison to CloudSat Precipitation Radar and MODerate resolution Imaging Spectroradiometer retrieved cloud properties, showing good statistical agreements. Subsequently, results from the analysis of OCA fields for all events show that as cumuli deepen, r e values tend to increase, and then decrease in size as cloud tops glaciate and particle settling begins. The τ magnitudes generally increase as clouds deepen, while p c

  2. Local binary pattern texture-based classification of solid masses in ultrasound breast images

    NASA Astrophysics Data System (ADS)

    Matsumoto, Monica M. S.; Sehgal, Chandra M.; Udupa, Jayaram K.

    2012-03-01

    Breast cancer is one of the leading causes of cancer mortality among women. Ultrasound examination can be used to assess breast masses, complementarily to mammography. Ultrasound images reveal tissue information in its echoic patterns. Therefore, pattern recognition techniques can facilitate classification of lesions and thereby reduce the number of unnecessary biopsies. Our hypothesis was that image texture features on the boundary of a lesion and its vicinity can be used to classify masses. We have used intensity-independent and rotation-invariant texture features, known as Local Binary Patterns (LBP). The classifier selected was K-nearest neighbors. Our breast ultrasound image database consisted of 100 patient images (50 benign and 50 malignant cases). The determination of whether the mass was benign or malignant was done through biopsy and pathology assessment. The training set consisted of sixty images, randomly chosen from the database of 100 patients. The testing set consisted of forty images to be classified. The results with a multi-fold cross validation of 100 iterations produced a robust evaluation. The highest performance was observed for feature LBP with 24 symmetrically distributed neighbors over a circle of radius 3 (LBP24,3) with an accuracy rate of 81.0%. We also investigated an approach with a score of malignancy assigned to the images in the test set. This approach provided an ROC curve with Az of 0.803. The analysis of texture features over the boundary of solid masses showed promise for malignancy classification in ultrasound breast images.

  3. Medical image classification using spatial adjacent histogram based on adaptive local binary patterns.

    PubMed

    Liu, Dong; Wang, Shengsheng; Huang, Dezhi; Deng, Gang; Zeng, Fantao; Chen, Huiling

    2016-05-01

    Medical image recognition is an important task in both computer vision and computational biology. In the field of medical image classification, representing an image based on local binary patterns (LBP) descriptor has become popular. However, most existing LBP-based methods encode the binary patterns in a fixed neighborhood radius and ignore the spatial relationships among local patterns. The ignoring of the spatial relationships in the LBP will cause a poor performance in the process of capturing discriminative features for complex samples, such as medical images obtained by microscope. To address this problem, in this paper we propose a novel method to improve local binary patterns by assigning an adaptive neighborhood radius for each pixel. Based on these adaptive local binary patterns, we further propose a spatial adjacent histogram strategy to encode the micro-structures for image representation. An extensive set of evaluations are performed on four medical datasets which show that the proposed method significantly improves standard LBP and compares favorably with several other prevailing approaches. PMID:27058283

  4. The large contour data generation from divided image of photomask pattern of 32 nm and beyond

    NASA Astrophysics Data System (ADS)

    Murakawa, Tsutomu; Ogiso, Yoshiaki; Iwai, Toshimichi; Matsumoto, Jun; Nakamura, Takayuki

    2010-05-01

    The application of Mask CD-SEM for process management of photomask using two dimensional measurements as photomask patterns become smaller and more complex, [1]. Also, WPI technology application using an optical Mask inspection tool simulates wafer plane images using photomask images [2]. In order to simulate the MEEF influence for aggressive OPC and High-end photomask patterns in 32nm node and beyond, a requirement exists for wide Field of View (FOV) GDS data and tone information generated from high precision SEM images. In light of these requirements, we developed a GDS data extraction algorithm with sub-nanometer accuracy using wide FOV images, for example, greater than 10um square. As a result, we over come the difficulty of generating large contour data without the distortion that is normally associated with acquired SEM images. Also, it will be shown that the evaluation result can be effective for 32 nm applications and beyond using Mask CD-SEM E3620 manufactured by Advantest. On the other hand, we investigate the application example of the wide FOV GDS data. In order to easily compare the acquired GDS data with design data, we explain the separate algorithm with three layer structures for Tri-tone (Ternary) photomask pattern, consisting of an outer pattern and another pattern.

  5. HERschel Inventory of The Agents of Galaxy Evolution (HERITAGE) in the Magellanic Clouds: SPIRE and PACS images of a Large Magellanic Cloud Strip

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret

    As part of the science demonstration program for HERITAGE, we mapped a central strip across the entire Large Magellanic Cloud's (LMC's) HI disk in the parallel mode of SPIRE, with bands of 250, 350 and 500 microns, and PACS, with bands of 100 and 160 microns. The emission in these bands is dominated by the dust emission from the interstellar medium. The SPIRE bands in particular provide the first view into the coldest possible dust in the interstellar medium of the LMC. This paper shows the observations of the entire LMC strip in all 5 bands and the comparison of the Herschel band emissions with notable tracers of ISM gas: HI 21 cm, CO J=1-0, and H-alpha. We present a dust temperature, opacity and dust mass map for these regions and their global comparison to the gas tracers. We then compare how the dust relates to the major stellar components in the galaxy especially the massive stars at all stages from formation to their explosive death. This paper will briefly describe how the SDP-strip provides a confirmation that HERITAGE will achieve its over-arching science goals when the surveys are complete. Herschel images will provide key insights into the life cycle of galaxies because the far-infrared and submm emission from dust grains is an effective tracer of the cold-est ISM dust, the most deeply embedded young stellar objects (YSOs), and the dust ejected over the lifetime of massive stars. The ISM dust map will directly measure dust on a scale size of individual regions ( 10pc, 5-20 K) with column densities ¿0.85x1021 and > 6x1021 H - atomscm-2 f ortheLM CandSM C, respectively.Dustemissionperbeamwillbedetectedf orregionswith > 0.1M sunat 25K, > 5M sunof 10K.HERIT AGEwillcomplete1)thecensusof massiveY SOsdownto > 4M sunClass0sourcesand2)theinventoryof dustinjectedintotheISM bymassiveevolvedstarsandsupernova

  6. Bayer patterned high dynamic range image reconstruction using adaptive weighting function

    NASA Astrophysics Data System (ADS)

    Kang, Hee; Lee, Suk Ho; Song, Ki Sun; Kang, Moon Gi

    2014-12-01

    It is not easy to acquire a desired high dynamic range (HDR) image directly from a camera due to the limited dynamic range of most image sensors. Therefore, generally, a post-process called HDR image reconstruction is used, which reconstructs an HDR image from a set of differently exposed images to overcome the limited dynamic range. However, conventional HDR image reconstruction methods suffer from noise factors and ghost artifacts. This is due to the fact that the input images taken with a short exposure time contain much noise in the dark regions, which contributes to increased noise in the corresponding dark regions of the reconstructed HDR image. Furthermore, since input images are acquired at different times, the images contain different motion information, which results in ghost artifacts. In this paper, we propose an HDR image reconstruction method which reduces the impact of the noise factors and prevents ghost artifacts. To reduce the influence of the noise factors, the weighting function, which determines the contribution of a certain input image to the reconstructed HDR image, is designed to adapt to the exposure time and local motions. Furthermore, the weighting function is designed to exclude ghosting regions by considering the differences of the luminance and the chrominance values between several input images. Unlike conventional methods, which generally work on a color image processed by the image processing module (IPM), the proposed method works directly on the Bayer raw image. This allows for a linear camera response function and also improves the efficiency in hardware implementation. Experimental results show that the proposed method can reconstruct high-quality Bayer patterned HDR images while being robust against ghost artifacts and noise factors.

  7. Reliable Averages and Risky Extremes - Analysis of spatio-temporal variability in solar irradiance and persistent cloud cover patterns over Switzerland

    NASA Astrophysics Data System (ADS)

    Kahl, Annelen; Nguyen, Viet-Anh; Sarrasin, Karine; Lehning, Michael

    2016-04-01

    With the perspective of Switzerland's phase-out from nuclear energy, solar energy potential may take a leading role for the country's future in renewable energy. Unlike nuclear power stations, photovoltaic (PV) production is prone to intermittency as it depends on the immediate solar irradiance, which fluctuates in space and time. If a large percentage of Switzerland's electricity was to be derived from solar radiation, stochastic fluctuations pose a risk to the robust supply and healthy function of the electricity network. For most efficient PV planning and siting, it is hence imperative to understand and quantify this variability in solar radiation, in order to anticipate average production as well as worst-case scenarios. Based on 12 years of satellite derived, spatially distributed data of daily average surface incoming shortwave radiation (SIS) this work analyses standard statistics, spatial correlation patterns and extreme conditions of cloud cover over Switzerland. Having compared different irradiance products, we decided to use the SIS product captured on the Meteosat Second Generation satellites, because it provides the most reliable snow/cloud discrimination, which is essential for spatial analysis over alpine terrain. Particularly in regions with high elevation differences, correlation between cloud cover and elevation undergo an annual cycle. In winter more clouds are found in the valleys, while in summer convective clouds dominate at higher elevations. The highest average irradiance values occur in the southern parts of the country, and make the cantons of Vallais, Tessin and Grison ideal candidate locations for PV installations. Simultaneously the Tessin shows a higher risk of periods with long lasting cloud cover, which would discourage from relying too much on solar power in that area. However looking at the question of suitability by studying spatial and temporal correlations of extremes, we see that the Tessin appears to be comparably decoupled

  8. Computer-aided diagnosis of splenic enlargement using wave pattern of spleen in abdominal CT images

    NASA Astrophysics Data System (ADS)

    Seong, Won; Cho, June-Sik; Noh, Seung-Moo; Park, Jong Won

    2006-03-01

    It is known that the spleen accompanied by liver cirrhosis is hypertrophied or enlarged. We have examined a wave pattern at the left boundary of spleen on the abdominal CT images having liver cirrhosis, and found that they are different from those on the images having a normal liver. It is noticed that the abdominal CT images of patient with liver cirrhosis shows strong bending in the wave pattern. In the case of normal liver, the images may also have a wave pattern, but its bends are not strong. Therefore, the total waving area of the spleen with liver cirrhosis is found to be greater than that of the spleen with a normal liver. Moreover, we found that the waves of the spleen from the image with liver cirrhosis have the higher degree of circularity compared to the normal liver case. Based on the two observations above, we propose an automatic method to diagnose splenic enlargement by using the wave pattern of the spleen in abdominal CT images. The proposed automatic method improves the diagnostic performance compared with the conventional process based on the size of spleen.

  9. Passive multiangle imaging of clouds, aerosols, and atmospheric dynamics: Broadening our vision from MISR to WindCam and MSPI

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Wu, D. L.; Chipman, R.; Davis, A.; Misr Science Team

    2010-12-01

    The Multi-angle Imaging SpectroRadiometer (MISR) has been collecting global Earth data from NASA’s Terra satellite since February 2000. With its nine along-track view angles, four visible/near-infrared spectral bands, intrinsic spatial resolution of 275 m, and stable calibration, no instrument that combines MISR’s attributes has previously flown in space, nor is there is a similar capability currently available on any other satellite platform. The MISR data record provides unprecedented opportunities for characterizing long-term variability in aerosol and cloud structure and atmospheric dynamics, including measurements of the vertical distributions of clouds; aerosol (smoke, volcanic, and dust) plume heights and global optical depths and particle properties; and pole-to-pole height-resolved winds. To extend what has been learned during the first decade of MISR observations, we are developing the WindCam and Multiangle SpectroPolarimetric Imager (MSPI) instruments. WindCam will enable MISR-like stereo observations over a broader swath using a much more compact sensor design. MSPI expands MISR capabilities through broader spectral coverage (ultraviolet to shortwave infrared), wider swath (enabling more rapid global coverage), and incorporation of high-accuracy polarimetric imaging, which will provide greater sensitivity to particle microphysics. A ground-based prototype camera (GroundMSPI) with spectral coverage from 355-935 nm has been built and an airborne version (AirMSPI) is ready for flight on NASA’s ER-2 high-altitude aircraft. Algorithm developments and improvements enabled by increases in computational speed since Terra launch are being explored with MISR data, and will be needed to handle the rich information content of these MISR successor instruments.

  10. Image Correlation Pattern Optimization for Micro-Scale In-Situ Strain Measurements

    NASA Technical Reports Server (NTRS)

    Bomarito, G. F.; Hochhalter, J. D.; Cannon, A. H.

    2016-01-01

    The accuracy and precision of digital image correlation (DIC) is a function of three primary ingredients: image acquisition, image analysis, and the subject of the image. Development of the first two (i.e. image acquisition techniques and image correlation algorithms) has led to widespread use of DIC; however, fewer developments have been focused on the third ingredient. Typically, subjects of DIC images are mechanical specimens with either a natural surface pattern or a pattern applied to the surface. Research in the area of DIC patterns has primarily been aimed at identifying which surface patterns are best suited for DIC, by comparing patterns to each other. Because the easiest and most widespread methods of applying patterns have a high degree of randomness associated with them (e.g., airbrush, spray paint, particle decoration, etc.), less effort has been spent on exact construction of ideal patterns. With the development of patterning techniques such as microstamping and lithography, patterns can be applied to a specimen pixel by pixel from a patterned image. In these cases, especially because the patterns are reused many times, an optimal pattern is sought such that error introduced into DIC from the pattern is minimized. DIC consists of tracking the motion of an array of nodes from a reference image to a deformed image. Every pixel in the images has an associated intensity (grayscale) value, with discretization depending on the bit depth of the image. Because individual pixel matching by intensity value yields a non-unique scale-dependent problem, subsets around each node are used for identification. A correlation criteria is used to find the best match of a particular subset of a reference image within a deformed image. The reader is referred to references for enumerations of typical correlation criteria. As illustrated by Schreier and Sutton and Lu and Cary systematic errors can be introduced by representing the underlying deformation with under

  11. Chronic Pancreatitis Pain Pattern and Severity are Independent of Abdominal Imaging Findings

    PubMed Central

    Wilcox, C. Mel; Yadav, Dhiraj; Tian, Ye; Gardner, Timothy B.; Gelrud, Andres; Sandhu, Bimaljit S.; Lewis, Michele D.; Al-Kaade, Samer; Cote, Gregory A.; Forsmark, Christopher E.; Guda, Nalini; Conwell, Darwin L.; Banks, Peter A.; Muniraj, Thiruvengadam; Romagnuolo, Joseph; Brand, Randall E; Slivka, Adam; Sherman, Stuart; Wisniewski, Stephen R.; Whitcomb, David C.; Anderson, Michelle A.

    2016-01-01

    Background & Aims Chronic pancreatitis is characterized by inflammation, atrophy, fibrosis with progressive ductal changes, and functional changes that include variable exocrine and endocrine insufficiency and multiple patterns of pain. We investigated whether abdominal imaging features accurately predict patterns of pain. Methods We collected data from participants in North American Pancreatitis Study 2 Continuation and Validation, a prospective multicenter study of patients with chronic pancreatitis performed at 13 expert centers in the United States from July 2008 through March 2012. Chronic pancreatitis was defined based on detection of characteristic changes by cross-sectional abdominal imaging, endoscopic retrograde cholangiopancreatography, endoscopic ultrasonography, or histology analyses. Patients were asked by a physician or trained clinical research coordinator if they had any abdominal pain in the year before enrollment; those that responded “yes” were asked to select from a list of 5 pain patterns. Using these patterns, we classified patients’ pain based on timing and severity. Abnormal pancreatitis-associated features on abdominal imaging were recorded using standardized case report forms. Results Data were collected from 518 patients (mean age, 52±14.6 years; 55% male; and 87.6% white). The most common physician-identified etiologies were alcohol (45.8%) and idiopathic (24.3%); 15.6% of patients reported no abdominal pain in the year before enrollment. The most common individual pain pattern was described as constant mild pain with episodes of severe pain, reported in 45% of patients. The most common imaging findings included pancreatic ductal dilatation (68%), atrophy (57%), and calcifications (55%). Imaging findings were categorized as obstructive for 20% and inflammatory for 25% of cases. The distribution of individual imaging findings was similar among patients with different patterns of pain. The distribution of pain patterns did not

  12. Effect of Clouds on Optical Imaging of the Space Shuttle During the Ascent Phase: A Statistical Analysis Based on a 3D Model

    NASA Technical Reports Server (NTRS)

    Short, David A.; Lane, Robert E., Jr.; Winters, Katherine A.; Madura, John T.

    2004-01-01

    Clouds are highly effective in obscuring optical images of the Space Shuttle taken during its ascent by ground-based and airborne tracking cameras. Because the imagery is used for quick-look and post-flight engineering analysis, the Columbia Accident Investigation Board (CAIB) recommended the return-to-flight effort include an upgrade of the imaging system to enable it to obtain at least three useful views of the Shuttle from lift-off to at least solid rocket booster (SRB) separation (NASA 2003). The lifetimes of individual cloud elements capable of obscuring optical views of the Shuttle are typically 20 minutes or less. Therefore, accurately observing and forecasting cloud obscuration over an extended network of cameras poses an unprecedented challenge for the current state of observational and modeling techniques. In addition, even the best numerical simulations based on real observations will never reach "truth." In order to quantify the risk that clouds would obscure optical imagery of the Shuttle, a 3D model to calculate probabilistic risk was developed. The model was used to estimate the ability of a network of optical imaging cameras to obtain at least N simultaneous views of the Shuttle from lift-off to SRB separation in the presence of an idealized, randomized cloud field.

  13. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Hubanks, Paul A.

    2012-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to

  14. BIOCAT: a pattern recognition platform for customizable biological image classification and annotation

    PubMed Central

    2013-01-01

    Background Pattern recognition algorithms are useful in bioimage informatics applications such as quantifying cellular and subcellular objects, annotating gene expressions, and classifying phenotypes. To provide effective and efficient image classification and annotation for the ever-increasing microscopic images, it is desirable to have tools that can combine and compare various algorithms, and build customizable solution for different biological problems. However, current tools often offer a limited solution in generating user-friendly and extensible tools for annotating higher dimensional images that correspond to multiple complicated categories. Results We develop the BIOimage Classification and Annotation Tool (BIOCAT). It is able to apply pattern recognition algorithms to two- and three-dimensional biological image sets as well as regions of interest (ROIs) in individual images for automatic classification and annotation. We also propose a 3D anisotropic wavelet feature extractor for extracting textural features from 3D images with xy-z resolution disparity. The extractor is one of the about 20 built-in algorithms of feature extractors, selectors and classifiers in BIOCAT. The algorithms are modularized so that they can be “chained” in a customizable way to form adaptive solution for various problems, and the plugin-based extensibility gives the tool an open architecture to incorporate future algorithms. We have applied BIOCAT to classification and annotation of images and ROIs of different properties with applications in cell biology and neuroscience. Conclusions BIOCAT provides a user-friendly, portable platform for pattern recognition based biological image classification of two- and three- dimensional images and ROIs. We show, via diverse case studies, that different algorithms and their combinations have different suitability for various problems. The customizability of BIOCAT is thus expected to be useful for providing effective and efficient

  15. Cloud Arcs in the Western Pacific

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Small cumulus clouds in this natural-color view from the Multi-angle Imaging SpectroRadiometer have formed a distinctive series of quasi-circular arcs. Clues regarding the formation of these arcs can be found by noting that larger clouds exist in the interior of each arc.

    The interior clouds are thicker and likely to be more convectively active than the other clouds, causing much of the air near the centers of the arcs to rise. This air spreads out horizontally in all directions as it rises and continues to spread out as it begins to sink back to the surface. This pushes any existing small cumulus clouds away from the central region of convection.

    As the air sinks, it also warms, preventing other small clouds from forming, so that the regions just inside the arcs are kept clear. At the arcs, the horizontal flow of sinking air is now quite weak and on meeting the undisturbed air it can rise again slightly -- possibly assisting in the formation of new small cumulus clouds. Although examples of the continuity of air, in which every rising air motion must be compensated by a sinking motion elsewhere, are very common, the degree of organization exhibited here is relatively rare, as the wind field at different altitudes usually disrupts such patterns. The degree of self organization of this cloud image, whereby three or four such circular events form a quasi-periodic pattern, probably also requires a relatively uncommon combination of wind, temperature and humidity conditions for it to occur.

    The image was acquired by MISR's nadir camera on March 11, 2002, and is centered west of the Marshall Islands. Enewetak Atoll is discernible through thin cloud as the turquoise band near the right-hand edge of the image.

    The Multi-angle Imaging SpectroRadiometer observes the daylit Earth continuously from pole to pole, and views almost the entire globe every 9 days. This image is a portion of the data acquired during Terra orbit 11863, and covers an area of about 380

  16. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging

    NASA Astrophysics Data System (ADS)

    Prata, A. J.; Dezitter, F.; Davies, I.; Weber, K.; Birnfeld, M.; Moriano, D.; Bernardo, C.; Vogel, A.; Prata, G. S.; Mather, T. A.; Thomas, H. E.; Cammas, J.; Weber, M.

    2016-05-01

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m‑3 were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft.

  17. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging

    PubMed Central

    Prata, A. J.; Dezitter, F.; Davies, I.; Weber, K.; Birnfeld, M.; Moriano, D.; Bernardo, C.; Vogel, A.; Prata, G. S.; Mather, T. A.; Thomas, H. E.; Cammas, J.; Weber, M.

    2016-01-01

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m−3 were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft. PMID:27156701

  18. Artificial cloud test confirms volcanic ash detection using infrared spectral imaging.

    PubMed

    Prata, A J; Dezitter, F; Davies, I; Weber, K; Birnfeld, M; Moriano, D; Bernardo, C; Vogel, A; Prata, G S; Mather, T A; Thomas, H E; Cammas, J; Weber, M

    2016-01-01

    Airborne volcanic ash particles are a known hazard to aviation. Currently, there are no means available to detect ash in flight as the particles are too fine (radii < 30 μm) for on-board radar detection and, even in good visibility, ash clouds are difficult or impossible to detect by eye. The economic cost and societal impact of the April/May 2010 Icelandic eruption of Eyjafjallajökull generated renewed interest in finding ways to identify airborne volcanic ash in order to keep airspace open and avoid aircraft groundings. We have designed and built a bi-spectral, fast-sampling, uncooled infrared camera device (AVOID) to examine its ability to detect volcanic ash from commercial jet aircraft at distances of more than 50 km ahead. Here we report results of an experiment conducted over the Atlantic Ocean, off the coast of France, confirming the ability of the device to detect and quantify volcanic ash in an artificial ash cloud created by dispersal of volcanic ash from a second aircraft. A third aircraft was used to measure the ash in situ using optical particle counters. The cloud was composed of very fine ash (mean radii ~10 μm) collected from Iceland immediately after the Eyjafjallajökull eruption and had a vertical thickness of ~200 m, a width of ~2 km and length of between 2 and 12 km. Concentrations of ~200 μg m(-3) were identified by AVOID at distances from ~20 km to ~70 km. For the first time, airborne remote detection of volcanic ash has been successfully demonstrated from a long-range flight test aircraft. PMID:27156701

  19. Requirements and Implementation Feasibility for a CubeSat Thermal Infrared Imaging System to Monitor the Structure of Volcanic Ash Clouds

    NASA Astrophysics Data System (ADS)

    Thorsen, D.; Carroll, R.; Webley, P.; Hawkins, J.

    2014-12-01

    The 2010 eruption of the Eyjafjallajökull volcano in Iceland caused the cancellation of approximately 108,000 flights over an 8-day period, disrupted air traffic worldwide, and cost the airline industry more than $400 million per day. The inconvenience and economic impact of this and similar events, such as Puyehue-Cordon-Caulle in 2011, have heightened the interest in developing improved satellite remote sensing techniques for monitoring volcanic plumes and drifting clouds. For aviation safety, the operational/research community has started to move towards classifying the concentrations within volcanic plumes and clouds. Additionally, volcanic ash transport and dispersion (VATD) models are often used for forecasting ash cloud locations and they require knowledge of the structure of the erupting column to improve their ash simulations and also downwind 3-D maps of the ash cloud to calibrate/validate their modeling output. Existing remote sensing satellites utilize a brightness temperature method with thermal infrared (TIR) measurements from 10 - 12 μm to determine mass loading of volcanic ash along a single line of sight, but they have infrequent revisit times and they cannot resolve the three-dimensional structure of the ash clouds. A cluster of CubeSats dedicated to the monitoring of volcanic ash and plumes could provide both more frequent updates and the multi-aspect images needed to resolve the density structure of volcanic ash clouds and plumes. In this presentation, we discuss the feasibility and requirements for a CubeSat TIR imaging system and the associated on-board image processing that would be required to monitor the structure of volcanic ash clouds from Low Earth Orbit.

  20. Voyager 1 imaging and IRIS observations of Jovian methane absorption and thermal emission: Implications for cloud structure

    NASA Technical Reports Server (NTRS)

    West, R. A.; Kupferman, P. N.; Hart, H.

    1984-01-01

    Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature is quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.

  1. Voyager 1 imaging and IRIS observations of Jovian methane absorption and thermal emission - Implications for cloud structure

    NASA Technical Reports Server (NTRS)

    West, R. A.; Kupferman, P. N.; Hart, H.

    1985-01-01

    Images from three filters of the Voyager 1 wide angle camera are used to measure the continuum reflectivity and spectral gradient near 6000 A and the 6190 A band methane/continuum ratio for a variety of cloud features in Jupiter's atmosphere. The dark barge features in the North Equatorial Belt have anomalously strong positive continuum spectral gradients suggesting unique composition. Methane absorption is shown at unprecedented spatial scales for the Great Red Spot and its immediate environment, for a dark barge feature in the North Equatorial Belt, and for two hot spot and plume regions in the North Equatorial Belt. Methane absorption and five micrometer emission are correlated in the vicinity of the Great Red Spot but are anticorrelated in one of the plume hot spot regions. Methane absorption and simultaneous maps of five micrometer brightness temperature are quantitatively compared to realistic cloud structure models which include multiple scattering at five micrometer as well as in the visible. Variability in H2 quadrupole lines are also investigated.

  2. Crater Clouds

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA06085 Crater Clouds

    The crater on the right side of this image is affecting the local wind regime. Note the bright line of clouds streaming off the north rim of the crater.

    Image information: VIS instrument. Latitude -78.8N, Longitude 320.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. A modified technique for fabricating a mirror image wax pattern for an auricular prosthesis.

    PubMed

    Gajdhar, Shaiq; Gajdhar, Sajda Khan; Salakalakonda, Srikanth Reddy; Vasthare, Abubakkar

    2015-01-01

    This article describes a technique for fabricating a wax pattern for an auricular prosthesis by tracing the shape of a sliced cast of the contralateral ear at an interval of 1-mm and transferring the shape of each 1-mm slice to a similar dimension modeling wax sheet. In this way, slices of modeling wax are obtained, which can be reversed and placed over the previous slice to produce a mirror image wax pattern of the contralateral ear. PMID:25277032

  4. Martian Clouds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 28 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during early spring near the North Pole. The linear 'ripples' are transparent water-ice clouds. This linear form is typical for polar clouds. The black regions on the margins of this image are areas of saturation caused by the build up of scattered light from the bright polar material during the long image exposure.

    Image information: VIS instrument. Latitude 68.1, Longitude 147.9 East (212.1 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS

  5. Model-based classification methods of global patterns in dermoscopic images.

    PubMed

    Sáez, Aurora; Serrano, Carmen; Acha, Begoña

    2014-05-01

    In this paper different model-based methods of classification of global patterns in dermoscopic images are proposed. Global patterns identification is included in the pattern analysis framework, the melanoma diagnosis method most used among dermatologists. The modeling is performed in two senses: first a dermoscopic image is modeled by a finite symmetric conditional Markov model applied to L∗a∗b∗ color space and the estimated parameters of this model are treated as features. In turn, the distribution of these features are supposed that follow different models along a lesion: a Gaussian model, a Gaussian mixture model, and a bag-of-features histogram model. For each case, the classification is carried out by an image retrieval approach with different distance metrics. The main objective is to classify a whole pigmented lesion into three possible patterns: globular, homogeneous, and reticular. An extensive evaluation of the performance of each method has been carried out on an image database extracted from a public Atlas of Dermoscopy. The best classification success rate is achieved by the Gaussian mixture model-based method with a 78.44% success rate in average. In a further evaluation the multicomponent pattern is analyzed obtaining a 72.91% success rate. PMID:24770918

  6. Local spatial binary pattern: a new feature descriptor for content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Xia, Yu; Wan, Shouhong; Yue, Lihua

    2014-01-01

    In this paper, we propose a novel image retrieval algorithm using local spatial binary patterns (LSBP) for contentbased image retrieval. The traditional local binary pattern (LBP) encodes the relationship between the referenced pixel and its surrounding neighbors by calculating gray-level difference, but LBP lacks the spatial distribution information of texture direction. The proposed method encodes spatial relationship of the referenced pixel and its neighbors, based on the gray-level variation patterns of the horizontal, vertical and oblique directions. Additionally, variation between center pixel and its surrounding neighbors is calculated to reflect the magnitude information of the whole image. We compare our method with LBP, uniform LBP (ULBP), completed LBP (CLBP), local ternary pattern (LTP) and local tetra patterns (LTrP) based on three benchmark image databases including, Brodatz texture database(DB1), Corel database(DB2), and MIT VisTex database(DB3). Experiment analysis shows that the proposed method improves the retrieval results from 70.49%/41.30% to 73.26%/46.26% in terms of average precision/average recall on database DB2, from 79.02% to 85.92% and 82.14% to 90.88% in terms of average precision on databases DB1 and DB3, respectively, as compared with the traditional LBP.

  7. Three-Dimensional Object Reconstruction and Recognition Using Computational Integral Imaging and Statistical Pattern Analysis

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Lee, Dongsu; Son, Jung-Young; Kim, Shin-Hwan

    2009-09-01

    In this paper, we discuss computational reconstruction and statistical pattern classification using integral imaging. Three-dimensional object information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. The longitudinal distance and object boundary are estimated where the standard deviation of the intensity is minimized. Fisher linear discriminant analysis combined with principal component analysis is adopted for the classification of out-of-plane rotated objects. The Fisher linear discriminant analysis maximizes the class-discrimination while the principal component analysis minimizes the error between the original and the restored images. The presented method provides promising results for the distortion-tolerant pattern classification.

  8. Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuuki; Kawase, Kodo; Ikari, Tomofumi; Ito, Hiromasa; Ishikawa, Youichi; Minamide, Hiroaki

    2003-10-01

    We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1-2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.

  9. Using aberration test patterns to optimize the performance of EUV aerial imaging microscopes

    SciTech Connect

    Mochi, Iacopo; Goldberg, Kenneth A.; Miyakawa, Ryan; Naulleau, Patrick; Han, Hak-Seung; Huh, Sungmin

    2009-06-16

    The SEMATECH Berkeley Actinic Inspection Tool (AIT) is a prototype EUV-wavelength zoneplate microscope that provides high quality aerial image measurements of EUV reticles. To simplify and improve the alignment procedure we have created and tested arrays of aberration-sensitive patterns on EUV reticles and we have compared their images collected with the AIT to the expected shapes obtained by simulating the theoretical wavefront of the system. We obtained a consistent measure of coma and astigmatism in the center of the field of view using two different patterns, revealing a misalignment condition in the optics.

  10. Cloud computing for geophysical applications (Invited)

    NASA Astrophysics Data System (ADS)

    Zhizhin, M.; Kihn, E. A.; Mishin, D.; Medvedev, D.; Weigel, R. S.

    2010-12-01

    Cloud computing offers a scalable on-demand resource allocation model to evolving needs in data intensive geophysical applications, where computational needs in CPU and storage can vary over time depending on modeling or field campaign. Separate, sometimes incompatible cloud platforms and services are already available from major computing vendors (Amazon AWS, Microsoft Azure, Google Apps Engine), government agencies (NASA Nebulae) and Open Source community (Eucalyptus). Multiple cloud platforms with layered virtualization patterns (hardware-platform- software-data-or-everything as a service) provide a feature-rich environment and encourage experimentation with distributed data modeling, processing and storage. However, application and especially database development in the Cloud is different from the desktop and the compute cluster. In this presentation we will review scientific cloud applications relevant to geophysical research and present our results in building software components and cloud services for a virtual geophysical data center. We will discuss in depth economy, scalability and reliability of the distributed array and image data stores, synchronous and asynchronous RESTful services to access and model georefernced data, virtual observatory services for metadata management, and data visualization for web applications in Cloud.

  11. Free-form surface design method for nonaxial-symmetrical reflectors producing arbitrary image patterns

    NASA Astrophysics Data System (ADS)

    Tsai, Chung-Yu

    2016-07-01

    A free-form (FF) surface design method is proposed for a nonaxial-symmetrical projector system comprising an FF reflector and a light source. The profile of the reflector is designed using a nonaxial-symmetrical FF (NFF) surface construction method such that each incident ray is directed in such a way as to form a user-specified image pattern on the target region of the image plane. The light ray paths within the projection system are analyzed using an exact analytical model and a skew-ray tracing approach. The validity of the proposed NFF design method is demonstrated by means of ZEMAX simulations. It is shown that the image pattern formed on the target region of the image plane is in good agreement with that specified by the user. The NFF method is mathematically straightforward and easily implemented in computer code. As such, it provides a useful tool for the design and analysis stages of optical systems design.

  12. A new sparse Bayesian learning method for inverse synthetic aperture radar imaging via exploiting cluster patterns

    NASA Astrophysics Data System (ADS)

    Fang, Jun; Zhang, Lizao; Duan, Huiping; Huang, Lei; Li, Hongbin

    2016-05-01

    The application of sparse representation to SAR/ISAR imaging has attracted much attention over the past few years. This new class of sparse representation based imaging methods present a number of unique advantages over conventional range-Doppler methods, the basic idea behind these works is to formulate SAR/ISAR imaging as a sparse signal recovery problem. In this paper, we propose a new two-dimensional pattern-coupled sparse Bayesian learning(SBL) method to capture the underlying cluster patterns of the ISAR target images. Based on this model, an expectation-maximization (EM) algorithm is developed to infer the maximum a posterior (MAP) estimate of the hyperparameters, along with the posterior distribution of the sparse signal. Experimental results demonstrate that the proposed method is able to achieve a substantial performance improvement over existing algorithms, including the conventional SBL method.

  13. Searching for patterns in remote sensing image databases using neural networks

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1995-01-01

    We have investigated a method, based on a successful neural network multispectral image classification system, of searching for single patterns in remote sensing databases. While defining the pattern to search for and the feature to be used for that search (spectral, spatial, temporal, etc.) is challenging, a more difficult task is selecting competing patterns to train against the desired pattern. Schemes for competing pattern selection, including random selection and human interpreted selection, are discussed in the context of an example detection of dense urban areas in Landsat Thematic Mapper imagery. When applying the search to multiple images, a simple normalization method can alleviate the problem of inconsistent image calibration. Another potential problem, that of highly compressed data, was found to have a minimal effect on the ability to detect the desired pattern. The neural network algorithm has been implemented using the PVM (Parallel Virtual Machine) library and nearly-optimal speedups have been obtained that help alleviate the long process of searching through imagery.

  14. Integration of Point Clouds from Terrestrial Laser Scanning and Image-Based Matching for Generating High-Resolution Orthoimages

    NASA Astrophysics Data System (ADS)

    Salach, A.; Markiewicza, J. S.; Zawieska, D.

    2016-06-01

    An orthoimage is one of the basic photogrammetric products used for architectural documentation of historical objects; recently, it has become a standard in such work. Considering the increasing popularity of photogrammetric techniques applied in the cultural heritage domain, this research examines the two most popular measuring technologies: terrestrial laser scanning, and automatic processing of digital photographs. The basic objective of the performed works presented in this paper was to optimize the quality of generated high-resolution orthoimages using integration of data acquired by a Z+F 5006 terrestrial laser scanner and a Canon EOS 5D Mark II digital camera. The subject was one of the walls of the "Blue Chamber" of the Museum of King Jan III's Palace at Wilanów (Warsaw, Poland). The high-resolution images resulting from integration of the point clouds acquired by the different methods were analysed in detail with respect to geometric and radiometric correctness.

  15. Spot Matching of 2-DE Images Using Distance, Intensity, and Pattern Information.

    PubMed

    Xin, Hua-Mei; Zhu, Yuemin

    2016-01-01

    The analysis of a large number of two-dimensional gel electrophoresis (2-DE) images requires developing automatic methods. In such analyses, spot matching plays a fundamental role, in particular for the identification of proteins. We describe a simple and accurate method which allows to automatically and accurately match spots in 2-DE images. The method consists of simultaneously exploiting the distance between the spots, their intensity, and the pattern formed by their spatial configuration. PMID:26611412

  16. Local Wavelet Pattern: A New Feature Descriptor for Image Retrieval in Medical CT Databases.

    PubMed

    Dubey, Shiv Ram; Singh, Satish Kumar; Singh, Rajat Kumar

    2015-12-01

    A new image feature description based on the local wavelet pattern (LWP) is proposed in this paper to characterize the medical computer tomography (CT) images for content-based CT image retrieval. In the proposed work, the LWP is derived for each pixel of the CT image by utilizing the relationship of center pixel with the local neighboring information. In contrast to the local binary pattern that only considers the relationship between a center pixel and its neighboring pixels, the presented approach first utilizes the relationship among the neighboring pixels using local wavelet decomposition, and finally considers its relationship with the center pixel. A center pixel transformation scheme is introduced to match the range of center value with the range of local wavelet decomposed values. Moreover, the introduced local wavelet decomposition scheme is centrally symmetric and suitable for CT images. The novelty of this paper lies in the following two ways: 1) encoding local neighboring information with local wavelet decomposition and 2) computing LWP using local wavelet decomposed values and transformed center pixel values. We tested the performance of our method over three CT image databases in terms of the precision and recall. We also compared the proposed LWP descriptor with the other state-of-the-art local image descriptors, and the experimental results suggest that the proposed method outperforms other methods for CT image retrieval. PMID:26513789

  17. The influence of the property of random coded patterns on fluctuation-correlation ghost imaging

    NASA Astrophysics Data System (ADS)

    Wang, Chenglong; Gong, Wenlin; Shao, Xuehui; Han, Shensheng

    2016-06-01

    According to the reconstruction feature of fluctuation-correlation ghost imaging (GI), we define a normalized characteristic matrix and the influence of the property of random coded patterns on GI is investigated based on the theory of matrix analysis. Both simulative and experimental results demonstrate that for different random coded patterns, the quality of fluctuation-correlation GI can be predicted by some parameters extracted from the normalized characteristic matrix, which suggests its potential application in the optimization of random coded patterns for GI system.

  18. Search Cloud

    MedlinePlus

    ... this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this page, ... Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search cloud ...

  19. Search Cloud

    MedlinePlus

    ... www.nlm.nih.gov/medlineplus/cloud.html Search Cloud To use the sharing features on this page, please enable JavaScript. Share the MedlinePlus search cloud with your users by embedding our search cloud ...

  20. Fabrication and optimization of micro-scale speckle patterns for digital image correlation

    NASA Astrophysics Data System (ADS)

    Zhu, Jianguo; Yan, Gaoshen; He, Guanglong; Chen, Lei

    2016-01-01

    Experimental investigations are performed on the fabrication and optimization of micro-scale speckle patterns formed by spinning an epoxy resin and powder for digital image correlation measurements. New factors influencing the fabrication process, including the ambient temperature, centrifugal velocity, and solidifying time, are carefully analyzed and are evaluated in terms of the average gray gradient and particle agglomeration, and the optimal micro-scale speckle pattern is obtained with the proposed parameters in the fabrication process. Additionally, the micro-scale speckle pattern is experimentally verified by performing prescribed rigid-body translation tests, and the relative errors are approximately 1.5%. Finally, the micro-scale speckle patterns are transferred to tensile specimens of aluminum and a polymer material with a V notch. The measurement results are consistent with the theoretical predictions, and this agreement demonstrates the feasibility and accuracy of the micro-scale speckle patterns.

  1. [Relation between voice quality and pathological vibratory patterns using high-speed digital imaging].

    PubMed

    Miyaji, M; Iwamoto, Y; Oda, M; Niimi, S

    1999-03-01

    We analysed the vocal fold vibrations of 22 pathological larynges using a computer-assisted high-speed digital imaging technique. The parameters observed included symmetry, regularity, phase difference, glottal closure, amplitude, mucosal wave and periodicity difference. Voice quality was evaluated by a GRBAS system, and we examined the relation between vocal fold vibration patterns and voice quality. The intraexaminer correlation coefficient was high for the G, R and B scales. Vibratory patterns were classified according to the location of the lesion, severity of the disease, expiratory pressure and laryngeal modulation. Although there were no matches between a vocal fold vibratory pattern for one psychoacoustic impression of hoarseness, the characteristic vibratory patterns of these cases of R > or = 2.5 or diplophonia exhibited irregular glottal closure and periodicity differences. The characteristic vibratory pattern of vocal fry is a double or triple opening/closing phase, followed by a long closed phase. PMID:10226472

  2. Deep near-infrared and optical imaging photometry of the Serpens cloud core

    NASA Astrophysics Data System (ADS)

    Giovannetti, Philippe; Caux, Emmanuel

    Knowledge of the distribution of young stars within molecular clouds is of fundamental importance since it provides insights into the nature of star-forming mechanisms. Young Stellar objects (YSOs) are associated with varying amounts of gas and dust and it is expected that the youngest objects will be invisible at optical wavelengths due to obscuration of opaque circumstellar dust. Therefore observations at infrared wavelengths provide one of the best method for identifying the young stellar population within molecular clouds. Clusters are important laboratories for studying the initial luminosity function because they consist of statistically significant groups of stars who share the common heritage of forming from the same parental cloud and they are not old enough to have lost significant number of members due to stellar evolution or dynamical effects such as evaporation or violent relaxation. Moreover in these very young clusters (a few x 10^6 yrs), low-mass stars are brighter than at any other time in their Pre-Main Sequence (PMS) evolution. The Serpens molecular cloud is one of the most spectacular example of a protostellar nursery, harboring a stellar density exceeding 450 stars pc^{-3} (Eiroa and Casali 1992). At a distance of 310 pc (de Lara et al. 1991), recent near-infrared and submillimeter continuum surveys of the region have uncovered over half-dozen mm/submillimeter peaks among the more than fifty low-mass stars identified in the core, most of which lack near-infrared counterparts (Casali et al. 1993, White et al. 1995). This region have received considerable attention since Strom et al. (1974) drew attention to a small red nebulosity, often called the Serpens Object or the Serpens Reflection Nebula (SRN). A low resolution CO and H_2CO survey revealed a dense core in the dark cloud complex (Loren et al. 1979). More recently, Hurt and Barsony (1996) found several sources sharing the defining characteristics of Class 0 protostars, the short-lived (a

  3. Parameter Estimation of Fossil Oysters from High Resolution 3D Point Cloud and Image Data

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Harzhauser, Mathias; Dorninger, Peter; Nothegger, Clemens; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2014-05-01

    A unique fossil oyster reef was excavated at Stetten in Lower Austria, which is also the highlight of the geo-edutainment park 'Fossilienwelt Weinviertel'. It provides the rare opportunity to study the Early Miocene flora and fauna of the Central Paratethys Sea. The site presents the world's largest fossil oyster biostrome formed about 16.5 million years ago in a tropical estuary of the Korneuburg Basin. About 15,000 up to 80-cm-long shells of Crassostrea gryphoides cover a 400 m2 large area. Our project 'Smart-Geology for the World's largest fossil oyster reef' combines methods of photogrammetry, geology and paleontology to document, evaluate and quantify the shell bed. This interdisciplinary approach will be applied to test hypotheses on the genesis of the taphocenosis (e.g.: tsunami versus major storm) and to reconstruct pre- and post-event processes. Hence, we are focusing on using visualization technologies from photogrammetry in geology and paleontology in order to develop new methods for automatic and objective evaluation of 3D point clouds. These will be studied on the basis of a very dense surface reconstruction of the oyster reef. 'Smart Geology', as extension of the classic discipline, exploits massive data, automatic interpretation, and visualization. Photogrammetry provides the tools for surface acquisition and objective, automated interpretation. We also want to stress the economic aspect of using automatic shape detection in paleontology, which saves manpower and increases efficiency during the monitoring and evaluation process. Currently, there are many well known algorithms for 3D shape detection of certain objects. We are using dense 3D laser scanning data from an instrument utilizing the phase shift measuring principle, which provides accurate geometrical basis < 3 mm. However, the situation is difficult in this multiple object scenario where more than 15,000 complete or fragmentary parts of an object with random orientation are found. The goal

  4. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  5. ALFALFA and WSRT Imaging of Extended H I Features in the Leo Cloud of Galaxies

    NASA Astrophysics Data System (ADS)

    Leisman, Lukas; Haynes, Martha P.; Giovanelli, Riccardo; Józsa, Gyula; Adams, Elizabeth A. K.; Hess, Kelley M.

    2016-08-01

    We present ALFALFA H I observations of a well studied region of the Leo Cloud, which includes the NGC 3227 group and the NGC 3190 group. We detect optically dark H I tails and plumes with extents potentially exceeding 600 kpc, well beyond the field of view of previous observations. These H I features contain ˜40% of the total H I mass in the NGC 3227 group and ˜10% of the NGC 3190 group. We also present WSRT maps which show the complex morphology of the the extended emission in the NGC 3227 group. We comment on previously proposed models of the interactions in these group and the implications for the scale of group processing through interactions. Motivated by the extent of the H I plumes, we place the H I observations in the context of the larger loose group, demonstrating the need for future sensitive, wide field H I surveys to understand the role of group processing in galaxy evolution.

  6. A practical approach to optimizing the preparation of speckle patterns for digital-image correlation

    NASA Astrophysics Data System (ADS)

    Lionello, Giacomo; Cristofolini, Luca

    2014-10-01

    The quality of strain measurements by digital image correlation (DIC) strongly depends on the quality of the pattern on the specimen’s surface. An ideal pattern should be highly contrasted, stochastic, and isotropic. In addition, the speckle pattern should have an average size that exceeds the image pixel size by a factor of 3-5. (Smaller speckles cause poor contrast, and larger speckles cause poor spatial resolution.) Finally, the ideal pattern should have a limited scatter in terms of speckle sizes. The aims of this study were: (i) to define the ideal speckle size in relation to the specimen size and acquisition system; (ii) provide practical guidelines to identify the optimal settings of an airbrush gun, in order to produce a pattern that is as close as possible to the desired one while minimizing the scatter of speckle sizes. Patterns of different sizes were produced using two different airbrush guns with different settings of the four most influential factors (dilution, airflow setting, spraying distance, and air pressure). A full-factorial DOE strategy was implemented to explore the four factors at two levels each: 36 specimens were analyzed for each of the 16 combinations. The images were acquired using the digital cameras of a DIC system. The distribution of speckle sizes was analyzed to calculate the average speckle size and the standard deviation of the corresponding truncated Gaussian distribution. A mathematical model was built to enable prediction of the average speckle size in relation to the airbrush gun settings. We showed that it is possible to obtain a pattern with a highly controlled average and a limited scatter of speckle sizes, so as to match the ideal distribution of speckle sizes for DIC. Although the settings identified here apply only to the specific equipment being used, this method can be adapted to any airbrush to produce a desired speckle pattern.

  7. Spatiotemporal Mining of Time-Series Remote Sensing Images Based on Sequential Pattern Mining

    NASA Astrophysics Data System (ADS)

    Liu, H. C.; He, G. J.; Zhang, X. M.; Jiang, W.; Ling, S. G.

    2015-07-01

    With the continuous development of satellite techniques, it is now possible to acquire a regular series of images concerning a given geographical zone with both high accuracy and low cost. Research on how best to effectively process huge volumes of observational data obtained on different dates for a specific geographical zone, and to exploit the valuable information regarding land cover contained in these images has received increasing interest from the remote sensing community. In contrast to traditional land cover change measures using pair-wise comparisons that emphasize the compositional or configurational changes between dates, this research focuses on the analysis of the temporal sequence of land cover dynamics, which refers to the succession of land cover types for a given area over more than two observational periods. Using a time series of classified Landsat images, ranging from 2006 to 2011, a sequential pattern mining method was extended to this spatiotemporal context to extract sets of connected pixels sharing similar temporal evolutions. The resultant sequential patterns could be selected (or not) based on the range of support values. These selected patterns were used to explore the spatial compositions and temporal evolutions of land cover change within the study region. Experimental results showed that continuous patterns that represent consistent land cover over time appeared as quite homogeneous zones, which agreed with our domain knowledge. Discontinuous patterns that represent land cover change trajectories were dominated by the transition from vegetation to bare land, especially during 2009-2010. This approach quantified land cover changes in terms of the percentage area affected and mapped the spatial distribution of these changes. Sequential pattern mining has been used for string mining or itemset mining in transactions analysis. The expected novel significance of this study is the generalization of the application of the sequential pattern

  8. Focussing on the future: survey results on the image capture of patterned cutaneous injuries.

    PubMed

    Evans, Sam; Baylis, Sonya; Carabott, Romina; Jones, Michael; Lawson, Zoe; Marsh, Nick; Payne-James, Jason; Ramadani, Jona; Vanezis, Peter; Kemp, Alison

    2014-05-01

    An investigator who is involved in assessing the likelihood of physical abuse must make a decision as to whether the injury seen matches the explanation given. In some instances the pattern of these injuries can give the investigator a possible link to the cause of the injury. Photographic imaging is used to record the patterned cutaneous injuries (PCI) and to facilitate forensic interpretation. The current method of capturing PCI often results in some form of distortion that causes a change to the shape of the patterned injury. The Dermatological Patterned Injury Capture and Analysis (DePICA) research group was formed to assess current image capture methods and practices. An online survey was set up to assess the value of localised imaging protocols and training specific to imaging PCI and was made available to law enforcement professionals, forensic investigators and hospital staff. 80 participants responded to the survey. The majority of the survey participants have had training in medical or forensic photography, however 66 (83%) have not had specific training in how to photograph PCI. 41 (51%) of the participants responded that they always use a rigid scale and 34 (43%) position the camera so that it is perpendicular to the scale and injury. Comments made about the quality of images obtained and produced raises concerns about how much knowledge those initiating such images have about image relevance in criminal cases. It is evident that a clear and comprehensive guide to photographing PCIs is required to improve the quality of the photographic evidence that is collected. PMID:24794842

  9. Clouds Over Crater Rim

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Clouds above the rim of 'Endurance Crater' in this image from NASA's Mars Exploration Rover Opportunity can remind the viewer that Mars, our celestial neighbor, is subject to weather. On Earth, clouds like these would be referred to as 'cirrus' or the aptly nicknamed 'mares' tails.' These clouds occur in a region of strong vertical shear. The cloud particles (ice in this martian case) fall out, and get dragged along away from the location where they originally condensed, forming characteristic streamers. Opportunity took this picture with its navigation camera during the rover's 269th martian day (Oct. 26, 2004).

    The mission's atmospheric science team is studying cloud observations to deduce seasonal and time-of-day behavior of the clouds. This helps them gain a better understanding of processes that control cloud formation.

  10. Three-dimensional imaging through scattering media using three-dimensionally coded pattern projection.

    PubMed

    Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

    2015-08-20

    We propose a method for visualizing three-dimensional objects in scattering media. Our method is based on active illumination using three-dimensionally coded patterns and a numerical algorithm employing a sparsity constraint. We experimentally demonstrated the proposed imaging method for test charts located three-dimensionally at different depths in the space behind a translucent sheet. PMID:26368767

  11. Strategies for the Segmentation of Subcutaneous Vascular Patterns in Thermographic Images

    NASA Astrophysics Data System (ADS)

    Chan, Eric K. Y.; Pearce, John A.

    1989-05-01

    Computer-assisted segmentation of vascular patterns in thermographic images provides the clinician with graphic outlines of thermally significant subcutaneous blood vessels. Segmentation strategies compared here consist of image smoothing protocols followed by thresholding and zero-crossing edge detectors. Median prefiltering followed by the Frei-Chen algorithm gave the most reproducible results, with an execution time of 143 seconds for 256 X 256 images. The Laplacian of Gaussian operator was not suitable due to streak artifacts in the thermographic imaging system. This computerized process may be adopted in a fast paced clinical environment to aid in the diagnosis and assessment of peripheral circulatory diseases, Raynaud's Disease3, phlebitis, varicose veins, as well as diseases of the autonomic nervous system. The same methodology may be applied to enhance the appearance of abnormal breast vascular patterns, and hence serve as an adjunct to mammography in the diagnosis of breast cancer. The automatically segmented vascular patterns, which have a hand drawn appearance, may also be used as a data reduction precursor to higher level pattern analysis and classification tasks.

  12. Local object patterns for the representation and classification of colon tissue images.

    PubMed

    Olgun, Gulden; Sokmensuer, Cenk; Gunduz-Demir, Cigdem

    2014-07-01

    This paper presents a new approach for the effective representation and classification of images of histopathological colon tissues stained with hematoxylin and eosin. In this approach, we propose to decompose a tissue image into its histological components and introduce a set of new texture descriptors, which we call local object patterns, on these components to model their composition within a tissue. We define these descriptors using the idea of local binary patterns, which quantify a pixel by constructing a binary string based on relative intensities of its neighbors. However, as opposed to pixel-level local binary patterns, we define our local object pattern descriptors at the component level to quantify a component. To this end, we specify neighborhoods with different locality ranges and encode spatial arrangements of the components within the specified local neighborhoods by generating strings. We then extract our texture descriptors from these strings to characterize histological components and construct the bag-of-words representation of an image from the characterized components. Working on microscopic images of colon tissues, our experiments reveal that the use of these component-level texture descriptors results in higher classification accuracies than the previous textural approaches. PMID:24043411

  13. Image Data Mining for Pattern Classification and Visualization of Morphological Changes in Brain MR Images.

    PubMed

    Murakawa, Saki; Ikuta, Rie; Uchiyama, Yoshikazu; Shiraishi, Junji

    2016-02-01

    Hospital information systems (HISs) and picture archiving and communication systems (PACSs) are archiving large amounts of data (i.e., "big data") that are not being used. Therefore, many research projects in progress are trying to use "big data" for the development of early diagnosis, prediction of disease onset, and personalized therapies. In this study, we propose a new method for image data mining to identify regularities and abnormalities in the large image data sets. We used 70 archived magnetic resonance (MR) images that were acquired using three-dimensional magnetization-prepared rapid acquisition with gradient echo (3D MP-RAGE). These images were obtained from the Alzheimer's disease neuroimaging initiative (ADNI) database. For anatomical standardization of the data, we used the statistical parametric mapping (SPM) software. Using a similarity matrix based on cross-correlation coefficients (CCs) calculated from an anatomical region and a hierarchical clustering technique, we classified all the abnormal cases into five groups. The Z score map identified the difference between a standard normal brain and each of those from the Alzheimer's groups. In addition, the scatter plot obtained from two similarity matrixes visualized the regularities and abnormalities in the image data sets. Image features identified using our method could be useful for understanding of image findings associated with Alzheimer's disease. PMID:26902379

  14. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    NASA Astrophysics Data System (ADS)

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2015-07-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity.

  15. Photoacoustic image patterns of breast carcinoma and comparisons with Magnetic Resonance Imaging and vascular stained histopathology

    PubMed Central

    Heijblom, M.; Piras, D.; Brinkhuis, M.; van Hespen, J. C. G.; van den Engh, F. M.; van der Schaaf, M.; Klaase, J. M.; van Leeuwen, T. G.; Steenbergen, W.; Manohar, S.

    2015-01-01

    Photoacoustic (optoacoustic) imaging can visualize vasculature deep in tissue using the high contrast of hemoglobin to light, with the high-resolution possible with ultrasound detection. Since angiogenesis, one of the hallmarks of cancer, leads to increased vascularity, photoacoustics holds promise in imaging breast cancer as shown in proof-of-principle studies. Here for the first time, we investigate if there are specific photoacoustic appearances of breast malignancies which can be related to the tumor vascularity, using an upgraded research imaging system, the Twente Photoacoustic Mammoscope. In addition to comparisons with x-ray and ultrasound images, in subsets of cases the photoacoustic images were compared with MR images, and with vascular staining in histopathology. We were able to identify lesions in suspect breasts at the expected locations in 28 of 29 cases. We discovered generally three types of photoacoustic appearances reminiscent of contrast enhancement types reported in MR imaging of breast malignancies, and first insights were gained into the relationship with tumor vascularity. PMID:26159440

  16. Jupiter's High-Altitude Clouds

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons Multispectral Visible Imaging Camera (MVIC) snapped this incredibly detailed picture of Jupiter's high-altitude clouds starting at 06:00 Universal Time on February 28, 2007, when the spacecraft was only 2.3 million kilometers (1.4 million miles) from the solar system's largest planet. Features as small as 50 kilometers (30 miles) are visible. The image was taken through a narrow filter centered on a methane absorption band near 890 nanometers, a considerably redder wavelength than what the eye can see. Images taken through this filter preferentially pick out clouds that are relatively high in the sky of this gas giant planet because sunlight at the wavelengths transmitted by the filter is completely absorbed by the methane gas that permeates Jupiter's atmosphere before it can reach the lower clouds.

    The image reveals a range of diverse features. The south pole is capped with a haze of small particles probably created by the precipitation of charged particles into the polar regions during auroral activity. Just north of the cap is a well-formed anticyclonic vortex with rising white thunderheads at its core. Slightly north of the vortex are the tendrils of some rather disorganized storms and more pinpoint-like thunderheads. The dark 'measles' that appear a bit farther north are actually cloud-free regions where light is completely absorbed by the methane gas and essentially disappears from view. The wind action considerably picks up in the equatorial regions where giant plumes are stretched into a long wave pattern. Proceeding north of the equator, cirrus-like clouds are shredded by winds reaching speeds of up to 400 miles per hour, and more pinpoint-like thunderheads are visible. Although some of the famous belt and zone structure of Jupiter's atmosphere is washed out when viewed at this wavelength, the relatively thin North Temperate Belt shows up quite nicely, as does a series of waves just north of the belt. The north polar region of

  17. Bioacoustic systems: insights for acoustical imaging and pattern recognition (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Altes, Richard A.

    1987-09-01

    Standard performance measures and statistical tests must be altered for research on animal sonar. The narrowband range-Doppler ambiguity function must be redefined to analyze wideband signals. A new range, cross-range ambiguity function is needed to represent angle estimation and spatial resolution properties of animal sonar systems. Echoes are transformed into time-frequency (spectrogram-like) representations by the peripheral auditory system. Detection, estimation, and pattern recognition capabilities of animals should thus be analyzed in terms of operations on spectrograms. The methods developed for bioacoustic research yield new insights into the design of man-made imaging and pattern recognition systems. The range, cross-range ambiguity function can be used to improve imaging performance. Important features for echo pattern recognition are illustrated by time-frequency plots showing (i) principal components for spectrograms and (ii) templates for optimum discrimination between data classes.

  18. Color filter array patterns for small-pixel image sensors with substantial cross talk.

    PubMed

    Anzagira, Leo; Fossum, Eric R

    2015-01-01

    Digital image sensor outputs usually must be transformed to suit the human visual system. This color correction amplifies noise, thus reducing the signal-to-noise ratio (SNR) of the image. In subdiffraction-limit (SDL) pixels, where optical and carrier cross talk can be substantial, this problem can become significant when conventional color filter arrays (CFAs) such as the Bayer patterns (RGB and CMY) are used. We present the design and analysis of new color filter array patterns for improving the color error and SNR deterioration caused by cross talk in these SDL pixels. We demonstrate an improvement in the color reproduction accuracy and SNR in high cross-talk conditions. Finally, we investigate the trade-off between color accuracy and SNR for the different CFA patterns. PMID:26366487

  19. Teaching image processing and pattern recognition with the Intel OpenCV library

    NASA Astrophysics Data System (ADS)

    Kozłowski, Adam; Królak, Aleksandra

    2009-06-01

    In this paper we present an approach to teaching image processing and pattern recognition with the use of the OpenCV library. Image processing, pattern recognition and computer vision are important branches of science and apply to tasks ranging from critical, involving medical diagnostics, to everyday tasks including art and entertainment purposes. It is therefore crucial to provide students of image processing and pattern recognition with the most up-to-date solutions available. In the Institute of Electronics at the Technical University of Lodz we facilitate the teaching process in this subject with the OpenCV library, which is an open-source set of classes, functions and procedures that can be used in programming efficient and innovative algorithms for various purposes. The topics of student projects completed with the help of the OpenCV library range from automatic correction of image quality parameters or creation of panoramic images from video to pedestrian tracking in surveillance camera video sequences or head-movement-based mouse cursor control for the motorically impaired.

  20. Waves on White: Ice or Clouds?

    NASA Technical Reports Server (NTRS)

    2005-01-01

    As it passed over Antarctica on December 16, 2004, the Multi-angle Imaging SpectroRadiometer (MISR) on NASA's Terra satellite captured this image showing a wavy pattern in a field of white. At most other latitudes, such wavy patterns would likely indicate stratus or stratocumulus clouds. MISR, however, saw something different. By using information from several of its multiple cameras (each of which views the Earth's surface from a different angle), MISR was able to tell that what looked like a wavy cloud pattern was actually a wavy pattern on the ice surface. One of MISR's cloud classification products, the Angular Signature Cloud Mask (ASCM), correctly identified the rippled area as being at the surface.

    In this image pair, the view from MISR's most oblique backward-viewing camera is on the left, and the color-coded image on the right shows the results of the ASCM. The colors represent the level of certainty in the classification. Areas that were classed as cloudy with high confidence are white, and areas where the confidence was lower are yellow; dark blue shows confidently clear areas, while light blue indicates clear with lower confidence. The ASCM works particularly well at detecting clouds over snow and ice, but also works well over ocean and land. The rippled area on the surface which could have been mistaken for clouds are actually sastrugi -- long wavelike ridges of snow formed by the wind and found on the polar plains. Usually sastrugi are only several centimeters high and several meters apart, but large portions of East Antarctica are covered by mega-sastrugi ice fields, with dune-like features as high as four meters separated by two to five kilometers. The mega-sastrugi fields are a result of unusual snow accumulation and redistribution processes influenced by the prevailing winds and climate conditions. MISR imagery indicates that these mega sastrugi were stationary features between 2002 and 2004.

    Being able to distinguish clouds from

  1. A Local Index of Cloud Immersion in Tropical Forests Using Time-Lapse Photography

    NASA Astrophysics Data System (ADS)

    Bassiouni, M.; Scholl, M. A.

    2015-12-01

    Data on the frequency, duration and elevation of cloud immersion is essential to improve estimates of cloud water deposition in water budgets in cloud forests. Here, we present a methodology to detect local cloud immersion in remote tropical forests using time-lapse photography. A simple approach is developed to detect cloudy conditions in photographs within the canopy where image depth during clear conditions may be less than 10 meters and moving leaves and branches and changes in lighting are unpredictable. A primary innovation of this study is that cloudiness is determined from images without using a reference clear image and without minimal threshold value determination or human judgment for calibration. Five sites ranging from 600 to 1000 meters elevation along a ridge in the Luquillo Critical Zone Observatory, Puerto Rico were each equipped with a trail camera programmed to take an image every 30 minutes since March 2014. Images were classified using four selected cloud-sensitive image characteristics (SCICs) computed for small image regions: contrast, the coefficient of variation and the entropy of the luminance of each image pixel, and image colorfulness. K-means clustering provided reasonable results to discriminate cloudy from clear conditions. Preliminary results indicate that 79-94% (daytime) and 85-93% (nighttime) of validation images were classified accurately at one open and two closed canopy sites. The euclidian distances between SCICs vectors of images during cloudy conditions and the SCICs vector of the centroid of the cluster of clear images show potential to quantify cloud density in addition to immersion. The classification method will be applied to determine spatial and temporal patterns of cloud immersion in the study area. The presented approach offers promising applications to increase observations of low-lying clouds at remote mountain sites where standard instruments to measure visibility and cloud base may not be practical.

  2. Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography

    NASA Astrophysics Data System (ADS)

    He, Ran; Wang, Shunqiang; Andrews, Geoffrey; Shi, Wentao; Liu, Yaling

    2016-02-01

    With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a grayscale Gaussian distribution effect to model inaccuracies inherent in the polymerization process, which are normally regarded as trivial matters or errors. The measured surface profiles and the mathematical prediction show a good agreement, demonstrating the ability of this method to generate wavy patterns with precisely controlled features. An accurate pattern can be generated with customizable parameters (wavelength, amplitude, wave shape, pattern profile, and overall dimension). This mask-free photolithography approach provides a rapid fabrication method that is capable of generating complex and non-uniform 3D wavy patterns with the wavelength ranging from 12 μm to 2100 μm and an amplitude-to-wavelength ratio as large as 300%. Microfluidic devices with pure wavy and wavy-herringbone patterns suitable for capture of circulating tumor cells are made as a demonstrative application. A completely customized microfluidic device with wavy patterns can be created within a few hours without access to clean room or commercial photolithography equipment.

  3. Generation of Customizable Micro-wavy Pattern through Grayscale Direct Image Lithography

    PubMed Central

    He, Ran; Wang, Shunqiang; Andrews, Geoffrey; Shi, Wentao; Liu, Yaling

    2016-01-01

    With the increasing amount of research work in surface studies, a more effective method of producing patterned microstructures is highly desired due to the geometric limitations and complex fabricating process of current techniques. This paper presents an efficient and cost-effective method to generate customizable micro-wavy pattern using direct image lithography. This method utilizes a grayscale Gaussian distribution effect to model inaccuracies inherent in the polymerization process, which are normally regarded as trivial matters or errors. The measured surface profiles and the mathematical prediction show a good agreement, demonstrating the ability of this method to generate wavy patterns with precisely controlled features. An accurate pattern can be generated with customizable parameters (wavelength, amplitude, wave shape, pattern profile, and overall dimension). This mask-free photolithography approach provides a rapid fabrication method that is capable of generating complex and non-uniform 3D wavy patterns with the wavelength ranging from 12 μm to 2100 μm and an amplitude-to-wavelength ratio as large as 300%. Microfluidic devices with pure wavy and wavy-herringbone patterns suitable for capture of circulating tumor cells are made as a demonstrative application. A completely customized microfluidic device with wavy patterns can be created within a few hours without access to clean room or commercial photolithography equipment. PMID:26902520

  4. The Sensitivity of the Cloud Imaging and Particle Size Experiment to Gravity Wave Density Perturbations near the Stratopause

    NASA Astrophysics Data System (ADS)

    Carstens, J. N.; Bailey, S. M.; Alexander, M. J.; Randall, C. E.

    2014-12-01

    Nadir images of Rayleigh scattered UV sunlight (265 nm) from the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) satellite contain many periodic structures. These structures are believed to be the result of Gravity Waves (GW). In this work, we investigate the theoretical impact of GWs on the albedo imagery. We show that GWs are indeed capable of producing the observed structures. The sensitivity to GW perturbations peaks at an altitude of ~50 km with a FWHM of ~15 km with images taken at mid to polar latitudes. For vertical wavelengths greater than 15 km, this corresponds to GWs with momentum fluxes greater than ~0.1-0.01 mPa. Vertical wavelengths less than ~10 km require amplitudes larger than static stability considerations allow, so these GWs are not observable. Observable horizontal wavelengths range from approximately 20 to 300 km. These wavelength ranges correspond to a sensitivity to GWs with an intrinsic period shorter than ~2.5 hrs. Existing satellite GW studies in this altitude region use limb scanners or microwave nadir imagers, which are sensitive to much longer horizontal wavelengths. This tends to limit the sensitivity to longer period waves. Therefore, the addition of CIPS imagery to the existing coverage of GW measurements is complimentary - significantly expanding the spectral coverage of GWs near the stratopause. Short period GWs observed by CIPS carry significantly larger momentum flux than the climatological averages seen for longer period GWs, so important differences may exist. GWs are critically important to middle atmosphere dynamics, and their representation in global climate models is not well constrained by observations.

  5. Optoelectronic/image processing module for enhanced fringe pattern acquisition and analysis

    NASA Astrophysics Data System (ADS)

    Dymny, Grzegorz; Kujawinska, Malgorzata

    1996-08-01

    The paper introduces an optoelectronic/image processing module, OIMP, which enables more convenient implementation of full-field optical methods of testing into industry. OIMP consist of two miniature CCD cameras and optical wavefront modification system which recombines the beams produced by opto-mechanical measurement system and images fringe patterns on the CCD matrices. The modules makes possible simultaneous registration of there monochromatic images as R,G,B components of color video signal by means of signal frame grabber or by VCR on video tape. This enables convenient and inexpensive storage of large quantities of data which may be analyzed by spatial carrier phase shifting method of automatic fringe pattern analysis. THe usefulness of OIMP is shown by two examples: u and v in-plane displacement simultaneous analysis in grating interferometry system and complex shape determination by fringe projection systems.

  6. Abnormal Image Detection in Endoscopy Videos Using a Filter Bank and Local Binary Patterns

    PubMed Central

    Nawarathna, Ruwan; Oh, JungHwan; Muthukudage, Jayantha; Tavanapong, Wallapak; Wong, Johnny; de Groen, Piet C.; Tang, Shou Jiang

    2014-01-01

    Finding mucosal abnormalities (e.g., erythema, blood, ulcer, erosion, and polyp) is one of the most essential tasks during endoscopy video review. Since these abnormalities typically appear in a small number of frames (around 5% of the total frame number), automated detection of frames with an abnormality can save physician’s time significantly. In this paper, we propose a new multi-texture analysis method that effectively discerns images showing mucosal abnormalities from the ones without any abnormality since most abnormalities in endoscopy images have textures that are clearly distinguishable from normal textures using an advanced image texture analysis method. The method uses a “texton histogram” of an image block as features. The histogram captures the distribution of different “textons” representing various textures in an endoscopy image. The textons are representative response vectors of an application of a combination of Leung and Malik (LM) filter bank (i.e., a set of image filters) and a set of Local Binary Patterns on the image. Our experimental results indicate that the proposed method achieves 92% recall and 91.8% specificity on wireless capsule endoscopy (WCE) images and 91% recall and 90.8% specificity on colonoscopy images. PMID:25132723

  7. Abnormal Image Detection in Endoscopy Videos Using a Filter Bank and Local Binary Patterns.

    PubMed

    Nawarathna, Ruwan; Oh, JungHwan; Muthukudage, Jayantha; Tavanapong, Wallapak; Wong, Johnny; de Groen, Piet C; Tang, Shou Jiang

    2014-11-20

    Finding mucosal abnormalities (e.g., erythema, blood, ulcer, erosion, and polyp) is one of the most essential tasks during endoscopy video review. Since these abnormalities typically appear in a small number of frames (around 5% of the total frame number), automated detection of frames with an abnormality can save physician's time significantly. In this paper, we propose a new multi-texture analysis method that effectively discerns images showing mucosal abnormalities from the ones without any abnormality since most abnormalities in endoscopy images have textures that are clearly distinguishable from normal textures using an advanced image texture analysis method. The method uses a "texton histogram" of an image block as features. The histogram captures the distribution of different "textons" representing various textures in an endoscopy image. The textons are representative response vectors of an application of a combination of Leung and Malik (LM) filter bank (i.e., a set of image filters) and a set of Local Binary Patterns on the image. Our experimental results indicate that the proposed method achieves 92% recall and 91.8% specificity on wireless capsule endoscopy (WCE) images and 91% recall and 90.8% specificity on colonoscopy images. PMID:25132723

  8. Gram-Schmidt orthonormalization for retrieval of amplitude images under sinusoidal patterns of illumination.

    PubMed

    Lu, Yuzhen; Li, Richard; Lu, Renfu

    2016-09-01

    Structured illumination using sinusoidal patterns has been used for optical imaging of biological tissues in biomedical research, and of horticultural products in food quality evaluation. Implementation of structured-illumination imaging relies on retrieval of amplitude images, which is conventionally achieved by a phase-shifting technique that requires collecting a minimum of three phase-shifted images. In this study, we have proposed Gram-Schmidt orthonormalization (GSO) to retrieve amplitude component (AC) images using only two phase-shifted images. We have proposed two forms of GSO implementation, and prior to GSO processing, we eliminated the direct component (DC) background by subtracting a DC image we recovered using a spiral phase function (SPF) in the Fourier space. We demonstrated the GSO methods through numerical simulations and application examples of detection of bruise defects in apples by structured-illumination reflectance imaging (SIRI). GSO performed comparably to conventional three-phase-based demodulation. It is simple, fast and effective for amplitude retrieval and requires no prior phase information, which could facilitate fast implementation of structured-illumination imaging. PMID:27607260

  9. Imaging spectroscopy diagnosis of internal electron temperature and density distributions of plasma cloud surrounding hydrogen pellet in the Large Helical Device

    SciTech Connect

    Motojima, G.; Sakamoto, R.; Goto, M.; Matsuyama, A.; Yamada, H.; Mishra, J. S.

    2012-09-15

    To investigate the behavior of hydrogen pellet ablation, a novel method of high-speed imaging spectroscopy has been used in the Large Helical Device (LHD) for identifying the internal distribution of the electron density and temperature of the plasma cloud surrounding the pellet. This spectroscopic system consists of a five-branch fiberscope and a fast camera, with each objective lens having a different narrow-band optical filter for the hydrogen Balmer lines and the background continuum radiation. The electron density and temperature in the plasma cloud are obtained, with a spatial resolution of about 6 mm and a temporal resolution of 5 Multiplication-Sign 10{sup -5} s, from the intensity ratio measured through these filters. To verify the imaging, the average electron density and temperature also have been measured from the total emission by using a photodiode, showing that both density and temperature increase with time during the pellet ablation. The electron density distribution ranging from 10{sup 22} to 10{sup 24} m{sup -3} and the temperature distribution around 1 eV have been observed via imaging. The electron density and temperature of a 0.1 m plasma cloud are distributed along the magnetic field lines and a significant electron pressure forms in the plasma cloud for typical experimental conditions of the LHD.

  10. Complex patterns in fossilized stromatolites revealed by hyperspectral imaging (400-2496 nm).

    PubMed

    Murphy, R J; Van Kranendonk, M J; Kelloway, S J; Wainwright, I E

    2016-09-01

    Hyperspectral imaging (400-2496 nm) was used to quantitatively map surface textures and compositional variations in stromatolites to determine whether complexity of textures could be used as evidence to support biogenicity in the absence of preserved biomarkers. Four samples of 2.72-2.4 Ga stromatolites from a variety of settings, encompassing marine and lacustrine environments, were selected for hyperspectral imaging. Images of the sawn surfaces of samples were processed to identify reflectance and mineral absorption features and quantify their intensity (as an index of mineral abundance) using automated feature extraction. Amounts of ferrous iron were quantified using a ratio of reflectance at 1650 and 1299 nm. Visible near infrared imagery (400-970 nm) did not reveal additional textural patterns to those obtained from visual inspection. Shortwave infrared imagery (1000-2496 nm), however, revealed complex laminar and convoluted patterns, including a distinctive texture of sharp peaks and broad, low troughs in one sample, similar to living tufted microbial mats. Spectral analysis revealed another sample to be composed of dolomite. Two other samples were dominated by calcite or chlorite ± illite. Large variations in amounts of ferrous iron were found, but ferric iron was exclusively located in the oxidation crust. Hyperspectral imaging revealed large differences between parts of a sample of biogenic and non-biogenic origin. The former was characterized by calcite with varying amounts of ferrous iron, distributed in lenticular, convoluted patterns; the latter by Mg-Fe chlorite with large amounts of aluminium silicate, distributed as fine laminar layers. All minerals identified by hyperspectral imaging were confirmed by thin section petrography and XRD analyses. Spatial statistics generated from quantitative minerals maps showed different patterns between these different parts of the sample. Thus, hyperspectral imaging was shown to be a powerful tool for

  11. Imaging of four planetary nebulae in the Magellanic Clouds using the Hubble Space Telescope Faint Object Camera

    NASA Technical Reports Server (NTRS)

    Blades, J. C.; Barlow, M. J.; Albrecht, R.; Barbieri, C.; Boksenberg, A.; Crane, P.; Deharveng, J. M.; Disney, M. J.; Jakobsen, P.; Kamperman, T. M.

    1992-01-01

    Using the Faint Object Camera on-board the Hubble Space Telescope, we have obtained images of four planetary nebulae (PNe) in the Magellanic Clouds, namely N2 and N5 in the SMC and N66 and N201 in the LMC. Each nebula was imaged through two narrow-band filters isolating forbidden O III 5007 and H-beta, for a nominal exposure time of 1000 s in each filter. In forbidden O III, SMC N5 shows a circular ring structure, with a peak-to-peak diameter of 0.26 arcsec and a FWHM of 0.35 arcsec while SMC N2 shows an elliptical ring structure with a peak-to-peak diameter of 0.26 x 0.21. The expansion ages corresponding to the observed structures in SMC N2 and N5 are of the order of 3000 yr. LMC N201 is very compact, with a FWHM of 0.2 arcsec in H-beta. The Type I PN LMC N66 is a multipolar nebula, with the brightest part having an extent of about 2 arcsec and with fainter structures extending over 4 arcsec.

  12. A CERES-like Cloud Property Climatology Using AVHRR Data

    NASA Astrophysics Data System (ADS)

    Minnis, P.; Bedka, K. M.; Yost, C. R.; Trepte, Q.; Bedka, S. T.; Sun-Mack, S.; Doelling, D.

    2015-12-01

    Clouds affect the climate system by modulating the radiation budget and distributing precipitation. Variations in cloud patterns and properties are expected to accompany changes in climate. The NASA Clouds and the Earth's Radiant Energy System (CERES) Project developed an end-to-end analysis system to measure broadband radiances from a radiometer and retrieve cloud properties from collocated high-resolution MODerate-resolution Imaging Spectroradiometer (MODIS) data to generate a long-term climate data record of clouds and clear-sky properties and top-of-atmosphere radiation budget. The first MODIS was not launched until 2000, so the current CERES record is only 15 years long at this point. The core of the algorithms used to retrieve the cloud properties from MODIS is based on the spectral complement of the Advanced Very High Resolution Radiometer (AVHRR), which has been aboard a string of satellites since 1978. The CERES cloud algorithms were adapted for application to AVHRR data and have been used to produce an ongoing CERES-like cloud property and surface temperature product that includes an initial narrowband-based radiation budget. This presentation will summarize this new product, which covers nearly 37 years, and its comparability with cloud parameters from CERES, CALIPSO, and other satellites. Examples of some applications of this dataset are given and the potential for generating a long-term radiation budget CDR is also discussed.

  13. Successive Pattern Learning based on Test Feature Classifier and its application to Defect Image Classification

    NASA Astrophysics Data System (ADS)

    Sakata, Yukinobu; Kaneko, Shun'Ichi; Takagi, Yuji; Okuda, Hirohito

    A novel sequential learning algorithm of Test Feature Classifier (TFC) which is non-parametric and effective even for small data is proposed for efficiently handling consecutively provided training data. Fundamental characteristics of the sequential learning are examined. In the learning, after recognition of a set of unknown objects, they are fed into the classifier in order to obtain a modified classifier. We propose an efficient algorithm for reconstruction of prime tests, which are irreducible combinations of features which are capable to discriminate training patterns into correct classes, is formalized in cases of addition and removal of training patterns. Some strategies for the modification of training patterns are investigated with respect to their precision and performance by use of real pattern data. A real world problem of classification of defects on wafer images has been tackled by the proposed classifier, obtaining excellent performance even through efficient modification strategies.

  14. Automatic reconstruction of 3D urban landscape by computing connected regions and assigning them an average altitude from LiDAR point cloud image

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2014-10-01

    The demand of 3D city modeling has been increasing in many applications such as urban planing, computer gaming with realistic city environment, car navigation system with showing 3D city map, virtual city tourism inviting future visitors to a virtual city walkthrough and others. We proposed a simple method for reconstructing a 3D urban landscape from airborne LiDAR point cloud data. The automatic reconstruction method of a 3D urban landscape was implemented by the integration of all connected regions, which were extracted and extruded from the altitude mask images. These mask images were generated from the gray scale LiDAR image by the altitude threshold ranges. In this study we demonstrated successfully in the case of Kanazawa city center scene by applying the proposed method to the airborne LiDAR point cloud data.

  15. Multichannel Decoded Local Binary Patterns for Content-Based Image Retrieval.

    PubMed

    Dubey, Shiv Ram; Singh, Satish Kumar; Singh, Rajat Kumar

    2016-09-01

    Local binary pattern (LBP) is widely adopted for efficient image feature description and simplicity. To describe the color images, it is required to combine the LBPs from each channel of the image. The traditional way of binary combination is to simply concatenate the LBPs from each channel, but it increases the dimensionality of the pattern. In order to cope with this problem, this paper proposes a novel method for image description with multichannel decoded LBPs. We introduce adder- and decoder-based two schemas for the combination of the LBPs from more than one channel. Image retrieval experiments are performed to observe the effectiveness of the proposed approaches and compared with the existing ways of multichannel techniques. The experiments are performed over 12 benchmark natural scene and color texture image databases, such as Corel-1k, MIT-VisTex, USPTex, Colored Brodatz, and so on. It is observed that the introduced multichannel adder- and decoder-based LBPs significantly improve the retrieval performance over each database and outperform the other multichannel-based approaches in terms of the average retrieval precision and average retrieval rate. PMID:27295674

  16. Landsat 7 - First Cloud-free Image of Yellowstone National Park

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of Yellowstone Lake, in the center of Yellowstone National Park, was taken by Landsat 7 on July 13, 1999. Bands 5 (1.65um),4 (.825um), and 2 (.565um) were used for red, green, and blue, respectively. Water appears blue/black, snow light blue, mature forest red/green, young forest pink, and grass and fields appear light green. Southwest of the lake is young forest that is growing in the wake of the widespread fires of 1988. For more information, see: Landsat 7 Fact Sheet Landsat 7 in Mission Control Image by Rich Irish, NASA GSFC

  17. Decomposition of brain diffusion imaging data uncovers latent schizophrenias with distinct patterns of white matter anisotropy.

    PubMed

    Arnedo, Javier; Mamah, Daniel; Baranger, David A; Harms, Michael P; Barch, Deanna M; Svrakic, Dragan M; de Erausquin, Gabriel A; Cloninger, C Robert; Zwir, Igor

    2015-10-15

    Fractional anisotropy (FA) analysis of diffusion tensor-images (DTI) has yielded inconsistent abnormalities in schizophrenia (SZ). Inconsistencies may arise from averaging heterogeneous groups of patients. Here we investigate whether SZ is a heterogeneous group of disorders distinguished by distinct patterns of FA reductions. We developed a Generalized Factorization Method (GFM) to identify biclusters (i.e., subsets of subjects associated with a subset of particular characteristics, such as low FA in specific regions). GFM appropriately assembles a collection of unsupervised techniques with Non-negative Matrix Factorization to generate biclusters, rather than averaging across all subjects and all their characteristics. DTI tract-based spatial statistics images, which output is the locally maximal FA projected onto the group white matter skeleton, were analyzed in 47 SZ and 36 healthy subjects, identifying 8 biclusters. The mean FA of the voxels of each bicluster was significantly different from those of other SZ subjects or 36 healthy controls. The eight biclusters were organized into four more general patterns of low FA in specific regions: 1) genu of corpus callosum (GCC), 2) fornix (FX)+external capsule (EC), 3) splenium of CC (SCC)+retrolenticular limb (RLIC)+posterior limb (PLIC) of the internal capsule, and 4) anterior limb of the internal capsule. These patterns were significantly associated with particular clinical features: Pattern 1 (GCC) with bizarre behavior, pattern 2 (FX+EC) with prominent delusions, and pattern 3 (SCC+RLIC+PLIC) with negative symptoms including disorganized speech. The uncovered patterns suggest that SZ is a heterogeneous group of disorders that can be distinguished by different patterns of FA reductions associated with distinct clinical features. PMID:26151103

  18. Image Processing And