Sample records for image guided radio

  1. Radio-guided occult lesion localisation using iodine 125 Seeds “ROLLIS” to guide surgical removal of an impalpable posterior chest wall melanoma metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dissanayake, Shashini; Dissanayake, Deepthi; Taylor, Donna B

    Cancer screening and surveillance programmes and the use of sophisticated imaging tools such as positron emission tomography-computed tomography (PET-CT) have increased the detection of impalpable lesions requiring imaging guidance for excision. A new technique involves intra-lesional insertion of a low-activity iodine-125 ({sup 125}I) seed and detection of the radioactive signal in theatre using a hand-held gamma probe to guide surgery. Whilst several studies describe using this method to guide the removal of impalpable breast lesions, only a handful of publications report its use to guide excision of lesions outside the breast. We describe a case in which radio-guided occult lesionmore » localisation using an iodine 125 seed was used to guide excision of an impalpable posterior chest wall metastasis detected on PET-CT.« less

  2. Radio-guided thoracoscopic surgery (RGTS) of small pulmonary nodules.

    PubMed

    Ambrogi, Marcello Carlo; Melfi, Franca; Zirafa, Carmelina; Lucchi, Marco; De Liperi, Annalisa; Mariani, Giuliano; Fanucchi, Olivia; Mussi, Alfredo

    2012-04-01

    The demand for adequate tissue sampling to determine individual tumor behavior is increasing the number of lung nodule resections, even when the diagnosis is already recognized. Video-assisted thoracic surgery (VATS) is the procedure of choice for diagnosis and treatment of small pulmonary nodules. Difficulties in localizing smaller and deeper nodules have been approached with different techniques. Herein we report our 13-years' experience with radio-guided thoracoscopic resection. Patients with pulmonary nodules smaller than 1 cm and/or deeper than 1 cm, below the visceral pleura, underwent computed tomography (CT)-guided injection of a solution, composed of 0.2 ml (99)Tc-labeled human serum albumin microspheres and 0.1 ml nonionic contrast, into the nodule. During the VATS procedure, an 11-mm-diameter collimated probe connected to a gamma ray detector was introduced to scan the lung surface. The area of major radioactivity, which matched with the area of the nodule, was resected. From 1997 to 2009, 573 patients underwent thoracoscopic resection of small pulmonary nodules, 211 with the radio-guided technique. There were 159 men and 52 women, with an average age of 60.6 years (range = 12-83). The mean duration of the surgical procedure was 41 min (range = 20-100). The procedure was successful in 208/211 cases. Three patients (0.5%) required conversion to a minithoracotomy. The mean length of pleural drainage and hospital stay was 2.3 and 3.7 days, respectively. Histological examination showed 98 benign lesions and 113 malignant lesions (61 metastases and 52 primary lung cancers). This study confirms that radio-guided localization of small pulmonary nodules is a feasible, safe, and quick procedure, with a high rate of success. The spread of the sentinel lymph node technique has increased the availability of technology required for RGTS.

  3. An MF/HF radio array for radio and radar imaging of the ionosphere

    NASA Astrophysics Data System (ADS)

    Isham, Brett; Gustavsson, Bjorn; Belyey, Vasyl; Bullett, Terrence

    2016-07-01

    The Aguadilla Radio Array will be installed at the Interamerican University Aguadilla Campus, located in northwestern Puerto Rico. The array is intended for broad-band medium and high-frequency (MF/HF, roughly 2 to 25 MHz) radio and bistatic radar observations of the ionosphere. The main array consists of 20 antenna elements, arranged in a semi-random pattern providing a good distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. A relocatable 6-element array is also being developed, in which each element consists of a crossed pair of active electric dipoles and all associated electronics for phase-coherent radio measurements. A primary scientific goal of the array is to create images of the region of ionospheric radio emissions stimulated by the new Arecibo Observatory high-power high-frequency radio transmitter. A second primary goal is the study of ionospheric structure and dynamics via coherent radar imaging of the ionosphere in collaboration with the University of Colorado / NOAA Versatile Interferometric Pulsed Ionospheric Radar (VIPIR), located at the USGS San Juan Observatory in Cayey, Puerto Rico. In addition to ionospheric research in collaboration with the Cayey and Arecibo Observatories, the goals of the project include the development of radio sounding, polarization, interferometry, and imaging techniques, and training of students at the university and high school levels.

  4. Imaging spectroscopy of solar radio burst fine structures.

    PubMed

    Kontar, E P; Yu, S; Kuznetsov, A A; Emslie, A G; Alcock, B; Jeffrey, N L S; Melnik, V N; Bian, N H; Subramanian, P

    2017-11-15

    Solar radio observations provide a unique diagnostic of the outer solar atmosphere. However, the inhomogeneous turbulent corona strongly affects the propagation of the emitted radio waves, so decoupling the intrinsic properties of the emitting source from the effects of radio wave propagation has long been a major challenge in solar physics. Here we report quantitative spatial and frequency characterization of solar radio burst fine structures observed with the Low Frequency Array, an instrument with high-time resolution that also permits imaging at scales much shorter than those corresponding to radio wave propagation in the corona. The observations demonstrate that radio wave propagation effects, and not the properties of the intrinsic emission source, dominate the observed spatial characteristics of radio burst images. These results permit more accurate estimates of source brightness temperatures, and open opportunities for quantitative study of the mechanisms that create the turbulent coronal medium through which the emitted radiation propagates.

  5. ARTIP: Automated Radio Telescope Image Processing Pipeline

    NASA Astrophysics Data System (ADS)

    Sharma, Ravi; Gyanchandani, Dolly; Kulkarni, Sarang; Gupta, Neeraj; Pathak, Vineet; Pande, Arti; Joshi, Unmesh

    2018-02-01

    The Automated Radio Telescope Image Processing Pipeline (ARTIP) automates the entire process of flagging, calibrating, and imaging for radio-interferometric data. ARTIP starts with raw data, i.e. a measurement set and goes through multiple stages, such as flux calibration, bandpass calibration, phase calibration, and imaging to generate continuum and spectral line images. Each stage can also be run independently. The pipeline provides continuous feedback to the user through various messages, charts and logs. It is written using standard python libraries and the CASA package. The pipeline can deal with datasets with multiple spectral windows and also multiple target sources which may have arbitrary combinations of flux/bandpass/phase calibrators.

  6. RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy

    NASA Astrophysics Data System (ADS)

    Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.

    2016-02-01

    We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.

  7. Astronomers Make First Images With Space Radio Telescope

    NASA Astrophysics Data System (ADS)

    1997-07-01

    Marking an important new milestone in radio astronomy history, scientists at the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, have made the first images using a radio telescope antenna in space. The images, more than a million times more detailed than those produced by the human eye, used the new Japanese HALCA satellite, working in conjunction with the National Science Foundation's (NSF) Very Long Baseline Array (VLBA) and Very Large Array (VLA) ground-based radio telescopes. The landmark images are the result of a long-term NRAO effort supported by the National Aeronautics and Space Administration (NASA). "This success means that our ability to make detailed radio images of objects in the universe is no longer limited by the size of the Earth," said NRAO Director Paul Vanden Bout. "Astronomy's vision has just become much sharper." HALCA, launched on Feb. 11 by Japan's Institute of Space and Astronautical Science (ISAS), is the first satellite designed for radio astronomy imaging. It is part of an international collaboration led by ISAS and backed by NRAO; Japan's National Astronomical Observatory; NASA's Jet Propulsion Laboratory (JPL); the Canadian Space Agency; the Australia Telescope National Facility; the European VLBI Network and the Joint Institute for Very Long Baseline Interferometry in Europe. On May 22, HALCA observed a distant active galaxy called PKS 1519-273, while the VLBA and VLA also observed it. Data from the satellite was received by a tracking station at the NRAO facility in Green Bank, West Virginia. Tape-recorded data from the satellite and from the radio telescopes on the ground were sent to NRAO's Array Operations Center (AOC) in Socorro, NM. In Socorro, astronomers and computer scientists used a special-purpose computer to digitally combine the signals from the satellite and the ground telescopes to make them all work together as a single, giant radio telescope. This dedicated machine, the VLBA Correlator, built as

  8. Infrared imaging of WENSS radio sources

    NASA Astrophysics Data System (ADS)

    Villani, D.; di Serego Alighieri, S.

    1999-03-01

    We have performed deep imaging in the IR J- and K- bands for three sub-samples of radio sources extracted from the Westerbork Northern Sky Survey, a large low-frequency radio survey containing Ultra Steep Spectrum (USS), Gigahertz Peaked Spectrum (GPS) and Flat Spectrum (FS) sources. We present the results of these IR observations, carried out with the ARcetri Near Infrared CAmera (ARNICA) at the Nordic Optical Telescope (NOT), providing photometric and morphologic information on high redshift radio galaxies and quasars. We find that the radio galaxies contained in our sample do not show the pronounced radio/IR alignment claimed for 3CR sources. IR photometric measurements of the gravitational lens system 1600+434 are also presented. % This paper is based on data obtained at the Nordic Optical Telescope on La Palma (Canary Islands).

  9. The Radio Plasma Imager Investigation on the IMAGE Spacecraft

    NASA Technical Reports Server (NTRS)

    Reinisch, Bodo W.; Haines, D. M.; Bibl, K.; Cheney, G.; Galkin, I. A.; Huang, X.; Myers, S. H.; Sales, G. S.; Benson, R. F.; Fung, S. F.

    1999-01-01

    Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole. Echoes from the magnetopause, plasmasphere and cusp will be received with three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring programs operating at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density and temperature by using a thermal noise spectroscopy technique.

  10. Radiosensitizer-eluting nanocoatings on gold fiducials for biological in-situ image-guided radio therapy (BIS-IGRT)

    NASA Astrophysics Data System (ADS)

    Nagesha, D. K.; Tada, D. B.; Stambaugh, C. K. K.; Gultepe, E.; Jost, E.; Levy, C. O.; Cormack, R.; Makrigiorgos, G. M.; Sridhar, S.

    2010-10-01

    Image-guided radiation treatments (IGRT) routinely utilize radio-opaque implantable devices, such as fiducials or brachytherapy spacers, for improved spatial accuracy. The therapeutic efficiency of IGRT can be further enhanced by biological in situ dose painting (BIS-IGRT) of radiosensitizers through localized delivery within the tumor using gold fiducial markers that have been coated with nanoporous polymer matrices loaded with nanoparticles (NPs). In this work, two approaches were studied: (i) a free drug release system consisting of Doxorubicin (Dox), a hydrophilic drug, loaded into a non-degradable polymer poly(methyl methacrylate) (PMMA) coating and (ii) poly(d,l-lactic-co-glycolic acid) (PLGA) NPs loaded with fluorescent Coumarin-6, serving as a model for a hydrophobic drug, in a biodegradable chitosan matrix. Temporal release kinetics measurements in buffer were carried out using fluorescence spectroscopy. In the first case of free Dox release, an initial release within the first few hours was followed by a sustained release over the course of the next 3 months. In the second platform, release of NPs and the free drug was controlled by the degradation rate of the chitosan matrix and PLGA. The results show that dosage and rate of release of these radiosensitizers coated on gold fiducials for IGRT can be precisely tailored to achieve the desired release profile for radiation therapy of cancer.

  11. Simulating 3D Spacecraft Constellations for Low Frequency Radio Imaging

    NASA Astrophysics Data System (ADS)

    Hegedus, A. M.; Amiri, N.; Lazio, J.; Belov, K.; Kasper, J. C.

    2016-12-01

    Constellations of small spacecraft could be used to realize a low-frequency phased array for either heliophysics or astrophysics observations. However, there are issues that arise with an orbiting array that do not occur on the ground, thus rendering much of the existing radio astronomy software inadequate for data analysis and simulation. In this work we address these issues and consider the performance of two constellation concepts. The first is a 32-spacecraft constellation for astrophysical observations, and the second is a 5-element concept for pointing to the location of radio emission from coronal mass ejections (CMEs). For the first, we fill the software gap by extending the APSYNSIM software to simulate the aperture synthesis for a radio interferometer in orbit. This involves using the dynamic baselines from the relative motion of the individual spacecraft as well as the capability to add galactic noise. The ability to simulate phase errors corresponding to positional uncertainty of the antennas was also added. The upgraded software was then used to model the imaging of a 32 spacecraft constellation that would orbit the moon to image radio galaxies like Cygnus A at .3-30 MHz. Animated images showing the improvement of the dirty image as the orbits progressed were made. RMSE plots that show how well the dirty image matches the input image as a function of integration time were made. For the second concept we performed radio interferometric simulations of the Sun Radio Interferometer Space Experiment (SunRISE) using the Common Astronomy Software Applications (CASA) package. SunRISE is a five spacecraft phased array that would orbit Earth to localize the low frequency radio emission from CMEs. This involved simulating the array in CASA, creating truth images for the CMEs over the entire frequency band of SunRISE, and observing them with the simulated array to see how well it could localize the true position of the CME. The results of our analysis show that we

  12. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorat, K.; Subrahmanyan, R.; Saripalli, L.

    2013-01-01

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 {mu}Jy beam{sup -1} rms noise. The images (centered at R.A. 00{sup h}35{sup m}00{sup s}, decl. -67 Degree-Sign 00'00'' and R.A. 00{sup h}59{sup m}17{sup s}, decl. -67 Degree-Sign 00'00'', J2000 epoch) cover 8.42 deg{sup 2} sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection thresholdmore » was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists-as opposed to component lists-and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.« less

  13. Radio Imaging of Envelopes of Evolved Stars

    NASA Astrophysics Data System (ADS)

    Cotton, Bill

    2018-04-01

    This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.

  14. Imaging spectroscopy of type U and J solar radio bursts with LOFAR

    NASA Astrophysics Data System (ADS)

    Reid, Hamish A. S.; Kontar, Eduard P.

    2017-10-01

    Context. Radio U-bursts and J-bursts are signatures of electron beams propagating along magnetic loops confined to the corona. The more commonly observed type III radio bursts are signatures of electron beams propagating along magnetic loops that extend into interplanetary space. Given the prevalence of solar magnetic flux to be closed in the corona, why type III bursts are more frequently observed than U-bursts or J-bursts is an outstanding question. Aims: We use Low-Frequency Array (LOFAR) imaging spectroscopy between 30-80 MHz of low-frequency U-bursts and J-bursts, for the first time, to understand why electron beams travelling along coronal loops produce radio emission less often. Radio burst observations provide information not only about the exciting electron beams but also about the structure of large coronal loops with densities that are too low for standard extreme ultraviolet (EUV) or X-ray analysis. Methods: We analysed LOFAR images of a sequence of two J-bursts and one U-burst. The different radio source positions were used to model the spatial structure of the guiding magnetic flux tube and then deduce the energy range of the exciting electron beams without the assumption of a standard density model. We also estimated the electron density along the magnetic flux rope and compared it to coronal models. Results: The radio sources infer a magnetic loop that is 1 solar radius in altitude with the highest frequency sources starting around 0.6 solar radii. Electron velocities were found between 0.13 c and 0.24 c with the front of the electron beam travelling faster than the back of the electron beam. The velocities correspond to energy ranges within the beam from 0.7-11 keV to 0.7-43 keV. The density along the loop is higher than typical coronal density models and the density gradient is smaller. Conclusions: We found that a more restrictive range of accelerated beam and background plasma parameters can result in U-bursts or J-bursts, causing type III

  15. PySE: Software for extracting sources from radio images

    NASA Astrophysics Data System (ADS)

    Carbone, D.; Garsden, H.; Spreeuw, H.; Swinbank, J. D.; van der Horst, A. J.; Rowlinson, A.; Broderick, J. W.; Rol, E.; Law, C.; Molenaar, G.; Wijers, R. A. M. J.

    2018-04-01

    PySE is a Python software package for finding and measuring sources in radio telescope images. The software was designed to detect sources in the LOFAR telescope images, but can be used with images from other radio telescopes as well. We introduce the LOFAR Telescope, the context within which PySE was developed, the design of PySE, and describe how it is used. Detailed experiments on the validation and testing of PySE are then presented, along with results of performance testing. We discuss some of the current issues with the algorithms implemented in PySE and their interaction with LOFAR images, concluding with the current status of PySE and its future development.

  16. Imaging interplanetary CMEs at radio frequency from solar polar orbit

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Liu, Hao; Yan, Jingye; Wang, Chi; Wang, Chuanbing; Wang, Shui

    2011-09-01

    Coronal mass ejections (CMEs) represent a great concentration of mass and energy input into the lower corona. They have come to be recognized as the major driver of physical conditions change in the Sun-Earth system. Consequently, observations of CMEs are important for understanding and ultimately predicting space weather conditions. This paper discusses a proposed mission, the Solar Polar Orbit Radio Telescope (SPORT) mission, which will observe the propagation of interplanetary CMEs to distances of near 0.35 AU from the Sun. The orbit of SPORT is an elliptical solar polar orbit. The inclination angle between the orbit and ecliptic plane should be about 90°. The main payload on board SPORT will be an imaging radiometer working at the meter wavelength band (radio telescope), which can follow the propagation of interplanetary CMEs. The images that are obtained by the radio telescope embody the brightness temperature of the objectives. Due to the very large size required for the antenna aperture of the radio telescope, we adopt interferometric imaging technology to reduce it. Interferometric imaging technology is based on indirect spatial frequency domain measurements plus Fourier transformation. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind ion instrument, an energetic particle detector, a magnetometer, a wave detector and a solar radio burst spectrometer.

  17. MR image reconstruction via guided filter.

    PubMed

    Huang, Heyan; Yang, Hang; Wang, Kang

    2018-04-01

    Magnetic resonance imaging (MRI) reconstruction from the smallest possible set of Fourier samples has been a difficult problem in medical imaging field. In our paper, we present a new approach based on a guided filter for efficient MRI recovery algorithm. The guided filter is an edge-preserving smoothing operator and has better behaviors near edges than the bilateral filter. Our reconstruction method is consist of two steps. First, we propose two cost functions which could be computed efficiently and thus obtain two different images. Second, the guided filter is used with these two obtained images for efficient edge-preserving filtering, and one image is used as the guidance image, the other one is used as a filtered image in the guided filter. In our reconstruction algorithm, we can obtain more details by introducing guided filter. We compare our reconstruction algorithm with some competitive MRI reconstruction techniques in terms of PSNR and visual quality. Simulation results are given to show the performance of our new method.

  18. Imaging of Stellar Surfacess Using Radio Facilities Including ALMA

    NASA Astrophysics Data System (ADS)

    O'Gorman, Eamon

    2018-04-01

    Until very recently, studies focusing on imaging stars at continuum radio wavelengths (here defined as submillimeter, millimeter, and centimeter wavelengths) has been scarce. These studies have mainly been carried out with the Very Large Array on a handful of evolved stars (i.e., Asymptotic Giant Branch and Red Supergiant stars) whereby their stellar disks have just about been spatially resolved. Some of these results however, have challenged our historical views on the nature of evolved star atmospheres. Now, the very long baselines of the Atacama Large Millimeter/submillimeter Array and the newly upgraded Karl G. Jansky Very Large Array provide a new opportunity to image these atmospheres at unprecedented spatial resolution and sensitivity across a much wider portion of the radio spectrum. In this talk I will first provide a history of stellar radio imaging and then discuss some recent exciting ALMA results. Finally I will present some brand new multi-wavelength ALMA and VLA results for the famous red supergiant Antares.

  19. Imaging the host galaxies of high-redshift radio-quiet QSOs

    NASA Technical Reports Server (NTRS)

    Lowenthal, James D.; Heckman, Timothy M.; Lehnert, Matthew, D.; Elias, J. H.

    1995-01-01

    We present new deep K-band and optical images of four radio-quiet QSOs at z approximately = 1 and six radio-quiet QSOs at z approximately = 2.5, as well as optical images only of six more at z approximately = 2.5. We have examined the images carefully for evidence of extended 'fuzz' from any putative QSO host galaxy. None of the z approximately = 2.5 QSOs shows any extended emission, and only two of the z approximately = 1 QSOs show marginal evidence for extended emission. Our 3 sigma detection limits in the K images, m(sub K) approximately = 21 for an isolated source, would correspond approximately to an unevolved L(sup star) elliptical galaxy at z = 2.5 or 2-3 mag fainter than an L(sup star) elliptical at z = 1, although our limits on host galaxy light are weaker than this due to the difficulty of separating galaxy light from QSO light. We simulate simple models of disk and elliptical host galaxies, and find that the marginal emission around the two z approximately = 1 QSOs can be explained by disks or bulges that are approximately 1-2 mag brighter than an unevolved L(sup star) galaxy in one case and approximately 1.5-2.5 mag brighter than L(sub star) in the other. For two other z approximately = 1 QSOs, we have only upper limits (L approximately = L(sup star)). The hosts of the high-redshift sample must be no brighter than about 3 mag above an unevolved L(sup star) galaxy, and are at least 1 magnitude fainter than the hosts of radio-loud QSOs at the same redshift. If the easily detected K-band light surrounding a previous sample of otherwise similar but radio-loud QSOs is starlight, then it must evolve on timescales of greater than or approximately equal to 10(exp 8) yr (e.g., Chambers & Charlot 1990); therefore our non-detection of host galaxy fuzz around radio-quiet QSOs supports the view that high-redshift radio-quiet and radio-loud QSOs inhabit different host objects, rather than being single types of objects that turn their radio emission on and off over

  20. Microsat and Lunar-Based Imaging of Radio Bursts

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Demaio, L. D.; Bale, S. D.; Kasper, J. C.; Lazarus, A. J.; Howard, R. E.; Jones, D. L.; Reiner, M. J.; hide

    2005-01-01

    No present or approved spacecraft mission has the capability to provide high angular resolution imaging of solar or magnetospheric radio bursts or of the celestial sphere at frequencies below the ionospheric cutoff. Here, we describe a MIDEX-class mission to perform such imaging in the frequency range approx. 30 kHz to 15 MHz. This mission, the Solar Imaging Radio Array (SIRA), is solar and exploration-oriented, with emphasis on improved understanding and application of radio bursts associated with solar energetic particle (SEP) events and on tracking shocks and other components of coronal mass ejections (CMEs). SIRA will require 12 to 16 micro-satellites to establish a sufficient number of baselines with separations on the order of kilometers. The constellation consists of microsats located quasi-randomly on a spherical shell, initially of approx. 10 km diameter. The baseline microsat is 3-axis stabilized with body-mounted solar arrays and an articulated, earth pointing high gain antenna. The constellation will likely be placed at L1, which is the preferred location for full-time solar observations. We also discuss briefly follow-on missions that would be lunar-based with of order 10,000 dipole antennas.

  1. Contrast-guided image interpolation.

    PubMed

    Wei, Zhe; Ma, Kai-Kuang

    2013-11-01

    In this paper a contrast-guided image interpolation method is proposed that incorporates contrast information into the image interpolation process. Given the image under interpolation, four binary contrast-guided decision maps (CDMs) are generated and used to guide the interpolation filtering through two sequential stages: 1) the 45(°) and 135(°) CDMs for interpolating the diagonal pixels and 2) the 0(°) and 90(°) CDMs for interpolating the row and column pixels. After applying edge detection to the input image, the generation of a CDM lies in evaluating those nearby non-edge pixels of each detected edge for re-classifying them possibly as edge pixels. This decision is realized by solving two generalized diffusion equations over the computed directional variation (DV) fields using a derived numerical approach to diffuse or spread the contrast boundaries or edges, respectively. The amount of diffusion or spreading is proportional to the amount of local contrast measured at each detected edge. The diffused DV fields are then thresholded for yielding the binary CDMs, respectively. Therefore, the decision bands with variable widths will be created on each CDM. The two CDMs generated in each stage will be exploited as the guidance maps to conduct the interpolation process: for each declared edge pixel on the CDM, a 1-D directional filtering will be applied to estimate its associated to-be-interpolated pixel along the direction as indicated by the respective CDM; otherwise, a 2-D directionless or isotropic filtering will be used instead to estimate the associated missing pixels for each declared non-edge pixel. Extensive simulation results have clearly shown that the proposed contrast-guided image interpolation is superior to other state-of-the-art edge-guided image interpolation methods. In addition, the computational complexity is relatively low when compared with existing methods; hence, it is fairly attractive for real-time image applications.

  2. Infrared images of distant 3C radio galaxies

    NASA Technical Reports Server (NTRS)

    Eisenhardt, Peter; Chokshi, Arati

    1990-01-01

    J (1.2-micron) and K (2.2 micron) images have been obtained for eight 3CR radio galaxies with redshifts from 0.7 to 1.8. Most of the objects were known to have extended asymmetric optical continuum or line emission aligned with the radio lobe axis. In general, the IR morphologies of these galaxies are just as peculiar as their optical morphologies. For all the galaxies, when asymmetric structure is present in the optical, structure with the same orientation is seen in the IR and must be accounted for in any model to explain the alignment of optical and radio emission.

  3. Image-guided endobronchial ultrasound

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Zang, Xiaonan; Cheirsilp, Ronnarit; Byrnes, Patrick; Kuhlengel, Trevor; Bascom, Rebecca; Toth, Jennifer

    2016-03-01

    Endobronchial ultrasound (EBUS) is now recommended as a standard procedure for in vivo verification of extraluminal diagnostic sites during cancer-staging bronchoscopy. Yet, physicians vary considerably in their skills at using EBUS effectively. Regarding existing bronchoscopy guidance systems, studies have shown their effectiveness in the lung-cancer management process. With such a system, a patient's X-ray computed tomography (CT) scan is used to plan a procedure to regions of interest (ROIs). This plan is then used during follow-on guided bronchoscopy. Recent clinical guidelines for lung cancer, however, also dictate using positron emission tomography (PET) imaging for identifying suspicious ROIs and aiding in the cancer-staging process. While researchers have attempted to use guided bronchoscopy systems in tandem with PET imaging and EBUS, no true EBUS-centric guidance system exists. We now propose a full multimodal image-based methodology for guiding EBUS. The complete methodology involves two components: 1) a procedure planning protocol that gives bronchoscope movements appropriate for live EBUS positioning; and 2) a guidance strategy and associated system graphical user interface (GUI) designed for image-guided EBUS. We present results demonstrating the operation of the system.

  4. Image-guided filtering for improving photoacoustic tomographic image reconstruction.

    PubMed

    Awasthi, Navchetan; Kalva, Sandeep Kumar; Pramanik, Manojit; Yalavarthy, Phaneendra K

    2018-06-01

    Several algorithms exist to solve the photoacoustic image reconstruction problem depending on the expected reconstructed image features. These reconstruction algorithms promote typically one feature, such as being smooth or sharp, in the output image. Combining these features using a guided filtering approach was attempted in this work, which requires an input and guiding image. This approach act as a postprocessing step to improve commonly used Tikhonov or total variational regularization method. The result obtained from linear backprojection was used as a guiding image to improve these results. Using both numerical and experimental phantom cases, it was shown that the proposed guided filtering approach was able to improve (as high as 11.23 dB) the signal-to-noise ratio of the reconstructed images with the added advantage being computationally efficient. This approach was compared with state-of-the-art basis pursuit deconvolution as well as standard denoising methods and shown to outperform them. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  5. The future of image-guided radiotherapy will be MR guided

    PubMed Central

    Wen, Zhifei; Sadagopan, Ramaswamy; Wang, Jihong; Ibbott, Geoffrey S

    2017-01-01

    Advances in image-guided radiotherapy (RT) have allowed for dose escalation and more precise radiation treatment delivery. Each decade brings new imaging technologies to help improve RT patient setup. Currently, the most frequently used method of three-dimensional pre-treatment image verification is performed with cone beam CT. However, more recent developments have provided RT with the ability to have on-board MRI coupled to the teleradiotherapy unit. This latest tool for treating cancer is known as MR-guided RT. Several varieties of these units have been designed and installed in centres across the globe. Their prevalence, history, advantages and disadvantages are discussed in this review article. In preparation for the next generation of image-guided RT, this review also covers where MR-guided RT might be heading in the near future. PMID:28256898

  6. Color image guided depth image super resolution using fusion filter

    NASA Astrophysics Data System (ADS)

    He, Jin; Liang, Bin; He, Ying; Yang, Jun

    2018-04-01

    Depth cameras are currently playing an important role in many areas. However, most of them can only obtain lowresolution (LR) depth images. Color cameras can easily provide high-resolution (HR) color images. Using color image as a guide image is an efficient way to get a HR depth image. In this paper, we propose a depth image super resolution (SR) algorithm, which uses a HR color image as a guide image and a LR depth image as input. We use the fusion filter of guided filter and edge based joint bilateral filter to get HR depth image. Our experimental results on Middlebury 2005 datasets show that our method can provide better quality in HR depth images both numerically and visually.

  7. Radio Sounding Science at High Powers

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Reinisch, B. W.; Song, P.; Fung, S. F.; Benson, R. F.; Taylor, W. W. L.; Cooper, J. F.; Garcia, L.; Markus, T.; Gallagher, D. L.

    2004-01-01

    Future space missions like the Jupiter Icy Moons Orbiter (JIMO) planned to orbit Callisto, Ganymede, and Europa can fully utilize a variable power radio sounder instrument. Radio sounding at 1 kHz to 10 MHz at medium power levels (10 W to kW) will provide long-range magnetospheric sounding (several Jovian radii) like those first pioneered by the radio plasma imager instrument on IMAGE at low power (less than l0 W) and much shorter distances (less than 5 R(sub E)). A radio sounder orbiting a Jovian icy moon would be able to globally measure time-variable electron densities in the moon ionosphere and the local magnetospheric environment. Near-spacecraft resonance and guided echoes respectively allow measurements of local field magnitude and local field line geometry, perturbed both by direct magnetospheric interactions and by induced components from subsurface oceans. JIMO would allow radio sounding transmissions at much higher powers (approx. 10 kW) making subsurface sounding of the Jovian icy moons possible at frequencies above the ionosphere peak plasma frequency. Subsurface variations in dielectric properties, can be probed for detection of dense and solid-liquid phase boundaries associated with oceans and related structures in overlying ice crusts.

  8. AN IMAGING STUDY OF A COMPLEX SOLAR CORONAL RADIO ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, S. W.; Chen, Y.; Song, H. Q.

    2016-08-10

    Solar coronal radio bursts are enhanced radio emission excited by energetic electrons accelerated during solar eruptions. Studying these bursts is important for investigating the origin and physical mechanism of energetic particles and further diagnosing coronal parameters. Earlier studies suffered from a lack of simultaneous high-quality imaging data of the radio burst and the eruptive structure in the inner corona. Here we present a study on a complex solar radio eruption consisting of a type II burst and three reversely drifting type III bursts, using simultaneous EUV and radio imaging data. It is found that the type II burst is closelymore » associated with a propagating and evolving CME-driven EUV shock structure, originated initially at the northern shock flank and later transferred to the top part of the shock. This source transfer is coincident with the presence of shock decay and enhancing signatures observed at the corresponding side of the EUV front. The electron energy accelerated by the shock at the flank is estimated to be ∼0.3 c by examining the imaging data of the fast-drifting herringbone structure of the type II burst. The reverse-drifting type III sources are found to be within the ejecta and correlated with a likely reconnection event therein. The implications for further observational studies and relevant space weather forecasting techniques are discussed.« less

  9. Fast radio burst tied to distant dwarf galaxy (Image 2)

    NSF Multimedia

    2017-06-07

    Radio telescope at Arecibo only localized the fast radio burst to the area inside the two circles in this image, but the Very Large Array was able to pinpoint it as a dwarf galaxy within the square (shown at intersection of cross hairs in enlarged box)

  10. Improving Performance During Image-Guided Procedures

    PubMed Central

    Duncan, James R.; Tabriz, David

    2015-01-01

    Objective Image-guided procedures have become a mainstay of modern health care. This article reviews how human operators process imaging data and use it to plan procedures and make intraprocedural decisions. Methods A series of models from human factors research, communication theory, and organizational learning were applied to the human-machine interface that occupies the center stage during image-guided procedures. Results Together, these models suggest several opportunities for improving performance as follows: 1. Performance will depend not only on the operator’s skill but also on the knowledge embedded in the imaging technology, available tools, and existing protocols. 2. Voluntary movements consist of planning and execution phases. Performance subscores should be developed that assess quality and efficiency during each phase. For procedures involving ionizing radiation (fluoroscopy and computed tomography), radiation metrics can be used to assess performance. 3. At a basic level, these procedures consist of advancing a tool to a specific location within a patient and using the tool. Paradigms from mapping and navigation should be applied to image-guided procedures. 4. Recording the content of the imaging system allows one to reconstruct the stimulus/response cycles that occur during image-guided procedures. Conclusions When compared with traditional “open” procedures, the technology used during image-guided procedures places an imaging system and long thin tools between the operator and the patient. Taking a step back and reexamining how information flows through an imaging system and how actions are conveyed through human-machine interfaces suggest that much can be learned from studying system failures. In the same way that flight data recorders revolutionized accident investigations in aviation, much could be learned from recording video data during image-guided procedures. PMID:24921628

  11. AGILIS: Agile Guided Interferometer for Longbaseline Imaging Synthesis. Demonstration and concepts of reconfigurable optical imaging interferometers

    NASA Astrophysics Data System (ADS)

    Woillez, Julien; Lai, Olivier; Perrin, Guy; Reynaud, François; Baril, Marc; Dong, Yue; Fédou, Pierre

    2017-06-01

    Context. In comparison to the radio and sub-millimetric domains, imaging with optical interferometry is still in its infancy. Due to the limited number of telescopes in existing arrays, image generation is a demanding process that relies on time-consuming reconfiguration of the interferometer array and super-synthesis. Aims: Using single mode optical fibres for the coherent transport of light from the collecting telescopes to the focal plane, a new generation of interferometers optimized for imaging can be designed. Methods: To support this claim, we report on the successful completion of the `OHANA Iki project: an end-to-end, on-sky demonstration of a two-telescope interferometer, built around near-infrared single mode fibres, carried out as part of the `OHANA project. Results: Having demonstrated that coherent transport by single-mode fibres is feasible, we explore the concepts, performances, and limitations of a new imaging facility with single mode fibres at its heart: Agile Guided Interferometer for Longbaseline Imaging Synthesis (AGILIS). Conclusions: AGILIS has the potential of becoming a next generation facility or a precursor to a much larger project like the Planet Formation Imager (PFI).

  12. Imaging Interplanetary CMEs at Radio Frequency From Solar Polar Orbit

    NASA Astrophysics Data System (ADS)

    Wu, Ji; Sun, Weiying; Zheng, Jianhua; Zhang, Cheng; Wang, Chi; Wang, C. B.; Wang, S.

    Coronal mass ejections (CMEs) are violent discharges of plasma and magnetic fields from the Sun's corona. They have come to be recognized as the major driver of physical conditions in the Sun-Earth system. Consequently, the detection of CMEs is important for un-derstanding and ultimately predicting space weather conditions. The Solar Polar Orbit Radio Telescope (SPORT) is a proposed mission to observe the propagation of interplanetary CMEs from solar polar orbit. The main payload (radio telescope) on board SPORT will be an in-terferometric imaging radiometer working at the meter wavelength band, which will follow the propagation of interplanetary CMEs from a distance of a few solar radii to near 1 AU from solar polar orbit. The SPORT spacecraft will also be equipped with a set of optical and in situ measurement instruments such as a EUV solar telescope, a solar wind plasma experiment, a solar wind ion composition instrument, an energetic particle detector, a wave detector, a mag-netometer and an interplanetary radio burst tracker. In this paper, we first describe the current shortage of interplanetary CME observations. Next, the scientific motivation and objectives of SPORT are introduced. We discuss the basic specifications of the main radio telescope of SPORT with reference to the radio emission mechanisms and the radio frequency band to be observed. Finally, we discuss the key technologies of the SPORT mission, including the con-ceptual design of the main telescope, the image retrieval algorithm and the solar polar orbit injection. Other payloads and their respective observation objectives are also briefly discussed. Key words: Interplanetary CMEs; Interferometric imaging; Solar polar orbit; Radiometer.

  13. Radio, Television, and Film in the Secondary School, MSA Curriculum Guide 8.

    ERIC Educational Resources Information Center

    Herman, Deldee M., Ed.; Ratliffe, Sharon A., Ed.

    This eight-unit volume of the Michigan Speech Association curriculum guide is designed for use by instructors who teach a one semester course in radio, television, and/or film. It can also be used by those who teach a media unit within an English or speech class. The subject of the first unit is media analysis and evaluation. The second unit is an…

  14. Image guided versus palpation guided core needle biopsy of palpable breast masses: a prospective study

    PubMed Central

    Hari, Smriti; Kumari, Swati; Srivastava, Anurag; Thulkar, Sanjay; Mathur, Sandeep; Veedu, Prasad Thotton

    2016-01-01

    Background & objectives: Biopsy of palpable breast masses can be performed manually by palpation guidance or under imaging guidance. Based on retrospective studies, image guided biopsy is considered more accurate than palpation guided breast biopsy; however, these techniques have not been compared prospectively. We conducted this prospective study to verify the superiority and determine the size of beneficial effect of image guided biopsy over palpation guided biopsy. Methods: Over a period of 18 months, 36 patients each with palpable breast masses were randomized into palpation guided and image guided breast biopsy arms. Ultrasound was used for image guidance in 33 patients and mammographic (stereotactic) guidance in three patients. All biopsies were performed using 14 gauge automated core biopsy needles. Inconclusive, suspicious or imaging-histologic discordant biopsies were repeated. Results: Malignancy was found in 30 of 36 women in palpation guided biopsy arm and 27 of 36 women in image guided biopsy arm. Palpation guided biopsy had sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 46.7, 100, 100, 27.3 per cent, respectively, for diagnosing breast cancer. Nineteen of 36 women (52.8%) required repeat biopsy because of inadequate samples (7 of 19), suspicious findings (2 of 19) or imaging-histologic discordance (10 of 19). On repeat biopsy, malignancy was found in all cases of imaging-histologic discordance. Image guided biopsy had 96.3 per cent sensitivity and 100 per cent specificity. There was no case of inadequate sample or imaging-histologic discordance with image guided biopsy. Interpretation & conclusions: Our results showed that in palpable breast masses, image guided biopsy was superior to palpation guided biopsy in terms of sensitivity, false negative rate and repeat biopsy rates. PMID:27488003

  15. Near infrared fluorescence for image-guided surgery

    PubMed Central

    2012-01-01

    Near infrared (NIR) image-guided surgery holds great promise for improved surgical outcomes. A number of NIR image-guided surgical systems are currently in preclinical and clinical development with a few approved for limited clinical use. In order to wield the full power of NIR image-guided surgery, clinically available tissue and disease specific NIR fluorophores with high signal to background ratio are necessary. In the current review, the status of NIR image-guided surgery is discussed along with the desired chemical and biological properties of NIR fluorophores. Lastly, tissue and disease targeting strategies for NIR fluorophores are reviewed. PMID:23256079

  16. The Sun Radio Imaging Space Experiment (SunRISE) Mission

    NASA Astrophysics Data System (ADS)

    Lazio, Joseph; Kasper, Justin; Maksimovic, Milan; Alibay, Farah; Amiri, Nikta; Bastian, Tim; Cohen, Christina; Landi, Enrico; Manchester, Ward; Reinard, Alysha; Schwadron, Nathan; Cecconi, Baptiste; Hallinan, Gregg; Hegedus, Alex; Krupar, Vratislav; Zaslavsky, Arnaud

    2017-04-01

    Radio emission from coronal mass ejections (CMEs) is a direct tracer of particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Energized electrons excite Langmuir waves, which then convert into intense radio emission at the local plasma frequency, with the most intense acceleration thought to occur within 20 RS. The radio emission from CMEs is quite strong such that only a relatively small number of antennas is required to detect and map it, but many aspects of this particle acceleration and transport remain poorly constrained. Ground-based arrays would be quite capable of tracking the radio emission associated with CMEs, but absorption by the Earth's ionosphere limits the frequency coverage of ground-based arrays (ν ≳ 15 MHz), which in turn limits the range of solar distances over which they can track the radio emission (≲ 3RS). The state-of-the-art for tracking such emission from space is defined by single antennas (Wind/WAVES, Stereo/SWAVES), in which the tracking is accomplished by assuming a frequency-to-density mapping; there has been some success in triangulating the emission between the spacecraft, but considerable uncertainties remain. We describe the Sun Radio Imaging Space Experiment (SunRISE) mission concept: A constellation of small spacecraft in a geostationary graveyard orbit designed to localize and track radio emissions in the inner heliosphere. Each spacecraft would carry a receiving system for observations below 25 MHz, and SunRISE would produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. The Sun Radio Imaging Space Experiment (SunRISE) Mission

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.; Lazio, J.; Alibay, F.; Amiri, N.; Bastian, T.; Cohen, C.; Landi, E.; Hegedus, A. M.; Maksimovic, M.; Manchester, W.; Reinard, A.; Schwadron, N.; Cecconi, B.; Hallinan, G.; Krupar, V.

    2017-12-01

    Radio emission from coronal mass ejections (CMEs) is a direct tracer of particle acceleration in the inner heliosphere and potential magnetic connections from the lower solar corona to the larger heliosphere. Energized electrons excite Langmuir waves, which then convert into intense radio emission at the local plasma frequency, with the most intense acceleration thought to occur within 20 R_S. The radio emission from CMEs is quite strong such that only a relatively small number of antennas is required to detect and map it, but many aspects of this particle acceleration and transport remain poorly constrained. Ground-based arrays would be quite capable of tracking the radio emission associated with CMEs, but absorption by the Earth's ionosphere limits the frequency coverage of ground-based arrays (nu > 15 MHz), which in turn limits the range of solar distances over which they can track the radio emission (< 3 R_S). The state-of-the-art for tracking such emission from space is defined by single antennas (Wind/WAVES, Stereo/SWAVES), in which the tracking is accomplished by assuming a frequency-to-density mapping; there has been some success in triangulating the emission between the spacecraft, but considerable uncertainties remain. We describe the Sun Radio Imaging Space Experiment (SunRISE) mission concept: A constellation of small spacecraft in a geostationary graveyard orbit designed to localize and track radio emissions in the inner heliosphere. Each spacecraft would carry a receiving system for observations below 25 MHz, and SunRISE would produce the first images of CMEs more than a few solar radii from the Sun. Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  18. Wide field imaging problems in radio astronomy

    NASA Astrophysics Data System (ADS)

    Cornwell, T. J.; Golap, K.; Bhatnagar, S.

    2005-03-01

    The new generation of synthesis radio telescopes now being proposed, designed, and constructed face substantial problems in making images over wide fields of view. Such observations are required either to achieve the full sensitivity limit in crowded fields or for surveys. The Square Kilometre Array (SKA Consortium, Tech. Rep., 2004), now being developed by an international consortium of 15 countries, will require advances well beyond the current state of the art. We review the theory of synthesis radio telescopes for large fields of view. We describe a new algorithm, W projection, for correcting the non-coplanar baselines aberration. This algorithm has improved performance over those previously used (typically an order of magnitude in speed). Despite the advent of W projection, the computing hardware required for SKA wide field imaging is estimated to cost up to $500M (2015 dollars). This is about half the target cost of the SKA. Reconfigurable computing is one way in which the costs can be decreased dramatically.

  19. GPU-Based High-performance Imaging for Mingantu Spectral RadioHeliograph

    NASA Astrophysics Data System (ADS)

    Mei, Ying; Wang, Feng; Wang, Wei; Chen, Linjie; Liu, Yingbo; Deng, Hui; Dai, Wei; Liu, Cuiyin; Yan, Yihua

    2018-01-01

    As a dedicated solar radio interferometer, the MingantU SpEctral RadioHeliograph (MUSER) generates massive observational data in the frequency range of 400 MHz-15 GHz. High-performance imaging forms a significantly important aspect of MUSER’s massive data processing requirements. In this study, we implement a practical high-performance imaging pipeline for MUSER data processing. At first, the specifications of the MUSER are introduced and its imaging requirements are analyzed. Referring to the most commonly used radio astronomy software such as CASA and MIRIAD, we then implement a high-performance imaging pipeline based on the Graphics Processing Unit technology with respect to the current operational status of the MUSER. A series of critical algorithms and their pseudo codes, i.e., detection of the solar disk and sky brightness, automatic centering of the solar disk and estimation of the number of iterations for clean algorithms, are proposed in detail. The preliminary experimental results indicate that the proposed imaging approach significantly increases the processing performance of MUSER and generates images with high-quality, which can meet the requirements of the MUSER data processing. Supported by the National Key Research and Development Program of China (2016YFE0100300), the Joint Research Fund in Astronomy (No. U1531132, U1631129, U1231205) under cooperative agreement between the National Natural Science Foundation of China (NSFC) and the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (Nos. 11403009 and 11463003).

  20. Image fusion and navigation platforms for percutaneous image-guided interventions.

    PubMed

    Rajagopal, Manoj; Venkatesan, Aradhana M

    2016-04-01

    Image-guided interventional procedures, particularly image guided biopsy and ablation, serve an important role in the care of the oncology patient. The need for tumor genomic and proteomic profiling, early tumor response assessment and confirmation of early recurrence are common scenarios that may necessitate successful biopsies of targets, including those that are small, anatomically unfavorable or inconspicuous. As image-guided ablation is increasingly incorporated into interventional oncology practice, similar obstacles are posed for the ablation of technically challenging tumor targets. Navigation tools, including image fusion and device tracking, can enable abdominal interventionalists to more accurately target challenging biopsy and ablation targets. Image fusion technologies enable multimodality fusion and real-time co-displays of US, CT, MRI, and PET/CT data, with navigational technologies including electromagnetic tracking, robotic, cone beam CT, optical, and laser guidance of interventional devices. Image fusion and navigational platform technology is reviewed in this article, including the results of studies implementing their use for interventional procedures. Pre-clinical and clinical experiences to date suggest these technologies have the potential to reduce procedure risk, time, and radiation dose to both the patient and the operator, with a valuable role to play for complex image-guided interventions.

  1. Image-guided thermal therapy of uterine fibroids

    PubMed Central

    Shen, Shu-Huei; Fennessy, Fiona; McDannold, Nathan; Jolesz, Ferenc; Tempany, Clare

    2009-01-01

    Thermal ablation is an established treatment for tumor. The merging of newly developed imaging techniques has allowed precise targeting and real-time thermal mapping. This article provides an overview of the image-guided thermal ablation techniques in the treatment of uterine fibroids. Background on uterine fibroids, including epidemiology, histology, symptoms, imaging findings and current treatment options, is first outlined. After describing the principle of magnetic resonance thermal imaging, we introduce the applications of image-guided thermal therapies, including laser ablation, radiofrequency ablation, cryotherapy and particularly the newest, magnetic resonance-guided focused ultrasound surgery, and how they apply to uterine fibroid treatment. PMID:19358440

  2. Fermi gamma-ray imaging of a radio galaxy.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Colafrancesco, S; Cominsky, L R; Conrad, J; Costamante, L; Cutini, S; Davis, D S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; do Couto e Silva, E; Drell, P S; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Finke, J; Focke, W B; Fortin, P; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Georganopoulos, M; Germani, S; Giebels, B; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I A; Grove, J E; Guillemot, L; Guiriec, S; Hanabata, Y; Harding, A K; Hayashida, M; Hays, E; Hughes, R E; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Romani, R W; Roth, M; Ryde, F; Sadrozinski, H F-W; Sambruna, R; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sgrò, C; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Stawarz, Ł; Strickman, M S; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wallace, E; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M; Hardcastle, M J; Kazanas, D

    2010-05-07

    The Fermi Gamma-ray Space Telescope has detected the gamma-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved gamma-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy gamma-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The gamma-ray emission from the lobes is interpreted as inverse Compton-scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. These measurements provide gamma-ray constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.

  3. Nanomedicines for image-guided cancer therapy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Zheng, Jinzi

    2016-09-01

    Imaging technologies are being increasingly employed to guide the delivery of cancer therapies with the intent to increase their performance and efficacy. To date, many patients have benefited from image-guided treatments through prolonged survival and improvements in quality of life. Advances in nanomedicine have enabled the development of multifunctional imaging agents that can further increase the performance of image-guided cancer therapy. Specifically, this talk will focus on examples that demonstrate the benefits and application of nanomedicine in the context of image-guide surgery, personalized drug delivery, tracking of cell therapies and high precision radiotherapy delivery.

  4. Radio Observations of the Ionosphere From an Imaging Array and a CubeSat

    NASA Astrophysics Data System (ADS)

    Isham, B.; Gustavsson, B.; Bullett, T. W.; Bergman, J. E. S.; Rincón-Charris, A.; Bruhn, F.; Funk, P.

    2017-12-01

    The ionosphere is a source of many radio emissions in the various low-frequency, medium-frequency, and high-frequency bands (0 to 30 MHz). In addition to natural radio emissions, artificial emissions can be stimulated using high-power radiowave ionospheric modification facilities. Two complementary projects are underway for the purpose of improving our knowledge of the processes of radio emissions from the ionosphere. One project is the Aguadilla radio array, located in northwestern Puerto Rico. The Aguadilla array is intended to produce 2 to 25 MHz radio images of the ionosphere, as well as to perform bistatic radar imaging of the ionosphere over Puerto Rico. The array will consist of multiple antenna elements, each of which is a single active (electromagnetically short) crossed electric dipole. The elements are arranged within a roughly 200 by 300-meter core array, in a semi-random pattern providing an optimal distribution of baseline vectors, with 6-meter minimum spacing to eliminate spacial aliasing. In addition, several elements are arranged in a partial ring around the central core, providing a roughly four times expanded region in u-v space for improved image resolution and quality. Phase is maintained via cabled connections to a central location. A remote array is also being developed, in which phase is maintained between elements by through the use of GPS-disciplined rubidium clocks. The other project involves the GimmeRF radio instrument, designed for 0.3 to 30 MHz vector observation of the radio electric field, and planned for launch in 2020 on a CubeSat. The data rate that can be sustained by GimmeRF far exceeds any available communication strategy. By exploiting fast on-board computing and efficient artificial intelligence (AI) algorithms for analysis and data selection, the usage of the telemetry link can be optimized and value added to the mission. Radio images recorded by the radio array from below the ionosphere can be directly compared with the

  5. Low frequency radio synthesis imaging of the galactic center region

    NASA Astrophysics Data System (ADS)

    Nord, Michael Evans

    2005-11-01

    The Very Large Array radio interferometer has been equipped with new receivers to allow observations at 330 and 74 MHz, frequencies much lower than were previously possible with this instrument. Though the VLA dishes are not optimal for working at these frequencies, the system is successful and regular observations are now taken at these frequencies. However, new data analysis techniques are required to work at these frequencies. The technique of self- calibration, used to remove small atmospheric effects at higher frequencies, has been adapted to compensate for ionospheric turbulence in much the same way that adaptive optics is used in the optical regime. Faceted imaging techniques are required to compensate for the noncoplanar image distortion that affects the system due to the wide fields of view at these frequencies (~2.3° at 330 MHz and ~11° at 74 MHz). Furthermore, radio frequency interference is a much larger problem at these frequencies than in higher frequencies and novel approaches to its mitigation are required. These new techniques and new system are allowing for imaging of the radio sky at sensitivities and resolutions orders of magnitude higher than were possible with the low frequency systems of decades past. In this work I discuss the advancements in low frequency data techniques required to make high resolution, high sensitivity, large field of view measurements with the new Very Large Array low frequency system and then detail the results of turning this new system and techniques on the center of our Milky Way Galaxy. At 330 MHz I image the Galactic center region with roughly 10 inches resolution and 1.6 mJy beam -1 sensitivity. New Galactic center nonthermal filaments, new pulsar candidates, and the lowest frequency detection to date of the radio source associated with our Galaxy's central massive black hole result. At 74 MHz I image a region of the sky roughly 40° x 6° with, ~10 feet resolution. I use the high opacity of H II regions at 74

  6. An overview and guide: planning instructional radio.

    PubMed

    Imhoof, M

    1984-03-01

    Successful instructional radio projects require both comprehensive and complex planning. The instructional radio planning team needs to have knowledge and capabilities in several technical, social, and educational areas. Among other skills, the team must understand radio, curriculum design, the subject matter being taught, research and evaluation, and the environment in which the project operates. Once a basic approach to educational planning has been selected and broad educational goals set, radio may be selected as a cost effective means of achieving some of the goals. Assuming radio is a wise choice, there are still several factors which must be analyzed by a team member who is a radio specialist. The most obvious consideration is the inventory and evaluation of the facilities: studios; broadcast, recording, and transmission equipment; classroom radios; and so on. Capabilities of broadcast personnel are another consideration. Initial radio lessons need to teach the learners how to listen to the radio if they have no previous experience with institutional radio broadcasts. A captive, inschool audience ready to listen to radio instructions requires a different use of the medium than a noncaptive audience. With the noncaptive audience, the educational broadcaster must compete with entertaining choices from other media and popular activities and pastimes of the community. The most complex knowledge and analysis required in planning instructional radio concerns the relationship of the content to the medium. Environmental factors are important in planning educational programs. The physical environment may present several constraints on the learning experience and the use of radio. The most obvious is the effect of climate and terrain on the quality of radio reception. The physical environment is easily studied through experience in the target area, but this knowledge plays a significant role in designing effective learning materials for specific learners. Social

  7. Fermi Gamma-Ray Imaging of a Radio Galaxy

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The Fermi Gamma-ray Space Telescope has detected the γ-ray glow emanating from the giant radio lobes of the radio galaxy Centaurus A. The resolved γ-ray image shows the lobes clearly separated from the central active source. In contrast to all other active galaxies detected so far in high-energy γ-rays, the lobe flux constitutes a considerable portion (greater than one-half) of the total source emission. The γ-ray emission from the lobes is interpreted as inverse Compton–scattered relic radiation from the cosmic microwave background, with additional contribution at higher energies from the infrared-to-optical extragalactic background light. In conclusion, these measurements provide γ-raymore » constraints on the magnetic field and particle energy content in radio galaxy lobes, as well as a promising method to probe the cosmic relic photon fields.« less

  8. Percutaneous magnetic resonance imaging-guided bone tumor management and magnetic resonance imaging-guided bone therapy.

    PubMed

    Sequeiros, Roberto Blanco; Fritz, Jan; Ojala, Risto; Carrino, John A

    2011-08-01

    Magnetic resonance imaging (MRI) is promising tool for image-guided therapy. In musculoskeletal setting, image-guided therapy is used to direct diagnostic and therapeutic procedures and to steer patient management. Studies have demonstrated that MRI-guided interventions involving bone, soft tissue, joints, and intervertebral disks are safe and in selected indications can be the preferred action to manage clinical situation. Often, these procedures are technically similar to those performed in other modalities (computed tomography, fluoroscopy) for bone and soft tissue lesions. However, the procedural perception to the operator can be very different to other modalities because of the vastly increased data.Magnetic resonance imaging guidance is particularly advantageous should the lesion not be visible by other modalities, for selective lesion targeting, intra-articular locations, cyst aspiration, and locations adjacent to surgical hardware. Palliative tumor-related pain management such as ablation therapy forms a subset of procedures that are frequently performed under MRI. Another suitable entity for MRI guidance are the therapeutic percutaneous osseous or joint-related benign or reactive conditions such as osteoid osteoma, epiphyseal bone bridging, osteochondritis dissecans, bone cysts, localized bone necrosis, and posttraumatic lesions. In this article, we will describe in detail the technical aspects of performing MRI-guided therapeutic musculoskeletal procedures as well as the clinical indications.

  9. Vector Antenna and Maximum Likelihood Imaging for Radio Astronomy

    DTIC Science & Technology

    2016-03-05

    Maximum Likelihood Imaging for Radio Astronomy Mary Knapp1, Frank Robey2, Ryan Volz3, Frank Lind3, Alan Fenn2, Alex Morris2, Mark Silver2, Sarah Klein2...haystack.mit.edu Abstract1— Radio astronomy using frequencies less than ~100 MHz provides a window into non-thermal processes in objects ranging from planets...observational astronomy . Ground-based observatories including LOFAR [1], LWA [2], [3], MWA [4], and the proposed SKA-Low [5], [6] are improving access to

  10. Image-guided navigation: a cost effective practical introduction using the Image-Guided Surgery Toolkit (IGSTK).

    PubMed

    Güler, Özgür; Yaniv, Ziv

    2012-01-01

    Teaching the key technical aspects of image-guided interventions using a hands-on approach is a challenging task. This is primarily due to the high cost and lack of accessibility to imaging and tracking systems. We provide a software and data infrastructure which addresses both challenges. Our infrastructure allows students, patients, and clinicians to develop an understanding of the key technologies by using them, and possibly by developing additional components and integrating them into a simple navigation system which we provide. Our approach requires minimal hardware, LEGO blocks to construct a phantom for which we provide CT scans, and a webcam which when combined with our software provides the functionality of a tracking system. A premise of this approach is that tracking accuracy is sufficient for our purpose. We evaluate the accuracy provided by a consumer grade webcam and show that it is sufficient for educational use. We provide an open source implementation of all the components required for a basic image-guided navigation as part of the Image-Guided Surgery Toolkit (IGSTK). It has long been known that in education there is no substitute for hands-on experience, to quote Sophocles, "One must learn by doing the thing; for though you think you know it, you have no certainty, until you try.". Our work provides this missing capability in the context of image-guided navigation. Enabling a wide audience to learn and experience the use of a navigation system.

  11. Image-guided robotic surgery.

    PubMed

    Marescaux, Jacques; Solerc, Luc

    2004-06-01

    Medical image processing leads to an improvement in patient care by guiding the surgical gesture. Three-dimensional models of patients that are generated from computed tomographic scans or magnetic resonance imaging allow improved surgical planning and surgical simulation that offers the opportunity for a surgeon to train the surgical gesture before performing it for real. These two preoperative steps can be used intra-operatively because of the development of augmented reality, which consists of superimposing the preoperative three-dimensional model of the patient onto the real intraoperative view. Augmented reality provides the surgeon with a view of the patient in transparency and can also guide the surgeon, thanks to the real-time tracking of surgical tools during the procedure. When adapted to robotic surgery, this tool tracking enables visual serving with the ability to automatically position and control surgical robotic arms in three dimensions. It is also now possible to filter physiologic movements such as breathing or the heart beat. In the future, by combining augmented reality and robotics, these image-guided robotic systems will enable automation of the surgical procedure, which will be the next revolution in surgery.

  12. Radioguided surgery and the GOSTT concept: From pre-operative image and intraoperative navigation to image-assisted excision.

    PubMed

    Bowles, H; Sánchez, N; Tapias, A; Paredes, P; Campos, F; Bluemel, C; Valdés Olmos, R A; Vidal-Sicart, S

    Radio-guided surgery has been developed for application in those disease scheduled for surgical management, particularly in areas of complex anatomy. This is based on the use of pre-operative scintigraphic planar, tomographic and fused SPECT/CT images, and the possibility of 3D reconstruction for the subsequent intraoperative locating of active lesions using handheld devices (detection probes, gamma cameras, etc.). New tracers and technologies have also been incorporated into these surgical procedures. The combination of visual and acoustic signals during the intraoperative procedure has become possible with new portable imaging modalities. In daily practice, the images offered by these techniques and devices combine perioperative nuclear medicine imaging with the superior resolution of additional optical guidance in the operating room. In many ways they provide real-time images, allowing accurate guidance during surgery, a reduction in the time required for tissue location and an anatomical environment for surgical recognition. All these approaches have been included in the concept known as (radio) Guided intraOperative Scintigraphic Tumour Targeting (GOSTT). This article offers a general view of different nuclear medicine and allied technologies used for several GOSTT procedures, and illustrates the crossing of technological frontiers in radio-guided surgery. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  13. Exploring three faint source detections methods for aperture synthesis radio images

    NASA Astrophysics Data System (ADS)

    Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.

    2015-04-01

    Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.

  14. A high-resolution radio image of a young supernova

    NASA Technical Reports Server (NTRS)

    Bartel, N.; Rupen, M. P.; Shapiro, I. I.; Preston, R. A.; Rius, A.

    1991-01-01

    A VLBI radio images of the bright supernova 1986J, which occurred in the galaxy NGC891 at a distance of about 12 Mpc, is presented. No detailed image of any supernova or remnant has been obtained before so soon after the explosion. The image shows a shell of emission with jetlike protrusions. Analysis of the images should advance understanding of the dynamics of the expanding debris, the dissipation of energy into the surrounding circumstellar medium, and the evolution of the supernova into the remnant.

  15. Non-convex optimization for self-calibration of direction-dependent effects in radio interferometric imaging

    NASA Astrophysics Data System (ADS)

    Repetti, Audrey; Birdi, Jasleen; Dabbech, Arwa; Wiaux, Yves

    2017-10-01

    Radio interferometric imaging aims to estimate an unknown sky intensity image from degraded observations, acquired through an antenna array. In the theoretical case of a perfectly calibrated array, it has been shown that solving the corresponding imaging problem by iterative algorithms based on convex optimization and compressive sensing theory can be competitive with classical algorithms such as clean. However, in practice, antenna-based gains are unknown and have to be calibrated. Future radio telescopes, such as the Square Kilometre Array, aim at improving imaging resolution and sensitivity by orders of magnitude. At this precision level, the direction-dependency of the gains must be accounted for, and radio interferometric imaging can be understood as a blind deconvolution problem. In this context, the underlying minimization problem is non-convex, and adapted techniques have to be designed. In this work, leveraging recent developments in non-convex optimization, we propose the first joint calibration and imaging method in radio interferometry, with proven convergence guarantees. Our approach, based on a block-coordinate forward-backward algorithm, jointly accounts for visibilities and suitable priors on both the image and the direction-dependent effects (DDEs). As demonstrated in recent works, sparsity remains the prior of choice for the image, while DDEs are modelled as smooth functions of the sky, I.e. spatially band-limited. Finally, we show through simulations the efficiency of our method, for the reconstruction of both images of point sources and complex extended sources. matlab code is available on GitHub.

  16. A Radio Astronomy Curriculum for the Middle School Classroom

    NASA Astrophysics Data System (ADS)

    Davis, J.; Finley, D. G.

    2000-12-01

    In the summer of 2000, two teachers working on a Masters of Science Teaching program at New Mexico Institute of Mining and Technology, spent eight weeks as interns at the Array Operations Center for the National Radio Astronomy Observatory (NRAO) in Socorro, New Mexico, under the auspices of the National Science Foundation's (NSF) Research Experience for Teachers (RET) program. The resulting projects will directly benefit students in the indvidual classrooms, as well as provide an easy-to-access resource for other educators. One of the products is a Radio Astronomy Curriculum for upper middle school classes. Radio astronomy images, based on scientific research results using NRAO's Very Large Array, are featured on trading cards which include an explanation, a ``web challenge'', and in some cases, a comparison of radio and optical images. Each trading card has corresponding lesson plans with background information about the images and astronomy concepts needed to do the lessons. Comparison of optical and radio astronomy is used as much as possible to explain the information from research using visible and radio wavelengths. New Mexico's Content Standards and Benchmarks (developed using national standards) for science education was used as a guide for the activities. The three strands of science listed in the standards, Unifying Concepts and Processes, Science as Inquiry, and Science Content are addressed in the lessons. Higher level thinking and problem solving skills are featured throughout the curriculum. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. The NSF's RET program is gratefully acknowledged.

  17. The Radio Amateur's Handbook.

    ERIC Educational Resources Information Center

    Blakeslee, Douglas, Ed.

    The objectives of this basic reference work for the radio amateur are to present radio theory and practice in terms of application and to reflect both the fundamentals and the rapidly-advancing technology of radio communications so that the radio amateur will have a guide to what is practical, meaningful, proven, and useful. Twenty-three chapters…

  18. An 11-Channel Radio Frequency Phased Array Coil for Magnetic Resonance Guided High Intensity Focused Ultrasound of the Breast

    PubMed Central

    Minalga, E.; Payne, A.; Merrill, R.; Todd, N.; Vijayakumar, S.; Kholmovski, E.; Parker, D. L.; Hadley, J. R.

    2012-01-01

    In this study, a radio-frequency (RF) phased array coil was built to image the breast in conjunction with a Magnetic Resonance guided High Intensity Focused Ultrasound (MRgHIFU) device designed specifically to treat the breast in a treatment cylinder with reduced water volume. The MRgHIFU breast coil was comprised of a 10-channel phased array coil placed around an MRgHIFU treatment cylinder where nearest-neighbor decoupling was achieved with capacitive decoupling in a shared leg. In addition a single loop coil was placed at the chest wall making a total of 11-channels. The RF coil array design presented in this work was chosen based on ease of implementation, increased visualization into the treatment cylinder, image reconstruction speed, temporal resolution, and resulting signal-to-noise-ratio (SNR) profiles. This work presents a dedicated 11-channel coil for imaging of the breast tissue in the MRgHIFU setup without obstruction of the ultrasound beam and, specifically, compares its performance in SNR, overall imaging time, and temperature measurement accuracy to that of the standard single chest-loop coil typically used in breast MRgHIFU. PMID:22431301

  19. Radio Imaging Observations of Solar Activity Cycle and Its Anomaly

    NASA Astrophysics Data System (ADS)

    Shibasaki, K.

    2011-12-01

    The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.

  20. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapur, T.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  1. Stereotactic mammography imaging combined with 3D US imaging for image guided breast biopsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surry, K. J. M.; Mills, G. R.; Bevan, K.

    2007-11-15

    Stereotactic X-ray mammography (SM) and ultrasound (US) guidance are both commonly used for breast biopsy. While SM provides three-dimensional (3D) targeting information and US provides real-time guidance, both have limitations. SM is a long and uncomfortable procedure and the US guided procedure is inherently two dimensional (2D), requiring a skilled physician for both safety and accuracy. The authors developed a 3D US-guided biopsy system to be integrated with, and to supplement SM imaging. Their goal is to be able to biopsy a larger percentage of suspicious masses using US, by clarifying ambiguous structures with SM imaging. Features from SM andmore » US guided biopsy were combined, including breast stabilization, a confined needle trajectory, and dual modality imaging. The 3D US guided biopsy system uses a 7.5 MHz breast probe and is mounted on an upright SM machine for preprocedural imaging. Intraprocedural targeting and guidance was achieved with real-time 2D and near real-time 3D US imaging. Postbiopsy 3D US imaging allowed for confirmation that the needle was penetrating the target. The authors evaluated 3D US-guided biopsy accuracy of their system using test phantoms. To use mammographic imaging information, they registered the SM and 3D US coordinate systems. The 3D positions of targets identified in the SM images were determined with a target localization error (TLE) of 0.49 mm. The z component (x-ray tube to image) of the TLE dominated with a TLE{sub z} of 0.47 mm. The SM system was then registered to 3D US, with a fiducial registration error (FRE) and target registration error (TRE) of 0.82 and 0.92 mm, respectively. Analysis of the FRE and TRE components showed that these errors were dominated by inaccuracies in the z component with a FRE{sub z} of 0.76 mm and a TRE{sub z} of 0.85 mm. A stereotactic mammography and 3D US guided breast biopsy system should include breast compression for stability and safety and dual modality imaging for target

  2. Frameless, image-guided stereotactic radiosurgery.

    PubMed

    Steffey-Stacy, Emily Cassandra

    2006-11-01

    To trace the evolution from frame-based to frameless image-guided SRS, to discuss the basic radiobiological principle of fractionation, current clinical trial data, and procedural components of the treatment plan. Nursing and medical literature, neurosurgical textbooks, and select internet sites. The CyberKnife (Accuray, Sunnyvale, CA) is the newest machine added to the technologic armamentarium of patient care. Its capacities are only beginning to be explored and the possibilities are limitless, giving hope to countless persons. Technologic advances have necessitated a diversification of nursing roles. Coordination of patient care services requires nurses to advance their knowledge of frameless, image-guided SRS.

  3. STOCHASTIC OPTICS: A SCATTERING MITIGATION FRAMEWORK FOR RADIO INTERFEROMETRIC IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael D., E-mail: mjohnson@cfa.harvard.edu

    2016-12-10

    Just as turbulence in the Earth’s atmosphere can severely limit the angular resolution of optical telescopes, turbulence in the ionized interstellar medium fundamentally limits the resolution of radio telescopes. We present a scattering mitigation framework for radio imaging with very long baseline interferometry (VLBI) that partially overcomes this limitation. Our framework, “stochastic optics,” derives from a simplification of strong interstellar scattering to separate small-scale (“diffractive”) effects from large-scale (“refractive”) effects, thereby separating deterministic and random contributions to the scattering. Stochastic optics extends traditional synthesis imaging by simultaneously reconstructing an unscattered image and its refractive perturbations. Its advantages over direct imagingmore » come from utilizing the many deterministic properties of the scattering—such as the time-averaged “blurring,” polarization independence, and the deterministic evolution in frequency and time—while still accounting for the stochastic image distortions on large scales. These distortions are identified in the image reconstructions through regularization by their time-averaged power spectrum. Using synthetic data, we show that this framework effectively removes the blurring from diffractive scattering while reducing the spurious image features from refractive scattering. Stochastic optics can provide significant improvements over existing scattering mitigation strategies and is especially promising for imaging the Galactic Center supermassive black hole, Sagittarius A*, with the Global mm-VLBI Array and with the Event Horizon Telescope.« less

  4. gr-MRI: A software package for magnetic resonance imaging using software defined radios

    NASA Astrophysics Data System (ADS)

    Hasselwander, Christopher J.; Cao, Zhipeng; Grissom, William A.

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5 Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately 2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500 kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs.

  5. gr-MRI: A software package for magnetic resonance imaging using software defined radios.

    PubMed

    Hasselwander, Christopher J; Cao, Zhipeng; Grissom, William A

    2016-09-01

    The goal of this work is to develop software that enables the rapid implementation of custom MRI spectrometers using commercially-available software defined radios (SDRs). The developed gr-MRI software package comprises a set of Python scripts, flowgraphs, and signal generation and recording blocks for GNU Radio, an open-source SDR software package that is widely used in communications research. gr-MRI implements basic event sequencing functionality, and tools for system calibrations, multi-radio synchronization, and MR signal processing and image reconstruction. It includes four pulse sequences: a single-pulse sequence to record free induction signals, a gradient-recalled echo imaging sequence, a spin echo imaging sequence, and an inversion recovery spin echo imaging sequence. The sequences were used to perform phantom imaging scans with a 0.5Tesla tabletop MRI scanner and two commercially-available SDRs. One SDR was used for RF excitation and reception, and the other for gradient pulse generation. The total SDR hardware cost was approximately $2000. The frequency of radio desynchronization events and the frequency with which the software recovered from those events was also measured, and the SDR's ability to generate frequency-swept RF waveforms was validated and compared to the scanner's commercial spectrometer. The spin echo images geometrically matched those acquired using the commercial spectrometer, with no unexpected distortions. Desynchronization events were more likely to occur at the very beginning of an imaging scan, but were nearly eliminated if the user invoked the sequence for a short period before beginning data recording. The SDR produced a 500kHz bandwidth frequency-swept pulse with high fidelity, while the commercial spectrometer produced a waveform with large frequency spike errors. In conclusion, the developed gr-MRI software can be used to develop high-fidelity, low-cost custom MRI spectrometers using commercially-available SDRs. Copyright

  6. A novel augmented reality system of image projection for image-guided neurosurgery.

    PubMed

    Mahvash, Mehran; Besharati Tabrizi, Leila

    2013-05-01

    Augmented reality systems combine virtual images with a real environment. To design and develop an augmented reality system for image-guided surgery of brain tumors using image projection. A virtual image was created in two ways: (1) MRI-based 3D model of the head matched with the segmented lesion of a patient using MRIcro software (version 1.4, freeware, Chris Rorden) and (2) Digital photograph based model in which the tumor region was drawn using image-editing software. The real environment was simulated with a head phantom. For direct projection of the virtual image to the head phantom, a commercially available video projector (PicoPix 1020, Philips) was used. The position and size of the virtual image was adjusted manually for registration, which was performed using anatomical landmarks and fiducial markers position. An augmented reality system for image-guided neurosurgery using direct image projection has been designed successfully and implemented in first evaluation with promising results. The virtual image could be projected to the head phantom and was registered manually. Accurate registration (mean projection error: 0.3 mm) was performed using anatomical landmarks and fiducial markers position. The direct projection of a virtual image to the patients head, skull, or brain surface in real time is an augmented reality system that can be used for image-guided neurosurgery. In this paper, the first evaluation of the system is presented. The encouraging first visualization results indicate that the presented augmented reality system might be an important enhancement of image-guided neurosurgery.

  7. Image use in field guides and identification keys: review and recommendations.

    PubMed

    Leggett, Roxanne; Kirchoff, Bruce K

    2011-01-01

    Although illustrations have played an important role in identification keys and guides since the 18th century, their use has varied widely. Some keys lack all illustrations, while others are heavily illustrated. Even within illustrated guides, the way in which images are used varies considerably. Here, we review image use in paper and electronic guides, and establish a set of best practices for image use in illustrated keys and guides. Our review covers image use in both paper and electronic guides, though we only briefly cover apps for mobile devices. With this one exception, we cover the full range of guides, from those that consist only of species descriptions with no keys, to lavishly illustrated technical keys. Emphasis is placed on how images are used, not on the operation of the guides and key, which has been reviewed by others. We only deal with operation when it impacts image use. Few illustrated keys or guides use images in optimal ways. Most include too few images to show taxonomic variation or variation in characters and character states. The use of multiple images allows easier taxon identification and facilitates the understanding of characters. Most images are usually not standardized, making comparison between images difficult. Although some electronic guides allow images to be enlarged, many do not. The best keys and guides use standardized images, displayed at sizes that are easy to see and arranged in a standardized manner so that similar images can be compared across species. Illustrated keys and glossaries should contain multiple images for each character state so that the user can judge variation in the state. Photographic backgrounds should not distract from the subject and, where possible, should be of a standard colour. When used, drawings should be prepared by professional botanical illustrators, and clearly labelled. Electronic keys and guides should allow images to be enlarged so that their details can be seen.

  8. Image use in field guides and identification keys: review and recommendations

    PubMed Central

    Leggett, Roxanne; Kirchoff, Bruce K.

    2011-01-01

    Background and aims Although illustrations have played an important role in identification keys and guides since the 18th century, their use has varied widely. Some keys lack all illustrations, while others are heavily illustrated. Even within illustrated guides, the way in which images are used varies considerably. Here, we review image use in paper and electronic guides, and establish a set of best practices for image use in illustrated keys and guides. Scope Our review covers image use in both paper and electronic guides, though we only briefly cover apps for mobile devices. With this one exception, we cover the full range of guides, from those that consist only of species descriptions with no keys, to lavishly illustrated technical keys. Emphasis is placed on how images are used, not on the operation of the guides and key, which has been reviewed by others. We only deal with operation when it impacts image use. Main points Few illustrated keys or guides use images in optimal ways. Most include too few images to show taxonomic variation or variation in characters and character states. The use of multiple images allows easier taxon identification and facilitates the understanding of characters. Most images are usually not standardized, making comparison between images difficult. Although some electronic guides allow images to be enlarged, many do not. Conclusions The best keys and guides use standardized images, displayed at sizes that are easy to see and arranged in a standardized manner so that similar images can be compared across species. Illustrated keys and glossaries should contain multiple images for each character state so that the user can judge variation in the state. Photographic backgrounds should not distract from the subject and, where possible, should be of a standard colour. When used, drawings should be prepared by professional botanical illustrators, and clearly labelled. Electronic keys and guides should allow images to be enlarged so that

  9. Multi-focus image fusion using a guided-filter-based difference image.

    PubMed

    Yan, Xiang; Qin, Hanlin; Li, Jia; Zhou, Huixin; Yang, Tingwu

    2016-03-20

    The aim of multi-focus image fusion technology is to integrate different partially focused images into one all-focused image. To realize this goal, a new multi-focus image fusion method based on a guided filter is proposed and an efficient salient feature extraction method is presented in this paper. Furthermore, feature extraction is primarily the main objective of the present work. Based on salient feature extraction, the guided filter is first used to acquire the smoothing image containing the most sharpness regions. To obtain the initial fusion map, we compose a mixed focus measure by combining the variance of image intensities and the energy of the image gradient together. Then, the initial fusion map is further processed by a morphological filter to obtain a good reprocessed fusion map. Lastly, the final fusion map is determined via the reprocessed fusion map and is optimized by a guided filter. Experimental results demonstrate that the proposed method does markedly improve the fusion performance compared to previous fusion methods and can be competitive with or even outperform state-of-the-art fusion methods in terms of both subjective visual effects and objective quality metrics.

  10. Image-guided positioning and tracking.

    PubMed

    Ruan, Dan; Kupelian, Patrick; Low, Daniel A

    2011-01-01

    Radiation therapy aims at maximizing tumor control while minimizing normal tissue complication. The introduction of stereotactic treatment explores the volume effect and achieves dose escalation to tumor target with small margins. The use of ablative irradiation dose and sharp dose gradients requires accurate tumor definition and alignment between patient and treatment geometry. Patient geometry variation during treatment may significantly compromise the conformality of delivered dose and must be managed properly. Setup error and interfraction/intrafraction motion are incorporated in the target definition process by expanding the clinical target volume to planning target volume, whereas the alignment between patient and treatment geometry is obtained with an adaptive control process, by taking immediate actions in response to closely monitored patient geometry. This article focuses on the monitoring and adaptive response aspect of the problem. The term "image" in "image guidance" will be used in a most general sense, to be inclusive of some important point-based monitoring systems that can be considered as degenerate cases of imaging. Image-guided motion adaptive control, as a comprehensive system, involves a hierarchy of decisions, each of which balances simplicity versus flexibility and accuracy versus robustness. Patient specifics and machine specifics at the treatment facility also need to be incorporated into the decision-making process. Identifying operation bottlenecks from a system perspective and making informed compromises are crucial in the proper selection of image-guidance modality, the motion management mechanism, and the respective operation modes. Not intended as an exhaustive exposition, this article focuses on discussing the major issues and development principles for image-guided motion management systems. We hope these information and methodologies will facilitate conscientious practitioners to adopt image-guided motion management systems

  11. Image-guided tissue engineering

    PubMed Central

    Ballyns, Jeffrey J; Bonassar, Lawrence J

    2009-01-01

    Replication of anatomic shape is a significant challenge in developing implants for regenerative medicine. This has lead to significant interest in using medical imaging techniques such as magnetic resonance imaging and computed tomography to design tissue engineered constructs. Implementation of medical imaging and computer aided design in combination with technologies for rapid prototyping of living implants enables the generation of highly reproducible constructs with spatial resolution up to 25 μm. In this paper, we review the medical imaging modalities available and a paradigm for choosing a particular imaging technique. We also present fabrication techniques and methodologies for producing cellular engineered constructs. Finally, we comment on future challenges involved with image guided tissue engineering and efforts to generate engineered constructs ready for implantation. PMID:19583811

  12. Electromagnetic induction imaging with a radio-frequency atomic magnetometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deans, Cameron; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk; Hussain, Sarah

    2016-03-07

    We report on a compact, tunable, and scalable to large arrays imaging device, based on a radio-frequency optically pumped atomic magnetometer operating in magnetic induction tomography modality. Imaging of conductive objects is performed at room temperature, in an unshielded environment and without background subtraction. Conductivity maps of target objects exhibit not only excellent performance in terms of shape reconstruction but also demonstrate detection of sub-millimetric cracks and penetration of conductive barriers. The results presented here demonstrate the potential of a future generation of imaging instruments, which combine magnetic induction tomography and the unmatched performance of atomic magnetometers.

  13. Image-guided techniques in renal and hepatic interventions.

    PubMed

    Najmaei, Nima; Mostafavi, Kamal; Shahbazi, Sahar; Azizian, Mahdi

    2013-12-01

    Development of new imaging technologies and advances in computing power have enabled the physicians to perform medical interventions on the basis of high-quality 3D and/or 4D visualization of the patient's organs. Preoperative imaging has been used for planning the surgery, whereas intraoperative imaging has been widely employed to provide visual feedback to a clinician when he or she is performing the procedure. In the past decade, such systems demonstrated great potential in image-guided minimally invasive procedures on different organs, such as brain, heart, liver and kidneys. This article focuses on image-guided interventions and surgery in renal and hepatic surgeries. A comprehensive search of existing electronic databases was completed for the period of 2000-2011. Each contribution was assessed by the authors for relevance and inclusion. The contributions were categorized on the basis of the type of operation/intervention, imaging modality and specific techniques such as image fusion and augmented reality, and organ motion tracking. As a result, detailed classification and comparative study of various contributions in image-guided renal and hepatic interventions are provided. In addition, the potential future directions have been sketched. With a detailed review of the literature, potential future trends in development of image-guided abdominal interventions are identified, namely, growing use of image fusion and augmented reality, computer-assisted and/or robot-assisted interventions, development of more accurate registration and navigation techniques, and growing applications of intraoperative magnetic resonance imaging. Copyright © 2012 John Wiley & Sons, Ltd.

  14. Toward integrated image guided liver surgery

    NASA Astrophysics Data System (ADS)

    Jarnagin, W. R.; Simpson, Amber L.; Miga, M. I.

    2017-03-01

    While clinical neurosurgery has benefited from the advent of frameless image guidance for over three decades, the translation of image guided technologies to abdominal surgery, and more specifically liver resection, has been far more limited. Fundamentally, the workflow, complexity, and presentation have confounded development. With the first real efforts in translation beginning at the turn of the millennia, the work in developing novel augmented technologies to enhance screening, planning, and surgery has come to realization for the field. In this paper, we will review several examples from our own work that demonstrate the impact of image-guided procedure methods in eight clinical studies that speak to: (1) the accuracy in planning for liver resection, (2) enhanced surgical planning with portal vein embolization impact, (3) linking splenic volume changes to post-hepatectomy complications, (4) enhanced intraoperative localization in surgically occult lesions, (5) validation of deformation correction, and a (6) a novel blinded study focused at the value of deformation correction. All six of these studies were achieved in human systems and show the potential impact image guided methodologies could make on liver tissue resection procedures.

  15. The Radio JOVE Project

    NASA Astrophysics Data System (ADS)

    Garcia, L.; Thieman, J.; Higgins, C.

    1999-09-01

    Radio JOVE is an interactive educational activity which brings the radio sounds of Jupiter and the Sun to students, teachers, and the general public. This is accomplished through the construction of a simple radio telescope kit and the use of a real-time radio observatory on the Internet. Our website (http://radiojove.gsfc.nasa.gov/) will contain science information, instruction manuals, observing guides, and education resources for students and teachers. Our target audience is high school science classes, but subjects can be tailored to college undergraduate physics and astronomy courses or even to middle school science classes. The goals of the project are: 1) Educate people about planetary and solar radio astronomy, space physics, and the scientific method 2) Provide teachers and students with a hands-on radio astronomy exercise as a science curriculum support activity by building and using a simple radio telescope receiver/antenna kit 3) Create the first ever online radio observatory which provides real-time data for those with internet access 4) Allow interactions among participating schools by facilitating exchanges of ideas, data, and observing experiences. Our current funding will allow us to impact 100 schools by partially subsidizing their participation in the program. We expect to expand well beyond this number as publicity and general interest increase. Additional schools are welcome to fully participate, but we will not be able to subsidize their kit purchases. We hope to make a wide impact among the schools by advertising through appropriate newsletters, space grant consortia, the INSPIRE project (http://image.gsfc.nasa.gov/poetry/inspire/), electronic links, and science and education meetings. We would like to acknoledge support from the NASA/GSFC Director's Discretionary Fund, the STScI IDEAS grant program and the NASA/GSFC Space Science Data Operations Office.

  16. Image-guided plasma therapy of cutaneous wound

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwu; Ren, Wenqi; Yu, Zelin; Zhang, Shiwu; Yue, Ting; Xu, Ronald

    2014-02-01

    The wound healing process involves the reparative phases of inflammation, proliferation, and remodeling. Interrupting any of these phases may result in chronically unhealed wounds, amputation, or even patient death. Despite the clinical significance in chronic wound management, no effective methods have been developed for quantitative image-guided treatment. We integrated a multimodal imaging system with a cold atmospheric plasma probe for image-guided treatment of chronic wound. Multimodal imaging system offers a non-invasive, painless, simultaneous and quantitative assessment of cutaneous wound healing. Cold atmospheric plasma accelerates the wound healing process through many mechanisms including decontamination, coagulation and stimulation of the wound healing. The therapeutic effect of cold atmospheric plasma is studied in vivo under the guidance of a multimodal imaging system. Cutaneous wounds are created on the dorsal skin of the nude mice. During the healing process, the sample wound is treated by cold atmospheric plasma at different controlled dosage, while the control wound is healed naturally. The multimodal imaging system integrating a multispectral imaging module and a laser speckle imaging module is used to collect the information of cutaneous tissue oxygenation (i.e. oxygen saturation, StO2) and blood perfusion simultaneously to assess and guide the plasma therapy. Our preliminary tests show that cold atmospheric plasma in combination with multimodal imaging guidance has the potential to facilitate the healing of chronic wounds.

  17. High Angular Resolution Imaging of Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, Robert J.; Lazio, Joseph; Bale, Stuart; Burns, Jack O.; Farrell, William M.; Gopalswamy, Nat; Jones, Dayton L.; Kasper, Justin Christophe; Weiler, Kurt

    2012-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages, including positional stability and a very low ionospheric radio cutoff. Here, we describe the Radio Observatory on the lunar Surface for Solar studies (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The preferred site is on the lunar near side to simplify the data downlink to Earth. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by measuring the low radio frequency cutoff of the solar radio emissions or background galactic radio emission, measuring the flux, particle mass, and arrival direction of interplanetary and interstellar dust, and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 M Hz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg at 10 MHz, equivalent to a linear array size of approximately one kilometer. The major components of the ROLSS array are 3 antenna arms, each of 500 m length, arranged in a Y formation, with a central electronics package (CEP) at their intersection. Each antenna arm is a linear strip of polyimide film (e.g., Kapton(TradeMark)) on which 16 single

  18. Ultrasonic image analysis and image-guided interventions.

    PubMed

    Noble, J Alison; Navab, Nassir; Becher, H

    2011-08-06

    The fields of medical image analysis and computer-aided interventions deal with reducing the large volume of digital images (X-ray, computed tomography, magnetic resonance imaging (MRI), positron emission tomography and ultrasound (US)) to more meaningful clinical information using software algorithms. US is a core imaging modality employed in these areas, both in its own right and used in conjunction with the other imaging modalities. It is receiving increased interest owing to the recent introduction of three-dimensional US, significant improvements in US image quality, and better understanding of how to design algorithms which exploit the unique strengths and properties of this real-time imaging modality. This article reviews the current state of art in US image analysis and its application in image-guided interventions. The article concludes by giving a perspective from clinical cardiology which is one of the most advanced areas of clinical application of US image analysis and describing some probable future trends in this important area of ultrasonic imaging research.

  19. Granulomatous mastitis: changing clinical and imaging features with image-guided biopsy correlation.

    PubMed

    Handa, Priyanka; Leibman, A Jill; Sun, Derek; Abadi, Maria; Goldberg, Aryeh

    2014-10-01

    To review clinical presentation, revisit patient demographics and imaging findings in granulomatous mastitis and determine the optimal biopsy method for diagnosis. A retrospective study was performed to review the clinical presentation, imaging findings and biopsy methods in patients with granulomatous mastitis. Twenty-seven patients with pathology-proven granulomatous mastitis were included. The average age at presentation was 38.0 years (range, 21-73 years). Seven patients were between 48 and 73 years old. Twenty-four patients presented with symptoms and three patients were asymptomatic. Nineteen patients were imaged with mammography demonstrating mammographically occult lesions as the predominant finding. Twenty-six patients were imaged with ultrasound and the most common finding was a mass lesion. Pathological diagnosis was made by image-guided biopsy in 44 % of patients. The imaging features of granulomatous mastitis on mammography are infrequently described. Our study demonstrates that granulomatous mastitis can occur in postmenopausal or asymptomatic patients, although previously reported exclusively in young women with palpable findings. Presentation on mammography as calcifications requiring mammographically guided vacuum-assisted biopsy has not been previously described. The diagnosis of granulomatous mastitis can easily be made by image-guided biopsy and surgical excision should be reserved for definitive treatment. • Characterizes radiographic appearance of granulomatous mastitis in postmenopausal or asymptomatic patients. • Granulomatous mastitis can present exclusively as calcifications on mammography. • The diagnosis of granulomatous mastitis is made by image-guided biopsy techniques.

  20. Radio Jove: Jupiter Radio Astronomy for Citizens

    NASA Astrophysics Data System (ADS)

    Higgins, Charles; Thieman, J. R.; Flagg, R.; Reyes, F. J.; Sky, J.; Greenman, W.; Brown, J.; Typinski, D.; Ashcraft, T.; Mount, A.

    2014-01-01

    Radio JOVE is a hands-on educational activity that brings the radio sounds of the Sun, Jupiter, the Milky Way Galaxy, and terrestrial radio noise to students, teachers, and the general public. Participants may build a simple radio telescope kit, make scientific observations, and interact with professional radio observatories in real-time over the Internet. Our website (http://radiojove.gsfc.nasa.gov) includes science information, construction manuals, observing guides, and education resources for teachers and students. Radio Jove is continually expanding its participants with over 1800 kits sold to more than 70 countries worldwide. Recently some of our most dedicated observers have upgraded their Radio Jove antennas to semi-professional observatories. We have spectrographs and wide band antennas, some with 8 MHz bandwidth and some with dual polarization capabilities. In an effort to add to the science literature, these observers are coordinating their efforts to pursue some basic questions about Jupiter’s radio emissions (radio source locations, spectral structure, long term changes, etc.). We can compare signal and ionosphere variations using the many Radio Jove observers at different locations. Observers are also working with members of the Long Wavelength Array Station 1 (LWA1) radio telescope to coordinate observations of Jupiter; Radio Jove is planning to make coordinated observations while the Juno Mission is active beginning in 2015. The Radio Jove program is overviewed, its hardware and software are highlighted, recent sample observations are shown, and we demonstrate that we are capable of real citizen science.

  1. PySE: Python Source Extractor for radio astronomical images

    NASA Astrophysics Data System (ADS)

    Spreeuw, Hanno; Swinbank, John; Molenaar, Gijs; Staley, Tim; Rol, Evert; Sanders, John; Scheers, Bart; Kuiack, Mark

    2018-05-01

    PySE finds and measures sources in radio telescope images. It is run with several options, such as the detection threshold (a multiple of the local noise), grid size, and the forced clean beam fit, followed by a list of input image files in standard FITS or CASA format. From these, PySe provides a list of found sources; information such as the calculated background image, source list in different formats (e.g. text, region files importable in DS9), and other data may be saved. PySe can be integrated into a pipeline; it was originally written as part of the LOFAR Transient Detection Pipeline (TraP, ascl:1412.011).

  2. High resolution radio imaging study of the Pulsar Wind Nebula MSH 15-52

    NASA Astrophysics Data System (ADS)

    Leung, W.-Y.; Ng, C.-Y.

    2016-06-01

    We present a new high-resolution radio imaging study of the pulsar wind nebula (PWN) MSH 15-52, also dubbed as "the hand of God", with the Australia Telescope Compact Array observations. The system is powered by a young and energetic radio pulsar B1509-58 with high spin down luminosity of E(dot) = 2 x 10^37 erg/s. Previous X-ray images have shown that the PWN has a complex hand-shape morphology extending over 10 pc with features like jets, arc, filaments and enhanced emission knots in the HII region RCW 89. The new 6cm and 3cm radio images show different morphology than the X-ray counterpart. No radio counterpart of the X-ray jet is detected, instead we found enhanced emission in a sheath surrounding the jet. Additional small-scale features including a polarized linear filament next to the pulsar have also been discovered. Our polarisation measurements show that the intrinsic orientation of magnetic field aligns with the sheath. Finally, spectral analysis results indicate a steep spectrum for the system, which is rather unusual among PWNe. Implications of these findings will be discussed. The Australia Telescope Compact Array is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This work is supported by an ECS grant under HKU 709713P.

  3. Chimenea and other tools: Automated imaging of multi-epoch radio-synthesis data with CASA

    NASA Astrophysics Data System (ADS)

    Staley, T. D.; Anderson, G. E.

    2015-11-01

    In preparing the way for the Square Kilometre Array and its pathfinders, there is a pressing need to begin probing the transient sky in a fully robotic fashion using the current generation of radio telescopes. Effective exploitation of such surveys requires a largely automated data-reduction process. This paper introduces an end-to-end automated reduction pipeline, AMIsurvey, used for calibrating and imaging data from the Arcminute Microkelvin Imager Large Array. AMIsurvey makes use of several component libraries which have been packaged separately for open-source release. The most scientifically significant of these is chimenea, which implements a telescope-agnostic algorithm for automated imaging of pre-calibrated multi-epoch radio-synthesis data, of the sort typically acquired for transient surveys or follow-up. The algorithm aims to improve upon standard imaging pipelines by utilizing iterative RMS-estimation and automated source-detection to avoid so called 'Clean-bias', and makes use of CASA subroutines for the underlying image-synthesis operations. At a lower level, AMIsurvey relies upon two libraries, drive-ami and drive-casa, built to allow use of mature radio-astronomy software packages from within Python scripts. While targeted at automated imaging, the drive-casa interface can also be used to automate interaction with any of the CASA subroutines from a generic Python process. Additionally, these packages may be of wider technical interest beyond radio-astronomy, since they demonstrate use of the Python library pexpect to emulate terminal interaction with an external process. This approach allows for rapid development of a Python interface to any legacy or externally-maintained pipeline which accepts command-line input, without requiring alterations to the original code.

  4. MO-E-BRD-01: Is Non-Invasive Image-Guided Breast Brachytherapy Good?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiatt, J.

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant.more » A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and

  5. [Experience of Fusion image guided system in endonasal endoscopic surgery].

    PubMed

    Wen, Jingying; Zhen, Hongtao; Shi, Lili; Cao, Pingping; Cui, Yonghua

    2015-08-01

    To review endonasal endoscopic surgeries aided by Fusion image guided system, and to explore the application value of Fusion image guided system in endonasal endoscopic surgeries. Retrospective research. Sixty cases of endonasal endoscopic surgeries aided by Fusion image guided system were analysed including chronic rhinosinusitis with polyp (n = 10), fungus sinusitis (n = 5), endoscopic optic nerve decompression (n = 16), inverted papilloma of the paranasal sinus (n = 9), ossifying fibroma of sphenoid bone (n = 1), malignance of the paranasal sinus (n = 9), cerebrospinal fluid leak (n = 5), hemangioma of orbital apex (n = 2) and orbital reconstruction (n = 3). Sixty cases of endonasal endoscopic surgeries completed successfully without any complications. Fusion image guided system can help to identify the ostium of paranasal sinus, lamina papyracea and skull base. Fused CT-CTA images, or fused MR-MRA images can help to localize the optic nerve or internal carotid arteiy . Fused CT-MR images can help to detect the range of the tumor. It spent (7.13 ± 1.358) minutes for image guided system to do preoperative preparation and the surgical navigation accuracy reached less than 1mm after proficient. There was no device localization problem because of block or head set loosed. Fusion image guided system make endonasal endoscopic surgery to be a true microinvasive and exact surgery. It spends less preoperative preparation time, has high surgical navigation accuracy, improves the surgical safety and reduces the surgical complications.

  6. 3D ultrasound imaging in image-guided intervention.

    PubMed

    Fenster, Aaron; Bax, Jeff; Neshat, Hamid; Cool, Derek; Kakani, Nirmal; Romagnoli, Cesare

    2014-01-01

    Ultrasound imaging is used extensively in diagnosis and image-guidance for interventions of human diseases. However, conventional 2D ultrasound suffers from limitations since it can only provide 2D images of 3-dimensional structures in the body. Thus, measurement of organ size is variable, and guidance of interventions is limited, as the physician is required to mentally reconstruct the 3-dimensional anatomy using 2D views. Over the past 20 years, a number of 3-dimensional ultrasound imaging approaches have been developed. We have developed an approach that is based on a mechanical mechanism to move any conventional ultrasound transducer while 2D images are collected rapidly and reconstructed into a 3D image. In this presentation, 3D ultrasound imaging approaches will be described for use in image-guided interventions.

  7. Robust sparse image reconstruction of radio interferometric observations with PURIFY

    NASA Astrophysics Data System (ADS)

    Pratley, Luke; McEwen, Jason D.; d'Avezac, Mayeul; Carrillo, Rafael E.; Onose, Alexandru; Wiaux, Yves

    2018-01-01

    Next-generation radio interferometers, such as the Square Kilometre Array, will revolutionize our understanding of the Universe through their unprecedented sensitivity and resolution. However, to realize these goals significant challenges in image and data processing need to be overcome. The standard methods in radio interferometry for reconstructing images, such as CLEAN, have served the community well over the last few decades and have survived largely because they are pragmatic. However, they produce reconstructed interferometric images that are limited in quality and scalability for big data. In this work, we apply and evaluate alternative interferometric reconstruction methods that make use of state-of-the-art sparse image reconstruction algorithms motivated by compressive sensing, which have been implemented in the PURIFY software package. In particular, we implement and apply the proximal alternating direction method of multipliers algorithm presented in a recent article. First, we assess the impact of the interpolation kernel used to perform gridding and degridding on sparse image reconstruction. We find that the Kaiser-Bessel interpolation kernel performs as well as prolate spheroidal wave functions while providing a computational saving and an analytic form. Secondly, we apply PURIFY to real interferometric observations from the Very Large Array and the Australia Telescope Compact Array and find that images recovered by PURIFY are of higher quality than those recovered by CLEAN. Thirdly, we discuss how PURIFY reconstructions exhibit additional advantages over those recovered by CLEAN. The latest version of PURIFY, with developments presented in this work, is made publicly available.

  8. Implant image quality in dental radiographs recorded using a customized imaging guide or a standard film holder.

    PubMed

    Schropp, Lars; Stavropoulos, Andreas; Spin-Neto, Rubens; Wenzel, Ann

    2012-01-01

    To compare a customized imaging guide and a standard film holder for obtaining optimally projected intraoral radiographs of dental implants. Intraoral radiographs of four screw-type implants with different inclination placed in an upper or lower dental phantom model were recorded by 32 groups of examiners after a short instruction in the use of the RB-RB/LB-LB mnemonic rule. Half of the examiners recorded the images using a standard film holder and the other half used a customized imaging guide. Each radiograph was assessed under blinded conditions with regard to rendering of the implant threads and was assigned to one of four quality categories: (1) perfect, (2) not perfect, but clinically acceptable, (3) not acceptable, and (4) hopeless. For the upper jaw, the same number of exposures per implant were made to achieve an acceptable image (P=0.86) by the standard film holder method (median=2) and the imaging guide method (median=2). For the lower jaw, medians for the imaging guide method and the film holder method were 1 and 2, respectively (P=0.004). For the imaging guide method, the first exposure was rated as perfect/acceptable in 62% of the cases and for the film holder method in 41% of the cases (P=0.013). After ≤ 2 exposures, 78% (imaging guide method) and 69% (film holder method) of the implant images were perfect/acceptable (P=0.23). The implant inclination did not have a major influence on the outcomes. Perfect or acceptable images were achieved after two exposures with the same frequency either using a customized imaging guide method or a standard film holder method. However, the use of a customized imaging guide method was overall significantly superior to a standard film holder method in terms of obtaining perfect or acceptable images with only one exposure. © 2011 John Wiley & Sons A/S.

  9. Multiscale infrared and visible image fusion using gradient domain guided image filtering

    NASA Astrophysics Data System (ADS)

    Zhu, Jin; Jin, Weiqi; Li, Li; Han, Zhenghao; Wang, Xia

    2018-03-01

    For better surveillance with infrared and visible imaging, a novel hybrid multiscale decomposition fusion method using gradient domain guided image filtering (HMSD-GDGF) is proposed in this study. In this method, hybrid multiscale decomposition with guided image filtering and gradient domain guided image filtering of source images are first applied before the weight maps of each scale are obtained using a saliency detection technology and filtering means with three different fusion rules at different scales. The three types of fusion rules are for small-scale detail level, large-scale detail level, and base level. Finally, the target becomes more salient and can be more easily detected in the fusion result, with the detail information of the scene being fully displayed. After analyzing the experimental comparisons with state-of-the-art fusion methods, the HMSD-GDGF method has obvious advantages in fidelity of salient information (including structural similarity, brightness, and contrast), preservation of edge features, and human visual perception. Therefore, visual effects can be improved by using the proposed HMSD-GDGF method.

  10. Electro-opto-mechanical radio-frequency oscillator driven by guided acoustic waves in standard single-mode fiber

    NASA Astrophysics Data System (ADS)

    London, Yosef; Diamandi, Hilel Hagai; Zadok, Avi

    2017-04-01

    An opto-electronic radio-frequency oscillator that is based on forward scattering by the guided acoustic modes of a standard single-mode optical fiber is proposed and demonstrated. An optical pump wave is used to stimulate narrowband, resonant guided acoustic modes, which introduce phase modulation to a co-propagating optical probe wave. The phase modulation is converted to an intensity signal at the output of a Sagnac interferometer loop. The intensity waveform is detected, amplified, and driven back to modulate the optical pump. Oscillations are achieved at a frequency of 319 MHz, which matches the resonance of the acoustic mode that provides the largest phase modulation of the probe wave. Oscillations at the frequencies of competing acoustic modes are suppressed by at least 40 dB. The linewidth of the acoustic resonance is sufficiently narrow to provide oscillations at a single longitudinal mode of the hybrid cavity. Competing longitudinal modes are suppressed by at least 38 dB as well. Unlike other opto-electronic oscillators, no radio-frequency filtering is required within the hybrid cavity. The frequency of oscillations is entirely determined by the fiber opto-mechanics.

  11. High-Resolution X-Ray Imaging of Colliding Radio-Jet Galaxies

    NASA Technical Reports Server (NTRS)

    Born, Kirk D.; Whitmore, Brad

    1996-01-01

    We received ROSAT data for four program objects:3C31,3C278,3C449,and NGC1044. The first three sources were observed with the ROSAT HRI instrument. Our plan was to use the HRI to image the hot gas distribution in a few pairs of strongly disturbed interacting elliptical galaxies which are also strong radio sources having a bent-jet source morphology. The PSPC was used for NGC1044 in order to obtain a flux measurement to use in planning future High Resolution Imager (HRI) observations of that source. Though we never requested such HRI observations of NGC1044, others have used those archival PSPC data from our project for other research projects and analyses. The goal of the program was to elucidate the detailed distribution of hot gas into which the jets flow. The X-ray data were consequently analyzed in conjunction with existing VLA radio maps, optical broad-band and H-alpha Charge Couple device (CCD) images, and optical kinematic data to constrain models for the propagation of ballistic jets in interacting galaxies. We were able to test and validate the claimed causal connection between tidal interaction, the presence of gas, and the onset of activity in galaxies. The full multi-wavelength multi-observatory analyses described here are still on-going and will be published in the future. Because of the relevance of this research to on-going work in the field of active galaxies, the grant was used to support travel to several scientific meetings where our x-ray analysis, numerical modeling, and related radio results were presented and discussed.

  12. Image-guided surgery and therapy: current status and future directions

    NASA Astrophysics Data System (ADS)

    Peters, Terence M.

    2001-05-01

    Image-guided surgery and therapy is assuming an increasingly important role, particularly considering the current emphasis on minimally-invasive surgical procedures. Volumetric CT and MR images have been used now for some time in conjunction with stereotactic frames, to guide many neurosurgical procedures. With the development of systems that permit surgical instruments to be tracked in space, image-guided surgery now includes the use of frame-less procedures, and the application of the technology has spread beyond neurosurgery to include orthopedic applications and therapy of various soft-tissue organs such as the breast, prostate and heart. Since tracking systems allow image- guided surgery to be undertaken without frames, a great deal of effort has been spent on image-to-image and image-to- patient registration techniques, and upon the means of combining real-time intra-operative images with images acquired pre-operatively. As image-guided surgery systems have become increasingly sophisticated, the greatest challenges to their successful adoption in the operating room of the future relate to the interface between the user and the system. To date, little effort has been expended to ensure that the human factors issues relating to the use of such equipment in the operating room have been adequately addressed. Such systems will only be employed routinely in the OR when they are designed to be intuitive, unobtrusive, and provide simple access to the source of the images.

  13. Direction-dependent Corrections in Polarimetric Radio Imaging. I. Characterizing the Effects of the Primary Beam on Full-Stokes Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagannathan, P.; Bhatnagar, S.; Rau, U.

    Next generation radio telescope arrays are being designed and commissioned to accurately measure polarized intensity and rotation measures (RMs) across the entire sky through deep, wide-field radio interferometric surveys. Radio interferometer dish antenna arrays are affected by direction-dependent (DD) gains due to both instrumental and atmospheric effects. In this paper, we demonstrate the effect of DD errors of the parabolic dish antenna array on the measured polarized intensities of radio sources in interferometric images. We characterize the extent of polarimetric image degradation due to the DD gains through wide-band VLA simulations of representative point-source simulations of the radio sky atmore » L band (1–2 GHz). We show that at the 0.5 gain level of the primary beam there is significant flux leakage from Stokes I to Q , U amounting to 10% of the total intensity. We further demonstrate that while the instrumental response averages down for observations over large parallactic angle intervals, full-polarization DD correction is required to remove the effects of DD leakage. We also explore the effect of the DD beam on the RM signals and show that while the instrumental effect is primarily centered around 0 rad-m{sup −2}, the effect is significant over a broad range of RM requiring full polarization DD correction to accurately reconstruct the RM synthesis signal.« less

  14. DEEP CHANDRA X-RAY IMAGING OF A NEARBY RADIO GALAXY 4C+29.30: X-RAY/RADIO CONNECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siemiginowska, Aneta; Aldcroft, Thomas L.; Burke, D. J.

    2012-05-10

    We report results from our deep Chandra X-ray observations of a nearby radio galaxy, 4C+29.30 (z = 0.0647). The Chandra image resolves structures on sub-arcsec to arcsec scales, revealing complex X-ray morphology and detecting the main radio features: the nucleus, a jet, hotspots, and lobes. The nucleus is absorbed (N{sub H} {approx_equal} 3.95{sup +0.27}{sub -0.33} Multiplication-Sign 10{sup 23} cm{sup -2}) with an unabsorbed luminosity of L{sub 2-10keV} {approx_equal} (5.08 {+-} 0.52) Multiplication-Sign 10{sup 43} erg s{sup -1} characteristic of Type 2 active galactic nuclei. Regions of soft (<2 keV) X-ray emission that trace the hot interstellar medium (ISM) are correlatedmore » with radio structures along the main radio axis, indicating a strong relation between the two. The X-ray emission extends beyond the radio source and correlates with the morphology of optical-line-emitting regions. We measured the ISM temperature in several regions across the galaxy to be kT {approx_equal} 0.5 keV, with slightly higher temperatures (of a few keV) in the center and in the vicinity of the radio hotspots. Assuming that these regions were heated by weak shocks driven by the expanding radio source, we estimated the corresponding Mach number of 1.6 in the southern regions. The thermal pressure of the X-ray-emitting gas in the outermost regions suggests that the hot ISM is slightly underpressured with respect to the cold optical-line-emitting gas and radio-emitting plasma, which both seem to be in a rough pressure equilibrium. We conclude that 4C+29.30 displays a complex view of interactions between the jet-driven radio outflow and host galaxy environment, signaling feedback processes closely associated with the central active nucleus.« less

  15. High-latitude electron density observations from the IMAGE radio plasma imager

    NASA Astrophysics Data System (ADS)

    Henize, Vance Karl

    2003-11-01

    Before the IMAGE mission, electron densities in the high latitude, high altitude region of the magnetosphere were measured exclusively by in situ means. The Radio Plasma Imager instrument onboard IMAGE is capable of remotely observing electron densities between 0.01 and 100,000 e-/cm-3 from distances of several Earth radii or more. This allows a global view of the high latitude region that has a far greater accuracy than was previously possible. Soundings of the terrestrial magnetic cusp provide the first remote observations of the dynamics and poleward density profile of this feature continuously over a 60- minute interval. During steady quiet-time solar wind and interplanetary magnetic field conditions, the cusp is shown to be stable in both position and density structure with only slight variations in both. Peak electron densities within the cusp during this time are found to be somewhat higher than predicted. New procedures for deriving electron densities from radio sounding measurements are developed. The addition of curve fitting algorithms significantly increases the amount of useable data. Incorporating forward modeling techniques greatly reduces the computational time over traditional inversion methods. These methods are described in detail. A large number high latitude observations of ducted right-hand extraordinary mode waves made over the course of one year of the IMAGE mission are used to create a three dimensional model of the electron density profile of the terrestrial polar cap region. The dependence of electron density in the polar cap on average geocentric distance (d) is found to vary as d-6.6. This is a significantly steeper gradient than cited in earlier works such as Persoon et al., although the introduction of an asymptotic term provides for basic agreement in the limited region of their joint validity. Latitudinal and longitudinal variations are found to be insignificant. Both the mean profile power law index of the electron density profile

  16. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer

    PubMed Central

    Hata, Nobuhiko; Song, Sang-Eun; Olubiyi, Olutayo; Arimitsu, Yasumichi; Fujimoto, Kosuke; Kato, Takahisa; Tuncali, Kemal; Tani, Soichiro; Tokuda, Junichi

    2016-01-01

    Purpose: Image-guided cryotherapy of renal cancer is an emerging alternative to surgical nephrectomy, particularly for those who cannot sustain the physical burden of surgery. It is well known that the outcome of this therapy depends on the accurate placement of the cryotherapy probe. Therefore, a robotic instrument guide may help physicians aim the cryotherapy probe precisely to maximize the efficacy of the treatment and avoid damage to critical surrounding structures. The objective of this paper was to propose a robotic instrument guide for orienting cryotherapy probes in image-guided cryotherapy of renal cancers. The authors propose a body-mounted robotic guide that is expected to be less susceptible to guidance errors caused by the patient’s whole body motion. Methods: Keeping the device’s minimal footprint in mind, the authors developed and validated a body-mounted, robotic instrument guide that can maintain the geometrical relationship between the device and the patient’s body, even in the presence of the patient’s frequent body motions. The guide can orient the cryotherapy probe with the skin incision point as the remote-center-of-motion. The authors’ validation studies included an evaluation of the mechanical accuracy and position repeatability of the robotic instrument guide. The authors also performed a mock MRI-guided cryotherapy procedure with a phantom to compare the advantage of robotically assisted probe replacements over a free-hand approach, by introducing organ motions to investigate their effects on the accurate placement of the cryotherapy probe. Measurements collected for performance analysis included accuracy and time taken for probe placements. Multivariate analysis was performed to assess if either or both organ motion and the robotic guide impacted these measurements. Results: The mechanical accuracy and position repeatability of the probe placement using the robotic instrument guide were 0.3 and 0.1 mm, respectively, at a depth

  17. Diffuse reflectance imaging: a tool for guided biopsy

    NASA Astrophysics Data System (ADS)

    Jayanthi, Jayaraj L.; Subhash, Narayanan; Manju, Stephen; Nisha, Unni G.; Beena, Valappil T.

    2012-01-01

    Accurate diagnosis of premalignant or malignant oral lesions depends on the quality of the biopsy, adequate clinical information and correct interpretation of the biopsy results. The major clinical challenge is to precisely locate the biopsy site in a clinically suspicious lesion. Dips due to oxygenated hemoglobin absorption have been noticed at 545 and 575 nm in the diffusely reflected white light spectra of oral mucosa and the intensity ratio R545/R575 has been found suited for early detection of oral pre-cancers. A multi-spectral diffuse reflectance (DR) imaging system has been developed consisting of an electron multiplying charge coupled device (EMCCD) camera and a liquid crystal tunable filter for guiding the clinician to an optimal biopsy site. Towards this DR images were recorded from 27 patients with potentially malignant lesions on their tongue (dorsal, lateral and ventral sides) and from 44 healthy controls at 545 and 575 nm with the DR imaging system. False colored ratio image R545/R575 of the lesion provides a visual discerning capability that helps in locating the most malignant site for biopsy. Histopathological report of guided biopsy showed that out of the 27 patients 16 were cancers, 9 pre-cancers and 2 lichen planus. In this clinical trial DR imaging has correctly guided 25 biopsy sites, yielding a sensitivity of 93% and a specificity of 98%, thereby establishing the potential of DR imaging as a tool for guided biopsy.

  18. Image-guided thoracic surgery in the hybrid operation room.

    PubMed

    Ujiie, Hideki; Effat, Andrew; Yasufuku, Kazuhiro

    2017-01-01

    There has been an increase in the use of image-guided technology to facilitate minimally invasive therapy. The next generation of minimally invasive therapy is focused on advancement and translation of novel image-guided technologies in therapeutic interventions, including surgery, interventional pulmonology, radiation therapy, and interventional laser therapy. To establish the efficacy of different minimally invasive therapies, we have developed a hybrid operating room, known as the guided therapeutics operating room (GTx OR) at the Toronto General Hospital. The GTx OR is equipped with multi-modality image-guidance systems, which features a dual source-dual energy computed tomography (CT) scanner, a robotic cone-beam CT (CBCT)/fluoroscopy, high-performance endobronchial ultrasound system, endoscopic surgery system, near-infrared (NIR) fluorescence imaging system, and navigation tracking systems. The novel multimodality image-guidance systems allow physicians to quickly, and accurately image patients while they are on the operating table. This yield improved outcomes since physicians are able to use image guidance during their procedures, and carry out innovative multi-modality therapeutics. Multiple preclinical translational studies pertaining to innovative minimally invasive technology is being developed in our guided therapeutics laboratory (GTx Lab). The GTx Lab is equipped with similar technology, and multimodality image-guidance systems as the GTx OR, and acts as an appropriate platform for translation of research into human clinical trials. Through the GTx Lab, we are able to perform basic research, such as the development of image-guided technologies, preclinical model testing, as well as preclinical imaging, and then translate that research into the GTx OR. This OR allows for the utilization of new technologies in cancer therapy, including molecular imaging, and other innovative imaging modalities, and therefore enables a better quality of life for

  19. Highway Advisory Radio Message Development Guide, Final Report

    DOT National Transportation Integrated Search

    1982-10-01

    HIGHWAY ADVISORY RADIO (HAR) PROVIDES TRAFFIC OPERATING AGENCIES WITH THE CAPABILITY TO COMMUNICATE TRAFFIC AND TRAVEL RELATED INFORMATION TO MOTORISTS USING THE VEHICLE'S AM RADIO RECEIVER. THIS REPORT PRESENTS RECOMMENDED HAR MESSAGE DEVELOPMENT PR...

  20. Preoperative magnetic resonance imaging protocol for endoscopic cranial base image-guided surgery.

    PubMed

    Grindle, Christopher R; Curry, Joseph M; Kang, Melissa D; Evans, James J; Rosen, Marc R

    2011-01-01

    Despite the increasing utilization of image-guided surgery, no radiology protocols for obtaining magnetic resonance (MR) imaging of adequate quality are available in the current literature. At our institution, more than 300 endonasal cranial base procedures including pituitary, extended pituitary, and other anterior skullbase procedures have been performed in the past 3 years. To facilitate and optimize preoperative evaluation and assessment, there was a need to develop a magnetic resonance protocol. Retrospective Technical Assessment was performed. Through a collaborative effort between the otolaryngology, neurosurgery, and neuroradiology departments at our institution, a skull base MR image-guided (IGS) protocol was developed with several ends in mind. First, it was necessary to generate diagnostic images useful for the more frequently seen pathologies to improve work flow and limit the expense and inefficiency of case specific MR studies. Second, it was necessary to generate sequences useful for IGS, preferably using sequences that best highlight that lesion. Currently, at our institution, all MR images used for IGS are obtained using this protocol as part of preoperative planning. The protocol that has been developed allows for thin cut precontrast and postcontrast axial cuts that can be used to plan intraoperative image guidance. It also obtains a thin cut T2 axial series that can be compiled separately for intraoperative imaging, or may be fused with computed tomographic images for combined modality. The outlined protocol obtains image sequences effective for diagnostic and operative purposes for image-guided surgery using both T1 and T2 sequences. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy.

    PubMed

    Chen, Yun-Sheng; Frey, Wolfgang; Kim, Seungsoo; Homan, Kimberly; Kruizinga, Pieter; Sokolov, Konstantin; Emelianov, Stanislav

    2010-04-26

    Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy.

  2. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy

    PubMed Central

    Chen, Yun-Sheng; Frey, Wolfgang; Kim, Seungsoo; Homan, Kimberly; Kruizinga, Pieter; Sokolov, Konstantin; Emelianov, Stanislav

    2010-01-01

    Photothermal stability and, therefore, consistency of both optical absorption and photoacoustic response of the plasmonic nanoabsorbers is critical for successful photoacoustic image-guided photothermal therapy. In this study, silica-coated gold nanorods were developed as a multifunctional molecular imaging and therapeutic agent suitable for image-guided photothermal therapy. The optical properties and photothermal stability of silica-coated gold nanorods under intense irradiation with nanosecond laser pulses were investigated by UV-Vis spectroscopy and transmission electron microscopy. Silica-coated gold nanorods showed increased photothermal stability and retained their superior optical properties under much higher fluences. The changes in photoacoustic response of PEGylated and silica-coated nanorods under laser pulses of various fluences were compared. The silica-coated gold nanorods provide a stable photoacoustic signal, which implies better imaging capabilities and make silica-coated gold nanorods a promising imaging and therapeutic nano-agent for photoacoustic imaging and image-guided photothermal therapy. PMID:20588732

  3. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewerdsen, J.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  4. Designing Tracking Software for Image-Guided Surgery Applications: IGSTK Experience

    PubMed Central

    Enquobahrie, Andinet; Gobbi, David; Turek, Matt; Cheng, Patrick; Yaniv, Ziv; Lindseth, Frank; Cleary, Kevin

    2009-01-01

    Objective Many image-guided surgery applications require tracking devices as part of their core functionality. The Image-Guided Surgery Toolkit (IGSTK) was designed and developed to interface tracking devices with software applications incorporating medical images. Methods IGSTK was designed as an open source C++ library that provides the basic components needed for fast prototyping and development of image-guided surgery applications. This library follows a component-based architecture with several components designed for specific sets of image-guided surgery functions. At the core of the toolkit is the tracker component that handles communication between a control computer and navigation device to gather pose measurements of surgical instruments present in the surgical scene. The representations of the tracked instruments are superimposed on anatomical images to provide visual feedback to the clinician during surgical procedures. Results The initial version of the IGSTK toolkit has been released in the public domain and several trackers are supported. The toolkit and related information are available at www.igstk.org. Conclusion With the increased popularity of minimally invasive procedures in health care, several tracking devices have been developed for medical applications. Designing and implementing high-quality and safe software to handle these different types of trackers in a common framework is a challenging task. It requires establishing key software design principles that emphasize abstraction, extensibility, reusability, fault-tolerance, and portability. IGSTK is an open source library that satisfies these needs for the image-guided surgery community. PMID:20037671

  5. A Single-Institution Experience in Percutaneous Image-Guided Biopsy of Malignant Pleural Mesothelioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welch, B. T., E-mail: Welch.brian@mayo.edu; Eiken, P. W.; Atwell, T. D.

    PurposeMesothelioma has been considered a difficult pathologic diagnosis to achieve via image-guided core needle biopsy. The purpose of this study was to assess the diagnostic sensitivity of percutaneous image-guided biopsy for diagnosis of pleural mesothelioma.Materials and MethodsRetrospective review was performed to identify patients with a confirmed diagnosis of pleural mesothelioma and who underwent image-guided needle biopsy between January 1, 2002, and January 1, 2016. Thirty-two patients with pleural mesothelioma were identified and included for analysis in 33 image-guided biopsy procedures. Patient, procedural, and pathologic characteristics were recorded. Complications were characterized via standardized nomenclature [Common Terminology for Clinically Adverse Events (CTCAE)].ResultsPercutaneousmore » image-guided biopsy was associated with an overall sensitivity of 81%. No CTCAE clinically significant complications were observed. No image-guided procedures were complicated by pneumothorax or necessitated chest tube placement. No patients had tumor seeding of the biopsy tract.ConclusionPercutaneous image-guided biopsy can achieve high sensitivity for pathologic diagnosis of pleural mesothelioma with a low procedural complication rate, potentially obviating need for surgical biopsy.« less

  6. Design, implementation and investigation of an image guide-based optical flip-flop array

    NASA Technical Reports Server (NTRS)

    Griffith, P. C.

    1987-01-01

    Presented is the design for an image guide-based optical flip-flop array created using a Hughes liquid crystal light valve and a flexible image guide in a feedback loop. This design is used to investigate the application of image guides as a communication mechanism in numerical optical computers. It is shown that image guides can be used successfully in this manner but mismatch match between the input and output fiber arrays is extremely limiting.

  7. Image navigation as a means to expand the boundaries of fluorescence-guided surgery

    NASA Astrophysics Data System (ADS)

    Brouwer, Oscar R.; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L.; Wendler, Thomas; Valdés-Olmos, Renato A.; van der Poel, Henk G.; van Leeuwen, Fijs W. B.

    2012-05-01

    Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.

  8. Minimally Invasive Spinal Surgery with Intraoperative Image-Guided Navigation

    PubMed Central

    Kim, Terrence T.; Johnson, J. Patrick; Pashman, Robert; Drazin, Doniel

    2016-01-01

    We present our perioperative minimally invasive spine surgery technique using intraoperative computed tomography image-guided navigation for the treatment of various lumbar spine pathologies. We present an illustrative case of a patient undergoing minimally invasive percutaneous posterior spinal fusion assisted by the O-arm system with navigation. We discuss the literature and the advantages of the technique over fluoroscopic imaging methods: lower occupational radiation exposure for operative room personnel, reduced need for postoperative imaging, and decreased revision rates. Most importantly, we demonstrate that use of intraoperative cone beam CT image-guided navigation has been reported to increase accuracy. PMID:27213152

  9. Clinical Applications of a CT Window Blending Algorithm: RADIO (Relative Attenuation-Dependent Image Overlay).

    PubMed

    Mandell, Jacob C; Khurana, Bharti; Folio, Les R; Hyun, Hyewon; Smith, Stacy E; Dunne, Ruth M; Andriole, Katherine P

    2017-06-01

    A methodology is described using Adobe Photoshop and Adobe Extendscript to process DICOM images with a Relative Attenuation-Dependent Image Overlay (RADIO) algorithm to visualize the full dynamic range of CT in one view, without requiring a change in window and level settings. The potential clinical uses for such an algorithm are described in a pictorial overview, including applications in emergency radiology, oncologic imaging, and nuclear medicine and molecular imaging.

  10. Thermal Imaging of Medical Saw Blades and Guides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinwiddie, Ralph Barton; Steffner, Thomas E

    2007-01-01

    Better Than New, LLC., has developed a surface treatment to reduce the friction and wear of orthopedic saw blades and guides. The medical saw blades were thermally imaged while sawing through fresh animal bone and an IR camera was used to measure the blade temperature as it exited the bone. The thermal performance of as-manufactured saw blades was compared to surface-treated blades, and a freshly used blade was used for temperature calibration purposes in order to account for any emissivity changes due to organic transfer layers. Thermal imaging indicates that the treated saw blades cut faster and cooler than untreatedmore » blades. In orthopedic surgery, saw guides are used to perfectly size the bone to accept a prosthesis. However, binding can occur between the blade and guide because of misalignment. This condition increases the saw blade temperature and may result in tissue damage. Both treated ad untreated saw guides were also studied. The treated saw guide operated at a significantly lower temperature than untreated guide. Saw blades and guides that operate at a cooler temperature are expected to reduce the amount of tissue damage (thermal necrosis) and may reduce the number of post-operative complications.« less

  11. Comprehensive approach to image-guided surgery

    NASA Astrophysics Data System (ADS)

    Peters, Terence M.; Comeau, Roch M.; Kasrai, Reza; St. Jean, Philippe; Clonda, Diego; Sinasac, M.; Audette, Michel A.; Fenster, Aaron

    1998-06-01

    Image-guided surgery has evolved over the past 15 years from stereotactic planning, where the surgeon planned approaches to intracranial targets on the basis of 2D images presented on a simple workstation, to the use of sophisticated multi- modality 3D image integration in the operating room, with guidance being provided by mechanically, optically or electro-magnetically tracked probes or microscopes. In addition, sophisticated procedures such as thalamotomies and pallidotomies to relieve the symptoms of Parkinson's disease, are performed with the aid of volumetric atlases integrated with the 3D image data. Operations that are performed stereotactically, that is to say via a small burr- hole in the skull, are able to assume that the information contained in the pre-operative imaging study, accurately represents the brain morphology during the surgical procedure. On the other hand, preforming a procedure via an open craniotomy presents a problem. Not only does tissue shift when the operation begins, even the act of opening the skull can cause significant shift of the brain tissue due to the relief of intra-cranial pressure, or the effect of drugs. Means of tracking and correcting such shifts from an important part of the work in the field of image-guided surgery today. One approach has ben through the development of intra-operative MRI imaging systems. We describe an alternative approach which integrates intra-operative ultrasound with pre-operative MRI to track such changes in tissue morphology.

  12. Transpersonal Psychology: Guiding Image for the Advancement of International Adult Education.

    ERIC Educational Resources Information Center

    Boucouvalas, Marcie

    1984-01-01

    The importance of guiding images is examined, along with analyses of the images of humankind and worldviews previously offered by psychology and adopted by society-at-large. The article focuses on the contribution of transpersonal psychology, the discipline's fourth force, which integrates and extends prior guiding images. (CT)

  13. What makes a good voice for radio: perceptions of radio employers and educators.

    PubMed

    Warhurst, Samantha; McCabe, Patricia; Madill, Catherine

    2013-03-01

    To inform vocal training and management of voice disorders of professional radio performers in Australia by determining radio employers' and educators' qualitative perceptions on (1) what makes a good voice for radio and (2) what communication characteristics are important when employing radio performers. Radio employers and educators (n=9) participated in semistructured interviews. Interview transcripts were coded line-by-line and analyzed for qualitative themes using principles of grounded theory. Radio performers sound easy-on-the-ear, natural, and have an ability to read and produce voices that suit the station. Many of these characteristics make them sound different to radio voices in the past. Content and personality are now also more significant than voice characteristics. A multidimensional model of these characteristics is presented. The model has implications for the training and management of voice disorders in radio performers and will guide future quantitative research on the vocal features of this population. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  14. Green Channel Guiding Denoising on Bayer Image

    PubMed Central

    Zhang, Maojun

    2014-01-01

    Denoising is an indispensable function for digital cameras. In respect that noise is diffused during the demosaicking, the denoising ought to work directly on bayer data. The difficulty of denoising on bayer image is the interlaced mosaic pattern of red, green, and blue. Guided filter is a novel time efficient explicit filter kernel which can incorporate additional information from the guidance image, but it is still not applied for bayer image. In this work, we observe that the green channel of bayer mode is higher in both sampling rate and Signal-to-Noise Ratio (SNR) than the red and blue ones. Therefore the green channel can be used to guide denoising. This kind of guidance integrates the different color channels together. Experiments on both actual and simulated bayer images indicate that green channel acts well as the guidance signal, and the proposed method is competitive with other popular filter kernel denoising methods. PMID:24741370

  15. Multimodality Image Fusion-Guided Procedures: Technique, Accuracy, and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abi-Jaoudeh, Nadine, E-mail: naj@mail.nih.gov; Kruecker, Jochen, E-mail: jochen.kruecker@philips.com; Kadoury, Samuel, E-mail: samuel.kadoury@polymtl.ca

    2012-10-15

    Personalized therapies play an increasingly critical role in cancer care: Image guidance with multimodality image fusion facilitates the targeting of specific tissue for tissue characterization and plays a role in drug discovery and optimization of tailored therapies. Positron-emission tomography (PET), magnetic resonance imaging (MRI), and contrast-enhanced computed tomography (CT) may offer additional information not otherwise available to the operator during minimally invasive image-guided procedures, such as biopsy and ablation. With use of multimodality image fusion for image-guided interventions, navigation with advanced modalities does not require the physical presence of the PET, MRI, or CT imaging system. Several commercially available methodsmore » of image-fusion and device navigation are reviewed along with an explanation of common tracking hardware and software. An overview of current clinical applications for multimodality navigation is provided.« less

  16. The Radio JOVE Project: Inexpensive Radio Astronomy for the Classroom

    NASA Astrophysics Data System (ADS)

    Thieman, J. R.; Higgins, C. A.; Pine, W.

    2000-12-01

    Radio JOVE is an interactive, hands-on educational activity for learning the scientific method through the medium of radio astronomy observations of Jupiter and the sun. Students build a radio telescope from a relatively inexpensive non-profit kit (about \\$125) and use it to record data, analyze the data, and share the results with others. Alternatively, for no cost, the students can record and analyze data from remote radio telescopes connected to the Web. The project is a useful adjunct to activities in optical astronomy since students should recognize that we learn about the Universe through more than just the optical spectrum. In addition to supplementing knowledge of Jupiter and the sun, the project teaches about charged particles and magnetic fields. Building of the kit is also a mini-course in electronics. The Radio JOVE website (http://radiojove.gsfc.nasa.gov) contains science information, instruction manuals, observing guides, software, and education resources for students and teachers.

  17. Guided color consistency optimization for image mosaicking

    NASA Astrophysics Data System (ADS)

    Xie, Renping; Xia, Menghan; Yao, Jian; Li, Li

    2018-01-01

    This paper studies the problem of color consistency correction for sequential images with diverse color characteristics. Existing algorithms try to adjust all images to minimize color differences among images under a unified energy framework, however, the results are prone to presenting a consistent but unnatural appearance when the color difference between images is large and diverse. In our approach, this problem is addressed effectively by providing a guided initial solution for the global consistency optimization, which avoids converging to a meaningless integrated solution. First of all, to obtain the reliable intensity correspondences in overlapping regions between image pairs, we creatively propose the histogram extreme point matching algorithm which is robust to image geometrical misalignment to some extents. In the absence of the extra reference information, the guided initial solution is learned from the major tone of the original images by searching some image subset as the reference, whose color characteristics will be transferred to the others via the paths of graph analysis. Thus, the final results via global adjustment will take on a consistent color similar to the appearance of the reference image subset. Several groups of convincing experiments on both the synthetic dataset and the challenging real ones sufficiently demonstrate that the proposed approach can achieve as good or even better results compared with the state-of-the-art approaches.

  18. A contrast and registration template for magnetic resonance image data guided dental implant placement

    NASA Astrophysics Data System (ADS)

    Eggers, Georg; Cosgarea, Raluca; Rieker, Marcus; Kress, Bodo; Dickhaus, Hartmut; Mühling, Joachim

    2009-02-01

    An oral imaging template was developed to address the shortcomings of MR image data for image guided dental implant planning and placement. The template was conctructed as a gadolinium filled plastic shell to give contrast to the dentition and also to be accurately re-attachable for use in image guided dental implant placement. The result of segmentation and modelling of the dentition from MR Image data with the template was compared to plaster casts of the dentition. In a phantom study dental implant placement was performed based on MR image data. MR imaging with the contrast template allowed complete representation of the existing dentition. In the phantom study, a commercially available system for image guided dental implant placement was used. Transformation of the imaging contrast template into a surgical drill guide based on the MR image data resulted in pilot burr hole placement with an accuracy of 2 mm. MRI based imaging of the existing dentition for proper image guided planning is possible with the proposed template. Using the image data and the template resulted in less accurate pilot burr hole placement in comparison to CT-based image guided implant placement.

  19. Guided filter-based fusion method for multiexposure images

    NASA Astrophysics Data System (ADS)

    Hou, Xinglin; Luo, Haibo; Qi, Feng; Zhou, Peipei

    2016-11-01

    It is challenging to capture a high-dynamic range (HDR) scene using a low-dynamic range camera. A weighted sum-based image fusion (IF) algorithm is proposed so as to express an HDR scene with a high-quality image. This method mainly includes three parts. First, two image features, i.e., gradients and well-exposedness are measured to estimate the initial weight maps. Second, the initial weight maps are refined by a guided filter, in which the source image is considered as the guidance image. This process could reduce the noise in initial weight maps and preserve more texture consistent with the original images. Finally, the fused image is constructed by a weighted sum of source images in the spatial domain. The main contributions of this method are the estimation of the initial weight maps and the appropriate use of the guided filter-based weight maps refinement. It provides accurate weight maps for IF. Compared to traditional IF methods, this algorithm avoids image segmentation, combination, and the camera response curve calibration. Furthermore, experimental results demonstrate the superiority of the proposed method in both subjective and objective evaluations.

  20. Image-Guided Abdominal Surgery and Therapy Delivery

    PubMed Central

    Galloway, Robert L.; Herrell, S. Duke; Miga, Michael I.

    2013-01-01

    Image-Guided Surgery has become the standard of care in intracranial neurosurgery providing more exact resections while minimizing damage to healthy tissue. Moving that process to abdominal organs presents additional challenges in the form of image segmentation, image to physical space registration, organ motion and deformation. In this paper, we present methodologies and results for addressing these challenges in two specific organs: the liver and the kidney. PMID:25077012

  1. Minimally invasive image-guided interventional management of hepatic artery pseudoaneurysms.

    PubMed

    Vyas, Sameer; Khandelwal, Niranjan; Gupta, Vivek; Kamal Ahuja, Chirag; Kumar, Ajay; Kalra, Naveen; Kang, Mandeep; Prakash, Mahesh

    2014-01-01

    Hepatic artery pseudoaneurysms (HAPs) are uncommon entities. With the development of interventional techniques, their management has evolved from conventional (surgical) to non-surgical minimally invasive image-guided interventional techniques. Fifteen cases of HAPs who had undergone non-surgical interventional management in our department were reviewed. All patients were comprehensively evaluated for demographic information, morphology of pseudoaneurysm, indication for intervention and means of intervention, approach (endovascular or percutaneous), follow up and complications. Trauma and iatrogenic injury were most common causes of HAPs. Most of the HAPs (9 out of 10 in whom long follow up was available) managed with image-guided interventional techniques had favorable outcome. Minimally invasive image-guided interventional management is the preferred modality for HAPs.

  2. Radio-guided surgery with the use of [99mTc-EDDA/HYNIC]octreotate in intra-operative detection of neuroendocrine tumours of the gastrointestinal tract.

    PubMed

    Hubalewska-Dydejczyk, A; Kulig, J; Szybinski, P; Mikolajczak, R; Pach, D; Sowa-Staszczak, A; Fröss-Baron, K; Huszno, B

    2007-10-01

    Radio-guided surgery (RGS) is an intra-operative localising technique which enables identification of tissue "marked" by a specific radiotracer injected before surgery. It is mainly used for sentinel node mapping and for detection of parathyroid adenomas and other tumours, including neuroendocrine tumours of the gastrointestinal tract (GEP-NET). The aim of this study was to determine whether intra-operative radio-detection with the use of [(99m)Tc-EDDA/HYNIC]octreotate, a new somatostatin analogue, is able to reveal an unknown primary and secondary sites, thereby improving surgical treatment and the final outcome of GEP-NET. The study group included nine patients with suspected GEP-NET (four carcinoids, five pancreatic NET) localised with somatostatin receptor scintigraphy (with [(99m)Tc-EDDA/HYNIC]octreotate), who had negative results on other pre-operative imaging tests. At surgery, suspected tumours were measured in situ and ex vivo and precise exploration of the abdominal cavity was performed with the intra-operative scintillation detector (Navigator). Intra-operative gamma counting localised three carcinoids. In one patient SRS was false positive (owing to inflammatory infiltration). Compared with SRS, RGS revealed additional lymph node metastases in one case. RGS resulted in successful localisation of all pancreatic NET (the smallest lesion was 8 mm in diameter). [(99m)Tc-EDDA/HYNIC]octreotate SRS followed by RGS is a promising technique to improve the rate of detection and efficacy of treatment of GEP-NET, especially in the presence of occult endocrine tumours. The imaging properties of [(99m)Tc-EDDA/HYNIC]octreotate and the 1-day imaging protocol offer opportunities for more widespread application of this tracer followed by RGS in oncology.

  3. High-Intensity Focused Ultrasound: Current Status for Image-Guided Therapy

    PubMed Central

    Copelan, Alexander; Hartman, Jason; Chehab, Monzer; Venkatesan, Aradhana M.

    2015-01-01

    Image-guided high-intensity focused ultrasound (HIFU) is an innovative therapeutic technology, permitting extracorporeal or endocavitary delivery of targeted thermal ablation while minimizing injury to the surrounding structures. While ultrasound-guided HIFU was the original image-guided system, MR-guided HIFU has many inherent advantages, including superior depiction of anatomic detail and superb real-time thermometry during thermoablation sessions, and it has recently demonstrated promising results in the treatment of both benign and malignant tumors. HIFU has been employed in the management of prostate cancer, hepatocellular carcinoma, uterine leiomyomas, and breast tumors, and has been associated with success in limited studies for palliative pain management in pancreatic cancer and bone tumors. Nonthermal HIFU bioeffects, including immune system modulation and targeted drug/gene therapy, are currently being explored in the preclinical realm, with an emphasis on leveraging these therapeutic effects in the care of the oncology patient. Although still in its early stages, the wide spectrum of therapeutic capabilities of HIFU offers great potential in the field of image-guided oncologic therapy. PMID:26622104

  4. Smart travel guide: from internet image database to intelligent system

    NASA Astrophysics Data System (ADS)

    Chareyron, Ga"l.; Da Rugna, Jérome; Cousin, Saskia

    2011-02-01

    To help the tourist to discover a city, a region or a park, many options are provided by public tourism travel centers, by free online guides or by dedicated book guides. Nonetheless, these guides provide only mainstream information which are not conform to a particular tourist behavior. On the other hand, we may find several online image databases allowing users to upload their images and to localize each image on a map. These websites are representative of tourism practices and constitute a proxy to analyze tourism flows. Then, this work intends to answer this question: knowing what I have visited and what other people have visited, where should I go now? This process needs to profile users, sites and photos. our paper presents the acquired data and relationship between photographers, sites and photos and introduces the model designed to correctly estimate the site interest of each tourism point. The third part shows an application of our schema: a smart travel guide on geolocated mobile devices. This android application is a travel guide truly matching the user wishes.

  5. Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare

    NASA Astrophysics Data System (ADS)

    Yu, S.; Chen, B.; Reeves, K.

    2017-12-01

    We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.

  6. Intraoperative β{sup -} detecting probe for radio-guided surgery in tumour resection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solfaroli Camillocci, Elena; Bellini, Fabio; Bocciy, Valerio

    The development of the β{sup -} based radio-guided surgery aims to extend the technique to those tumours where surgery is the only possible treatment and the assessment of the resection would most profit from the low background around the lesion, as for brain tumours. Feasibility studies on meningioma and gliomas already estimated the potentiality of this new treatment. To validate the technique, a prototype of the intraoperative probe detecting β{sup -} decays and specific phantoms simulating tumour remnant patterns embedded in healthy tissue have been realized. The response of the probe in this simulated environment is tested with dedicated procedures.more » This document discusses the innovative aspects of the method, the status of the developed intraoperative β{sup -} detecting probe and the results of the preclinical tests. (authors)« less

  7. Direction Dependent Effects In Widefield Wideband Full Stokes Radio Imaging

    NASA Astrophysics Data System (ADS)

    Jagannathan, Preshanth; Bhatnagar, Sanjay; Rau, Urvashi; Taylor, Russ

    2015-01-01

    Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction dependent gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wideband full stokes power pattern of the Very Large Array(VLA) antennas to demonstrate the level of errors arising from direction-dependent gains. Our estimate is that these errors will be significant in wide-band full-pol mosaic imaging as well and algorithms to correct these errors will be crucial for many up-coming large area surveys (e.g. VLASS)

  8. Deep HST imaging of distant weak radio and field galaxies

    NASA Technical Reports Server (NTRS)

    Windhorst, R. A.; Gordon, J. M.; Pascarelle, S. M.; Schmidtke, P. C.; Keel, W. C.; Burkey, J. M.; Dunlop, J. S.

    1994-01-01

    We present deep Hubble Space Telescope (HST) Wide-Field Camera (WFC) V- and I-band images of three distant weak radio galaxies with z = 0.311-2.390 and seven field galaxies with z = 0.131-0.58. The images were deconvolved with both the Lucy and multiresolution CLEAN methods, which yield a restoring Full Width at Half Maximum (FWHM) of less than or equal to 0.2 sec, (nearly) preserve photons and signal-to-noise ratio at low spatial frequencies, and produce consistent light profiles down to our 2 sigma surface brightness sensitivity limit of V approximately 27.2 and I approximately 25.9 mag/sq arcsec. Multi-component image modeling was used to provide deconvolution-independent estimates of structural parameters for symmetric galaxies. We present 12-band (m(sub 2750) UBVRIgriJHK) photometry for a subset of the galaxies and bootstrap the unknown FOC/48 zero point at 2750 A in three independent ways (yielding m(sub 2750) = 21.34 +/- 0.09 mag for 1.0 e(-)/s). Two radio galaxies with z = 0.311 and 0.528, as well as one field galaxy with z = 0.58, have the colors and spectra of early-type galaxies, and a(exp 1/4)-like light profiles in the HST images. The two at z greater than 0.5 have little or no color gradients in V - I and are likely giant ellipticals, while the z = 0.311 radio galaxy has a dim exponential disk and is likely an S0. Six of the seven field galaxies have light profiles that indicate (small) inner bulges following a(exp 1/4) laws and outer exponential disks, both with little or no color gradients. These are (early-type) spiral galaxies with z = 0.131-0.528. About half have faint companions or bars. One shows lumpy structure, possibly a merger. The compact narrow-line galaxy 53W002 at z = 2.390 has less than or = 30% +/- 10% of its HST V and I flux in the central kiloparsec (due to its weak Active Galactic Nucleus (AGN)). Most of its light (V approximately equal to 23.3) occurs in a symmetric envelope with a regular a(exp 1/4)-like profile of effective

  9. Particle accelerators in the hot spots of radio galaxy 3C 445, imaged with the VLT.

    PubMed

    Prieto, M Almudena; Brunetti, Gianfranco; Mack, Karl-Heinz

    2002-10-04

    Hot spots (HSs) are regions of enhanced radio emission produced by supersonic jets at the tip of the radio lobes of powerful radio sources. Obtained with the Very Large Telescope (VLT), images of the HSs in the radio galaxy 3C 445 show bright knots embedded in diffuse optical emission distributed along the post-shock region created by the impact of the jet into the intergalactic medium. The observations reported here confirm that relativistic electrons are accelerated by Fermi-I acceleration processes in HSs. Furthermore, both the diffuse emission tracing the rims of the front shock and the multiple knots demonstrate the presence of additional continuous re-acceleration processes of electrons (Fermi-II).

  10. Classifying bent radio galaxies from a mixture of point-like/extended images with Machine Learning.

    NASA Astrophysics Data System (ADS)

    Bastien, David; Oozeer, Nadeem; Somanah, Radhakrishna

    2017-05-01

    The hypothesis that bent radio sources are supposed to be found in rich, massive galaxy clusters and the avalibility of huge amount of data from radio surveys have fueled our motivation to use Machine Learning (ML) to identify bent radio sources and as such use them as tracers for galaxy clusters. The shapelet analysis allowed us to decompose radio images into 256 features that could be fed into the ML algorithm. Additionally, ideas from the field of neuro-psychology helped us to consider training the machine to identify bent galaxies at different orientations. From our analysis, we found that the Random Forest algorithm was the most effective with an accuracy rate of 92% for a classification of point and extended sources as well as an accuracy of 80% for bent and unbent classification.

  11. Low-radio-frequency eclipses of the redback pulsar J2215+5135 observed in the image plane with LOFAR.

    PubMed

    Broderick, J W; Fender, R P; Breton, R P; Stewart, A J; Rowlinson, A; Swinbank, J D; Hessels, J W T; Staley, T D; van der Horst, A J; Bell, M E; Carbone, D; Cendes, Y; Corbel, S; Eislöffel, J; Falcke, H; Grießmeier, J-M; Hassall, T E; Jonker, P; Kramer, M; Kuniyoshi, M; Law, C J; Markoff, S; Molenaar, G J; Pietka, M; Scheers, L H A; Serylak, M; Stappers, B W; Ter Veen, S; van Leeuwen, J; Wijers, R A M J; Wijnands, R; Wise, M W; Zarka, P

    2016-07-01

    The eclipses of certain types of binary millisecond pulsars (i.e. 'black widows' and 'redbacks') are often studied using high-time-resolution, 'beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν -0.4 ), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.

  12. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model.

    PubMed

    Han, Xue-Di; Liu, Chen; Liu, Fei; Xie, Qing-Hua; Liu, Te-Li; Guo, Xiao-Yi; Xu, Xiao-Xia; Yang, Xing; Zhu, Hua; Yang, Zhi

    2017-09-26

    Here, we report that it's feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64 Cu. 64 Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro . The specificity of 64 Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated ( n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64 Cu-PSMA-617. All those results suggested 64 Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer.

  13. 64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model

    PubMed Central

    Han, Xue-Di; Liu, Chen; Liu, Fei; Xie, Qing-Hua; Liu, Te-Li; Guo, Xiao-Yi; Xu, Xiao-Xia; Yang, Xing; Zhu, Hua; Yang, Zhi

    2017-01-01

    Here, we report that it’s feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64Cu. 64Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro. The specificity of 64Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated (n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64Cu-PSMA-617. All those results suggested 64Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer. PMID:29088775

  14. Toward image guided robotic surgery: system validation.

    PubMed

    Herrell, Stanley D; Kwartowitz, David Morgan; Milhoua, Paul M; Galloway, Robert L

    2009-02-01

    Navigation for current robotic assisted surgical techniques is primarily accomplished through a stereo pair of laparoscopic camera images. These images provide standard optical visualization of the surface but provide no subsurface information. Image guidance methods allow the visualization of subsurface information to determine the current position in relationship to that of tracked tools. A robotic image guided surgical system was designed and implemented based on our previous laboratory studies. A series of experiments using tissue mimicking phantoms with injected target lesions was performed. The surgeon was asked to resect "tumor" tissue with and without the augmentation of image guidance using the da Vinci robotic surgical system. Resections were performed and compared to an ideal resection based on the radius of the tumor measured from preoperative computerized tomography. A quantity called the resection ratio, that is the ratio of resected tissue compared to the ideal resection, was calculated for each of 13 trials and compared. The mean +/- SD resection ratio of procedures augmented with image guidance was smaller than that of procedures without image guidance (3.26 +/- 1.38 vs 9.01 +/- 1.81, p <0.01). Additionally, procedures using image guidance were shorter (average 8 vs 13 minutes). It was demonstrated that there is a benefit from the augmentation of laparoscopic video with updated preoperative images. Incorporating our image guided system into the da Vinci robotic system improved overall tissue resection, as measured by our metric. Adding image guidance to the da Vinci robotic surgery system may result in the potential for improvements such as the decreased removal of benign tissue while maintaining an appropriate surgical margin.

  15. Focused US system for MR imaging-guided tumor ablation.

    PubMed

    Cline, H E; Hynynen, K; Watkins, R D; Adams, W J; Schenck, J F; Ettinger, R H; Freund, W R; Vetro, J P; Jolesz, F A

    1995-03-01

    To measure the performance characteristics of a focused ultrasound (US) system for magnetic resonance (MR) imaging-guided tumor ablation. The authors constructed a focused US system for MR imaging-guided tumor ablation. The location of the heated region and thermal dose were monitored with temperature-sensitive MR images obtained in phantoms and rabbit skeletal muscle after application of each sonic pulse. The region heated by the focused ultrasound beam was within 1 mm of that observed on temperature-sensitive fast gradient-echo MR images of in vivo rabbit skeletal muscle. Analysis of heat flow and the rate of coagulation necrosis provided an estimate of the size of the ablated region that was in agreement with experimental findings. MR imaging provides target definition and control for thermal therapy in regions of variable perfusion or in tissues that are not well characterized.

  16. MRI-guided brain PET image filtering and partial volume correction

    NASA Astrophysics Data System (ADS)

    Yan, Jianhua; Chu-Shern Lim, Jason; Townsend, David W.

    2015-02-01

    Positron emission tomography (PET) image quantification is a challenging problem due to limited spatial resolution of acquired data and the resulting partial volume effects (PVE), which depend on the size of the structure studied in relation to the spatial resolution and which may lead to over or underestimation of the true tissue tracer concentration. In addition, it is usually necessary to perform image smoothing either during image reconstruction or afterwards to achieve a reasonable signal-to-noise ratio. Typically, an isotropic Gaussian filtering (GF) is used for this purpose. However, the noise suppression is at the cost of deteriorating spatial resolution. As hybrid imaging devices such as PET/MRI have become available, the complementary information derived from high definition morphologic images could be used to improve the quality of PET images. In this study, first of all, we propose an MRI-guided PET filtering method by adapting a recently proposed local linear model and then incorporate PVE into the model to get a new partial volume correction (PVC) method without parcellation of MRI. In addition, both the new filtering and PVC are voxel-wise non-iterative methods. The performance of the proposed methods were investigated with simulated dynamic FDG brain dataset and 18F-FDG brain data of a cervical cancer patient acquired with a simultaneous hybrid PET/MR scanner. The initial simulation results demonstrated that MRI-guided PET image filtering can produce less noisy images than traditional GF and bias and coefficient of variation can be further reduced by MRI-guided PET PVC. Moreover, structures can be much better delineated in MRI-guided PET PVC for real brain data.

  17. Computed tomography image-guided surgery in complex acetabular fractures.

    PubMed

    Brown, G A; Willis, M C; Firoozbakhsh, K; Barmada, A; Tessman, C L; Montgomery, A

    2000-01-01

    Eleven complex acetabular fractures in 10 patients were treated by open reduction with internal fixation incorporating computed tomography image guided software intraoperatively. Each of the implants placed under image guidance was found to be accurate and without penetration of the pelvis or joint space. The setup time for the system was minimal. Accuracy in the range of 1 mm was found when registration was precise (eight cases) and was in the range of 3.5 mm when registration was only approximate (three cases). Added benefits included reduced intraoperative fluoroscopic time, less need for more extensive dissection, and obviation of additional surgical approaches in some cases. Compared with a series of similar fractures treated before this image guided series, the reduction in operative time was significant. For patients with complex anterior and posterior combined fractures, the average operation times with and without application of three-dimensional imaging technique were, respectively, 5 hours 15 minutes and 6 hours 14 minutes, revealing 16% less operative time for those who had surgery using image guidance. In the single column fracture group, the operation time for those with three-dimensional imaging application, was 2 hours 58 minutes and for those with traditional surgery, 3 hours 42 minutes, indicating 20% less operative time for those with imaging modality. Intraoperative computed tomography guided imagery was found to be an accurate and suitable method for use in the operative treatment of complex acetabular fractures with substantial displacement.

  18. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  19. Intraoperative imaging-guided cancer surgery: from current fluorescence molecular imaging methods to future multi-modality imaging technology.

    PubMed

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery.

  20. Intraoperative Imaging-Guided Cancer Surgery: From Current Fluorescence Molecular Imaging Methods to Future Multi-Modality Imaging Technology

    PubMed Central

    Chi, Chongwei; Du, Yang; Ye, Jinzuo; Kou, Deqiang; Qiu, Jingdan; Wang, Jiandong; Tian, Jie; Chen, Xiaoyuan

    2014-01-01

    Cancer is a major threat to human health. Diagnosis and treatment using precision medicine is expected to be an effective method for preventing the initiation and progression of cancer. Although anatomical and functional imaging techniques such as radiography, computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) have played an important role for accurate preoperative diagnostics, for the most part these techniques cannot be applied intraoperatively. Optical molecular imaging is a promising technique that provides a high degree of sensitivity and specificity in tumor margin detection. Furthermore, existing clinical applications have proven that optical molecular imaging is a powerful intraoperative tool for guiding surgeons performing precision procedures, thus enabling radical resection and improved survival rates. However, detection depth limitation exists in optical molecular imaging methods and further breakthroughs from optical to multi-modality intraoperative imaging methods are needed to develop more extensive and comprehensive intraoperative applications. Here, we review the current intraoperative optical molecular imaging technologies, focusing on contrast agents and surgical navigation systems, and then discuss the future prospects of multi-modality imaging technology for intraoperative imaging-guided cancer surgery. PMID:25250092

  1. Improved Reconstruction of Radio Holographic Signal for Forward Scatter Radar Imaging

    PubMed Central

    Hu, Cheng; Liu, Changjiang; Wang, Rui; Zeng, Tao

    2016-01-01

    Forward scatter radar (FSR), as a specially configured bistatic radar, is provided with the capabilities of target recognition and classification by the Shadow Inverse Synthetic Aperture Radar (SISAR) imaging technology. This paper mainly discusses the reconstruction of radio holographic signal (RHS), which is an important procedure in the signal processing of FSR SISAR imaging. Based on the analysis of signal characteristics, the method for RHS reconstruction is improved in two parts: the segmental Hilbert transformation and the reconstruction of mainlobe RHS. In addition, a quantitative analysis of the method’s applicability is presented by distinguishing between the near field and far field in forward scattering. Simulation results validated the method’s advantages in improving the accuracy of RHS reconstruction and imaging. PMID:27164114

  2. Digital document imaging systems: An overview and guide

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This is an aid to NASA managers in planning the selection of a Digital Document Imaging System (DDIS) as a possible solution for document information processing and storage. Intended to serve as a manager's guide, this document contains basic information on digital imaging systems, technology, equipment standards, issues of interoperability and interconnectivity, and issues related to selecting appropriate imaging equipment based upon well defined needs.

  3. Guided filtering for solar image/video processing

    NASA Astrophysics Data System (ADS)

    Xu, Long; Yan, Yihua; Cheng, Jun

    2017-06-01

    A new image enhancement algorithm employing guided filtering is proposed in this work for the enhancement of solar images and videos so that users can easily figure out important fine structures embedded in the recorded images/movies for solar observation. The proposed algorithm can efficiently remove image noises, including Gaussian and impulse noises. Meanwhile, it can further highlight fibrous structures on/beyond the solar disk. These fibrous structures can clearly demonstrate the progress of solar flare, prominence coronal mass emission, magnetic field, and so on. The experimental results prove that the proposed algorithm gives significant enhancement of visual quality of solar images beyond original input and several classical image enhancement algorithms, thus facilitating easier determination of interesting solar burst activities from recorded images/movies.

  4. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    NASA Astrophysics Data System (ADS)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  <55 HU were obtained at five of the eleven institutions, where failing scans were acquired with current-exposure time of less than 120 mAs. Acceptable spatial resolution (>1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (<1.5%) and nine of the eleven institutions passed the QA tolerance for contrast (>2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20

  5. Near-infrared image-guided laser ablation of dental decay

    NASA Astrophysics Data System (ADS)

    Tao, You-Chen; Fried, Daniel

    2009-09-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries.

  6. Near-infrared image-guided laser ablation of dental decay

    PubMed Central

    Tao, You-Chen; Fried, Daniel

    2009-01-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO2 laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO2 laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:19895146

  7. Near-infrared image-guided laser ablation of dental decay.

    PubMed

    Tao, You-Chen; Fried, Daniel

    2009-01-01

    Image-guided laser ablation systems are now feasible for dentistry with the recent development of nondestructive high-contrast imaging modalities such as near-IR (NIR) imaging and optical coherence tomography (OCT) that are capable of discriminating between sound and demineralized dental enamel at the early stages of development. Our objective is to demonstrate that images of demineralized tooth surfaces have sufficient contrast to be used to guide a CO(2) laser for the selective removal of natural and artificial caries lesions. NIR imaging and polarization-sensitive optical coherence tomography (PS-OCT) operating at 1310-nm are used to acquire images of natural lesions on extracted human teeth and highly patterned artificial lesions produced on bovine enamel. NIR and PS-OCT images are analyzed and converted to binary maps designating the areas on the samples to be removed by a CO(2) laser to selectively remove the lesions. Postablation NIR and PS-OCT images confirmed preferential removal of demineralized areas with minimal damage to sound enamel areas. These promising results suggest that NIR and PS-OCT imaging systems can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.

  8. New and emerging patient-centered CT imaging and image-guided treatment paradigms for maxillofacial trauma.

    PubMed

    Dreizin, David; Nam, Arthur J; Hirsch, Jeffrey; Bernstein, Mark P

    2018-06-20

    This article reviews the conceptual framework, available evidence, and practical considerations pertaining to nascent and emerging advances in patient-centered CT-imaging and CT-guided surgery for maxillofacial trauma. These include cinematic rendering-a novel method for advanced 3D visualization, incorporation of quantitative CT imaging into the assessment of orbital fractures, low-dose CT imaging protocols made possible with contemporary scanners and reconstruction techniques, the rapidly growing use of cone-beam CT, virtual fracture reduction with design software for surgical pre-planning, the use of 3D printing for fabricating models and implants, and new avenues in CT-guided computer-aided surgery.

  9. Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery.

    PubMed

    Zhu, Nan; Huang, Chih-Yu; Mondal, Suman; Gao, Shengkui; Huang, Chongyuan; Gruev, Viktor; Achilefu, Samuel; Liang, Rongguang

    2015-09-01

    A wearable all-plastic imaging system for real-time fluorescence image-guided surgery is presented. The compact size of the system is especially suitable for applications in the operating room. The system consists of a dual-mode imaging system, see-through goggle, autofocusing, and auto-contrast tuning modules. The paper will discuss the system design and demonstrate the system performance.

  10. Compact wearable dual-mode imaging system for real-time fluorescence image-guided surgery

    PubMed Central

    Zhu, Nan; Huang, Chih-Yu; Mondal, Suman; Gao, Shengkui; Huang, Chongyuan; Gruev, Viktor; Achilefu, Samuel; Liang, Rongguang

    2015-01-01

    Abstract. A wearable all-plastic imaging system for real-time fluorescence image-guided surgery is presented. The compact size of the system is especially suitable for applications in the operating room. The system consists of a dual-mode imaging system, see-through goggle, autofocusing, and auto-contrast tuning modules. The paper will discuss the system design and demonstrate the system performance. PMID:26358823

  11. MO-DE-202-01: Image-Guided Focused Ultrasound Surgery and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahani, K.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  12. The radio properties of infrared-faint radio sources

    NASA Astrophysics Data System (ADS)

    Middelberg, E.; Norris, R. P.; Hales, C. A.; Seymour, N.; Johnston-Hollitt, M.; Huynh, M. T.; Lenc, E.; Mao, M. Y.

    2011-02-01

    Context. Infrared-faint radio sources (IFRS) are objects that have flux densities of several mJy at 1.4 GHz, but that are invisible at 3.6 μm when using sensitive Spitzer observations with μJy sensitivities. Their nature is unclear and difficult to investigate since they are only visible in the radio. Aims: High-resolution radio images and comprehensive spectral coverage can yield constraints on the emission mechanisms of IFRS and can give hints to similarities with known objects. Methods: We imaged a sample of 17 IFRS at 4.8 GHz and 8.6 GHz with the Australia Telescope Compact Array to determine the structures on arcsecond scales. We added radio data from other observing projects and from the literature to obtain broad-band radio spectra. Results: We find that the sources in our sample are either resolved out at the higher frequencies or are compact at resolutions of a few arcsec, which implies that they are smaller than a typical galaxy. The spectra of IFRS are remarkably steep, with a median spectral index of -1.4 and a prominent lack of spectral indices larger than -0.7. We also find that, given the IR non-detections, the ratio of 1.4 GHz flux density to 3.6 μm flux density is very high, and this puts them into the same regime as high-redshift radio galaxies. Conclusions: The evidence that IFRS are predominantly high-redshift sources driven by active galactic nuclei (AGN) is strong, even though not all IFRS may be caused by the same phenomenon. Compared to the rare and painstakingly collected high-redshift radio galaxies, IFRS appear to be much more abundant, but less luminous, AGN-driven galaxies at similar cosmological distances.

  13. Remote sensing fusion based on guided image filtering

    NASA Astrophysics Data System (ADS)

    Zhao, Wenfei; Dai, Qinling; Wang, Leiguang

    2015-12-01

    In this paper, we propose a novel remote sensing fusion approach based on guided image filtering. The fused images can well preserve the spectral features of the original multispectral (MS) images, meanwhile, enhance the spatial details information. Four quality assessment indexes are also introduced to evaluate the fusion effect when compared with other fusion methods. Experiments carried out on Gaofen-2, QuickBird, WorldView-2 and Landsat-8 images. And the results show an excellent performance of the proposed method.

  14. Hierarchical content-based image retrieval by dynamic indexing and guided search

    NASA Astrophysics Data System (ADS)

    You, Jane; Cheung, King H.; Liu, James; Guo, Linong

    2003-12-01

    This paper presents a new approach to content-based image retrieval by using dynamic indexing and guided search in a hierarchical structure, and extending data mining and data warehousing techniques. The proposed algorithms include: a wavelet-based scheme for multiple image feature extraction, the extension of a conventional data warehouse and an image database to an image data warehouse for dynamic image indexing, an image data schema for hierarchical image representation and dynamic image indexing, a statistically based feature selection scheme to achieve flexible similarity measures, and a feature component code to facilitate query processing and guide the search for the best matching. A series of case studies are reported, which include a wavelet-based image color hierarchy, classification of satellite images, tropical cyclone pattern recognition, and personal identification using multi-level palmprint and face features.

  15. Live imaging using adaptive optics with fluorescent protein guide-stars

    PubMed Central

    Tao, Xiaodong; Crest, Justin; Kotadia, Shaila; Azucena, Oscar; Chen, Diana C.; Sullivan, William; Kubby, Joel

    2012-01-01

    Spatially and temporally dependent optical aberrations induced by the inhomogeneous refractive index of live samples limit the resolution of live dynamic imaging. We introduce an adaptive optical microscope with a direct wavefront sensing method using a Shack-Hartmann wavefront sensor and fluorescent protein guide-stars for live imaging. The results of imaging Drosophila embryos demonstrate its ability to correct aberrations and achieve near diffraction limited images of medial sections of large Drosophila embryos. GFP-polo labeled centrosomes can be observed clearly after correction but cannot be observed before correction. Four dimensional time lapse images are achieved with the correction of dynamic aberrations. These studies also demonstrate that the GFP-tagged centrosome proteins, Polo and Cnn, serve as excellent biological guide-stars for adaptive optics based microscopy. PMID:22772285

  16. User-guided segmentation for volumetric retinal optical coherence tomography images

    PubMed Central

    Yin, Xin; Chao, Jennifer R.; Wang, Ruikang K.

    2014-01-01

    Abstract. Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method. PMID:25147962

  17. User-guided segmentation for volumetric retinal optical coherence tomography images.

    PubMed

    Yin, Xin; Chao, Jennifer R; Wang, Ruikang K

    2014-08-01

    Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guided segmentation method to perform the segmentation of retinal layers and features in OCT images. With this method, by interactively navigating three-dimensional (3-D) OCT images, the user first manually defines user-defined (or sketched) lines at regions where the retinal layers appear very irregular for which the automatic segmentation method often fails to provide satisfactory results. The algorithm is then guided by these sketched lines to trace the entire 3-D retinal layer and anatomical features by the use of novel layer and edge detectors that are based on robust likelihood estimation. The layer and edge boundaries are finally obtained to achieve segmentation. Segmentation of retinal layers in mouse and human OCT images demonstrates the reliability and efficiency of the proposed user-guided segmentation method.

  18. Global VLBI Observations of Weak Extragalactic Radio Sources: Imaging Candidates to Align the VLBI and Gaia Frames

    NASA Technical Reports Server (NTRS)

    Bourda, Geraldine; Collioud, Arnaud; Charlot, Patrick; Porcas, Richard; Garrington, Simon

    2010-01-01

    The space astrometry mission Gaia will construct a dense optical QSO-based celestial reference frame. For consistency between optical and radio positions, it will be important to align the Gaia and VLBI frames (International Celestial Reference Frame) with the highest accuracy. In this respect, it is found that only 10% of the ICRF sources are suitable to establish this link (70 sources), either because most of the ICRF sources are not bright enough at optical wavelengths or because they show extended radio emission which precludes reaching the highest astrometric accuracy. In order to improve the situation, we initiated a multi-step VLBI observational project, dedicated to finding additional suitable radio sources for aligning the two frames. The sample consists of about 450 optically-bright radio sources, typically 20 times weaker than the ICRF sources, which have been selected by cross-correlating optical and radio catalogs. The initial observations, aimed at checking whether these sources are detectable with VLBI, and conducted with the European VLBI Network (EVN) in 2007, showed an excellent 90% detection rate. This paper reports on global VLBI observations carried out in March 2008 to image 105 from the 398 previously detected sources. All sources were successfully imaged, revealing compact VLBI structure for about half of them, which is very promising for the future.

  19. Image improvement from a sodium-layer laser guide star adaptive optics system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Max, C. E., LLNL

    1997-06-01

    A sodium-layer laser guide star beacon with high-order adaptive optics at Lick Observatory produced a factor of 2.4 intensity increase and a factor of 2 decrease in full width at half maximum for an astronomical point source, compared with image motion compensation alone. Image full widths at half maximum were identical for laser and natural guide stars (0.3 arc seconds). The Strehl ratio with the laser guide star was 65% of that with a natural guide star. This technique should allow ground-based telescopes to attain the diffraction limit, by correcting for atmospheric distortions.

  20. Waveform Developer's Guide for the Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio

    NASA Technical Reports Server (NTRS)

    Shalkhauser, Mary Jo W.; Roche, Rigoberto

    2017-01-01

    The Space Telecommunications Radio System (STRS) provides a common, consistent framework for software defined radios (SDRs) to abstract the application software from the radio platform hardware. The STRS standard aims to reduce the cost and risk of using complex, configurable and reprogrammable radio systems across NASA missions. To promote the use of the STRS architecture for future NASA advanced exploration missions, NASA Glenn Research Center (GRC) developed an STRS-compliant SDR on a radio platform used by the Advance Exploration System program at the Johnson Space Center (JSC) in their Integrated Power, Avionics, and Software (iPAS) laboratory. The iPAS STRS Radio was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RIACS) platform, currently being used for radio development at JSC. The platform consists of a Xilinx(Trademark) ML605 Virtex(Trademark)-6 FPGA board, an Analog Devices FMCOMMS1-EBZ RF transceiver board, and an Embedded PC (Axiomtek(Trademark) eBox 620-110-FL) running the Ubuntu 12.4 operating system. The result of this development is a very low cost STRS compliant platform that can be used for waveform developments for multiple applications. The purpose of this document is to describe how to develop a new waveform using the RIACS platform and the Very High Speed Integrated Circuits (VHSIC) Hardware Description Language (VHDL) FPGA wrapper code and the STRS implementation on the Axiomtek processor.

  1. The FIRST Survey: Faint Images of the Radio Sky at Twenty Centimeters

    NASA Astrophysics Data System (ADS)

    Becker, Robert H.; White, Richard L.; Helfand, David J.

    1995-09-01

    The FIRST survey to produce Faint Images of the Radio Sky at Twenty centimeters is now underway using the NRAO Very Large Array. We describe here the scientific motivation for a large-area sky survey at radio frequencies which has a sensitivity and angular resolution comparable to the Palomar Observatory Sky Survey, and we recount the history that led to the current survey project. The technical design of the survey is covered in detail, including a description and justification of the grid pattern chosen, the rationale behind the integration time and angular resolution selected, and a summary of the other considerations which informed our planning for the project. A comprehensive description of the automated data analysis pipeline we have developed is presented. We also report here the results of the first year of FIRST observations. A total of 144 hr of time in 1993 April and May was used for a variety of tests, as well as to cover an initial strip of the survey extending between 07h 15m and 16h 30m in a 2°.8 wide declination zone passing through the local zenith (28.2 <δ < 31.0). A total of 2153 individual pointings yielded an image database containing 1039 merged images 46'.5 × 34'.5 in extent with 1".8 pixels and a typical rms of 0.13 mJy. A catalog derived from this 300 deg2 region contains 28,000 radio sources. We have performed extensive tests on the images and source list in order to establish the photometric and astrometric accuracy of these data products. We find systematic astrometric errors of < 0".05 individual sources down to the 1 mJy survey flux density threshold have 90% confidence error circles with radii of < 1". CLEAN bias introduces a systematic underestimate of point-source flux densities of ˜0.25 mJy; the bias is more severe for extended sources. Nonetheless, a comparison with a published deep survey field demonstrates that we successfully detect 39/49 sources with integrated flux densities greater than 0.75 mJy, including 19 of 20

  2. Image-guided interventions and computer-integrated therapy: Quo vadis?

    PubMed

    Peters, Terry M; Linte, Cristian A

    2016-10-01

    Significant efforts have been dedicated to minimizing invasiveness associated with surgical interventions, most of which have been possible thanks to the developments in medical imaging, surgical navigation, visualization and display technologies. Image-guided interventions have promised to dramatically change the way therapies are delivered to many organs. However, in spite of the development of many sophisticated technologies over the past two decades, other than some isolated examples of successful implementations, minimally invasive therapy is far from enjoying the wide acceptance once envisioned. This paper provides a large-scale overview of the state-of-the-art developments, identifies several barriers thought to have hampered the wider adoption of image-guided navigation, and suggests areas of research that may potentially advance the field. Copyright © 2016. Published by Elsevier B.V.

  3. Image-guided tumor ablation: standardization of terminology and reporting criteria.

    PubMed

    Goldberg, S Nahum; Grassi, Clement J; Cardella, John F; Charboneau, J William; Dodd, Gerald D; Dupuy, Damian E; Gervais, Debra A; Gillams, Alice R; Kane, Robert A; Lee, Fred T; Livraghi, Tito; McGahan, John; Phillips, David A; Rhim, Hyunchul; Silverman, Stuart G; Solbiati, Luigi; Vogl, Thomas J; Wood, Bradford J; Vedantham, Suresh; Sacks, David

    2009-07-01

    The field of interventional oncology with use of image-guided tumor ablation requires standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison between treatments that use different technologies, such as chemical (ethanol or acetic acid) ablation, and thermal therapies, such as radiofrequency (RF), laser, microwave, ultrasound, and cryoablation. This document provides a framework that will hopefully facilitate the clearest communication between investigators and will provide the greatest flexibility in comparison between the many new, exciting, and emerging technologies. An appropriate vehicle for reporting the various aspects of image-guided ablation therapy, including classification of therapies and procedure terms, appropriate descriptors of imaging guidance, and terminology to define imaging and pathologic findings, are outlined. Methods for standardizing the reporting of follow-up findings and complications and other important aspects that require attention when reporting clinical results are addressed. It is the group's intention that adherence to the recommendations will facilitate achievement of the group's main objective: improved precision and communication in this field that lead to more accurate comparison of technologies and results and, ultimately, to improved patient outcomes. The intent of this standardization of terminology is to provide an appropriate vehicle for reporting the various aspects of image-guided ablation therapy.

  4. Intraoperative probe detecting β- decays in brain tumour radio-guided surgery

    NASA Astrophysics Data System (ADS)

    Solfaroli Camillocci, E.; Bocci, V.; Chiodi, G.; Collamati, F.; Donnarumma, R.; Faccini, R.; Mancini Terracciano, C.; Marafini, M.; Mattei, I.; Muraro, S.; Recchia, L.; Rucinski, A.; Russomando, A.; Toppi, M.; Traini, G.; Morganti, S.

    2017-02-01

    Radio-guided surgery (RGS) is a technique to intraoperatively detect tumour remnants, favouring a radical resection. Exploiting β- emitting tracers provides a higher signal to background ratio compared to the established technique with γ radiation, allowing the extension of the RGS applicability range. We developed and tested a detector based on para-terphenyl scintillator with high sensitivity to low energy electrons and almost transparent to γs to be used as intraoperative probe for RGS with β- emitting tracer. Portable read out electronics was customised to match the surgeon needs. This probe was used for preclinical test on specific phantoms and a test on "ex vivo" specimens from patients affected by meningioma showing very promising results for the application of this new technique on brain tumours. In this paper, the prototype of the intraoperative probe and the tests are discussed; then, the results on meningioma are used to make predictions on the performance of the probe detecting residuals of a more challenging and more interesting brain tumour: the glioma.

  5. Challenges in image-guided therapy system design.

    PubMed

    Dimaio, Simon; Kapur, Tina; Cleary, Kevin; Aylward, Stephen; Kazanzides, Peter; Vosburgh, Kirby; Ellis, Randy; Duncan, James; Farahani, Keyvan; Lemke, Heinz; Peters, Terry; Lorensen, William Bill; Gobbi, David; Haller, John; Clarke, Laurence Larry; Pizer, Stephen; Taylor, Russell; Galloway, Robert; Fichtinger, Gabor; Hata, Nobuhiko; Lawson, Kimberly; Tempany, Clare; Kikinis, Ron; Jolesz, Ferenc

    2007-01-01

    System development for image-guided therapy (IGT), or image-guided interventions (IGI), continues to be an area of active interest across academic and industry groups. This is an emerging field that is growing rapidly: major academic institutions and medical device manufacturers have produced IGT technologies that are in routine clinical use, dozens of high-impact publications are published in well regarded journals each year, and several small companies have successfully commercialized sophisticated IGT systems. In meetings between IGT investigators over the last two years, a consensus has emerged that several key areas must be addressed collaboratively by the community to reach the next level of impact and efficiency in IGT research and development to improve patient care. These meetings culminated in a two-day workshop that brought together several academic and industrial leaders in the field today. The goals of the workshop were to identify gaps in the engineering infrastructure available to IGT researchers, develop the role of research funding agencies and the recently established US-based National Center for Image Guided Therapy (NCIGT), and ultimately to facilitate the transfer of technology among research centers that are sponsored by the National Institutes of Health (NIH). Workshop discussions spanned many of the current challenges in the development and deployment of new IGT systems. Key challenges were identified in a number of areas, including: validation standards; workflows, use-cases, and application requirements; component reusability; and device interface standards. This report elaborates on these key points and proposes research challenges that are to be addressed by a joint effort between academic, industry, and NIH participants.

  6. A Generic and Efficient E-field Parallel Imaging Correlator for Next-Generation Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-05-01

    Modern radio telescopes are favouring densely packed array layouts with large numbers of antennas (NA ≳ 1000). Since the complexity of traditional correlators scales as O(N_A^2), there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator (epic), we present the first software demonstration of a generalized direct imaging algorithm, namely the Modular Optimal Frequency Fourier imager. Not only does it bring down the cost for dense layouts to O(N_A log _2N_A) but can also image from irregular layouts and heterogeneous arrays of antennas. epic is highly modular, parallelizable, implemented in object-oriented python, and publicly available. We have verified the images produced to be equivalent to those from traditional techniques to within a precision set by gridding coarseness. We have also validated our implementation on data observed with the Long Wavelength Array (LWA1). We provide a detailed framework for imaging with heterogeneous arrays and show that epic robustly estimates the input sky model for such arrays. Antenna layouts with dense filling factors consisting of a large number of antennas such as LWA, the Square Kilometre Array, Hydrogen Epoch of Reionization Array, and Canadian Hydrogen Intensity Mapping Experiment will gain significant computational advantage by deploying an optimized version of epic. The algorithm is a strong candidate for instruments targeting transient searches of fast radio bursts as well as planetary and exoplanetary phenomena due to the availability of high-speed calibrated time-domain images and low output bandwidth relative to visibility-based systems.

  7. Radio-Optical Reference Frame Link Using the U.S. Naval Observatory Astrograph and Deep CCD Imaging

    NASA Astrophysics Data System (ADS)

    Zacharias, N.; Zacharias, M. I.

    2014-05-01

    Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reduced following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.

  8. Guided SAR image despeckling with probabilistic non local weights

    NASA Astrophysics Data System (ADS)

    Gokul, Jithin; Nair, Madhu S.; Rajan, Jeny

    2017-12-01

    SAR images are generally corrupted by granular disturbances called speckle, which makes visual analysis and detail extraction a difficult task. Non Local despeckling techniques with probabilistic similarity has been a recent trend in SAR despeckling. To achieve effective speckle suppression without compromising detail preservation, we propose an improvement for the existing Generalized Guided Filter with Bayesian Non-Local Means (GGF-BNLM) method. The proposed method (Guided SAR Image Despeckling with Probabilistic Non Local Weights) replaces parametric constants based on heuristics in GGF-BNLM method with dynamically derived values based on the image statistics for weight computation. Proposed changes make GGF-BNLM method adaptive and as a result, significant improvement is achieved in terms of performance. Experimental analysis on SAR images shows excellent speckle reduction without compromising feature preservation when compared to GGF-BNLM method. Results are also compared with other state-of-the-art and classic SAR depseckling techniques to demonstrate the effectiveness of the proposed method.

  9. An Intraoperative β- Detecting Probe for Radio-Guided Surgery in Tumour Resection

    NASA Astrophysics Data System (ADS)

    Russomando, Andrea; Bellini, Fabio; Bocci, Valerio; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Marafini, Michela; Mattei, Ilaria; Chiodi, Giacomo; Patera, Vincenzo; Recchia, Luigi; Sarti, Alessio; Sciubba, Adalberto; Camillocci, Elena Solfaroli; Paramatti, Riccardo; Voena, Cecilia; Donnarumma, Raffaella; Mancini-Terracciano, Carlo; Morganti, Silvio

    2016-10-01

    The development of the β- based radio-guided surgery aims to extend the technique to those tumours where surgery is the only possible treatment and the assessment of the resection would most profit from the low background around the lesion, as for brain tumours. To validate the technique, prototypes of the intraoperative β- probe have been developed. This paper discusses the design details of one of the prototypes and its tests performed in laboratory. In such tests particular care has to be taken to reproduce the surgical field conditions. The tests showed that the prototype under study has 70% efficiency on electrons with an energy threshold at 540 keV, a point-like resolution of 2.8±0.1 mm, and a sensitivity to photons lower than 1%. The tests also demonstrated, with an innovative technique to produce specific phantoms, that 0.5 ml residuals can be safely identified in 1 s with tumor-non-tumor ratio equal to 10.

  10. Photoacoustic image-guided navigation system for surgery (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Sara; Jang, Jongseong; Kim, Jeesu; Kim, Young Soo; Kim, Chulhong

    2017-03-01

    Identifying and delineating invisible anatomical and pathological details during surgery guides surgical procedures in real time. Various intraoperative imaging modalities have been increasingly employed to minimize such surgical risks as anatomical changes, damage to normal tissues, and human error. However, current methods provide only structural information, which cannot identify critical structures such as blood vessels. The logical next step is an intraoperative imaging modality that can provide functional information. Here, we have successfully developed a photoacoustic (PA) image-guided navigation system for surgery by integrating a position tracking system and a real-time clinical photoacoustic/ultrasound (PA/US) imaging system. PA/US images were acquired in real time and overlaid on pre-acquired cross-sectional magnetic resonance (MR) images. In the overlaid images, PA images represent the optical absorption characteristics of the surgical field, while US and MR images represent the morphological structure of surrounding tissues. To test the feasibility of the system, we prepared a tissue mimicking phantom which contained two samples, methylene blue as a contrast agent and water as a control. We acquired real-time overlaid PA/US/MR images of the phantom, which were well-matched with the optical and morphological properties of the samples. The developed system is the first approach to a novel intraoperative imaging technology based on PA imaging, and we believe that the system can be utilized in various surgical environments in the near future, improving the efficacy of surgical guidance.

  11. The first VLBI image of an infrared-faint radio source

    NASA Astrophysics Data System (ADS)

    Middelberg, E.; Norris, R. P.; Tingay, S.; Mao, M. Y.; Phillips, C. J.; Hotan, A. W.

    2008-11-01

    Context: We investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.

  12. Probing the Innermost Regions of AGN Jets and Their Magnetic Fields with RadioAstron. I. Imaging BL Lacertae at 21 Microarcsecond Resolution

    NASA Astrophysics Data System (ADS)

    Gómez, José L.; Lobanov, Andrei P.; Bruni, Gabriele; Kovalev, Yuri Y.; Marscher, Alan P.; Jorstad, Svetlana G.; Mizuno, Yosuke; Bach, Uwe; Sokolovsky, Kirill V.; Anderson, James M.; Galindo, Pablo; Kardashev, Nikolay S.; Lisakov, Mikhail M.

    2016-02-01

    We present the first polarimetric space very long baseline interferometry (VLBI) imaging observations at 22 GHz. BL Lacertae was observed in 2013 November 10 with the RadioAstron space VLBI mission, including a ground array of 15 radio telescopes. The instrumental polarization of the space radio telescope is found to be less than 9%, demonstrating the polarimetric imaging capabilities of RadioAstron at 22 GHz. Ground-space fringes were obtained up to a projected baseline distance of 7.9 Earth diameters in length, allowing us to image the jet in BL Lacertae with a maximum angular resolution of 21 μas, the highest achieved to date. We find evidence for emission upstream of the radio core, which may correspond to a recollimation shock at about 40 μas from the jet apex, in a pattern that includes other recollimation shocks at approximately 100 and 250 μas from the jet apex. Polarized emission is detected in two components within the innermost 0.5 mas from the core, as well as in some knots 3 mas downstream. Faraday rotation analysis, obtained from combining RadioAstron 22 GHz and ground-based 15 and 43 GHz images, shows a gradient in rotation measure and Faraday-corrected polarization vector as a function of position angle with respect to the core, suggesting that the jet in BL Lacertae is threaded by a helical magnetic field. The intrinsic de-boosted brightness temperature in the unresolved core exceeds 3× {10}12 K, suggesting, at the very least, departure from equipartition of energy between the magnetic field and radiating particles.

  13. High-resolution VLBA imaging of the radio source Sgr A* at the Galactic Centre

    NASA Technical Reports Server (NTRS)

    Lo, K. Y.; Backer, D. C.; Kellermann, K. I.; Reid, M.; Zhao, J. H.; Goss, W. M.; Moran, J. M.

    1993-01-01

    Images of Sgr* A with milliarcsecond resolution obtained by using five telescopes of the partially completed Very Long Baseline Array (VLBA) in conjunction with a few additional telescopes are presented. The image of Sgr A* at a wavelength of 3.6 cm confirms almost exactly the elliptical Gaussian model that has been proposed on the basis of previous data. The source size at 1.34 cm wavelength is 2.4 +/- 0.2 mas, similar to previous results. At both wavelengths, the radio source is smooth, without detectable fine structure. These observations support the suggestion that the radio emission from Sgr A* is strongly scattered by electron-density fluctuations along the line of sight. On the assumption that the emission is due to a black hole accreting stellar winds from massive stars in the central 0.5 pc, the observations are consistent with a black hole mass of less than about 2 million solar masses.

  14. Value of MR contrast media in image-guided body interventions.

    PubMed

    Saeed, Maythem; Wilson, Mark

    2012-01-28

    In the past few years, there have been multiple advances in magnetic resonance (MR) instrumentation, in vivo devices, real-time imaging sequences and interventional procedures with new therapies. More recently, interventionists have started to use minimally invasive image-guided procedures and local therapies, which reduce the pain from conventional surgery and increase drug effectiveness, respectively. Local therapy also reduces the systemic dose and eliminates the toxic side effects of some drugs to other organs. The success of MR-guided procedures depends on visualization of the targets in 3D and precise deployment of ablation catheters, local therapies and devices. MR contrast media provide a wealth of tissue contrast and allows 3D and 4D image acquisitions. After the development of fast imaging sequences, the clinical applications of MR contrast media have been substantially expanded to include pre- during- and post-interventions. Prior to intervention, MR contrast media have the potential to localize and delineate pathologic tissues of vital organs, such as the brain, heart, breast, kidney, prostate, liver and uterus. They also offer other options such as labeling therapeutic agents or cells. During intervention, these agents have the capability to map blood vessels and enhance the contrast between the endovascular guidewire/catheters/devices, blood and tissues as well as direct therapies to the target. Furthermore, labeling therapeutic agents or cells aids in visualizing their delivery sites and tracking their tissue distribution. After intervention, MR contrast media have been used for assessing the efficacy of ablation and therapies. It should be noted that most image-guided procedures are under preclinical research and development. It can be concluded that MR contrast media have great value in preclinical and some clinical interventional procedures. Future applications of MR contrast media in image-guided procedures depend on their safety, tolerability

  15. Emerging Massive Star Clusters Revealed: High-Resolution Imaging of NGC 4449 from the Radio to the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Reines, Amy E.; Johnson, Kelsey E.; Goss, W. M.

    2008-06-01

    We present a multi-wavelength study of embedded massive clusters in the nearby (3.9 Mpc) starburst galaxy NGC 4449 in an effort to uncover the earliest phases of massive cluster evolution. By combining high-resolution imaging from the radio to the ultraviolet, we reveal these clusters to be in the process of emerging from their gaseous and dusty birth cocoons. We use Very Large Array (VLA) observations at centimeter wavelengths to identify young clusters surrounded by ultra-dense H II regions, detectable via their production of thermal free-free radio continuum. Ultraviolet, optical and infrared observations are obtained from the Hubble and Spitzer Space Telescope archives for comparison. We detect 39 compact radio sources toward NGC 4449 at 3.6 cm using the highest resolution (1farcs3) and sensitivity (~12 μJy) VLA image of the galaxy to date. We reliably identify 13 thermal radio sources and derive their physical properties using both nebular emission from the H II regions and spectral energy distribution fitting to the stellar continuum. These radio-detected clusters have ages lsim5 Myr and stellar masses of order 104 M sun. The measured extinctions are quite low: 12 of the 13 thermal radio sources have A V lsim 1.5, while the most obscured source has A V ≈ 4.3. By combining results from the nebular and stellar emission, we find an I-band excess that is anti-correlated with cluster age and an apparent mass-age correlation. Additionally, we find evidence that local processes such as supernovae and stellar winds likely play an important role in triggering the current bursts of star formation within NGC 4449.

  16. Image-guided transnasal cryoablation of a recurrent nasal adenocarcinoma in a dog.

    PubMed

    Murphy, S M; Lawrence, J A; Schmiedt, C W; Davis, K W; Lee, F T; Forrest, L J; Bjorling, D E

    2011-06-01

    An eight-year-old female spayed Airedale terrier with rapid recurrence of a nasal adenocarcinoma following image-guided intensity-modulated radiation therapy was treated with transnasal, image-guided cryotherapy. Ice ball size and location were monitored real-time with computed tomography-fluoroscopy to verify that the entire tumour was enveloped in ice. Serial computed tomography scans demonstrated reduction in and subsequent resolution of the primary tumour volume corresponding visually with the ice ball imaged during the ablation procedure. Re-imaging demonstrated focallysis of the cribriform plate following ablation that spontaneously resolved by 13 months. While mild chronic nasal discharge developed following cryoablation, no other clinical signs of local nasal neoplasia were present. Twenty-one months after nasal tumour cryoablation the dog was euthanased as a result of acute haemoabdomen. Image-guided cryotherapy may warrant further investigation for the management of focal residual or recurrent tumours in dogs, especially in regions where critical structures preclude surgical intervention. © 2011 British Small Animal Veterinary Association.

  17. Multi-GPU maximum entropy image synthesis for radio astronomy

    NASA Astrophysics Data System (ADS)

    Cárcamo, M.; Román, P. E.; Casassus, S.; Moral, V.; Rannou, F. R.

    2018-01-01

    The maximum entropy method (MEM) is a well known deconvolution technique in radio-interferometry. This method solves a non-linear optimization problem with an entropy regularization term. Other heuristics such as CLEAN are faster but highly user dependent. Nevertheless, MEM has the following advantages: it is unsupervised, it has a statistical basis, it has a better resolution and better image quality under certain conditions. This work presents a high performance GPU version of non-gridding MEM, which is tested using real and simulated data. We propose a single-GPU and a multi-GPU implementation for single and multi-spectral data, respectively. We also make use of the Peer-to-Peer and Unified Virtual Addressing features of newer GPUs which allows to exploit transparently and efficiently multiple GPUs. Several ALMA data sets are used to demonstrate the effectiveness in imaging and to evaluate GPU performance. The results show that a speedup from 1000 to 5000 times faster than a sequential version can be achieved, depending on data and image size. This allows to reconstruct the HD142527 CO(6-5) short baseline data set in 2.1 min, instead of 2.5 days that takes a sequential version on CPU.

  18. Integrated Power, Avionics, and Software (iPAS) Space Telecommunications Radio System (STRS) Radio User's Guide -- Advanced Exploration Systems (AES)

    NASA Technical Reports Server (NTRS)

    Roche, Rigoberto; Shalkhauser, Mary Jo Windmille

    2017-01-01

    The Integrated Power, Avionics and Software (IPAS) software defined radio (SDR) was implemented on the Reconfigurable, Intelligently-Adaptive Communication System (RAICS) platform, for radio development at NASA Johnson Space Center. Software and hardware description language (HDL) code were delivered by NASA Glenn Research Center for use in the IPAS test bed and for development of their own Space Telecommunications Radio System (STRS) waveforms on the RAICS platform. The purpose of this document is to describe how to setup and operate the IPAS STRS Radio platform with its delivered test waveform.

  19. The MEPUC concept adapts the C-arm fluoroscope to image-guided surgery.

    PubMed

    Suhm, Norbert; Müller, Paul; Bopp, Urs; Messmer, Peter; Regazzoni, Pietro

    2004-06-01

    Image-guided surgery requires surgeons to be able to manipulate the imaging modality themselves and without delay. Intraoperative fluoroscopic imaging does not meet this requirement as the C-arm fluoroscope cannot be operated or positioned by the surgeons themselves. The Motorized Exact Positioning Unit for C-arm (MEPUC) concept aims to optimize the workflow of positioning the C-arm fluoroscope. The hardware component of the MEPUC equips the fluoroscope with electric stepping motors. The software component allows the surgeon to control the fluoroscope's movements. The study presented here showed that translational movements within the x-y plane are most frequently performed when positioning the C-arm fluoroscope. Furthermore, reproducing a former projection was found to be a frequent task during image-guided procedures. In our opinion, the MEPUC concept adapts the fluoroscope to image-guided surgery. The most important improvement being definition of a bidirectional data exchange between the surgeon and the C-arm fluoroscope: positioning data from the surgeon to the C-arm fluoroscope and-subsequently-image information from C-arm fluoroscope to the surgeon.

  20. Ions doped melanin nanoparticle as a multiple imaging agent.

    PubMed

    Ha, Shin-Woo; Cho, Hee-Sang; Yoon, Young Il; Jang, Moon-Sun; Hong, Kwan Soo; Hui, Emmanuel; Lee, Jung Hee; Yoon, Tae-Jong

    2017-10-10

    Multimodal nanomaterials are useful for providing enhanced diagnostic information simultaneously for a variety of in vivo imaging methods. According to our research findings, these multimodal nanomaterials offer promising applications for cancer therapy. Melanin nanoparticles can be used as a platform imaging material and they can be simply produced by complexation with various imaging active ions. They are capable of specifically targeting epidermal growth factor receptor (EGFR)-expressing cancer cells by being anchored with a specific antibody. Ion-doped melanin nanoparticles were found to have high bioavailability with long-term stability in solution, without any cytotoxicity in both in vitro and in vivo systems. By combining different imaging modalities with melanin particles, we can use the complexes to obtain faster diagnoses by computed tomography deep-body imaging and greater detailed pathological diagnostic information by magnetic resonance imaging. The ion-doped melanin nanoparticles also have applications for radio-diagnostic treatment and radio imaging-guided surgery, warranting further proof of concept experimental.

  1. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling

    NASA Astrophysics Data System (ADS)

    Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.

  2. microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling.

    PubMed

    Comi, Troy J; Neumann, Elizabeth K; Do, Thanh D; Sweedler, Jonathan V

    2017-09-01

    Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. Graphical Abstract ᅟ.

  3. Estimate of the shielding effect on secondary cancer risk due to cone-beam CT in image-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Sung, Jiwon; Baek, Tae Seong; Yoon, Myonggeun; Kim, Dong Wook; Kim, Dong Hyun

    2014-09-01

    This study evaluated the effect of a simple shielding method using a thin lead sheet on the imaging dose caused by cone-beam computed tomography (CBCT) in image-guided radiation therapy (IGRT). Reduction of secondary doses from CBCT was measured using a radio-photoluminescence glass dosimeter (RPLGD) placed inside an anthropomorphic phantom. The entire body, except for the region scanned by using CBCT, was shielded by wrapping it with a 2-mm lead sheet. Changes in secondary cancer risk due to shielding were calculated using BEIR VII models. Doses to out-of-field organs for head-and-neck, chest, and pelvis scans were decreased 15 ~ 100%, 23 ~ 90%, and 23 ~ 98%, respectively, and the average reductions in lifetime secondary cancer risk due to the 2-mm lead shielding were 1.6, 11.5, and 12.7 persons per 100,000, respectively. These findings suggest that a simple, thin-lead-sheet-based shielding method can effectively decrease secondary doses to out-of-field regions for CBCT, which reduces the lifetime cancer risk on average by 9 per 100,000 patients.

  4. Methods for multiple-telescope beam imaging and guiding in the near-infrared

    NASA Astrophysics Data System (ADS)

    Anugu, N.; Amorim, A.; Gordo, P.; Eisenhauer, F.; Pfuhl, O.; Haug, M.; Wieprecht, E.; Wiezorrek, E.; Lima, J.; Perrin, G.; Brandner, W.; Straubmeier, C.; Le Bouquin, J.-B.; Garcia, P. J. V.

    2018-05-01

    Atmospheric turbulence and precise measurement of the astrometric baseline vector between any two telescopes are two major challenges in implementing phase-referenced interferometric astrometry and imaging. They limit the performance of a fibre-fed interferometer by degrading the instrument sensitivity and the precision of astrometric measurements and by introducing image reconstruction errors due to inaccurate phases. A multiple-beam acquisition and guiding camera was built to meet these challenges for a recently commissioned four-beam combiner instrument, GRAVITY, at the European Southern Observatory Very Large Telescope Interferometer. For each telescope beam, it measures (a) field tip-tilts by imaging stars in the sky, (b) telescope pupil shifts by imaging pupil reference laser beacons installed on each telescope using a 2 × 2 lenslet and (c) higher-order aberrations using a 9 × 9 Shack-Hartmann. The telescope pupils are imaged to provide visual monitoring while observing. These measurements enable active field and pupil guiding by actuating a train of tip-tilt mirrors placed in the pupil and field planes, respectively. The Shack-Hartmann measured quasi-static aberrations are used to focus the auxiliary telescopes and allow the possibility of correcting the non-common path errors between the adaptive optics systems of the unit telescopes and GRAVITY. The guiding stabilizes the light injection into single-mode fibres, increasing sensitivity and reducing the astrometric and image reconstruction errors. The beam guiding enables us to achieve an astrometric error of less than 50 μas. Here, we report on the data reduction methods and laboratory tests of the multiple-beam acquisition and guiding camera and its performance on-sky.

  5. Radio-optical reference frame link using the U.S. Naval observatory astrograph and deep CCD imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zacharias, N.; Zacharias, M. I., E-mail: nz@usno.navy.mil

    2014-05-01

    Between 1997 and 2004 several observing runs were conducted, mainly with the CTIO 0.9 m, to image International Celestial Reference Frame (ICRF) counterparts (mostly QSOs) in order to determine accurate optical positions. Contemporary to these deep CCD images, the same fields were observed with the U.S. Naval Observatory astrograph in the same bandpass. They provide accurate positions on the Hipparcos/Tycho-2 system for stars in the 10-16 mag range used as reference stars for the deep CCD imaging data. Here we present final optical position results of 413 sources based on reference stars obtained by dedicated astrograph observations that were reducedmore » following two different procedures. These optical positions are compared to radio very long baseline interferometry positions. The current optical system is not perfectly aligned to the ICRF radio system with rigid body rotation angles of 3-5 mas (= 3σ level) found between them for all three axes. Furthermore, statistically, the optical-radio position differences are found to exceed the total, combined, known errors in the observations. Systematic errors in the optical reference star positions and physical offsets between the centers of optical and radio emissions are both identified as likely causes. A detrimental, astrophysical, random noise component is postulated to be on about the 10 mas level. If confirmed by future observations, this could severely limit the Gaia to ICRF reference frame alignment accuracy to an error of about 0.5 mas per coordinate axis with the current number of sources envisioned to provide the link. A list of 36 ICRF sources without the detection of an optical counterpart to a limiting magnitude of about R = 22 is provided as well.« less

  6. Image-guided interventional procedures in the dog and cat.

    PubMed

    Vignoli, Massimo; Saunders, Jimmy H

    2011-03-01

    Medical imaging is essential for the diagnostic workup of many soft tissue and bone lesions in dogs and cats, but imaging modalities do not always allow the clinician to differentiate inflammatory or infectious conditions from neoplastic disorders. This review describes interventional procedures in dogs and cats for collection of samples for cytological or histopathological examinations under imaging guidance. It describes the indications and procedures for imaging-guided sampling, including ultrasound (US), computed tomography (CT), magnetic resonance imaging and fluoroscopy. US and CT are currently the modalities of choice in interventional imaging. Copyright © 2009 Elsevier Ltd. All rights reserved.

  7. A Multiple Use MF/HF Radio Array for Radio Research, Development, and Education

    DTIC Science & Technology

    2016-04-27

    reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: A Multiple Use MF/HF Radio Array for Radio Research , Development...inspiring high school and university- level student projects. (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers ...references, in the following categories: (b) Papers published in non-peer-reviewed journals (N/A for none) An MF/HF antenna array for radio and radar imaging

  8. Instrument technology for magnetosphere plasma imaging from high Earth orbit. Design of a radio plasma sounder

    NASA Technical Reports Server (NTRS)

    Haines, D. Mark; Reinisch, Bodo W.

    1995-01-01

    The use of radio sounding techniques for the study of the ionospheric plasma dates back to G. Briet and M. A. Tuve in 1926. Ground based swept frequency sounders can monitor the electron number density (N(sub e)) as a function of height (the N(sub e) profile). These early instruments evolved into a global network that produced high-resolution displays of echo time delay vs frequency on 35-mm film. These instruments provided the foundation for the success of the International Geophysical Year (1958). The Alouette and International Satellites for Ionospheric Studies (ISIS) programs pioneered the used of spaceborne, swept frequency sounders to obtain N(sub e) profiles of the topside of the ionosphere, from a position above the electron density maximum. Repeated measurements during the orbit produced an orbital plane contour which routinely provided density measurements to within 10%. The Alouette/ISIS experience also showed that even with a high powered transmitter (compared to the low power sounder possible today) a radio sounder can be compatible with other imaging instruments on the same satellite. Digital technology was used on later spacecraft developed by the Japanese (the EXOS C and D) and the Soviets (Intercosmos 19 and Cosmos 1809). However, a full coherent pulse compression and spectral integrating capability, such as exist today for ground-based sounders (Reinisch et al., 1992), has never been put into space. NASA's 1990 Space Physics Strategy Implementation Study "The NASA Space Physics Program from 1995 to 2010" suggested using radio sounders to study the plasmasphere and the magnetopause and its boundary layers (Green and Fung, 1993). Both the magnetopause and plasmasphere, as well as the cusp and boundary layers, can be observed by a radio sounder in a high-inclination polar orbit with an apogee greater than 6 R(sub e) (Reiff et al., 1994; Calvert et al., 1995). Magnetospheric radio sounding from space will provide remote density measurements of

  9. Image Guided Biodistribution and Pharmacokinetic Studies of Theranostics

    PubMed Central

    Ding, Hong; Wu, Fang

    2012-01-01

    Image guided technique is playing an increasingly important role in the investigation of the biodistribution and pharmacokinetics of drugs or drug delivery systems in various diseases, especially cancers. Besides anatomical imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), molecular imaging strategy including optical imaging, positron emission tomography (PET) and single-photon emission computed tomography (SPECT) will facilitate the localization and quantization of radioisotope or optical probe labeled nanoparticle delivery systems in the category of theranostics. The quantitative measurement of the bio-distribution and pharmacokinetics of theranostics in the fields of new drug/probe development, diagnosis and treatment process monitoring as well as tracking the brain-blood-barrier (BBB) breaking through by high sensitive imaging method, and the applications of the representative imaging modalities are summarized in this review. PMID:23227121

  10. Facets of radio-loud AGN evolution : a LOFAR surveys perspective

    NASA Astrophysics Data System (ADS)

    Williams, W. L.

    2015-12-01

    Radio observations provide a unique view of black holes in the Universe. This thesis presents low frequency radio images and uses the radio sources in those images to study the evolution of black holes and galaxies through the age of the Universe.

  11. The use of virtual fiducials in image-guided kidney surgery

    NASA Astrophysics Data System (ADS)

    Glisson, Courtenay; Ong, Rowena; Simpson, Amber; Clark, Peter; Herrell, S. D.; Galloway, Robert

    2011-03-01

    The alignment of image-space to physical-space lies at the heart of all image-guided procedures. In intracranial surgery, point-based registrations can be used with either skin-affixed or bone-implanted extrinsic objects called fiducial markers. The advantages of point-based registration techniques are that they are robust, fast, and have a well developed mathematical foundation for the assessment of registration quality. In abdominal image-guided procedures such techniques have not been successful. It is difficult to accurately locate sufficient homologous intrinsic points in imagespace and physical-space, and the implantation of extrinsic fiducial markers would constitute "surgery before the surgery." Image-space to physical-space registration for abdominal organs has therefore been dominated by surfacebased registration techniques which are iterative, prone to local minima, sensitive to initial pose, and sensitive to percentage coverage of the physical surface. In our work in image-guided kidney surgery we have developed a composite approach using "virtual fiducials." In an open kidney surgery, the perirenal fat is removed and the surface of the kidney is dotted using a surgical marker. A laser range scanner (LRS) is used to obtain a surface representation and matching high definition photograph. A surface to surface registration is performed using a modified iterative closest point (ICP) algorithm. The dots are extracted from the high definition image and assigned the three dimensional values from the LRS pixels over which they lie. As the surgery proceeds, we can then use point-based registrations to re-register the spaces and track deformations due to vascular clamping and surgical tractions.

  12. Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu

    2016-01-01

    This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.

  13. Optimizing MR imaging-guided navigation for focused ultrasound interventions in the brain

    NASA Astrophysics Data System (ADS)

    Werner, B.; Martin, E.; Bauer, R.; O'Gorman, R.

    2017-03-01

    MR imaging during transcranial MR imaging-guided Focused Ultrasound surgery (tcMRIgFUS) is challenging due to the complex ultrasound transducer setup and the water bolus used for acoustic coupling. Achievable image quality in the tcMRIgFUS setup using the standard body coil is significantly inferior to current neuroradiologic standards. As a consequence, MR image guidance for precise navigation in functional neurosurgical interventions using tcMRIgFUS is basically limited to the acquisition of MR coordinates of salient landmarks such as the anterior and posterior commissure for aligning a stereotactic atlas. Here, we show how improved MR image quality provided by a custom built MR coil and optimized MR imaging sequences can support imaging-guided navigation for functional tcMRIgFUS neurosurgery by visualizing anatomical landmarks that can be integrated into the navigation process to accommodate for patient specific anatomy.

  14. High-resolution imaging of SNR IC443 and W44 with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Egron, E.; Pellizzoni, A.; Iacolina, M. N.; Loru, S.; Marongiu, M.; Righini, S.; Cardillo, M.; Giuliani, A.; Mulas, S.; Murtas, G.; Simeone, D.

    2017-02-01

    We present single-dish imaging of the well-known Supernova Remnants (SNRs) IC443 and W44 at 1.5 GHz and 7 GHz with the recently commissioned 64-m diameter Sardinia Radio Telescope (SRT). Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling, automatic baseline subtraction and radio-frequency interference removal. It results in high-quality maps of the SNRs at 7 GHz, which are usually lacking and not easily achievable through interferometry at this frequency due to the very large SNR structures. SRT continuum maps of our targets are consistent with VLA maps carried out at lower frequencies (at 324 MHz and 1.4 GHz), providing a view of the complex filamentary morphology. New estimates of the total flux density are given within 3% and 5% error at 1.5 GHz and 7 GHz respectively, in addition to flux measurements in different regions of the SNRs.

  15. Politics and Radio in the 1924 Campaign.

    ERIC Educational Resources Information Center

    Berkman, Dave

    1987-01-01

    Discusses the relation between radio broadcasting and politics in the 1924 presidential campaign, focusing on newspaper and magazine coverage. Notes radio's influence on candidate image, the aspect of censorship, and the use of radio during the campaign and after the election. (MM)

  16. Milliarcsecond Imaging of the Radio Emission from the Quasar with the Most Massive Black Hole at Reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ran; Wu, Xue-Bing; Jiang, Linhua

    We report Very Long Baseline Array (VLBA) observations of the 1.5 GHz radio continuum emission of the z = 6.326 quasar SDSS J010013.02+280225.8 (hereafter J0100+2802). J0100+2802 is by far the most optically luminous and is a radio-quiet quasar with the most massive black hole known at z > 6. The VLBA observations have a synthesized beam size of 12.10 mas ×5.36 mas (FWHM), and detected the radio continuum emission from this object with a peak surface brightness of 64.6 ± 9.0 μ Jy beam{sup −1} and a total flux density of 88 ± 19 μ Jy. The position of themore » radio peak is consistent with that from SDSS in the optical and Chandra in the X-ray. The radio source is marginally resolved by the VLBA observations. A 2D Gaussian fit to the image constrains the source size to (7.1 ± 3.5) mas × (3.1 ± 1.7) mas. This corresponds to a physical scale of (40 ± 20) pc × (18 ± 10) pc. We estimate the intrinsic brightness temperature of the VLBA source to be T {sub B} = (1.6 ± 1.2) × 10{sup 7} K. This is significantly higher than the maximum value in normal star-forming galaxies, indicating an active galactic nucleus (AGN) origin for the radio continuum emission. However, it is also significantly lower than the brightness temperatures found in highest-redshift radio-loud quasars. J0100+2802 provides a unique example for studying the radio activity in optically luminous and radio-quiet AGNs in the early universe. Further observations at multiple radio frequencies will accurately measure the spectral index and address the dominant radiation mechanism of the radio emission.« less

  17. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best? [Non-invasive Image-Guided Breast Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libby, B.

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant.more » A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and

  18. Spectral Indices of Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Gim, Hansung B.; Hales, Christopher A.; Momjian, Emmanuel; Yun, Min Su

    2015-01-01

    The significant improvement in bandwidth and the resultant sensitivity offered by the Karl G. Jansky Very Large Array (VLA) allows us to explore the faint radio source population. Through the study of the radio continuum we can explore the spectral indices of these radio sources. Robust radio spectral indices are needed for accurate k-corrections, for example in the study of the radio - far-infrared (FIR) correlation. We present an analysis of measuring spectral indices using two different approaches. In the first, we use the standard wideband imaging algorithm in the data reduction package CASA. In the second, we use a traditional approach of imaging narrower bandwidths to derive the spectral indices. For these, we simulated data to match the observing parameter space of the CHILES Con Pol survey (Hales et al. 2014). We investigate the accuracy and precision of spectral index measurements as a function of signal-to noise, and explore the requirements to reliably probe possible evolution of the radio-FIR correlation in CHILES Con Pol.

  19. Automated dental implantation using image-guided robotics: registration results.

    PubMed

    Sun, Xiaoyan; McKenzie, Frederic D; Bawab, Sebastian; Li, Jiang; Yoon, Yongki; Huang, Jen-K

    2011-09-01

    One of the most important factors affecting the outcome of dental implantation is the accurate insertion of the implant into the patient's jaw bone, which requires a high degree of anatomical accuracy. With the accuracy and stability of robots, image-guided robotics is expected to provide more reliable and successful outcomes for dental implantation. Here, we proposed the use of a robot for drilling the implant site in preparation for the insertion of the implant. An image-guided robotic system for automated dental implantation is described in this paper. Patient-specific 3D models are reconstructed from preoperative Cone-beam CT images, and implantation planning is performed with these virtual models. A two-step registration procedure is applied to transform the preoperative plan of the implant insertion into intra-operative operations of the robot with the help of a Coordinate Measurement Machine (CMM). Experiments are carried out with a phantom that is generated from the patient-specific 3D model. Fiducial Registration Error (FRE) and Target Registration Error (TRE) values are calculated to evaluate the accuracy of the registration procedure. FRE values are less than 0.30 mm. Final TRE values after the two-step registration are 1.42 ± 0.70 mm (N = 5). The registration results of an automated dental implantation system using image-guided robotics are reported in this paper. Phantom experiments show that the practice of robot in the dental implantation is feasible and the system accuracy is comparable to other similar systems for dental implantation.

  20. Toward Intraoperative Image-Guided Transoral Robotic Surgery

    PubMed Central

    Liu, Wen P.; Reaugamornrat, Sureerat; Deguet, Anton; Sorger, Jonathan M.; Siewerdsen, Jeffrey H.; Richmon, Jeremy; Taylor, Russell H.

    2014-01-01

    This paper presents the development and evaluation of video augmentation on the stereoscopic da Vinci S system with intraoperative image guidance for base of tongue tumor resection in transoral robotic surgery (TORS). Proposed workflow for image-guided TORS begins by identifying and segmenting critical oropharyngeal structures (e.g., the tumor and adjacent arteries and nerves) from preoperative computed tomography (CT) and/or magnetic resonance (MR) imaging. These preoperative planned data can be deformably registered to the intraoperative endoscopic view using mobile C-arm cone-beam computed tomography (CBCT) [1, 2]. Augmentation of TORS endoscopic video defining surgical targets and critical structures has the potential to improve navigation, spatial orientation, and confidence in tumor resection. Experiments in animal specimens achieved statistically significant improvement in target localization error when comparing the proposed image guidance system to simulated current practice. PMID:25525474

  1. Near-IR Image-Guided Laser Ablation of Demineralization on Tooth Occlusal Surfaces

    PubMed Central

    Tom, Henry; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2016-01-01

    Introduction Studies have shown that reflectance images at near-IR wavelengths coincident with higher water absorption are well-suited for image-guided laser ablation of carious lesions since the contrast between sound and demineralized enamel is extremely high and interference from stains is minimized. The objective of this study was to demonstrate that near-IR reflectance images taken at a wavelength range of 1,500–1,700 nm can be used to guide a 9.3 μm CO2 laser for the selective ablation of early demineralization on tooth occlusal surfaces. Methods The occlusal surfaces of ten sound human molars were used in this in vitro study. Shallow simulated caries lesions with random patterns and varying depth and position were produced on tooth occlusal surfaces. Sequential near-IR reflectance images at 1,500–1,700 nm were used to guide the laser for the selective removal of the demineralized enamel. Digital microscopy and polarization sensitive optical coherence tomography (PS-OCT) were used to assess selectivity. Results Images taken before and after lesion removal suggest that the demineralized areas were removed with high selectivity. Although the estimated volume of tissue ablated was typically higher than the initial lesion volume measured with PS-OCT, the volume of enamel removed by the laser correlated well with the initial lesion volume. Conclusion Sequential near-IR reflectance images at 1,500–1,700 nm can be used to guide a 9.3 μm CO2 laser for the selective ablation of early demineralization on tooth occlusal surfaces. PMID:26763111

  2. Radio-Optical Alignments in a Low Radio Luminosity Sample

    NASA Technical Reports Server (NTRS)

    Lacy, Mark; Ridgway, Susan E.; Wold, Margrethe; Lilje, Per B.; Rawlings, Steve

    1999-01-01

    We present an optically-based study of the alignment between the radio axes and the optical major axes of eight z approximately 0.7 radio galaxies in a 7C sample. The radio galaxies in this sample are approximately 20-times less radio luminous than 3C galaxies at the same redshift, and are significantly less radio-luminous than any other well-defined samples studied to date. Using Nordic Optical Telescope images taken in good seeing conditions at rest-frame wavelengths just longward of the 4000A break, we find a statistically significant alignment effect in the 7C sample. Furthermore, in two cases where the aligned components are well separated from the host we have been able to confirm spectroscopically that they are indeed at the same redshift as the radio galaxy. However, a quantitative analysis of the alignment in this sample and in a corresponding 3C sample from HST (Hubble Space Telescope) archival data indicates that the percentage of aligned flux may be lower and of smaller spatial scale in the 7C sample. Our study suggests that alignments on the 50-kpc scale are probably closely related to the radio luminosity, whereas those on the 15 kpc scale are not. We discuss these results in the context of popular models for the alignment effect.

  3. Real-time Fluorescence Image-Guided Oncologic Surgery

    PubMed Central

    Mondal, Suman B.; Gao, Shengkui; Zhu, Nan; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Medical imaging plays a critical role in cancer diagnosis and planning. Many of these patients rely on surgical intervention for curative outcomes. This requires a careful identification of the primary and microscopic tumors, and the complete removal of cancer. Although there have been efforts to adapt traditional imaging modalities for intraoperative image guidance, they suffer from several constraints such as large hardware footprint, high operation cost, and disruption of the surgical workflow. Because of the ease of image acquisition, relatively low cost devices and intuitive operation, optical imaging methods have received tremendous interests for use in real-time image-guided surgery. To improve imaging depth under low interference by tissue autofluorescence, many of these applications utilize light in the near-infra red (NIR) wavelengths, which is invisible to human eyes. With the availability of a wide selection of tumor-avid contrast agents, advancements in imaging sensors, electronic and optical designs, surgeons are able to combine different attributes of NIR optical imaging techniques to improve treatment outcomes. The emergence of diverse commercial and experimental image guidance systems, which are in various stages of clinical translation, attests to the potential high impact of intraoperative optical imaging methods to improve speed of oncologic surgery with high accuracy and minimal margin positivity. PMID:25287689

  4. Image-Guided Surgery using Invisible Near-Infrared Light: Fundamentals of Clinical Translation

    PubMed Central

    Gioux, Sylvain; Choi, Hak Soo; Frangioni, John V.

    2011-01-01

    The field of biomedical optics has matured rapidly over the last decade and is poised to make a significant impact on patient care. In particular, wide-field (typically > 5 cm), planar, near-infrared (NIR) fluorescence imaging has the potential to revolutionize human surgery by providing real-time image guidance to surgeons for tissue that needs to be resected, such as tumors, and tissue that needs to be avoided, such as blood vessels and nerves. However, to become a clinical reality, optimized imaging systems and NIR fluorescent contrast agents will be needed. In this review, we introduce the principles of NIR fluorescence imaging, analyze existing NIR fluorescence imaging systems, and discuss the key parameters that guide contrast agent development. We also introduce the complexities surrounding clinical translation using our experience with the Fluorescence-Assisted Resection and Exploration (FLARE™) imaging system as an example. Finally, we introduce state-of-the-art optical imaging techniques that might someday improve image-guided surgery even further. PMID:20868625

  5. Image-guided fine-needle aspiration of retroperitoneal masses: The role of the cytopathologist.

    PubMed

    Mehdi, Ghazala; Maheshwari, Veena; Afzal, Sheerin; Ansari, Hena A; Ahmad, Ibne

    2013-01-01

    Retroperitoneal tumors constitute a difficult diagnostic category as they are not easily accessible. The advent of image-guided fine-needle aspiration (FNA) has resolved this problem significantly. We present a short study based on guided aspiration of retroperitoneal tumors, in which we have tried to assess the role of image-guided fine-needle aspiration cytology as a tool for pre-operative diagnosis. The study was conducted on patients diagnosed with retroperitoneal masses. FNA was performed under image guidance with the help of ultrasonography and/or computed tomography; smears were prepared and meticulously screened according to a fixed protocol. The results were analyzed to determine sensitivity, specificity, and diagnostic efficacy of cytopathological diagnosis using image-guided FNA techniques. We assessed 38 patients with retroperitoneal masses. In all cases, adequate cellular material was obtained. No major complications were encountered. Statistical analysis was carried out in 35 cases; sensitivity, specificity, and diagnostic accuracy were 100% in these cases. FNA under image guidance should be considered a first-line diagnostic approach for retroperitoneal and other abdominal tumors, although caution should be exercised in case selection. In areas where advanced tests are not available, the cytotechnologist and cytopathologist have a very important role to play in ensuring accurate diagnoses.

  6. Hard and soft nanoparticles for image-guided surgery in nanomedicine

    NASA Astrophysics Data System (ADS)

    Locatelli, Erica; Monaco, Ilaria; Comes Franchini, Mauro

    2015-08-01

    The use of hard and/or soft nanoparticles for therapy, collectively called nanomedicine, has great potential in the battle against cancer. Major research efforts are underway in this area leading to development of new drug delivery approaches and imaging techniques. Despite this progress, the vast majority of patients who are affected by cancer today sadly still need surgical intervention, especially in the case of solid tumors. An important perspective for researchers is therefore to provide even more powerful tools to the surgeon for pre- and post-operative approaches. In this context, image-guided surgery, in combination with nanotechnology, opens a new strategy to win this battle. In this perspective, we will analyze and discuss the recent progress with nanoparticles of both metallic and biomaterial composition, and their use to develop powerful systems to be applied in image-guided surgery.

  7. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics

    NASA Astrophysics Data System (ADS)

    Jiang, Shan; Win, Khin Yin; Liu, Shuhua; Teng, Choon Peng; Zheng, Yuangang; Han, Ming-Yong

    2013-03-01

    In this article, the very recent progress of various functional inorganic nanomaterials is reviewed including their unique properties, surface functionalization strategies, and applications in biosensing and imaging-guided therapeutics. The proper surface functionalization renders them with stability, biocompatibility and functionality in physiological environments, and further enables their targeted use in bioapplications after bioconjugation via selective and specific recognition. The surface-functionalized nanoprobes using the most actively studied nanoparticles (i.e., gold nanoparticles, quantum dots, upconversion nanoparticles, and magnetic nanoparticles) make them an excellent platform for a wide range of bioapplications. With more efforts in recent years, they have been widely developed as labeling probes to detect various biological species such as proteins, nucleic acids and ions, and extensively employed as imaging probes to guide therapeutics such as drug/gene delivery and photothermal/photodynamic therapy.

  8. A Hitchhiker's Guide to Functional Magnetic Resonance Imaging

    PubMed Central

    Soares, José M.; Magalhães, Ricardo; Moreira, Pedro S.; Sousa, Alexandre; Ganz, Edward; Sampaio, Adriana; Alves, Victor; Marques, Paulo; Sousa, Nuno

    2016-01-01

    Functional Magnetic Resonance Imaging (fMRI) studies have become increasingly popular both with clinicians and researchers as they are capable of providing unique insights into brain functions. However, multiple technical considerations (ranging from specifics of paradigm design to imaging artifacts, complex protocol definition, and multitude of processing and methods of analysis, as well as intrinsic methodological limitations) must be considered and addressed in order to optimize fMRI analysis and to arrive at the most accurate and grounded interpretation of the data. In practice, the researcher/clinician must choose, from many available options, the most suitable software tool for each stage of the fMRI analysis pipeline. Herein we provide a straightforward guide designed to address, for each of the major stages, the techniques, and tools involved in the process. We have developed this guide both to help those new to the technique to overcome the most critical difficulties in its use, as well as to serve as a resource for the neuroimaging community. PMID:27891073

  9. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image.

    PubMed

    Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik

    2015-01-01

    Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson's disease (PD). We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P < 0.0001). Putaminal SUVR values were highly effective for discriminating PD patients from controls. However, the PET-guided method excessively overestimated striatal SUVR values in the PD patients by more than 30% in caudate and putamen, and thereby spoiled the linearity between the striatal SUVR values in all subjects and showed lower disease discrimination ability. Two CT-guided methods showed comparable

  10. Feasibility of Computed Tomography-Guided Methods for Spatial Normalization of Dopamine Transporter Positron Emission Tomography Image

    PubMed Central

    Kim, Jin Su; Cho, Hanna; Choi, Jae Yong; Lee, Seung Ha; Ryu, Young Hoon; Lyoo, Chul Hyoung; Lee, Myung Sik

    2015-01-01

    Background Spatial normalization is a prerequisite step for analyzing positron emission tomography (PET) images both by using volume-of-interest (VOI) template and voxel-based analysis. Magnetic resonance (MR) or ligand-specific PET templates are currently used for spatial normalization of PET images. We used computed tomography (CT) images acquired with PET/CT scanner for the spatial normalization for [18F]-N-3-fluoropropyl-2-betacarboxymethoxy-3-beta-(4-iodophenyl) nortropane (FP-CIT) PET images and compared target-to-cerebellar standardized uptake value ratio (SUVR) values with those obtained from MR- or PET-guided spatial normalization method in healthy controls and patients with Parkinson’s disease (PD). Methods We included 71 healthy controls and 56 patients with PD who underwent [18F]-FP-CIT PET scans with a PET/CT scanner and T1-weighted MR scans. Spatial normalization of MR images was done with a conventional spatial normalization tool (cvMR) and with DARTEL toolbox (dtMR) in statistical parametric mapping software. The CT images were modified in two ways, skull-stripping (ssCT) and intensity transformation (itCT). We normalized PET images with cvMR-, dtMR-, ssCT-, itCT-, and PET-guided methods by using specific templates for each modality and measured striatal SUVR with a VOI template. The SUVR values measured with FreeSurfer-generated VOIs (FSVOI) overlaid on original PET images were also used as a gold standard for comparison. Results The SUVR values derived from all four structure-guided spatial normalization methods were highly correlated with those measured with FSVOI (P < 0.0001). Putaminal SUVR values were highly effective for discriminating PD patients from controls. However, the PET-guided method excessively overestimated striatal SUVR values in the PD patients by more than 30% in caudate and putamen, and thereby spoiled the linearity between the striatal SUVR values in all subjects and showed lower disease discrimination ability. Two CT-guided

  11. VICAR image processing system guide to system use

    NASA Technical Reports Server (NTRS)

    Seidman, J. B.

    1977-01-01

    The functional characteristics and operating requirements of the VICAR (Video Image Communication and Retrieval) system are described. An introduction to the system describes the functional characteristics and the basic theory of operation. A brief description of the data flow as well as tape and disk formats is also presented. A formal presentation of the control statement formats is given along with a guide to usage of the system. The guide provides a step-by-step reference to the creation of a VICAR control card deck. Simple examples are employed to illustrate the various options and the system response thereto.

  12. Deep Radio Imaging with MERLIN of the Supernova Remnants in M82

    NASA Astrophysics Data System (ADS)

    Muxlow, T. W. B.; Pedlar, A.; Riley, J. D.; McDonald, A. R.; Beswick, R. J.; Wills, K. A.

    An 8 day MERLIN deep integration at 5GHz of the central region of the starburst galaxy M82 has been used to investigate the radio structure of a number of supernova remnants in unprecedented detail revealing new shells and partial shell structures for the first time. In addition, by comparing the new deep 2002 image with an astrometrically aligned image from 36 hours of data taken in 1992, it has been possible to directly measure the expansion velocities of 4 of the most compact remnants in M82. For the two most compact remnants, 41.95+575 and 43.31+592, expansion velocities of 2800 ± 300 km s-1 and 8750 ± 400 km s-1 have been derived. These confirm and refine the measured expansion velocities which have been derived from VLBI multi-epoch studies. For remnants 43.18+583 and 44.01+596, expansion velocities of 10500 ± 750 km s -1 and 2400 ± 250 km s-1 have been measured for the first time. In addition, the peak of the radio emission for SNR 45.17+612 has moved between the two epochs implying velocities around 7500km s-1. The relatively compact remnants in M82 are thus found to be expanding over a wide range of velocities which appear unrelated to their size. The new 2002 map is the most sensitive high-resolution image yet made of M82, achieving an rms noise level of 17µJy beam-1. This establishes a first epoch for subsequent deep studies of expansion velocities for many SNR within M82.

  13. Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system.

    PubMed

    Kuo, Wei-Cheng; Kim, Jongsik; Shemonski, Nathan D; Chaney, Eric J; Spillman, Darold R; Boppart, Stephen A

    2012-06-01

    Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures.

  14. Radio Properties of the BAT AGNs: the FIR-radio Relation, the Fundamental Plane, and the Main Sequence of Star Formation

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart; Shimizu, Thomas T.; Miller, Neal

    2016-12-01

    We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift-BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR-radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics in the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L R/L X relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.

  15. Observing Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Gopalswamy, N.; Kaiser, M. L.; Lazio, T. J.; Jones, D. L.; Bale, S. D.; Burns, J.; Kasper, J. C.; Weiler, K. W.

    2011-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages, including fixes locations for the antennas and no terrestrial interference on the far side of the moon. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays designed for faint sources.

  16. An object tracking method based on guided filter for night fusion image

    NASA Astrophysics Data System (ADS)

    Qian, Xiaoyan; Wang, Yuedong; Han, Lei

    2016-01-01

    Online object tracking is a challenging problem as it entails learning an effective model to account for appearance change caused by intrinsic and extrinsic factors. In this paper, we propose a novel online object tracking with guided image filter for accurate and robust night fusion image tracking. Firstly, frame difference is applied to produce the coarse target, which helps to generate observation models. Under the restriction of these models and local source image, guided filter generates sufficient and accurate foreground target. Then accurate boundaries of the target can be extracted from detection results. Finally timely updating for observation models help to avoid tracking shift. Both qualitative and quantitative evaluations on challenging image sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-art methods.

  17. Toward computer-assisted image-guided congenital heart defect repair: an initial phantom analysis.

    PubMed

    Kwartowitz, David M; Mefleh, Fuad N; Baker, G Hamilton

    2017-10-01

    Radiation exposure in interventional cardiology is an important consideration, due to risk of cancer and other morbidity to the patient and clinical staff. Cardiac catheterizations rely heavily on fluoroscopic imaging exposing both patient and clinician to ionizing radiation. An image-guided surgery system capable of facilitating cardiac catheterizations was developed and tested to evaluate dose reduction. Several electromagnetically tracked tools were constructed specifically a 7-Fr catheter with five 5-degree-of-freedom magnetic seeds. Catheter guidance was accomplished using our image guidance system Kit for Navigation by Image-Focused Exploration and fluoroscopy alone. A cardiac phantom was designed and 3D printed to validate the image guidance procedure. In mock procedures, an expert clinician guided and deployed an occluder across the septal defect of the phantom heart. The image guidance method resulted in a dose of 1.26 mSv of radiation dose per procedure, while traditional guidance resulted in a dose of 3.33 mSv. Average overall dose savings for the image-guided method was nearly 2.07 mSv or 62 %. The work showed significant ([Formula: see text]) decrease in radiation dose with use of image guidance methods at the expense of a modest increase in procedure time. This study lays the groundwork for further exploration of image guidance applications in pediatric cardiology.

  18. Real-time magnetic resonance imaging-guided transcatheter aortic valve replacement.

    PubMed

    Miller, Justin G; Li, Ming; Mazilu, Dumitru; Hunt, Tim; Horvath, Keith A

    2016-05-01

    To demonstrate the feasibility of Real-time magnetic resonance imaging (rtMRI) guided transcatheter aortic valve replacement (TAVR) with an active guidewire and an MRI compatible valve delivery catheter system in a swine model. The CoreValve system was minimally modified to be MRI-compatible by replacing the stainless steel components with fluoroplastic resin and high-density polyethylene components. Eight swine weighing 60-90 kg underwent rtMRI-guided TAVR with an active guidewire through a left subclavian approach. Two imaging planes (long-axis view and short-axis view) were used simultaneously for real-time imaging during implantation. Successful deployment was performed without rapid ventricular pacing or cardiopulmonary bypass. Postdeployment images were acquired to evaluate the final valve position in addition to valvular and cardiac function. Our results show that the CoreValve can be easily and effectively deployed through a left subclavian approach using rtMRI guidance, a minimally modified valve delivery catheter system, and an active guidewire. This method allows superior visualization before deployment, thereby allowing placement of the valve with pinpoint accuracy. rtMRI has the added benefit of the ability to perform immediate postprocedural functional assessment, while eliminating the morbidity associated with radiation exposure, rapid ventricular pacing, contrast media renal toxicity, and a more invasive procedure. Use of a commercially available device brings this rtMRI-guided approach closer to clinical reality. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  19. Radio Synthesis Imaging - A High Performance Computing and Communications Project

    NASA Astrophysics Data System (ADS)

    Crutcher, Richard M.

    The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long

  20. Multifunctional gold nanorods for image-guided surgery and photothermal therapy

    NASA Astrophysics Data System (ADS)

    Barriere, Clement; Qi, Ji; Garcia-Allende, P. Beatriz; Newton, Richard; Elson, Daniel S.

    2012-03-01

    Nanoparticles are viewed as a promising tool for numerous medical applications, for instance imaging and photothermal therapy (PTT) has been proposed using gold nanorods. We are developing multi-functional gold nanorods (m-GNRs) which have potential for image guided endoscopic surgery of tumour tissue with a modified laparoscope system. A new synthesis method potentially allows any useful acid functionalised molecules to be bonded at the surface. We have created fluorescent m-GNRs which can be used for therapy as they absorb light in the infrared, which may penetrate deep into the tissue and produce localised heating. We have performed a tissue based experiment to demonstrate the feasibility of fluorescence guided PTT using m- GNRs. Ex vivo tests were performed using sheep heart. This measurement, correlated with the fluorescence signal of the m-GNRs measured by the laparoscope allows the clear discrimination of the artery system containing m-GNRs. A laser diode was used to heat the m-GNRs and a thermal camera was able to record the heat distribution. These images were compared to the fluorescence images for validation.

  1. Compact instrument for fluorescence image-guided surgery

    NASA Astrophysics Data System (ADS)

    Wang, Xinghua; Bhaumik, Srabani; Li, Qing; Staudinger, V. Paul; Yazdanfar, Siavash

    2010-03-01

    Fluorescence image-guided surgery (FIGS) is an emerging technique in oncology, neurology, and cardiology. To adapt intraoperative imaging for various surgical applications, increasingly flexible and compact FIGS instruments are necessary. We present a compact, portable FIGS system and demonstrate its use in cardiovascular mapping in a preclinical model of myocardial ischemia. Our system uses fiber optic delivery of laser diode excitation, custom optics with high collection efficiency, and compact consumer-grade cameras as a low-cost and compact alternative to open surgical FIGS systems. Dramatic size and weight reduction increases flexibility and access, and allows for handheld use or unobtrusive positioning over the surgical field.

  2. Fish-Eye Observing with Phased Array Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Wijnholds, S. J.

    The radio astronomical community is currently developing and building several new radio telescopes based on phased array technology. These telescopes provide a large field-of-view, that may in principle span a full hemisphere. This makes calibration and imaging very challenging tasks due to the complex source structures and direction dependent radio wave propagation effects. In this thesis, calibration and imaging methods are developed based on least squares estimation of instrument and source parameters. Monte Carlo simulations and actual observations with several prototype show that this model based approach provides statistically and computationally efficient solutions. The error analysis provides a rigorous mathematical framework to assess the imaging performance of current and future radio telescopes in terms of the effective noise, which is the combined effect of propagated calibration errors, noise in the data and source confusion.

  3. Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free 64Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer.

    PubMed

    Shen, Sida; Jiang, Dawei; Cheng, Liang; Chao, Yu; Nie, Kaiqi; Dong, Ziliang; Kutyreff, Christopher J; Engle, Jonathan W; Huang, Peng; Cai, Weibo; Liu, Zhuang

    2017-09-26

    Developing tumor-homing nanoparticles with integrated diagnostic and therapeutic functions, and meanwhile could be rapidly excreted from the body, would be of great interest to realize imaging-guided precision treatment of cancer. In this study, an ultrasmall coordination polymer nanodot (CPN) based on the coordination between tungsten ions (W VI ) and gallic acid (W-GA) was developed via a simple method. After polyethylene glycol (PEG) modification, PEGylated W-GA (W-GA-PEG) CPNs with an ultrasmall hydrodynamic diameter of 5 nm were rather stable in various physiological solutions. Without the need of chelator molecules, W-GA-PEG CPNs could be efficiently labeled with radioisotope 64 Cu 2+ , enabling positron emission tomography (PET) imaging, which reveals efficient tumor accumulation and rapid renal clearance of W-GA-PEG CPNs upon intravenous injection. Utilizing the radio-sensitizing function of tungsten with strong X-ray absorption, such W-GA-PEG CPNs were able to greatly enhance the efficacy of cancer radiotherapy in inhibiting the tumor growth. With fast clearance and little long-term body retention, those W-GA-PEG CPNs exhibited no appreciable in vivo toxicity. This study presents a type of CPNs with excellent imaging and therapeutic abilities as well as rapid renal clearance behavior, promising for further clinic translation.

  4. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W. G. M.; Zhang, Hong

    2015-09-01

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, 1O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm-2) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the 1O2 production, resulting in the improvement of the therapeutic effect; (ii

  5. From the RSNA refresher courses: Image-guided thermal therapy of uterine fibroids.

    PubMed

    Tempany, Clare M

    2007-01-01

    One of the most recent additions to the methods for image-guided therapy is magnetic resonance (MR)-guided focused ultrasound. This method represents a unique closed-loop therapy, with planning, guidance, control, and direct feedback (called MR thermometry), which work together to ensure an effective therapy. The focused ultrasound induces focal tissue destruction by thermocoagulation in a noninvasive manner. MR also enables real-time thermometry to be performed during each and every sonication. These characteristics make MR-guided focused ultrasound an exciting new approach for treating fibroids. Fibroids are diagnosed based on findings from the patient's physical examination supplemented by imaging results. MR imaging is preferred to other imaging modalities because it enables the fibroids and the entire pelvis to be fully examined. After individual fibroids are identified and the target area is defined by the radiologist, the target volume is analyzed in a three-dimensional assessment to ensure the patient's safety. The procedure begins with the delivery of low-power sonication, and the power is gradually increased until the therapeutic dose is reached. After the procedure, postcontrast images are acquired; these should demonstrate tissue necrosis. The results of clinical trials have shown that the treatment is safe, effective, and highly acceptable to patients. RSNA, 2007

  6. Detection of a Compact Radio Source near the Center of a Gravitational Lens: Quasar Image or Galactic Core?

    PubMed

    Gorenstein, M V; Shapiro, I I; Cohen, N L; Corey, B E; Falco, E E; Marcaide, J M; Rogers, A E; Whitney, A R; Porcas, R W; Preston, R A; Rius, A

    1983-01-07

    By use of a new, very sensitive interferometric system, a faint, compact radio source has been detected near the center of the galaxy that acts as the main part of a gravitational lens. This lens forms two previously discovered images of the quasar Q09S7+561, which lies in the direction of the constellation Ursa Major. The newly detected source has a core smaller than 0.002 arc second in diameter with a flux density of 0.6 +/- 0.1 millijansky at the 13-centimeter wavelength of the radio observations. This source could be the predicted third image of the transparent gravitational lens, the central core of the galaxy, or some combination of the two. It is not yet possible to choose reliably between these alternatives.

  7. Research on Wide-field Imaging Technologies for Low-frequency Radio Array

    NASA Astrophysics Data System (ADS)

    Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.

    2017-09-01

    Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.

  8. Optical imaging-guided cancer therapy with fluorescent nanoparticles

    PubMed Central

    Jiang, Shan; Gnanasammandhan, Muthu Kumara; Zhang, Yong

    2010-01-01

    The diagnosis and treatment of cancer have been greatly improved with the recent developments in nanotechnology. One of the promising nanoscale tools for cancer diagnosis is fluorescent nanoparticles (NPs), such as organic dye-doped NPs, quantum dots and upconversion NPs that enable highly sensitive optical imaging of cancer at cellular and animal level. Furthermore, the emerging development of novel multi-functional NPs, which can be conjugated with several functional molecules simultaneously including targeting moieties, therapeutic agents and imaging probes, provides new potentials for clinical therapies and diagnostics and undoubtedly will play a critical role in cancer therapy. In this article, we review the types and characteristics of fluorescent NPs, in vitro and in vivo imaging of cancer using fluorescent NPs and multi-functional NPs for imaging-guided cancer therapy. PMID:19759055

  9. RADIO PROPERTIES OF THE BAT AGNs: THE FIR–RADIO RELATION, THE FUNDAMENTAL PLANE, AND THE MAIN SEQUENCE OF STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Krista Lynne; Mushotzky, Richard F.; Vogel, Stuart

    We conducted 22 GHz 1″ JVLA imaging of 70 radio-quiet active galactic nuclei (AGNs) from the Swift -BAT survey. We find radio cores in all but three objects. The radio morphologies of the sample fall into three groups: compact and core-dominated, extended, and jet-like. We spatially decompose each image into core flux and extended flux, and compare the extended radio emission with that predicted from previous Herschel observations using the canonical FIR–radio relation. After removing the AGN contribution to the FIR and radio flux densities, we find that the relation holds remarkably well despite the potentially different star formation physics inmore » the circumnuclear environment. We also compare our core radio flux densities with predictions of coronal models and scale-invariant jet models for the origin of radio emission in radio-quiet AGNs, and find general consistency with both models. However, we find that the L {sub R}/ L {sub X} relation does not distinguish between star formation and non-relativistic AGN-driven outflows as the origin of radio emission in radio-quiet AGNs. Finally, we examine where objects with different radio morphologies fall in relation to the main sequence (MS) of star formation, and conclude that those AGNs that fall below the MS, as X-ray selected AGNs have been found to do, have core-dominated or jet-like 22 GHz morphologies.« less

  10. MO-DE-202-00: Image-Guided Interventions: Advances in Intraoperative Imaging, Guidance, and An Emerging Role for Medical Physics in Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  11. Prospective evaluation of magnetic resonance imaging guided in-bore prostate biopsy versus systematic transrectal ultrasound guided prostate biopsy in biopsy naïve men with elevated prostate specific antigen.

    PubMed

    Quentin, Michael; Blondin, Dirk; Arsov, Christian; Schimmöller, Lars; Hiester, Andreas; Godehardt, Erhard; Albers, Peter; Antoch, Gerald; Rabenalt, Robert

    2014-11-01

    Magnetic resonance imaging guided biopsy is increasingly performed to diagnose prostate cancer. However, there is a lack of well controlled, prospective trials to support this treatment method. We prospectively compared magnetic resonance imaging guided in-bore biopsy with standard systematic transrectal ultrasound guided biopsy in biopsy naïve men with increased prostate specific antigen. We performed a prospective study in 132 biopsy naïve men with increased prostate specific antigen (greater than 4 ng/ml). After 3 Tesla functional multiparametric magnetic resonance imaging patients were referred for magnetic resonance imaging guided in-bore biopsy of prostate lesions (maximum 3) followed by standard systematic transrectal ultrasound guided biopsy (12 cores). We analyzed the detection rates of prostate cancer and significant prostate cancer (greater than 5 mm total cancer length or any Gleason pattern greater than 3). A total of 128 patients with a mean ± SD age of 66.1 ± 8.1 years met all study requirements. Median prostate specific antigen was 6.7 ng/ml (IQR 5.1-9.0). Transrectal ultrasound and magnetic resonance imaging guided biopsies provided the same 53.1% detection rate, including 79.4% and 85.3%, respectively, for significant prostate cancer. Magnetic resonance imaging and transrectal ultrasound guided biopsies missed 7.8% and 9.4% of clinically significant prostate cancers, respectively. Magnetic resonance imaging biopsy required significantly fewer cores and revealed a higher percent of cancer involvement per biopsy core (each p <0.01). Combining the 2 methods provided a 60.9% detection rate with an 82.1% rate for significant prostate cancer. Magnetic resonance imaging guided in-bore and systematic transrectal ultrasound guided biopsies achieved equally high detection rates in biopsy naïve patients with increased prostate specific antigen. Magnetic resonance imaging guided in-bore biopsies required significantly fewer cores and revealed a

  12. Non-contact radio frequency shielding and wave guiding by multi-folded transformation optics method

    PubMed Central

    Madni, Hamza Ahmad; Zheng, Bin; Yang, Yihao; Wang, Huaping; Zhang, Xianmin; Yin, Wenyan; Li, Erping; Chen, Hongsheng

    2016-01-01

    Compared with conventional radio frequency (RF) shielding methods in which the conductive coating material encloses the circuits design and the leakage problem occurs due to the gap in such conductive material, non-contact RF shielding at a distance is very promising but still impossible to achieve so far. In this paper, a multi-folded transformation optics method is proposed to design a non-contact device for RF shielding. This “open-shielded” device can shield any object at a distance from the electromagnetic waves at the operating frequency, while the object is still physically open to the outer space. Based on this, an open-carpet cloak is proposed and the functionality of the open-carpet cloak is demonstrated. Furthermore, we investigate a scheme of non-contact wave guiding to remotely control the propagation of surface waves over any obstacles. The flexibilities of such multi-folded transformation optics method demonstrate the powerfulness of the method in the design of novel remote devices with impressive new functionalities. PMID:27841358

  13. Evaluation of the painful athletic hip: imaging options and imaging-guided injections.

    PubMed

    Jacobson, Jon A; Bedi, Asheesh; Sekiya, Jon K; Blankenbaker, Donna G

    2012-09-01

    This article reviews diagnostic imaging tests and injections that provide important information for clinical management of patients with sports-related hip pain. In the evaluation of sports-related hip symptoms, MR arthrography is often used to evaluate intraarticular pathology of the hip. The addition of short- and long-acting anesthetic agents with the MR arthrography injection adds additional information that can distinguish between symptomatic and asymptomatic imaging findings. Osseous abnormalities can be characterized with radiography, MRI, or CT. Ultrasound is important in the assessment of iliopsoas abnormalities, including tendon snapping, and to guide diagnostic anesthetic injection.

  14. Optical Time-Domain and Radio Imaging Analyses of the Dynamic Hearts of AGN

    NASA Astrophysics Data System (ADS)

    Smith, Krista Lynne

    Active galactic nuclei (AGN) are among the most extreme objects in the universe: galaxies with a central supermassive black hole feeding on gas from a hot accretion disk. Despite their potential as powerful tools to study topics ranging from relativity to cosmology, they remain quite mysterious. In the first portion of this thesis, we explore how an AGN may influence the formation of stars in its host galaxy. Using high-resolution 22 GHz radio imaging of an X-ray selected sample of radio-quiet AGN, we find that the far-infrared radio correlation for normal star forming galaxies remains valid within a few hundred parsecs of the central engine. Because the core flux is often spatially isolated from star formation, we can also determine that the radio emission in radio-quiet AGN is consistent with both coronal and disk-jet coupling models. Finally, we find that AGN with jet-like radio morphologies have suppressed star formation, possibly indicating ongoing feedback. The second portion of this thesis uses optical AGN light curves to study the physics of accretion. The Kepler spacecraft produces groundbreaking light curves, but its fixed field of view only contained a handful of known AGN. We conduct an X-ray survey of this field, yielding 93 unique X-ray sources identified by optical follow-up spectroscopy as a mixture of AGN and stars. For the AGN, we spectroscopically measure black hole masses and accretion rates. We then analyze a sample of 22 Kepler AGN light curves. We develop a customized pipeline for AGN science with Kepler, a necessary step since the initial data was optimized for the unique goal of exoplanet detection. The light curves display an astonishing variety of behaviors in a new regime of optical variability inaccessible with previous facilities. We find power spectral slopes inconsistent with the damped random walk model, characteristic variability timescales, correlations of variability properties with physical parameters, and bimodal flux

  15. Possibility of transrectal photoacoustic imaging-guided biopsy for detection of prostate cancer

    NASA Astrophysics Data System (ADS)

    Ishihara, Miya; Shinchi, Masayuki; Horiguchi, Akio; Shinmoto, Hiroshi; Tsuda, Hitoshi; Irisawa, Kaku; Wada, Takatsugu; Asano, Tomohiko

    2017-03-01

    A transrectral ultrasonography (TRUS) guided prostate biopsy is mandatory for histological diagnosis in patients with an elevated serum prostate-specific antigen (PSA), but its diagnostic accuracy is not satisfactory; therefore, a considerable number of patients are forced to have an unnecessary repeated biopsy. Photoacoustic (PA) imaging has the ability to visualize the distribution of hemoglobin clearly. Thus, there is the potential to acquire different maps of small vessel networks between cancerous and normal tissue. We developed an original TRUS-type PA probe consisting of a microconvex array transducer with an optical illumination system providing coregistered PA and ultrasound images. The purpose of this study is to demonstrate the clinical possibility of a transrectral PA image. The prostate biopsy cores obtained by transrectal systemic biopsies under TRUS guidance were stained with HE staining and anti-CD34 antibodies as a marker of the endothelium of the blood vessel in order to find a pattern in the map of a small vessel network, which allows for imaging-based identification of prostate cancer. We analyzed the association of PA signal patterns, the cancer location by a magnetic resonance imaging (MRI) study, and the pathological diagnosis with CD34 stains as a prospective intervention study. In order to demonstrate the TRUS-merged-with-PA imaging guided targeted biopsy combined with a standard biopsy for capturing the clinically significant tumors, we developed a puncture needle guide attachment for the original TRUS-type PA probe.

  16. Accurate and ergonomic method of registration for image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Henderson, Jaimie M.; Bucholz, Richard D.

    1994-05-01

    There has been considerable interest in the development of frameless stereotaxy based upon scalp mounted fiducials. In practice we have experienced difficulty in relating markers to the image data sets in our series of 25 frameless cases, as well as inaccuracy due to scalp movement and the size of the markers. We have developed an alternative system for accurately and conveniently achieving surgical registration for image-guided neurosurgery based on alignment and matching of patient forehead contours. The system consists of a laser contour digitizer which is used in the operating room to acquire forehead contours, editing software for extracting contours from patient image data sets, and a contour-match algorithm for aligning the two contours and performing data set registration. The contour digitizer is tracked by a camera array which relates its position with respect to light emitting diodes placed on the head clamp. Once registered, surgical instrument can be tracked throughout the procedure. Contours can be extracted from either CT or MRI image datasets. The system has proven to be robust in the laboratory setting. Overall error of registration is 1 - 2 millimeters in routine use. Image to patient registration can therefore be achieved quite easily and accurately, without the need for fixation of external markers to the skull, or manually finding markers on the scalp and image datasets. The system is unobtrusive and imposes little additional effort on the neurosurgeon, broadening the appeal of image-guided surgery.

  17. Navigation concepts for MR image-guided interventions.

    PubMed

    Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald

    2008-02-01

    The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.

  18. Extended Galactic emission at l=312°: a comparison of mid-infrared and radio continuum (843 MHz) images

    NASA Astrophysics Data System (ADS)

    Cohen, Martin; Green, Anne J.

    2001-08-01

    We report on the comparison of images of a region of the Galactic plane (centred on l=312°) as seen by the Midcourse Space Experiment (MSX) at 8.3μm and by the Molonglo Observatory Synthesis Telescope (MOST) at 843MHz in the radio continuum. We note that the survey from each telescope is without peer and occupies a niche in panoramic coverage with high spatial resolution. Using independent classification of sources in the selected region, a detailed comparison of the two surveys was made. The aim of the project was to seek global characteristics for different types of source, with a view to establishing predictive criteria for identification and hence emission mechanisms. Several strong trends were found. There is a complete absence in this field of any detected MSX counterparts to non-thermal radio sources. Almost every Hii region in the radio image has its MSX counterpart, in the form of a polycyclic aromatic hydrocarbon halo in the neutral zone surrounding the ionized gas. Both surveys show large-scale `braided' filamentary structures, extending over 1°, which appear to be produced by thermal processes. These filaments may be structures in the warm ionized phase of the interstellar medium or extended haloes around Hii regions. The comparisons in this paper were made using both preliminary MSX 8.3-μm results with 46-arcsec resolution and final MSX images with the intrinsic 20-arcsec resolution of the instruments.

  19. Radio Ranging System for Guidance of Approaching Spacecraft

    NASA Technical Reports Server (NTRS)

    Manikonda, Vikram; vanDoom, Eric

    2008-01-01

    A radio communication and ranging system has been proposed for determining the relative position and orientations of two approaching spacecraft to provide guidance for docking maneuvers. On Earth, the system could be used similarly for guiding approaching aircraft and for automated positioning of large, heavy objects. In principle, the basic idea is to (1) measure distances between radio transceivers on the two spacecraft and (2) compute the relative position and orientations from the measured distances.

  20. Image-guided tumor ablation: standardization of terminology and reporting criteria.

    PubMed

    Goldberg, S Nahum; Grassi, Clement J; Cardella, John F; Charboneau, J William; Dodd, Gerald D; Dupuy, Damian E; Gervais, Debra; Gillams, Alice R; Kane, Robert A; Lee, Fred T; Livraghi, Tito; McGahan, John; Phillips, David A; Rhim, Hyunchul; Silverman, Stuart G

    2005-06-01

    The field of interventional oncology with use of image-guided tumor ablation requires standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison between treatments that use different technologies, such as chemical (ethanol or acetic acid) ablation, and thermal therapies, such as radiofrequency, laser, microwave, ultrasound, and cryoablation. This document provides a framework that will hopefully facilitate the clearest communication between investigators and will provide the greatest flexibility in comparison between the many new, exciting, and emerging technologies. An appropriate vehicle for reporting the various aspects of image-guided ablation therapy, including classification of therapies and procedure terms, appropriate descriptors of imaging guidance, and terminology to define imaging and pathologic findings, are outlined. Methods for standardizing the reporting of follow-up findings and complications and other important aspects that require attention when reporting clinical results are addressed. It is the group's intention that adherence to the recommendations will facilitate achievement of the group's main objective: improved precision and communication in this field that lead to more accurate comparison of technologies and results and, ultimately, to improved patient outcomes. Copyright RSNA, 2005.

  1. Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/magnetic resonance imaging-guided photodynamic therapy.

    PubMed

    Gao, Meng; Fan, Feng; Li, Dongdong; Yu, Yue; Mao, Kuirong; Sun, Tianmeng; Qian, Haisheng; Tao, Wei; Yang, Xianzhu

    2017-07-01

    Nanoparticles simultaneously integrated the photosensitizers and diagnostic agents represent an emerging approach for imaging-guided photodynamic therapy (PDT). However, the diagnostic sensitivity and therapeutic efficacy of nanoparticles as well as the heterogeneity of tumors pose tremendous challenges for clinical imaging-guided PDT treatment. Herein, a polymeric nanoparticle with tumor acidity (pH e )-activatable TAT targeting ligand that encapsulates the photosensitizer chlorin e6 (Ce6) and chelates contrast agent Gd 3+ is successfully developed for fluorescence/magnetic resonance (MR) dual-model imaging-guided precision PDT. We show clear evidence that the resulting nanoparticle DA TAT-NP [its TAT lysine residues' amines was modified by 2,3-dimethylmaleic anhydride (DA)] efficiently avoids the rapid clearance by reticuloendothelial system (RES) by masking of the TAT peptide, resulting in the significantly prolonged circulation time in the blood. Once accumulating in the tumor tissues, DA TAT-NP is reactivated by tumor acidity to promote cellular uptake, resulting in enlarged fluorescence/MR imaging signal intensity and elevated in vivo PDT therapeutic effect. This concept provides new avenues to design tumor acidity-activatable targeted nanoparticles for imaging-guided cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Classifying Radio Galaxies with the Convolutional Neural Network

    NASA Astrophysics Data System (ADS)

    Aniyan, A. K.; Thorat, K.

    2017-06-01

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff-Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categories is ˜200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.

  3. Supervoxels for graph cuts-based deformable image registration using guided image filtering

    NASA Astrophysics Data System (ADS)

    Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.

    2017-11-01

    We propose combining a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for three-dimensional (3-D) deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to two-dimensional (2-D) applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation combined with graph cuts-based optimization can be applied to 3-D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model "sliding motion." Applying this method to lung image registration results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available computed tomography lung image dataset leads to the observation that our approach compares very favorably with state of the art methods in continuous and discrete image registration, achieving target registration error of 1.16 mm on average per landmark.

  4. Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering.

    PubMed

    Szmul, Adam; Papież, Bartłomiej W; Hallack, Andre; Grau, Vicente; Schnabel, Julia A

    2017-10-04

    In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model 'sliding motion'. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark.

  5. Radio Sources in the NCP Region Observed with the 21 Centimeter Array

    NASA Astrophysics Data System (ADS)

    Zheng, Qian; Wu, Xiang-Ping; Johnston-Hollitt, Melanie; Gu, Jun-hua; Xu, Haiguang

    2016-12-01

    We present a catalog of 624 radio sources detected around the North Celestial Pole (NCP) with the 21 Centimeter Array (21CMA), a radio interferometer dedicated to the statistical measurement of the epoch of reionization (EoR). The data are taken from a 12 hr observation made on 2013 April 13, with a frequency coverage from 75 to 175 MHz and an angular resolution of ˜4‧. The catalog includes flux densities at eight sub-bands across the 21CMA bandwidth and provides the in-band spectral indices for the detected sources. To reduce the complexity of interferometric imaging from the so-called “w” term and ionospheric effects, the present analysis is restricted to the east-west baselines within 1500 m only. The 624 radio sources are found within 5° around the NCP down to ˜0.1 Jy. Our source counts are compared, and also exhibit a good agreement, with deep low-frequency observations made recently with the GMRT and MWA. In particular, for fainter radio sources below ˜1 Jy, we find a flattening trend of source counts toward lower frequencies. While the thermal noise (˜0.4 mJy) is well controlled to below the confusion limit, the dynamical range (˜104) and sensitivity of current 21CMA imaging are largely limited by calibration and deconvolution errors, especially the grating lobes of very bright sources, such as 3C061.1, in the NCP field, which result from the regular spacings of the 21CMA. We note that particular attention should be paid to the extended sources, and their modeling and removal may constitute a large technical challenge for current EoR experiments. Our analysis may serve as a useful guide to the design of next generation low-frequency interferometers like the Square Kilometre Array.

  6. Sky Survey Provides New Radio View of Universe

    NASA Astrophysics Data System (ADS)

    2004-10-01

    Astronomers using the National Science Foundation's Very Large Array (VLA) have overcome longstanding technical hurdles to map the sky at little-explored radio frequencies that may provide a tantalizing look deep into the early Universe. The scientists have released images and data covering half of the sky visible from the VLA, and hope to complete their survey within a year. Radio Galaxies A "rogues' gallery" of radio galaxy types seen in the VLSS. CREDIT: NRAO/AUI/NSF (Click on Image for Graphics Page) The VLA Low-frequency Sky Survey (VLSS) is producing sky images made at an observing frequency of 74 MHz, a far lower frequency than used for most current radio-astronomy research. "Because of the Earth's ionosphere, such a low frequency has proven very difficult for high-quality imaging, and it is only in the past few years that we have developed the techniques that make a project like the VLSS possible," said Rick Perley, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Because the high-quality VLSS images will give astronomers a look at the Universe through what essentially is a new "window," they expect the images to reveal some rare and important objects. "We expect to find very distant radio galaxies -- galaxies spewing jets of material at nearly light speed and powered by supermassive black holes," said Joseph Lazio of the Naval Research Laboratory in Washington, DC. "By determining just how distant these radio galaxies are, we will learn how early the black holes formed in the history of the Universe," he added. Another tantalizing possibility is that the low-frequency images may reveal "halos" and "relics" produced by collisions of galaxies in clusters. If the halos and relics are found in the distant, and thus early, Universe, it will give scientists important clues about the timetable for formation of large-scale structure. In addition, the astronomers hope that the VLSS images may show previously-undiscovered pulsars -- superdense

  7. In vivo 808 nm image-guided photodynamic therapy based on an upconversion theranostic nanoplatform.

    PubMed

    Liu, Xiaomin; Que, Ivo; Kong, Xianggui; Zhang, Youlin; Tu, Langping; Chang, Yulei; Wang, Tong Tong; Chan, Alan; Löwik, Clemens W G M; Zhang, Hong

    2015-09-28

    A new strategy for efficient in vivo image-guided photodynamic therapy (PDT) has been demonstrated utilizing a ligand-exchange constructed upconversion-C60 nanophotosensitizer. This theranostic platform is superior to the currently reported nanophotosensitizers in (i) directly bonding photosensitizer C60 to the surface of upconversion nanoparticles (UCNPs) by a smart ligand-exchange strategy, which greatly shortened the energy transfer distance and enhanced the (1)O2 production, resulting in the improvement of the therapeutic effect; (ii) realizing in vivo NIR 808 nm image-guided PDT with both excitation (980 nm) and emission (808 nm) light falling in the biological window of tissues, which minimized auto-fluorescence, reduced light scatting and improved the imaging contrast and depth, and thus guaranteed noninvasive diagnostic accuracy. In vivo and ex vivo tests demonstrated its favorable bio-distribution, tumor-selectivity and high therapeutic efficacy. Owing to the effective ligand exchange strategy and the excellent intrinsic photophysical properties of C60, (1)O2 production yield was improved, suggesting that a low 980 nm irradiation dosage (351 J cm(-2)) and a short treatment time (15 min) were sufficient to perform NIR (980 nm) to NIR (808 nm) image-guided PDT. Our work enriches the understanding of UCNP-based PDT nanophotosensitizers and highlights their potential use in future NIR image-guided noninvasive deep cancer therapy.

  8. Image-guided radiation therapy in lymphoma management

    PubMed Central

    Eng, Tony

    2015-01-01

    Image-guided radiation therapy (IGRT) is a process of incorporating imaging techniques such as computed tomography (CT), magnetic resonance imaging (MRI), Positron emission tomography (PET), and ultrasound (US) during radiation therapy (RT) to improve treatment accuracy. It allows real-time or near real-time visualization of anatomical information to ensure that the target is in its position as planned. In addition, changes in tumor volume and location due to organ motion during treatment can be also compensated. IGRT has been gaining popularity and acceptance rapidly in RT over the past 10 years, and many published data have been reported on prostate, bladder, head and neck, and gastrointestinal cancers. However, the role of IGRT in lymphoma management is not well defined as there are only very limited published data currently available. The scope of this paper is to review the current use of IGRT in the management of lymphoma. The technical and clinical aspects of IGRT, lymphoma imaging studies, the current role of IGRT in lymphoma management and future directions will be discussed. PMID:26484299

  9. Modeling of field-aligned guided echoes in the plasmasphere

    NASA Astrophysics Data System (ADS)

    Fung, Shing F.; Green, James L.

    2005-01-01

    Ray tracing modeling is used to investigate the plasma conditions under which high-frequency (f ≫ fuh) extraordinary mode waves can be guided along geomagnetic field lines. These guided signals have often been observed as long-range discrete echoes in the plasmasphere by the Radio Plasma Imager (RPI) onboard the Imager for Magnetopause-to-Aurora Global Exploration satellite. Field-aligned discrete echoes are most commonly observed by RPI in the plasmasphere, although they are also observed over the polar cap region. The plasmasphere field-aligned echoes appearing as multiple echo traces at different virtual ranges are attributed to signals reflected successively between conjugate hemispheres that propagate along or nearly along closed geomagnetic field lines. The ray tracing simulations show that field-aligned ducts with as little as 1% density perturbations (depletions) and <10 wavelengths wide can guide nearly field-aligned propagating high-frequency X mode waves. Effective guidance of a wave at a given frequency and wave normal angle (Ψ) depends on the cross-field density scale of the duct, such that ducts with stronger density depletions need to be wider in order to maintain the same gradient of refractive index across the magnetic field. While signal guidance by field aligned density gradient without ducting is possible only over the polar region, conjugate field-aligned echoes that have traversed through the equatorial region are most likely guided by ducting.

  10. Cost-Effectiveness Comparison of Imaging-Guided Prostate Biopsy Techniques: Systematic Transrectal Ultrasound, Direct In-Bore MRI, and Image Fusion.

    PubMed

    Venderink, Wulphert; Govers, Tim M; de Rooij, Maarten; Fütterer, Jurgen J; Sedelaar, J P Michiel

    2017-05-01

    Three commonly used prostate biopsy approaches are systematic transrectal ultrasound guided, direct in-bore MRI guided, and image fusion guided. The aim of this study was to calculate which strategy is most cost-effective. A decision tree and Markov model were developed to compare cost-effectiveness. Literature review and expert opinion were used as input. A strategy was deemed cost-effective if the costs of gaining one quality-adjusted life year (incremental cost-effectiveness ratio) did not exceed the willingness-to-pay threshold of €80,000 (≈$85,000 in January 2017). A base case analysis was performed to compare systematic transrectal ultrasound- and image fusion-guided biopsies. Because of a lack of appropriate literature regarding the accuracy of direct in-bore MRI-guided biopsy, a threshold analysis was performed. The incremental cost-effectiveness ratio for fusion-guided biopsy compared with systematic transrectal ultrasound-guided biopsy was €1386 ($1470) per quality-adjusted life year gained, which was below the willingness-to-pay threshold and thus assumed cost-effective. If MRI findings are normal in a patient with clinically significant prostate cancer, the sensitivity of direct in-bore MRI-guided biopsy has to be at least 88.8%. If that is the case, the incremental cost-effectiveness ratio is €80,000 per quality-adjusted life year gained and thus cost-effective. Fusion-guided biopsy seems to be cost-effective compared with systematic transrectal ultrasound-guided biopsy. Future research is needed to determine whether direct in-bore MRI-guided biopsy is the best pathway; in this study a threshold was calculated at which it would be cost-effective.

  11. ATCA observations of the MACS-Planck Radio Halo Cluster Project. II. Radio observations of an intermediate redshift cluster sample

    NASA Astrophysics Data System (ADS)

    Martinez Aviles, G.; Johnston-Hollitt, M.; Ferrari, C.; Venturi, T.; Democles, J.; Dallacasa, D.; Cassano, R.; Brunetti, G.; Giacintucci, S.; Pratt, G. W.; Arnaud, M.; Aghanim, N.; Brown, S.; Douspis, M.; Hurier, J.; Intema, H. T.; Langer, M.; Macario, G.; Pointecouteau, E.

    2018-04-01

    Aim. A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely unexplored intermediate redshift range (0.3 < z < 0.44). Methods: In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ( 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. Results: We detect a giant radio halo in PSZ2 G284.97-23.69 (z = 0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z = 0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio haloes with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters. The reduced images are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A94

  12. Simultaneous PET/MR imaging with a radio frequency-penetrable PET insert

    PubMed Central

    Grant, Alexander M.; Lee, Brian J.; Chang, Chen-Ming; Levin, Craig S.

    2017-01-01

    Purpose A brain sized radio-frequency (RF)-penetrable PET insert has been designed for simultaneous operation with MRI systems. This system takes advantage of electro-optical coupling and battery power to electrically float the PET insert relative to the MRI ground, permitting RF signals to be transmitted through small gaps between the modules that form the PET ring. This design facilitates the use of the built-in body coil for RF transmission, and thus could be inserted into any existing MR site wishing to achieve simultaneous PET/MR imaging. The PET detectors employ non-magnetic silicon photomultipliers in conjunction with a compressed sensing signal multiplexing scheme, and optical fibers to transmit analog PET detector signals out of the MRI room for decoding, processing, and image reconstruction. Methods The PET insert was first constructed and tested in a laboratory benchtop setting, where tomographic images of a custom resolution phantom were successfully acquired. The PET insert was then placed within a 3T body MRI system, and tomographic resolution/contrast phantom images were acquired both with only the B0 field present, and under continuous pulsing from different MR imaging sequences. Results The resulting PET images have comparable contrast-to-noise ratios (CNR) under all MR pulsing conditions: the maximum percent CNR relative difference for each rod type among all four PET images acquired in the MRI system has a mean of 14.0±7.7%. MR images were successfully acquired through the RF-penetrable PET shielding using only the built-in MR body coil, suggesting that simultaneous imaging is possible without significant mutual interference. Conclusions These results show promise for this technology as an alternative to costly integrated PET/MR scanners; a PET insert that is compatible with any existing clinical MRI system could greatly increase the availability, accessibility, and dissemination of PET/MR. PMID:28102949

  13. Evidence for Infrared-faint Radio Sources as z > 1 Radio-loud Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian; Middelberg, Enno

    2010-02-01

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 μm) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z >~ 1) active galactic nuclei.

  14. EVIDENCE FOR INFRARED-FAINT RADIO SOURCES AS z > 1 RADIO-LOUD ACTIVE GALACTIC NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, Minh T.; Norris, Ray P.; Siana, Brian

    2010-02-10

    Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey which have no observable mid-infrared counterpart in the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6-70 {mu}m) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the spectral energy distribution of these objects shows that they are consistent with high-redshift (z {approx}> 1) active galactic nuclei.

  15. Image Display And Manipulation System (IDAMS), user's guide

    NASA Technical Reports Server (NTRS)

    Cecil, R. W.

    1972-01-01

    A combination operator's guide and user's handbook for the Image Display and Manipulation System (IDAMS) is reported. Information is presented to define how to operate the computer equipment, how to structure a run deck, and how to select parameters necessary for executing a sequence of IDAMS task routines. If more detailed information is needed on any IDAMS program, see the IDAMS program documentation.

  16. Small jets in radio-loud hot DOGs

    NASA Astrophysics Data System (ADS)

    Lonsdale, C. J.; Whittle, M.; Trapp, A.; Patil, P.; Lonsdale, C. J.; Thorp, R.; Lacy, M.; Kimball, A. E.; Blain, A.; Jones, S.; Kim, M.

    2016-02-01

    We address the impact of young radio jets on the ISM and star formation in a sample of radiatively efficient, highly obscured, radio AGN with look back times that place them near the peak of the galaxy and BH building era, z˜ 1-3. By selecting systems with a high mid-infrared (MIR) luminosity we aim to identify radiatively efficient (``quasar-mode'' or ``radiative-mode") AGN in a peak fueling phase, and by selecting compact radio sources we favor young or re-generated radio jets which are confined within the hosts. By selecting AGN which are very red through the optical-MIR we favor highly obscured systems likely to have been recently merger-triggered and still in the pre-blow-out phase of AGN feedback into the surrounding ISM. ALMA imaging at 345 GHz of 49 sources has revealed that they are accretion dominated, relative to star formation, with luminosities reaching 1014 L⊙. Extensive VLA imaging at 8-10 GHz in both A-array and B-array for 155 sources reveals that the majority of these powerful radio systems are compact on < 2-5 kpc scales while some have resolved structures on 3-25 kpc scales, and a small number have giant radio lobes on hundreds of kpc scales. The majority of the GHz range radio SEDs are typical of optically thin synchrotron, however for the 34 sources with data at more than 2 frequencies, 40 % are likely to be CSS, GPS, or HFP sources. VLBA imaging of 62 sources reveals varied morphologies, from unresolved sources to complex multicomponent 1-10 mas scale structures. Data from ALMA, VLA, and VLBA

  17. MO-DE-202-04: Multimodality Image-Guided Surgery and Intervention: For the Rest of Us

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shekhar, R.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  18. Imaging of SNR IC443 and W44 with the Sardinia Radio Telescope at 1.5 and 7 GHz

    NASA Astrophysics Data System (ADS)

    Egron, E.; Pellizzoni, A.; Iacolina, M. N.; Loru, S.; Marongiu, M.; Righini, S.; Cardillo, M.; Giuliani, A.; Mulas, S.; Murtas, G.; Simeone, D.; Concu, R.; Melis, A.; Trois, A.; Pilia, M.; Navarrini, A.; Vacca, V.; Ricci, R.; Serra, G.; Bachetti, M.; Buttu, M.; Perrodin, D.; Buffa, F.; Deiana, G. L.; Gaudiomonte, F.; Fara, A.; Ladu, A.; Loi, F.; Marongiu, P.; Migoni, C.; Pisanu, T.; Poppi, S.; Saba, A.; Urru, E.; Valente, G.; Vargiu, G. P.

    2017-09-01

    Observations of supernova remnants (SNRs) are a powerful tool for investigating the later stages of stellar evolution, the properties of the ambient interstellar medium and the physics of particle acceleration and shocks. For a fraction of SNRs, multiwavelength coverage from radio to ultra-high energies has been provided, constraining their contributions to the production of Galactic cosmic rays. Although radio emission is the most common identifier of SNRs and a prime probe for refining models, high-resolution images at frequencies above 5 GHz are surprisingly lacking, even for bright and well-known SNRs such as IC443 and W44. In the frameworks of the Astronomical Validation and Early Science Program with the 64-m single-dish Sardinia Radio Telescope, we provided, for the first time, single-dish deep imaging at 7 GHz of the IC443 and W44 complexes coupled with spatially resolved spectra in the 1.5-7 GHz frequency range. Our images were obtained through on-the-fly mapping techniques, providing antenna beam oversampling and resulting in accurate continuum flux density measurements. The integrated flux densities associated with IC443 are S1.5 GHz = 134 ± 4 Jy and S7 GHz = 67 ± 3 Jy. For W44, we measured total flux densities of S1.5 GHz = 214 ± 6 Jy and S7 GHz = 94 ± 4 Jy. Spectral index maps provide evidence of a wide physical parameter scatter among different SNR regions: a flat spectrum is observed from the brightest SNR regions at the shock, while steeper spectral indices (up to ˜ 0.7) are observed in fainter cooling regions, disentangling in this way different populations and spectra of radio/gamma-ray-emitting electrons in these SNRs.

  19. Image-guided ex-vivo targeting accuracy using a laparoscopic tissue localization system

    NASA Astrophysics Data System (ADS)

    Bieszczad, Jerry; Friets, Eric; Knaus, Darin; Rauth, Thomas; Herline, Alan; Miga, Michael; Galloway, Robert; Kynor, David

    2007-03-01

    In image-guided surgery, discrete fiducials are used to determine a spatial registration between the location of surgical tools in the operating theater and the location of targeted subsurface lesions and critical anatomic features depicted in preoperative tomographic image data. However, the lack of readily localized anatomic landmarks has greatly hindered the use of image-guided surgery in minimally invasive abdominal procedures. To address these needs, we have previously described a laser-based system for localization of internal surface anatomy using conventional laparoscopes. During a procedure, this system generates a digitized, three-dimensional representation of visible anatomic surfaces in the abdominal cavity. This paper presents the results of an experiment utilizing an ex-vivo bovine liver to assess subsurface targeting accuracy achieved using our system. During the experiment, several radiopaque targets were inserted into the liver parenchyma. The location of each target was recorded using an optically-tracked insertion probe. The liver surface was digitized using our system, and registered with the liver surface extracted from post-procedure CT images. This surface-based registration was then used to transform the position of the inserted targets into the CT image volume. The target registration error (TRE) achieved using our surface-based registration (given a suitable registration algorithm initialization) was 2.4 mm +/- 1.0 mm. A comparable TRE (2.6 mm +/- 1.7 mm) was obtained using a registration based on traditional fiducial markers placed on the surface of the same liver. These results indicate the potential of fiducial-free, surface-to-surface registration for image-guided lesion targeting in minimally invasive abdominal surgery.

  20. Fundamental limits of image registration performance: Effects of image noise and resolution in CT-guided interventions.

    PubMed

    Ketcha, M D; de Silva, T; Han, R; Uneri, A; Goerres, J; Jacobson, M; Vogt, S; Kleinszig, G; Siewerdsen, J H

    2017-02-11

    In image-guided procedures, image acquisition is often performed primarily for the task of geometrically registering information from another image dataset, rather than detection / visualization of a particular feature. While the ability to detect a particular feature in an image has been studied extensively with respect to image quality characteristics (noise, resolution) and is an ongoing, active area of research, comparatively little has been accomplished to relate such image quality characteristics to registration performance. To establish such a framework, we derived Cramer-Rao lower bounds (CRLB) for registration accuracy, revealing the underlying dependencies on image variance and gradient strength. The CRLB was analyzed as a function of image quality factors (in particular, dose) for various similarity metrics and compared to registration accuracy using CT images of an anthropomorphic head phantom at various simulated dose levels. Performance was evaluated in terms of root mean square error (RMSE) of the registration parameters. Analysis of the CRLB shows two primary dependencies: 1) noise variance (related to dose); and 2) sum of squared image gradients (related to spatial resolution and image content). Comparison of the measured RMSE to the CRLB showed that the best registration method, RMSE achieved the CRLB to within an efficiency factor of 0.21, and optimal estimators followed the predicted inverse proportionality between registration performance and radiation dose. Analysis of the CRLB for image registration is an important step toward understanding and evaluating an intraoperative imaging system with respect to a registration task. While the CRLB is optimistic in absolute performance, it reveals a basis for relating the performance of registration estimators as a function of noise content and may be used to guide acquisition parameter selection (e.g., dose) for purposes of intraoperative registration.

  1. Amateur Radio Flash Mob: Citizen Radio Science Response to a Solar Eclipse

    NASA Astrophysics Data System (ADS)

    Hirsch, M.; Frissell, N. A.

    2017-12-01

    Over a decade's worth of scientifically useful data from radio amateurs worldwide is publicly available, with momentum building in science exploitation of this data. For the 2017 solar eclipse, a "flash mob" of radio amateurs were organized in the form of a contest. Licensed radio amateurs transmitted on specific frequency bands, with awards given for a new generation of raw data collection allowing sophisticated post-processing of raw ADC data, to extract quantities such as Doppler shift due to ionospheric lifting for example. We discuss transitioning science priorities to gamified scoring procedures incentivizing the public to submit the highest quality and quantity of archival raw radio science data. The choices of frequency bands to encourage in the face of regulatory limitations is discussed. An update on initial field experiments using wideband experimental modulation specially licensed yet receivable by radio amateurs for high spatiotemporal resolution imaging of the ionosphere is given. The cost of this equipment is less than $500 per node, comparing favorably to legacy oblique ionospheric sounding networks.

  2. Algorithm-enabled exploration of image-quality potential of cone-beam CT in image-guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Pearson, Erik; Pelizzari, Charles; Al-Hallaq, Hania; Sidky, Emil Y.; Bian, Junguo; Pan, Xiaochuan

    2015-06-01

    Kilo-voltage (KV) cone-beam computed tomography (CBCT) unit mounted onto a linear accelerator treatment system, often referred to as on-board imager (OBI), plays an increasingly important role in image-guided radiation therapy. While the FDK algorithm is currently used for reconstructing images from clinical OBI data, optimization-based reconstruction has also been investigated for OBI CBCT. An optimization-based reconstruction involves numerous parameters, which can significantly impact reconstruction properties (or utility). The success of an optimization-based reconstruction for a particular class of practical applications thus relies strongly on appropriate selection of parameter values. In the work, we focus on tailoring the constrained-TV-minimization-based reconstruction, an optimization-based reconstruction previously shown of some potential for CBCT imaging conditions of practical interest, to OBI imaging through appropriate selection of parameter values. In particular, for given real data of phantoms and patient collected with OBI CBCT, we first devise utility metrics specific to OBI-quality-assurance tasks and then apply them to guiding the selection of parameter values in constrained-TV-minimization-based reconstruction. The study results show that the reconstructions are with improvement, relative to clinical FDK reconstruction, in both visualization and quantitative assessments in terms of the devised utility metrics.

  3. A magnetic resonance image-guided breast needle intervention robot system: overview and design considerations.

    PubMed

    Park, Samuel Byeongjun; Kim, Jung-Gun; Lim, Ki-Woong; Yoon, Chae-Hyun; Kim, Dong-Jun; Kang, Han-Sung; Jo, Yung-Ho

    2017-08-01

    We developed an image-guided intervention robot system that can be operated in a magnetic resonance (MR) imaging gantry. The system incorporates a bendable needle intervention robot for breast cancer patients that overcomes the space limitations of the MR gantry. Most breast coil designs for breast MR imaging have side openings to allow manual localization. However, for many intervention procedures, the patient must be removed from the gantry. A robotic manipulation system with integrated image guidance software was developed. Our robotic manipulator was designed to be slim, so as to fit between the patient's side and the MR gantry wall. Only non-magnetic materials were used, and an electromagnetic shield was employed for cables and circuits. The image guidance software was built using open source libraries. In situ feasibility tests were performed in a 3-T MR system. One target point in the breast phantom was chosen by the clinician for each experiment, and our robot moved the needle close to the target point. Without image-guided feedback control, the needle end could not hit the target point (distance = 5 mm) in the first experiment. Using our robotic system, the needle hits the target lesion of the breast phantom at a distance of 2.3 mm from the same target point using image-guided feedback. The second experiment was performed using other target points, and the distance between the final needle end point and the target point was 0.8 mm. We successfully developed an MR-guided needle intervention robot for breast cancer patients. Further research will allow the expansion of these interventions.

  4. Plantar fascia: imaging diagnosis and guided treatment.

    PubMed

    McNally, Eugene G; Shetty, Shilpa

    2010-09-01

    Plantar fasciopathy is a common cause of heel pain. This article covers the imaging anatomy of the hindfoot, the imaging findings on ultrasound and magnetic resonance imaging (MRI) of plantar fasciopathy, plantar fibromas, trauma, Achilles tendonopathy, neural compression, stress fractures of the os calcis and other heel pad lesions. Thickening of the plantar fascia insertion more than 5 mm either on ultrasound or MRI is suggestive of plantar fasciopathy. Ultrasound is superior to MRI for diagnosis of plantar fibroma as small low signal lesions on MRI are similar to the normal plantar fascia signal. Ultrasound demonstrates low echogenicity compared with the echogenic plantar fascia. Penetrating injuries can appear bizarre due to associated foreign body impaction and infection. Achilles tendonopathy can cause heel pain and should be considered as a possible diagnosis. Treatment options include physical therapy, ECSWT, corticosteroid injection, and dry needling. Percutaneous US guided treatment methods will be described. Thieme Medical Publishers.

  5. Radio-frequency energy quantification in magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Alon, Leeor

    Mapping of radio frequency (RF) energy deposition has been challenging for 50+ years, especially, when scanning patients in the magnetic resonance imaging (MRI) environment. As result, electromagnetic simulation software is often used for estimating the specific absorption rate (SAR), the rate of RF energy deposition in tissue. The thesis work presents challenges associated with aligning information provided by electromagnetic simulation and MRI experiments. As result of the limitations of simulations, experimental methods for the quantification of SAR were established. A system for quantification of the total RF energy deposition was developed for parallel transmit MRI (a system that uses multiple antennas to excite and image the body). The system is capable of monitoring and predicting channel-by-channel RF energy deposition, whole body SAR and capable of tracking potential hardware failures that occur in the transmit chain and may cause the deposition of excessive energy into patients. Similarly, we demonstrated that local RF power deposition can be mapped and predicted for parallel transmit systems based on a series of MRI temperature mapping acquisitions. Resulting from the work, we developed tools for optimal reconstruction temperature maps from MRI acquisitions. The tools developed for temperature mapping paved the way for utilizing MRI as a diagnostic tool for evaluation of RF/microwave emitting device safety. Quantification of the RF energy was demonstrated for both MRI compatible and non-MRI-compatible devices (such as cell phones), while having the advantage of being noninvasive, of providing millimeter resolution and high accuracy.

  6. Classifying Radio Galaxies with the Convolutional Neural Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aniyan, A. K.; Thorat, K.

    We present the application of a deep machine learning technique to classify radio images of extended sources on a morphological basis using convolutional neural networks (CNN). In this study, we have taken the case of the Fanaroff–Riley (FR) class of radio galaxies as well as radio galaxies with bent-tailed morphology. We have used archival data from the Very Large Array (VLA)—Faint Images of the Radio Sky at Twenty Centimeters survey and existing visually classified samples available in the literature to train a neural network for morphological classification of these categories of radio sources. Our training sample size for each of these categoriesmore » is ∼200 sources, which has been augmented by rotated versions of the same. Our study shows that CNNs can classify images of the FRI and FRII and bent-tailed radio galaxies with high accuracy (maximum precision at 95%) using well-defined samples and a “fusion classifier,” which combines the results of binary classifications, while allowing for a mechanism to find sources with unusual morphologies. The individual precision is highest for bent-tailed radio galaxies at 95% and is 91% and 75% for the FRI and FRII classes, respectively, whereas the recall is highest for FRI and FRIIs at 91% each, while the bent-tailed class has a recall of 79%. These results show that our results are comparable to that of manual classification, while being much faster. Finally, we discuss the computational and data-related challenges associated with the morphological classification of radio galaxies with CNNs.« less

  7. Voyager Signal Spotted By Earth Radio Telescopes

    NASA Image and Video Library

    2013-09-12

    Radio telescopes cannot see Voyager 1 in visible light, but rather see the spacecraft signal in radio light. This image of Voyager 1 signal on Feb. 21, 2013. At the time, Voyager 1 was 11.5 billion miles 18.5 billion kilometers away.

  8. Internet Resources for Radio Astronomy

    NASA Astrophysics Data System (ADS)

    Andernach, H.

    A subjective overview of Internet resources for radio-astronomical information is presented. Basic observing techniques and their implications for the interpretation of publicly available radio data are described, followed by a discussion of existing radio surveys, their level of optical identification, and nomenclature of radio sources. Various collections of source catalogues and databases for integrated radio source parameters are reviewed and compared, as well as the web interfaces to interrogate the current and ongoing large-area surveys. Links to radio observatories with archives of raw (uv-) data are presented, as well as services providing images, both of individual objects or extracts (``cutouts'') from large-scale surveys. While the emphasis is on radio continuum data, a brief list of sites providing spectral line data, and atomic or molecular information is included. The major radio telescopes and surveys under construction or planning are outlined. A summary is given of a search for previously unknown optically bright radio sources, as performed by the students as an exercise, using Internet resources only. Over 200 different links are mentioned and were verified, but despite the attempt to make this report up-to-date, it can only provide a snapshot of the situation as of mid-1998.

  9. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning.

    PubMed

    Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib

    2016-09-07

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of  -1.5  ±  5.0% (mean  ±  SD) in bony structures compared to  -19.9  ±  11.8% and  -8.1  ±  8.2% achieved by MRI segmentation-based (water

  10. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning

    NASA Astrophysics Data System (ADS)

    Arabi, Hossein; Koutsouvelis, Nikolaos; Rouzaud, Michel; Miralbell, Raymond; Zaidi, Habib

    2016-09-01

    Magnetic resonance imaging (MRI)-guided attenuation correction (AC) of positron emission tomography (PET) data and/or radiation therapy (RT) treatment planning is challenged by the lack of a direct link between MRI voxel intensities and electron density. Therefore, even if this is not a trivial task, a pseudo-computed tomography (CT) image must be predicted from MRI alone. In this work, we propose a two-step (segmentation and fusion) atlas-based algorithm focusing on bone tissue identification to create a pseudo-CT image from conventional MRI sequences and evaluate its performance against the conventional MRI segmentation technique and a recently proposed multi-atlas approach. The clinical studies consisted of pelvic CT, PET and MRI scans of 12 patients with loco-regionally advanced rectal disease. In the first step, bone segmentation of the target image is optimized through local weighted atlas voting. The obtained bone map is then used to assess the quality of deformed atlases to perform voxel-wise weighted atlas fusion. To evaluate the performance of the method, a leave-one-out cross-validation (LOOCV) scheme was devised to find optimal parameters for the model. Geometric evaluation of the produced pseudo-CT images and quantitative analysis of the accuracy of PET AC were performed. Moreover, a dosimetric evaluation of volumetric modulated arc therapy photon treatment plans calculated using the different pseudo-CT images was carried out and compared to those produced using CT images serving as references. The pseudo-CT images produced using the proposed method exhibit bone identification accuracy of 0.89 based on the Dice similarity metric compared to 0.75 achieved by the other atlas-based method. The superior bone extraction resulted in a mean standard uptake value bias of  -1.5  ±  5.0% (mean  ±  SD) in bony structures compared to  -19.9  ±  11.8% and  -8.1  ±  8.2% achieved by MRI segmentation-based (water

  11. MR-CBCT image-guided system for radiotherapy of orthotopic rat prostate tumors.

    PubMed

    Chiu, Tsuicheng D; Arai, Tatsuya J; Campbell Iii, James; Jiang, Steve B; Mason, Ralph P; Stojadinovic, Strahinja

    2018-01-01

    Multi-modality image-guided radiotherapy is the standard of care in contemporary cancer management; however, it is not common in preclinical settings due to both hardware and software limitations. Soft tissue lesions, such as orthotopic prostate tumors, are difficult to identify using cone beam computed tomography (CBCT) imaging alone. In this study, we characterized a research magnetic resonance (MR) scanner for preclinical studies and created a protocol for combined MR-CBCT image-guided small animal radiotherapy. Two in-house dual-modality, MR and CBCT compatible, phantoms were designed and manufactured using 3D printing technology. The phantoms were used for quality assurance tests and to facilitate end-to-end testing for combined preclinical MR and CBCT based treatment planning. MR and CBCT images of the phantoms were acquired utilizing a Varian 4.7 T scanner and XRad-225Cx irradiator, respectively. The geometry distortion was assessed by comparing MR images to phantom blueprints and CBCT. The corrected MR scans were co-registered with CBCT and subsequently used for treatment planning. The fidelity of 3D printed phantoms compared to the blueprint design yielded favorable agreement as verified with the CBCT measurements. The geometric distortion, which varied between -5% and 11% throughout the scanning volume, was substantially reduced to within 0.4% after correction. The distortion free MR images were co-registered with the corresponding CBCT images and imported into a commercial treatment planning software SmART Plan. The planning target volume (PTV) was on average 19% smaller when contoured on the corrected MR-CBCT images relative to raw images without distortion correction. An MR-CBCT based preclinical workflow was successfully designed and implemented for small animal radiotherapy. Combined MR-CBCT image-guided radiotherapy for preclinical research potentially delivers enhanced relevance to human radiotherapy for various disease sites. This novel protocol

  12. Supervoxels for Graph Cuts-Based Deformable Image Registration Using Guided Image Filtering

    PubMed Central

    Szmul, Adam; Papież, Bartłomiej W.; Hallack, Andre; Grau, Vicente; Schnabel, Julia A.

    2017-01-01

    In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model ‘sliding motion’. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark. PMID:29225433

  13. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, KoZo; Kojima, Hirotsugu; Boardson, Scott A.; Garcia, Leonard N.; Matsumoto, Hiroshi; Green, James L.; Reinisch, Bodo W.

    2013-01-01

    We report the simultaneous detection of a terrestrial myriametric radio burst (TMRB) by IMAGE and Geotail on 19 August 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50kHz). Comparisons with all known nonthermal myriametric radiation components reveal that the TMRB might be a distinct radiation with a source that is unrelated to the previously known radiation. Considerations of beaming from spin-modulation analysis and observing satellite and source locations suggest that the TMRB may have a fan beamlike radiation pattern emitted by a discrete, dayside source located along the poleward edge of magnetospheric cusp field lines. TMRB responsiveness to IMF Bz and By orientations suggests that a possible source of the TMRB could be due to dayside magnetic reconnection instigated by northward interplanetary field condition.

  14. Empiric versus imaging guided left ventricular lead placement in cardiac resynchronization therapy (ImagingCRT): study protocol for a randomized controlled trial.

    PubMed

    Sommer, Anders; Kronborg, Mads Brix; Poulsen, Steen Hvitfeldt; Böttcher, Morten; Nørgaard, Bjarne Linde; Bouchelouche, Kirsten; Mortensen, Peter Thomas; Gerdes, Christian; Nielsen, Jens Cosedis

    2013-04-26

    Cardiac resynchronization therapy (CRT) is an established treatment in heart failure patients. However, a large proportion of patients remain nonresponsive to this pacing strategy. Left ventricular (LV) lead position is one of the main determinants of response to CRT. This study aims to clarify whether multimodality imaging guided LV lead placement improves clinical outcome after CRT. The ImagingCRT study is a prospective, randomized, patient- and assessor-blinded, two-armed trial. The study is designed to investigate the effect of imaging guided left ventricular lead positioning on a clinical composite primary endpoint comprising all-cause mortality, hospitalization for heart failure, or unchanged or worsened functional capacity (no improvement in New York Heart Association class and <10% improvement in six-minute-walk test). Imaging guided LV lead positioning is targeted to the latest activated non-scarred myocardial region by speckle tracking echocardiography, single-photon emission computed tomography, and cardiac computed tomography. Secondary endpoints include changes in LV dimensions, ejection fraction and dyssynchrony. A total of 192 patients are included in the study. Despite tremendous advances in knowledge with CRT, the proportion of patients not responding to this treatment has remained stable since the introduction of CRT. ImagingCRT is a prospective, randomized study assessing the clinical and echocardiographic effect of multimodality imaging guided LV lead placement in CRT. The results are expected to make an important contribution in the pursuit of increasing response rate to CRT. Clinicaltrials.gov identifier NCT01323686. The trial was registered March 25, 2011 and the first study subject was randomized April 11, 2011.

  15. [Task sharing with radiotherapy technicians in image-guided radiotherapy].

    PubMed

    Diaz, O; Lorchel, F; Revault, C; Mornex, F

    2013-10-01

    The development of accelerators with on-board imaging systems now allows better target volumes reset at the time of irradiation (image-guided radiotherapy [IGRT]). However, these technological advances in the control of repositioning led to a multiplication of tasks for each actor in radiotherapy and increase the time available for the treatment, whether for radiotherapy technicians or radiation oncologists. As there is currently no explicit regulatory framework governing the use of IGRT, some institutional experiments show that a transfer is possible between radiation oncologists and radiotherapy technicians for on-line verification of image positioning. Initial training for every technical and drafting procedures within institutions will improve audit quality by reducing interindividual variability. Copyright © 2013. Published by Elsevier SAS.

  16. A novel multiwavelength fluorescence image-guided surgery imaging system

    NASA Astrophysics Data System (ADS)

    Volpi, D.; Tullis, I. D. C.; Laios, A.; Pathiraja, P. N. J.; Haldar, K.; Ahmed, A. A.; Vojnovic, B.

    2014-02-01

    We describe the development and performance analysis of two clinical near-infrared fluorescence image-guided surgery (FIGS) devices that aim to overcome some of the limitations of current FIGS systems. The devices operate in a widefield-imaging mode and can work (1) in conjunction with a laparoscope, during minimally invasive surgery, and (2) as a hand-held, open surgery imaging system. In both cases, narrow-band excitation light, delivered at multiple wavelengths, is efficiently combined with white reflectance light. Light is delivered to ~100 cm2 surgical field at 1-2 mW/cm2 for white light and 3-7 mW/cm2 (depending on wavelength) of red - near infrared excitation, at a typical working distance of 350 mm for the hand-held device and 100 mm for the laparoscope. A single, sensitive, miniaturized color camera collects both fluorescence and white reflectance light. The use of a single imager eliminates image alignment and software overlay complexity. A novel filtering and illumination arrangement allows simultaneous detection of white reflectance and fluorescence emission from multiple dyes in real-time. We will present both fluorescence detection sensitivity modeling and practical performance data. We have demonstrated the efficiency and the advantages of the devices both pre-clinically and during live surgery on humans. Both the hand-held and the laparoscopic systems have proved to be reliable and beneficial in an ongoing clinical trial involving sentinel lymph node detection in gynecological cancers. We will show preliminary results using two clinically approved dyes, Methylene blue and indocyanine green. We anticipate that this technology can be integrated and routinely used in a larger variety of surgical procedures.

  17. Image-guided cold atmosphere plasma (CAP) therapy for cutaneous wound

    NASA Astrophysics Data System (ADS)

    Yu, Zelin; Ren, Wenqi; Gan, Qi; Li, Jiahong; Li, XiangXiang; Zhang, Shiwu; Jin, Fan; Cheng, Cheng; Ting, Yue; Xu, Ronald X.

    2016-03-01

    Bacterial infection is one of the major factors contributing to the compromised healing in chronic wounds. Sometimes bacteria biofilms formed on the wound are more resistant than adherent bacteria. Cold atmosphere plasma (CAP) has already shown its potential in contact-free disinfection, blood coagulation, and wound healing. In this study, we integrated a multimodal imaging system with a portable CAP device for image-guided treatment of infected wound in vivo and evaluated the antimicrobial effect on Pseudomonas aeruginosa sample in vitro.15 ICR mice were divided into three groups for therapeutic experiments:(1) control group with no infection nor treatment (2) infection group without treatment (3) infection group with treatment. For each mouse, a three millimeters punch biopsy was created on the dorsal skin. Infection was induced by Staphylococcus aureus inoculation one day post-wounding. The treated group was subjected to CAP for 2 min daily till day 13. For each group, five fixed wounds' oxygenation and blood perfusion were evaluated daily till day 13 by a multimodal imaging system that integrates a multispectral imaging module and a laser speckle imaging module. In the research of relationship between therapeutic depth and sterilization effect on P.aeruginosa in agarose, we found that the CAP-generated reactive species reached the depth of 26.7μm at 30s and 41.6μm at 60s for anti-bacterial effects. Image-guided CAP therapy can be potentially used to control infection and facilitate the healing process of infected wounds.

  18. The image-guided surgery toolkit IGSTK: an open source C++ software toolkit.

    PubMed

    Enquobahrie, Andinet; Cheng, Patrick; Gary, Kevin; Ibanez, Luis; Gobbi, David; Lindseth, Frank; Yaniv, Ziv; Aylward, Stephen; Jomier, Julien; Cleary, Kevin

    2007-11-01

    This paper presents an overview of the image-guided surgery toolkit (IGSTK). IGSTK is an open source C++ software library that provides the basic components needed to develop image-guided surgery applications. It is intended for fast prototyping and development of image-guided surgery applications. The toolkit was developed through a collaboration between academic and industry partners. Because IGSTK was designed for safety-critical applications, the development team has adopted lightweight software processes that emphasizes safety and robustness while, at the same time, supporting geographically separated developers. A software process that is philosophically similar to agile software methods was adopted emphasizing iterative, incremental, and test-driven development principles. The guiding principle in the architecture design of IGSTK is patient safety. The IGSTK team implemented a component-based architecture and used state machine software design methodologies to improve the reliability and safety of the components. Every IGSTK component has a well-defined set of features that are governed by state machines. The state machine ensures that the component is always in a valid state and that all state transitions are valid and meaningful. Realizing that the continued success and viability of an open source toolkit depends on a strong user community, the IGSTK team is following several key strategies to build an active user community. These include maintaining a users and developers' mailing list, providing documentation (application programming interface reference document and book), presenting demonstration applications, and delivering tutorial sessions at relevant scientific conferences.

  19. Registration of multiple video images to preoperative CT for image-guided surgery

    NASA Astrophysics Data System (ADS)

    Clarkson, Matthew J.; Rueckert, Daniel; Hill, Derek L.; Hawkes, David J.

    1999-05-01

    In this paper we propose a method which uses multiple video images to establish the pose of a CT volume with respect to video camera coordinates for use in image guided surgery. The majority of neurosurgical procedures require the neurosurgeon to relate the pre-operative MR/CT data to the intra-operative scene. Registration of 2D video images to the pre-operative 3D image enables a perspective projection of the pre-operative data to be overlaid onto the video image. Our registration method is based on image intensity and uses a simple iterative optimization scheme to maximize the mutual information between a video image and a rendering from the pre-operative data. Video images are obtained from a stereo operating microscope, with a field of view of approximately 110 X 80 mm. We have extended an existing information theoretical framework for 2D-3D registration, so that multiple video images can be registered simultaneously to the pre-operative data. Experiments were performed on video and CT images of a skull phantom. We took three video images, and our algorithm registered these individually to the 3D image. The mean projection error varied between 4.33 and 9.81 millimeters (mm), and the mean 3D error varied between 4.47 and 11.92 mm. Using our novel techniques we then registered five video views simultaneously to the 3D model. This produced an accurate and robust registration with a mean projection error of 0.68 mm and a mean 3D error of 1.05 mm.

  20. Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging

    DOE PAGES

    Ulvestad, A.; Nashed, Y.; Beutier, G.; ...

    2017-08-30

    In this study, crystallographic defects such as dislocations can significantly alter material properties and functionality. However, imaging these imperfections during operation remains challenging due to the short length scales involved and the reactive environments of interest. Bragg coherent diffractive imaging (BCDI) has emerged as a powerful tool capable of identifying dislocations, twin domains, and other defects in 3D detail with nanometer spatial resolution within nanocrystals and grains in reactive environments. However, BCDI relies on phase retrieval algorithms that can fail to accurately reconstruct the defect network. Here, we use numerical simulations to explore different guided phase retrieval algorithms for imagingmore » defective crystals using BCDI. We explore different defect types, defect densities, Bragg peaks, and guided algorithm fitness metrics as a function of signal-to-noise ratio. Based on these results, we offer a general prescription for phasing of defective crystals with no a prior knowledge.« less

  1. Identifying Defects with Guided Algorithms in Bragg Coherent Diffractive Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulvestad, A.; Nashed, Y.; Beutier, G.

    In this study, crystallographic defects such as dislocations can significantly alter material properties and functionality. However, imaging these imperfections during operation remains challenging due to the short length scales involved and the reactive environments of interest. Bragg coherent diffractive imaging (BCDI) has emerged as a powerful tool capable of identifying dislocations, twin domains, and other defects in 3D detail with nanometer spatial resolution within nanocrystals and grains in reactive environments. However, BCDI relies on phase retrieval algorithms that can fail to accurately reconstruct the defect network. Here, we use numerical simulations to explore different guided phase retrieval algorithms for imagingmore » defective crystals using BCDI. We explore different defect types, defect densities, Bragg peaks, and guided algorithm fitness metrics as a function of signal-to-noise ratio. Based on these results, we offer a general prescription for phasing of defective crystals with no a prior knowledge.« less

  2. Image-guided regularization level set evolution for MR image segmentation and bias field correction.

    PubMed

    Wang, Lingfeng; Pan, Chunhong

    2014-01-01

    Magnetic resonance (MR) image segmentation is a crucial step in surgical and treatment planning. In this paper, we propose a level-set-based segmentation method for MR images with intensity inhomogeneous problem. To tackle the initialization sensitivity problem, we propose a new image-guided regularization to restrict the level set function. The maximum a posteriori inference is adopted to unify segmentation and bias field correction within a single framework. Under this framework, both the contour prior and the bias field prior are fully used. As a result, the image intensity inhomogeneity can be well solved. Extensive experiments are provided to evaluate the proposed method, showing significant improvements in both segmentation and bias field correction accuracies as compared with other state-of-the-art approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Transvaginal 3D Image-Guided High Intensity Focused Ultrasound Array

    NASA Astrophysics Data System (ADS)

    Held, Robert; Nguyen, Thuc Nghi; Vaezy, Shahram

    2005-03-01

    The goal of this project is to develop a transvaginal image-guided High Intensity Focused Ultrasound (HIFU) device using piezocomposite HIFU array technology, and commercially-available ultrasound imaging. Potential applications include treatment of uterine fibroids and abnormal uterine bleeding. The HIFU transducer was an annular phased array, with a focal length range of 30-60 mm, an elliptically-shaped aperture of 35×60 mm, and an operating frequency of 3 MHz. A pillow-shaped bag with water circulation will be used for coupling the HIFU energy into the tissue. An intra-cavity imaging probe (C9-5, Philips) was integrated with the HIFU array such that the focal axis of the HIFU transducer was within the image plane. The entire device will be covered by a gel-filled condom when inserted in the vaginal cavity. To control it, software packages were developed in the LabView programming environment. An imaging algorithm processed the ultrasound image to remove noise patterns due to the HIFU signal. The device will be equipped with a three-dimensional tracking system, using a six-degrees-of-freedom articulating arm. Necrotic lesions were produced in a tissue-mimicking phantom and a turkey breast sample for all focal lengths. Various HIFU doses allow various necrotic lesion shapes, including thin ellipsoidal, spherical, wide cylindrical, and teardrop-shaped. Software control of the device allows multiple foci to be activated sequentially for desired lesion patterns. Ultrasound imaging synchronization can be achieved using hardware signals obtained from the imaging system, or software signals determined empirically for various imaging probes. The image-guided HIFU device will provide a valuable tool in visualization of uterine fibroid tumors for the purposes of planning and subsequent HIFU treatment of the tumor, all in a 3D environment. The control system allows for various lesions of different shapes to be optimally positioned in the tumor to cover the entire tumor

  4. Information Content in Radio Waves: Student Investigations in Radio Science

    NASA Astrophysics Data System (ADS)

    Jacobs, K.; Scaduto, T.

    2013-12-01

    We describe an inquiry-based instructional unit on information content in radio waves, created in the summer of 2013 as part of a MIT Haystack Observatory (Westford, MA) NSF Research Experiences for Teachers (RET) program. This topic is current and highly relevant, addressing science and technical aspects from radio astronomy, geodesy, and atmospheric research areas as well as Next Generation Science Standards (NGSS). Projects and activities range from simple classroom demonstrations and group investigations, to long term research projects incorporating data acquisition from both student-built instrumentation as well as online databases. Each of the core lessons is applied to one of the primary research centers at Haystack through an inquiry project that builds on previously developed units through the MIT Haystack RET program. In radio astronomy, students investigate the application of a simple and inexpensive software defined radio chip (RTL-SDR) for use in systems implementing a small and very small radio telescope (SRT and VSRT). Both of these systems allow students to explore fundamental principles of radio waves and interferometry as applied to radio astronomy. In ionospheric research, students track solar storms from the initial coronal mass ejection (using Solar Dynamics Observatory images) to the resulting variability in total electron density concentrations using data from the community standard Madrigal distributed database system maintained by MIT Haystack. Finally, students get to explore very long-baseline interferometry as it is used in geodetic studies by measuring crustal plate displacements over time. Alignment to NextGen standards is provided for each lesson and activity with emphasis on HS-PS4 'Waves and Their Applications in Technologies for Information Transfer'.

  5. Radio Galaxy Zoo: cosmological alignment of radio sources

    NASA Astrophysics Data System (ADS)

    Contigiani, O.; de Gasperin, F.; Miley, G. K.; Rudnick, L.; Andernach, H.; Banfield, J. K.; Kapińska, A. D.; Shabala, S. S.; Wong, O. I.

    2017-11-01

    We study the mutual alignment of radio sources within two surveys, Faint Images of the Radio Sky at Twenty-centimetres (FIRST) and TIFR GMRT Sky Survey (TGSS). This is done by producing two position angle catalogues containing the preferential directions of respectively 30 059 and 11 674 extended sources distributed over more than 7000 and 17 000 deg2. The identification of the sources in the FIRST sample was performed in advance by volunteers of the Radio Galaxy Zoo (RGZ) project, while for the TGSS sample it is the result of an automated process presented here. After taking into account systematic effects, marginal evidence of a local alignment on scales smaller than 2.5 deg is found in the FIRST sample. The probability of this happening by chance is found to be less than 2 per cent. Further study suggests that on scales up to 1.5 deg the alignment is maximal. For one third of the sources, the RGZ volunteers identified an optical counterpart. Assuming a flat Λ cold dark matter cosmology with Ω _m = 0.31, Ω _Λ = 0.69, we convert the maximum angular scale on which alignment is seen into a physical scale in the range [19, 38] Mpc h_{70}^{-1}. This result supports recent evidence reported by Taylor and Jagannathan of radio jet alignment in the 1.4 deg2 ELAIS N1 field observed with the Giant Metrewave Radio Telescope. The TGSS sample is found to be too sparsely populated to manifest a similar signal.

  6. Peering through Jupiter’s clouds with radio spectral imaging

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Sault, R. J.; Butler, Bryan; DeBoer, David; Wong, Michael H.

    2016-06-01

    Radio wavelengths can probe altitudes in Jupiter’s atmosphere below its visible cloud layers. We used the Very Large Array to map this unexplored region down to ~8 bar, ~100 kilometers below the visible clouds. Our maps reveal a dynamically active planet at pressures less than 2 to 3 bar. A radio-hot belt exists, consisting of relatively transparent regions (a low ammonia concentration, NH3 being the dominant source of opacity) probing depths to over ~8 bar; these regions probably coincide with 5-micrometer hot spots. Just to the south we distinguish an equatorial wave, bringing up ammonia gas from Jupiter’s deep atmosphere. This wave has been theorized to produce the 5-micrometer hot spots; we observed the predicted radio counterpart of such hot spots.

  7. Guide to Professional Radio & TV Newscasting.

    ERIC Educational Resources Information Center

    Siller, Robert C.

    Written for those who want to get started in the field of broadcast journalism, this practical self-study guide discusses all the basic elements needed and shows how the professionals on both local and network levels prepare for a newscast. The content encompasses how a newsman writes his copy, how he "plays" his story, and how writing style is…

  8. First significant image improvement from a sodium-layer laser guide star adaptive optics system at Lick Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S.S.; Max, C.E.; Friedman, H.W.

    1997-07-14

    Atmospheric turbulence severely limits the resolution of ground-based telescopes. Adaptive optics can correct for the aberrations caused by the atmosphere, but requires a bright wavefront reference source in close angular proximity to the object being imaged. Since natural reference stars of the necessary brightness are relatively rare, methods of generating artificial reference beacons have been under active investigation for more than a decade. In this paper, we report the first significant image improvement achieved using a sodium-layer laser guide star as a wavefront reference for a high- order adaptive optics system. An artificial beacon was created by resonant scattering frommore » atomic sodium in the mesosphere, at an altitude of 95 km. Using this laser guide star, an adaptive optics system on the 3 m Shane Telescope at Lick Observatory produced a factor of 2.4 increase in peak intensity and a factor of 2 decrease in full width at half maximum of a stellar image, compared with image motion compensation alone. The Strehl ratio when using the laser guide star as the reference was 65% of that obtained with a natural guide star, and the image full widths at half maximum were identical, 0.3 arc sec, using either the laser or the natural guide star. This sodium-layer laser guide star technique holds great promise for the world`s largest telescopes. 24 refs., 4 figs., 1 tab.« less

  9. Deep architecture neural network-based real-time image processing for image-guided radiotherapy.

    PubMed

    Mori, Shinichiro

    2017-08-01

    To develop real-time image processing for image-guided radiotherapy, we evaluated several neural network models for use with different imaging modalities, including X-ray fluoroscopic image denoising. Setup images of prostate cancer patients were acquired with two oblique X-ray fluoroscopic units. Two types of residual network were designed: a convolutional autoencoder (rCAE) and a convolutional neural network (rCNN). We changed the convolutional kernel size and number of convolutional layers for both networks, and the number of pooling and upsampling layers for rCAE. The ground-truth image was applied to the contrast-limited adaptive histogram equalization (CLAHE) method of image processing. Network models were trained to keep the quality of the output image close to that of the ground-truth image from the input image without image processing. For image denoising evaluation, noisy input images were used for the training. More than 6 convolutional layers with convolutional kernels >5×5 improved image quality. However, this did not allow real-time imaging. After applying a pair of pooling and upsampling layers to both networks, rCAEs with >3 convolutions each and rCNNs with >12 convolutions with a pair of pooling and upsampling layers achieved real-time processing at 30 frames per second (fps) with acceptable image quality. Use of our suggested network achieved real-time image processing for contrast enhancement and image denoising by the use of a conventional modern personal computer. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems

    PubMed Central

    Kirui, Dickson K.; Ferrari, Mauro

    2016-01-01

    Rapid technical advances in the field of non-linear microscopy have made intravital microscopy a vital pre-clinical tool for research and development of imaging-guided drug delivery systems. The ability to dynamically monitor the fate of macromolecules in live animals provides invaluable information regarding properties of drug carriers (size, charge, and surface coating), physiological, and pathological processes that exist between point-of-injection and the projected of site of delivery, all of which influence delivery and effectiveness of drug delivery systems. In this Review, we highlight how integrating intravital microscopy imaging with experimental designs (in vitro analyses and mathematical modeling) can provide unique information critical in the design of novel disease-relevant drug delivery platforms with improved diagnostic and therapeutic indexes. The Review will provide the reader an overview of the various applications for which intravital microscopy has been used to monitor the delivery of diagnostic and therapeutic agents and discuss some of their potential clinical applications. PMID:25901526

  11. Measurement of cone beam CT coincidence with megavoltage isocentre and image sharpness using the QUASAR Penta-Guide phantom.

    PubMed

    Sykes, J R; Lindsay, R; Dean, C J; Brettle, D S; Magee, D R; Thwaites, D I

    2008-10-07

    For image-guided radiotherapy (IGRT) systems based on cone beam CT (CBCT) integrated into a linear accelerator, the reproducible alignment of imager to x-ray source is critical to the registration of both the x-ray-volumetric image with the megavoltage (MV) beam isocentre and image sharpness. An enhanced method of determining the CBCT to MV isocentre alignment using the QUASAR Penta-Guide phantom was developed which improved both precision and accuracy. This was benchmarked against our existing method which used software and a ball-bearing (BB) phantom provided by Elekta. Additionally, a method of measuring an image sharpness metric (MTF(50)) from the edge response function of a spherical air cavity within the Penta-Guide phantom was developed and its sensitivity was tested by simulating misalignments of the kV imager. Reproducibility testing of the enhanced Penta-Guide method demonstrated a systematic error of <0.2 mm when compared to the BB method with near equivalent random error (s=0.15 mm). The mean MTF(50) for five measurements was 0.278+/-0.004 lp mm(-1) with no applied misalignment. Simulated misalignments exhibited a clear peak in the MTF(50) enabling misalignments greater than 0.4 mm to be detected. The Penta-Guide phantom can be used to precisely measure CBCT-MV coincidence and image sharpness on CBCT-IGRT systems.

  12. FUNCTIONAL NANOPARTICLES FOR MOLECULAR IMAGING GUIDED GENE DELIVERY

    PubMed Central

    Liu, Gang; Swierczewska, Magdalena; Lee, Seulki; Chen, Xiaoyuan

    2010-01-01

    Gene therapy has great potential to bring tremendous changes in treatment of various diseases and disorders. However, one of the impediments to successful gene therapy is the inefficient delivery of genes to target tissues and the inability to monitor delivery of genes and therapeutic responses at the targeted site. The emergence of molecular imaging strategies has been pivotal in optimizing gene therapy; since it can allow us to evaluate the effectiveness of gene delivery noninvasively and spatiotemporally. Due to the unique physiochemical properties of nanomaterials, numerous functional nanoparticles show promise in accomplishing gene delivery with the necessary feature of visualizing the delivery. In this review, recent developments of nanoparticles for molecular imaging guided gene delivery are summarized. PMID:22473061

  13. Solar polar orbit radio telescope for space weather forecast

    NASA Astrophysics Data System (ADS)

    Wu, J.; Wang, C.; Wang, S.; Wu, J.; Sun, W.; Cai, J.; Yan, Y.

    Radio emission from density plasma can be detected at low radio frequencies. An image of such plasma clouds of the entire inner interplanetary space is always a wanted input for space weather forecast and ICME propagation studies. To take such an image within the ecliptic plane may not fully explore what is happening around the Sun not only because of the blockage of the Sun, also because most of the ICMEs are propagating in the low-latitude of the Sun, near the ecliptic plane. It is then proposed to launch a solar polar orbit radio telescope to acquire high density plasma cloud images from the entire inner interplanetary space. Low radio frequency images require a large antenna aperture in space. It is, therefore, proposed to use the existing passive synthetic aperture radiometer technology to reduce mass and complicity of the deployment system of the big antenna. In order to reduce the mass of the antenna by using minimum number of elements, a zero redundant antenna element design can be used with a rotating time-shared sampling system. A preliminary assessment study shows the mission is feasible.

  14. An Annotated Guide to the First Orbital Image

    NASA Image and Video Library

    2017-12-08

    NASA image acquired: March 29, 2011 This historic first orbital image of Mercury was acquired 37 years to the day after Mariner 10’s historic first flyby of the innermost planet. Labels have been added to indicate several craters that were named based on Mariner 10 images, as well as Debussy, Matabei, and Berkel, which were named based on MESSENGER flyby images. The surface contained in the white lines is terrain previously unseen by spacecraft, and the star indicates the location of the south pole. On March 17, 2011 (March 18, 2011, UTC), MESSENGER became the first spacecraft to orbit the planet Mercury. The mission is currently in its commissioning phase, during which spacecraft and instrument performance are verified through a series of specially designed checkout activities. In the course of the one-year primary mission, the spacecraft's seven scientific instruments and radio science investigation will unravel the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the science questions that the MESSENGER mission has set out to answer. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  15. MRT letter: Guided filtering of image focus volume for 3D shape recovery of microscopic objects.

    PubMed

    Mahmood, Muhammad Tariq

    2014-12-01

    In this letter, a shape from focus (SFF) method is proposed that utilizes the guided image filtering to enhance the image focus volume efficiently. First, image focus volume is computed using a conventional focus measure. Then each layer of image focus volume is filtered using guided filtering. In this work, the all-in-focus image, which can be obtained from the initial focus volume, is used as guidance image. Finally, improved depth map is obtained from the filtered image focus volume by maximizing the focus measure along the optical axis. The proposed SFF method is efficient and provides better depth maps. The improved performance is highlighted by conducting several experiments using image sequences of simulated and real microscopic objects. The comparative analysis demonstrates the effectiveness of the proposed SFF method. © 2014 Wiley Periodicals, Inc.

  16. Design of light guide sleeve on hyperspectral imaging system for skin diagnosis

    NASA Astrophysics Data System (ADS)

    Yan, Yung-Jhe; Chang, Chao-Hsin; Huang, Ting-Wei; Chiang, Hou-Chi; Wu, Jeng-Fu; Ou-Yang, Mang

    2017-08-01

    A hyperspectral imaging system is proposed for early study of skin diagnosis. A stable and high hyperspectral image quality is important for analysis. Therefore, a light guide sleeve (LGS) was designed for the embedded on a hyperspectral imaging system. It provides a uniform light source on the object plane with the determined distance. Furthermore, it can shield the ambient light from entering the system and increasing noise. For the purpose of producing a uniform light source, the LGS device was designed in the symmetrical double-layered structure. It has light cut structures to adjust distribution of rays between two layers and has the Lambertian surface in the front-end to promote output uniformity. In the simulation of the design, the uniformity of illuminance was about 91.7%. In the measurement of the actual light guide sleeve, the uniformity of illuminance was about 92.5%.

  17. Concepts and Preliminary Data Toward the Realization of Image-guided Liver Surgery

    PubMed Central

    Cash, David M.; Miga, Michael I.; Glasgow, Sean C.; Dawant, Benoit M.; Clements, Logan W.; Cao, Zhujiang; Galloway, Robert L.; Chapman, William C.

    2013-01-01

    Image-guided surgery provides navigational assistance to the surgeon by displaying the surgical probe position on a set of preoperative tomograms in real time. In this study, the feasibility of implementing image-guided surgery concepts into liver surgery was examined during eight hepatic resection procedures. Preoperative tomographic image data were acquired and processed. Accompanying intraoperative data on liver shape and position were obtained through optically tracked probes and laser range scanning technology. The preoperative and intraoperative representations of the liver surface were aligned using the iterative closest point surface matching algorithm. Surface registrations resulted in mean residual errors from 2 to 6 mm, with errors of target surface regions being below a stated goal of 1 cm. Issues affecting registration accuracy include liver motion due to respiration, the quality of the intraoperative surface data, and intraoperative organ deformation. Respiratory motion was quantified during the procedures as cyclical, primarily along the cranial–caudal direction. The resulting registrations were more robust and accurate when using laser range scanning to rapidly acquire thousands of points on the liver surface and when capturing unique geometric regions on the liver surface, such as the inferior edge. Finally, finite element models recovered much of the observed intraoperative deformation, further decreasing errors in the registration. Image-guided liver surgery has shown the potential to provide surgeons with important navigation aids that could increase the accuracy of targeting lesions and the number of patients eligible for surgical resection. PMID:17458587

  18. The evolution of image-guided lumbosacral spine surgery.

    PubMed

    Bourgeois, Austin C; Faulkner, Austin R; Pasciak, Alexander S; Bradley, Yong C

    2015-04-01

    Techniques and approaches of spinal fusion have considerably evolved since their first description in the early 1900s. The incorporation of pedicle screw constructs into lumbosacral spine surgery is among the most significant advances in the field, offering immediate stability and decreased rates of pseudarthrosis compared to previously described methods. However, early studies describing pedicle screw fixation and numerous studies thereafter have demonstrated clinically significant sequelae of inaccurate surgical fusion hardware placement. A number of image guidance systems have been developed to reduce morbidity from hardware malposition in increasingly complex spine surgeries. Advanced image guidance systems such as intraoperative stereotaxis improve the accuracy of pedicle screw placement using a variety of surgical approaches, however their clinical indications and clinical impact remain debated. Beginning with intraoperative fluoroscopy, this article describes the evolution of image guided lumbosacral spinal fusion, emphasizing two-dimensional (2D) and three-dimensional (3D) navigational methods.

  19. Image-guided system versus manual marking for toric intraocular lens alignment in cataract surgery.

    PubMed

    Webers, Valentijn S C; Bauer, Noel J C; Visser, Nienke; Berendschot, Tos T J M; van den Biggelaar, Frank J H M; Nuijts, Rudy M M A

    2017-06-01

    To compare the accuracy of toric intraocular lens (IOL) alignment using the Verion Image-Guided System versus a conventional manual ink-marking procedure. University Eye Clinic Maastricht, Maastricht, the Netherlands. Prospective randomized clinical trial. Eyes with regular corneal astigmatism of at least 1.25 diopters (D) that required cataract surgery and toric IOL implantation (Acrysof SN6AT3-T9) were randomly assigned to the image-guided group or the manual-marking group. The primary outcome was the alignment of the toric IOL based on preoperative images and images taken immediately after surgery. Secondary outcome measures were residual astigmatism, uncorrected distance visual acuity (UDVA), and complications. The study enrolled 36 eyes (24 patients). The mean toric IOL misalignment was significantly less in the image-guided group than in the manual group 1 hour (1.3 degrees ± 1.6 [SD] versus 2.8 ± 1.8 degrees; P = .02) and 3 months (1.7 ± 1.5 degrees versus 3.1 ± 2.1 degrees; P < .05) postoperatively. The mean residual refractive cylinder was -0.36 ± 0.32 D and -0.47 ± 0.28 D in the image-guided group and manual group, respectively (P > .05). The mean UDVA was 0.03 ± 0.10 logarithm of minimum angle of resolution (logMAR) and 0.04 ± 0.09 logMAR, respectively (both P > .05). No intraoperative complications occurred during any surgery. The IOL misalignment was significantly less with digital marking than with manual marking; this did not result in a better UDVA or lower residual refractive astigmatism. Copyright © 2017 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  20. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery

    PubMed Central

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-01-01

    Purpose Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The

  1. MIND Demons for MR-to-CT Deformable Image Registration In Image-Guided Spine Surgery.

    PubMed

    Reaungamornrat, S; De Silva, T; Uneri, A; Wolinsky, J-P; Khanna, A J; Kleinszig, G; Vogt, S; Prince, J L; Siewerdsen, J H

    2016-02-27

    Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. A modality-independent deformable registration method has been developed to estimate a viscoelastic diffeomorphic map between preoperative MR and intraoperative CT. The method yields registration

  2. Radio Telescopes Reveal Unseen Galactic Cannibalism

    NASA Astrophysics Data System (ADS)

    2008-06-01

    Radio-telescope images have revealed previously-unseen galactic cannibalism -- a triggering event that leads to feeding frenzies by gigantic black holes at the cores of galaxies. Astronomers have long suspected that the extra-bright cores of spiral galaxies called Seyfert galaxies are powered by supermassive black holes consuming material. However, they could not see how the material is started on its journey toward the black hole. Optical/Radio Comparison Visible-light (left) and radio (right) image of galaxy pair: Radio image shows gas streaming between galaxies. CREDIT: Kuo et al., NRAO/AUI/NSF Click on image for more graphics. One leading theory said that Seyfert galaxies have been disturbed by close encounters with neighboring galaxies, thus stirring up their gas and bringing more of it within the gravitational reach of the black hole. However, when astronomers looked at Seyferts with visible-light telescopes, only a small fraction showed any evidence of such an encounter. Now, new images of hydrogen gas in Seyferts made using the National Science Foundation's Very Large Array (VLA) radio telescope show the majority of them are, in fact, disturbed by ongoing encounters with neighbor galaxies. "The VLA lifted the veil on what's really happening with these galaxies," said Cheng-Yu Kuo, a graduate student at the University of Virginia. "Looking at the gas in these galaxies clearly showed that they are snacking on their neighbors. This is a dramatic contrast with their appearance in visible starlight," he added. The effect of the galactic encounters is to send gas and dust toward the black hole and produce energy as the material ultimately is consumed. Black holes, concentrations of matter so dense that not even light can escape their gravitational pull, reside at the cores of many galaxies. Depending on how rapidly the black hole is eating, the galaxy can show a wide range of energetic activity. Seyfert galaxies have the mildest version of this activity, while

  3. CME Expansion as the Driver of Metric Type II Shock Emission as Revealed by Self-consistent Analysis of High-Cadence EUV Images and Radio Spectrograms

    NASA Astrophysics Data System (ADS)

    Kouloumvakos, A.; Patsourakos, S.; Hillaris, A.; Vourlidas, A.; Preka-Papadema, P.; Moussas, X.; Caroubalos, C.; Tsitsipis, P.; Kontogeorgos, A.

    2014-06-01

    On 13 June 2010, an eruptive event occurred near the solar limb. It included a small filament eruption and the onset of a relatively narrow coronal mass ejection (CME) surrounded by an extreme ultraviolet (EUV) wave front recorded by the Solar Dynamics Observatory's (SDO) Atmospheric Imaging Assembly (AIA) at high cadence. The ejection was accompanied by a GOES M1.0 soft X-ray flare and a Type-II radio burst; high-resolution dynamic spectra of the latter were obtained by the Appareil de Routine pour le Traitement et l'Enregistrement Magnetique de l'Information Spectral (ARTEMIS IV) radio spectrograph. The combined observations enabled a study of the evolution of the ejecta and the EUV wave front and its relationship with the coronal shock manifesting itself as metric Type-II burst. By introducing a novel technique, which deduces a proxy of the EUV compression ratio from AIA imaging data and compares it with the compression ratio deduced from the band-split of the Type-II metric radio burst, we are able to infer the potential source locations of the radio emission of the shock on that AIA images. Our results indicate that the expansion of the CME ejecta is the source for both EUV and radio shock emissions. Early in the CME expansion phase, the Type-II burst seems to originate in the sheath region between the EUV bubble and the EUV shock front in both radial and lateral directions. This suggests that both the nose and the flanks of the expanding bubble could have driven the shock.

  4. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    NASA Astrophysics Data System (ADS)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and

  5. Optimization of white matter tractography for pre-surgical planning and image-guided surgery.

    PubMed

    Arfanakis, Konstantinos; Gui, Minzhi; Lazar, Mariana

    2006-01-01

    Accurate localization of white matter fiber tracts in relation to brain tumors is a goal of critical importance to the neurosurgical community. White matter fiber tractography by means of diffusion tensor magnetic resonance imaging (DTI) is the only non-invasive method that can provide estimates of brain connectivity. However, conventional tractography methods are based on data acquisition techniques that suffer from image distortions and artifacts. Thus, a large percentage of white matter fiber bundles are distorted, and/or terminated early, while others are completely undetected. This severely limits the potential of fiber tractography in pre-surgical planning and image-guided surgery. In contrast, Turboprop-DTI is a technique that provides images with significantly fewer distortions and artifacts than conventional DTI data acquisition methods. The purpose of this study was to evaluate fiber tracking results obtained from Turboprop-DTI data. It was demonstrated that Turboprop may be a more appropriate DTI data acquisition technique for tracing white matter fibers than conventional DTI methods, especially in applications such as pre-surgical planning and image-guided surgery.

  6. RADIO IMAGING OBSERVATIONS OF PSR J1023+0038 IN AN LMXB STATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deller, A. T.; Moldon, J.; Patruno, A.

    2015-08-10

    The transitional millisecond pulsar (MSP) binary system PSR J1023+0038 re-entered an accreting state in 2013 June in which it bears many similarities to low-mass X-ray binaries (LMXBs) in quiescence or near-quiescence. At a distance of just 1.37 kpc, PSR J1023+0038 offers an unsurpassed ability to study low-level accretion onto a highly magnetized compact object. We have monitored PSR J1023+0038 intensively using radio imaging with the Karl G. Jansky Very Large Array, the European VLBI Network and the Low Frequency Array, seeing rapidly variable, flat spectrum emission that persists over a period of six months. The flat spectrum and variability aremore » indicative of synchrotron emission originating in an outflow from the system, most likely in the form of a compact, partially self-absorbed jet, as is seen in LMXBs at higher accretion rates. The radio brightness, however, greatly exceeds extrapolations made from observations of more vigorously accreting neutron star LMXB systems. We postulate that PSR J1023+0038 is undergoing radiatively inefficient “propeller-mode” accretion, with the jet carrying away a dominant fraction of the liberated accretion luminosity. We confirm that the enhanced γ-ray emission seen in PSR J1023+0038 since it re-entered an accreting state has been maintained; the increased γ-ray emission in this state can also potentially be associated with propeller-mode accretion. Similar accretion modes can be invoked to explain the radio and X-ray properties of the other two known transitional MSP systems XSS J12270–4859 and PSR J1824–2452I (M28I), suggesting that radiatively inefficient accretion may be a ubiquitous phenomenon among (at least one class of) neutron star binaries at low accretion rates.« less

  7. SUZAKU X-RAY IMAGING OF THE EXTENDED LOBE IN THE GIANT RADIO GALAXY NGC 6251 ASSOCIATED WITH THE FERMI-LAT SOURCE 2FGL J1629.4+8236

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeuchi, Y.; Kataoka, J.; Takahashi, Y.

    2012-04-10

    We report the results of a Suzaku X-ray imaging study of NGC 6251, a nearby giant radio galaxy with intermediate FR I/II radio properties. Our pointing direction was centered on the {gamma}-ray emission peak recently discovered with the Fermi Large Area Telescope (LAT) around the position of the northwest (NW) radio lobe 15 arcmin offset from the nucleus. After subtracting two 'off-source' pointings adjacent to the radio lobe and removing possible contaminants in the X-ray Imaging Spectrometer field of view, we found significant residual X-ray emission most likely diffuse in nature. The spectrum of the excess X-ray emission is wellmore » fitted by a power law with a photon index {Gamma} = 1.90 {+-} 0.15 and a 0.5-8 keV flux of 4 Multiplication-Sign 10{sup -13} erg cm{sup -2} s{sup -1}. We interpret this diffuse X-ray emission component as being due to inverse Compton upscattering of the cosmic microwave background photons by ultrarelativistic electrons within the lobe, with only a minor contribution from the beamed emission of the large-scale jet. Utilizing archival radio data for the source, we demonstrate by means of broadband spectral modeling that the {gamma}-ray flux of the Fermi-LAT source 2FGL J1629.4+8236 may well be accounted for by the high-energy tail of the inverse Compton continuum of the lobe. Thus, this claimed association of {gamma}-rays from the NW lobe of NGC 6251, together with the recent Fermi-LAT imaging of the extended lobes of Centaurus A, indicates that particles may be efficiently (re-)accelerated up to ultrarelativistic energies within extended radio lobes of nearby radio galaxies in general.« less

  8. Image-guided diagnosis of prostate cancer can increase detection of tumors

    Cancer.gov

    In the largest prospective study to date of image-guided technology for identifying suspicious regions of the prostate to biopsy, researchers compared the ability of this technology to detect high-risk prostate cancer with that of the current standard of

  9. Characterization and evaluation of ionizing and non-ionizing imaging systems used in state of the art image-guided radiation therapy techniques

    NASA Astrophysics Data System (ADS)

    Stanley, Dennis Nichols

    With the growing incidence of cancer worldwide, the need for effective cancer treatment is paramount. Currently, radiation therapy exists as one of the few effective, non-invasive methods of reducing tumor size and has the capability for the elimination of localized tumors. Radiation therapy utilizes non-invasive external radiation to treat localized cancers but to be effective, physicians must be able to visualize and monitor the internal anatomy and target displacements. Image-Guided Radiation Therapy frequently utilizes planar and volumetric imaging during a course of radiation therapy to improve the precision and accuracy of the delivered treatment to the internal anatomy. Clinically, visualization of the internal anatomy allows physicians to refine the treatment to include as little healthy tissue as possible. This not only increases the effectiveness of treatment by damaging only the tumor but also increases the quality of life for the patient by decreasing the amount of healthy tissue damaged. Image-Guided Radiation Therapy is commonly used to treat tumors in areas of the body that are prone to movement, such as the lungs, liver, and prostate, as well as tumors located close to critical organs and tissues such as the tumors in the brain and spinal cord. Image-Guided Radiation Therapy can utilize both ionizing modalities, like x-ray based planar radiography and cone-beam CT, and nonionizing modalities like MRI, ultrasound and video-based optical scanning systems. Currently ionizing modalities are most commonly utilized for their ability to visualize and monitor internal anatomy but cause an increase to the total dose to the patient. Nonionizing imaging modalities allow frequent/continuous imaging without the increase in dose; however, they are just beginning to be clinically implemented in radiation oncology. With the growing prevalence and variety of Image-Guided Radiation Therapy imaging modalities the ability to evaluate the overall image quality, monitor

  10. Parametric PET/MR Fusion Imaging to Differentiate Aggressive from Indolent Primary Prostate Cancer with Application for Image-Guided Prostate Cancer Biopsies

    DTIC Science & Technology

    2013-10-01

    AD_________________ Award Number: W81XWH-12-1-0597 TITLE: Parametric PET /MR Fusion Imaging to...Parametric PET /MR Fusion Imaging to Differentiate Aggressive from Indolent Primary Prostate Cancer with Application for Image-Guided Prostate Cancer Biopsies...The study investigates whether fusion PET /MRI imaging with 18F-choline PET /CT and diffusion-weighted MRI can be successfully applied to target prostate

  11. Intelligent Image Analysis for Image-Guided Laser Hair Removal and Skin Therapy

    NASA Technical Reports Server (NTRS)

    Walker, Brian; Lu, Thomas; Chao, Tien-Hsin

    2012-01-01

    We present the development of advanced automatic target recognition (ATR) algorithms for the hair follicles identification in digital skin images to accurately direct the laser beam to remove the hair. The ATR system first performs a wavelet filtering to enhance the contrast of the hair features in the image. The system then extracts the unique features of the targets and sends the features to an Adaboost based classifier for training and recognition operations. The ATR system automatically classifies the hair, moles, or other skin lesion and provides the accurate coordinates of the intended hair follicle locations. The coordinates can be used to guide a scanning laser to focus energy only on the hair follicles. The intended benefit would be to protect the skin from unwanted laser exposure and to provide more effective skin therapy.

  12. Observatory Sponsoring Astronomical Image Contest

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Forget the headphones you saw in the Warner Brothers thriller Contact, as well as the guttural throbs emanating from loudspeakers at the Very Large Array in that 1997 movie. In real life, radio telescopes aren't used for "listening" to anything - just like visible-light telescopes, they are used primarily to make images of astronomical objects. Now, the National Radio Astronomy Observatory (NRAO) wants to encourage astronomers to use radio-telescope data to make truly compelling images, and is offering cash prizes to winners of a new image contest. Radio Galaxy Fornax A Radio Galaxy Fornax A Radio-optical composite image of giant elliptical galaxy NGC 1316, showing the galaxy (center), a smaller companion galaxy being cannibalized by NGC 1316, and the resulting "lobes" (orange) of radio emission caused by jets of particles spewed from the core of the giant galaxy Click on image for more detail and images CREDIT: Fomalont et al., NRAO/AUI/NSF "Astronomy is a very visual science, and our radio telescopes are capable of producing excellent images. We're sponsoring this contest to encourage astronomers to make the extra effort to turn good images into truly spectacular ones," said NRAO Director Fred K.Y. Lo. The contest, offering a grand prize of $1,000, was announced at the American Astronomical Society's meeting in Minneapolis, Minnesota. The image contest is part of a broader NRAO effort to make radio astronomical data and images easily accessible and widely available to scientists, students, teachers, the general public, news media and science-education professionals. That effort includes an expanded image gallery on the observatory's Web site. "We're not only adding new radio-astronomy images to our online gallery, but we're also improving the organization and accessibility of the images," said Mark Adams, head of education and public outreach (EPO) at NRAO. "Our long-term goal is to make the NRAO Image Gallery an international resource for radio astronomy imagery

  13. Use of an image-guided robotic radiosurgery system for the treatment of canine nonlymphomatous nasal tumors.

    PubMed

    Glasser, Seth A; Charney, Sarah; Dervisis, Nikolaos G; Witten, Matthew R; Ettinger, Susan; Berg, Jason; Joseph, Richard

    2014-01-01

    An image-guided robotic stereotactic radiosurgery (SRS) system can be used to deliver curative-intent radiation in either single fraction or hypofractionated doses. Medical records for 19 dogs with nonlymphomatous nasal tumors treated with hypofractionated image-guided robotic stereotactic body radiotherapy (SBRT), either with or without adjunctive treatment, were retrospectively analyzed for survival and prognostic factors. Median survival time (MST) was evaluated using Kaplan-Meier survival curves. Age, breed, tumor type, stage, tumor size, prescribed radiation dose, and heterogeneity index were analyzed for prognostic significance. Dogs were treated with three consecutive-day, 8-12 gray (Gy) fractions of image-guided robotic SBRT. Overall MST was 399 days. No significant prognostic factors were identified. Acute side effects were rare and mild. Late side effects included one dog with an oronasal fistula and six dogs with seizures. In three of six dogs, seizures were a presenting complaint prior to SBRT. The cause of seizures in the remaining three dogs could not be definitively determined due to lack of follow-up computed tomography (CT) imaging. The seizures could have been related to either progression of disease or late radiation effect. Results indicate that image-guided robotic SBRT, either with or without adjunctive therapy, for canine nonlymphomatous nasal tumors provides comparable survival times (STs) to daily fractionated megavoltage radiation with fewer required fractions and fewer acute side effects.

  14. Starburst Galaxies. II. Imaging and Spectroscopy of a Radio-selected Sample

    NASA Astrophysics Data System (ADS)

    Smith, Denise A.; Herter, Terry; Haynes, Martha P.; Beichman, C. A.; Gautier, T. N., III

    1996-06-01

    We present J-, H-, and K-band images and low-resolution K-band spectra of the 20 most luminous starburst galaxies from the survey of Condon, Frayer, & Broderick. Optical rotation curves are also shown for 10 of these galaxies. Near-infrared colors, optical depths, CO indices, and dynamical masses are calculated. The near-infrared colors of the starburst nuclei are significantly redder than those observed in "normal" galaxies. Together, the Brγ and radio fluxes available for five of the galaxies imply that the starbursts are heavily obscured; an average extinction of A_V_~ 25 is derived. Strong CO absorption features indicate that late-type evolved stars are present in many of the starbursts. The average dynamical mass of the starburst region is found to be (1.0 +/- 0.4) x 10^9^ M_sun_.

  15. Structure-guided engineering of Anticalins with improved binding behavior and biochemical characteristics for application in radio-immuno imaging and/or therapy.

    PubMed

    Eggenstein, E; Eichinger, A; Kim, H-J; Skerra, A

    2014-02-01

    Modern strategies in radio-immuno therapy and in vivo imaging require robust, small, and specific ligand-binding proteins. In this context we have previously developed artificial lipocalins, so-called Anticalins, with high binding activity toward rare-earth metal-chelate complexes using combinatorial protein design. Here we describe further improvement of the Anticalin C26 via in vitro affinity maturation to yield CL31, which has a fourfold slower dissociation half-life above 2h. Also, we present the crystallographic analyses of both the initial and the improved Anticalin, providing insight into the molecular mechanism of chelated metal binding and the role of amino acid substitutions during the step-wise affinity maturation. Notably, one of the four structurally variable loops that form the ligand pocket in the lipocalin scaffold undergoes a significant conformational change from C26 to CL31, acting as a lid that closes over the accommodated metal-chelate ligand. A systematic mutational study indicated that further improvement of ligand affinity is difficult to achieve while providing clues on the contribution of relevant side chains in the engineered binding pocket. Unexpectedly, some of the amino acid replacements led to strong increases - more then 10-fold - in the yield of soluble protein from periplasmic secretion in Escherichia coli. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. The future of image-guided radiotherapy-is image everything?

    PubMed

    Noble, David J; Burnet, Neil G

    2018-05-17

    MR-based image-guided (IG) radiotherapy via all-in-one MR treatment units (MR-linacs) is one of the hottest topics in contemporary radiotherapy research. From ingenious engineering solutions to complex physical problems, researchers have developed machines with the promise of superior image quality, and all the advantages this may confer. Benefits include better tumour visualisation, online adaptation and the potential for image biomarker-based personalised RT. However, it is important to remember that the technical challenges are real. In many instances, they are skillfully managed rather than abolished, a point illustrated by the wide variety of MR-linac designs. The proposed benefits also deserve careful inspection. Better visibility of the primary tumour on an IG scan cannot be bad, but does not automatically equate to better IG, which often depends on a more generalised match to daily anatomy. MR-linac will undoubtedly be a rich milieu to search for IMBs, but these will need to be carefully validated, and similar work with CT-based biomarkers using existing, cheaper, and more widely available hardware is currently ongoing. Online adaptation is an attractive concept, but practicalities are complex, and more work is required to understand which patients will benefit from plan adaptation, and when. Finally, the issue of cost cannot be overlooked, nor can the research community's responsibilities to global healthcare inequalities. MR-linac is an exciting and ingenious technology, which merits both investment and research. It may not, however, have the future to itself.

  17. The double quasar 0957+561: a radio study at 6-centimeters wavelength.

    PubMed

    Roberts, D H; Greenfield, P E; Burke, B F

    1979-08-31

    The optical double quasar 0957+561 has been interpreted as the gravitational double image of a single object. A radio map made with the Very Large Array of the National Radio Astronomy Observatory shows unresolved sources coincident With the optical images as well as a complex of related extended emission. Although the results cannot rule out the gravitational lens hypothesis, the complex radio structure is more easily interpreted as two separate quasars. The optical and radio properties of the two quasars are so similar that the two must have been formed at the same time with similar initial conditions.

  18. Heuristic estimation of electromagnetically tracked catheter shape for image-guided vascular procedures

    NASA Astrophysics Data System (ADS)

    Mefleh, Fuad N.; Baker, G. Hamilton; Kwartowitz, David M.

    2014-03-01

    In our previous work we presented a novel image-guided surgery (IGS) system, Kit for Navigation by Image Focused Exploration (KNIFE).1,2 KNIFE has been demonstrated to be effective in guiding mock clinical procedures with the tip of an electromagnetically tracked catheter overlaid onto a pre-captured bi-plane fluoroscopic loop. Representation of the catheter in KNIFE differs greatly from what is captured by the fluoroscope, due to distortions and other properties of fluoroscopic images. When imaged by a fluoroscope, catheters can be visualized due to the inclusion of radiopaque materials (i.e. Bi, Ba, W) in the polymer blend.3 However, in KNIFE catheter location is determined using a single tracking seed located in the catheter tip that is represented as a single point overlaid on pre-captured fluoroscopic images. To bridge the gap in catheter representation between KNIFE and traditional methods we constructed a catheter with five tracking seeds positioned along the distal 70 mm of the catheter. We have currently investigated the use of four spline interpolation methods for estimation of true catheter shape and have assesed the error in their estimation of true catheter shape. In this work we present a method for the evaluation of interpolation algorithms with respect to catheter shape determination.

  19. Heliophysics Radio Observations Enabled by the Deep Space Gateway

    NASA Astrophysics Data System (ADS)

    Kasper, J. C.

    2018-02-01

    This presentation reviews the scientific potential of low frequency radio imaging from space, the SunRISE radio interferometer, and the scientific value of larger future arrays in deep space and how they would benefit from the Deep Space Gateway.

  20. Soft γ-ray selected radio galaxies: favouring giant size discovery

    NASA Astrophysics Data System (ADS)

    Bassani, L.; Venturi, T.; Molina, M.; Malizia, A.; Dallacasa, D.; Panessa, F.; Bazzano, A.; Ubertini, P.

    2016-09-01

    Using the recent INTEGRAL/IBIS and Swift/BAT surveys we have extracted a sample of 64 confirmed plus three candidate radio galaxies selected in the soft gamma-ray band. The sample covers all optical classes and is dominated by objects showing a Fanaroff-Riley type II radio morphology; a large fraction (70 per cent) of the sample is made of `radiative mode' or high-excitation radio galaxies. We measured the source size on images from the NRAO VLA Sky Survey, the Faint Images of the Radio Sky at twenty-cm and the Sydney University Molonglo Sky Survey images and have compared our findings with data in the literature obtaining a good match. We surprisingly found that the soft gamma-ray selection favours the detection of large size radio galaxies: 60 per cent of objects in the sample have size greater than 0.4 Mpc while around 22 per cent reach dimension above 0.7 Mpc at which point they are classified as giant radio galaxies (GRGs), the largest and most energetic single entities in the Universe. Their fraction among soft gamma-ray selected radio galaxies is significantly larger than typically found in radio surveys, where only a few per cent of objects (1-6 per cent) are GRGs. This may partly be due to observational biases affecting radio surveys more than soft gamma-ray surveys, thus disfavouring the detection of GRGs at lower frequencies. The main reasons and/or conditions leading to the formation of these large radio structures are still unclear with many parameters such as high jet power, long activity time and surrounding environment all playing a role; the first two may be linked to the type of active galactic nucleus discussed in this work and partly explain the high fraction of GRGs found in the present sample. Our result suggests that high energy surveys may be a more efficient way than radio surveys to find these peculiar objects.

  1. Dosimetric evaluation of the OneDoseTM MOSFET for measuring kilovoltage imaging dose from image-guided radiotherapy procedures.

    PubMed

    Ding, George X; Coffey, Charles W

    2010-09-01

    The purpose of this study is to investigate the feasibility of using a single-use dosimeter, OneDose MOSFET designed for in vivo patient dosimetry, for measuring the radiation dose from kilovoltage (kV) x rays resulting from image-guided procedures. The OneDose MOSFET dosimeters were precalibrated by the manufacturer using Co-60 beams. Their energy response and characteristics for kV x rays were investigated by using an ionization chamber, in which the air-kerma calibration factors were obtained from an Accredited Dosimetry Calibration Laboratory (ADCL). The dosimetric properties have been tested for typical kV beams used in image-guided radiation therapy (IGRT). The direct dose reading from the OneDose system needs to be multiplied by a correction factor ranging from 0.30 to 0.35 for kilovoltage x rays ranging from 50 to 125 kVp, respectively. In addition to energy response, the OneDose dosimeter has up to a 20% reduced sensitivity for beams (70-125 kVp) incident from the back of the OneDose detector. The uncertainty in measuring dose resulting from a kilovoltage beam used in IGRT is approximately 20%; this uncertainty is mainly due to the sensitivity dependence of the incident beam direction relative to the OneDose detector. The ease of use may allow the dosimeter to be suitable for estimating the dose resulting from image-guided procedures.

  2. Spectral Energy Distribution and Radio Halo of NGC 253 at Low Radio Frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapińska, A. D.; Staveley-Smith, L.; Meurer, G. R.

    We present new radio continuum observations of NGC 253 from the Murchison Widefield Array at frequencies between 76 and 227 MHz. We model the broadband radio spectral energy distribution for the total flux density of NGC 253 between 76 MHz and 11 GHz. The spectrum is best described as a sum of a central starburst and extended emission. The central component, corresponding to the inner 500 pc of the starburst region of the galaxy, is best modeled as an internally free–free absorbed synchrotron plasma, with a turnover frequency around 230 MHz. The extended emission component of the spectrum of NGCmore » 253 is best described as a synchrotron emission flattening at low radio frequencies. We find that 34% of the extended emission (outside the central starburst region) at 1 GHz becomes partially absorbed at low radio frequencies. Most of this flattening occurs in the western region of the southeast halo, and may be indicative of synchrotron self-absorption of shock-reaccelerated electrons or an intrinsic low-energy cutoff of the electron distribution. Furthermore, we detect the large-scale synchrotron radio halo of NGC 253 in our radio images. At 154–231 MHz the halo displays the well known X-shaped/horn-like structure, and extends out to ∼8 kpc in the z -direction (from the major axis).« less

  3. An image-guided precision proton radiation platform for preclinical in vivo research

    NASA Astrophysics Data System (ADS)

    Ford, E.; Emery, R.; Huff, D.; Narayanan, M.; Schwartz, J.; Cao, N.; Meyer, J.; Rengan, R.; Zeng, J.; Sandison, G.; Laramore, G.; Mayr, N.

    2017-01-01

    There are many unknowns in the radiobiology of proton beams and other particle beams. We describe the development and testing of an image-guided low-energy proton system optimized for radiobiological research applications. A 50 MeV proton beam from an existing cyclotron was modified to produce collimated beams (as small as 2 mm in diameter). Ionization chamber and radiochromic film measurements were performed and benchmarked with Monte Carlo simulations (TOPAS). The proton beam was aligned with a commercially-available CT image-guided x-ray irradiator device (SARRP, Xstrahl Inc.). To examine the alternative possibility of adapting a clinical proton therapy system, we performed Monte Carlo simulations of a range-shifted 100 MeV clinical beam. The proton beam exhibits a pristine Bragg Peak at a depth of 21 mm in water with a dose rate of 8.4 Gy min-1 (3 mm depth). The energy of the incident beam can be modulated to lower energies while preserving the Bragg peak. The LET was: 2.0 keV µm-1 (water surface), 16 keV µm-1 (Bragg peak), 27 keV µm-1 (10% peak dose). Alignment of the proton beam with the SARRP system isocenter was measured at 0.24 mm agreement. The width of the beam changes very little with depth. Monte Carlo-based calculations of dose using the CT image data set as input demonstrate in vivo use. Monte Carlo simulations of the modulated 100 MeV clinical proton beam show a significantly reduced Bragg peak. We demonstrate the feasibility of a proton beam integrated with a commercial x-ray image-guidance system for preclinical in vivo studies. To our knowledge this is the first description of an experimental image-guided proton beam for preclinical radiobiology research. It will enable in vivo investigations of radiobiological effects in proton beams.

  4. Micro-tattoo guided OCT imaging of site specific inflammation

    NASA Astrophysics Data System (ADS)

    Phillips, Kevin G.; Choudhury, Niloy; Samatham, Ravikant V.; Singh, Harvinder; Jacques, Steven L.

    2010-02-01

    Epithelial biologists studying human skin diseases such as cancer formation and psoriasis commonly utilize mouse models to characterize the interplay among cells and intracellular signal transduction pathways that result in programmed changes in gene expression and cellular behaviors. The information obtained from animal models is useful only when phenotypic presentations of disease recapitulate those observed in humans. Excision of tissues followed by histochemical analysis is currently the primary means of establishing the morphological presentation. Non invasive imaging of animal models provides an alternate means to characterize tissue morphology associated with the disease of interest in vivo. While useful, the ability to perform in vivo imaging at different time points in the same tissue location has been a challenge. This information is key to understanding site specific changes as the imaged tissue can now be extracted and analyzed for mRNA expression. We present a method employing a micro-tattoo to guide optical coherence tomography (OCT) imaging of ultraviolet induced inflammation over time in the same tissue locations.

  5. IMAGE-GUIDED EVALUATION AND MONITORING OF TREATMENT RESPONSE IN PATIENTS WITH DRY EYE DISEASE

    PubMed Central

    Hamrah, Pedram

    2014-01-01

    Dry eye disease (DED) is one of the most common ocular disorders worldwide. The pathophysiological mechanisms involved in the development of DED are not well understood and thus treating DED has been a significant challenge for ophthalmologists. Most of the currently available diagnostic tests demonstrate low correlation to patient symptoms and have low reproducibility. Recently, sophisticated in vivo imaging modalities have become available for patient care, namely, in vivo confocal microscopy (IVCM) and optical coherence tomography (OCT). These emerging modalities are powerful and non-invasive, allowing real-time visualization of cellular and anatomical structures of the cornea and ocular surface. Here we discuss how, by providing both qualitative and quantitative assessment, these techniques can be used to demonstrate early subclinical disease, grade layer-by-layer severity, and allow monitoring of disease severity by cellular alterations. Imaging-guided stratification of patients may also be possible in conjunction with clinical examination methods. Visualization of subclinical changes and stratification of patients in vivo, allows objective image-guided evaluation of tailored treatment response based on cellular morphological alterations specific to each patient. This image-guided approach to DED may ultimately improve patient outcomes and allow studying the efficacy of novel therapies in clinical trials. PMID:24696045

  6. Endoscopic hyperspectral imaging: light guide optimization for spectral light source

    NASA Astrophysics Data System (ADS)

    Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.

    2018-02-01

    Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.

  7. In-vivo ultrasound and photoacoustic image- guided photothermal cancer therapy using silica-coated gold nanorods.

    PubMed

    Kim, Seungsoo; Chen, Yun-Sheng; Luke, Geoffrey P; Emelianov, Stanislav Y

    2014-05-01

    In nanoparticle-augmented photothermal therapy, evaluating the delivery and spatial distribution of nanoparticles, followed by remote temperature mapping and monitoring, is essential to ensure the optimal therapeutic outcome. The utility of ultrasound and photoacoustic imaging to assist photothermal therapy has been previously demonstrated. Here, using a mouse xenograft tumor model, it is demonstrated in vivo that ultrasound-guided photoacoustic imaging can be used to plan the treatment and to guide the therapy. To evaluate nanoparticle delivery and spatial distribution, three-dimensional ultrasound and spectroscopic photoacoustic imaging of a mouse with a tumor was performed before and after intravenous injection of silica-coated gold nanorods. After injection and sufficient circulation of nanoparticles, photothermal therapy was performed for 5 min using an 808-nm continuous-wave laser. During the photothermal therapy, photoacoustic images were acquired continuously and used to measure the temperature changes within tissue. A heterogeneous distribution of temperature, which was spatially correlated with the measured distribution of nanoparticles, indicated that peak temperatures of 53°C were achieved in the tumor. An Arrhenius thermal damage model determined that this thermal deposition would result in significant cell death. The results of this study suggest that ultrasound and photoacoustic imaging can effectively guide photothermal therapy to achieve the desired thermal treatment.

  8. INTERSTELLAR SCINTILLATION AND THE RADIO COUNTERPART OF THE FAST RADIO BURST FRB 150418

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akiyama, Kazunori; Johnson, Michael D., E-mail: kazu@haystack.mit.edu

    Keane et al. have recently reported the discovery of a new fast radio burst (FRB), FRB 150418, with a promising radio counterpart at 5.5 and 7.5 GHz—a rapidly decaying source, falling from 200–300 μ Jy to 100 μ Jy on timescales of ∼6 days. This transient source may be associated with an elliptical galaxy at redshift z = 0.492, providing the first firm spectroscopic redshift for an FRB and the ability to estimate the density of baryons in the intergalactic medium via the combination of known redshift and radio dispersion of the FRB. An alternative explanation, first suggested by Williamsmore » and Berger, is that the identified counterpart may instead be a compact active galactic nucleus (AGN). The putative counterpart’s variation may then instead be extrinsic, caused by refractive scintillation in the ionized interstellar medium of the Milky Way, which would invalidate the association with FRB 150418. We examine this latter explanation in detail and show that the reported observations are consistent with scintillating radio emission from the core of a radio-loud AGN having a brightness temperature T {sub b} ≳ 10{sup 9} K. Using numerical simulations of the expected scattering for the line of sight to FRB 150418, we provide example images and light curves of such an AGN at 5.5 and 7.5 GHz. These results can be compared with continued radio monitoring to conclusively determine the importance of scintillation for the observed radio variability, and they show that scintillation is a critical consideration for continued searches for FRB counterparts at radio wavelengths.« less

  9. Automated tru-cut imaging-guided core needle biopsy of canine orbital neoplasia. A prospective feasibility study

    PubMed Central

    Cirla, A.; Rondena, M.; Bertolini, G.

    2016-01-01

    The purpose of this study was to evaluate the diagnostic value of imaging-guided core needle biopsy for canine orbital mass diagnosis. A second excisional biopsy obtained during surgery or necropsy was used as the reference standard. A prospective feasibility study was conducted in 23 canine orbital masses at a single centre. A complete ophthalmic examination was always followed by orbital ultrasound and computed tomography (CT) examination of the head. All masses were sampled with the patient still on the CT table using ultrasound (US) guided automatic tru-cut device. The most suitable sampling approach to the orbit was chosen each time based on the CT image analysis. One of the following different approaches was used: trans-orbital, trans-conjunctival or trans-masseteric. In all cases, the imaging-guided biopsy provided a sufficient amount of tissue for the histopathological diagnosis, which concurred with the biopsies obtained using the excisional technique. CT examination was essential for morphological diagnosis and provided detailed topographic information that allowed us to choose the safest orbital approach for the biopsy. US guided automatic tru-cut biopsy based on CT images, performed with patient still on the CT table, resulted in a minimally invasive, relatively easy, and accurate diagnostic procedure in dogs with orbital masses. PMID:27540512

  10. Automated tru-cut imaging-guided core needle biopsy of canine orbital neoplasia. A prospective feasibility study.

    PubMed

    Cirla, A; Rondena, M; Bertolini, G

    2016-01-01

    The purpose of this study was to evaluate the diagnostic value of imaging-guided core needle biopsy for canine orbital mass diagnosis. A second excisional biopsy obtained during surgery or necropsy was used as the reference standard. A prospective feasibility study was conducted in 23 canine orbital masses at a single centre. A complete ophthalmic examination was always followed by orbital ultrasound and computed tomography (CT) examination of the head. All masses were sampled with the patient still on the CT table using ultrasound (US) guided automatic tru-cut device. The most suitable sampling approach to the orbit was chosen each time based on the CT image analysis. One of the following different approaches was used: trans-orbital, trans-conjunctival or trans-masseteric. In all cases, the imaging-guided biopsy provided a sufficient amount of tissue for the histopathological diagnosis, which concurred with the biopsies obtained using the excisional technique. CT examination was essential for morphological diagnosis and provided detailed topographic information that allowed us to choose the safest orbital approach for the biopsy. US guided automatic tru-cut biopsy based on CT images, performed with patient still on the CT table, resulted in a minimally invasive, relatively easy, and accurate diagnostic procedure in dogs with orbital masses.

  11. Bone remodeling after MR imaging-guided high-intensity focused ultrasound ablation: evaluation with MR imaging, CT, Na(18)F-PET, and histopathologic examination in a swine model.

    PubMed

    Bucknor, Matthew D; Rieke, Viola; Seo, Youngho; Horvai, Andrew E; Hawkins, Randall A; Majumdar, Sharmila; Link, Thomas M; Saeed, Maythem

    2015-02-01

    To serially monitor bone remodeling in the swine femur after magnetic resonance (MR) imaging-guided high-intensity focused ultrasound (HIFU) ablation with MR imaging, computed tomography (CT), sodium fluorine 18 (Na(18)F)-positron emission tomography (PET), and histopathologic examination, as a function of sonication energy. Experimental procedures received approval from the local institutional animal care and use committee. MR imaging-guided HIFU was used to create distal and proximal ablations in the right femurs of eight pigs. The energy used at the distal target was higher (mean, 419 J; range, 390-440 J) than that used at the proximal target (mean, 324 J; range, 300-360 J). Imaging was performed before and after ablation with 3.0-T MR imaging and 64-section CT. Animals were reevaluated at 3 and 6 weeks with MR imaging (n = 8), CT (n = 8), Na(18)F-PET (n = 4), and histopathologic examination (n = 4). Three-dimensional ablation lengths were measured on contrast material-enhanced MR images, and bone remodeling in the cortex was measured on CT images. Ablation sizes at MR imaging 3 and 6 weeks after MR imaging-guided HIFU ablation were similar between proximal (low-energy) and distal (high-energy) lesions (average, 8.7 × 21.9 × 16.4 mm). However, distal ablation lesions (n = 8) demonstrated evidence of subperiosteal new bone formation at CT, with a subtle focus of new ossification at 3 weeks and a larger focus of ossification at 6 weeks. New bone formation was associated with increased uptake at Na(18)F-PET in three of four animals; this was confirmed at histopathologic examination in four of four animals. MR imaging-guided HIFU ablation of bone may result in progressive remodeling, with both subcortical necrosis and subperiosteal new bone formation. This may be related to the use of high energies. MR imaging, CT, and PET are suitable noninvasive techniques to monitor bone remodeling after MR imaging-guided HIFU ablation. © RSNA, 2014.

  12. Survey of image-guided radiotherapy use in Australia.

    PubMed

    Batumalai, Vikneswary; Holloway, Lois Charlotte; Kumar, Shivani; Dundas, Kylie; Jameson, Michael Geoffrey; Vinod, Shalini Kavita; Delaney, Geoff P

    2017-06-01

    This study aimed to evaluate the current use of imaging technologies for planning and delivery of radiotherapy (RT) in Australia. An online survey was emailed to all Australian RT centres in August 2015. The survey inquired about imaging practices during planning and treatment delivery processes. Participants were asked about the types of image-guided RT (IGRT) technologies and the disease sites they were used for, reasons for implementation, frequency of imaging and future plans for IGRT use in their department. The survey was completed by 71% of Australian RT centres. All respondents had access to computed tomography (CT) simulators and regularly co-registered the following scans to the RT: diagnostic CT (50%), diagnostic magnetic resonance imaging (MRI) (95%), planning MRI (34%), planning positron emission tomography (PET) (26%) and diagnostic PET (97%) to aid in tumour delineation. The main reason for in-room IGRT implementation was the use of highly conformal techniques, while the most common reason for under-utilisation was lack of equipment capability. The most commonly used IGRT modalities were kilovoltage (kV) cone-beam CT (CBCT) (97%), kV electronic portal image (EPI) (89%) and megavoltage (MV) EPI (75%). Overall, participants planned to increase IGRT use in planning (33%) and treatment delivery (36%). IGRT is widely used among Australian RT centres. On the basis of future plans of respondents, the installation of new imaging modalities is expected to increase for both planning and treatment. © 2016 The Royal Australian and New Zealand College of Radiologists.

  13. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    NASA Astrophysics Data System (ADS)

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  14. Mpc-scale diffuse radio emission in two massive cool-core clusters of galaxies

    NASA Astrophysics Data System (ADS)

    Sommer, Martin W.; Basu, Kaustuv; Intema, Huib; Pacaud, Florian; Bonafede, Annalisa; Babul, Arif; Bertoldi, Frank

    2017-04-01

    Radio haloes are diffuse synchrotron sources on scales of ˜1 Mpc that are found in merging clusters of galaxies, and are believed to be powered by electrons re-accelerated by merger-driven turbulence. We present measurements of extended radio emission on similarly large scales in two clusters of galaxies hosting cool cores: Abell 2390 and Abell 2261. The analysis is based on interferometric imaging with the Karl G. Jansky Very Large Array, Very Large Array and Giant Metrewave Radio Telescope. We present detailed radio images of the targets, subtract the compact emission components and measure the spectral indices for the diffuse components. The radio emission in A2390 extends beyond a known sloshing-like brightness discontinuity, and has a very steep in-band spectral slope at 1.5 GHz that is similar to some known ultrasteep spectrum radio haloes. The diffuse signal in A2261 is more extended than in A2390 but has lower luminosity. X-ray morphological indicators, derived from XMM-Newton X-ray data, place these clusters in the category of relaxed or regular systems, although some asymmetric features that can indicate past minor mergers are seen in the X-ray brightness images. If these two Mpc-scale radio sources are categorized as giant radio haloes, they question the common assumption of radio haloes occurring exclusively in clusters undergoing violent merging activity, in addition to commonly used criteria for distinguishing between radio haloes and minihaloes.

  15. Radio observations of the Milky Way from the classroom

    NASA Astrophysics Data System (ADS)

    Chyży, Krzysztof T.

    2014-12-01

    We present the project to introduce the first European network of radio telescopes for education. It enables pupils to detect spectral line emission of neutral hydrogen in the Milky Way at a wavelength of 21 cm. Any classroom connected to Internet via any web-browser can remotely control one of the radio-telescopes, observe and analyse obtained spectra: derive the Milky-Way rotation curve and recognise spiral arms in hydrogen distribution. Doing exercises pupils, guided by their teachers, learn the basics of radio astronomy research, use scientific method to explore and interpret the attained spectral data. A range of attractive educational materials are prepared to help in disseminating the scientific knowledge in the classroom and demonstrate the modern information technology.

  16. Nobeyama Radio Observatory

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    Nobeyama Radio Observatory has telescopes at millimeter and submillimeter wavelengths. It was established in 1982 as an observatory of Tokyo Astronomical Observatory (NATIONAL ASTRONOMICAL OBSERVATORY, JAPAN since 1987), and operates the 45 m telescope, Nobeyama Millimeter Array, and Radioheliograph. High-resolution images of star forming regions and molecular clouds have revealed many aspects of...

  17. Image-Guided Ablation of Adrenal Lesions

    PubMed Central

    Yamakado, Koichiro

    2014-01-01

    Although laparoscopic adrenalectomy has remained the standard of care for the treatment for adrenal tumors, percutaneous image-guided ablation therapy, such as chemical ablation, radiofrequency ablation, cryoablation, and microwave ablation, has been shown to be clinically useful in many nonsurgical candidates. Ablation therapy has been used to treat both functioning adenomas and malignant tumors, including primary adrenal carcinoma and metastasis. For patients with functioning adenomas, biochemical and symptomatic improvement is achieved in 96 to 100% after ablation; for patients with malignant adrenal neoplasms, however, the survival benefit from ablation therapy remains unclear, though good initial results have been reported. This article outlines the current role of ablation therapy for adrenal lesions, as well as identifying some of the technical considerations for this procedure. PMID:25049444

  18. Prior image constrained scatter correction in cone-beam computed tomography image-guided radiation therapy.

    PubMed

    Brunner, Stephen; Nett, Brian E; Tolakanahalli, Ranjini; Chen, Guang-Hong

    2011-02-21

    X-ray scatter is a significant problem in cone-beam computed tomography when thicker objects and larger cone angles are used, as scattered radiation can lead to reduced contrast and CT number inaccuracy. Advances have been made in x-ray computed tomography (CT) by incorporating a high quality prior image into the image reconstruction process. In this paper, we extend this idea to correct scatter-induced shading artifacts in cone-beam CT image-guided radiation therapy. Specifically, this paper presents a new scatter correction algorithm which uses a prior image with low scatter artifacts to reduce shading artifacts in cone-beam CT images acquired under conditions of high scatter. The proposed correction algorithm begins with an empirical hypothesis that the target image can be written as a weighted summation of a series of basis images that are generated by raising the raw cone-beam projection data to different powers, and then, reconstructing using the standard filtered backprojection algorithm. The weight for each basis image is calculated by minimizing the difference between the target image and the prior image. The performance of the scatter correction algorithm is qualitatively and quantitatively evaluated through phantom studies using a Varian 2100 EX System with an on-board imager. Results show that the proposed scatter correction algorithm using a prior image with low scatter artifacts can substantially mitigate scatter-induced shading artifacts in both full-fan and half-fan modes.

  19. Image Reconstruction in Radio Astronomy with Non-Coplanar Synthesis Arrays

    NASA Astrophysics Data System (ADS)

    Goodrick, L.

    2015-03-01

    Traditional radio astronomy imaging techniques assume that the interferometric array is coplanar, with a small field of view, and that the two-dimensional Fourier relationship between brightness and visibility remains valid, allowing the Fast Fourier Transform to be used. In practice, to acquire more accurate data, the non-coplanar baseline effects need to be incorporated, as small height variations in the array plane introduces the w spatial frequency component. This component adds an additional phase shift to the incoming signals. There are two approaches to account for the non-coplanar baseline effects: either the full three-dimensional brightness and visibility model can be used to reconstruct an image, or the non-coplanar effects can be removed, reducing the three dimensional relationship to that of the two-dimensional one. This thesis describes and implements the w-projection and w-stacking algorithms. The aim of these algorithms is to account for the phase error introduced by non-coplanar synthesis arrays configurations, making the recovered visibilities more true to the actual brightness distribution model. This is done by reducing the 3D visibilities to a 2D visibility model. The algorithms also have the added benefit of wide-field imaging, although w-stacking supports a wider field of view at the cost of more FFT bin support. For w-projection, the w-term is accounted for in the visibility domain by convolving it out of the problem with a convolution kernel, allowing the use of the two-dimensional Fast Fourier Transform. Similarly, the w-Stacking algorithm applies a phase correction in the image domain to image layers to produce an intensity model that accounts for the non-coplanar baseline effects. This project considers the KAT7 array for simulation and analysis of the limitations and advantages of both the algorithms. Additionally, a variant of the Högbom CLEAN algorithm was used which employs contour trimming for extended source emission flagging. The

  20. Predictors of underestimation of malignancy after image-guided core needle biopsy diagnosis of flat epithelial atypia or atypical ductal hyperplasia.

    PubMed

    Yu, Chi-Chang; Ueng, Shir-Hwa; Cheung, Yun-Chung; Shen, Shih-Che; Kuo, Wen-Lin; Tsai, Hsiu-Pei; Lo, Yung-Feng; Chen, Shin-Cheh

    2015-01-01

    Flat epithelial atypia (FEA) and atypical ductal hyperplasia (ADH) are precursors of breast malignancy. Management of FEA or ADH after image-guided core needle biopsy (CNB) remains controversial. The aim of this study was to evaluate malignancy underestimation rates after FEA or ADH diagnosis using image-guided CNB and to identify clinical characteristics and imaging features associated with malignancy as well as identify cases with low underestimation rates that may be treatable by observation only. We retrospectively reviewed 2,875 consecutive image-guided CNBs recorded in an electronic data base from January 2010 to December 2011 and identified 128 (4.5%) FEA and 83 (2.9%) ADH diagnoses (211 total cases). Of these, 64 (30.3%) were echo-guided CNB procedures and 147 (69.7%) mammography-guided CNBs. Twenty patients (9.5%) were upgraded to malignancy. Multivariate analysis indicated that age (OR = 1.123, p = 0.002, increase of 1 year), mass-type lesion with calcifications (OR = 8.213, p = 0.006), and ADH in CNB specimens (OR = 8.071, p = 0.003) were independent predictors of underestimation. In univariate analysis of echo-guided CNB (n = 64), mass with calcifications had the highest underestimation rate (p < 0.001). Multivariate analysis of 147 mammography-guided CNBs revealed that age (OR = 1.122, p = 0.040, increase of 1 year) and calcification distribution were significant independent predictors of underestimation. No FEA case in which, complete calcification retrieval was recorded after CNB was upgraded to malignancy. Older age at diagnosis on image-guided CNB was a predictor of malignancy underestimation. Mass with calcifications was more likely to be associated with malignancy, and in cases presenting as calcifications only, segmental distribution or linear shapes were significantly associated with upgrading. Excision after FEA or ADH diagnosis by image-guided CNB is warranted except for FEA diagnosed using mammography-guided CNB with complete calcification

  1. Dusty but Mighty: Using Radio in the Critical Media Literacy Classroom

    ERIC Educational Resources Information Center

    Todorova, Miglena S.

    2015-01-01

    In a culture dominated by images, what is the capacity of radio-making to enact the ideals and meet the objectives of critical medial literacy education that empowers learners and expands democracy? This article conceptualizes a radio-based critical media literacy approach drawing upon a course project called "Borderless Radio," where…

  2. Base-level management of radio-frequency radiation-protection program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rademacher, S.E.; Montgomery, N.D.

    1989-04-01

    AFOEHL developed this report to assist the base-level aerospace medical team manage their radio-frequency radiation-protection program. This report supersedes USAFOEHL Report 80-42, 'A Practical R-F Guide for BEES.'

  3. Base-level management of radio-frequency radiation-protection program. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rademacher, S.E.; Montgomery, N.D.

    1989-04-01

    AFOEHL developed this report to assist the base-level aerospace medical team manage their radio-frequency radiation protection program. This report supersedes USAFOEHL Report 80-42, 'A practical R-F Guide for BEES.'

  4. High-intensity focused ultrasound (HIFU) array system for image-guided ablative therapy (IGAT)

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Keilman, George W.; Cunitz, Bryan W.; Martin, Roy W.; Vaezy, Shahram; Crum, Lawrence A.

    2003-06-01

    Recent interest in using High Intensity Focused Ultrasound (HIFU) for surgical applications such as hemostasis and tissue necrosis has stimulated the development of image-guided systems for non-invasive HIFU therapy. Seeking an all-ultrasound therapeutic modality, we have developed a clinical HIFU system comprising an integrated applicator that permits precisely registered HIFU therapy delivery and high quality ultrasound imaging using two separate arrays, a multi-channel signal generator and RF amplifier system, and a software program that provides the clinician with a graphical overlay of the ultrasound image and therapeutic protocol controls. Electronic phasing of a 32 element 2 MHz HIFU annular array allows adjusting the focus within the range of about 4 to 12 cm from the face. A central opening in the HIFU transducer permits mounting a commercial medical imaging scanhead (ATL P7-4) that is held in place within a special housing. This mechanical fixture ensures precise coaxial registration between the HIFU transducer and the image plane of the imaging probe. Recent enhancements include development of an acoustic lens using numerical simulations for use with a 5-element array. Our image-guided therapy system is very flexible and enables exploration of a variety of new HIFU therapy delivery and monitoring approaches in the search for safe, effective, and efficient treatment protocols.

  5. Modeling of Field-Aligned Guided Echoes in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Green, James L.

    2004-01-01

    The conditions under which high frequency (f>>f(sub uh)) long-range extraordinary-mode discrete field-aligned echoes observed by the Radio Plasma Imager (RPI) on board the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite in the plasmasphere are investigated by ray tracing modeling. Field-aligned discrete echoes are most commonly observed by RPI in the plasmasphere although they are also observed over the polar cap region. The plasmasphere field-aligned echoes appearing as multiple echo traces at different virtual ranges are attributed to signals reflected successively between conjugate hemispheres that propagate along or nearly along closed geomagnetic field lines. The ray tracing simulations show that field-aligned ducts with as little as 1% density perturbations (depletions) and less than 10 wavelengths wide can guide nearly field-aligned propagating high frequency X mode waves. Effective guidance of wave at a given frequency and wave normal angle (Psi) depends on the cross-field density scale of the duct, such that ducts with stronger density depletions need to be wider in order to maintain the same gradient of refractive index across the magnetic field. While signal guidance by field aligned density gradient without ducting is possible only over the polar region, conjugate field-aligned echoes that have traversed through the equatorial region are most likely guided by ducting.

  6. In vivo optoacoustic temperature imaging for image-guided cryotherapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Petrova, E. V.; Brecht, H. P.; Motamedi, M.; Oraevsky, A. A.; Ermilov, S. A.

    2018-03-01

    The objective of this study is to demonstrate in vivo the feasibility of optoacoustic temperature imaging during cryotherapy of prostate cancer. We developed a preclinical prototype optoacoustic temperature imager that included pulsed optical excitation at a wavelength of 805 nm, a modified clinical transrectal ultrasound probe, a parallel data acquisition system, image processing and visualization software. Cryotherapy of a canine prostate was performed in vivo using a commercial clinical system, Cryocare® CS, with an integrated ultrasound imaging. The universal temperature-dependent optoacoustic response of blood was employed to convert reconstructed optoacoustic images to temperature maps. Optoacoustic imaging of temperature during prostate cryotherapy was performed in the longitudinal view over a region of 30 mm (long)  ×  10 mm (deep) that covered the rectum, the Denonvilliers fascia, and the posterior portion of the treated gland. The transrectal optoacoustic images showed high-contrast vascularized regions, which were used for quantitative estimation of local temperature profiles. The constructed temperature maps and their temporal dynamics were consistent with the arrangement of the cryoprobe and readouts of the thermal needle sensors. The temporal profiles of the readouts from the thermal needle sensors and the temporal profile estimated from the normalized optoacoustic intensity of the selected vascularized region showed significant resemblance, except for the initial overshoot, that may be explained as a result of the physiological thermoregulatory compensation. The temperature was mapped with errors not exceeding  ±2 °C (standard deviation) consistent with the clinical requirements for monitoring cryotherapy of the prostate. In vivo results showed that the optoacoustic temperature imaging is a promising non-invasive technique for real-time imaging of tissue temperature during cryotherapy of prostate cancer, which can be combined

  7. Integration of stereotactic ultrasonic data into an interactive image-guided neurosurgical system

    NASA Astrophysics Data System (ADS)

    Shima, Daniel W.; Galloway, Robert L., Jr.

    1998-06-01

    Stereotactic ultrasound can be incorporated into an interactive, image-guide neurosurgical system by using an optical position sensor to define the location of an intraoperative scanner in physical space. A C-program has been developed that communicates with the OptotrakTM system developed by Northern Digital Inc. to optically track the three-dimensional position and orientation of a fan-shaped area defined with respect to a hand-held probe. (i.e., a virtual B-mode ultrasound fan beam) Volumes of CT and MR head scans from the same patient are registered to a location in physical space using a point-based technique. The coordinates of the virtual fan beam in physical space are continuously calculated and updated on-the-fly. During each program loop, the CT and MR data volumes are reformatted along the same plane and displayed as two fan-shaped images that correspond to the current physical-space location of the virtual fan beam. When the reformatted preoperative tomographic images are eventually paired with a real-time intraoperative ultrasound image, a neurosurgeon will be able to use the unique information of each imaging modality (e.g., the high resolution and tissue contrast of CT and MR and the real-time functionality of ultrasound) in a complementary manner to identify structures in the brain more easily and to guide surgical procedures more effectively.

  8. PRIFIRA: General regularization using prior-conditioning for fast radio interferometric imaging†

    NASA Astrophysics Data System (ADS)

    Naghibzadeh, Shahrzad; van der Veen, Alle-Jan

    2018-06-01

    Image formation in radio astronomy is a large-scale inverse problem that is inherently ill-posed. We present a general algorithmic framework based on a Bayesian-inspired regularized maximum likelihood formulation of the radio astronomical imaging problem with a focus on diffuse emission recovery from limited noisy correlation data. The algorithm is dubbed PRIor-conditioned Fast Iterative Radio Astronomy (PRIFIRA) and is based on a direct embodiment of the regularization operator into the system by right preconditioning. The resulting system is then solved using an iterative method based on projections onto Krylov subspaces. We motivate the use of a beamformed image (which includes the classical "dirty image") as an efficient prior-conditioner. Iterative reweighting schemes generalize the algorithmic framework and can account for different regularization operators that encourage sparsity of the solution. The performance of the proposed method is evaluated based on simulated one- and two-dimensional array arrangements as well as actual data from the core stations of the Low Frequency Array radio telescope antenna configuration, and compared to state-of-the-art imaging techniques. We show the generality of the proposed method in terms of regularization schemes while maintaining a competitive reconstruction quality with the current reconstruction techniques. Furthermore, we show that exploiting Krylov subspace methods together with the proper noise-based stopping criteria results in a great improvement in imaging efficiency.

  9. MIND Demons for MR-to-CT deformable image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Reaungamornrat, S.; De Silva, T.; Uneri, A.; Wolinsky, J.-P.; Khanna, A. J.; Kleinszig, G.; Vogt, S.; Prince, J. L.; Siewerdsen, J. H.

    2016-03-01

    Purpose: Localization of target anatomy and critical structures defined in preoperative MR images can be achieved by means of multi-modality deformable registration to intraoperative CT. We propose a symmetric diffeomorphic deformable registration algorithm incorporating a modality independent neighborhood descriptor (MIND) and a robust Huber metric for MR-to-CT registration. Method: The method, called MIND Demons, solves for the deformation field between two images by optimizing an energy functional that incorporates both the forward and inverse deformations, smoothness on the velocity fields and the diffeomorphisms, a modality-insensitive similarity function suitable to multi-modality images, and constraints on geodesics in Lagrangian coordinates. Direct optimization (without relying on an exponential map of stationary velocity fields used in conventional diffeomorphic Demons) is carried out using a Gauss-Newton method for fast convergence. Registration performance and sensitivity to registration parameters were analyzed in simulation, in phantom experiments, and clinical studies emulating application in image-guided spine surgery, and results were compared to conventional mutual information (MI) free-form deformation (FFD), local MI (LMI) FFD, and normalized MI (NMI) Demons. Result: The method yielded sub-voxel invertibility (0.006 mm) and nonsingular spatial Jacobians with capability to preserve local orientation and topology. It demonstrated improved registration accuracy in comparison to the reference methods, with mean target registration error (TRE) of 1.5 mm compared to 10.9, 2.3, and 4.6 mm for MI FFD, LMI FFD, and NMI Demons methods, respectively. Validation in clinical studies demonstrated realistic deformation with sub-voxel TRE in cases of cervical, thoracic, and lumbar spine. Conclusions: A modality-independent deformable registration method has been developed to estimate a

  10. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    NASA Astrophysics Data System (ADS)

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-08-01

    There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here.

  11. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging

    PubMed Central

    DSouza, Alisha V.; Lin, Huiyun; Henderson, Eric R.; Samkoe, Kimberley S.; Pogue, Brian W.

    2016-01-01

    Abstract. There is growing interest in using fluorescence imaging instruments to guide surgery, and the leading options for open-field imaging are reviewed here. While the clinical fluorescence-guided surgery (FGS) field has been focused predominantly on indocyanine green (ICG) imaging, there is accelerated development of more specific molecular tracers. These agents should help advance new indications for which FGS presents a paradigm shift in how molecular information is provided for resection decisions. There has been a steady growth in commercially marketed FGS systems, each with their own differentiated performance characteristics and specifications. A set of desirable criteria is presented to guide the evaluation of instruments, including: (i) real-time overlay of white-light and fluorescence images, (ii) operation within ambient room lighting, (iii) nanomolar-level sensitivity, (iv) quantitative capabilities, (v) simultaneous multiple fluorophore imaging, and (vi) ergonomic utility for open surgery. In this review, United States Food and Drug Administration 510(k) cleared commercial systems and some leading premarket FGS research systems were evaluated to illustrate the continual increase in this performance feature base. Generally, the systems designed for ICG-only imaging have sufficient sensitivity to ICG, but a fraction of the other desired features listed above, with both lower sensitivity and dynamic range. In comparison, the emerging research systems targeted for use with molecular agents have unique capabilities that will be essential for successful clinical imaging studies with low-concentration agents or where superior rejection of ambient light is needed. There is no perfect imaging system, but the feature differences among them are important differentiators in their utility, as outlined in the data and tables here. PMID:27533438

  12. Diffuse optical tomography for breast cancer imaging guided by computed tomography: A feasibility study.

    PubMed

    Baikejiang, Reheman; Zhang, Wei; Li, Changqing

    2017-01-01

    Diffuse optical tomography (DOT) has attracted attentions in the last two decades due to its intrinsic sensitivity in imaging chromophores of tissues such as hemoglobin, water, and lipid. However, DOT has not been clinically accepted yet due to its low spatial resolution caused by strong optical scattering in tissues. Structural guidance provided by an anatomical imaging modality enhances the DOT imaging substantially. Here, we propose a computed tomography (CT) guided multispectral DOT imaging system for breast cancer imaging. To validate its feasibility, we have built a prototype DOT imaging system which consists of a laser at the wavelength of 650 nm and an electron multiplying charge coupled device (EMCCD) camera. We have validated the CT guided DOT reconstruction algorithms with numerical simulations and phantom experiments, in which different imaging setup parameters, such as projection number of measurements and width of measurement patch, have been investigated. Our results indicate that an air-cooling EMCCD camera is good enough for the transmission mode DOT imaging. We have also found that measurements at six angular projections are sufficient for DOT to reconstruct the optical targets with 2 and 4 times absorption contrast when the CT guidance is applied. Finally, we have described our future research plan on integration of a multispectral DOT imaging system into a breast CT scanner.

  13. Assessment of color parameters of composite resin shade guides using digital imaging versus colorimeter.

    PubMed

    Yamanel, Kivanc; Caglar, Alper; Özcan, Mutlu; Gulsah, Kamran; Bagis, Bora

    2010-12-01

    This study evaluated the color parameters of resin composite shade guides determined using a colorimeter and digital imaging method. Four composite shade guides, namely: two nanohybrid (Grandio [Voco GmbH, Cuxhaven, Germany]; Premise [KerrHawe SA, Bioggio, Switzerland]) and two hybrid (Charisma [Heraeus Kulzer, GmbH & Co. KG, Hanau, Germany]; Filtek Z250 [3M ESPE, Seefeld, Germany]) were evaluated. Ten shade tabs were selected (A1, A2, A3, A3,5, A4, B1, B2, B3, C2, C3) from each shade guide. CIE Lab values were obtained using digital imaging and a colorimeter (ShadeEye NCC Dental Chroma Meter, Shofu Inc., Kyoto, Japan). The data were analyzed using two-way analysis of variance and Bonferroni post hoc test. Overall, the mean ΔE values from different composite pairs demonstrated statistically significant differences when evaluated with the colorimeter (p < 0.001) but there was no significant difference with the digital imaging method (p = 0.099). With both measurement methods in total, 80% of the shade guide pairs from different composites (97/120) showed color differences greater than 3.7 (moderately perceptible mismatch), and 49% (59/120) had obvious mismatch (ΔE > 6.8). For all shade pairs evaluated, the most significant shade mismatches were obtained between Grandio-Filtek Z250 (p = 0.021) and Filtek Z250-Premise (p = 0.01) regarding ΔE mean values, whereas the best shade match was between Grandio-Charisma (p = 0.255) regardless of the measurement method. The best color match (mean ΔE values) was recorded for A1, A2, and A3 shade pairs in both methods. When proper object-camera distance, digital camera settings, and suitable illumination conditions are provided, digital imaging method could be used in the assessment of color parameters. Interchanging use of shade guides from different composite systems should be avoided during color selection. © 2010, COPYRIGHT THE AUTHORS. JOURNAL COMPILATION © 2010, WILEY PERIODICALS, INC.

  14. Major Bleeding after Percutaneous Image-Guided Biopsies: Frequency, Predictors, and Periprocedural Management

    PubMed Central

    Kennedy, Sean A.; Milovanovic, Lazar; Midia, Mehran

    2015-01-01

    Major bleeding remains an uncommon yet potentially devastating complication following percutaneous image-guided biopsy. This article reviews two cases of major bleeding after percutaneous biopsy and discusses the frequency, predictors, and periprocedural management of major postprocedural bleeding. PMID:25762845

  15. The spatial variation of the infrared-to-radio ratio in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Marsh, K. A.; Helou, G.

    1995-01-01

    We have produced two-dimensional maps of the intensity ratio, Q(sub 60), of 60 micron infrared to 20 cm radio continuum emission, for a set of 25 nearby galaxies, mostly spirals. The ratio maps were obtained from infrared images made using IRAS data with the maximum correlation method, and radio images made using VLA data. Before taking the ratio, the radio images were processed so as to have the same resolution properties as the infrared images; the final spatial resolution in all cases is approximately 1 min, corresponding to 1 - 2 kpc for most galaxies. This resolution represents a significant improvement over previous studies. Our new high-resolution maps confirm the slow decrease of Q(sub 60) with increasing radial distance from the nucleus, but show additional structure which is probably associated with separate sites of active star formation in the spiral arms. The maps show Q(sub 60) to be more closely related to infrared surface brightness than to the radial distance r in the galaxy disk. We note also that the Q(sub 60) gradients are absent (or at least reduced) for the edge-on galaxies, a property which can be attributed to the dilution of contrast due to the averaging of the additional structure along the line of sight. The results are all in qualitative agreement with the suggestion that the radio image represents a smeared version of the infrared image, as would be expected on the basis of current models in which the infrared-radio correlation is driven by the formation of massive stars, and the intensity distribution of radio emission is smeared as a result of the propagation of energetic electrons accelerated during the supernova phase.

  16. Image-guided scapulothoracic arthroscopy for removing firearm projectiles

    PubMed Central

    Ejnisman, Benno; Andreoli, Carlos Vicente; Carvalho, Cassiano Diniz; Pochini, Alberto De Castro

    2014-01-01

    Scapulothoracic arthroscopy is gaining recognition among arthroscopic procedures as it is considered a relatively low morbidity procedure; also, continuing studies of this technique are making it safer. Scapulothoracic arthroscopy can be used for removal of a foreign body. This case report describes the removal of a firearm projectile using image-guided arthroscopy, highlighting the anatomical aspects and characteristics of the surgical technique. In this case, the patient recovered uneventfully, with complete remission of symptoms in 30 days, returning to his usual activities within 2 months after surgery. PMID:25480137

  17. Image-guided tumor ablation: proposal for standardization of terms and reporting criteria.

    PubMed

    Goldberg, S Nahum; Charboneau, J William; Dodd, Gerald D; Dupuy, Damian E; Gervais, Debra A; Gillams, Alice R; Kane, Robert A; Lee, Fred T; Livraghi, Tito; McGahan, John P; Rhim, Hyunchul; Silverman, Stuart G; Solbiati, Luigi; Vogl, Thomas J; Wood, Bradford J

    2003-08-01

    The field of image-guided tumor ablation requires standardization of terms and reporting criteria to facilitate effective communication of ideas and appropriate comparison between treatments with different technologies, such as chemical ablation (ethanol or acetic acid) and thermal therapies, such as radiofrequency, laser, microwave, ultrasound, and cryoablation. On the basis of this premise, a working committee was established with the goal of producing a proposal on such standardization. The intent of the Working Group is to provide a framework that will facilitate the clearest communication between investigators and will provide the greatest flexibility in comparisons between the many new, exciting, and emerging technologies. The members of the Working Group now propose a vehicle for reporting the various aspects of image-guided ablation therapy, including classifications of therapies and procedures, appropriate descriptors of image guidance, and terms to define imaging and pathologic findings. Methods for standardizing the reporting of follow-up findings and complications and other important aspects that require attention when reporting clinical results are addressed. It is the group's hope and intention that adherence to the recommendations of this proposal will facilitate achievement of the group's main objective: improved precision and communication in this field that lead to more accurate comparison of technologies and results and ultimately to improved patient outcomes. Copyright RSNA, 2003.

  18. THE RADIO CONTINUUM STRUCTURE OF CENTAURUS A AT 1.4 GHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feain, I. J.; Cornwell, T. J.; Ekers, R. D.

    2011-10-10

    A 45 deg{sup 2} radio continuum imaging campaign of the nearest radio galaxy, Centaurus A, is reported. Using the Australia Telescope Compact Array and the Parkes 64 m radio telescope at 1.4 GHz, the spatial resolution of the resultant image is {approx}600 pc ({approx}50''), resolving the {approx}>500 kpc giant radio lobes with approximately five times better physical resolution compared to any previous image, and making this the most detailed radio continuum image of any radio galaxy to date. In this paper, we present these new data and discuss briefly some of the most interesting morphological features that we have discoveredmore » in the images. The two giant outer lobes are highly structured and considerably distinct. The southern part of the giant northern lobe naturally extends out from the northern middle lobe with uniformly north-streaming emission. The well known northern loop is resolved into a series of semi-regular shells with a spacing of approximately 25 kpc. The northern part of the giant northern lobe also contains identifiable filaments and partial ring structures. As seen in previous single-dish images at lower angular resolution, the giant southern lobe is not physically connected to the core at radio wavelengths. Almost the entirety of the giant southern lobe is resolved into a largely chaotic and mottled structure which appears considerably different (morphologically) to the diffuse regularity of the northern lobe. We report the discovery of a vertex and a vortex near the western boundary of the southern lobe, two striking, high surface brightness features that are named based on their morphology and not their dynamics (which are presently unknown). The vortex and vertex are modeled as reaccelerated lobe emission due to shocks from the active galactic nucleus itself or from the passage of a dwarf elliptical galaxy through the lobe. Preliminary polarimetric and spectral index studies support a plasma reacceleration model and could explain the

  19. Ultraviolet and Radio Emission from the Northern Middle Lobe of Centaurus A

    NASA Technical Reports Server (NTRS)

    Neff, Susan

    2009-01-01

    We present deep GALEX ultraviolet (135 - 280 nm) images of the Northern Middle Lobe (NML) of the nearby radio galaxy Centaurus A. We find that the ultraviolet emission appears to have a complex interaction with soft X-ray, H-alpha emission, and radio emission, which should help constrain various models of energy transport in the NML. We also present new 90cm VLA images of the NML. The radio morphology at this wavelength is indicative of a more complex system than either a straightforward flaring jet (Morganti et al. 1999) or a bubble with trailing stem (Saxton et al. 2001). New limits are placed on the lack of radio emission from any corresponding southern counterpart to the NML.

  20. Image-guided optimization of the ECG trace in cardiac MRI.

    PubMed

    Barnwell, James D; Klein, J Larry; Stallings, Cliff; Sturm, Amanda; Gillespie, Michael; Fine, Jason; Hyslop, W Brian

    2012-03-01

    Improper electrocardiogram (ECG) lead placement resulting in suboptimal gating may lead to reduced image quality in cardiac magnetic resonance imaging (CMR). A patientspecific systematic technique for rapid optimization of lead placement may improve CMR image quality. A rapid 3 dimensional image of the thorax was used to guide the realignment of ECG leads relative to the cardiac axis of the patient in forty consecutive adult patients. Using our novel approach and consensus reading of pre- and post-correction ECG traces, seventy-three percent of patients had a qualitative improvement in their ECG tracings, and no patient had a decrease in quality of their ECG tracing following the correction technique. Statistically significant improvement was observed independent of gender, body mass index, and cardiac rhythm. This technique provides an efficient option to improve the quality of the ECG tracing in patients who have a poor quality ECG with standard techniques.

  1. Dental Imaging - A basic guide for the radiologist.

    PubMed

    Masthoff, Max; Gerwing, Mirjam; Masthoff, Malte; Timme, Maximilian; Kleinheinz, Johannes; Berninger, Markus; Heindel, Walter; Wildgruber, Moritz; Schülke, Christoph

    2018-06-18

     As dental imaging accounts for approximately 40 % of all X-ray examinations in Germany, profound knowledge of this topic is essential not only for the dentist but also for the clinical radiologist. This review focuses on basic imaging findings regarding the teeth. Therefore, tooth structure, currently available imaging techniques and common findings in conserving dentistry including endodontology, periodontology, implantology and dental trauma are presented.  Literature research on the current state of dental radiology was performed using Pubmed.  Currently, the most frequent imaging techniques are the orthopantomogram (OPG) and single-tooth radiograph, as well as computer tomography (CT) and cone beam CT mainly for implantology (planning or postoperative control) or trauma indications. Especially early diagnosis and correct classification of a dental trauma, such as dental pulp involvement, prevents from treatment delays or worsening of therapy options and prognosis. Furthermore, teeth are commonly a hidden focus of infection.Since radiologists are frequently confronted with dental imaging, either concerning a particular question such as a trauma patient or regarding incidental findings throughout head and neck imaging, further training in this field is more than worthwhile to facilitate an early and sufficient dental treatment.   · This review focuses on dental imaging techniques and the most important pathologies.. · Dental pathologies may not only be locally but also systemically relevant.. · Reporting of dental findings is important for best patient care.. · Masthoff M, Gerwing M, Masthoff M et al. Dental Imaging - A basic guide for the radiologist. Fortschr Röntgenstr 2018; DOI: 10.1055/a-0636-4129. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Image-Guided Spinal Ablation: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Koch, Guillaume, E-mail: guillaume.koch@chru-strasbourg.fr; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr

    2016-09-15

    The image-guided thermal ablation procedures can be used to treat a variety of benign and malignant spinal tumours. Small size osteoid osteoma can be treated with laser or radiofrequency. Larger tumours (osteoblastoma, aneurysmal bone cyst and metastasis) can be addressed with radiofrequency or cryoablation. Results on the literature of spinal microwave ablation are scarce, and thus it should be used with caution. A distinct advantage of cryoablation is the ability to monitor the ice-ball by intermittent CT or MRI. The different thermal insulation, temperature and electrophysiological monitoring techniques should be applied. Cautious pre-procedural planning and intermittent intra-procedural monitoring of themore » ablation zone can help reduce neural complications. Tumour histology, patient clinical-functional status and life-expectancy should define the most efficient and least disabling treatment option.« less

  3. X-ray Properties of Deep Radio-Selected Quasars

    NASA Technical Reports Server (NTRS)

    Becker, Robert

    2002-01-01

    This report summarizes the research supported by the ADP grant entitled 'X-ray Properties of Deep Radio-Selected Quasars'. The primary effort consisted of correlating the ROSAT All-Sky Survey catalog with the April 1997 release of the FIRST (Faint Images of the Radio Sky at Twenty centimeters) radio catalog. We found that a matching radius of 60 sec excluded most false matches while retaining most of the true radio-X-ray sources. The correlation of the approx. 80,000 source RASS and approx. 268,000 FIRST catalogs matched 2,588 FIRST sources with 1,649 RASS sources out of a possible 5,520 RASS sources residing in the FIRST survey area. This number is much higher than expected from our previous experience of correlating the RASS with radio surveys and indicates we detected new classes of objects not seen in the correlations with less sensitive radio surveys.

  4. Parametric PET/MR Fusion Imaging to Differentiate Aggressive from Indolent Primary Prostate Cancer with Application for Image-Guided Prostate Cancer Biopsies

    DTIC Science & Technology

    2014-10-01

    Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The study investigates whether fusion PET/MRI imaging with 18F- choline PET/CT and...imaging with 18F- choline PET/CT and diffusion-weighted MRI can be successfully applied to target prostate cancer using image-guided prostate...Completed task. The 18F- choline synthesis was implemented and optimized for routine radiotracer production. RDRC committee approval as part of the IRB

  5. An MR-compatible stereoscopic in-room 3D display for MR-guided interventions.

    PubMed

    Brunner, Alexander; Groebner, Jens; Umathum, Reiner; Maier, Florian; Semmler, Wolfhard; Bock, Michael

    2014-08-01

    A commercial three-dimensional (3D) monitor was modified for use inside the scanner room to provide stereoscopic real-time visualization during magnetic resonance (MR)-guided interventions, and tested in a catheter-tracking phantom experiment at 1.5 T. Brightness, uniformity, radio frequency (RF) emissions and MR image interferences were measured. Due to modifications, the center luminance of the 3D monitor was reduced by 14%, and the addition of a Faraday shield further reduced the remaining luminance by 31%. RF emissions could be effectively shielded; only a minor signal-to-noise ratio (SNR) decrease of 4.6% was observed during imaging. During the tracking experiment, the 3D orientation of the catheter and vessel structures in the phantom could be visualized stereoscopically.

  6. LOFAR discovery of an ultra-steep radio halo and giant head-tail radio galaxy in Abell 1132

    NASA Astrophysics Data System (ADS)

    Wilber, A.; Brüggen, M.; Bonafede, A.; Savini, F.; Shimwell, T.; van Weeren, R. J.; Rafferty, D.; Mechev, A. P.; Intema, H.; Andrade-Santos, F.; Clarke, A. O.; Mahony, E. K.; Morganti, R.; Prandoni, I.; Brunetti, G.; Röttgering, H.; Mandal, S.; de Gasperin, F.; Hoeft, M.

    2018-01-01

    Low-Frequency Array (LOFAR) observations at 144 MHz have revealed large-scale radio sources in the unrelaxed galaxy cluster Abell 1132. The cluster hosts diffuse radio emission on scales of ∼650 kpc near the cluster centre and a head-tail (HT) radio galaxy, extending up to 1 Mpc, south of the cluster centre. The central diffuse radio emission is not seen in NRAO VLA FIRST Survey, Westerbork Northern Sky Survey, nor in C & D array VLA observations at 1.4 GHz, but is detected in our follow-up Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz. Using LOFAR and GMRT data, we determine the spectral index of the central diffuse emission to be α = -1.75 ± 0.19 (S ∝ να). We classify this emission as an ultra-steep spectrum radio halo and discuss the possible implications for the physical origin of radio haloes. The HT radio galaxy shows narrow, collimated emission extending up to 1 Mpc and another 300 kpc of more diffuse, disturbed emission, giving a full projected linear size of 1.3 Mpc - classifying it as a giant radio galaxy (GRG) and making it the longest HT found to date. The head of the GRG coincides with an elliptical galaxy (SDSS J105851.01+564308.5) belonging to Abell 1132. In our LOFAR image, there appears to be a connection between the radio halo and the GRG. The turbulence that may have produced the halo may have also affected the tail of the GRG. In turn, the GRG may have provided seed electrons for the radio halo.

  7. Imaging-guided preclinical trials of vascular targeting in prostate cancer

    NASA Astrophysics Data System (ADS)

    Kalmuk, James

    Purpose: Prostate cancer is the most common non-cutaneous malignancy in American men and is characterized by dependence on androgens (Testosterone/Dihydrotestosterone) for growth and survival. Although reduction of serum testosterone levels by surgical or chemical castration transiently inhibits neoplastic growth, tumor adaptation to castrate levels of androgens results in the generation of castration-resistant prostate cancer (CRPC). Progression to CRPC following androgen deprivation therapy (ADT) has been associated with changes in vascular morphology and increased angiogenesis. Based on this knowledge, we hypothesized that targeting tumor vasculature in combination with ADT would result in enhanced therapeutic efficacy against prostate cancer. Methods: To test this hypothesis, we examined the therapeutic activity of a tumor-vascular disrupting agent (tumor-VDA), EPC2407 (Crolibulin(TM)), alone and in combination with ADT in a murine model of prostate cancer (Myc-CaP). A non-invasive multimodality imaging approach based on magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and ultrasound (US) was utilized to characterize tumor response to therapy and to guide preclinical trial design. Imaging results were correlated with histopathologic (H&E) and immunohistochemical (CD31) assessment as well as tumor growth inhibition and survival analyses. Results: Our imaging techniques were able to capture an acute reduction (within 24 hours) in tumor perfusion following castration and VDA monotherapy. BLI revealed onset of recurrent disease 5-7 days post castration prior to visible tumor regrowth suggestive of vascular recovery. Administration of VDA beginning 1 week post castration for 3 weeks resulted in sustained vascular suppression, inhibition of tumor regrowth, and conferred a more pronounced survival benefit compared to either monotherapy. Conclusion: The high mortality rate associated with CRPC underscores the need for investigating novel treatment

  8. Tissue feature-based intra-fractional motion tracking for stereoscopic x-ray image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Xie, Yaoqin; Xing, Lei; Gu, Jia; Liu, Wu

    2013-06-01

    Real-time knowledge of tumor position during radiation therapy is essential to overcome the adverse effect of intra-fractional organ motion. The goal of this work is to develop a tumor tracking strategy by effectively utilizing the inherent image features of stereoscopic x-ray images acquired during dose delivery. In stereoscopic x-ray image guided radiation delivery, two orthogonal x-ray images are acquired either simultaneously or sequentially. The essence of markerless tumor tracking is the reliable identification of inherent points with distinct tissue features on each projection image and their association between two images. The identification of the feature points on a planar x-ray image is realized by searching for points with high intensity gradient. The feature points are associated by using the scale invariance features transform descriptor. The performance of the proposed technique is evaluated by using images of a motion phantom and four archived clinical cases acquired using either a CyberKnife equipped with a stereoscopic x-ray imaging system, or a LINAC equipped with an onboard kV imager and an electronic portal imaging device. In the phantom study, the results obtained using the proposed method agree with the measurements to within 2 mm in all three directions. In the clinical study, the mean error is 0.48 ± 0.46 mm for four patient data with 144 sequential images. In this work, a tissue feature-based tracking method for stereoscopic x-ray image guided radiation therapy is developed. The technique avoids the invasive procedure of fiducial implantation and may greatly facilitate the clinical workflow.

  9. Topology-guided deformable registration with local importance preservation for biomedical images

    NASA Astrophysics Data System (ADS)

    Zheng, Chaojie; Wang, Xiuying; Zeng, Shan; Zhou, Jianlong; Yin, Yong; Feng, Dagan; Fulham, Michael

    2018-01-01

    The demons registration (DR) model is well recognized for its deformation capability. However, it might lead to misregistration due to erroneous diffusion direction when there are no overlaps between corresponding regions. We propose a novel registration energy function, introducing topology energy, and incorporating a local energy function into the DR in a progressive registration scheme, to address these shortcomings. The topology energy that is derived from the topological information of the images serves as a direction inference to guide diffusion transformation to retain the merits of DR. The local energy constrains the deformation disparity of neighbouring pixels to maintain important local texture and density features. The energy function is minimized in a progressive scheme steered by a topology tree graph and we refer to it as topology-guided deformable registration (TDR). We validated our TDR on 20 pairs of synthetic images with Gaussian noise, 20 phantom PET images with artificial deformations and 12 pairs of clinical PET-CT studies. We compared it to three methods: (1) free-form deformation registration method, (2) energy-based DR and (3) multi-resolution DR. The experimental results show that our TDR outperformed the other three methods in regard to structural correspondence and preservation of the local important information including texture and density, while retaining global correspondence.

  10. Development of an endoscopic fluorescence image-guided OCT probe for oral cancer detection

    NASA Astrophysics Data System (ADS)

    McNichols, Roger J.; Gowda, Ashok; Bell, Brent A.; Johnigan, Richard M.; Calhoun, Karen H.; Motamedi, Massoud

    2001-06-01

    Oral squamous cell carcinoma is a disease which progresses through a number of well-defined morphological and biochemical changes. Optical coherence tomography (OCT) is a rapidly-evolving, non-invasive imaging modality which allows detailed probing of subsurface tissue structures with resolution on the order of microns. While this technique offers tremendous potential as a diagnostic tool for detection and characterization of oral cancer, OCT imaging is presently associated with a field of view on the order of millimeters, and acquisition time on the order of seconds. Thus, OCT's utility as a rapid cancer screening technique is presently limited. On the other hand, imaging of tissue autofluorescence provides a very rapid, high-throughput method for cancer screening. However, while autofluorescence measures may be sensitive to cancer, they are often non- specific and lead to a large number of false positives. In the present work, we have developed a fluorescence image guided optical coherence tomographic (FIG-OCT) probe in which tissue autofluorescence images are simultaneously used to guide OCT image acquisition of suspicious regions in real time. We have begun pre-clinical pilot studies with this instrument in a DMBA-induced model of oral cancer in the hamster cheek pouch. Initial results indicate that the FIG- OCT approach shows promise as a rapid and effective tool for screening of oral cancer.

  11. Flat-panel cone-beam CT: a novel imaging technology for image-guided procedures

    NASA Astrophysics Data System (ADS)

    Siewerdsen, Jeffrey H.; Jaffray, David A.; Edmundson, Gregory K.; Sanders, W. P.; Wong, John W.; Martinez, Alvaro A.

    2001-05-01

    The use of flat-panel imagers for cone-beam CT signals the emergence of an attractive technology for volumetric imaging. Recent investigations demonstrate volume images with high spatial resolution and soft-tissue visibility and point to a number of logistical characteristics (e.g., open geometry, volume acquisition in a single rotation about the patient, and separation of the imaging and patient support structures) that are attractive to a broad spectrum of applications. Considering application to image-guided (IG) procedures - specifically IG therapies - this paper examines the performance of flat-panel cone-beam CT in relation to numerous constraints and requirements, including time (i.e., speed of image acquisition), dose, and field-of-view. The imaging and guidance performance of a prototype flat panel cone-beam CT system is investigated through the construction of procedure-specific tasks that test the influence of image artifacts (e.g., x-ray scatter and beam-hardening) and volumetric imaging performance (e.g., 3D spatial resolution, noise, and contrast) - taking two specific examples in IG brachytherapy and IG vertebroplasty. For IG brachytherapy, a procedure-specific task is constructed which tests the performance of flat-panel cone-beam CT in measuring the volumetric distribution of Pd-103 permanent implant seeds in relation to neighboring bone and soft-tissue structures in a pelvis phantom. For IG interventional procedures, a procedure-specific task is constructed in the context of vertebroplasty performed on a cadaverized ovine spine, demonstrating the volumetric image quality in pre-, intra-, and post-therapeutic images of the region of interest and testing the performance of the system in measuring the volumetric distribution of bone cement (PMMA) relative to surrounding spinal anatomy. Each of these tasks highlights numerous promising and challenging aspects of flat-panel cone-beam CT applied to IG procedures.

  12. Black Hole Demographics in and Nuclear Properties of Nearby Low Luminosity Radio Galaxies; Connections to Radio Activity?

    NASA Technical Reports Server (NTRS)

    Baum, S. A.; Kleijn, G. A. Verdoes; Xu, C.; ODea, C. P.; deZeeuw, P. T.

    2004-01-01

    We combine the results of an HST STIS and WFPC study of a complete sample of 21 nearby UGC low luminosity radio galaxies with the results of a radio VLA and VLBA study of the same sample. We examine the relationship between the stellar and gaseous properties of the galaxies on tens to hundreds of parsec scale with the properties of the radio jets on the same scale. From the VLA and VLBA data we constrain the physics of the outflowing radio plasma from the tens of parsecs to hundreds of kiloparsec scales. From the WFPC2 H alpha and dust images and the STIS kinematics of the near nuclear gas we obtain constraints on the orientation of near nuclear disks of gas and measures of the nuclear stellar, continuum point source, and line emission fluxes. Under the statistically supported assumption that the radio jet issues perpendicular to the disk, we use the orientation of the optical (large scale accretion?) disks to constrain the three-dimensional orientation of the radio ejection. From HST/STIS spectroscopy of the near-nuclear emission line gas we obtain measures/limits on the black hole masses. We examine correlations between the VLBA and VLA-scale radio emission, the nuclear line emission, and the nuclear optical and radio continuum emission. Though our sample is relatively small, it is uniquely well defined, spans a narrow range in redshift and we have a consistent set of high resolution data with which to carefully examine these relationships. We use the combined radio and optical data to: 1) Constrain the orientation, physics, and bulk outflow speed of the radio plasma; 2) Put limits on the mass accretion rate and study the relationship between black hole mass, radio luminosity, and near nuclear gaseous content; 3) Provide insight into the relationship between BL Lac objects and low luminosity radio galaxies.

  13. Initial Results With Image-guided Cochlear Implant Programming in Children.

    PubMed

    Noble, Jack H; Hedley-Williams, Andrea J; Sunderhaus, Linsey; Dawant, Benoit M; Labadie, Robert F; Camarata, Stephen M; Gifford, René H

    2016-02-01

    Image-guided cochlear implant (CI) programming can improve hearing outcomes for pediatric CI recipients. CIs have been highly successful for children with severe-to-profound hearing loss, offering potential for mainstreamed education and auditory-oral communication. Despite this, a significant number of recipients still experience poor speech understanding, language delay, and, even among the best performers, restoration to normal auditory fidelity is rare. Although significant research efforts have been devoted to improving stimulation strategies, few developments have led to significant hearing improvement over the past two decades. Recently introduced techniques for image-guided CI programming (IGCIP) permit creating patient-customized CI programs by making it possible, for the first time, to estimate the position of implanted CI electrodes relative to the nerves they stimulate using CT images. This approach permits identification of electrodes with high levels of stimulation overlap and to deactivate them from a patient's map. Previous studies have shown that IGCIP can significantly improve hearing outcomes for adults with CIs. The IGCIP technique was tested for 21 ears of 18 pediatric CI recipients. Participants had long-term experience with their CI (5 mo to 13 yr) and ranged in age from 5 to 17 years old. Speech understanding was assessed after approximately 4 weeks of experience with the IGCIP map. Using a two-tailed Wilcoxon signed-rank test, statistically significant improvement (p < 0.05) was observed for word and sentence recognition in quiet and noise, as well as pediatric self-reported quality-of-life (QOL) measures. Our results indicate that image guidance significantly improves hearing and QOL outcomes for pediatric CI recipients.

  14. Novel Image-Guided Management of a Uterine Arteriovenous Malformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Przybojewski, Stefan J., E-mail: drstefanp@hotmail.com; Sadler, David J.

    The investigators present a novel image-guided embolization, not previously described, of a uterine arteriovenous malformation (AVM) resistant to endovascular management. The uterus was exposed surgically, and Histoacryl (Braun, Fulda, Germany) was injected directly into the nidus using ultrasound guidance and fluoroscopy. The patient had a successful full-term pregnancy after this procedure. This technique may be a useful alternative management strategy in patients with uterine AVM who fail traditional endovascular embolization and who still desire fertility.

  15. Observing Solar Radio Bursts from the Lunar Surface

    NASA Technical Reports Server (NTRS)

    MacDowall, R. J.; Lazio, T. J.; Bale, S. D.; Burns, J.; Gopalswamy, N.; Jones, D. L.; Kaiser, M. L.; Kasper, J.; Weiler, K. W.

    2010-01-01

    Locating low frequency radio observatories on the lunar surface has a number of advantages. Here, we describe the Radio Observatory for Lunar Sortie Science (ROLSS), a concept for a low frequency, radio imaging interferometric array designed to study particle acceleration in the corona and inner heliosphere. ROLSS would be deployed during an early lunar sortie or by a robotic rover as part of an unmanned landing. The prime science mission is to image type II and type III solar radio bursts with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff of the solar radio emissions and constraining the low energy electron population in astrophysical sources. Furthermore, ROLSS serves a pathfinder function for larger lunar radio arrays. Key design requirements on ROLES include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs below 10 MHz, essentially unobservable from Earth's surface due to the terrestrial ionospheric cutoff. Resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2 deg, equivalent to a linear array size of approximately 500 meters. Operations would consist of data acquisition during the lunar day, with regular data downlinks. The major components of the ROLSS array are 3 antenna arms arranged in a Y shape, with a central electronics package (CEP). Each antenna arm is a linear strip of polyimide film (e.g., Kapton (TM)) on which 16 single polarization dipole antennas are located by depositing a conductor (e.g., silver). The arms also contain transmission lines for carrying the radio signals from the science antennas to the CEP.

  16. Radio Astronomers Get Their First Glimpse of Powerful Solar Storm

    NASA Astrophysics Data System (ADS)

    2001-08-01

    Astronomers have made the first radio-telescope images of a powerful coronal mass ejection on the Sun, giving them a long-sought glimpse of hitherto unseen aspects of these potentially dangerous events. "These observations are going to provide us with a new and unique tool for deciphering the mechanisms of coronal mass ejections and how they are related to other solar events," said Tim Bastian, an astronomer at the National Science Foundation's National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia. Radio image of coronal mass ejection; circle indicates the size and location of the Sun. White dots are where radio spectral measurements were made. Bastian, along with Monique Pick, Alain Kerdraon and Dalmiro Maia of the Paris Observatory, and Angelos Vourlidas of the Naval Research Laboratory in Washington, D.C., used a solar radio telescope in Nancay, France, to study a coronal mass ejection that occurred on April 20, 1998. Their results will be published in the September 1 edition of the Astrophysical Journal Letters. Coronal mass ejections are powerful magnetic explosions in the Sun's corona, or outer atmosphere, that can blast billions of tons of charged particles into interplanetary space at tremendous speeds. If the ejection is aimed in the direction of Earth, the speeding particles interact with our planet's magnetic field to cause auroral displays, radio-communication blackouts, and potentially damage satellites and electric-power systems. "Coronal mass ejections have been observed for many years, but only with visible-light telescopes, usually in space. While previous radio observations have provided us with powerful diagnostics of mass ejections and associated phenomena in the corona, this is the first time that one has been directly imaged in wavelengths other than visible light," Bastian said. "These new data from the radio observations give us important clues about how these very energetic events work," he added. The radio images show an

  17. Image-guided decision support system for pulmonary nodule classification in 3D thoracic CT images

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiki; Niki, Noboru; Ohmatsu, Hironobu; Kusumoto, Masahiro; Kakinuma, Ryutaro; Mori, Kiyoshi; Yamada, Kozo; Nishiyama, Hiroyuki; Eguchi, Kenji; Kaneko, Masahiro; Moriyama, Noriyuki

    2004-05-01

    The purpose of this study is to develop an image-guided decision support system that assists decision-making in clinical differential diagnosis of pulmonary nodules. This approach retrieves and displays nodules that exhibit morphological and internal profiles consistent to the nodule in question. It uses a three-dimensional (3-D) CT image database of pulmonary nodules for which diagnosis is known. In order to build the system, there are following issues that should be solved: 1) to categorize the nodule database with respect to morphological and internal features, 2) to quickly search nodule images similar to an indeterminate nodule from a large database, and 3) to reveal malignancy likelihood computed by using similar nodule images. Especially, the first problem influences the design of other issues. The successful categorization of nodule pattern might lead physicians to find important cues that characterize benign and malignant nodules. This paper focuses on an approach to categorize the nodule database with respect to nodule shape and CT density patterns inside nodule.

  18. A Radio Study of the Ultra-luminous FIR Galaxy NGC 6240

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Wilson, A. S.; Bland-Hawthorn, J.

    1993-05-01

    A number of galaxies observed in the IRAS mission are noted to emit ~ 99% of their bolometric flux in the FIR, with FIR luminosities in excess of 10(11) Lsun. The interacting galaxy NGC 6240 has often been referred to as the ``proto-typical'' ultra-luminous (L_FIR >~ 10(12) Lsun) FIR galaxy. The origin of the FIR excess remains a disputed subject in the literature. New observations of NGC 6240 were taken with the VLA at 20cm in the B-configuration, and at 3.6cm in the A-configuration. No significant radio emission was detected from or near the possible ultra-massive ``dark core'' hypothesized by Bland-Hawthorn et. al. (1991); however, approximately 30% of Seyfert galaxies have 20 cm radio luminosities weaker than the upper limit derived from the radio maps. The non-thermal radio emission from luminous FIR galaxies is tightly correlated with the FIR emission. Previous radio observations of NGC 6240 revealed two compact, steep-spectrum nuclear sources, nearly coincident with the two nuclear sources seen in optical images. The 2 images from the new VLA observations and 5 images from previous VLA observations are used to identify the morphological and spectral features of the strong, compact components in the nuclear regions (<~ 1.5 kpc; D=100 Mpc) and of the weaker ``clumps'' of diffuse emission south and west (>~ 3 kpc) from the nucleus. Feasible explanations for the radio emission are discussed. The models that have been proposed in the literature for the FIR excess of NGC 6240 are evaluated for consistency with the observed radio emission.

  19. Fluorescent supramolecular micelles for imaging-guided cancer therapy

    NASA Astrophysics Data System (ADS)

    Sun, Mengmeng; Yin, Wenyan; Dong, Xinghua; Yang, Wantai; Zhao, Yuliang; Yin, Meizhen

    2016-02-01

    A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth-inhibitory studies reveal a better therapeutic effect of FSMs after CPT encapsulation when compared with the free CPT drug. The multifunctional FSM nanomedicine platform as a nanovehicle has great potential for fluorescence imaging-guided cancer therapy.A novel smart fluorescent drug delivery system composed of a perylene diimide (PDI) core and block copolymer poly(d,l-lactide)-b-poly(ethyl ethylene phosphate) is developed and named as PDI-star-(PLA-b-PEEP)8. The biodegradable PDI-star-(PLA-b-PEEP)8 is a unimolecular micelle and can self-assemble into supramolecular micelles, called as fluorescent supramolecular micelles (FSMs), in aqueous media. An insoluble drug camptothecin (CPT) can be effectively loaded into the FSMs and exhibits pH-responsive release. Moreover, the FSMs with good biocompatibility can also be employed as a remarkable fluorescent probe for cell labelling because the maximum emission of PDI is beneficial for bio-imaging. The flow cytometry and confocal laser scanning microscopy analysis demonstrate that the micelles are easily endocytosed by cancer cells. In vitro and in vivo tumor growth

  20. Testing the Triggering Mechanism for Luminous, Radio-Quiet Red Quasars in the Clearing Phase: A Comparison to Radio-Loud Red Quasars

    NASA Astrophysics Data System (ADS)

    Glikman, Eliat

    2016-10-01

    We propose to conduct a controlled study of the relationship between radio emission and host galaxy morphology for a new sample of radio-quiet dust-reddened quasars selected by their infrared colors in WISE and 2MASS (W2M). These sources are the radio-quiet analogs to the FIRST-2MASS (F2M) red quasars, which we found to be predominantly driven by major mergers. F2M red quasars are accreting at very high rates and exhibit broad absorption lines associated with outflows and feedback. Their properties are consistent with buried quasars expelling their dusty shrouds in an an evolutionary phase predicted by merger-driven co-evolution models. The quasars in both samples are the most intrinsically luminous objects in the Universe - the regime where we expect mergers to dominate. However, recent lines of evidence suggest that radio emission may be linked to AGN reddening and merging hosts. We will use WFC3/IR and ACS to image the host galaxies of W2M quasars in the two redshift regimes that our previous studies probed, z 0.7 and z 2, testing the merger-driven quasar paradigm across the full radio range with a minimum of selection effects or other biases that plague many studies comparing different samples. The images proposed here will sample the host galaxies in rest-frame visible and UV light to look for merger signatures. Evidence for mergers in these quasar hosts would support a picture in which luminous quasars and galaxies co-evolve through major-mergers, independent of their radio properties. The absence of mergers in our data would link radio emission to mergers and require an alternate explanation for the extreme properties of these radio-quiet sources.

  1. Optical Coherence Tomography and Stent Boost Imaging Guided Bioresorbable Vascular Scaffold Overlapping for Coronary Chronic Total Occlusion Lesion

    PubMed Central

    Li, Hu; Choi, Cheol Ung; Oh, Dong Joo

    2017-01-01

    We report herein the optical coherence tomography (OCT) and stent boost imaging guided bioresorbable vascular scaffold (BVS) implantation for right coronary artery (RCA) chronic total occlusion (CTO) lesion. The gold standard for evaluating BVS expansion after percutaneous coronary intervention is OCT. However, stent boost imaging is a new technique that improves fluoroscopy-based assessments of stent overlapping, and the present case shows clinical usefulness of OCT and stent boost imaging guided ‘overlapping’ BVS implantation via antegrade approach for a typical RCA CTO lesion. PMID:28792157

  2. Image-guided intervention in the human bile duct using scanning fiber endoscope system

    NASA Astrophysics Data System (ADS)

    Seibel, Eric J.; Jo, Javier A.; Melville, C. David; Johnston, Richard S.; Naumann, Christopher R.; Saunders, Michael D.

    2012-01-01

    Bile duct cancers are increasing in frequency while being difficult to diagnose. Currently available endoscopic imaging devices used in the biliary tree are low resolution with poor image quality, leading to inadequate evaluation of indeterminate biliary strictures. However, a new ultrathin and flexible cholangioscope system has been successfully demonstrated in a human subject. This mini-cholangioscope system uses a scanning fiber endoscope (SFE) as a forward-imaging guidewire, dimensions of 1.2-mm diameter and 3-m length. Full color video (500-line resolution at 30Hz) is the standard SFE imaging mode using spiral scanning of red, green, and blue laser light at low power. Image-guided operation of the biopsy forceps was demonstrated in healthy human bile ducts with and without saline flushing. The laser-based video imaging can be switched to various modes to enhance tissue markers of disease, such as widefield fluorescence and enhanced spectral imaging. In parallel work, biochemical discrimination of tissue health in pig bile duct has been accomplished using fiberoptic delivery of pulsed UV illumination and time-resolved autofluorescence spectroscopic measurements. Implementation of time-resolved fluorescence spectroscopy for biochemical assessment of the bile duct wall is being done through a secondary endoscopic channel. Preliminary results indicate that adequate SNR levels (> 30 dB) can be achieved through a 50 micron fiber, which could serve as an optical biopsy probe. The SFE is an ideal mini-cholangioscope for integration of both tissue and molecular specific image contrast in the future. This will provide the physician with unprecedented abilities to target biopsy locations and perform endoscopically-guided therapies.

  3. Identification and properties of host galaxies of RCR radio sources

    NASA Astrophysics Data System (ADS)

    Zhelenkova, O. P.; Soboleva, N. S.; Majorova, E. K.; Temirova, A. V.

    2013-01-01

    FIRST and NVSS radio maps are used to cross identify the radio sources of the RCR catalog, which is based on observational data obtained in several runs of the "Cold" survey, with the SDSS and DPOSS digital optical sky surveys and the 2MASS, LAS UKIDSS, and WISE infrared surveys. Digital images in various filters and the coadded gri-band SDSS images, red and infrared DPOSS images, JHK-band UKIDSS images, and JHK-band 2MASS images are analyzed for the sources with no optical candidates found in the above catalogs. Our choice of optical candidates was based on the data on the structure of the radio source, its photometry, and spectroscopy (where available). We found reliable identifications for 86% of the radio sources; possible counterparts for 8% of the sources, and failed to find any optical counterparts for 6% of the sources because their host objects proved to be fainter than the limiting magnitude of the corresponding surveys. A little over half of all the identifications proved to be galaxies; about one quarter were quasars, and the types of the remaining objects were difficult to determine because of their faintness. A relation between the luminosity and the radioloudness index was derived and used to estimate the 1.4 and 3.94 GHz luminosities for the sources with unknown redshifts. We found 3% and 60% of all the RCR radio sources to be FRI-type objects ( L ≲ 1024 W/Hz at 1.4 GHz) and powerful FRII-type galaxies ( L ≳ 1026.5 W/Hz), respectively, whereas the rest are sources including objects of the FRI, FRII, and mixed FRI-FRII types. Unlike quasars, galaxies show a trend of decreasing luminosity with decreasing flux density. Note that identification would be quite problematic without the software and resources of the virtual observatory.

  4. Radio imaging of the very-high-energy gamma-ray emission region in the central engine of a radio galaxy.

    PubMed

    Acciari, V A; Aliu, E; Arlen, T; Bautista, M; Beilicke, M; Benbow, W; Bradbury, S M; Buckley, J H; Bugaev, V; Butt, Y; Byrum, K; Cannon, A; Celik, O; Cesarini, A; Chow, Y C; Ciupik, L; Cogan, P; Cui, W; Dickherber, R; Fegan, S J; Finley, J P; Fortin, P; Fortson, L; Furniss, A; Gall, D; Gillanders, G H; Grube, J; Guenette, R; Gyuk, G; Hanna, D; Holder, J; Horan, D; Hui, C M; Humensky, T B; Imran, A; Kaaret, P; Karlsson, N; Kieda, D; Kildea, J; Konopelko, A; Krawczynski, H; Krennrich, F; Lang, M J; LeBohec, S; Maier, G; McCann, A; McCutcheon, M; Millis, J; Moriarty, P; Ong, R A; Otte, A N; Pandel, D; Perkins, J S; Petry, D; Pohl, M; Quinn, J; Ragan, K; Reyes, L C; Reynolds, P T; Roache, E; Roache, E; Rose, H J; Schroedter, M; Sembroski, G H; Smith, A W; Swordy, S P; Theiling, M; Toner, J A; Varlotta, A; Vincent, S; Wakely, S P; Ward, J E; Weekes, T C; Weinstein, A; Williams, D A; Wissel, S; Wood, M; Walker, R C; Davies, F; Hardee, P E; Junor, W; Ly, C; Aharonian, F; Akhperjanian, A G; Anton, G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Bernlöhr, K; Bochow, A; Boisson, C; Bolmont, J; Borrel, V; Brucker, J; Brun, F; Brun, P; Bühler, R; Bulik, T; Büsching, I; Boutelier, T; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L-M; Clapson, A C; Coignet, G; Dalton, M; Daniel, M K; Davids, I D; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Förster, A; Fontaine, G; Füssling, M; Gabici, S; Gallant, Y A; Gérard, L; Gerbig, D; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Göhring, D; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jahn, C; Jung, I; Katarzyński, K; Katz, U; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Kluźniak, W; Kneiske, T; Komin, Nu; Kosack, K; Lamanna, G; Lenain, J-P; Lohse, T; Marandon, V; Martin, J M; Martineau-Huynh, O; Marcowith, A; Maurin, D; McComb, T J L; Medina, M C; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Nicholas, B; Niemiec, J; Nolan, S J; Ohm, S; Olive, J-F; de Oña Wilhelmi, E; Orford, K J; Ostrowski, M; Panter, M; Paz Arribas, M; Pedaletti, G; Pelletier, G; Petrucci, P-O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sikora, M; Skilton, J L; Sol, H; Spangler, D; Stawarz, Ł; Steenkamp, R; Stegmann, C; Stinzing, F; Superina, G; Szostek, A; Tam, P H; Tavernet, J-P; Terrier, R; Tibolla, O; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Venter, L; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A; Anderhub, H; Antonelli, L A; Antoranz, P; Backes, M; Baixeras, C; Balestra, S; Barrio, J A; Bastieri, D; Becerra González, J; Becker, J K; Bednarek, W; Berger, K; Bernardini, E; Biland, A; Bock, R K; Bonnoli, G; Bordas, P; Borla Tridon, D; Bosch-Ramon, V; Bose, D; Braun, I; Bretz, T; Britvitch, I; Camara, M; Carmona, E; Commichau, S; Contreras, J L; Cortina, J; Costado, M T; Covino, S; Curtef, V; Dazzi, F; De Angelis, A; De Cea del Pozo, E; Delgado Mendez, C; De los Reyes, R; De Lotto, B; De Maria, M; De Sabata, F; Dominguez, A; Dorner, D; Doro, M; Elsaesser, D; Errando, M; Ferenc, D; Fernández, E; Firpo, R; Fonseca, M V; Font, L; Galante, N; García López, R J; Garczarczyk, M; Gaug, M; Goebel, F; Hadasch, D; Hayashida, M; Herrero, A; Hildebrand, D; Höhne-Mönch, D; Hose, J; Hsu, C C; Jogler, T; Kranich, D; La Barbera, A; Laille, A; Leonardo, E; Lindfors, E; Lombardi, S; Longo, F; López, M; Lorenz, E; Majumdar, P; Maneva, G; Mankuzhiyil, N; Mannheim, K; Maraschi, L; Mariotti, M; Martínez, M; Mazin, D; Meucci, M; Miranda, J M; Mirzoyan, R; Miyamoto, H; Moldón, J; Moles, M; Moralejo, A; Nieto, D; Nilsson, K; Ninkovic, J; Oya, I; Paoletti, R; Paredes, J M; Pasanen, M; Pascoli, D; Pauss, F; Pegna, R G; Perez-Torres, M A; Persic, M; Peruzzo, L; Prada, F; Prandini, E; Puchades, N; Reichardt, I; Rhode, W; Ribó, M; Rico, J; Rissi, M; Robert, A; Rügamer, S; Saggion, A; Saito, T Y; Salvati, M; Sanchez-Conde, M; Satalecka, K; Scalzotto, V; Scapin, V; Schweizer, T; Shayduk, M; Shore, S N; Sidro, N; Sierpowska-Bartosik, A; Sillanpää, A; Sitarek, J; Sobczynska, D; Spanier, F; Stamerra, A; Stark, L S; Takalo, L; Tavecchio, F; Temnikov, P; Tescaro, D; Teshima, M; Torres, D F; Turini, N; Vankov, H; Wagner, R M; Zabalza, V; Zandanel, F; Zanin, R; Zapatero, J

    2009-07-24

    The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.

  5. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy.

    PubMed

    Wang, Xu; Yang, Cheng-Xiong; Chen, Jia-Tong; Yan, Xiu-Ping

    2014-04-01

    The targetability of a theranostic probe is one of the keys to assuring its theranostic efficiency. Here we show the design and fabrication of a dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy (PDT). The nanoplatform was prepared from 3-aminophenylboronic acid functionalized upconversion nanocrystals (APBA-UCNPs) and hyaluronated fullerene (HAC60) via a specific diol-borate condensation. The two specific ligands of aminophenylboronic acid and hyaluronic acid provide synergistic targeting effects, high targetability, and hence a dramatically elevated uptake of the nanoplatform by cancer cells. The high generation yield of (1)O2 due to multiplexed Förster resonance energy transfer between APBA-UCNPs (donor) and HAC60 (acceptor) allows effective therapy. The present nanoplatform shows great potential for highly selective tumor-targeted imaging-guided PDT.

  6. A Radio Astronomy Curriculum for STARLAB

    NASA Astrophysics Data System (ADS)

    Boltuch, D.; Hund, L.; Buck, S.; Fultz, C.; Smith, T.; Harris, R.; Castelaz, M. W.; Moffett, D.; LaFratta, M.; Walsh, L.

    2005-12-01

    We present elements of a curriculum that will accompany the STARLAB module "Sensing the Radio Sky" a portable planetarium program and projection of the radio sky. The curriculum will serve to familiarize high school students to a set of topics in radio astronomy. The curriculum includes lessons and activities addressing several topics related to radio astronomy and the Milky Way that consists of two main resources: a manual and a multimedia website. It is designed to accommodate a wide variety of possible uses and time constraints. The manufacturer of STARLAB, Learning Technologies, Inc. produces a short manual to accompany each presentation for the STARLAB. The "Sensing the Radio Sky" manual we have created includes the mandatory, minimum background information that students need to understand radio astronomy. It briefly discusses waves and electromagnetic radiation, similarities and differences between optical and radio astronomy, probable misconceptions about radio astronomy, how radio images are produced, synchrotron radiation in the Milky Way, and galactic coordinates. It also includes a script that presenters can choose to follow inside the STARLAB, a lesson plan for teachers, and activities for students to complete before and after the STARLAB experience that mirror the scientific method. The multimedia website includes more detailed information about electromagnetic radiation and a more detailed comparison of optical and radio astronomy. It also discusses the life cycles of stars, radiation from a variety of specific sources, and pulsars, as each relates to radio astronomy. The five highly detailed lessons are pulled together in sixth "overview lesson", intended for use by teachers who want to present more than the basic material in the manual, but do not have the classroom time to teach all five of the in-depth lessons. . We acknowledge support from the NSF Internship in Public Science Education Program grant number 0324729.

  7. THE COMPLEX NORTH TRANSITION REGION OF CENTAURUS A: RADIO STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neff, Susan G.; Eilek, Jean A.; Owen, Frazer N., E-mail: susan.g.neff@nasa.gov

    2015-04-01

    We present deep radio images of the inner ∼50 kpc of Centaurus A, taken with the Karl G. Jansky Very Large Array at 90 cm. We focus on the Transition Regions between the inner galaxy—including the active nucleus, inner radio lobes, and star-forming disk—and the outer radio lobes. We detect previously unknown extended emission around the Inner Lobes, including radio emission from the star-forming disk. We find that the radio-loud part of the North Transition Region (NTR), known as the North Middle Lobe, is significantly overpressured relative to the surrounding interstellar medium. We see no evidence for a collimated flow from themore » active galactic nucleus through this region. Our images show that the structure identified by Morganti et al. as a possible large-scale jet appears to be part of a narrow ridge of emission within the broader, diffuse, radio-loud region. This knotty radio ridge is coincident with other striking phenomena: compact X-ray knots, ionized gas filaments, and streams of young stars. Several short-lived phenomena in the NTR, as well as the frequent re-energization required by the Outer Lobes, suggest that energy must be flowing through both Transition Regions at the present epoch. We suggest that the energy flow is in the form of a galactic wind.« less

  8. Feasibility of Intraoperative Nerve Monitoring in Preventing Thermal Damage to the “Nerve at Risk” During Image-Guided Ablation of Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Richard H., E-mail: rmars1@lsuhsc.edu; Avila, Edward K., E-mail: avilae@mskcc.org; Solomon, Stephen B., E-mail: solomons@mskcc.org

    PurposeTo assess feasibility of intraoperative neurophysiologic monitoring (IONM) during image-guided, percutaneous thermal ablation of tumors.Materials and MethodsFrom February 2009 to October 2013, a retrospective review of all image-guided percutaneous thermal ablation interventions using IONM was performed and data was compiled using electronic medical records and imaging studies.ResultsTwelve patients were treated in 13 ablation interventions. In 4 patients, real-time feedback from the monitoring neurologist was used to adjust applicator placement and ablation settings. IONM was technically feasible in all procedures and there were no complications related to monitoring or ablation. All nerves at risk remained intact and of the 11 patientsmore » who could be followed, none developed new nerve deficit up to a minimum of 2 months after ablation.ConclusionIONM is safe and feasible for use during image-guided thermal ablation of tumors in the vicinity of nerves. Outcomes in this study demonstrate its potential utility in image-guided ablation interventions.« less

  9. Spatially weighted mutual information image registration for image guided radiation therapy.

    PubMed

    Park, Samuel B; Rhee, Frank C; Monroe, James I; Sohn, Jason W

    2010-09-01

    To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically "important" areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/ MVCT image sets. The SWMI registration with

  10. Space Telecommunications Radio System STRS Cognitive Radio

    NASA Technical Reports Server (NTRS)

    Briones, Janette C.; Handler, Louis M.

    2013-01-01

    Radios today are evolving from awareness toward cognition. A software defined radio (SDR) provides the most capability for integrating autonomic decision making ability and allows the incremental evolution toward a cognitive radio. This cognitive radio technology will impact NASA space communications in areas such as spectrum utilization, interoperability, network operations, and radio resource management over a wide range of operating conditions. NASAs cognitive radio will build upon the infrastructure being developed by Space Telecommunication Radio System (STRS) SDR technology. This paper explores the feasibility of inserting cognitive capabilities in the NASA STRS architecture and the interfaces between the cognitive engine and the STRS radio. The STRS architecture defines methods that can inform the cognitive engine about the radio environment so that the cognitive engine can learn autonomously from experience, and take appropriate actions to adapt the radio operating characteristics and optimize performance.

  11. Ultrasound image-guided therapy enhances antitumor effect of cisplatin.

    PubMed

    Sasaki, Noboru; Kudo, Nobuki; Nakamura, Kensuke; Lim, Sue Yee; Murakami, Masahiro; Kumara, W R Bandula; Tamura, Yu; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2014-01-01

    The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model. Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 10(7) microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times. The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm(3), P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice. Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.

  12. High-performance radio frequency transistors based on diameter-separated semiconducting carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yu; Che, Yuchi; Zhou, Chongwu, E-mail: chongwuz@usc.edu

    In this paper, we report the high-performance radio-frequency transistors based on the single-walled semiconducting carbon nanotubes with a refined average diameter of ∼1.6 nm. These diameter-separated carbon nanotube transistors show excellent transconductance of 55 μS/μm and desirable drain current saturation with an output resistance of ∼100 KΩ μm. An exceptional radio-frequency performance is also achieved with current gain and power gain cut-off frequencies of 23 GHz and 20 GHz (extrinsic) and 65 GHz and 35 GHz (intrinsic), respectively. These radio-frequency metrics are among the highest reported for the carbon nanotube thin-film transistors. This study provides demonstration of radio frequency transistors based on carbon nanotubes with tailoredmore » diameter distributions, which will guide the future application of carbon nanotubes in radio-frequency electronics.« less

  13. Biomarker-guided translation of brain imaging into disease pathway models

    PubMed Central

    Younesi, Erfan; Hofmann-Apitius, Martin

    2013-01-01

    The advent of state-of-the-art brain imaging technologies in recent years and the ability of such technologies to provide high-resolution information at both structural and functional levels has spawned large efforts to introduce novel non-invasive imaging biomarkers for early prediction and diagnosis of brain disorders; however, their utility in both clinic and drug development at their best resolution remains limited to visualizing and monitoring disease progression. Given the fact that efficient translation of valuable information embedded in brain scans into clinical application is of paramount scientific and public health importance, a strategy is needed to bridge the current gap between imaging and molecular biology, particularly in neurodegenerative diseases. As an attempt to address this issue, we present a novel computational method to link readouts of imaging biomarkers to their underlying molecular pathways with the aim of guiding clinical diagnosis, prognosis and even target identification in drug discovery for Alzheimer's disease. PMID:24287435

  14. Image-guided thermal therapy with a dual-contrast magnetic nanoparticle formulation: A feasibility study

    PubMed Central

    Attaluri, Anilchandra; Seshadri, Madhav; Mirpour, Sahar; Wabler, Michele; Marinho, Thomas; Furqan, Muhammad; Zhou, Haoming; De Paoli, Silvia; Gruettner, Cordula; Gilson, Wesley; DeWeese, Theodore; Garcia, Monica; Ivkov, Robert; Liapi, Eleni

    2016-01-01

    Purpose/objective The aim of this study was to develop and investigate the properties of a magnetic iron oxide nanoparticle–ethiodised oil formulation for image-guided thermal therapy of liver cancer. Materials and methods The formulation comprises bionised nano-ferrite (BNF) nanoparticles suspended in ethiodised oil, emulsified with polysorbate 20 (BNF-lip). Nanoparticle size was measured via photon correlation spectroscopy and transmission electron microscopy. In vivo thermal therapy capability was tested in two groups of male Foxn1nu mice bearing subcutaneous HepG2 xenograft tumours. Group I (n =12) was used to screen conditions for group II (n =48). In group II, mice received one of BNF-lip (n =18), BNF alone (n =16), or PBS (n =14), followed by alternating magnetic field (AMF) hyperthermia, with either varied duration (15 or 20 min) or amplitude (0, 16, 20, or 24 kA/m). Image-guided fluoroscopic intra-arterial injection of BNF-lip was tested in New Zealand white rabbits (n =10), bearing liver VX2 tumours. The animals were subsequently imaged with CT and 3 T MRI, up to 7 days post-injection. The tumours were histopathologically evaluated for distribution of BNF-lip. Results The BNF showed larger aggregate diameters when suspended in BNF-lip, compared to clear solution. The BNF-lip formulation produced maximum tumour temperatures with AMF >20 kA/m and showed positive X-ray visibility and substantial shortening of T1 and T2 relaxation time, with sustained intratumoural retention up to 7 days post-injection. On pathology, intratumoural BNF-lip distribution correlated well with CT imaging of intratumoural BNF-lip distribution. Conclusion The BNF-lip formulation has favourable thermal and dual imaging capabilities for image-guided thermal therapy of liver cancer, suggesting further exploration for clinical applications. PMID:27151045

  15. Image-guided elbow interventions: a literature review of interventional treatment options

    PubMed Central

    Sorani, Alan

    2016-01-01

    Over the years, a wide range of image-guided interventional therapies have been used in treating different elbow pathologies, many of which are predominantly based on anecdotal and low-level study findings. This article critically assesses the existing literature and discusses the efficacy of the most commonly utilized interventional procedures for elbow pathology. PMID:26206415

  16. Supervised guiding long-short term memory for image caption generation based on object classes

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cao, Zhiguo; Xiao, Yang; Qi, Xinyuan

    2018-03-01

    The present models of image caption generation have the problems of image visual semantic information attenuation and errors in guidance information. In order to solve these problems, we propose a supervised guiding Long Short Term Memory model based on object classes, named S-gLSTM for short. It uses the object detection results from R-FCN as supervisory information with high confidence, and updates the guidance word set by judging whether the last output matches the supervisory information. S-gLSTM learns how to extract the current interested information from the image visual se-mantic information based on guidance word set. The interested information is fed into the S-gLSTM at each iteration as guidance information, to guide the caption generation. To acquire the text-related visual semantic information, the S-gLSTM fine-tunes the weights of the network through the back-propagation of the guiding loss. Complementing guidance information at each iteration solves the problem of visual semantic information attenuation in the traditional LSTM model. Besides, the supervised guidance information in our model can reduce the impact of the mismatched words on the caption generation. We test our model on MSCOCO2014 dataset, and obtain better performance than the state-of-the- art models.

  17. Optimizing Cone Beam Computed Tomography (CBCT) System for Image Guided Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Park, Chun Joo

    Cone Beam Computed Tomography (CBCT) system is the most widely used imaging device in image guided radiation therapy (IGRT), where set of 3D volumetric image of patient can be reconstructed to identify and correct position setup errors prior to the radiation treatment. This CBCT system can significantly improve precision of on-line setup errors of patient position and tumor target localization prior to the treatment. However, there are still a number of issues that needs to be investigated with CBCT system such as 1) progressively increasing defective pixels in imaging detectors by its frequent usage, 2) hazardous radiation exposure to patients during the CBCT imaging, 3) degradation of image quality due to patients' respiratory motion when CBCT is acquired and 4) unknown knowledge of certain anatomical features such as liver, due to lack of soft-tissue contrast which makes tumor motion verification challenging. In this dissertation, we explore on optimizing the use of cone beam computed tomography (CBCT) system under such circumstances. We begin by introducing general concept of IGRT. We then present the development of automated defective pixel detection algorithm for X-ray imagers that is used for CBCT imaging using wavelet analysis. We next investigate on developing fast and efficient low-dose volumetric reconstruction techniques which includes 1) fast digital tomosynthesis reconstruction using general-purpose graphics processing unit (GPGPU) programming and 2) fast low-dose CBCT image reconstruction based on the Gradient-Projection-Barzilai-Borwein formulation (GP-BB). We further developed two efficient approaches that could reduce the degradation of CBCT images from respiratory motion. First, we propose reconstructing four dimensional (4D) CBCT and DTS using respiratory signal extracted from fiducial markers implanted in liver. Second, novel motion-map constrained image reconstruction (MCIR) is proposed that allows reconstruction of high quality and high phase

  18. Fluoroscopic image-guided intervention system for transbronchial localization

    NASA Astrophysics Data System (ADS)

    Rai, Lav; Keast, Thomas M.; Wibowo, Henky; Yu, Kun-Chang; Draper, Jeffrey W.; Gibbs, Jason D.

    2012-02-01

    Reliable transbronchial access of peripheral lung lesions is desirable for the diagnosis and potential treatment of lung cancer. This procedure can be difficult, however, because accessory devices (e.g., needle or forceps) cannot be reliably localized while deployed. We present a fluoroscopic image-guided intervention (IGI) system for tracking such bronchoscopic accessories. Fluoroscopy, an imaging technology currently utilized by many bronchoscopists, has a fundamental shortcoming - many lung lesions are invisible in its images. Our IGI system aligns a digitally reconstructed radiograph (DRR) defined from a pre-operative computed tomography (CT) scan with live fluoroscopic images. Radiopaque accessory devices are readily apparent in fluoroscopic video, while lesions lacking a fluoroscopic signature but identifiable in the CT scan are superimposed in the scene. The IGI system processing steps consist of: (1) calibrating the fluoroscopic imaging system; (2) registering the CT anatomy with its depiction in the fluoroscopic scene; (3) optical tracking to continually update the DRR and target positions as the fluoroscope is moved about the patient. The end result is a continuous correlation of the DRR and projected targets with the anatomy depicted in the live fluoroscopic video feed. Because both targets and bronchoscopic devices are readily apparent in arbitrary fluoroscopic orientations, multiplane guidance is straightforward. The system tracks in real-time with no computational lag. We have measured a mean projected tracking accuracy of 1.0 mm in a phantom and present results from an in vivo animal study.

  19. SU-E-T-255: Optimized Supine Craniospinal Irradiation with Image-Guided and Field Matched Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Z; Holupka, E; Naughton, J

    2014-06-01

    Purpose: Conventional craniospinal irradiation (CSI) challenges include dose inhomogeneity at field junctions and position uncertainty due to the field divergence, particular for the two spinal fields. Here we outline a new supine CSI technique to address these difficulties. Methods: Patient was simulated in supine position. The cranial fields had isocenter at C2/C3 vertebral and were matched with 1st spinal field. Their inferior border was chosen to avoid the shoulder, as well as chin from the 1st spine field. Their collimator angles were dependent on asymmetry jaw setting of the 1st spinal field. With couch rotation, the spinal field gantry anglesmore » were adjusted to ensure, the inferior border of 1st and superior border of 2nd spinal fields were perpendicular to the table top. The radio-opaque wire position for the spinal junction was located initially by the light field from an anterior setup beam, and was finalized by the portal imaging of the 1st spinal field. With reference to the spinal junction wire, the fields were matched by positioning the isocenter of the 2nd spinal field. A formula was derived to optimize supine CSI treatment planning, by utilizing the relationship among the Yjaw setting, the spinal field gantry angles, cranial field collimator angles, and the spinal field isocenters location. The plan was delivered with portal imaging alignment for the both cranial and spinal junctions. Results: Utilizing this technique with matching beams, and conventional technique such as feathering and forwarding planning, a homogenous dose distribution was achieved throughout the entire CSI treatment volume including the spinal junction. Placing the spinal junction wire visualized in both spinal portals, allows for precise determination and verification of the appropriate match line of the spine fields. Conclusion: This technique of optimization supine CSI achieved a homogenous dose distributions and patient localization accuracy with image-guided and

  20. Super- and sub-critical regions in shocks driven by radio-loud and radio-quiet CMEs

    PubMed Central

    Bemporad, Alessandro; Mancuso, Salvatore

    2012-01-01

    White-light coronagraphic images of Coronal Mass Ejections (CMEs) observed by SOHO/LASCO C2 have been used to estimate the density jump along the whole front of two CME-driven shocks. The two events are different in that the first one was a “radio-loud” fast CME, while the second one was a “radio quiet” slow CME. From the compression ratios inferred along the shock fronts, we estimated the Alfvén Mach numbers for the general case of an oblique shock. It turns out that the “radio-loud” CME shock is initially super-critical around the shock center, while later on the whole shock becomes sub-critical. On the contrary, the shock associated with the “radio-quiet” CME is sub-critical at all times. This suggests that CME-driven shocks could be efficient particle accelerators at the shock nose only at the initiation phases of the event, if and when the shock is super-critical, while at later times they lose their energy and the capability to accelerate high energetic particles. PMID:25685431

  1. C-arm positioning using virtual fluoroscopy for image-guided surgery

    NASA Astrophysics Data System (ADS)

    de Silva, T.; Punnoose, J.; Uneri, A.; Goerres, J.; Jacobson, M.; Ketcha, M. D.; Manbachi, A.; Vogt, S.; Kleinszig, G.; Khanna, A. J.; Wolinsky, J.-P.; Osgood, G.; Siewerdsen, J. H.

    2017-03-01

    Introduction: Fluoroscopically guided procedures often involve repeated acquisitions for C-arm positioning at the cost of radiation exposure and time in the operating room. A virtual fluoroscopy system is reported with the potential of reducing dose and time spent in C-arm positioning, utilizing three key advances: robust 3D-2D registration to a preoperative CT; real-time forward projection on GPU; and a motorized mobile C-arm with encoder feedback on C-arm orientation. Method: Geometric calibration of the C-arm was performed offline in two rotational directions (orbit α, orbit β). Patient registration was performed using image-based 3D-2D registration with an initially acquired radiograph of the patient. This approach for patient registration eliminated the requirement for external tracking devices inside the operating room, allowing virtual fluoroscopy using commonly available systems in fluoroscopically guided procedures within standard surgical workflow. Geometric accuracy was evaluated in terms of projection distance error (PDE) in anatomical fiducials. A pilot study was conducted to evaluate the utility of virtual fluoroscopy to aid C-arm positioning in image guided surgery, assessing potential improvements in time, dose, and agreement between the virtual and desired view. Results: The overall geometric accuracy of DRRs in comparison to the actual radiographs at various C-arm positions was PDE (mean ± std) = 1.6 ± 1.1 mm. The conventional approach required on average 8.0 ± 4.5 radiographs spent "fluoro hunting" to obtain the desired view. Positioning accuracy improved from 2.6o ± 2.3o (in α) and 4.1o ± 5.1o (in β) in the conventional approach to 1.5o ± 1.3o and 1.8o ± 1.7o, respectively, with the virtual fluoroscopy approach. Conclusion: Virtual fluoroscopy could improve accuracy of C-arm positioning and save time and radiation dose in the operating room. Such a system could be valuable to training of fluoroscopy technicians as well as

  2. A multimodal image guiding system for Navigated Ultrasound Bronchoscopy (EBUS): A human feasibility study

    PubMed Central

    Hofstad, Erlend Fagertun; Amundsen, Tore; Langø, Thomas; Bakeng, Janne Beate Lervik; Leira, Håkon Olav

    2017-01-01

    Background Endobronchial ultrasound transbronchial needle aspiration (EBUS-TBNA) is the endoscopic method of choice for confirming lung cancer metastasis to mediastinal lymph nodes. Precision is crucial for correct staging and clinical decision-making. Navigation and multimodal imaging can potentially improve EBUS-TBNA efficiency. Aims To demonstrate the feasibility of a multimodal image guiding system using electromagnetic navigation for ultrasound bronchoschopy in humans. Methods Four patients referred for lung cancer diagnosis and staging with EBUS-TBNA were enrolled in the study. Target lymph nodes were predefined from the preoperative computed tomography (CT) images. A prototype convex probe ultrasound bronchoscope with an attached sensor for position tracking was used for EBUS-TBNA. Electromagnetic tracking of the ultrasound bronchoscope and ultrasound images allowed fusion of preoperative CT and intraoperative ultrasound in the navigation software. Navigated EBUS-TBNA was used to guide target lymph node localization and sampling. Navigation system accuracy was calculated, measured by the deviation between lymph node position in ultrasound and CT in three planes. Procedure time, diagnostic yield and adverse events were recorded. Results Preoperative CT and real-time ultrasound images were successfully fused and displayed in the navigation software during the procedures. Overall navigation accuracy (11 measurements) was 10.0 ± 3.8 mm, maximum 17.6 mm, minimum 4.5 mm. An adequate sample was obtained in 6/6 (100%) of targeted lymph nodes. No adverse events were registered. Conclusions Electromagnetic navigated EBUS-TBNA was feasible, safe and easy in this human pilot study. The clinical usefulness was clearly demonstrated. Fusion of real-time ultrasound, preoperative CT and electromagnetic navigational bronchoscopy provided a controlled guiding to level of target, intraoperative overview and procedure documentation. PMID:28182758

  3. TU-E-TOUR-I-00: Exhibit Hall Guided Tours-Dosimters for QC in Diagnostic Imaging (Tuesday)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Tour Leader: Xia Jiang, Ohio State University, Columbus, OH Tour Guides: Xia Jiang, Ohio State University, Columbus, OH Kevin Little, The University of Chicago, Chicago, IL Christina Sammet, Lurie Children’s Hospital of Chicago, Chicago, IL Participating Vendors: IBA PTW - New York Radcal Corporation RTI Electronics, Inc. Exhibit Hall Guided Tours is a new program launching this year at the Annual Meeting. The Guided Tours are designed to enhance the interaction between meeting attendees and exhibitors. This year’s Imaging Guided Tours are organized around the theme of dosimeters for quality control in diagnostic imaging. Tours will begin with an introductionmore » and background given by Dr. Xia Jiang, the Tour Leader. The introduction will cover the types and properties of different radiation dosimeters used for quality assurance in clinical radiology. Attendees will then break into smaller groups, each lead by an AAPM-member Tour Guide. The tour groups will visit the exhibit booths of vendors who provide appropriate dosimeters, and a vendor representative will give a presentation to the group about their particular product(s). The vendor representatives as well as the Tour Guides will be available to answer questions. Outline: Types and properties of radiation detectors and dosimeters Ionization chamber dosimeters Solid state dosimeters Dosimeter calibration: Primary and secondary standards dosimetry laboratories Instruments for measuring tube voltage and exposure time Vendor presentations will likely cover features and innovations of different dosimeter systems, as well as their practical use. Learning Objectives: Understand the types and properties of different instrumentations used for quality control in diagnostic imaging. Understand the process of dosimeter calibration. Gain familiarity with the latest commercial dosimeter systems from different vendors.« less

  4. WE-C-TOUR-I-00: Exhibit Hall Guided Tours-Dosimters for QC in Diagnostic Imaging (Wednesday)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Tour Leader: Xia Jiang, Ohio State University, Columbus, OH Tour Guides: Xia Jiang, Ohio State University, Columbus, OH Kevin Little, The University of Chicago, Chicago, IL Adrien Sanchez, University of Chicago, Chicago, IL Participating Vendors: IBA PTW - New York Radcal Corporation RTI Electronics, Inc. Exhibit Hall Guided Tours is a new program launching this year at the Annual Meeting. The Guided Tours are designed to enhance the interaction between meeting attendees and exhibitors. This year’s Imaging Guided Tours are organized around the theme of dosimeters for quality control in diagnostic imaging. Tours will begin with an introduction and backgroundmore » given by Dr. Xia Jiang, the Tour Leader. The introduction will cover the types and properties of different radiation dosimeters used for quality assurance in clinical radiology. Attendees will then break into smaller groups, each lead by an AAPM-member Tour Guide. The tour groups will visit the exhibit booths of vendors who provide appropriate dosimeters, and a vendor representative will give a presentation to the group about their particular product(s). The vendor representatives as well as the Tour Guides will be available to answer questions. Outline: Types and properties of radiation detectors and dosimeters Ionization chamber dosimeters Solid state dosimeters Dosimeter calibration: Primary and secondary standards dosimetry laboratories Instruments for measuring tube voltage and exposure time Vendor presentations will likely cover features and innovations of different dosimeter systems, as well as their practical use. Learning Objectives: Understand the types and properties of different instrumentations used for quality control in diagnostic imaging. Understand the process of dosimeter calibration. Gain familiarity with the latest commercial dosimeter systems from different vendors.« less

  5. Protein-based photothermal theranostics for imaging-guided cancer therapy

    NASA Astrophysics Data System (ADS)

    Rong, Pengfei; Huang, Peng; Liu, Zhiguo; Lin, Jing; Jin, Albert; Ma, Ying; Niu, Gang; Yu, Lun; Zeng, Wenbin; Wang, Wei; Chen, Xiaoyuan

    2015-10-01

    The development of imageable photothermal theranostics has attracted considerable attention for imaging guided photothermal therapy (PTT) with high tumor ablation accuracy. In this study, we strategically constructed a near-infrared (NIR) cyanine dye by introducing a rigid cyclohexenyl ring to the heptamethine chain to obtain a heptamethine dye CySCOOH with high fluorescence intensity and good stability. By covalent conjugation of CySCOOH onto human serum albumin (HSA), the as-prepared HSA@CySCOOH nanoplatform is highly efficient for NIR fluorescence/photoacoustic/thermal multimodality imaging and photothermal tumor ablation. The theranostic capability of HSA@CySCOOH was systematically evaluated both in vitro and in vivo. Most intriguingly, complete tumor elimination was achieved by intravenous injection of HSA@CySCOOH (CySCOOH, 1 mg kg-1 808 nm, 1.0 W cm-2 for 5 min) into 4T1 tumor-bearing mice, with no weight loss, noticeable toxicity, or tumor recurrence being observed. This as-prepared protein-based nanotheranostics exhibits high water dispersibility, no off target cytotoxicity, and good biodegradability and biocompatibility, thus facilitating its clinical translation to cancer photothermal theranostics.The development of imageable photothermal theranostics has attracted considerable attention for imaging guided photothermal therapy (PTT) with high tumor ablation accuracy. In this study, we strategically constructed a near-infrared (NIR) cyanine dye by introducing a rigid cyclohexenyl ring to the heptamethine chain to obtain a heptamethine dye CySCOOH with high fluorescence intensity and good stability. By covalent conjugation of CySCOOH onto human serum albumin (HSA), the as-prepared HSA@CySCOOH nanoplatform is highly efficient for NIR fluorescence/photoacoustic/thermal multimodality imaging and photothermal tumor ablation. The theranostic capability of HSA@CySCOOH was systematically evaluated both in vitro and in vivo. Most intriguingly, complete tumor

  6. Full-Sky Maps of the VHF Radio Sky with the Owens Valley Radio Observatory Long Wavelength Array

    NASA Astrophysics Data System (ADS)

    Eastwood, Michael W.; Hallinan, Gregg

    2018-05-01

    21-cm cosmology is a powerful new probe of the intergalactic medium at redshifts 20 >~ z >~ 6 corresponding to the Cosmic Dawn and Epoch of Reionization. Current observations of the highly-redshifted 21-cm transition are limited by the dynamic range they can achieve against foreground sources of low-frequency (<200 MHz) of radio emission. We used the Owens Valley Radio Observatory Long Wavelength Array (OVRO-LWA) to generate a series of new modern high-fidelity sky maps that capture emission on angular scales ranging from tens of degrees to ~15 arcmin, and frequencies between 36 and 73 MHz. These sky maps were generated from the application of Tikhonov-regularized m-mode analysis imaging, which is a new interferometric imaging technique that is uniquely suited for low-frequency, wide-field, drift-scanning interferometers.

  7. Electricity/Electronics. Career Education Guide.

    ERIC Educational Resources Information Center

    Dependents Schools (DOD), Washington, DC. European Area.

    The curriculum guide is designed to provide high school students with realistic training in electricity/electronics theory and practice and to prepare them for entry into an occupation or continuing postsecondary education. The learning modules are grouped into three areas: electrical technology, radio-television technology, and industrial…

  8. Radio Galaxies.

    ERIC Educational Resources Information Center

    Downes, Ann

    1986-01-01

    Provides background information on radio galaxies. Topic areas addressed include: what produces the radio emission; radio telescopes; locating radio galaxies; how distances to radio galaxies are found; physics of radio galaxies; computer simulations of radio galaxies; and the evolution of radio galaxies with cosmic time. (JN)

  9. Morphology and astrometry of Infrared-Faint Radio Sources

    NASA Astrophysics Data System (ADS)

    Middelberg, Enno; Norris, Ray; Randall, Kate; Mao, Minnie; Hales, Christopher

    2008-10-01

    Infrared-Faint Radio Sources, or IFRS, are an unexpected class of object discovered in the Australia Telescope Large Area Survey, ATLAS. They are compact 1.4GHz radio sources with no visible counterparts in co-located (relatively shallow) Spitzer infrared and optical images. We have detected two of these objects with VLBI, indicating the presence of an AGN. These observations and our ATLAS data indicate that IFRS are extended on scales of arcseconds, and we wish to image their morphologies to obtain clues about their nature. These observations will also help us to select optical counterparts from very deep, and hence crowded, optical images which we have proposed. With these data in hand, we will be able to compare IFRS to known object types and to apply for spectroscopy to obtain their redshifts.

  10. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.

    PubMed

    Besharati Tabrizi, Leila; Mahvash, Mehran

    2015-07-01

    An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.

  11. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy

    NASA Astrophysics Data System (ADS)

    Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.

    2013-05-01

    Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.

  12. Feasibility of real-time magnetic resonance imaging-guided endomyocardial biopsies: An in-vitro study.

    PubMed

    Lossnitzer, Dirk; Seitz, Sebastian A; Krautz, Birgit; Schnackenburg, Bernhard; André, Florian; Korosoglou, Grigorios; Katus, Hugo A; Steen, Henning

    2015-07-26

    To investigate if magnetic resonance (MR)-guided biopsy can improve the performance and safety of such procedures. A novel MR-compatible bioptome was evaluated in a series of in-vitro experiments in a 1.5T magnetic resonance imaging (MRI) system. The bioptome was inserted into explanted porcine and bovine hearts under real-time MR-guidance employing a steady state free precession sequence. The artifact produced by the metal element at the tip and the signal voids caused by the bioptome were visually tracked for navigation and allowed its constant and precise localization. Cardiac structural elements and the target regions for the biopsy were clearly visible. Our method allowed a significantly better spatial visualization of the bioptoms tip compared to conventional X-ray guidance. The specific device design of the bioptome avoided inducible currents and therefore subsequent heating. The novel MR-compatible bioptome provided a superior cardiovascular magnetic resonance (imaging) soft-tissue visualization for MR-guided myocardial biopsies. Not at least the use of MRI guidance for endomyocardial biopsies completely avoided radiation exposure for both patients and interventionalists. MRI-guided endomyocardial biopsies provide a better than conventional X-ray guided navigation and could therefore improve the specificity and reproducibility of cardiac biopsies in future studies.

  13. Image guided biopsy of the pleura: a useful diagnostic tool even when fluid is minimal

    PubMed Central

    Manu, Mohan K; Prakashini, Koteshwara; Mohapatra, Aswini Kumar; Kudva, Ranjini

    2014-01-01

    A man in his late thirties presented with left-sided chest pain, recurrent fever and cough. Radiographical study revealed left pleural effusion which on ultrasonic imaging was minimal and non-tappable. Image guided trucut pleural biopsy yielded pleural specimens which helped in confirming the diagnosis of tuberculosis. PMID:24980995

  14. Clinical utility of transperineal template-guided mapping biopsy of the prostate after negative magnetic resonance imaging-guided transrectal biopsy.

    PubMed

    Sivaraman, Arjun; Sanchez-Salas, Rafael; Ahmed, Hashim U; Barret, Eric; Cathala, Nathalie; Mombet, Annick; Uriburu Pizarro, Facundo; Carneiro, Arie; Doizi, Steeve; Galiano, Marc; Rozet, Francois; Prapotnich, Dominique; Cathelineau, Xavier

    2015-07-01

    We evaluated the prostate cancer detection with transperineal template-guided mapping biopsy in patients with elevated prostate-specific antigen and negative magnetic resonance imaging (MRI)-guided biopsy. Totally 75 patients underwent transperineal template-guided mapping biopsy for prior negative MRI-guided (cognitive registration) biopsy during April 2013 to August 2014. Primary objective was to report clinically significant cancer detection in this cohort of patients. Significant cancer was defined using varying thresholds of MCL or Gleason grade 3+4 or greater or both. Cancers with more than 80% of positive core length anterior to the level of urethra were termed anterior zone cancer. Secondary objective was to evaluate the potential clinical and radiological predictors for significant cancer detection. The mean age was 61.6 ± 6.5 years and median prostate-specific antigen was 10.4 ng/dl (7.9-18) with a mean MRI target size of 7.2mm (4-11). Transperineal template-guided mapping biopsy identified cancer in 36% (27/75) patients and 66.6% (18/27) of them were anterior zone cancers. The rates of detection of clinically significant and insignificant cancer according to the several definitions used range from 22.7% to 30.7% and 5.3% to 13.3%, respectively. Multivariate analysis did not identify any predictors for finding clinically significant and anterior cancers in this group of patients. Transperineal template-guided mapping biopsy appears to be an excellent biopsy protocol for downstream management following negative MRI-guided biopsy. Most of the cancers detected were predominantly anterior tumors. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. The Nature of the Stingray Nebula from Radio Observations

    NASA Astrophysics Data System (ADS)

    Harvey-Smith, Lisa; Hardwick, Jennifer A.; De Marco, Orsola; Parthasarathy, Mudumba; Gonidakis, Ioannis; Akhter, Shaila; Cunningham, Maria; Green, James A.

    2018-06-01

    We have analysed the full suite of Australia Telescope Compact Array data for the Stingray planetary nebula. Data were taken in the 4- to 23-GHz range of radio frequencies between 1991 and 2016. The radio flux density of the nebula generally declined during that period, but between 2013 and 2016 it shows signs of halting that decline. We produced the first spatially resolved radio images of the Stingray nebula from data taken in 2005. A ring structure, which appears to be associated with the ring seen in HST images, was visible. In addition, we found a narrow extension to the radio emission towards the eastern and western edges of the nebula. We derived the emission measure of the nebula - this decreased between 1992 and 2011, suggesting that the nebula is undergoing recombination. The radio spectral index is broadly consistent with a free-free emission mechanism, however a single data point hints that a steeper spectral index has possibly emerged since 2013, which could indicate the presence of synchrotron emission. If a non-thermal component component has emerged, such as one associated with a region that is launching a jet or outflow, we predict that it would intensify in the years to come.

  16. Cost effective raspberry pi-based radio frequency identification tagging of mice suitable for automated in vivo imaging.

    PubMed

    Bolaños, Federico; LeDue, Jeff M; Murphy, Timothy H

    2017-01-30

    Automation of animal experimentation improves consistency, reduces potential for error while decreasing animal stress and increasing well-being. Radio frequency identification (RFID) tagging can identify individual mice in group housing environments enabling animal-specific tracking of physiological parameters. We describe a simple protocol to radio frequency identification (RFID) tag and detect mice. RFID tags were injected sub-cutaneously after brief isoflurane anesthesia and do not require surgical steps such as suturing or incisions. We employ glass-encapsulated 125kHz tags that can be read within 30.2±2.4mm of the antenna. A raspberry pi single board computer and tag reader enable automated logging and cross platform support is possible through Python. We provide sample software written in Python to provide a flexible and cost effective system for logging the weights of multiple mice in relation to pre-defined targets. The sample software can serve as the basis of any behavioral or physiological task where users will need to identify and track specific animals. Recently, we have applied this system of tagging to automated mouse brain imaging within home-cages. We provide a cost effective solution employing open source software to facilitate adoption in applications such as automated imaging or tracking individual animal weights during tasks where food or water restriction is employed as motivation for a specific behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Automatic detection of solar features in HSOS full-disk solar images using guided filter

    NASA Astrophysics Data System (ADS)

    Yuan, Fei; Lin, Jiaben; Guo, Jingjing; Wang, Gang; Tong, Liyue; Zhang, Xinwei; Wang, Bingxiang

    2018-02-01

    A procedure is introduced for the automatic detection of solar features using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. Guided filter is adopted to enhance the edges of solar features and restrain the solar limb darkening, which is first introduced into the astronomical target detection. Then specific features are detected by Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedures, our procedure has some advantages such as real time and reliability as well as no need of local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result shows that the number of features detected by our procedure is well consistent with the manual one.

  18. Fluorescence and Magnetic Resonance Dual-Modality Imaging-Guided Photothermal and Photodynamic Dual-Therapy with Magnetic Porphyrin-Metal Organic Framework Nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Li, Yu-Hao; Chen, Yang; Wang, Man-Man; Wang, Xue-Sheng; Yin, Xue-Bo

    2017-03-01

    Phototherapy shows some unique advantages in clinical application, such as remote controllability, improved selectivity, and low bio-toxicity, than chemotherapy. In order to improve the safety and therapeutic efficacy, imaging-guided therapy seems particularly important because it integrates visible information to speculate the distribution and metabolism of the probe. Here we prepare biocompatible core-shell nanocomposites for dual-modality imaging-guided photothermal and photodynamic dual-therapy by the in situ growth of porphyrin-metal organic framework (PMOF) on Fe3O4@C core. Fe3O4@C core was used as T2-weighted magnetic resonance (MR) imaging and photothermal therapy (PTT) agent. The optical properties of porphyrin were well remained in PMOF, and PMOF was therefore selected for photodynamic therapy (PDT) and fluorescence imaging. Fluorescence and MR dual-modality imaging-guided PTT and PDT dual-therapy was confirmed with tumour-bearing mice as model. The high tumour accumulation of Fe3O4@C@PMOF and controllable light excitation at the tumour site achieved efficient cancer therapy, but low toxicity was observed to the normal tissues. The results demonstrated that Fe3O4@C@PMOF was a promising dual-imaging guided PTT and PDT dual-therapy platform for tumour diagnosis and treatment with low cytotoxicity and negligible in vivo toxicity.

  19. Target coverage in image-guided stereotactic body radiotherapy of liver tumors.

    PubMed

    Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M

    2007-05-01

    To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (< or = 2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging.

  20. Application safety evaluation of the radio frequency identification tag under magnetic resonance imaging.

    PubMed

    Fei, Xiaolu; Li, Shanshan; Gao, Shan; Wei, Lan; Wang, Lihong

    2014-09-04

    Radio Frequency Identification(RFID) has been widely used in healthcare facilities, but it has been paid little attention whether RFID applications are safe enough under healthcare environment. The purpose of this study is to assess the effects of RFID tags on Magnetic Resonance (MR) imaging in a typical electromagnetic environment in hospitals, and to evaluate the safety of their applications. A Magphan phantom was used to simulate the imaging objects, while active RFID tags were placed at different distances (0, 4, 8, 10 cm) from the phantom border. The phantom was scanned by using three typical sequences including spin-echo (SE) sequence, gradient-echo (GRE) sequence and inversion-recovery (IR) sequence. The quality of the image was quantitatively evaluated by using signal-to-noise ratio (SNR), uniformity, high-contrast resolution, and geometric distortion. RFID tags were read by an RFID reader to calculate their usable rate. RFID tags can be read properly after being placed in high magnetic field for up to 30 minutes. SNR: There were no differences between the group with RFID tags and the group without RFID tags using SE and IR sequence, but it was lower when using GRE sequence.Uniformity: There was a significant difference between the group with RFID tags and the group without RFID tags using SE and GRE sequence. Geometric distortion and high-contrast resolution: There were no obvious differences found. Active RFID tags can affect MR imaging quality, especially using the GRE sequence. Increasing the distance from the RFID tags to the imaging objects can reduce that influence. When the distance was longer than 8 cm, MR imaging quality were almost unaffected. However, the Gradient Echo related sequence is not recommended when patients wear a RFID wristband.

  1. Radio Emissions from Magnetopause Reconnection Events

    NASA Astrophysics Data System (ADS)

    Fung, S. F.; Kunze, J.

    2017-12-01

    A new terrestrial radio emission has recently been identified and attributed to a source connected to the magnetopause magnetic reconnection process [Fung et al., 2013]. Known as the terrestrial myriametric radio burst (TMRB), the new emission was observed by both the IMAGE and Geotail spacecraft during a period of northward interplanetary magnetic field (IMF Bz >0) as a temporal and isolated burst of emission with perhaps well-defined or directed emission cones. Spectral and spin-modulation analyses showed that both the intensity and source direction of the emission are sensitive to the variability of the IMF. The strong control of the emission by the IMF suggests that the emission is connected to the magnetopause reconnection process. A number of potential TMRB events have now been identified by surveying all the dynamic spectrogram data obtained by the IMAGE, Geotail, Cluster, and Wind spacecraft in 5/2000-12/2005. This paper will present our analyses of how the spectral signatures and beaming characteristics of the emissions might depend on the IMF orientations, and thus their likelihood of being TMRBs. Special emphasis will be on events associated with northward and southward IMF in order to determine if TMRBs might be generally produced from magnetopause reconnection processes. Fung, S. F., K. Hashimoto, H. Kojima, S. A. Boardsen, L. N. Garcia, H. Matsumoto, J. L. Green, and B. W. Reinisch (2013), Terrestrial myriametric radio burst observed by IMAGE and Geotail satellites, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50149.

  2. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  3. Imaging-Guided Core-Needle Breast Biopsy: Impact of Meditation and Music Interventions on Patient Anxiety, Pain, and Fatigue.

    PubMed

    Soo, Mary Scott; Jarosz, Jennifer A; Wren, Anava A; Soo, Adrianne E; Mowery, Yvonne M; Johnson, Karen S; Yoon, Sora C; Kim, Connie; Hwang, E Shelley; Keefe, Francis J; Shelby, Rebecca A

    2016-05-01

    To evaluate the impact of guided meditation and music interventions on patient anxiety, pain, and fatigue during imaging-guided breast biopsy. After giving informed consent, 121 women needing percutaneous imaging-guided breast biopsy were randomized into three groups: (1) guided meditation; (2) music; (3) standard-care control group. During biopsy, the meditation and music groups listened to an audio-recorded, guided, loving-kindness meditation and relaxing music, respectively; the standard-care control group received supportive dialogue from the biopsy team. Immediately before and after biopsy, participants completed questionnaires measuring anxiety (State-Trait Anxiety Inventory Scale), biopsy pain (Brief Pain Inventory), and fatigue (modified Functional Assessment of Chronic Illness Therapy-Fatigue). After biopsy, participants completed questionnaires assessing radiologist-patient communication (modified Questionnaire on the Quality of Physician-Patient Interaction), demographics, and medical history. The meditation and music groups reported significantly greater anxiety reduction (P values < .05) and reduced fatigue after biopsy than the standard-care control group; the standard-care control group reported increased fatigue after biopsy. The meditation group additionally showed significantly lower pain during biopsy, compared with the music group (P = .03). No significant difference in patient-perceived quality of radiologist-patient communication was noted among groups. Listening to guided meditation significantly lowered biopsy pain during imaging-guided breast biopsy; meditation and music reduced patient anxiety and fatigue without compromising radiologist-patient communication. These simple, inexpensive interventions could improve women's experiences during core-needle breast biopsy. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. Ultrasound in Radiology: from Anatomic, Functional, Molecular Imaging to Drug Delivery and Image-Guided Therapy

    PubMed Central

    Klibanov, Alexander L.; Hossack, John A.

    2015-01-01

    During the past decade, ultrasound has expanded medical imaging well beyond the “traditional” radiology setting - a combination of portability, low cost and ease of use makes ultrasound imaging an indispensable tool for radiologists as well as for other medical professionals who need to obtain imaging diagnosis or guide a therapeutic intervention quickly and efficiently. Ultrasound combines excellent ability for deep penetration into soft tissues with very good spatial resolution, with only a few exceptions (i.e. those involving overlying bone or gas). Real-time imaging (up to hundreds and thousands frames per second) enables guidance of therapeutic procedures and biopsies; characterization of the mechanical properties of the tissues greatly aids with the accuracy of the procedures. The ability of ultrasound to deposit energy locally brings about the potential for localized intervention encompassing: tissue ablation, enhancing penetration through the natural barriers to drug delivery in the body and triggering drug release from carrier micro- and nanoparticles. The use of microbubble contrast agents brings the ability to monitor and quantify tissue perfusion, and microbubble targeting with ligand-decorated microbubbles brings the ability to obtain molecular biomarker information, i.e., ultrasound molecular imaging. Overall, ultrasound has become the most widely used imaging modality in modern medicine; it will continue to grow and expand. PMID:26200224

  5. Cen A Radio Optical Gamma Composite

    NASA Image and Video Library

    2017-12-08

    NASA release April 1, 2010 It takes the addition of radio data (orange) to fully appreciate the scale of Cen A's giant radio-emitting lobes, which stretch more than 1.4 million light-years. Gamma-rays from Fermi's Large Area Telescope (purple) and an image of the galaxy in visible light are also included in this composite. Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory, and Ilana Feain, Tim Cornwell, and Ron Ekers (CSIRO/ATNF), R. Morganti (ASTRON), and N. Junkes (MPIfR) To learn more about these images go to: www.nasa.gov/mission_pages/GLAST/news/smokestack-plumes.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  6. Integration of patient specific modeling and advanced image processing techniques for image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Archip, Neculai; Fedorov, Andriy; Lloyd, Bryn; Chrisochoides, Nikos; Golby, Alexandra; Black, Peter M.; Warfield, Simon K.

    2006-03-01

    A major challenge in neurosurgery oncology is to achieve maximal tumor removal while avoiding postoperative neurological deficits. Therefore, estimation of the brain deformation during the image guided tumor resection process is necessary. While anatomic MRI is highly sensitive for intracranial pathology, its specificity is limited. Different pathologies may have a very similar appearance on anatomic MRI. Moreover, since fMRI and diffusion tensor imaging are not currently available during the surgery, non-rigid registration of preoperative MR with intra-operative MR is necessary. This article presents a translational research effort that aims to integrate a number of state-of-the-art technologies for MRI-guided neurosurgery at the Brigham and Women's Hospital (BWH). Our ultimate goal is to routinely provide the neurosurgeons with accurate information about brain deformation during the surgery. The current system is tested during the weekly neurosurgeries in the open magnet at the BWH. The preoperative data is processed, prior to the surgery, while both rigid and non-rigid registration algorithms are run in the vicinity of the operating room. The system is tested on 9 image datasets from 3 neurosurgery cases. A method based on edge detection is used to quantitatively validate the results. 95% Hausdorff distance between points of the edges is used to estimate the accuracy of the registration. Overall, the minimum error is 1.4 mm, the mean error 2.23 mm, and the maximum error 3.1 mm. The mean ratio between brain deformation estimation and rigid alignment is 2.07. It demonstrates that our results can be 2.07 times more precise then the current technology. The major contribution of the presented work is the rigid and non-rigid alignment of the pre-operative fMRI with intra-operative 0.5T MRI achieved during the neurosurgery.

  7. Edge-oriented dual-dictionary guided enrichment (EDGE) for MRI-CT image reconstruction.

    PubMed

    Li, Liang; Wang, Bigong; Wang, Ge

    2016-01-01

    In this paper, we formulate the joint/simultaneous X-ray CT and MRI image reconstruction. In particular, a novel algorithm is proposed for MRI image reconstruction from highly under-sampled MRI data and CT images. It consists of two steps. First, a training dataset is generated from a series of well-registered MRI and CT images on the same patients. Then, an initial MRI image of a patient can be reconstructed via edge-oriented dual-dictionary guided enrichment (EDGE) based on the training dataset and a CT image of the patient. Second, an MRI image is reconstructed using the dictionary learning (DL) algorithm from highly under-sampled k-space data and the initial MRI image. Our algorithm can establish a one-to-one correspondence between the two imaging modalities, and obtain a good initial MRI estimation. Both noise-free and noisy simulation studies were performed to evaluate and validate the proposed algorithm. The results with different under-sampling factors show that the proposed algorithm performed significantly better than those reconstructed using the DL algorithm from MRI data alone.

  8. Retinex based low-light image enhancement using guided filtering and variational framework

    NASA Astrophysics Data System (ADS)

    Zhang, Shi; Tang, Gui-jin; Liu, Xiao-hua; Luo, Su-huai; Wang, Da-dong

    2018-03-01

    A new image enhancement algorithm based on Retinex theory is proposed to solve the problem of bad visual effect of an image in low-light conditions. First, an image is converted from the RGB color space to the HSV color space to get the V channel. Next, the illuminations are respectively estimated by the guided filtering and the variational framework on the V channel and combined into a new illumination by average gradient. The new reflectance is calculated using V channel and the new illumination. Then a new V channel obtained by multiplying the new illumination and reflectance is processed with contrast limited adaptive histogram equalization (CLAHE). Finally, the new image in HSV space is converted back to RGB space to obtain the enhanced image. Experimental results show that the proposed method has better subjective quality and objective quality than existing methods.

  9. Radio Galaxy Zoo: compact and extended radio source classification with deep learning

    NASA Astrophysics Data System (ADS)

    Lukic, V.; Brüggen, M.; Banfield, J. K.; Wong, O. I.; Rudnick, L.; Norris, R. P.; Simmons, B.

    2018-05-01

    Machine learning techniques have been increasingly useful in astronomical applications over the last few years, for example in the morphological classification of galaxies. Convolutional neural networks have proven to be highly effective in classifying objects in image data. In the context of radio-interferometric imaging in astronomy, we looked for ways to identify multiple components of individual sources. To this effect, we design a convolutional neural network to differentiate between different morphology classes using sources from the Radio Galaxy Zoo (RGZ) citizen science project. In this first step, we focus on exploring the factors that affect the performance of such neural networks, such as the amount of training data, number and nature of layers, and the hyperparameters. We begin with a simple experiment in which we only differentiate between two extreme morphologies, using compact and multiple-component extended sources. We found that a three-convolutional layer architecture yielded very good results, achieving a classification accuracy of 97.4 per cent on a test data set. The same architecture was then tested on a four-class problem where we let the network classify sources into compact and three classes of extended sources, achieving a test accuracy of 93.5 per cent. The best-performing convolutional neural network set-up has been verified against RGZ Data Release 1 where a final test accuracy of 94.8 per cent was obtained, using both original and augmented images. The use of sigma clipping does not offer a significant benefit overall, except in cases with a small number of training images.

  10. Image guided biopsy of the pleura: a useful diagnostic tool even when fluid is minimal.

    PubMed

    Manu, Mohan K; Prakashini, Koteshwara; Mohapatra, Aswini Kumar; Kudva, Ranjini

    2014-06-30

    A man in his late thirties presented with left-sided chest pain, recurrent fever and cough. Radiographical study revealed left pleural effusion which on ultrasonic imaging was minimal and non-tappable. Image guided trucut pleural biopsy yielded pleural specimens which helped in confirming the diagnosis of tuberculosis. 2014 BMJ Publishing Group Ltd.

  11. Tunable Light-Guide Image Processing Snapshot Spectrometer (TuLIPSS) for Earth and Moon Observations

    NASA Astrophysics Data System (ADS)

    Tkaczyk, T. S.; Alexander, D.; Luvall, J. C.; Wang, Y.; Dwight, J. G.; Pawlowsk, M. E.; Howell, B.; Tatum, P. F.; Stoian, R.-I.; Cheng, S.; Daou, A.

    2018-02-01

    A tunable light-guide image processing snapshot spectrometer (TuLIPSS) for Earth science research and observation is being developed through a NASA instrument incubator project with Rice University and Marshall Space Flight Center.

  12. Multifractionated image-guided and stereotactic intensity-modulated radiotherapy of paraspinal tumors: a preliminary report.

    PubMed

    Yamada, Yoshiya; Lovelock, D Michael; Yenice, Kamil M; Bilsky, Mark H; Hunt, Margaret A; Zatcky, Joan; Leibel, Steven A

    2005-05-01

    The use of image-guided and stereotactic intensity-modulated radiotherapy (IMRT) techniques have made the delivery of high-dose radiation to lesions within close proximity to the spinal cord feasible. This report presents clinical and physical data regarding the use of IMRT coupled with noninvasive body frames (stereotactic and image-guided) for multifractionated radiotherapy. The Memorial Sloan-Kettering Cancer Center (Memorial) stereotactic body frame (MSBF) and Memorial body cradle (MBC) have been developed as noninvasive immobilizing devices for paraspinal IMRT using stereotactic (MSBF) and image-guided (MBC) techniques. Patients were either previously irradiated or prescribed doses beyond spinal cord tolerance (54 Gy in standard fractionation) and had unresectable gross disease involving the spinal canal. The planning target volume (PTV) was the gross tumor volume with a 1 cm margin. The PTV was not allowed to include the spinal cord contour. All treatment planning was performed using software developed within the institution. Isocenter verification was performed with an in-room computed tomography scan (MSBF) or electronic portal imaging devices, or both. Patients were followed up with serial magnetic resonance imaging every 3-4 months, and no patients were lost to follow-up. Kaplan-Meier statistics were used for analysis of clinical data. Both the MSBF and MBC were able to provide setup accuracy within 2 mm. With a median follow-up of 11 months, 35 patients (14 primary and 21 secondary malignancies) underwent treatment. The median dose previously received was 3000 cGy in 10 fractions. The median dose prescribed for these patients was 2000 cGy/5 fractions (2000-3000 cGy), which provided a median PTV V100 of 88%. In previously unirradiated patients, the median prescribed dose was 7000 cGy (5940-7000 cGy) with a median PTV V100 of 90%. The median Dmax to the cord was 34% and 68% for previously irradiated and never irradiated patients, respectively. More than 90

  13. Modeling prostate anatomy from multiple view TRUS images for image-guided HIFU therapy.

    PubMed

    Penna, Michael A; Dines, Kris A; Seip, Ralf; Carlson, Roy F; Sanghvi, Narendra T

    2007-01-01

    Current planning methods for transrectal high-intensity focused ultrasound treatment of prostate cancer rely on manually defining treatment regions in 15-20 sector transrectal ultrasound (TRUS) images of the prostate. Although effective, it is desirable to reduce user interaction time by identifying functionally related anatomic structures (segmenting), then automatically laying out treatment sites using these structures as a guide. Accordingly, a method has been developed to effectively generate solid three-dimensional (3-D) models of the prostate, urethra, and rectal wall from boundary trace data. Modeling the urethra and rectal wall are straightforward, but modeling the prostate is more difficult and has received much attention in the literature. New results presented here are aimed at overcoming many of the limitations of previous approaches to modeling the prostate while using boundary traces obtained via manual tracing in as few as 5 sector and 3 linear images. The results presented here are based on a new type of surface, the Fourier ellipsoid, and the use of sector and linear TRUS images. Tissue-specific 3-D models will ultimately permit finer control of energy deposition and more selective destruction of cancerous regions while sparing critical neighboring structures.

  14. Thirty-day emergency room visits and hospital admissions after outpatient non-vascular image-guided procedures.

    PubMed

    Nguyen, Quang; Mehta, Sahil V; Fang, Jieming; Sheiman, Robert; Kane, Robert; Ahmed, Muneeb; Sarwar, Ammar; Siewert, Bettina; Brook, Olga R

    2017-10-01

    To evaluate the rate of post-procedure emergency department (ED) visits and hospital admissions following outpatient non-vascular image-guided interventions performed under moderate sedation and to identify common and preventable causes of emergency department visits and hospital admissions. Institutional review board approval was acquired for this HIPAA-compliant retrospective study with waiver of informed consent. 1426 consecutive patients undergoing 1512 outpatient image-guided procedures under moderate sedation from November 2012 to August 2014 were included. The average patient age was 57.2 ± 15.2 years, and 602 (42%) patients were women. Major procedure categories included ultrasound-guided liver biopsies, ultrasound-guided kidney biopsies, and CT-guided lung biopsies/fiducial placement. Procedure details and medical follow-up within and after 30 days of the procedure were analyzed. A total of 168 (11.8%) patients were admitted to the hospital within 30 days of the procedure, with 29 of the admissions (17.3% of total admissions and 1.9% of total procedures) being procedure related. The most common procedure-related complication that required admission was hemorrhage (10/29, 34.5% of procedure-related admissions, 6.0% of total admissions, and 0.7% of total procedures), followed by pneumothorax (9/29, 31%, 5.4%, 0.6%), infection (4/29, 13.8%, 2.4%, 0.3%), and pain (3/29, 10.3%, 1.8%, 0.2%). Eighteen (62.1%) procedure-related admissions were immediately indicated. Thirty patients visited the ED and were subsequently discharged without admission with eight of the visits being procedure related (8/1512, 0.5%). All the procedure-related ED visits were due to pain. There were two deaths (2/1512, 0.1%) related to procedures, one from a thromboembolic event and another from post-biopsy hemorrhage. Outpatient non-vascular image-guided procedures result in a 30-day 1.9% hospital admission, 30-day 0.5% emergency room visit, and 30-day 0.1% mortality rate.

  15. Image-guided Tumor Ablation: Standardization of Terminology and Reporting Criteria—A 10-Year Update

    PubMed Central

    Solbiati, Luigi; Brace, Christopher L.; Breen, David J.; Callstrom, Matthew R.; Charboneau, J. William; Chen, Min-Hua; Choi, Byung Ihn; de Baère, Thierry; Dodd, Gerald D.; Dupuy, Damian E.; Gervais, Debra A.; Gianfelice, David; Gillams, Alice R.; Lee, Fred T.; Leen, Edward; Lencioni, Riccardo; Littrup, Peter J.; Livraghi, Tito; Lu, David S.; McGahan, John P.; Meloni, Maria Franca; Nikolic, Boris; Pereira, Philippe L.; Liang, Ping; Rhim, Hyunchul; Rose, Steven C.; Salem, Riad; Sofocleous, Constantinos T.; Solomon, Stephen B.; Soulen, Michael C.; Tanaka, Masatoshi; Vogl, Thomas J.; Wood, Bradford J.; Goldberg, S. Nahum

    2014-01-01

    Image-guided tumor ablation has become a well-established hallmark of local cancer therapy. The breadth of options available in this growing field increases the need for standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison among treatments that use different technologies, such as chemical (eg, ethanol or acetic acid) ablation, thermal therapies (eg, radiofrequency, laser, microwave, focused ultrasound, and cryoablation) and newer ablative modalities such as irreversible electroporation. This updated consensus document provides a framework that will facilitate the clearest communication among investigators regarding ablative technologies. An appropriate vehicle is proposed for reporting the various aspects of image-guided ablation therapy including classification of therapies, procedure terms, descriptors of imaging guidance, and terminology for imaging and pathologic findings. Methods are addressed for standardizing reporting of technique, follow-up, complications, and clinical results. As noted in the original document from 2003, adherence to the recommendations will improve the precision of communications in this field, leading to more accurate comparison of technologies and results, and ultimately to improved patient outcomes. © RSNA, 2014 Online supplemental material is available for this article. PMID:24927329

  16. Image-guided tumor ablation: standardization of terminology and reporting criteria--a 10-year update.

    PubMed

    Ahmed, Muneeb; Solbiati, Luigi; Brace, Christopher L; Breen, David J; Callstrom, Matthew R; Charboneau, J William; Chen, Min-Hua; Choi, Byung Ihn; de Baère, Thierry; Dodd, Gerald D; Dupuy, Damian E; Gervais, Debra A; Gianfelice, David; Gillams, Alice R; Lee, Fred T; Leen, Edward; Lencioni, Riccardo; Littrup, Peter J; Livraghi, Tito; Lu, David S; McGahan, John P; Meloni, Maria Franca; Nikolic, Boris; Pereira, Philippe L; Liang, Ping; Rhim, Hyunchul; Rose, Steven C; Salem, Riad; Sofocleous, Constantinos T; Solomon, Stephen B; Soulen, Michael C; Tanaka, Masatoshi; Vogl, Thomas J; Wood, Bradford J; Goldberg, S Nahum

    2014-10-01

    Image-guided tumor ablation has become a well-established hallmark of local cancer therapy. The breadth of options available in this growing field increases the need for standardization of terminology and reporting criteria to facilitate effective communication of ideas and appropriate comparison among treatments that use different technologies, such as chemical (eg, ethanol or acetic acid) ablation, thermal therapies (eg, radiofrequency, laser, microwave, focused ultrasound, and cryoablation) and newer ablative modalities such as irreversible electroporation. This updated consensus document provides a framework that will facilitate the clearest communication among investigators regarding ablative technologies. An appropriate vehicle is proposed for reporting the various aspects of image-guided ablation therapy including classification of therapies, procedure terms, descriptors of imaging guidance, and terminology for imaging and pathologic findings. Methods are addressed for standardizing reporting of technique, follow-up, complications, and clinical results. As noted in the original document from 2003, adherence to the recommendations will improve the precision of communications in this field, leading to more accurate comparison of technologies and results, and ultimately to improved patient outcomes. Online supplemental material is available for this article . © RSNA, 2014.

  17. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Slot Thing, Rune; Bernchou, Uffe; Mainegra-Hing, Ernesto; Hansen, Olfred; Brink, Carsten

    2016-08-01

    A comprehensive artefact correction method for clinical cone beam CT (CBCT) images acquired for image guided radiation therapy (IGRT) on a commercial system is presented. The method is demonstrated to reduce artefacts and recover CT-like Hounsfield units (HU) in reconstructed CBCT images of five lung cancer patients. Projection image based artefact corrections of image lag, detector scatter, body scatter and beam hardening are described and applied to CBCT images of five lung cancer patients. Image quality is evaluated through visual appearance of the reconstructed images, HU-correspondence with the planning CT images, and total volume HU error. Artefacts are reduced and CT-like HUs are recovered in the artefact corrected CBCT images. Visual inspection confirms that artefacts are indeed suppressed by the proposed method, and the HU root mean square difference between reconstructed CBCTs and the reference CT images are reduced by 31% when using the artefact corrections compared to the standard clinical CBCT reconstruction. A versatile artefact correction method for clinical CBCT images acquired for IGRT has been developed. HU values are recovered in the corrected CBCT images. The proposed method relies on post processing of clinical projection images, and does not require patient specific optimisation. It is thus a powerful tool for image quality improvement of large numbers of CBCT images.

  18. Management of skeletal metastases: An orthopaedic surgeon's guide

    PubMed Central

    Agarwal, Manish G; Nayak, Prakash

    2015-01-01

    Skeletal metastasis is a common cause of severe morbidity, reduction in quality of life (QOL) and often early mortality. Its prevalence is rising due to a higher rate of diagnosis, better systemic treatment, longer lives with the disease and higher disease burden rate. As people with cancer live longer and with rising sensitivity of body imaging and surveillance, the incidence of pathological fracture, metastatic epidural cord compression is rising and constitutes a challenge for the orthopedic surgeon to maintain their QOL. Metastatic disease is no longer a death sentence condemning patients to “terminal care.” In the era of multidisciplinary care and effective systemic targeted and nontargeted therapy, patient expectations of QOL, even during palliative end of care period is high. We lay emphasis on proving the diagnosis of metastasis by biopsy and histopathology and discuss imaging modalities to help estimate fracture risk and map disease extent. This article discusses at length the evidence and decision-making process of various modalities to treat skeletal metastasis. The modalities range from radiation including image-guided, stereotactic and whole body radiation, systemic targeted or hormonal therapy, spinal decompression with or without stabilization, extended curettage with stabilization, resection in select cases with megaprosthetic or biological reconstruction, percutaneous procedures using radio frequency ablation, cementoplasties and discusses the role of emerging modalities like high frequency ultrasound-guided ablation, cryotherapy and whole body radionuclide therapy. The focus lies on the role of multidisciplinary care, which considers complex decisions on patient centric prognosis, comorbidities, cost, feasibility and expectations in order to maximize outcomes on QOL issues. PMID:25593359

  19. Navigation concepts for magnetic resonance imaging-guided musculoskeletal interventions.

    PubMed

    Busse, Harald; Kahn, Thomas; Moche, Michael

    2011-08-01

    Image-guided musculoskeletal (MSK) interventions are a widely used alternative to open surgical procedures for various pathological findings in different body regions. They traditionally involve one of the established x-ray imaging techniques (radiography, fluoroscopy, computed tomography) or ultrasound scanning. Over the last decades, magnetic resonance imaging (MRI) has evolved into one of the most powerful diagnostic tools for nearly the whole body and has therefore been increasingly considered for interventional guidance as well.The strength of MRI for MSK applications is a combination of well-known general advantages, such as multiplanar and functional imaging capabilities, wide choice of tissue contrasts, and absence of ionizing radiation, as well as a number of MSK-specific factors, for example, the excellent depiction of soft-tissue tumors, nonosteolytic bone changes, and bone marrow lesions. On the downside, the magnetic resonance-compatible equipment needed, restricted space in the magnet, longer imaging times, and the more complex workflow have so far limited the number of MSK procedures under MRI guidance.Navigation solutions are generally a natural extension of any interventional imaging system, in particular, because powerful hardware and software for image processing have become routinely available. They help to identify proper access paths, provide accurate feedback on the instrument positions, facilitate the workflow in an MRI environment, and ultimately contribute to procedural safety and success.The purposes of this work were to describe some basic concepts and devices for MRI guidance of MSK procedures and to discuss technical and clinical achievements and challenges for some selected implementations.

  20. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    PubMed

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding

  1. Sun Radio Interferometer Space Experiment (SunRISE)

    NASA Astrophysics Data System (ADS)

    Kasper, Justin C.; SunRISE Team

    2018-06-01

    The Sun Radio Interferometer Space Experiment (SunRISE) is a NASA Heliophysics Explorer Mission of Opportunity currently in Phase A. SunRISE is a constellation of spacecraft flying in a 10-km diameter formation and operating as the first imaging radio interferometer in space. The purpose of SunRISE is to reveal critical aspects of solar energetic particle (SEP) acceleration at coronal mass ejections (CMEs) and transport into space by making the first spatially resolved observations of coherent Type II and III radio bursts produced by electrons accelerated at CMEs or released from flares. SunRISE will focus on solar Decametric-Hectometric (DH, 0.1 < f < 15 MHz) radio bursts that always are detected from space before major SEP events, but cannot be seen on Earth due to ionospheric absorption. This talk will describe SunRISE objectives and implementation. Presented on behalf of the entire SunRISE team.

  2. THE ABUNDANCE OF X-SHAPED RADIO SOURCES. I. VLA SURVEY OF 52 SOURCES WITH OFF-AXIS DISTORTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, David H.; Cohen, Jake P.; Lu, Jing

    Cheung identified a sample of 100 candidate X-shaped radio galaxies using the NRAO FIRST survey; these are small-axial-ratio extended radio sources with off-axis emission. Here, we present radio images of 52 of these sources that have been made from archival Very Large Array data with resolution of about 1″. Fifty-one of the 52 were observed at 1.4 GHz, 7 were observed at 1.4 and 5 GHz, and 1 was observed only at 5 GHz. We also present overlays of the Sloan Digital Sky Survey red images for 48 of the sources, and DSS II overlays for the remainder. Optical counterpartsmore » have been identified for most sources, but there remain a few empty fields. Our higher resolution VLA images along with FIRST survey images of the sources in the sample reveal that extended extragalactic radio sources with small axial ratios are largely (60%) cases of double radio sources with twin lobes that have off-axis extensions, usually with inversion-symmetric structure. The available radio images indicate that at most 20% of sources might be genuine X-shaped radio sources that could have formed by a restarting of beams in a new direction following an interruption and axis flip. The remaining 20% are in neither of these categories. The implications of this result for the gravitational wave background are discussed in Roberts et al.« less

  3. Biophysical characterization of a relativistic proton beam for image-guided radiosurgery

    PubMed Central

    Yu, Zhan; Vanstalle, Marie; La Tessa, Chiara; Jiang, Guo-Liang; Durante, Marco

    2012-01-01

    We measured the physical and radiobiological characteristics of 1 GeV protons for possible applications in stereotactic radiosurgery (image-guided plateau-proton radiosurgery). A proton beam was accelerated at 1 GeV at the Brookhaven National Laboratory (Upton, NY) and a target in polymethyl methacrylate (PMMA) was used. Clonogenic survival was measured after exposures to 1–10 Gy in three mammalian cell lines. Measurements and simulations demonstrate that the lateral scattering of the beam is very small. The lateral dose profile was measured with or without the 20-cm plastic target, showing no significant differences up to 2 cm from the axis A large number of secondary swift protons are produced in the target and this leads to an increase of approximately 40% in the measured dose on the beam axis at 20 cm depth. The relative biological effectiveness at 10% survival level ranged between 1.0 and 1.2 on the beam axis, and was slightly higher off-axis. The very low lateral scattering of relativistic protons and the possibility of using online proton radiography during the treatment make them attractive for image-guided plateau (non-Bragg peak) stereotactic radiosurgery. PMID:22843629

  4. Assisting in Radiology/Imaging. Instructor's Guide, Student's Manual, and Student Learning Activities.

    ERIC Educational Resources Information Center

    Fair, Helena J.

    The instructor's guide, the first of three documents in this package, is designed for a course to help students who are investigating the activities within a radiology department or considering any of the imaging technologies as a career. The material is designed to relate training experience to information studied in the classroom. This…

  5. Image-guided surgery using near-infrared fluorescent light: from bench to bedside

    NASA Astrophysics Data System (ADS)

    Boogerd, Leonora S. F.; Handgraaf, Henricus J. M.; van de Velde, Cornelis J. H.; Vahrmeijer, Alexander L.

    2015-03-01

    Due to its relatively high tissue penetration, near-infrared (NIR; 700-900 nm) fluorescent light has the potential to visualize structures that need to be resected (e.g. tumors, lymph nodes) and structures that need to be spared (e.g. nerves, ureters, bile ducts). Until now, most clinical trials have focused on suboptimal, non-targeted dyes. Although successful, a new era in image-guided surgery has begun by the introduction of tumor-targeted agents. In this paper, we will describe how tumor-targeted NIR fluorescent imaging can be applied in a clinical setting.

  6. Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery

    PubMed Central

    Ji, Songbai; Wu, Ziji; Hartov, Alex; Roberts, David W.; Paulsen, Keith D.

    2008-01-01

    An image-based re-registration scheme has been developed and evaluated that uses fiducial registration as a starting point to maximize the normalized mutual information (nMI) between intraoperative ultrasound (iUS) and preoperative magnetic resonance images (pMR). We show that this scheme significantly (p⪡0.001) reduces tumor boundary misalignment between iUS pre-durotomy and pMR from an average of 2.5 mm to 1.0 mm in six resection surgeries. The corrected tumor alignment before dural opening provides a more accurate reference for assessing subsequent intraoperative tumor displacement, which is important for brain shift compensation as surgery progresses. In addition, we report the translational and rotational capture ranges necessary for successful convergence of the nMI registration technique (5.9 mm and 5.2 deg, respectively). The proposed scheme is automatic, sufficiently robust, and computationally efficient (<2 min), and holds promise for routine clinical use in the operating room during image-guided neurosurgical procedures. PMID:18975707

  7. Cone-Beam CT with a Flat-Panel Detector: From Image Science to Image-Guided Surgery

    PubMed Central

    Siewerdsen, Jeffrey H.

    2011-01-01

    The development of large-area flat-panel x-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions - for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck / skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  8. A Guide to Drug Abuse Education and Information Materials, 1972.

    ERIC Educational Resources Information Center

    National Inst. of Mental Health (DHEW), Rockville, MD.

    This guide was developed from efforts initiated by the National Institute of Mental Health (NIMH) to inform and educate the public about drug abuse beginning in April, 1969. At that time, NIMH produced television spots, radio announcements, newspaper and magazine ads, films, and general awareness publications. This guide was developed to make…

  9. Endoscopic image-guided thermal therapy using targeted near infrared fluorescent gold nanorods (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Elson, Daniel S.

    2016-09-01

    We present an in vivo study of endoscopic fluorescence image-guided photothermal therapy of human oesophageal adenocarcinoma in a murine xenograft model, using intratumoural or intravenous gold nanorods functionalised with Cy5.5 and EGFR.

  10. Learning radio astronomy by doing radio astronomy

    NASA Astrophysics Data System (ADS)

    Vaquerizo Gallego, J. A.

    2011-11-01

    PARTNeR (Proyecto Académico con el Radio Telescopio de NASA en Robledo, Academic Project with the NASA Radio Telescope at Robledo) is an educational program that allows high school and undergraduate students to control a 34 meter radio telescope and conduct radio astronomical observations via the internet. High-school teachers who join the project take a course to learn about the science of radio astronomy and how to use the antenna as an educational resource. Also, teachers are provided with learning activities they can do with their students and focused on the classroom implementation of the project within an interdisciplinary framework. PARTNeR provides students with firsthand experience in radio astronomy science. Thus, remote radio astronomical observations allow students to learn with a first rate scientific equipment the basics of radio astronomy research, aiming to arouse scientific careers and positive attitudes toward science. In this contribution we show the current observational programs and some recent results.

  11. External Prior Guided Internal Prior Learning for Real-World Noisy Image Denoising

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Zhang, Lei; Zhang, David

    2018-06-01

    Most of existing image denoising methods learn image priors from either external data or the noisy image itself to remove noise. However, priors learned from external data may not be adaptive to the image to be denoised, while priors learned from the given noisy image may not be accurate due to the interference of corrupted noise. Meanwhile, the noise in real-world noisy images is very complex, which is hard to be described by simple distributions such as Gaussian distribution, making real noisy image denoising a very challenging problem. We propose to exploit the information in both external data and the given noisy image, and develop an external prior guided internal prior learning method for real noisy image denoising. We first learn external priors from an independent set of clean natural images. With the aid of learned external priors, we then learn internal priors from the given noisy image to refine the prior model. The external and internal priors are formulated as a set of orthogonal dictionaries to efficiently reconstruct the desired image. Extensive experiments are performed on several real noisy image datasets. The proposed method demonstrates highly competitive denoising performance, outperforming state-of-the-art denoising methods including those designed for real noisy images.

  12. Accuracy of experimental mandibular osteotomy using the image-guided sagittal saw.

    PubMed

    Pietruski, P; Majak, M; Swiatek-Najwer, E; Popek, M; Szram, D; Zuk, M; Jaworowski, J

    2016-06-01

    The aim of this study was to perform an objective assessment of the accuracy of mandibular osteotomy simulations performed using an image-guided sagittal saw. A total of 16 image-guided mandibular osteotomies were performed on four prefabricated anatomical models according to the virtual plan. Postoperative computed tomography (CT) image data were fused with the preoperative CT scan allowing an objective comparison of the results of the osteotomy executed with the virtual plan. For each operation, the following parameters were analyzed and compared independently twice by two observers: resected bone volume, osteotomy trajectory angle, and marginal point positions. The mean target registration error was 0.95±0.19mm. For all osteotomies performed, the mean difference between the planned and actual bone resection volumes was 8.55±5.51%, the mean angular deviation between planned and actual osteotomy trajectory was 8.08±5.50°, and the mean difference between the preoperative and the postoperative marginal point positions was 2.63±1.27mm. In conclusion, despite the initial stages of the research, encouraging results were obtained. The current limitations of the navigated saw are discussed, as well as the improvements in technology that should increase its predictability and efficiency, making it a reliable method for improving the surgical outcomes of maxillofacial operations. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles✩

    PubMed Central

    Phillips, William T.; Bao, Ande; Brenner, Andrew J.; Goins, Beth A.

    2015-01-01

    One of the major limitations of current cancer therapy is the inability to deliver tumoricidal agents throughout the entire tumor mass using traditional intravenous administration. Nanoparticles carrying beta-emitting therapeutic radionuclides that are delivered using advanced image-guidance have significant potential to improve solid tumor therapy. The use of image-guidance in combination with nanoparticle carriers can improve the delivery of localized radiation to tumors. Nanoparticles labeled with certain beta-emitting radionuclides are intrinsically theranostic agents that can provide information regarding distribution and regional dosimetry within the tumor and the body. Image-guided thermal therapy results in increased uptake of intravenous nanoparticles within tumors, improving therapy. In addition, nanoparticles are ideal carriers for direct intratumoral infusion of beta-emitting radionuclides by convection enhanced delivery, permitting the delivery of localized therapeutic radiation without the requirement of the radionuclide exiting from the nanoparticle. With this approach, very high doses of radiation can be delivered to solid tumors while sparing normal organs. Recent technological developments in image-guidance, convection enhanced delivery and newly developed nanoparticles carrying beta-emitting radionuclides will be reviewed. Examples will be shown describing how this new approach has promise for the treatment of brain, head and neck, and other types of solid tumors. PMID:25016083

  14. Recent Advances in Image-Guided Radiotherapy for Head and Neck Carcinoma

    PubMed Central

    Nath, Sameer K.; Simpson, Daniel R.; Rose, Brent S.; Sandhu, Ajay P.

    2009-01-01

    Radiotherapy has a well-established role in the management of head and neck cancers. Over the past decade, a variety of new imaging modalities have been incorporated into the radiotherapy planning and delivery process. These technologies are collectively referred to as image-guided radiotherapy and may lead to significant gains in tumor control and radiation side effect profiles. In the following review, these techniques as they are applied to head and neck cancer patients are described, and clinical studies analyzing their use in target delineation, patient positioning, and adaptive radiotherapy are highlighted. Finally, we conclude with a brief discussion of potential areas of further radiotherapy advancement. PMID:19644564

  15. SU-E-J-248: Comparative Study of Two Image Registration for Image-Guided Radiation Therapy in Esophageal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, K; Wang, J; Liu, D

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Fourmore » hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is −5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.« less

  16. Positron Emission Tomography Image-Guided Drug Delivery: Current Status and Future Perspectives

    PubMed Central

    2015-01-01

    Positron emission tomography (PET) is an important modality in the field of molecular imaging, which is gradually impacting patient care by providing safe, fast, and reliable techniques that help to alter the course of patient care by revealing invasive, de facto procedures to be unnecessary or rendering them obsolete. Also, PET provides a key connection between the molecular mechanisms involved in the pathophysiology of disease and the according targeted therapies. Recently, PET imaging is also gaining ground in the field of drug delivery. Current drug delivery research is focused on developing novel drug delivery systems with emphasis on precise targeting, accurate dose delivery, and minimal toxicity in order to achieve maximum therapeutic efficacy. At the intersection between PET imaging and controlled drug delivery, interest has grown in combining both these paradigms into clinically effective formulations. PET image-guided drug delivery has great potential to revolutionize patient care by in vivo assessment of drug biodistribution and accumulation at the target site and real-time monitoring of the therapeutic outcome. The expected end point of this approach is to provide fundamental support for the optimization of innovative diagnostic and therapeutic strategies that could contribute to emerging concepts in the field of “personalized medicine”. This review focuses on the recent developments in PET image-guided drug delivery and discusses intriguing opportunities for future development. The preclinical data reported to date are quite promising, and it is evident that such strategies in cancer management hold promise for clinically translatable advances that can positively impact the overall diagnostic and therapeutic processes and result in enhanced quality of life for cancer patients. PMID:24865108

  17. Design and development of C-arm based cone-beam CT for image-guided interventions: initial results

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.

    2006-03-01

    X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.

  18. The Gamma-Ray Emitting Radio-Loud Narrow-Line Seyfert 1 Galaxy PKS 2004-447 II. The Radio View

    NASA Technical Reports Server (NTRS)

    Schulz, R.; Kreikenbohm, A.; Kadler, M.; Ojha, R.; Ros, E.; Stevens, J.; Edwards, P. G.; Carpenter, B.; Elsaesser, D.; Gehrels, N.; hide

    2016-01-01

    Context. gamma-ray-detected radio-loud narrow-line Seyfert 1 (gamma-NLS1) galaxies constitute a small but interesting sample of the gamma-ray-loud AGN. The radio-loudest gamma-NLS1 known, PKS2004447, is located in the southern hemisphere and is monitored in the radio regime by the multiwavelength monitoring programme TANAMI. Aims. We aim for the first detailed study of the radio morphology and long-term radio spectral evolution of PKS2004447, which are essential for understanding the diversity of the radio properties of gamma-NLS1s. Methods. The TANAMI VLBI monitoring program uses the Australian Long Baseline Array (LBA) and telescopes in Antarctica, Chile, New Zealand, and South Africa to monitor the jets of radio-loud active galaxies in the southern hemisphere. Lower resolution radio flux density measurements at multiple radio frequencies over four years of observations were obtained with the Australia Telescope Compact Array (ATCA). Results. The TANAMI VLBI image at 8.4GHz shows an extended one-sided jet with a dominant compact VLBI core. Its brightness temperature is consistent with equipartition, but it is an order of magnitude below other gamma-NLS1s with the sample value varying over two orders of magnitude. We find a compact morphology with a projected large-scale size 11 kpc and a persistent steep radio spectrum with moderate flux-density variability. Conclusions. PKS2004447 appears to be a unique member of the gamma-NLS1 sample. It exhibits blazar-like features, such as a flat featureless X-ray spectrum and a core-dominated, one-sided parsec-scale jet with indications for relativistic beaming. However, the data also reveal properties atypical for blazars, such as a radio spectrum and large-scale size consistent with compact-steep-spectrum (CSS) objects, which are usually associated with young radio sources. These characteristics are unique among all gamma-NLS1s and extremely rare among gamma-ray-loud AGN.

  19. Near-infrared image-guided laser ablation of artificial caries lesions.

    PubMed

    Tao, You-Chen; Fan, Kenneth; Fried, Daniel

    2007-01-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO(2) laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm(2) bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO(2) laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO(2) laser ablation system for the selective removal of dental caries.

  20. Near-infrared image-guided laser ablation of artificial caries lesions

    PubMed Central

    Tao, You-Chen; Fan, Kenneth; Fried, Daniel

    2012-01-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two–dimensional NIR images of demineralized tooth surfaces can be used to guide CO2 laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 × 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO2 laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO2 laser ablation system for the selective removal of dental caries. PMID:22866210

  1. Near-infrared image-guided laser ablation of artificial caries lesions

    NASA Astrophysics Data System (ADS)

    Tao, You-Chen; Fan, Kenneth; Fried, Daniel

    2007-02-01

    Laser removal of dental hard tissue can be combined with optical, spectral or acoustic feedback systems to selectively ablate dental caries and restorative materials. Near-infrared (NIR) imaging has considerable potential for the optical discrimination of sound and demineralized tissue. The objective of this study was to test the hypothesis that two-dimensional NIR images of demineralized tooth surfaces can be used to guide CO II laser ablation for the selective removal of artificial caries lesions. Highly patterned artificial lesions were produced by submerging 5 x 5 mm2 bovine enamel samples in demineralized solution for a 9-day period while sound areas were protected with acid resistant varnish. NIR imaging and polarization sensitive optical coherence tomography (PS-OCT) were used to acquire depth-resolved images at a wavelength of 1310-nm. An imaging processing module was developed to analyze the NIR images and to generate optical maps. The optical maps were used to control a CO II laser for the selective removal of the lesions at a uniform depth. This experiment showed that the patterned artificial lesions were removed selectively using the optical maps with minimal damage to sound enamel areas. Post-ablation NIR and PS-OCT imaging confirmed that demineralized areas were removed while sound enamel was conserved. This study successfully demonstrated that near-IR imaging can be integrated with a CO II laser ablation system for the selective removal of dental caries.

  2. A user's guide to localization-based super-resolution fluorescence imaging.

    PubMed

    Dempsey, Graham T

    2013-01-01

    Advances in far-field fluorescence microscopy over the past decade have led to the development of super-resolution imaging techniques that provide more than an order of magnitude improvement in spatial resolution compared to conventional light microscopy. One such approach, called Stochastic Optical Reconstruction Microscopy (STORM) uses the sequential, nanometer-scale localization of individual fluorophores to reconstruct a high-resolution image of a structure of interest. This is an attractive method for biological investigation at the nanoscale due to its relative simplicity, both conceptually and practically in the laboratory. Like most research tools, however, the devil is in the details. The aim of this chapter is to serve as a guide for applying STORM to the study of biological samples. This chapter will discuss considerations for choosing a photoswitchable fluorescent probe, preparing a sample, selecting hardware for data acquisition, and collecting and analyzing data for image reconstruction. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Dual-mode ultrasound arrays for image-guided targeting of atheromatous plaques

    NASA Astrophysics Data System (ADS)

    Ballard, John R.; Casper, Andrew J.; Liu, Dalong; Haritonova, Alyona; Shehata, Islam A.; Troutman, Mitchell; Ebbini, Emad S.

    2012-11-01

    A feasibility study was undertaken in order to investigate alternative noninvasive treatment options for atherosclerosis. In particular, the aim of this study was to investigate the potential use of Dual-Mode Ultrasound Arrays (DMUAs) for image guided treatment of atheromatous plaques. DMUAs offer a unique treatment paradigm for image-guided surgery allowing for robust image-based identification of tissue targets for localized application of HIFU. In this study we present imaging and therapeutic results form a 3.5 MHz, 64-element fenestrated prototype DMUA for targeting lesions in the femoral artery of familial hypercholesterolemic (FH) swine. Before treatment, diagnostic ultrasound was used to verify the presence of plaque in the femoral artery of the swine. Images obtained with the DMUA and a diagnostic (HST 15-8) transducer housed in the fenestration were analyzed and used for guidance in targeting of the plaque. Discrete therapeutic shots with an estimated focal intensity of 4000-5600 W/cm2 and 500-2000 msec duration were performed at several planes in the plaque. During therapy, pulsed HIFU was interleaved with single transmit focus imaging from the DMUA and M2D imaging from the diagnostic transducer for further analysis of lesion formation. After therapy, the swine's were recovered and later sacrificed after 4 and 7 days for histological analysis of lesion formation. At sacrifice, the lower half of the swine was perfused and the femoral artery with adjoining muscle was fixed and stained with H&E to characterize HIFU-induced lesions. Histology has confirmed that localized thermal lesion formation within the plaque was achieved according to the planned lesion maps. Furthermore, the damage was confined to the plaque tissue without damage to the intima. These results offer the promise of a new treatment potentially suited for vulnerable plaques. The results also provide the first real-time demonstration of DMUA technology in targeting fine tissue structures for

  4. Radio frequency detection assembly and method for detecting radio frequencies

    DOEpatents

    Cown, Steven H.; Derr, Kurt Warren

    2010-03-16

    A radio frequency detection assembly is described and which includes a radio frequency detector which detects a radio frequency emission produced by a radio frequency emitter from a given location which is remote relative to the radio frequency detector; a location assembly electrically coupled with the radio frequency detector and which is operable to estimate the location of the radio frequency emitter from the radio frequency emission which has been received; and a radio frequency transmitter electrically coupled with the radio frequency detector and the location assembly, and which transmits a radio frequency signal which reports the presence of the radio frequency emitter.

  5. Image-guided intracranial cannula placement for awake in vivo microdialysis in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Chen, Antong; Bone, Ashleigh; Hines, Catherine D. G.; Dogdas, Belma; Montgomery, Tamara O.; Michener, Maria; Winkelmann, Christopher T.; Ghafurian, Soheil; Lubbers, Laura S.; Renger, John; Bagchi, Ansuman; Uslaner, Jason M.; Johnson, Colena; Zariwala, Hatim A.

    2016-03-01

    Intracranial microdialysis is used for sampling neurochemicals and large peptides along with their metabolites from the interstitial fluid (ISF) of the brain. The ability to perform this in nonhuman primates (NHP) e.g., rhesus could improve the prediction of pharmacokinetic (PK) and pharmacodynamics (PD) action of drugs in human. However, microdialysis in rhesus brains is not as routinely performed as in rodents. One challenge is that the precise intracranial probe placement in NHP brains is difficult due to the richness of the anatomical structure and the variability of the size and shape of brains across animals. Also, a repeatable and reproducible ISF sampling from the same animal is highly desirable when combined with cognitive behaviors or other longitudinal study end points. Toward that end, we have developed a semi-automatic flexible neurosurgical method employing MR and CT imaging to (a) derive coordinates for permanent guide cannula placement in mid-brain structures and (b) fabricate a customized recording chamber to implant above the skull for enclosing and safeguarding access to the cannula for repeated experiments. In order to place the intracranial guide cannula in each subject, the entry points in the skull and the depth in the brain were derived using co-registered images acquired from MR and CT scans. The anterior/posterior (A/P) and medial-lateral (M/L) rotation in the pose of the animal was corrected in the 3D image to appropriately represent the pose used in the stereotactic frame. An array of implanted fiducial markers was used to transform stereotactic coordinates to the images. The recording chamber was custom fabricated using computer-aided design (CAD), such that it would fit the contours of the individual skull with minimum error. The chamber also helped in guiding the cannula through the entry points down a trajectory into the depth of the brain. We have validated our method in four animals and our results indicate average placement error

  6. Multiple Active Contours Guided by Differential Evolution for Medical Image Segmentation

    PubMed Central

    Cruz-Aceves, I.; Avina-Cervantes, J. G.; Lopez-Hernandez, J. M.; Rostro-Gonzalez, H.; Garcia-Capulin, C. H.; Torres-Cisneros, M.; Guzman-Cabrera, R.

    2013-01-01

    This paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced. Subsequently, MACDE is applied on datasets of sequential computed tomography and magnetic resonance images which contain the human heart and the human left ventricle, respectively. Finally, to obtain a quantitative and qualitative evaluation of the medical image segmentations compared to regions outlined by experts, a set of distance and similarity metrics has been adopted. According to the experimental results, MACDE outperforms the classical active contour model and the interactive Tseng method in terms of efficiency and robustness for obtaining the optimal control points and attains a high accuracy segmentation. PMID:23983809

  7. Deconvolution imaging of weak reflective pipe defects using guided-wave signals captured by a scanning receiver.

    PubMed

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2017-02-01

    Guided-wave echoes from weak reflective pipe defects are usually interfered by coherent noise and difficult to interpret. In this paper, a deconvolution imaging method is proposed to reconstruct defect images from synthetically focused guided-wave signals, with enhanced axial resolution. A compact transducer, circumferentially scanning around the pipe, is used to receive guided-wave echoes from discontinuities at a distance. This method achieves a higher circumferential sampling density than arrayed transducers-up to 72 sampling spots per lap for a pipe with a diameter of 180 mm. A noise suppression technique is used to enhance the signal-to-noise ratio. The enhancement in both signal-to-noise ratio and axial resolution of the method is experimentally validated by the detection of two kinds of artificial defects: a pitting defect of 5 mm in diameter and 0.9 mm in maximum depth, and iron pieces attached to the pipe surface. A reconstructed image of the pitting defect is obtained with a 5.87 dB signal-to-noise ratio. It is revealed that a high circumferential sampling density is important for the enhancement of the inspection sensitivity, by comparing the images reconstructed with different down-sampling ratios. A modified full width at half maximum is used as the criterion to evaluate the circumferential extent of the region where iron pieces are attached, which is applicable for defects with inhomogeneous reflection intensity.

  8. Juvenile Radio-Tag Study: Lower Granite Dam, 1985 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuehrenberg, Lowell C.

    The concept of using mass releases of juvenile radio tags represents a new and potentially powerful research tool that could be effectively applied to juvenile salmonid passage problems at dams on the Columbia and Snake Rivers. A system of detector antennas, strategically located, would automatically detect and record individually tagged juvenile salmonids as they pass through the spillway, powerhouse, bypass system, or tailrace areas below the dam. Accurate measurements of spill effectiveness, fish guiding efficiency (FGE), collection efficiency (CE), spillway survival, powerhouse survival, and bypass survival would be possible without handling large numbers of unmarked fish. A prototype juvenile radio-tagmore » system was developed and tested by the National Marine Fisheries Service (NMFS) and Bonneville Power Administration (BPA) at John Day Dam and at Lower Granite Dam. This report summarizes research to: (1) evaluate the effectiveness of the prototype juvenile radio-tag system in a field situation and (2) to test the basic assumptions inherent in using the juvenile radio tag as a research tool.« less

  9. Construction of a high-tech operating room for image-guided surgery using VR.

    PubMed

    Suzuki, Naoki; Hattori, Asaki; Suzuki, Shigeyuki; Otake, Yoshito; Hayashibe, Mitsuhiro; Kobayashi, Susumu; Nezu, Takehiko; Sakai, Haruo; Umezawa, Yuji

    2005-01-01

    This project aimed to construct an operating room to implement high dimensional (3D, 4D) medical imaging and medical virtual reality techniques that would enable clinical tests for new surgical procedures. We designed and constructed such an operating room at Dai-san Hospital, the Jikei Univ. School of Medicine, Tokyo, Japan. The room was equipped with various facilities for image-guided, robot and tele- surgery. In this report, we describe an outline of our "high-tech operating room" and future plans.

  10. Navigation for fluoroscopy-guided cryo-balloon ablation procedures of atrial fibrillation

    NASA Astrophysics Data System (ADS)

    Bourier, Felix; Brost, Alexander; Kleinoeder, Andreas; Kurzendorfer, Tanja; Koch, Martin; Kiraly, Attila; Schneider, Hans-Juergen; Hornegger, Joachim; Strobel, Norbert; Kurzidim, Klaus

    2012-02-01

    Atrial fibrillation (AFib), the most common arrhythmia, has been identified as a major cause of stroke. The current standard in interventional treatment of AFib is the pulmonary vein isolation (PVI). PVI is guided by fluoroscopy or non-fluoroscopic electro-anatomic mapping systems (EAMS). Either classic point-to-point radio-frequency (RF)- catheter ablation or so-called single-shot-devices like cryo-balloons are used to achieve electrically isolation of the pulmonary veins and the left atrium (LA). Fluoroscopy-based systems render overlay images from pre-operative 3-D data sets which are then merged with fluoroscopic imaging, thereby adding detailed 3-D information to conventional fluoroscopy. EAMS provide tracking and visualization of RF catheters by means of electro-magnetic tracking. Unfortunately, current navigation systems, fluoroscopy-based or EAMS, do not provide tools to localize and visualize single shot devices like cryo-balloon catheters in 3-D. We present a prototype software for fluoroscopy-guided ablation procedures that is capable of superimposing 3-D datasets as well as reconstructing cyro-balloon catheters in 3-D. The 3-D cyro-balloon reconstruction was evaluated on 9 clinical data sets, yielded a reprojected 2-D error of 1.72 mm +/- 1.02 mm.

  11. Minimally invasive image-guided keyhole aspiration of cerebral abscesses.

    PubMed

    Meng, Xiang-Hui; Feng, Shi-Yu; Chen, Xiao-Lei; Li, Chong; Zhang, Jiashu; Zhou, Tao; Jiang, Jinli; Wang, Fuyu; Ma, Xiaodong; Bu, Bo; Yu, Xin-Guang

    2015-01-01

    Despite the low incidence of brain abscesses in Western nations (1-2%), the incidence in developing countries is as high as 8%. We evaluate a minimally invasive image-guided keyhole aspiration of cerebral abscesses and compare it with a series of cases treated with surgical excision. 23 patients (20 male and 3 female, aged 7-67 years) underwent image-guided burr hole aspiration of single or multiple cerebral abscesses. Patient characteristics, perioperative, and postoperative data were analyzed and compared with a second group of 22 patients (14 male and 8 female, aged 12-72) treated for cerebral abscesses with open surgical excision. In all cases, the surgical procedure was performed successfully without complication. 8 of the 23 aspiration cases were performed with the aid of iMRI. A comparison of patient demographics, duration of hospital stay, duration of antibiotic therapy, postoperative neurological recovery time, intraoperative blood loss, operative duration, length of incision, postoperative fever, repeat surgery, and mortality was performed between the aspiration and excision groups. Intraoperative blood loss, operative duration, length of incision, and postoperative fever were all significantly reduced in the aspiration group. Though, duration of hospital stay and antibiotic therapy and postoperative neurological recovery time were all increased in the aspiration group, and statistical significance was observed in all except the duration of hospital stay. This technique is a feasible and comparable minimally invasive alternative to open surgical excision and may provide reduced intraoperative blood loss, shortened operative duration, improved cosmetic outcomes, and a lessened incidence of postoperative fever.

  12. Radio Identifications of UGC Galaxies - Starbursts and Monsters

    NASA Astrophysics Data System (ADS)

    Condon, J. J.; Broderick, J. J.

    1995-11-01

    Radio identifications of galaxies in the Uppsala General Catalogue of Galaxies with delta < +82 degrees were made from the Green Bank 1400 MHz sky maps. Every source having peak flux density S(P) >= 150 mJy in the approximately 12 arcmin FWHM map point-source response and position < 5 arcmin in both coordinates from the optical position of any UGC galaxy was considered a candidate identification to ensure that very extended (up to 1 Mpc) and asymmetric sources would not be missed. Maps in the literature or new 1.49 GHz VLA C-array maps made with 18 arcsec FWHM resolution were used to confirm or reject candidate identifications. The maps in this directory include both confirmed identifications and candidates rejected because of confusion or low flux density. For more information on this study, please see the following reference: Condon, J. J., and Broderick, J. J., 1988, AJ, 96, 30. The images and related TeX file come from the NRAO CDROM "Images From the Radio Universe" (c. 1992 National Radio Astronomy Observatory, used with permission).

  13. Scriptwriting for the Audio-Visual Media: Radio, Films, Television, Filmstrips, Slidefilms.

    ERIC Educational Resources Information Center

    Edmonds, Robert

    Intended as a guide for prospective scriptwriters, this handbook provides information about and examples of scripts for radio, films, and television. The scriptwriter's role in the preparation of filmstrips, sound slidefilms, commercial announcements, and storyboards is also examined. The book offers guidance in the techniques of getting writing…

  14. Changes in Regional Ventilation During Treatment and Dosimetric Advantages of CT Ventilation Image Guided Radiation Therapy for Locally Advanced Lung Cancer.

    PubMed

    Yamamoto, Tokihiro; Kabus, Sven; Bal, Matthieu; Bzdusek, Karl; Keall, Paul J; Wright, Cari; Benedict, Stanley H; Daly, Megan E

    2018-05-04

    Lung functional image guided radiation therapy (RT) that avoids irradiating highly functional regions has potential to reduce pulmonary toxicity following RT. Tumor regression during RT is common, leading to recovery of lung function. We hypothesized that computed tomography (CT) ventilation image-guided treatment planning reduces the functional lung dose compared to standard anatomic image-guided planning in 2 different scenarios with or without plan adaptation. CT scans were acquired before RT and during RT at 2 time points (16-20 Gy and 30-34 Gy) for 14 patients with locally advanced lung cancer. Ventilation images were calculated by deformable image registration of four-dimensional CT image data sets and image analysis. We created 4 treatment plans at each time point for each patient: functional adapted, anatomic adapted, functional unadapted, and anatomic unadapted plans. Adaptation was performed at 2 time points. Deformable image registration was used for accumulating dose and calculating a composite of dose-weighted ventilation used to quantify the lung accumulated dose-function metrics. The functional plans were compared with the anatomic plans for each scenario separately to investigate the hypothesis at a significance level of 0.05. Tumor volume was significantly reduced by 20% after 16 to 20 Gy (P = .02) and by 32% after 30 to 34 Gy (P < .01) on average. In both scenarios, the lung accumulated dose-function metrics were significantly lower in the functional plans than in the anatomic plans without compromising target volume coverage and adherence to constraints to critical structures. For example, functional planning significantly reduced the functional mean lung dose by 5.0% (P < .01) compared to anatomic planning in the adapted scenario and by 3.6% (P = .03) in the unadapted scenario. This study demonstrated significant reductions in the accumulated dose to the functional lung with CT ventilation image-guided planning compared to anatomic

  15. Backscattering analysis of high frequency ultrasonic imaging for ultrasound-guided breast biopsy

    NASA Astrophysics Data System (ADS)

    Cummins, Thomas; Akiyama, Takahiro; Lee, Changyang; Martin, Sue E.; Shung, K. Kirk

    2017-03-01

    A new ultrasound-guided breast biopsy technique is proposed. The technique utilizes conventional ultrasound guidance coupled with a high frequency embedded ultrasound array located within the biopsy needle to improve the accuracy in breast cancer diagnosis.1 The array within the needle is intended to be used to detect micro- calcifications indicative of early breast cancers such as ductal carcinoma in situ (DCIS). Backscattering analysis has the potential to characterize tissues to improve localization of lesions. This paper describes initial results of the application of backscattering analysis of breast biopsy tissue specimens and shows the usefulness of high frequency ultrasound for the new biopsy related technique. Ultrasound echoes of ex-vivo breast biopsy tissue specimens were acquired by using a single-element transducer with a bandwidth from 41 MHz to 88 MHz utilizing a UBM methodology, and the backscattering coefficients were calculated. These values as well as B-mode image data were mapped in 2D and matched with each pathology image for the identification of tissue type for the comparison to the pathology images corresponding to each plane. Microcalcifications were significantly distinguished from normal tissue. Adenocarcinoma was also successfully differentiated from adipose tissue. These results indicate that backscattering analysis is able to quantitatively distinguish tissues into normal and abnormal, which should help radiologists locate abnormal areas during the proposed ultrasound-guided breast biopsy with high frequency ultrasound.

  16. Intraoperative Image-based Multiview 2D/3D Registration for Image-Guided Orthopaedic Surgery: Incorporation of Fiducial-Based C-Arm Tracking and GPU-Acceleration

    PubMed Central

    Armand, Mehran; Armiger, Robert S.; Kutzer, Michael D.; Basafa, Ehsan; Kazanzides, Peter; Taylor, Russell H.

    2012-01-01

    Intraoperative patient registration may significantly affect the outcome of image-guided surgery (IGS). Image-based registration approaches have several advantages over the currently dominant point-based direct contact methods and are used in some industry solutions in image-guided radiation therapy with fixed X-ray gantries. However, technical challenges including geometric calibration and computational cost have precluded their use with mobile C-arms for IGS. We propose a 2D/3D registration framework for intraoperative patient registration using a conventional mobile X-ray imager combining fiducial-based C-arm tracking and graphics processing unit (GPU)-acceleration. The two-stage framework 1) acquires X-ray images and estimates relative pose between the images using a custom-made in-image fiducial, and 2) estimates the patient pose using intensity-based 2D/3D registration. Experimental validations using a publicly available gold standard dataset, a plastic bone phantom and cadaveric specimens have been conducted. The mean target registration error (mTRE) was 0.34 ± 0.04 mm (success rate: 100%, registration time: 14.2 s) for the phantom with two images 90° apart, and 0.99 ± 0.41 mm (81%, 16.3 s) for the cadaveric specimen with images 58.5° apart. The experimental results showed the feasibility of the proposed registration framework as a practical alternative for IGS routines. PMID:22113773

  17. Radio continuum properties of luminous infrared galaxies. Identifying the presence of an AGN in the radio

    NASA Astrophysics Data System (ADS)

    Vardoulaki, E.; Charmandaris, V.; Murphy, E. J.; Diaz-Santos, T.; Armus, L.; Evans, A. S.; Mazzarella, J. M.; Privon, G. C.; Stierwalt, S.; Barcos-Muñoz, L.

    2015-02-01

    Context. Luminous infrared galaxies (LIRGs) are systems enshrouded in dust, which absorbs most of their optical/UV emission and radiates it again in the mid- and far-infrared. Radio observations are largely unaffected by dust obscuration, enabling us to study the central regions of LIRGs in an unbiased manner. Aims: The main goal of this project is to examine how the radio properties of local LIRGs relate to their infrared spectral characteristics. Here we present an analysis of the radio continuum properties of a subset of the Great Observatories All-sky LIRG Survey (GOALS), which consists of 202 nearby systems (z< 0.088). Our radio sample consists of 35 systems, containing 46 individual galaxies, that were observed at both 1.49 and 8.44 GHz with the VLA with a resolution of about 1 arcsec (FWHM). The aim of the project is to use the radio imagery to probe the central kpc of these LIRGs in search of active galactic nuclei (AGN). Methods: We used the archival data at 1.49 and 8.44 GHz to create radio-spectral-index maps using the standard relation between flux density Sν and frequency ν, Sν ~ ν- α, where α is the radio spectral index. By studying the spatial variations in α, we classified the objects as radio-AGN, radio-SB, and AGN/SB (a mixture). We identified the presence of an active nucleus using the radio morphology, deviations from the radio/infrared correlation, and spatially resolved spectral index maps, and then correlated this to the usual mid-infrared ([NeV]/[NeII] and [OIV]/[NeII] line ratios and equivalent width of the 6.2 μm PAH feature) and optical (BPT diagram) AGN diagnostics. Results: We find that 21 out of the 46 objects in our sample (~45%) are radio-AGN, 9 out of the 46 (~20%) are classified as starbursts (SB) based on the radio analysis, and 16 (~35%) are AGN/SB. After comparing to other AGN diagnostics we find 3 objects out of the 46 (~7%) that are identified as AGN based on the radio analysis, but are not classified as such based on

  18. High quantum efficiency megavoltage imaging with thick scintillator detectors for image guided radiation therapy

    NASA Astrophysics Data System (ADS)

    Gopal, Arun

    In image guided radiation therapy (IGRT), imaging devices serve as guidance systems to aid patient set-up and tumor volume localization. Traditionally, 2-D megavoltage x-ray imagers, referred to as electronic portal imaging devices (EPIDs), have been used for planar target localization, and have recently been extended to perform 3-D volumetric reconstruction via cone-beam computed tomography (CBCT). However, current EPIDs utilize thin and inefficient phosphor screen detectors and are subsequently limited by poor soft tissue visualization, which limits their use for CBCT. Therefore, the use of thick scintillation media as megavoltage x-ray detectors for greater x-ray sensitivity and enhanced image quality has recently been of significant interest. In this research, two candidates for thick scintillators: CsI(Tl) and terbium doped scintillation glass were investigated in separate imaging configurations. In the first configuration, a thick scintillation crystal (TSC) consisting of a thick, monolithic slab of CsI(Tl) was coupled to a mirror-lens-camera system. The second configuration is based on a fiber-optic scintillation glass array (FOSGA), wherein the scintillation glass is drawn into long fiber-optic conduits, inserted into a grid-type housing constructed out of polymer-tungsten alloy, and coupled to an array of photodiodes for digital read-out. The imaging prototypes were characterized using theoretical studies and imaging measurements to obtain fundamental metrics of imaging performance. Spatial resolution was measured based on a modulation transfer function (MTF), noise was evaluated in terms of a noise power spectrum (NPS), and overall contrast was characterized in the form of detective quantum efficiency (DQE). The imaging studies were used to optimize the TSC and FOSGA imagers and propose prototype configurations for order-of-magnitude improvements in overall image quality. In addition, a fast and simple technique was developed to measure the MTF, NPS, and

  19. Cognitive Radio Application for Evaluating Coexistence with Cognitive Radars: A Software User’s Guide

    DTIC Science & Technology

    2017-10-01

    with both conventional wireless systems as well as other types of cognitive RF systems (e.g., cognitive radar). The radio hardware for this...WBX daughtercard. This technical report begins with a system -level overview in Section 1. Then, the remaining sections explain the configuration and...Approved for public release; distribution is unlimited. 1 1. Introduction and Theory of Operation The system model has 2 kinds of cognitive radio

  20. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions.

    PubMed

    Gravett, Matthew; Cepek, Jeremy; Fenster, Aaron

    2017-11-01

    The purpose of this study was to develop and validate an image-guided robotic needle delivery system for accurate and repeatable needle targeting procedures in mouse brains inside the 12 cm inner diameter gradient coil insert of a 9.4 T MR scanner. Many preclinical research techniques require the use of accurate needle deliveries to soft tissues, including brain tissue. Soft tissues are optimally visualized in MR images, which offer high-soft tissue contrast, as well as a range of unique imaging techniques, including functional, spectroscopy and thermal imaging, however, there are currently no solutions for delivering needles to small animal brains inside the bore of an ultra-high field MR scanner. This paper describes the mechatronic design, evaluation of MR compatibility, registration technique, mechanical calibration, the quantitative validation of the in-bore image-guided needle targeting accuracy and repeatability, and demonstrated the system's ability to deliver needles in situ. Our six degree-of-freedom, MR compatible, mechatronic system was designed to fit inside the bore of a 9.4 T MR scanner and is actuated using a combination of piezoelectric and hydraulic mechanisms. The MR compatibility and targeting accuracy of the needle delivery system are evaluated to ensure that the system is precisely calibrated to perform the needle targeting procedures. A semi-automated image registration is performed to link the robot coordinates to the MR coordinate system. Soft tissue targets can be accurately localized in MR images, followed by automatic alignment of the needle trajectory to the target. Intra-procedure visualization of the needle target location and the needle were confirmed through MR images after needle insertion. The effects of geometric distortions and signal noise were found to be below threshold that would have an impact on the accuracy of the system. The system was found to have negligible effect on the MR image signal noise and geometric distortion

  1. The Radio JOVE Project - Shoestring Radio Astronomy

    NASA Technical Reports Server (NTRS)

    Thieman, J.; Flagg, R.; Greenman, W.; Higgins, C.; Reyes, F.; Sky, J.

    2010-01-01

    Radio JOVE is an education and outreach project intended to give students and other interested individuals hands-on experience in learning radio astronomy. They can do this through building a radio telescope from a relatively inexpensive kit that includes the parts for a receiver and an antenna as well as software for a computer chart recorder emulator (Radio Skypipe) and other reference materials

  2. Subarcsecond international LOFAR radio images of Arp 220 at 150 MHz. A kpc-scale star forming disk surrounding nuclei with shocked outflows

    NASA Astrophysics Data System (ADS)

    Varenius, E.; Conway, J. E.; Martí-Vidal, I.; Aalto, S.; Barcos-Muñoz, L.; König, S.; Pérez-Torres, M. A.; Deller, A. T.; Moldón, J.; Gallagher, J. S.; Yoast-Hull, T. M.; Horellou, C.; Morabito, L. K.; Alberdi, A.; Jackson, N.; Beswick, R.; Carozzi, T. D.; Wucknitz, O.; Ramírez-Olivencia, N.

    2016-09-01

    Context. Arp 220 is the prototypical ultra luminous infrared galaxy (ULIRG). Despite extensive studies, the structure at MHz-frequencies has remained unknown because of limits in spatial resolution. Aims: This work aims to constrain the flux and shape of radio emission from Arp 220 at MHz frequencies. Methods: We analyse new observations with the International Low Frequency Array (LOFAR) telescope, and archival data from the Multi-Element Radio Linked Interferometer Network (MERLIN) and the Karl G. Jansky Very Large Array (VLA). We model the spatially resolved radio spectrum of Arp 220 from 150 MHz to 33 GHz. Results: We present an image of Arp 220 at 150 MHz with resolution 0.̋65 × 0.̋35, sensitivity 0.15 mJy beam-1, and integrated flux density 394 ± 59 mJy. More than 80% of the detected flux comes from extended (6''≈ 2.2 kpc) steep spectrum (α = -0.7) emission, likely from star formation in the molecular disk surrounding the two nuclei. We find elongated features extending 0.3'' (110 pc) and 0.9'' (330 pc) from the eastern and western nucleus respectively, which we interpret as evidence for outflows. The extent of radio emission requires acceleration of cosmic rays far outside the nuclei. We find that a simple three component model can explain most of the observed radio spectrum of the galaxy. When accounting for absorption at 1.4 GHz, Arp 220 follows the FIR/radio correlation with q = 2.36, and we estimate a star formation rate of 220 M⊙ yr-1. We derive thermal fractions at 1 GHz of less than 1% for the nuclei, which indicates that a major part of the UV-photons are absorbed by dust. Conclusions: International LOFAR observations shows great promise to detect steep spectrum outflows and probe regions of thermal absorption. However, in LIRGs the emission detected at 150 MHz does not necessarily come from the main regions of star formation. This implies that high spatial resolution is crucial for accurate estimates of star formation rates for such galaxies

  3. A Case Study of On-the-fly Wide-field Radio Imaging Applied to the Gravitational Wave Event GW151226

    NASA Astrophysics Data System (ADS)

    Mooley, K. P.; Frail, D. A.; Myers, S. T.; Kulkarni, S. R.; Hotokezaka, K.; Singer, L. P.; Horesh, A.; Kasliwal, M. M.; Cenko, S. B.; Hallinan, G.

    2018-04-01

    We apply a newly developed on-the-fly mosaicing technique on the Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive search for an afterglow from the Advanced LIGO binary black hole merger event GW151226. In three epochs between 1.5 and 6 months post-merger, we observed a 100 deg2 region, with more than 80% of the survey region having an rms sensitivity of better than 150 μJy/beam, in the northern hemisphere with a merger containment probability of 10%. The data were processed in near real time and analyzed to search for transients and variables. No transients were found but we have demonstrated the ability to conduct blind searches in a time-frequency phase space where the predicted afterglow signals are strongest. If the gravitational wave event is contained within our survey region, the upper limit on any late-time radio afterglow from the merger event at an assumed mean distance of 440 Mpc is about 1029 erg s‑1 Hz‑1. Approximately 1.5% of the radio sources in the field showed variability at a level of 30%, and can be attributed to normal activity from active galactic nuclei. The low rate of false positives in the radio sky suggests that wide-field imaging searches at a few Gigahertz can be an efficient and competitive search strategy. We discuss our search method in the context of the recent afterglow detection from GW170817 and radio follow-up in future gravitational wave observing runs.

  4. Noninvasive Label-Free Detection of Micrometastases in the Lymphatics with Ultrasound-Guided Photoacoustic Imaging

    DTIC Science & Technology

    2015-10-01

    imaging can be used to guide dissection. We have also successfully integrated a programmable ultrasound machine (Verasonics Vantage ) and tunable pulsed...Mobile HE) with the programmable ultrasound machine (Verasonics Vantage ). We have synchronized the signals to enable interleaved acquisition of US

  5. Radio-emitting narrow-line Seyfert 1 galaxies in the JVLA perspective

    NASA Astrophysics Data System (ADS)

    Berton, M.; Congiu, E.; Järvelä, E.; Antonucci, R.; Kharb, P.; Lister, M. L.; Tarchi, A.; Caccianiga, A.; Chen, S.; Foschini, L.; Lähteenmäki, A.; Richards, J. L.; Ciroi, S.; Cracco, V.; Frezzato, M.; La Mura, G.; Rafanelli, P.

    2018-06-01

    We report the first results of a survey on 74 narrow-line Seyfert 1 galaxies (NLS1s) carried out in 2015 with the Karl G. Jansky Very Large Array (JVLA) at 5 GHz in A-configuration. So far, this is the largest survey aimed to image the radio continuum of NLS1s. We produced radio maps in order to compare the general properties of three different samples of objects: radio-quiet NLS1s (RQNLS1s), steep-spectrum radio-loud NLS1s (S-NLS1s), and flat-spectrum radio-loud NLS1s (F-NLS1s). We find that the three classes correspond to different radio morphologies, with F-NLS1s being more compact, and RQNLS1s often showing diffuse emission on kpc scales. We also find that F-NLS1s might be low-luminosity and possibly young blazars, and that S-NLS1s are part of the parent population of F-NLS1s. Dedicated studies to RQNLS1s are needed to fully understand their role in the unification pictures. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A87

  6. Pulsed-light imaging for fluorescence guided surgery under normal room lighting.

    PubMed

    Sexton, Kristian; Davis, Scott C; McClatchy, David; Valdes, Pablo A; Kanick, Stephen C; Paulsen, Keith D; Roberts, David W; Pogue, Brian W

    2013-09-01

    Fluorescence guided surgery (FGS) is an emerging technology that has demonstrated improved surgical outcomes. However, dim lighting conditions required by current FGS systems are disruptive to standard surgical workflow. We present a novel FGS system capable of imaging fluorescence under normal room light by using pulsed excitation and gated acquisition. Images from tissue-simulating phantoms confirm visual detection down to 0.25 μM of protoporphyrin IX under 125 μW/cm2 of ambient light, more than an order of magnitude lower than that measured with the Zeiss Pentero in the dark. Resection of orthotopic brain tumors in mice also suggests that the pulsed-light system provides superior sensitivity in vivo.

  7. Pulsed-light imaging for fluorescence guided surgery under normal room lighting

    PubMed Central

    Sexton, Kristian; Davis, Scott C.; McClatchy, David; Valdes, Pablo A.; Kanick, Stephen C.; Paulsen, Keith D.; Roberts, David W.; Pogue, Brian W.

    2013-01-01

    Fluorescence guided surgery (FGS) is an emerging technology that has demonstrated improved surgical outcomes. However, dim lighting conditions required bycurrent FGS systems are disruptive to standard surgical workflow. We present a novel FGS system capable of imaging fluorescence under normal room lightby using pulsed excitation and gated acquisition. Images from tissue-simulating phantoms confirm visual detection down to 0.25 μM of protopor-phyrin IX under 125 μW/cm2 of ambient light, more than an order of magnitude lower than that measured with the Zeiss Pentero in the dark. Resection of orthotopic brain tumors in mice also suggests that the pulsed-light system provides superior sensitivity in vivo. PMID:23988926

  8. Magnetic resonance conditional paramagnetic choke for suppression of imaging artifacts during magnetic resonance imaging.

    PubMed

    Wu, Kevin J; Gregory, T Stan; Boland, Brian L; Zhao, Wujun; Cheng, Rui; Mao, Leidong; Tse, Zion Tsz Ho

    2018-06-01

    Higher risk patient populations require continuous physiological monitoring and, in some cases, connected life-support systems, during magnetic resonance imaging examinations. While recently there has been a shift toward wireless technology, some of the magnetic resonance imaging devices are still connected to the outside using cabling that could interfere with the magnetic resonance imaging's radio frequency during scanning, resulting in excessive heating. We developed a passive method for radio frequency suppression on cabling that may assist in making some of these devices magnetic resonance imaging compatible. A barrel-shaped strongly paramagnetic choke was developed to suppress induced radio frequency signals which are overlaid onto physiological monitoring leads during magnetic resonance imaging. It utilized a choke placed along the signal lines, with a gadolinium solution core. The choke's magnetic susceptibility was modeled, for a given geometric design, at increasing chelate concentration levels, and measured using a vibrating sample magnetometer. Radio frequency noise suppression versus frequency was quantified with network-analyzer measurements and tested using cabling placed in the magnetic resonance imaging scanner. Temperature-elevation and image-quality reduction due to the device were measured using American Society for Testing and Materials phantoms. Prototype chokes with gadolinium solution cores exhibited increasing magnetic susceptibility, and insertion loss (S21) also showed higher attenuation as gadolinium concentration increased. Image artifacts extending <4 mm from the choke were observed during magnetic resonance imaging, which agreed well with the predicted ∼3 mm artifact from the electrochemical machining simulation. An accompanying temperature increase of <1 °C was observed in the magnetic resonance imaging phantom trial. An effective paramagnetic choke for radio frequency suppression during magnetic resonance imaging was developed

  9. Intraoperative Magnetic Resonance Imaging-Guided Biopsy in the Diagnosis of Suprasellar Langerhans Cell Histiocytosis.

    PubMed

    Carroll, Kate T; Lochte, Bryson C; Chen, James Y; Snyder, Vivian S; Carter, Bob S; Chen, Clark C

    2018-04-01

    Magnetic resonance imaging (MRI)-guided biopsy is an emerging diagnostic technique that holds great promise for otherwise difficult to access neuroanatomy. Here we describe MRI-guided biopsy of a suprasellar lesion located posterior and superior to the pituitary stalk. The approach was implemented successfully in a 38-year-old woman who had developed progressive visual deterioration. Intraoperative MRI revealed the need for trajectory adjustment due to an unintended, minor deviation in the burr hole entry point, demonstrating the benefit of an MRI-guided approach. Langerhans cell histiocytosis was diagnosed after biopsy, and the lesion regressed after cladribine treatment. Technical nuances of the case are reviewed in the context of the available literature. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Optical imaging of airglow structure in equatorial plasma bubbles at radio scintillation scales

    NASA Astrophysics Data System (ADS)

    Holmes, J. M.; Pedersen, T.; Parris, R. T.; Stephens, B.; Caton, R. G.; Dao, E. V.; Kratochvil, S.; Morton, Y.; Xu, D.; Jiao, Y.; Taylor, S.; Carrano, C. S.

    2015-12-01

    Imagery of optical emissions from F-region plasma is one of the few means available todetermine plasma density structure in two dimensions. However, the smallest spatial scalesobservable with this technique are typically limited not by magnification of the lens or resolutionof the detector but rather by the optical throughput of the system, which drives the integrationtime, which in turn causes smearing of the features that are typically moving at speeds of 100m/s or more. In this paper we present high spatio-temporal imagery of equatorial plasma bubbles(EPBs) from an imaging system called the Large Aperture Ionospheric Structure Imager(LAISI), which was specifically designed to capture short-integration, high-resolution images ofF-region recombination airglow at λ557.7 nm. The imager features 8-inch diameter entranceoptics comprised of a unique F/0.87 lens, combined with a monolithic 8-inch diameterinterference filter and a 2x2-inch CCD detector. The LAISI field of view is approximately 30degrees. Filtered all-sky images at common airglow wavelengths are combined with magneticfield-aligned LAISI images, GNSS scintillation, and VHF scintillation data obtained atAscension Island (7.98S, 14.41W geographic). A custom-built, multi-constellation GNSS datacollection system was employed that sampled GPS L1, L2C, L5, GLONASS L1 and L2, BeidouB1, and Galileo E1 and E5a signals. Sophisticated processing software was able to maintainlock of all signals during strong scintillation, providing unprecedented spatial observability ofL band scintillation. The smallest-resolvable scale sizes above the noise floor in the EPBs, as viewed byLAISI, are illustrated for integration times of 1, 5 and 10 seconds, with concurrentzonal irregularity drift speeds from both spaced-receiver VHF measurements and single-stationGNSS measurements of S4 and σφ. These observable optical scale sizes are placed in thecontext of those that give rise to radio scintillation in VHF and L band signals.

  11. A Multi-Wavelength View of Radio Galaxy Hercules A

    NASA Image and Video Library

    2017-12-08

    Spectacular jets powered by the gravitational energy of a super massive black hole in the core of the elliptical galaxy Hercules A illustrate the combined imaging power of two of astronomy's cutting-edge tools, the Hubble Space Telescope's Wide Field Camera 3, and the recently upgraded Karl G. Jansky Very Large Array (VLA) radio telescope in New Mexico. To view a video of this go to: bit.ly/Ue2ypS Some two billion light-years away, the yellowish elliptical galaxy in the center of the image appears quite ordinary as seen by Hubble in visible wavelengths of light. The galaxy is roughly 1,000 times more massive than the Milky Way and harbors a 2.5-billion-solar-mass central black hole that is 1,000 times more massive than the black hole in the Milky Way. But the innocuous-looking galaxy, also known as 3C 348, has long been known as the brightest radio-emitting object in the constellation Hercules. Emitting nearly a billion times more power in radio wavelengths than our Sun, the galaxy is one of the brightest extragalactic radio sources in the entire sky. Credit: NASA, ESA, S. Baum and C. O'Dea (RIT), R. Perley and W. Cotton (NRAO/AUI/NSF), and the Hubble Heritage Team (STScI/AURA) To read more about this image go to: 1.usa.gov/Yu7uvX NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy

    PubMed Central

    Taratula, Olena; Patel, Mehulkumar; Schumann, Canan; Naleway, Michael A; Pang, Addison J; He, Huixin; Taratula, Oleh

    2015-01-01

    We report a novel cancer-targeted nanomedicine platform for imaging and prospect for future treatment of unresected ovarian cancer tumors by intraoperative multimodal phototherapy. To develop the required theranostic system, novel low-oxygen graphene nanosheets were chemically modified with polypropylenimine dendrimers loaded with phthalocyanine (Pc) as a photosensitizer. Such a molecular design prevents fluorescence quenching of the Pc by graphene nanosheets, providing the possibility of fluorescence imaging. Furthermore, the developed nanoplatform was conjugated with poly(ethylene glycol), to improve biocompatibility, and with luteinizing hormone-releasing hormone (LHRH) peptide, for tumor-targeted delivery. Notably, a low-power near-infrared (NIR) irradiation of single wavelength was used for both heat generation by the graphene nanosheets (photothermal therapy [PTT]) and for reactive oxygen species (ROS)-production by Pc (photodynamic therapy [PDT]). The combinatorial phototherapy resulted in an enhanced destruction of ovarian cancer cells, with a killing efficacy of 90%–95% at low Pc and low-oxygen graphene dosages, presumably conferring cytotoxicity to the synergistic effects of generated ROS and mild hyperthermia. An animal study confirmed that Pc loaded into the nanoplatform can be employed as a NIR fluorescence agent for imaging-guided drug delivery. Hence, the newly developed Pc-graphene nanoplatform has the significant potential as an effective NIR theranostic probe for imaging and combinatorial phototherapy. PMID:25848255

  13. Semantic and topological classification of images in magnetically guided capsule endoscopy

    NASA Astrophysics Data System (ADS)

    Mewes, P. W.; Rennert, P.; Juloski, A. L.; Lalande, A.; Angelopoulou, E.; Kuth, R.; Hornegger, J.

    2012-03-01

    Magnetically-guided capsule endoscopy (MGCE) is a nascent technology with the goal to allow the steering of a capsule endoscope inside a water filled stomach through an external magnetic field. We developed a classification cascade for MGCE images with groups images in semantic and topological categories. Results can be used in a post-procedure review or as a starting point for algorithms classifying pathologies. The first semantic classification step discards over-/under-exposed images as well as images with a large amount of debris. The second topological classification step groups images with respect to their position in the upper gastrointestinal tract (mouth, esophagus, stomach, duodenum). In the third stage two parallel classifications steps distinguish topologically different regions inside the stomach (cardia, fundus, pylorus, antrum, peristaltic view). For image classification, global image features and local texture features were applied and their performance was evaluated. We show that the third classification step can be improved by a bubble and debris segmentation because it limits feature extraction to discriminative areas only. We also investigated the impact of segmenting intestinal folds on the identification of different semantic camera positions. The results of classifications with a support-vector-machine show the significance of color histogram features for the classification of corrupted images (97%). Features extracted from intestinal fold segmentation lead only to a minor improvement (3%) in discriminating different camera positions.

  14. VLA radio observations of AR Scorpii

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Marsh, T. R.; Chote, P.; Gänsicke, B. T.; Steeghs, D.; Wheatley, P. J.

    2018-03-01

    Aims: AR Scorpii is unique amongst known white dwarf binaries in showing powerful pulsations extending to radio frequencies. Here we aim to investigate the multi-frequency radio emission of AR Sco in detail, in order to constrain its origin and emission mechanisms. Methods: We present interferometric radio frequency imaging of AR Sco at 1.5, 5 and 9 GHz, analysing the total flux and polarization behaviour of this source at high time resolution (10, 3 and 3 s), across a full 3.6 h orbital period in each band. Results: We find strong modulation of the radio flux on the orbital period and the orbital sideband of the white dwarf's spin period (also known as the "beat" period). This indicates that, like the optical flux, the radio flux arises predominantly from on or near the inner surface of the M-dwarf companion star. The beat-phase pulsations of AR Sco decrease in strength with decreasing frequency. They are strongest at 9 GHz and at an orbital phase 0.5. Unlike the optical emission from this source, radio emission from AR Sco shows weak linear polarization but very strong circular polarization, reaching 30% at an orbital phase 0.8. We infer the probable existence of a non-relativistic cyclotron emission component, which dominates at low radio frequencies. Given the required magnetic fields, this also likely arises from on or near the M-dwarf. A table of the flux time series is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A66

  15. Multi-Beam Radio Frequency (RF) Aperture Arrays Using Multiplierless Approximate Fast Fourier Transform (FFT)

    DTIC Science & Technology

    2017-08-01

    filtering, correlation and radio- astronomy . In this report approximate transforms that closely follow the DFT have been studied and found. The approximate...communications, data networks, sensor networks, cognitive radio, radar and beamforming, imaging, filtering, correlation and radio- astronomy . FFTs efficiently...public release; distribution is unlimited. 4.3 Digital Hardware and Design Architectures Collaboration for Astronomy Signal Processing and Electronics

  16. Anser EMT: the first open-source electromagnetic tracking platform for image-guided interventions.

    PubMed

    Jaeger, Herman Alexander; Franz, Alfred Michael; O'Donoghue, Kilian; Seitel, Alexander; Trauzettel, Fabian; Maier-Hein, Lena; Cantillon-Murphy, Pádraig

    2017-06-01

    Electromagnetic tracking is the gold standard for instrument tracking and navigation in the clinical setting without line of sight. Whilst clinical platforms exist for interventional bronchoscopy and neurosurgical navigation, the limited flexibility and high costs of electromagnetic tracking (EMT) systems for research investigations mitigate against a better understanding of the technology's characterisation and limitations. The Anser project provides an open-source implementation for EMT with particular application to image-guided interventions. This work provides implementation schematics for our previously reported EMT system which relies on low-cost acquisition and demodulation techniques using both National Instruments and Arduino hardware alongside MATLAB support code. The system performance is objectively compared to other commercial tracking platforms using the Hummel assessment protocol. Positional accuracy of 1.14 mm and angular rotation accuracy of [Formula: see text] are reported. Like other EMT platforms, Anser is susceptible to tracking errors due to eddy current and ferromagnetic distortion. The system is compatible with commercially available EMT sensors as well as the Open Network Interface for image-guided therapy (OpenIGTLink) for easy communication with visualisation and medical imaging toolkits such as MITK and 3D Slicer. By providing an open-source platform for research investigations, we believe that novel and collaborative approaches can overcome the limitations of current EMT technology.

  17. Functional image-guided stereotactic body radiation therapy planning for patients with hepatocellular carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsegmed, Uranchimeg; Kimura, Tomoki, E-mail: tkkimura@hiroshima-u.ac.jp; Nakashima, Takeo

    The aim of the current planning study is to evaluate the ability of gadoxetate disodium-enhanced magnetic resonance imaging (EOB-MRI)–guided stereotactic body radiation therapy (SBRT) planning by using intensity-modulated radiation therapy (IMRT) techniques in sparing the functional liver tissues during SBRT for hepatocellular carcinoma. In this study, 20 patients with hepatocellular carcinoma were enrolled. Functional liver tissues were defined according to quantitative liver-spleen contrast ratios ≥ 1.5 on a hepatobiliary phase scan. Functional images were fused with the planning computed tomography (CT) images; the following 2 SBRT plans were designed using a “step-and-shoot” static IMRT technique for each patient: (1) an anatomicalmore » SBRT plan optimization based on the total liver; and (2) a functional SBRT plan based on the functional liver. The total prescribed dose was 48 gray (Gy) in 4 fractions. Dosimetric parameters, including dose to 95% of the planning target volume (PTV D{sub 95%}), percentages of total and functional liver volumes, which received doses from 5 to 30 Gy (V5 to V30 and fV5 to fV30), and mean doses to total and functional liver (MLD and fMLD, respectively) of the 2 plans were compared. Compared with anatomical plans, functional image-guided SBRT plans reduced MLD (mean: plan A, 5.5 Gy; and plan F, 5.1 Gy; p < 0.0001) and fMLD (mean: plan A, 5.4 Gy; and plan F, 4.9 Gy; p < 0.0001), as well as V5 to V30 and fV5 to fV30. No differences were noted in PTV coverage and nonhepatic organs at risk (OARs) doses. In conclusion, EOB-MRI–guided SBRT planning using the IMRT technique may preserve functional liver tissues in patients with hepatocellular carcinoma (HCC).« less

  18. Real-time single image dehazing based on dark channel prior theory and guided filtering

    NASA Astrophysics Data System (ADS)

    Zhang, Zan

    2017-10-01

    Images and videos taken outside the foggy day are serious degraded. In order to restore degraded image taken in foggy day and overcome traditional Dark Channel prior algorithms problems of remnant fog in edge, we propose a new dehazing method.We first find the fog area in the dark primary color map to obtain the estimated value of the transmittance using quadratic tree. Then we regard the gray-scale image after guided filtering as atmospheric light map and remove haze based on it. Box processing and image down sampling technology are also used to improve the processing speed. Finally, the atmospheric light scattering model is used to restore the image. A plenty of experiments show that algorithm is effective, efficient and has a wide range of application.

  19. Facilitated versus self-guided training of non-ophthalmologists for grading pre-plus and plus disease using fundus images for retinopathy of prematurity screening

    PubMed Central

    Raufi, Nikolas N.; Morris, Caleb K.; Freedman, Sharon F.; Wallace, David K.; Prakalapakorn, S. Grace

    2016-01-01

    Purpose Retinopathy of prematurity (ROP) is an important cause of preventable blindness; barriers to screening necessitate novel approaches. While trained non-ophthalmologists can accurately grade retinal images for ROP, effective training protocols are not established. This study compares the effectiveness of facilitated versus self-guided training of non-ophthalmologists for grading retinal images for pre-plus or plus disease in ROP. Methods Forty-eight undergraduate and graduate students were trained to grade retinal images for the presence of pre-plus or plus disease. Students were randomly assigned to one of two training protocols. Both utilized identical electronic slideshows; one guided by an in-person facilitator, and the other was self-guided. After completing their respective training, students proficient in grading pre-plus and plus disease graded images in a telemedicine screening scenario. Accuracy of grading was compared to the reference standard of clinical examination. Results 83% (40/48) of trained students (91% in the facilitated vs. 77% in the self-guided group, p=0.26) were proficient and qualified to grade the ROP telemedicine screening scenario. Median accuracy for grading normal, pre-plus or plus disease was 69% (70% in the facilitated vs. 68% in the self-guided group, p=0.91). When considering the designation of pre-plus or plus disease by graders as a screening test for detecting plus disease (confirmed on clinical exam), the median sensitivity and specificity of all students was 95% and 64%, respectively. Conclusions Both facilitated- and self-guided teaching protocols yielded similar performance in ROP image grading for pre-plus or plus disease. Self-guided training protocols may be adequate to train non-ophthalmologists to grade retinal images for pre-plus and plus disease with high sensitivity. PMID:27224953

  20. Retractor-induced brain shift compensation in image-guided neurosurgery

    NASA Astrophysics Data System (ADS)

    Fan, Xiaoyao; Ji, Songbai; Hartov, Alex; Roberts, David; Paulsen, Keith

    2013-03-01

    In image-guided neurosurgery, intraoperative brain shift significantly degrades the accuracy of neuronavigation that is solely based on preoperative magnetic resonance images (pMR). To compensate for brain deformation and to maintain the accuracy in image guidance achieved at the start of surgery, biomechanical models have been developed to simulate brain deformation and to produce model-updated MR images (uMR) to compensate for brain shift. To-date, most studies have focused on shift compensation at early stages of surgery (i.e., updated images are only produced after craniotomy and durotomy). Simulating surgical events at later stages such as retraction and tissue resection are, perhaps, clinically more relevant because of the typically much larger magnitudes of brain deformation. However, these surgical events are substantially more complex in nature, thereby posing significant challenges in model-based brain shift compensation strategies. In this study, we present results from an initial investigation to simulate retractor-induced brain deformation through a biomechanical finite element (FE) model where whole-brain deformation assimilated from intraoperative data was used produce uMR for improved accuracy in image guidance. Specifically, intensity-encoded 3D surface profiles at the exposed cortical area were reconstructed from intraoperative stereovision (iSV) images before and after tissue retraction. Retractor-induced surface displacements were then derived by coregistering the surfaces and served as sparse displacement data to drive the FE model. With one patient case, we show that our technique is able to produce uMR that agrees well with the reconstructed iSV surface after retraction. The computational cost to simulate retractor-induced brain deformation was approximately 10 min. In addition, our approach introduces minimal interruption to the surgical workflow, suggesting the potential for its clinical application.