Science.gov

Sample records for image perception observer

  1. Visual perception studies and observer models in medical imaging.

    PubMed

    Burgess, Arthur E

    2011-11-01

    Most academic radiologists will be familiar with receiver operating characteristic (ROC) studies. Fundamental studies of human observer performance are now usually performed by forced-choice methods. Both methods are based on signal detection theory. The ROC method gives an operating curve of true-positive versus false-positive probabilities. The area under the curve, A(Z), can be used a summary performance measure. In the forced-choice method, observers are given 2 or more images with one containing the signal. The observer's task is to select the option most likely to contain the signal. The percentage of correct responses, PC, is a summary performance measure. Precise comparison of the 2 methods is limited to very controlled experiments in which signals (simulated lesions for example) are carefully designed and detection or discrimination is limited by true random noise. Under these conditions, theory predicts a simple relationship between summary measures and human results are consistent with theory. There will be a description of forced-choice experimental methods and data analysis. There has also been considerable work on development of theoretic observer models. Human experiment results have used to evaluate the models. Models that correlate well with human performance in turn can be used for preliminary design of new imaging systems and for selection of image quality metrics for comparing equipment performance, this article will provide a summary of work during the last 30 years on evaluating human signal detection capabilities, observer models and image quality metrics. PMID:21978445

  2. The potential of pigeons as surrogate observers in medical image perception studies

    NASA Astrophysics Data System (ADS)

    Krupinski, Elizabeth A.; Levenson, Richard M.; Navarro, Victor; Wasserman, Edward A.

    2016-03-01

    Assessment of medical image quality and how changes in image appearance impact performance are critical but assessment can be expensive and time-consuming. Could an animal (pigeon) observer with well-known visual skills and documented ability to distinguish complex visual stimuli serve as a surrogate for the human observer? Using sets of whole slide pathology (WSI) and mammographic images we trained pigeons (cohorts of 4) to detect and/or classify lesions in medical images. Standard training methods were used. A chamber equipped with a 15' display with a resistive touchscreen was used to display the images and record responses (pecks). Pigeon pellets were dispensed for correct responses. The pigeons readily learned to distinguish benign from malignant breast cancer histopathology in WSI (mean % correct responses rose 50% to 85% over 15 days) and generalized readily from 4X to 10X and 20X magnifications; to detect microcalcifications (mean % correct responses rose 50% to over 85% over 25 days); to distinguish benign from malignant breast masses (3 of 4 birds learned this task to around 80% and 60% over 10 days); and ignore compression artifacts in WSI (performance with uncompressed slides averaged 95% correct; 15:1 and 27:1 compression slides averaged 92% and 90% correct). Pigeons models may help us better understand medical image perception and may be useful in quality assessment by serving as surrogate observers for certain types of studies.

  3. Walking Perception by Walking Observers

    ERIC Educational Resources Information Center

    Jacobs, Alissa; Shiffrar, Maggie

    2005-01-01

    People frequently analyze the actions of other people for the purpose of action coordination. To understand whether such self-relative action perception differs from other-relative action perception, the authors had observers either compare their own walking speed with that of a point-light walker or compare the walking speeds of 2 point-light…

  4. Perception of achromatic, monochromatic, pure chromatic, and chromatic noisy images by real human-observer under threshold conditions

    NASA Astrophysics Data System (ADS)

    Krasilnikov, Nikolay N.; Krasilnikova, Olga I.; Shelepin, Yury E.

    2000-04-01

    In the experimental verification of the ideal observer theory applicability to observation of: achromatic, monochromatic, pure chromatic and chromatic noisy images by real human- observer under threshold conditions we used the method of comparative measurements. We measured and compared the correct identification probabilities of the test objects in noisy above mentioned images by real human-observer and computer model of ideal observer. For the case when we have no full knowledge about test objects parameters we've developed the modified Zigert-Kotelnikov algorithm and appropriate model. In particular, when all image parameters are a priory known, this algorithm coincides with the ideal observer one. We formulated 3 new laws of matched filtering of exactly known color images and concluded that the probabilities of correct identification by the observer and by the computer model are in good agreement in a wide range of noise intensities. Absence of a priori information about test objects coordinates unlike test objects sizes information influences greatly on the correct identification probabilities. Our results are useful in modeling of human vision under threshold conditions. The developed model may be effectively used for estimation of picture quality impairment on the monitor screen, the diagnostic of the human visual system condition, etc.

  5. Tactile perception during action observation.

    PubMed

    Vastano, Roberta; Inuggi, Alberto; Vargas, Claudia D; Baud-Bovy, Gabriel; Jacono, Marco; Pozzo, Thierry

    2016-09-01

    It has been suggested that tactile perception becomes less acute during movement to optimize motor control and to prevent an overload of afferent information generated during action. This empirical phenomenon, known as "tactile gating effect," has been associated with mechanisms of sensory feedback prediction. However, less attention has been given to the tactile attenuation effect during the observation of an action. The aim of this study was to investigate whether and how the observation of a goal-directed action influences tactile perception as during overt action. In a first experiment, we recorded vocal reaction times (RTs) of participants to tactile stimulations during the observation of a reach-to-grasp action. The stimulations were delivered on different body parts that could be either congruent or incongruent with the observed effector (the right hand and the right leg, respectively). The tactile stimulation was contrasted with a no body-related stimulation (an auditory beep). We found increased RTs for tactile congruent stimuli compared to both tactile incongruent and auditory stimuli. This effect was reported only during the observation of the reaching phase, whereas RTs were not modulated during the grasping phase. A tactile two-alternative forced-choice (2AFC) discrimination task was then conducted in order to quantify the changes in tactile sensitivity during the observation of the same goal-directed actions. In agreement with the first experiment, the tactile perceived intensity was reduced only during the reaching phase. These results suggest that tactile processing during action observation relies on a process similar to that occurring during action execution. PMID:27161552

  6. Reverse hierarchy theory and medical image perception

    NASA Astrophysics Data System (ADS)

    Donovan, T.; Manning, D. J.

    2009-02-01

    We are unsure about what information is extracted from an image to allow a decision about pathology to be made. Our knowledge of the interplay between top down processing or bottom up, local or global perception, perceptual or cognitive processes is uncertain. However recent research has emphasised the importance of the global or holistic look in medical image perception in which recognition of abnormalities precedes search. Reverse Hierarchy Theory [1] is a useful general theory that helps to explain this. It also enables us to understand what information is extracted from an image and how this relates to expertise. Essentially the theory states that perceptual learning begins at high levels areas and progresses down to lower level areas when better signal to noise is needed. So perceptual learning, defined as an improvement in sensory abilities after training, stems from a gradual top down guided increase in usability of first high then lower level task relevant information. Evaluation of the scan paths of groups of observers with different levels of expertise when undertaking a lung nodule perception task seems to be consistent with the theory. Experts' perception is generally immediate and holistic suggesting high level representations whereas those with an intermediate level of expertise tend to be more variable in their scan paths. Interestingly naÃve observers have eye tracking metrics that are more similar to experts suggesting they take a common sense approach using perceptual skills we all have as they lack experience in being able to access the low level information from the chest radiograph.

  7. Predicting Complexity Perception of Real World Images.

    PubMed

    Corchs, Silvia Elena; Ciocca, Gianluigi; Bricolo, Emanuela; Gasparini, Francesca

    2016-01-01

    The aim of this work is to predict the complexity perception of real world images. We propose a new complexity measure where different image features, based on spatial, frequency and color properties are linearly combined. In order to find the optimal set of weighting coefficients we have applied a Particle Swarm Optimization. The optimal linear combination is the one that best fits the subjective data obtained in an experiment where observers evaluate the complexity of real world scenes on a web-based interface. To test the proposed complexity measure we have performed a second experiment on a different database of real world scenes, where the linear combination previously obtained is correlated with the new subjective data. Our complexity measure outperforms not only each single visual feature but also two visual clutter measures frequently used in the literature to predict image complexity. To analyze the usefulness of our proposal, we have also considered two different sets of stimuli composed of real texture images. Tuning the parameters of our measure for this kind of stimuli, we have obtained a linear combination that still outperforms the single measures. In conclusion our measure, properly tuned, can predict complexity perception of different kind of images. PMID:27336469

  8. Predicting Complexity Perception of Real World Images

    PubMed Central

    Corchs, Silvia Elena; Ciocca, Gianluigi; Bricolo, Emanuela; Gasparini, Francesca

    2016-01-01

    The aim of this work is to predict the complexity perception of real world images. We propose a new complexity measure where different image features, based on spatial, frequency and color properties are linearly combined. In order to find the optimal set of weighting coefficients we have applied a Particle Swarm Optimization. The optimal linear combination is the one that best fits the subjective data obtained in an experiment where observers evaluate the complexity of real world scenes on a web-based interface. To test the proposed complexity measure we have performed a second experiment on a different database of real world scenes, where the linear combination previously obtained is correlated with the new subjective data. Our complexity measure outperforms not only each single visual feature but also two visual clutter measures frequently used in the literature to predict image complexity. To analyze the usefulness of our proposal, we have also considered two different sets of stimuli composed of real texture images. Tuning the parameters of our measure for this kind of stimuli, we have obtained a linear combination that still outperforms the single measures. In conclusion our measure, properly tuned, can predict complexity perception of different kind of images. PMID:27336469

  9. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2014-07-01

    1. Medical image perception Ehsan Samei and Elizabeth Krupinski; Part I. Historical Reflections and Theoretical Foundations: 2. A short history of image perception in medical radiology Harold Kundel and Calvin Nodine; 3. Spatial vision research without noise Arthur Burgess; 4. Signal detection theory, a brief history Arthur Burgess; 5. Signal detection in radiology Arthur Burgess; 6. Lessons from dinners with the giants of modern image science Robert Wagner; Part II. Science of Image Perception: 7. Perceptual factors in reading medical images Elizabeth Krupinski; 8. Cognitive factors in reading medical images David Manning; 9. Satisfaction of search in traditional radiographic imaging Kevin Berbaum, Edmund Franken, Robert Caldwell and Kevin Schartz; 10. The role of expertise in radiologic image interpretation Calvin Nodine and Claudia Mello-Thoms; 11. A primer of image quality and its perceptual relevance Robert Saunders and Ehsan Samei; 12. Beyond the limitations of human vision Maria Petrou; Part III. Perception Metrology: 13. Logistical issues in designing perception experiments Ehsan Samei and Xiang Li; 14. ROC analysis: basic concepts and practical applications Georgia Tourassi; 15. Multi-reader ROC Steve Hillis; 16. Recent developments in FROC methodology Dev Chakraborty; 17. Observer models as a surrogate to perception experiments Craig Abbey and Miguel Eckstein; 18. Implementation of observer models Matthew Kupinski; Part IV. Decision Support and Computer Aided Detection: 19. CAD: an image perception perspective Maryellen Giger and Weijie Chen; 20. Common designs of CAD studies Yulei Jiang; 21. Perceptual effect of CAD in reading chest images Matthew Freedman and Teresa Osicka; 22. Perceptual issues in mammography and CAD Michael Ulissey; 23. How perceptual factors affect the use and accuracy of CAD for interpretation of CT images Ronald Summers; 24. CAD: risks and benefits for radiologists' decisions Eugenio Alberdi, Andrey Povyakalo, Lorenzo Strigini and

  10. The Handbook of Medical Image Perception and Techniques

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Krupinski, Elizabeth

    2009-12-01

    1. Medical image perception Ehsan Samei and Elizabeth Krupinski; Part I. Historical Reflections and Theoretical Foundations: 2. A short history of image perception in medical radiology Harold Kundel and Calvin Nodine; 3. Spatial vision research without noise Arthur Burgess; 4. Signal detection theory, a brief history Arthur Burgess; 5. Signal detection in radiology Arthur Burgess; 6. Lessons from dinners with the giants of modern image science Robert Wagner; Part II. Science of Image Perception: 7. Perceptual factors in reading medical images Elizabeth Krupinski; 8. Cognitive factors in reading medical images David Manning; 9. Satisfaction of search in traditional radiographic imaging Kevin Berbaum, Edmund Franken, Robert Caldwell and Kevin Schartz; 10. The role of expertise in radiologic image interpretation Calvin Nodine and Claudia Mello-Thoms; 11. A primer of image quality and its perceptual relevance Robert Saunders and Ehsan Samei; 12. Beyond the limitations of human vision Maria Petrou; Part III. Perception Metrology: 13. Logistical issues in designing perception experiments Ehsan Samei and Xiang Li; 14. ROC analysis: basic concepts and practical applications Georgia Tourassi; 15. Multi-reader ROC Steve Hillis; 16. Recent developments in FROC methodology Dev Chakraborty; 17. Observer models as a surrogate to perception experiments Craig Abbey and Miguel Eckstein; 18. Implementation of observer models Matthew Kupinski; Part IV. Decision Support and Computer Aided Detection: 19. CAD: an image perception perspective Maryellen Giger and Weijie Chen; 20. Common designs of CAD studies Yulei Jiang; 21. Perceptual effect of CAD in reading chest images Matthew Freedman and Teresa Osicka; 22. Perceptual issues in mammography and CAD Michael Ulissey; 23. How perceptual factors affect the use and accuracy of CAD for interpretation of CT images Ronald Summers; 24. CAD: risks and benefits for radiologists' decisions Eugenio Alberdi, Andrey Povyakalo, Lorenzo Strigini and

  11. Organizational Image Perceptions of Higher Education Students

    ERIC Educational Resources Information Center

    Küçüksüleymanoglu, Rüyam

    2015-01-01

    Colleges and universities rely on their image to attract new members. Organizational image is the total of thoughts, emotions and perceptions resulting from clear conclusions of information formed in the minds of stakeholders as a result of communication with the institution about that institution and its elements. The purpose of this study is to…

  12. Mechanisms of Percept-Percept and Image-Percept Integration in Vision: Behavioral and Electrophysiological Evidence

    ERIC Educational Resources Information Center

    Dalvit, Silvia; Eimer, Martin

    2011-01-01

    Previous research has shown that the detection of a visual target can be guided not only by the temporal integration of two percepts, but also by integrating a percept and an image held in working memory. Behavioral and event-related brain potential (ERP) measures were obtained in a target detection task that required temporal integration of 2…

  13. Current perspectives in medical image perception

    PubMed Central

    Krupinski, Elizabeth A.

    2013-01-01

    Medical images constitute a core portion of the information a physician utilizes to render diagnostic and treatment decisions. At a fundamental level, this diagnostic process involves two basic processes: visually inspecting the image (visual perception) and rendering an interpretation (cognition). The likelihood of error in the interpretation of medical images is, unfortunately, not negligible. Errors do occur, and patients’ lives are impacted, underscoring our need to understand how physicians interact with the information in an image during the interpretation process. With improved understanding, we can develop ways to further improve decision making and, thus, to improve patient care. The science of medical image perception is dedicated to understanding and improving the clinical interpretation process. PMID:20601701

  14. Radiology image perception and observer performance: How does expertise and clinical information alter interpretation? Stroke detection explored through eye-tracking

    NASA Astrophysics Data System (ADS)

    Cooper, Lindsey; Gale, Alastair; Darker, Iain; Toms, Andoni; Saada, Janak

    2009-02-01

    Historically, radiology research has been dominated by chest and breast screening. Few studies have examined complex interpretative tasks such as the reading of multidimensional brain CT or MRI scans. Additionally, no studies at the time of writing have explored the interpretation of stroke images; from novices through to experienced practitioners using eye movement analysis. Finally, there appears a lack of evidence on the clinical effects of radiology reports and their influence on image appraisal and clinical diagnosis. A computer-based, eye-tracking study was designed to assess diagnostic accuracy and interpretation in stroke CT and MR imagery. Eight predetermined clinical cases, five images per case, were presented to participants (novices, trainee, and radiologists; n=8). The presence or absence of abnormalities was rated on a five-point Likert scale and their locations reported. Half cases of the cases were accompanied by clinical information; half were not, to assess the impact of information on observer performance. Results highlight differences in visual search patterns amongst novice, trainee and expert observers; the most marked differences occurred between novice readers and experts. Experts spent more time in challenging areas of interest (AOI) than novices and trainee, and were more confident unless a lesion was large and obvious. The time to first AOI fixation differed by size, shape and clarity of lesion. 'Time to lesion' dropped significantly when recognition appeared to occur between slices. The influence of clinical information was minimal.

  15. Agile beam laser radar using computational imaging for robotic perception

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Stann, Barry L.; Giza, Mark M.

    2015-05-01

    This paper introduces a new concept that applies computational imaging techniques to laser radar for robotic perception. We observe that nearly all contemporary laser radars for robotic (i.e., autonomous) applications use pixel basis scanning where there is a one-to-one correspondence between world coordinates and the measurements directly produced by the instrument. In such systems this is accomplished through beam scanning and/or the imaging properties of focal-plane optics. While these pixel-basis measurements yield point clouds suitable for straightforward human interpretation, the purpose of robotic perception is the extraction of meaningful features from a scene, making human interpretability and its attendant constraints mostly unnecessary. The imposing size, weight, power and cost of contemporary systems is problematic, and relief from factors that increase these metrics is important to the practicality of robotic systems. We present a system concept free from pixel basis sampling constraints that promotes efficient and adaptable sensing modes. The cornerstone of our approach is agile and arbitrary beam formation that, when combined with a generalized mathematical framework for imaging, is suited to the particular challenges and opportunities of robotic perception systems. Our hardware concept looks toward future systems with optical device technology closely resembling modern electronically-scanned-array radar that may be years away from practicality. We present the design concept and results from a prototype system constructed and tested in a laboratory environment using a combination of developed hardware and surrogate devices for beam formation. The technological status and prognosis for key components in the system is discussed.

  16. Viewers' Perception of TV Images: Empirical Research and Television Aesthetics.

    ERIC Educational Resources Information Center

    Metallinos, Nikos

    To relate scientific evidence with subjective interpretations relevant to the construction and appreciation of visual images, this paper reviews the literature pertinent to the processes involving the perception of visual images, the distinct functions of the left and right hemispheres of the human brain in recording and interpreting visual data,…

  17. Cross-Cultural Examination of Women's Body Image Perception.

    ERIC Educational Resources Information Center

    Huber, R. John; And Others

    The media's portrayal of the ideal body image has been shown to be a large determinant of one's body image perception. The desire to be excessively thin can be conceived of as an artifact of White-American culture largely due to the media's influence. This study looks at cultures that have had limited exposure to the American ideal and examines…

  18. An approach to integrate the human vision psychology and perception knowledge into image enhancement

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Huang, Xifeng; Ping, Jiang

    2009-07-01

    Image enhancement is very important image preprocessing technology especially when the image is captured in the poor imaging condition or dealing with the high bits image. The benefactor of image enhancement either may be a human observer or a computer vision process performing some kind of higher-level image analysis, such as target detection or scene understanding. One of the main objects of the image enhancement is getting a high dynamic range image and a high contrast degree image for human perception or interpretation. So, it is very necessary to integrate either empirical or statistical human vision psychology and perception knowledge into image enhancement. The human vision psychology and perception claims that humans' perception and response to the intensity fluctuation δu of visual signals are weighted by the background stimulus u, instead of being plainly uniform. There are three main laws: Weber's law, Weber- Fechner's law and Stevens's Law that describe this phenomenon in the psychology and psychophysics. This paper will integrate these three laws of the human vision psychology and perception into a very popular image enhancement algorithm named Adaptive Plateau Equalization (APE). The experiments were done on the high bits star image captured in night scene and the infrared-red image both the static image and the video stream. For the jitter problem in the video stream, this algorithm reduces this problem using the difference between the current frame's plateau value and the previous frame's plateau value to correct the current frame's plateau value. Considering the random noise impacts, the pixel value mapping process is not only depending on the current pixel but the pixels in the window surround the current pixel. The window size is usually 3×3. The process results of this improved algorithms is evaluated by the entropy analysis and visual perception analysis. The experiments' result showed the improved APE algorithms improved the quality of the

  19. Examining the Perceptions of Brand Images Regarding Competing MBA Programs

    ERIC Educational Resources Information Center

    Hinds, Timothee; Falgoust, Dexter; Thomas, Kerry, Jr.; Budden, Michael C.

    2010-01-01

    In today's economic environment, it is crucial to create a strong, consistent brand image within a graduate business program. This study examines the perceptions that students at Southeastern Louisiana University hold about its MBA program and the MBA programs of its main competitors. A focus group was conducted to identify competitors and factors…

  20. Perceptions and Images of North Africa: What American Schools Teach.

    ERIC Educational Resources Information Center

    Robinson, Victoria

    2002-01-01

    Examined descriptions of North Africa (particularly Tunisia) found in U.S. high school social studies textbooks, noting the resulting perceptions and images these descriptions created in the minds of teachers and students. Data from examination of textbooks and interviews with teachers indicated that few high school students were exposed to images…

  1. Brain potentials indicate the effect of other observers' emotions on perceptions of facial attractiveness.

    PubMed

    Huang, Yujing; Pan, Xuwei; Mo, Yan; Ma, Qingguo

    2016-03-23

    Perceptions of facial attractiveness are sensitive to emotional expression of the perceived face. However, little is known about whether the emotional expression on the face of another observer of the perceived face may have an effect on perceptions of facial attractiveness. The present study used event-related potential technique to examine social influence of the emotional expression on the face of another observer of the perceived face on perceptions of facial attractiveness. The experiment consisted of two phases. In the first phase, a neutral target face was paired with two images of individuals gazing at the target face with smiling, fearful or neutral expressions. In the second phase, participants were asked to judge the attractiveness of the target face. We found that a target face was more attractive when other observers positively gazing at the target face in contrast to the condition when other observers were negative. Additionally, the results of brain potentials showed that the visual positive component P3 with peak latency from 270 to 330 ms was larger after participants observed the target face paired with smiling individuals than the target face paired with neutral individuals. These findings suggested that facial attractiveness of an individual may be influenced by the emotional expression on the face of another observer of the perceived face. PMID:26601630

  2. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  3. Influential sources affecting Bangkok adolescent body image perceptions.

    PubMed

    Thianthai, Chulanee

    2006-01-01

    The study of body image-related problems in non-Western countries is still very limited. Thus, this study aims to identify the main influential sources and show how they affect the body image perceptions of Bangkok adolescents. The researcher recruited 400 Thai male and female adolescents in Bangkok, attending high school to freshmen level, ranging from 16-19 years, to participate in this study. Survey questionnaires were distributed to every student and follow-up interviews conducted with 40 students. The findings showed that there are eight main influential sources respectively ranked from the most influential to the least influential: magazines, television, peer group, familial, fashion trend, the opposite gender, self-realization and health knowledge. Similar to those studies conducted in Western countries, more than half of the total percentage was the influence of mass media and peer groups. Bangkok adolescents also internalized Western ideal beauty through these mass media channels. Alike studies conducted in the West, there was similarities in the process of how these influential sources affect Bangkok adolescent body image perception, with the exception of familial source. In conclusion, taking the approach of identifying the main influential sources and understanding how they affect adolescent body image perceptions can help prevent adolescents from having unhealthy views and taking risky measures toward their bodies. More studies conducted in non-Western countries are needed in order to build a cultural sensitive program, catered to the body image problems occurring in adolescents within that particular society. PMID:17340854

  4. Image Watermarking Based on Adaptive Models of Human Visual Perception

    NASA Astrophysics Data System (ADS)

    Khawne, Amnach; Hamamoto, Kazuhiko; Chitsobhuk, Orachat

    This paper proposes a digital image watermarking based on adaptive models of human visual perception. The algorithm exploits the local activities estimated from wavelet coefficients of each subband to adaptively control the luminance masking. The adaptive luminance is thus delicately combined with the contrast masking and edge detection and adopted as a visibility threshold. With the proposed combination of adaptive visual sensitivity parameters, the proposed perceptual model can be more appropriate to the different characteristics of various images. The weighting function is chosen such that the fidelity, imperceptibility and robustness could be preserved without making any perceptual difference to the image quality.

  5. The collaborative image of the city: mapping the inequality of urban perception.

    PubMed

    Salesses, Philip; Schechtner, Katja; Hidalgo, César A

    2013-01-01

    A traveler visiting Rio, Manila or Caracas does not need a report to learn that these cities are unequal; she can see it directly from the taxicab window. This is because in most cities inequality is conspicuous, but also, because cities express different forms of inequality that are evident to casual observers. Cities are highly heterogeneous and often unequal with respect to the income of their residents, but also with respect to the cleanliness of their neighborhoods, the beauty of their architecture, and the liveliness of their streets, among many other evaluative dimensions. Until now, however, our ability to understand the effect of a city's built environment on social and economic outcomes has been limited by the lack of quantitative data on urban perception. Here, we build on the intuition that inequality is partly conspicuous to create quantitative measure of a city's contrasts. Using thousands of geo-tagged images, we measure the perception of safety, class and uniqueness; in the cities of Boston and New York in the United States, and Linz and Salzburg in Austria, finding that the range of perceptions elicited by the images of New York and Boston is larger than the range of perceptions elicited by images from Linz and Salzburg. We interpret this as evidence that the cityscapes of Boston and New York are more contrasting, or unequal, than those of Linz and Salzburg. Finally, we validate our measures by exploring the connection between them and homicides, finding a significant correlation between the perceptions of safety and class and the number of homicides in a NYC zip code, after controlling for the effects of income, population, area and age. Our results show that online images can be used to create reproducible quantitative measures of urban perception and characterize the inequality of different cities. PMID:23894301

  6. The Collaborative Image of The City: Mapping the Inequality of Urban Perception

    PubMed Central

    Salesses, Philip; Schechtner, Katja; Hidalgo, César A.

    2013-01-01

    A traveler visiting Rio, Manila or Caracas does not need a report to learn that these cities are unequal; she can see it directly from the taxicab window. This is because in most cities inequality is conspicuous, but also, because cities express different forms of inequality that are evident to casual observers. Cities are highly heterogeneous and often unequal with respect to the income of their residents, but also with respect to the cleanliness of their neighborhoods, the beauty of their architecture, and the liveliness of their streets, among many other evaluative dimensions. Until now, however, our ability to understand the effect of a city's built environment on social and economic outcomes has been limited by the lack of quantitative data on urban perception. Here, we build on the intuition that inequality is partly conspicuous to create quantitative measure of a city's contrasts. Using thousands of geo-tagged images, we measure the perception of safety, class and uniqueness; in the cities of Boston and New York in the United States, and Linz and Salzburg in Austria, finding that the range of perceptions elicited by the images of New York and Boston is larger than the range of perceptions elicited by images from Linz and Salzburg. We interpret this as evidence that the cityscapes of Boston and New York are more contrasting, or unequal, than those of Linz and Salzburg. Finally, we validate our measures by exploring the connection between them and homicides, finding a significant correlation between the perceptions of safety and class and the number of homicides in a NYC zip code, after controlling for the effects of income, population, area and age. Our results show that online images can be used to create reproducible quantitative measures of urban perception and characterize the inequality of different cities. PMID:23894301

  7. Humanly space objects-Perception and connection with the observer

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Hall, Ashley

    2015-05-01

    Expanding humanity into space is an inevitable step in our quest to explore our world. Yet space exploration is costly, and the awaiting environment challenges us with extreme cold, heat, vacuum and radiation, unlike anything encountered on Earth. Thus, the few pioneers who experience it needed to be well protected throughout their spaceflight. The resulting isolation heightens the senses and increases the desire to make humanly connections with any other perceived manifestation of life. Such connections may occur via sensory inputs, namely vision, touch, sound, smell, and taste. This then follows the process of sensing, interpreting, and recognizing familiar patterns, or learning from new experiences. The desire to connect could even transfer to observed objects, if their movements and characteristics trigger the appropriate desires from the observer. When ordered in a familiar way, for example visual stimuli from lights and movements of an object, it may create a perceived real bond with an observer, and evoke the feeling of surprise when the expected behavior changes to something no longer predictable or recognizable. These behavior patterns can be designed into an object and performed autonomously in front of an observer, in our case an astronaut. The experience may introduce multiple responses, including communication, connection, empathy, order, and disorder. While emotions are clearly evoked in the observer and may seem one sided, in effect the object itself provides a decoupled bond, connectivity and communication between the observer and the artist-designer of the object. In this paper we will discuss examples from the field of arts and other domains, including robotics, where human perception through object interaction was explored, and investigate the starting point for new innovative design concepts and future prototype designs, that extend these experiences beyond the boundaries of Earth, while taking advantage of remoteness and the zero gravity

  8. Uncertainty in Citizen Science observations: from measurement to user perception

    NASA Astrophysics Data System (ADS)

    Lahoz, William; Schneider, Philipp; Castell, Nuria

    2016-04-01

    Citizen Science activities concern general public engagement in scientific research activities when citizens actively contribute to science either with their intellectual effort or surrounding knowledge or with their tools and resources. The advent of technologies such as the Internet and smartphones, and the growth in their usage, has significantly increased the potential benefits from Citizen Science activities. Citizen Science observations from low-cost sensors, smartphones and Citizen Observatories, provide a novel and recent development in platforms for observing the Earth System, with the opportunity to extend the range of observational platforms available to society to spatio-temporal scales (10-100s m; 1 hr or less) highly relevant to citizen needs. The potential value of Citizen Science is high, with applications in science, education, social aspects, and policy aspects, but this potential, particularly for citizens and policymakers, remains largely untapped. Key areas where Citizen Science data start to have demonstrable benefits include GEOSS Societal Benefit Areas such as Health and Weather. Citizen Science observations have many challenges, including simulation of smaller spatial scales, noisy data, combination with traditional observational methods (satellite and in situ data), and assessment, representation and visualization of uncertainty. Within these challenges, that of the assessment and representation of uncertainty and its communication to users is fundamental, as it provides qualitative and/or quantitative information that influences the belief users will have in environmental information. This presentation will discuss the challenges in assessment and representation of uncertainty in Citizen Science observations, its communication to users, including the use of visualization, and the perception of this uncertainty information by users of Citizen Science observations.

  9. Observation of own exploration movements impairs haptic spatial perception.

    PubMed

    Mueller, Stephanie; Habermann, Stefanie; Dudda, Janett; Grunwald, Martin

    2013-12-01

    The present study was designed to assess whether the visibility of ones' own exploratory movements impairs or enhances perceptual speed and precision of haptic stimuli with varying complexity. Previous studies have shown that noninformative vision of steady surroundings improves haptic spatial perception. However, due to the serial nature of haptic processing and limited capacity of working memory resources, we hypothesized that noninformative vision of limb movements may impair haptic perception. The study sample consisted of ninety-eight healthy adults who were randomized into two groups, matched for sex and age. Participants were required to explore two-dimensional haptic stimuli with varying complexity and to recognize them visually. The difference between the two experimental groups was a screen that would prevent the participants from viewing their hands during exploration in the nonobservation condition (NonOb). The other half of participants were able to see their hands in the manual movement observation condition (MovOb) thanks to the special design of the stimuli. As hypothesized, the persons in the MovOb condition made significantly more errors. The difference in error frequency between participants of the MovOb and NonOb condition was greater for complex stimuli than for simple ones. These results suggest that incoming visual information about own manual exploration movements increases competitive pressure for limited working memory resources, and therefore, more recognition errors are made. Covering the hands during exploration may constitute a helpful simplification of the task's demands by supporting the maintenance of information in working memory. Additionally, the relation of haptic complexity and stimulus characteristics was analyzed. PMID:24071924

  10. Depth Perception Not Found in Human Observers for Static or Dynamic Anti-Correlated Random Dot Stereograms

    PubMed Central

    Hibbard, Paul B.; Scott-Brown, Kenneth C.; Haigh, Emma C.; Adrain, Melanie

    2014-01-01

    One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon. PMID:24416195

  11. Modeling of image perception and discrimination by the visually impaired

    NASA Astrophysics Data System (ADS)

    Benguigui, Avi; Efron, Uzi

    2006-08-01

    An Image Transceiver based- Goggle has been under development at the Ben Gurion University and the Holon Institute. The device , aimed at Low-Vision Aid applications [1], is based on a unique LCOS-CMOS Image Transceiver Device (ITD), which is capable of combining both functions of imaging and Display in a single chip. The head mounted Goggle will allow the capture of ambient scenery, performing the necessary image enhancement and processing, as well as its redirection to the healthy part of the patient's retina. In this presentation we will report on the modeling of the imaging, Image Perception and discrimination capabilities of the visually impaired. The first part of the study is based on modeling the spatial frequency response and contrast sensitivity analyzing the two main cases of central and peripheral vision losses. Studies of the effects of both the Retinal Eccentricity and illumination-levels on the low vision's spatial frequency response will be described. The second part of the modeling incorporates the use of an image discrimination model to assess the ability of the visually impaired using the low vision model outlined above, to discriminate between two nearly-identical images.

  12. Reducing the Observed Curriculum Perception Gaps between Stakeholders

    ERIC Educational Resources Information Center

    Chang, Amy; Churyk, Natalie Tatiana; Yu, Shaokun

    2015-01-01

    Developing a vibrant and relevant accounting curriculum requires involvement of many stakeholders such as interns, alumni, and firms. Each has a distinct perspective regarding the strengths and weaknesses of accounting education. Discussion of perception gaps between the three groups and the importance of aligning these perceptions are presented.…

  13. Validation of a target acquisition model for active imager using perception experiments

    NASA Astrophysics Data System (ADS)

    Lapaz, Frédéric; Canevet, Loïc

    2007-10-01

    Active night vision systems based on laser diodes emitters have now reached a technology level allowing military applications. In order to predict the performance of observers using such systems, we built an analytic model including sensor, atmosphere, visualization and eye effects. The perception task has been modelled using the Targeting Task Performance metric (TTP metric) developed by R. Vollmerhausen from the Night Vision and Electronic Sensors Directorate (NVESD). Sensor and atmosphere models have been validated separately. In order to validate the whole model, two identification tests have been set up. The first set submitted to trained observers was made of hybrid images. The target to background contrast, the blur and the noise were added to armoured vehicles signatures in accordance to sensor and atmosphere models. The second set of images was made with the same targets, sensed by a real active sensor during field trials. Images were recorded, showing different vehicles, at different ranges and orientations, under different illumination and acquisition configurations. Indeed, this set of real images was built with three different types of gating: wide illumination, illumination of the background and illumination of the target. Analysis of the perception experiments results showed a good concordance between the two sets of images. The calculation of an identification criterion, related to this set of vehicles in the near infrared, gave the same results in both cases. The impact of gating on observer's performance was also evaluated.

  14. Ultraviolet Imaging Telescope (UIT) observations of galaxies

    NASA Technical Reports Server (NTRS)

    Neff, S. G.

    1993-01-01

    Ultraviolet images of several galaxies were obtained during the ASTRO-1 shuttle mission in December, 1990. The images have a FWHM angular resolution of approximately 3 arcsecond and are of circular fields approximately 40 arcminutes in diameter. Most galaxies were observed in at least two and sometimes as many as four broad bands. A very few fields were observed with narrower band filters. The most basic result of these observations is that most systems look dramatically different in the UV from their well-known optical appearances. Preliminary results of these studies will be presented. Information will be available on fields observed by the UTI during the ASTRO 1 mission; when that data becomes public it can be obtained from the NSSDC. The ASTRO observatory is expected to fly again in 1994 with approximately half of the observing time from that mission devoted to guest observers. The Ultraviolet Imaging telescope is extremely well suited for galaxy studies, and the UIT term is interested in encouraging a wide range of scientific studies by guest observers. Ultraviolet Imaging telescope is extremely well suited for galaxy studies, and the UIT team is interested in encouraging a wide range of scientific studies by guest observers.

  15. Space Perception of Strabismic Observers in the Real World Environment

    PubMed Central

    Ooi, Teng Leng; He, Zijiang J.

    2015-01-01

    Purpose. Space perception beyond the near distance range (>2 m) is important for target localization, and for directing and guiding a variety of daily activities, including driving and walking. However, it is unclear whether the absolute (egocentric) localization of a single target in the intermediate distance range requires binocular vision, and if so, whether having subnormal stereopsis in strabismus impairs one's ability to localize the target. Methods. We investigated this by measuring the perceived absolute location of a target by observers with normal binocular vision (n = 8; mean age, 24.5 years) and observers with strabismus (n = 8; mean age, 24.9 years) under monocular and binocular conditions. The observers used the blind walking-gesturing task to indicate the judged location of a target located at various viewing distances (2.73–6.93 m) and heights (0, 30, and 90 cm) above the floor. Near stereopsis was assessed with the Randot Stereotest. Results. Both groups of observers accurately judged the absolute distance of the target on the ground (height = 0 cm) either with monocular or binocular viewing. However, when the target was suspended in midair, the normal observers accurately judged target location with binocular viewing, but not with monocular viewing (mean slant angle, 0.8° ± 0.5° vs. 7.4° ± 1.4°; P < 0.001, with a slant angle of 0° representing accurate localization). In contrast, the strabismic observers with poorer stereo acuity made larger errors in target localization in both viewing conditions, though with fewer errors during binocular viewing (mean slant angle, 2.7° ± 0.4° vs. 9.2° ± 1.3°; P < 0.0025). Further analysis reveals the localization error, that is, slant angle, correlates positively with stereo threshold during binocular viewing (r2 = 0.479, P < 0.005), but not during monocular viewing (r2 = 0.0002, P = 0.963). Conclusions. Locating a single target on the ground is sufficient with monocular depth information, but

  16. Weight status and body image perceptions in adolescents: current perspectives

    PubMed Central

    Voelker, Dana K; Reel, Justine J; Greenleaf, Christy

    2015-01-01

    Adolescence represents a pivotal stage in the development of positive or negative body image. Many influences exist during the teen years including transitions (eg, puberty) that affect one’s body shape, weight status, and appearance. Weight status exists along a spectrum between being obese (ie, where one’s body weight is in the 95th percentile for age and gender) to being underweight. Salient influences on body image include the media, which can target adolescents, and peers who help shape beliefs about the perceived body ideal. Internalization of and pressures to conform to these socially prescribed body ideals help to explain associations between weight status and body image. The concepts of fat talk and weight-related bullying during adolescence greatly contribute to an overemphasis on body weight and appearance as well as the development of negative body perceptions and dissatisfaction surrounding specific body parts. This article provides an overview of the significance of adolescent development in shaping body image, the relationship between body image and adolescent weight status, and the consequences of having a negative body image during adolescence (ie, disordered eating, eating disorders, and dysfunctional exercise). Practical implications for promoting a healthy weight status and positive body image among adolescents will be discussed. PMID:26347007

  17. Weight status and body image perceptions in adolescents: current perspectives.

    PubMed

    Voelker, Dana K; Reel, Justine J; Greenleaf, Christy

    2015-01-01

    Adolescence represents a pivotal stage in the development of positive or negative body image. Many influences exist during the teen years including transitions (eg, puberty) that affect one's body shape, weight status, and appearance. Weight status exists along a spectrum between being obese (ie, where one's body weight is in the 95th percentile for age and gender) to being underweight. Salient influences on body image include the media, which can target adolescents, and peers who help shape beliefs about the perceived body ideal. Internalization of and pressures to conform to these socially prescribed body ideals help to explain associations between weight status and body image. The concepts of fat talk and weight-related bullying during adolescence greatly contribute to an overemphasis on body weight and appearance as well as the development of negative body perceptions and dissatisfaction surrounding specific body parts. This article provides an overview of the significance of adolescent development in shaping body image, the relationship between body image and adolescent weight status, and the consequences of having a negative body image during adolescence (ie, disordered eating, eating disorders, and dysfunctional exercise). Practical implications for promoting a healthy weight status and positive body image among adolescents will be discussed. PMID:26347007

  18. A color fusion method of infrared and low-light-level images based on visual perception

    NASA Astrophysics Data System (ADS)

    Han, Jing; Yan, Minmin; Zhang, Yi; Bai, Lianfa

    2014-11-01

    The color fusion images can be obtained through the fusion of infrared and low-light-level images, which will contain both the information of the two. The fusion images can help observers to understand the multichannel images comprehensively. However, simple fusion may lose the target information due to inconspicuous targets in long-distance infrared and low-light-level images; and if targets extraction is adopted blindly, the perception of the scene information will be affected seriously. To solve this problem, a new fusion method based on visual perception is proposed in this paper. The extraction of the visual targets ("what" information) and parallel processing mechanism are applied in traditional color fusion methods. The infrared and low-light-level color fusion images are achieved based on efficient typical targets learning. Experimental results show the effectiveness of the proposed method. The fusion images achieved by our algorithm can not only improve the detection rate of targets, but also get rich natural information of the scenes.

  19. WorkstationJ: workstation emulation software for medical image perception and technology evaluation research

    NASA Astrophysics Data System (ADS)

    Schartz, Kevin M.; Berbaum, Kevin S.; Caldwell, Robert T.; Madsen, Mark T.

    2007-03-01

    We developed image presentation software that mimics the functionality available in the clinic, but also records time-stamped, observer-display interactions and is readily deployable on diverse workstations making it possible to collect comparable observer data at multiple sites. Commercial image presentation software for clinical use has limited application for research on image perception, ergonomics, computer-aids and informatics because it does not collect observer responses, or other information on observer-display interactions, in real time. It is also very difficult to collect observer data from multiple institutions unless the same commercial software is available at different sites. Our software not only records observer reports of abnormalities and their locations, but also inspection time until report, inspection time for each computed radiograph and for each slice of tomographic studies, window/level, and magnification settings used by the observer. The software is a modified version of the open source ImageJ software available from the National Institutes of Health. Our software involves changes to the base code and extensive new plugin code. Our free software is currently capable of displaying computed tomography and computed radiography images. The software is packaged as Java class files and can be used on Windows, Linux, or Mac systems. By deploying our software together with experiment-specific script files that administer experimental procedures and image file handling, multi-institutional studies can be conducted that increase reader and/or case sample sizes or add experimental conditions.

  20. Peer Observation of Teaching: Perceptions of the Observer and the Observed

    ERIC Educational Resources Information Center

    Kohut, Gary F.; Burnap, Charles; Yon, Maria G.

    2007-01-01

    While peer observation of teaching is regarded as an important part of a faculty member's promotion and tenure portfolio, little has been reported on its usefulness. Results from this study indicate that both observers and observees value the peer observation process, are neutral about the adequacy of observer training, use a variety of…

  1. Effects of magnification and zooming on depth perception in digital stereomammography: an observer performance study.

    PubMed

    Chan, Heang-Ping; Goodsitt, Mitchell M; Hadjiiski, Lubomir M; Bailey, Janet E; Klein, Katherine; Darner, Katie L; Sahiner, Berkman

    2003-11-21

    We are evaluating the application of stereoscopic imaging to digital mammography. In the current study, we investigated the effects of magnification and zooming on depth perception. A modular phantom was designed which contained six layers of 1-mm-thick Lexan plates, each spaced 1 mm apart. Eight to nine small, thin nylon fibrils were pasted on each plate in horizontal or vertical orientations such that they formed 25 crossing fibril pairs in a projected image. The depth separation between each fibril pair ranged from 2 to 10 mm. A change in the order of the Lexan plates changed the depth separation of the two fibrils in a pair. Stereoscopic image pairs of the phantom were acquired with a GE full-field digital mammography system. Three different phantom configurations were imaged. All images were obtained using a Rh target/Rh filter spectrum at 30 kVp tube potential and a +/- 3 stereo shift angle. Images were acquired in both contact and 1.8X magnification geometry and an exposure range of 4 to 63 mAs was employed. The images were displayed on a Barco monitor driven by a Metheus stereo graphics board and viewed with LCD stereo glasses. Five observers participated in the study. Each observer visually judged whether the vertical fibril was in front of or behind the horizontal fibril in each fibril pair. It was found that the accuracy of depth discrimination increased with increasing fibril depth separation and x-ray exposure. The accuracy was not improved by electronic display zooming of the contact stereo images by 2X. Under conditions of high noise (low mAs) and small depth separation between the fibrils, the observers' depth discrimination ability was significantly better in stereo images acquired with geometric magnification than in images acquired with a contact technique and displayed with or without zooming. Under our experimental conditions, a 2 mm depth discrimination was achieved with over 60% accuracy on contact images with and without zooming, and with

  2. IMAGE-POLAR Concurrent Plasmapause Observations

    NASA Technical Reports Server (NTRS)

    Adrian, M. L.; Gallagher, D. L.; Craven, P. D.

    2004-01-01

    Two critical issues that influence the quantitative scientific value of the IMAGE Ultraviolet Camera (EUV) are: (1) the accuracy with which EUV imaging can be used to determine the position/location of the plasmapause; and (2) the sensitivity threshold of the EUV instrument. These issues are addressed through analysis of concurrent observations of the plasmasphere/plasmapause made remotely using IMAGE EUV and in-situ with the Polar/TIDE/EFI instruments. Preliminary results are presented with regards to the validity of the extraction of the plasmapause using EUV and initial in-flight, in-situ estimates of the EUV sensitivity threshold.

  3. Dynamic image fusion and general observer preference

    NASA Astrophysics Data System (ADS)

    Burks, Stephen D.; Doe, Joshua M.

    2010-04-01

    Recent developments in image fusion give the user community many options for ways of presenting the imagery to an end-user. Individuals at the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate have developed an electronic system that allows users to quickly and efficiently determine optimal image fusion algorithms and color parameters based upon collected imagery and videos from environments that are typical to observers in a military environment. After performing multiple multi-band data collections in a variety of military-like scenarios, different waveband, fusion algorithm, image post-processing, and color choices are presented to observers as an output of the fusion system. The observer preferences can give guidelines as to how specific scenarios should affect the presentation of fused imagery.

  4. Quantification of heterogeneity observed in medical images

    PubMed Central

    2013-01-01

    Background There has been much recent interest in the quantification of visually evident heterogeneity within functional grayscale medical images, such as those obtained via magnetic resonance or positron emission tomography. In the case of images of cancerous tumors, variations in grayscale intensity imply variations in crucial tumor biology. Despite these considerable clinical implications, there is as yet no standardized method for measuring the heterogeneity observed via these imaging modalities. Methods In this work, we motivate and derive a statistical measure of image heterogeneity. This statistic measures the distance-dependent average deviation from the smoothest intensity gradation feasible. We show how this statistic may be used to automatically rank images of in vivo human tumors in order of increasing heterogeneity. We test this method against the current practice of ranking images via expert visual inspection. Results We find that this statistic provides a means of heterogeneity quantification beyond that given by other statistics traditionally used for the same purpose. We demonstrate the effect of tumor shape upon our ranking method and find the method applicable to a wide variety of clinically relevant tumor images. We find that the automated heterogeneity rankings agree very closely with those performed visually by experts. Conclusions These results indicate that our automated method may be used reliably to rank, in order of increasing heterogeneity, tumor images whether or not object shape is considered to contribute to that heterogeneity. Automated heterogeneity ranking yields objective results which are more consistent than visual rankings. Reducing variability in image interpretation will enable more researchers to better study potential clinical implications of observed tumor heterogeneity. PMID:23453000

  5. Lesbian body image perceptions: the context of body silence.

    PubMed

    Kelly, Laura

    2007-09-01

    As are all women, lesbians are influenced by Western society's expectations of what a woman should look like. However, they are also influenced by the lesbian subculture. One of the author's aims was to explore how the sociocultural contexts in which lesbians belong influence their perceptions of body image. She purposively selected 20 lesbians and used constant comparative analysis to guide data collection and analyze the resulting transcribed interviews. The internalization of the dominant culture's beauty expectations coupled with the adoption of a lesbian identity caused the participants to contend with a multitude of oppressive mandates from both sociocultural contexts. The author interpreted the outcomes of these oppressions through the lens of stigma theory. The results of the stigma assisted in the development of the context of Body Silence. The study results might serve to provide a better understanding of lesbian body image as an important component of lesbians' mental health. PMID:17724099

  6. Fixing Images Observation Dates Thanks to Asteroids

    NASA Astrophysics Data System (ADS)

    Derriere, S.

    2015-09-01

    An important piece of metadata for any astronomical image is the date and time at which it was observed (and the exposure time). Unfortunately, the values of the observation epoch found in the FITS headers of digitized photographic plates, for example, are not always accurate. There can be many different sources of error: mistakes in the original observation log, errors when converting between different dates and time format (calendar date, Julian days, decimal years, etc.). We present in this paper an analysis of the different values that can be found for the observation epoch of several image sets in various metadata sources. We show how the presence of known asteroids in the field of view can be used to recover the correct time values with a good accuracy.

  7. Improvement in perception of image sharpness through the addition of noise and its relationship with memory texture

    NASA Astrophysics Data System (ADS)

    Wan, Xiazi; Kobayashi, Hiroyuki; Aoki, Naokazu

    2015-03-01

    In a preceding study, we investigated the effects of image noise on the perception of image sharpness using white noise, and one- and two-dimensional single-frequency sinusoidal patterns as stimuli. This study extends our preceding study by evaluating natural color images, rather than black-and-white patterns. The results showed that the effect of noise in improving image sharpness perception is more evident in blurred images than in sharp images. This is consistent with the results of the preceding study. In another preceding study, we proposed "memory texture" to explain the preferred granularity of images, as a concept similar to "memory color" for preferred color reproduction. We observed individual differences in type of memory texture for each object, that is, white or 1/f noise. This study discusses the relationship between improvement of sharpness perception by adding noise, and the memory texture, following its individual differences. We found that memory texture is one of the elements that affect sharpness perception.

  8. Weight status and the perception of body image in men

    PubMed Central

    Gardner, Rick M

    2014-01-01

    Understanding the role of body size in relation to the accuracy of body image perception in men is an important topic because of the implications for avoiding and treating obesity, and it may serve as a potential diagnostic criterion for eating disorders. The early research on this topic produced mixed findings. About one-half of the early studies showed that obese men overestimated their body size, with the remaining half providing accurate estimates. Later, improvements in research technology and methodology provided a clearer indication of the role of weight status in body image perception. Research in our laboratory has also produced diverse findings, including that obese subjects sometimes overestimate their body size. However, when examining our findings across several studies, obese subjects had about the same level of accuracy in estimating their body size as normal-weight subjects. Studies in our laboratory also permitted the separation of sensory and nonsensory factors in body image perception. In all but one instance, no differences were found overall between the ability of obese and normal-weight subjects to detect overall changes in body size. Importantly, however, obese subjects are better at detecting changes in their body size when the image is distorted to be too thin as compared to too wide. Both obese and normal-weight men require about a 3%–7% change in the width of their body size in order to detect the change reliably. Correlations between a range of body mass index values and body size estimation accuracy indicated no relationship between these variables. Numerous studies in other laboratories asked men to place their body size into discrete categorizes, ranging from thin to obese. Researchers found that overweight and obese men underestimate their weight status, and that men are less accurate in their categorizations than are women. Cultural influences have been found to be important, with body size underestimations occurring in cultures

  9. The (In)Effectiveness of Simulated Blur for Depth Perception in Naturalistic Images

    PubMed Central

    Maiello, Guido; Chessa, Manuela; Solari, Fabio; Bex, Peter J.

    2015-01-01

    We examine depth perception in images of real scenes with naturalistic variation in pictorial depth cues, simulated dioptric blur and binocular disparity. Light field photographs of natural scenes were taken with a Lytro plenoptic camera that simultaneously captures images at up to 12 focal planes. When accommodation at any given plane was simulated, the corresponding defocus blur at other depth planes was extracted from the stack of focal plane images. Depth information from pictorial cues, relative blur and stereoscopic disparity was separately introduced into the images. In 2AFC tasks, observers were required to indicate which of two patches extracted from these images was farther. Depth discrimination sensitivity was highest when geometric and stereoscopic disparity cues were both present. Blur cues impaired sensitivity by reducing the contrast of geometric information at high spatial frequencies. While simulated generic blur may not assist depth perception, it remains possible that dioptric blur from the optics of an observer’s own eyes may be used to recover depth information on an individual basis. The implications of our findings for virtual reality rendering technology are discussed. PMID:26447793

  10. Perception of Perspective Distortions in Image-Based Rendering

    PubMed Central

    Vangorp, Peter; Richardt, Christian; Cooper, Emily A.; Chaurasia, Gaurav; Banks, Martin S.; Drettakis, George

    2013-01-01

    Image-based rendering (IBR) creates realistic images by enriching simple geometries with photographs, e.g., mapping the photograph of a building façade onto a plane. However, as soon as the viewer moves away from the correct viewpoint, the image in the retina becomes distorted, sometimes leading to gross misperceptions of the original geometry. Two hypotheses from vision science state how viewers perceive such image distortions, one claiming that they can compensate for them (and therefore perceive scene geometry reasonably correctly), and one claiming that they cannot compensate (and therefore can perceive rather significant distortions). We modified the latter hypothesis so that it extends to street-level IBR. We then conducted a rigorous experiment that measured the magnitude of perceptual distortions that occur with IBR for façade viewing. We also conducted a rating experiment that assessed the acceptability of the distortions. The results of the two experiments were consistent with one another. They showed that viewers’ percepts are indeed distorted, but not as severely as predicted by the modified vision science hypothesis. From our experimental results, we develop a predictive model of distortion for street-level IBR, which we use to provide guidelines for acceptability of virtual views and for capture camera density. We perform a confirmatory study to validate our predictions, and illustrate their use with an application that guides users in IBR navigation to stay in regions where virtual views yield acceptable perceptual distortions. PMID:24273376

  11. Focal Length Affects Depicted Shape and Perception of Facial Images

    PubMed Central

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject’s facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits. PMID:26894832

  12. Focal Length Affects Depicted Shape and Perception of Facial Images.

    PubMed

    Třebický, Vít; Fialová, Jitka; Kleisner, Karel; Havlíček, Jan

    2016-01-01

    Static photographs are currently the most often employed stimuli in research on social perception. The method of photograph acquisition might affect the depicted subject's facial appearance and thus also the impression of such stimuli. An important factor influencing the resulting photograph is focal length, as different focal lengths produce various levels of image distortion. Here we tested whether different focal lengths (50, 85, 105 mm) affect depicted shape and perception of female and male faces. We collected three portrait photographs of 45 (22 females, 23 males) participants under standardized conditions and camera setting varying only in the focal length. Subsequently, the three photographs from each individual were shown on screen in a randomized order using a 3-alternative forced-choice paradigm. The images were judged for attractiveness, dominance, and femininity/masculinity by 369 raters (193 females, 176 males). Facial width-to-height ratio (fWHR) was measured from each photograph and overall facial shape was analysed employing geometric morphometric methods (GMM). Our results showed that photographs taken with 50 mm focal length were rated as significantly less feminine/masculine, attractive, and dominant compared to the images taken with longer focal lengths. Further, shorter focal lengths produced faces with smaller fWHR. Subsequent GMM revealed focal length significantly affected overall facial shape of the photographed subjects. Thus methodology of photograph acquisition, focal length in this case, can significantly affect results of studies using photographic stimuli perhaps due to different levels of perspective distortion that influence shapes and proportions of morphological traits. PMID:26894832

  13. Imaging radar observations of frozen Arctic lakes

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Bryan, M. L.; Weeks, W. F.

    1976-01-01

    A synthetic aperture imaging L-band radar flown aboard the NASA CV-990 remotely sensed a number of ice-covered lakes about 48 km northwest of Bethel, Alaska. The image obtained is a high resolution, two-dimensional representation of the surface backscatter cross section, and large differences in backscatter returns are observed: homogeneous low returns, homogeneous high returns and/or low returns near lake borders, and high returns from central areas. It is suggested that a low return indicates that the lake is frozen completely to the bottom, while a high return indicates the presence of fresh water between the ice cover and the lake bed.

  14. Granular convection observed by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Ehrichs, E. E.; Jaeger, H. M.; Karczmar, Greg S.; Knight, James B.; Kuperman, Vadim Yu.; Nagel, Sidney R.

    1995-03-01

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here.

  15. Granular convection observed by magnetic resonance imaging

    SciTech Connect

    Ehrichs, E.E.; Jaeger, H.M.; Knight, J.B.; Nagel, S.R.; Karczmar, G.S.; Kuperman, V.Yu.

    1995-03-17

    Vibrations in a granular material can spontaneously produce convection rolls reminiscent of those seen in fluids. Magnetic resonance imaging provides a sensitive and noninvasive probe for the detection of these convection currents, which have otherwise been difficult to observe. A magnetic resonance imaging study of convection in a column of poppy seeds yielded data about the detailed shape of the convection rolls and the depth dependence of the convection velocity. The velocity was found to decrease exponentially with depth; a simple model for this behavior is presented here. 31 refs., 4 figs.

  16. Is image quality a function of contrast perception?

    NASA Astrophysics Data System (ADS)

    Haun, Andrew M.; Peli, Eli

    2013-03-01

    In this retrospective we trace in broad strokes the development of image quality measures based on the study of the early stages of the human visual system (HVS), where contrast encoding is fundamental. We find that while presenters at the Human Vision and Electronic Imaging meetings have frequently strived to find points of contact between the study of human contrast psychophysics and the development of computer vision and image quality algorithms. Progress has not always been made on these terms, although indirect impact of vision science on more recent image quality metrics can be observed.

  17. Imaging radar observations of Askja Caldera, Iceland

    NASA Technical Reports Server (NTRS)

    Malin, M. C.; Evans, D.; Elachi, C.

    1978-01-01

    A 'blind' test involving interpretation of computer-enhanced like- and cross-polarized radar images is used to evaluate the surface roughness of Askja Caldera, a large volcanic complex in central Iceland. The 'blind' test differs from earlier analyses of radar observations in that computer-processes images and both qualitative and quantitative analyses are used. Attention is given to photogeologic examination and subsequent survey-type field observations, along with aerial photography during the field trip. The results indicate that the 'blind' test of radar interpretation of the Askja volcanic area can be considered suitable within the framework of limitations of radar data considered explicitly from the onset. The limitations of the radar techniques can be eliminated by using oblique-viewing conditions to remove geometric distortions and slope effects.

  18. Correlation and Imaging of Space VLBI Observations

    NASA Astrophysics Data System (ADS)

    Romney, J. D.

    1995-05-01

    Space VLBI observations challenge conventional VLBI data-analysis systems and techniques in several areas. The correlator must obtain and evaluate an ephemeris for an orbiting ``station'' which is not fixed on the surface of the earth. The geometric delay, and its derivatives, for this element can exceed those for terrestrial stations by an order of magnitude. Imperfect knowledge of the orbit requires that the output data flow be sufficient to preserve unusually wide windows in residual delay and fringe rate. And, at least for the current generation of Space VLBI missions, the spacecraft have no on-board precision frequency standard; the phase-transfer process from a frequency standard on the ground is accompanied by errors which must be corrected in the correlator. Imaging of observations involving an orbiting element must contend with gaps in the (u,v) plane coverage for many cases of the orbit and source geometry. Projected baselines to the orbiting element change significantly more rapidly than terrestrial baselines during perigee passage of the spacecraft. Self-calibration techniques are complicated by the facts that all measurements in many regions of the (u,v) plane involve baselines to the single orbiting antenna, and that their residual delay and fringe rate may be subject to short-term variations. Since the current generation of Space VLBI missions have relatively small antennas, observations of weaker sources will be limited to sparse arrays comprising only the largest available radio telescopes on the ground, and interpretation of the results may require sophisticated image model-fitting software. NRAO's participation in the VSOP and Radioastron missions includes programs to modify the VLBA correlator and the AIPS imaging system to meet these requirements. Also included is a user-support program, to provide expert assistance in data analysis to Space VLBI observers, at a level similar to the support NRAO currently provides for ground-based VLBI

  19. Undetectable Changes in Image Resolution of Luminance-Contrast Gradients Affect Depth Perception

    PubMed Central

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Morita, Toshiya

    2016-01-01

    A great number of studies have suggested a variety of ways to get depth information from two dimensional images such as binocular disparity, shape-from-shading, size gradient/foreshortening, aerial perspective, and so on. Are there any other new factors affecting depth perception? A recent psychophysical study has investigated the correlation between image resolution and depth sensation of Cylinder images (A rectangle contains gradual luminance-contrast changes.). It was reported that higher resolution images facilitate depth perception. However, it is still not clear whether or not the finding generalizes to other kinds of visual stimuli, because there are more appropriate visual stimuli for exploration of depth perception of luminance-contrast changes, such as Gabor patch. Here, we further examined the relationship between image resolution and depth perception by conducting a series of psychophysical experiments with not only Cylinders but also Gabor patches having smoother luminance-contrast gradients. As a result, higher resolution images produced stronger depth sensation with both images. This finding suggests that image resolution affects depth perception of simple luminance-contrast differences (Gabor patch) as well as shape-from-shading (Cylinder). In addition, this phenomenon was found even when the resolution difference was undetectable. This indicates the existence of consciously available and unavailable information in our visual system. These findings further support the view that image resolution is a cue for depth perception that was previously ignored. It partially explains the unparalleled viewing experience of novel high resolution displays. PMID:26941693

  20. Cerebellum and speech perception: a functional magnetic resonance imaging study.

    PubMed

    Mathiak, Klaus; Hertrich, Ingo; Grodd, Wolfgang; Ackermann, Hermann

    2002-08-15

    A variety of data indicate that the cerebellum participates in perceptual tasks requiring the precise representation of temporal information. Access to the word form of a lexical item requires, among other functions, the processing of durational parameters of verbal utterances. Therefore, cerebellar dysfunctions must be expected to impair word recognition. In order to specify the topography of the assumed cerebellar speech perception mechanism, a functional magnetic resonance imaging study was performed using the German lexical items "Boden" ([bodn], Engl. "floor") and "Boten" ([botn], "messengers") as test materials. The contrast in sound structure of these two lexical items can be signaled either by the length of the wordmedial pause (closure time, CLT; an exclusively temporal measure) or by the aspiration noise of wordmedial "d" or "t" (voice onset time, VOT; an intrasegmental cue). A previous study found bilateral cerebellar disorders to compromise word recognition based on CLT whereas the encoding of VOT remained unimpaired. In the present study, two series of "Boden - Boten" utterances were resynthesized, systematically varying either in CLT or VOT. Subjects had to identify both words "Boden" and "Boten" by analysis of either the durational parameter CLT or the VOT aspiration segment. In a subtraction design, CLT categorization as compared to VOT identification (CLT - VOT) yielded a significant hemodynamic response of the right cerebellar hemisphere (neocerebellum Crus I) and the frontal lobe (anterior to Broca's area). The reversed contrast ( VOT - CLT) resulted in a single activation cluster located at the level of the supratemporal plane of the dominant hemisphere. These findings provide first evidence for a distinct contribution of the right cerebellar hemisphere to speech perception in terms of encoding of durational parameters of verbal utterances. Verbal working memory tasks, lexical response selection, and auditory imagery of word strings have been

  1. Polarization observations with the Cosmic Background Imager.

    PubMed

    Readhead, A C S; Myers, S T; Pearson, T J; Sievers, J L; Mason, B S; Contaldi, C R; Bond, J R; Bustos, R; Altamirano, P; Achermann, C; Bronfman, L; Carlstrom, J E; Cartwright, J K; Casassus, S; Dickinson, C; Holzapfel, W L; Kovac, J M; Leitch, E M; May, J; Padin, S; Pogosyan, D; Pospieszalski, M; Pryke, C; Reeves, R; Shepherd, M C; Torres, S

    2004-10-29

    Polarization observations of the cosmic microwave background with the Cosmic Background Imager from September 2002 to May 2004 provide a significant detection of the E-mode polarization and reveal an angular power spectrum of polarized emission showing peaks and valleys that are shifted in phase by half a cycle relative to those of the total intensity spectrum. This key agreement between the phase of the observed polarization spectrum and that predicted on the basis of the total intensity spectrum provides support for the standard model of cosmology, in which dark matter and dark energy are the dominant constituents, the geometry is close to flat, and primordial density fluctuations are predominantly adiabatic with a matter power spectrum commensurate with inflationary cosmological models. PMID:15472038

  2. Factors Influencing a Student's Perception of the Image of a Career and Technical Education Student Organization.

    ERIC Educational Resources Information Center

    Croom, Barry; Flowers, James L.

    A study investigated whether Future Farmers of America (FFA) members and non-members differed in their perception of the overall image of FFA and whether their perceptions were influenced by social and demographic characteristics. A questionnaire was administered to 404 first-year students enrolled in the Agriscience Applications course in 27 high…

  3. Enhancement of Glossiness Perception by Retinal-Image Motion: Additional Effect of Head-Yoked Motion Parallax

    PubMed Central

    Tani, Yusuke; Araki, Keisuke; Nagai, Takehiro; Koida, Kowa; Nakauchi, Shigeki; Kitazaki, Michiteru

    2013-01-01

    It has been argued that when an observer moves, a contingent retinal-image motion of a stimulus would strengthen the perceived glossiness. This would be attributed to the veridical perception of three-dimensional structure by motion parallax. However, it has not been investigated whether the effect of motion parallax is more than that of retinal-image motion of the stimulus. Using a magnitude estimation method, we examine in this paper whether cross-modal coordination of the stimulus change and the observer's motion (i.e., motion parallax) is essential or the retinal-image motion alone is sufficient for enhancing the perceived glossiness. Our data show that a retinal-image motion simulating motion parallax without head motion strengthened the perceived glossiness but that its effect was weaker than that of motion parallax with head motion. These results suggest the existence of an additional effect of the cross-modal coordination between vision and proprioception on glossiness perception. That is, motion parallax enhances the perception of glossiness, in addition to retinal-image motions of specular surfaces. PMID:23336006

  4. Image statistics and the perception of apparent motion.

    PubMed

    Gilden, D L; Bertenthal, B I; Othman, S

    1990-11-01

    The short- and long-range apparent motion processes are discussed in terms of the statistical properties of images. It is argued that the short-range process, exemplified by the random-dot kinematogram, is primarily sensitive to the dipole statistics, whereas the long-range process, exemplified by illusory occlusion, is treated by the visual system primarily in terms of the tripole and higher statistical correlation functions. The studies incorporate the balanced dot, which is a unique stimulus element that permits high pass filtering while preserving detailed positional information. Low spatial frequencies are shown to be critical for texture segregation in random-dot kinematograms, independent of the grain size or number density of texture elements. Illusory path perception in the long-range process is shown not to require low spatial frequencies, but is sensitive rather to global temporal phase coherency. These results are interpreted in terms of the respective roles of the power and phase spectra in perceptual organization. The construction of balanced dots is discussed in detail. PMID:2148586

  5. Body image perception of African immigrants in Europe.

    PubMed

    Toselli, Stefania; Rinaldo, Natascia; Gualdi-Russo, Emanuela

    2016-01-01

    Nutritional disorders are now spreading worldwide both in developed and developing countries. Body image ideals and dissatisfaction have been linked to a number of poor health outcomes, including nutritional disorders. While previous studies have offered insight into weight status and body image perception of immigrants in North America, very few studies have analysed these aspects in migrants from Africa to Europe. Our review examines the effects of the migration process on beauty ideals and body dissatisfaction in African immigrants in Europe compared to residents in their own countries. The PubMed, PsycINFO and Google Scholar databases were searched for studies published from January 2000 till November 2015. Of the 730 titles identified, 26 met the inclusion criteria and were included in the present review. Among African residents, the body preferences depend on the country of residence and their socio-cultural status. Ethnic groups living in great isolation or with low incomes still have an ancestral idea of beauty, preferring a shapely body. However ethnic groups living in urban areas are moving toward Westernization of beauty ideals, preferring underweight or normal weight bodies. This review highlights that both residents and migrants are at high risk of nutritional disorders due to the adoption of Western beauty ideals. The results suggest that body dissatisfaction and BMI are increasing from Southern Africa to Europe according to a geographical gradient (described for females by Spearman's coefficient and linear regression, respectively). We emphasize the need for monitoring of the weight and psychological status of immigrants and the development of specific preventive strategies in European countries. PMID:27558365

  6. Bayesian Analysis Of HMI Solar Image Observables And Comparison To TSI Variations And MWO Image Observables

    NASA Astrophysics Data System (ADS)

    Parker, D. G.; Ulrich, R. K.; Beck, J.

    2014-12-01

    We have previously applied the Bayesian automatic classification system AutoClass to solar magnetogram and intensity images from the 150 Foot Solar Tower at Mount Wilson to identify classes of solar surface features associated with variations in total solar irradiance (TSI) and, using those identifications, modeled TSI time series with improved accuracy (r > 0.96). (Ulrich, et al, 2010) AutoClass identifies classes by a two-step process in which it: (1) finds, without human supervision, a set of class definitions based on specified attributes of a sample of the image data pixels, such as magnetic field and intensity in the case of MWO images, and (2) applies the class definitions thus found to new data sets to identify automatically in them the classes found in the sample set. HMI high resolution images capture four observables-magnetic field, continuum intensity, line depth and line width-in contrast to MWO's two observables-magnetic field and intensity. In this study, we apply AutoClass to the HMI observables for images from May, 2010 to June, 2014 to identify solar surface feature classes. We use contemporaneous TSI measurements to determine whether and how variations in the HMI classes are related to TSI variations and compare the characteristic statistics of the HMI classes to those found from MWO images. We also attempt to derive scale factors between the HMI and MWO magnetic and intensity observables. The ability to categorize automatically surface features in the HMI images holds out the promise of consistent, relatively quick and manageable analysis of the large quantity of data available in these images. Given that the classes found in MWO images using AutoClass have been found to improve modeling of TSI, application of AutoClass to the more complex HMI images should enhance understanding of the physical processes at work in solar surface features and their implications for the solar-terrestrial environment. Ulrich, R.K., Parker, D, Bertello, L. and

  7. An Image Study on the Rich and Poor Perception

    ERIC Educational Resources Information Center

    Koçak, Recep

    2015-01-01

    The aim of this study is to project people's perceptions about the rich and poor. In this descriptive study, a questionnaire developed by the researcher and caricatures were used to collect data. The questionnaire composed of seven items including questions directed to adjectives related to the participants' perceptions about the rich and poor as…

  8. The Effects of Lesson Study on Classroom Observations and Perceptions of Lesson Effectiveness

    ERIC Educational Resources Information Center

    Myers, Julia

    2012-01-01

    This study examined the effects of lesson study on participants' classroom observations and perceptions of lesson effectiveness, by investigating the focus of their observations during a mathematics lesson and their ratings of the lesson's effectiveness, both preceding and subsequent to the lesson study experience. Prior to the lesson study,…

  9. The Potential of General Classroom Observation: Turkish EFL Teachers' Perceptions, Sentiments, and Readiness for Action

    ERIC Educational Resources Information Center

    Merç, Ali

    2015-01-01

    The purpose of this study was to determine Turkish EFL teachers' attitudes towards classroom observation. 204 teachers from different school settings responded to an online questionnaire. Data were analyzed according to three types of attitudes towards classroom observation: perceptions, sentiments, and readiness for action. The findings revealed…

  10. Observed Workplace Incivility toward Women, Perceptions of Interpersonal Injustice, and Observer Occupational Well-Being: Differential Effects for Gender of the Observer

    PubMed Central

    Miner, Kathi N.; Cortina, Lilia M.

    2016-01-01

    The present study examined perceptions of interpersonal injustice as a mediator of the relationship between observed incivility toward women at work and employees' occupational well-being. We also examined gender of the observer as a moderator of these mediational relationships. Using online survey data from 1702 (51% women; 92% White) employees, results showed that perceptions of injustice partially mediated the relationship between observed incivility toward women and job satisfaction, turnover intentions, and organizational trust. Men reported greater perceptions of injustice than did women the more they observed the uncivil treatment of women at work, and the indirect effects of observed incivility toward women on well-being were stronger for men compared to women. Observed incivility toward women also had direct relationships with the occupational well-being outcomes over and above the impact mediated through injustice, particularly for women. Specifically, observing incivility toward female coworkers directly related to lowered job satisfaction and perceptions of safety for female bystanders. In addition, although both male and female bystanders reported heightened turnover intentions and lowered trust in the organization with higher levels of observed incivility toward women, these relationships were stronger for female than male observers. Our findings both replicate and extend past research on vicarious workplace incivility toward women. PMID:27242558

  11. Observed Workplace Incivility toward Women, Perceptions of Interpersonal Injustice, and Observer Occupational Well-Being: Differential Effects for Gender of the Observer.

    PubMed

    Miner, Kathi N; Cortina, Lilia M

    2016-01-01

    The present study examined perceptions of interpersonal injustice as a mediator of the relationship between observed incivility toward women at work and employees' occupational well-being. We also examined gender of the observer as a moderator of these mediational relationships. Using online survey data from 1702 (51% women; 92% White) employees, results showed that perceptions of injustice partially mediated the relationship between observed incivility toward women and job satisfaction, turnover intentions, and organizational trust. Men reported greater perceptions of injustice than did women the more they observed the uncivil treatment of women at work, and the indirect effects of observed incivility toward women on well-being were stronger for men compared to women. Observed incivility toward women also had direct relationships with the occupational well-being outcomes over and above the impact mediated through injustice, particularly for women. Specifically, observing incivility toward female coworkers directly related to lowered job satisfaction and perceptions of safety for female bystanders. In addition, although both male and female bystanders reported heightened turnover intentions and lowered trust in the organization with higher levels of observed incivility toward women, these relationships were stronger for female than male observers. Our findings both replicate and extend past research on vicarious workplace incivility toward women. PMID:27242558

  12. 3D panorama stereo visual perception centering on the observers

    NASA Astrophysics Data System (ADS)

    Tang, YiPing; Zhou, Jingkai; Xu, Haitao; Xiang, Yun

    2015-09-01

    For existing three-dimensional (3D) laser scanners, acquiring geometry and color information of the objects simultaneously is difficult. Moreover, the current techniques cannot store, modify, and model the point clouds efficiently. In this work, we have developed a novel sensor system, which is called active stereo omni-directional vision sensor (ASODVS), to address those problems. ASODVS is an integrated system composed of a single-view omni-directional vision sensor and a mobile planar green laser generator platform. Driven by a stepper motor, the laser platform can move vertically along the axis of the ASODVS. During the scanning of the laser generators, the panoramic images of the environment are captured and the characteristics and space location information of the laser points are calculated accordingly. Based on the image information of the laser points, the 3D space can be reconstructed. Experimental results demonstrate that the proposed ASODVS system can measure and reconstruct the 3D space in real-time and with high quality.

  13. Assessing the value of diagnostic imaging: the role of perception

    NASA Astrophysics Data System (ADS)

    Potchen, E. J.; Cooper, Thomas G.

    2000-04-01

    The value of diagnostic radiology rests in its ability to provide information. Information is defined as a reduction in randomness. Quality improvement in any system requires diminution in the variation in its performance. The major variation in performance of the system of diagnostic radiology occurs in observer performance and in the communication of information from the observer to someone who will apply that information to the benefit of the patient. The ability to provide information can be determined by observer performance studies using a receiver-operating characteristic (ROC) curve analysis. The amount of information provided by each observer can be measured in terms of the uncertainty they reduce. Using a set of standardized radiographs, some normal and some abnormal, sorting them randomly, and then asking an observer to redistribute them according to their probability of normality can measure the difference in the value added by different observers. By applying this observer performance measure, we have been able to characterize individual radiologists, groups of radiologists, and regions of the United States in their ability to add value in chest radiology. The use of these technologies in health care may improve upon the contribution of diagnostic imaging.

  14. Aspiring School Leaders' Perceptions of the Walkthrough Observations

    ERIC Educational Resources Information Center

    Garza, Ruben; Ovando, Martha; O'Doherty, Ann

    2016-01-01

    The accountability pressures of the recent decade require that instructional leaders work with teachers to ensure student academic success. The "walkthrough" or "walkthrough observation" is an instructional leadership practice that has been regarded as a promising avenue to collaboratively work with teachers. This exploratory…

  15. Earth Observation Services (Image Processing Software)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  16. A Bayesian observer model constrained by efficient coding can explain 'anti-Bayesian' percepts.

    PubMed

    Wei, Xue-Xin; Stocker, Alan A

    2015-10-01

    Bayesian observer models provide a principled account of the fact that our perception of the world rarely matches physical reality. The standard explanation is that our percepts are biased toward our prior beliefs. However, reported psychophysical data suggest that this view may be simplistic. We propose a new model formulation based on efficient coding that is fully specified for any given natural stimulus distribution. The model makes two new and seemingly anti-Bayesian predictions. First, it predicts that perception is often biased away from an observer's prior beliefs. Second, it predicts that stimulus uncertainty differentially affects perceptual bias depending on whether the uncertainty is induced by internal or external noise. We found that both model predictions match reported perceptual biases in perceived visual orientation and spatial frequency, and were able to explain data that have not been explained before. The model is general and should prove applicable to other perceptual variables and tasks. PMID:26343249

  17. Content-based image retrieval in radiology: analysis of variability in human perception of similarity.

    PubMed

    Faruque, Jessica; Beaulieu, Christopher F; Rosenberg, Jarrett; Rubin, Daniel L; Yao, Dorcas; Napel, Sandy

    2015-04-01

    We aim to develop a better understanding of perception of similarity in focal computed tomography (CT) liver images to determine the feasibility of techniques for developing reference sets for training and validating content-based image retrieval systems. In an observer study, four radiologists and six nonradiologists assessed overall similarity and similarity in 5 image features in 136 pairs of focal CT liver lesions. We computed intra- and inter-reader agreements in these similarity ratings and viewed the distributions of the ratings. The readers' ratings of overall similarity and similarity in each feature primarily appeared to be bimodally distributed. Median Kappa scores for intra-reader agreement ranged from 0.57 to 0.86 in the five features and from 0.72 to 0.82 for overall similarity. Median Kappa scores for inter-reader agreement ranged from 0.24 to 0.58 in the five features and were 0.39 for overall similarity. There was no significant difference in agreement for radiologists and nonradiologists. Our results show that developing perceptual similarity reference standards is a complex task. Moderate to high inter-reader variability precludes ease of dividing up the workload of rating perceptual similarity among many readers, while low intra-reader variability may make it possible to acquire large volumes of data by asking readers to view image pairs over many sessions. PMID:26158112

  18. Social perceptions versus meteorological observations of snow and winter along the Front Range

    NASA Astrophysics Data System (ADS)

    Milligan, William James, IV

    This research aims to increase understanding of Front Range residents' perceptions of snow, winter and hydrologic events. This study also investigates how an individual's characteristics may shape perceptions of winter weather and climate. A survey was administered to determine if perceptions of previous winters align with observed meteorological data. The survey also investigated how individual characteristics influence perceptions of snow and winter weather. The survey was conducted primarily along the Front Range area of the state of Colorado in the United States of America. This is a highly populated semi-arid region that acts as an interface between the agricultural plains to the east that extend to the Mississippi River and the Rocky Mountains to the west. The climate is continental, and while many people recreate in the snowy areas of the mountains, most live where annual snowfall amounts are low. Precipitation, temperature, and wind speed datasets from selected weather stations were analyzed to determine correct survey responses. Survey analysis revealed that perceptions of previous winters do not necessarily align with observed meteorological data. The mean percentage of correct responses to all survey questions was 36.8%. Further analysis revealed that some individual characteristics (e.g. winter recreation, source of winter weather information) did influence correct responses to survey questions.

  19. Monocular depth perception using image processing and machine learning

    NASA Astrophysics Data System (ADS)

    Hombali, Apoorv; Gorde, Vaibhav; Deshpande, Abhishek

    2011-10-01

    This paper primarily exploits some of the more obscure, but inherent properties of camera and image to propose a simpler and more efficient way of perceiving depth. The proposed method involves the use of a single stationary camera at an unknown perspective and an unknown height to determine depth of an object on unknown terrain. In achieving so a direct correlation between a pixel in an image and the corresponding location in real space has to be formulated. First, a calibration step is undertaken whereby the equation of the plane visible in the field of view is calculated along with the relative distance between camera and plane by using a set of derived spatial geometrical relations coupled with a few intrinsic properties of the system. The depth of an unknown object is then perceived by first extracting the object under observation using a series of image processing steps followed by exploiting the aforementioned mapping of pixel and real space coordinate. The performance of the algorithm is greatly enhanced by the introduction of reinforced learning making the system independent of hardware and environment. Furthermore the depth calculation function is modified with a supervised learning algorithm giving consistent improvement in results. Thus, the system uses the experience in past and optimizes the current run successively. Using the above procedure a series of experiments and trials are carried out to prove the concept and its efficacy.

  20. Teachers' Images of Their Schools and Perceptions of Their Work Environments.

    ERIC Educational Resources Information Center

    Fisher, Darrell; Grady, Neville

    1998-01-01

    Describes development of the Images Through Metaphor Questionnaire and its application in an investigation of relationships between 162 (Tasmanian) teachers' images of their schools and their perceptions of their work environment as assessed by the School Level Environment Questionnaire. Results revealed a strong relationship between these…

  1. A Window into Mathematical Support: How Parents' Perceptions Change Following Observations of Mathematics Tutoring

    ERIC Educational Resources Information Center

    Westenskow, Arla; Boyer-Thurgood, Jennifer; Moyer-Packenham, Patricia S.

    2015-01-01

    This research study examined the perceptions of 24 parents of rising 5th-grade students with mathematics learning difficulties as part of a 10-week summer mathematics tutoring experience. During the summer tutoring program, parents observed their children participating in mathematics learning experiences during one-to-one tutoring sessions. At the…

  2. Adolescent, Parent, and Observer Perceptions of Parenting: Genetic and Environmental Influences on Shared and Distinct Perceptions.

    ERIC Educational Resources Information Center

    Feinberg, Mark; Neiderhiser, Jenae; Howe, George; Hetherington, E. Mavis

    2001-01-01

    Examined low interrater agreement by decomposing common and unique variance among parent, adolescent, and observer reports of parental warmth and negativity into genetic and environmental factors. Model-fitting analyses findings generally supported predictions for warmth and negativity at Family and Individual levels. At the Social level, genetic…

  3. Older adults' perceptions of ageing and their health and functioning: a systematic review of observational studies.

    PubMed

    Warmoth, Krystal; Tarrant, Mark; Abraham, Charles; Lang, Iain A

    2016-07-01

    Many older people perceive ageing negatively, describing it in terms of poor or declining health and functioning. These perceptions may be related to older adults' health. The aim of this review was to synthesise existing research on the relationship between older adults' perceptions of ageing and their health and functioning. A systematic search was conducted of five electronic databases (ASSIA, CINAHL, IBSS, MEDLINE and PsycINFO). Citations within identified reports were also searched. Observational studies were included if they included perceptions of ageing and health-related measures involving participants aged 60 years and older. Study selection, data extraction and quality appraisal were conducted using predefined criteria. Twenty-eight reports met the criteria for inclusion. Older adults' perceptions of ageing were assessed with a variety of measures. Perceptions were related to health and functioning across seven health domains: memory and cognitive performance, physical and physiological performance, medical conditions and outcomes, disability, care-seeking, self-rated health, quality of life and death. How ageing is perceived by older adults is related to their health and functioning in multiple domains. However, higher quality and longitudinal studies are needed to further investigate this relationship. PMID:26527056

  4. Optical images of visible and invisible percepts in the primary visual cortex of primates

    PubMed Central

    Macknik, Stephen L.; Haglund, Michael M.

    1999-01-01

    We optically imaged a visual masking illusion in primary visual cortex (area V-1) of rhesus monkeys to ask whether activity in the early visual system more closely reflects the physical stimulus or the generated percept. Visual illusions can be a powerful way to address this question because they have the benefit of dissociating the stimulus from perception. We used an illusion in which a flickering target (a bar oriented in visual space) is rendered invisible by two counter-phase flickering bars, called masks, which flank and abut the target. The target and masks, when shown separately, each generated correlated activity on the surface of the cortex. During the illusory condition, however, optical signals generated in the cortex by the target disappeared although the image of the masks persisted. The optical image thus was correlated with perception but not with the physical stimulus. PMID:10611363

  5. The BAA Observers' Workshops: Imaging comets

    NASA Astrophysics Data System (ADS)

    Mobberley, M. P.

    2003-10-01

    Imaging comets, especially from the UK, used to be nothing less than a battle against the insensitivity of photographic film and the inevitable arrival of cloud on those crucial moon-free nights when a bright comet was close to perihelion. In recent years the situation has changed considerably. On the positive side modern CCDs are twenty times more light-sensitive than the best photographic emulsions, and image processing is far easier than messing around for hours with revolting chemicals in a darkroom. On the negative side the modern lives of working people leave little room for learning new skills and the stress of the modern working day leaves little enthusiasm for a night-time battle with clouds and unfriendly equipment. This author firmly believes that well-thought-out observatories and patient perseverance are the key to achieving success where imaging comets is concerned. Basically, anyone who has learned to use a computer can learn to take good comet images; it is all a question of surmounting the various hurdles in a systematic fashion.

  6. New Mexicans` images and perceptions of Los Alamos National Laboratory. Winter, 1992--1993

    SciTech Connect

    1993-01-01

    This report uses survey data to profile New Mexico residents` images and perceptions of Los Alamos National Laboratory (LANL). The survey results are the responses of a representative, stratified random sample of 992 New Mexico households to a set of questions asked in October, 1992. The data allow statistical inference to the general population`s responses to the same set of questions at the time the survey was administered. The results provide an overview of New Mexico residents` current images and perceptions of the Laboratory. The sample margin of error is plus or minus 3.5% at the 95% confidence level.

  7. Experimental imaging DOAS observations over Bremen

    NASA Astrophysics Data System (ADS)

    Peters, Enno; Ostendorf, Mareike; Meier, Andreas C.; Schönhardt, Anja; Wittrock, Folkard; Richter, Andreas; Burrows, John P.

    2015-04-01

    Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instruments are widely used for the detection of atmospheric trace gases. While current MAX-DOAS instruments are often capable to point in any direction (2D scanner) only one viewing direction can be applied at a time and therefore full hemispheric (i.e. vertical as well as horizontal) scans are not possible as they are much too time-consuming. In this work, measurements of an experimental imaging DOAS instrument are presented. The use of an imaging spectrometer together with a special entrance optic and fibre bundle (separating the entrance optic from the spectrometer) allows simultaneous measurements of 35 vertical viewing directions. In addition, the entrance optic was mounted on a pan-tilt-head that moved the whole optics in azimuthal direction. As a result, whole hemispheric scans were achieved in 0° to 45° elevation and 0° to 360° azimuth (in 10° steps). A full scan was achieved every 6 minutes which is much shorter than lifetimes of anthropogenic pollutants like NO2, therefore providing snapshots of atmospheric pollution scenarios. The experimental imaging DOAS instrument was installed on the rooftop of the IUP building at University of Bremen, Germany, for two complete days from sunrise to sunset in summer 2014. The temporal evolution of NO2 over Bremen during these days is presented as well as the identification of sources. The results of the imaging instrument are compared to those from a (routinely operated) MAX-DOAS instrument close by. Furthermore, slant columns of O4 are presented and compared to simulated O4 slant columns using the radiative transfer model SCIATRAN.

  8. Imaging radar polarization signatures - Theory and observation

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob J.; Zebker, Howard A.; Elachi, Charles

    1987-01-01

    Radar polarimetry theory is reviewed, and comparison between theory and experimental results obtained with an imaging radar polarimeter employing two orthogonally polarized antennas is made. Knowledge of the scattering matrix permits calculation of the scattering cross section of a scatterer for any transmit and receive polarization combination, and a new way of displaying the resulting scattering cross section as a function of polarization is introduced. Examples of polarization signatures are presented for several theoretical models of surface scattering, and these signatures are compared with experimentally measured polarization signatures. The coefficient of variation, derived from the polarization signature, may provide information regarding the amount of variation in scattering properties for a given area.

  9. Human perception of trademark images: implications for retrieval system design

    NASA Astrophysics Data System (ADS)

    Ren, Manling; Eakins, John P.; Briggs, Pamela

    2000-10-01

    A crucial aspect of shape similarity estimation is the identification of perceptually significant image elements. In order to understand more about the process of human segmentation of abstract images, a sample of 63 trademark images was shown to several groups of students in two experiments. Students were first presented with printed versions of a number of abstract trademark images, and invited to sketch their preferred segmentation of each image. A second group of students was then shown each image, plus its set of alternative segmentations, and invited to rank each alternative in order of preference. Our results suggest that most participants used a relatively small number of segmentation strategies, reflecting well-known psychological principles. Agreement between human image segmentations and those generated by the ARTISAN trademark retrieval system was quite limited; the most common causes of discrepancy were failure to handle texture and incorrect grouping of components into regions. Ways of improving ARTISAN's ability to model human segmentation behavior are discussed.

  10. Does nutritional status interfere with adolescents' body image perception?

    PubMed

    Mendonça, Karla L; Sousa, Ana L L; Carneiro, Carolina S; Nascente, Flávia M N; Póvoa, Thaís I R; Souza, Weimar K S B; Jardim, Thiago S V; Jardim, Paulo C B V

    2014-08-01

    Adolescents' body image (BI) may not match their nutritional status. This study selected representative sample of healthy adolescents aged between 12 and 18 from public and private schools. Anthropometric measures were performed in order to calculate the body mass index (BMI) percentile. The silhouette scale proposed by Childress was used to evaluate BI, making it possible to assess BI satisfaction and BI distortion. The sample was composed of 1168 adolescents with a mean age of 14.7 years; 52.9% were female, 50.9% were fair-skinned, 62.4% had consumed or still consume alcohol and 67% attended public school. Male adolescents presented more overweight and obesity (28.4%) (p<0.05) than the female (17.1%). It was observed that 69.4% were dissatisfied with BI, 91.1% of the obese and 69.8% of those with overweight wished to lose body weight and 82.5% of those underweight wished to gain body weight. BI distortion was identified, since 35% of the adolescents who were underweight did not regard themselves thin, 39.1% of the overweight individuals and 62.1% of the obese did not see themselves in their adequate classifications. Adolescents with overweight/obesity were those who presented higher dissatisfaction with BI, mainly the females. Male individuals presented a greater wish of gaining weight. BI distortion was present in adolescents of all classes of BMI percentile. PMID:25064308

  11. Exploring the Image Types of Secondary School Students' Perception about the Talented Person in Convergence

    NASA Astrophysics Data System (ADS)

    Lee, Jun-Ki; Chung, Duk Ho

    2014-05-01

    This study aims to identify the image types of secondary school students' perception about the talented person in convergence and to find the differences in drawing images of the talented person in convergence among the students who have taken STEAM class and the ones who haven't. One hundred and eighty seven students in middle and high schools located in the southern part of South Korea participated in this study and they were asked to draw a picture of the talented person in convergence with a brief explanation. Based on students' pictures, researchers categorized their perception about convergence and talented person in convergence by using an inductive method. The result indicated that secondary school students' perceptions were categorized into convergence as individual cognitive processing and collective cognitive processing and convergence as outcomes. The image of the convergence in a talented person leaning toward individual cognitive processing was divided into the following seven types: idea banker type, various talented celebrity type, multi-tasking master type, multi-talented career type, active problem-solver type, creative developer type, and unrealistic ideal man type. Another image of collective cognitive processing was split into expert group type and interactive-mates group type. The other image was transformer type which is the subcategory of convergence as outcomes. From this study, it can be suggested that secondary school students express the various images of the talented person in convergence depending on experiencing STEAM or not. Keywords: talented person in convergence, secondary school students, STEAM, image types

  12. An Amateur's Guide to Observing and Imaging the Heavens

    NASA Astrophysics Data System (ADS)

    Morison, Ian

    2014-06-01

    Foreword; Acknowledgments; Prologue: a tale of two scopes; 1. Telescope and observing fundamentals; 2. Refractors; 3. Binoculars and spotting scopes; 4. The Newtonian telescope and its derivatives; 5. The Cassegrain telescope and its derivatives - Schmidt-Cassegrains and Maksutovs; 6. Telescope maintenance, collimation and star testing; 7. Telescope accessories: finders, eyepieces and bino-viewers; 8. Telescope mounts: alt/az and equatorial with their computerised variants; 9. The art of visual observing; 10. Visual observations of the Moon and planets; 11. Imaging the Moon and planets with DSLRs and web-cams; 12. Observing and imaging the Sun in white light and H-alpha; 13. Observing with an astro-video camera to 'see' faint objects; 14. Deep sky imaging with standard and H-alpha modified DSLR cameras; 15. Deep sky imaging with cooled CCD cameras; 16. Auto-guiding techniques and equipment; 17. Spectral studies of the Sun, stars and galaxies; 18. Improving and enhancing images in Photoshop; Index.

  13. Eliciting Help Without Pity: The Effect of Changing Media Images on Perceptions of Disability.

    PubMed

    Kamenetsky, Stuart B; Dimakos, Christina; Aslemand, Asal; Saleh, Amani; Ali-Mohammed, Saamiyah

    2016-01-01

    This study investigated whether newer, more positive disability charity images can elicit helping behavior without producing pity. One hundred sixty-one university undergraduate students were presented with 35 older (1960-1990) and newer (1991-2010) disability charity images and completed a questionnaire about each image. Results indicate that overall, identification with depicted individuals was low; positive attitudes and perceptions of capabilities were moderate to high. Newer images led to more positive responses, but no significant difference in willingness to help. Eliciting pity through negative depictions of disability appears not to be a necessary precondition for eliciting helping behavior toward people with disabilities. PMID:26625190

  14. The social perception of emotional abilities: expanding what we know about observer ratings of emotional intelligence.

    PubMed

    Elfenbein, Hillary Anger; Barsade, Sigal G; Eisenkraft, Noah

    2015-02-01

    We examine the social perception of emotional intelligence (EI) through the use of observer ratings. Individuals frequently judge others' emotional abilities in real-world settings, yet we know little about the properties of such ratings. This article examines the social perception of EI and expands the evidence to evaluate its reliability and cross-judge agreement, as well as its convergent, divergent, and predictive validity. Three studies use real-world colleagues as observers and data from 2,521 participants. Results indicate significant consensus across observers about targets' EI, moderate but significant self-observer agreement, and modest but relatively consistent discriminant validity across the components of EI. Observer ratings significantly predicted interdependent task performance, even after controlling for numerous factors. Notably, predictive validity was greater for observer-rated than for self-rated or ability-tested EI. We discuss the minimal associations of observer ratings with ability-tested EI, study limitations, future directions, and practical implications. PMID:25664949

  15. The Influence of Television Images on Black Females' Self- Perceptions of Physical Attractiveness.

    ERIC Educational Resources Information Center

    Perkins, Karen R.

    1996-01-01

    Examines the role television images play in African American women's perceptions of their own physical attractiveness. The significance of physical attractiveness is discussed in relation to age, gender, and race. Several research questions are posed and suggestions are made that may assist parents, educators, and clinicians in prevention of…

  16. Body-Image Perceptions: Reliability of a BMI-Based Silhouette Matching Test

    ERIC Educational Resources Information Center

    Peterson, Michael; Ellenberg, Deborah; Crossan, Sarah

    2003-01-01

    Objective: To assess the reliability of a BMI-based Silhouette Matching Test (BMI-SMT). Methods: The perceptions of ideal and current body images of 215 ninth through twelfth graders' were assessed at 5 different schools within a mid-Atlantic state public school system. Results: Findings provided quantifiable data and discriminating measurements…

  17. Divergent Realities and Perceived Inequalities: Adolescents', Mothers', and Observers' Perceptions of Family Interactions and Adolescent Psychological Functioning.

    ERIC Educational Resources Information Center

    Welsh, Deborah P.; Galliher, Renee V.; Powers, Sally I.

    1998-01-01

    Used two approaches to examine mothers', adolescents', and observers' discrepancies in perceptions of family interaction in rural, working-class families. Results using the divergent-realities approach support a developmental lifespan perspective positing that developmental tasks influence perception. Results using perceived-inequalities approach…

  18. Asteroid (4179) Toutatis size determination via optical images observed by the Chang'e-2 probe

    NASA Astrophysics Data System (ADS)

    Liu, P.; Huang, J.; Zhao, W.; Wang, X.; Meng, L.; Tang, X.

    2014-07-01

    This work is a physical and statistical study of the asteroid (4179) Toutatis using the optical images obtained by a solar panel monitor of the Chang'e-2 probe on Dec. 13, 2012 [1]. In the imaging strategy, the camera is focused at infinity. This is specially designed for the probe with its solar panels monitor's principle axis pointing to the relative velocity direction of the probe and Toutatis. The imaging strategy provides a dedicated way to resolve the size by multi-frame optical images. The inherent features of the data are: (1) almost no rotation was recorded because of the 5.41-7.35 Earth-day rotation period and the small amount of elapsed imaging time, only minutes, make the object stay in the images in a fixed position and orientation; (2) the sharpness of the upper left boundary and the vagueness of lower right boundary resulting from the direction of SAP (Sun-Asteroid-Probe angle) cause a varying accuracy in locating points at different parts of Toutatis. A common view is that direct, accurate measurements of asteroid shapes, sizes, and pole positions are now possible for larger asteroids that can be spatially resolved using the Hubble Space Telescope or large ground-based telescopes equipped with adaptive optics. For a quite complex planetary/asteroid probe study, these measurements certainly need continuous validation via a variety of ways [2]. Based on engineering parameters of the probe during the fly-by, the target spatial resolving and measuring procedures are described in the paper. Results estimated are optical perceptible size on the flyby epoch under the solar phase angles during the imaging. It is found that the perceptible size measured using the optical observations and the size derived from the radar observations by Ostro et al.~in 1995 [3], are close to one another.

  19. Fourier Power Spectrum Characteristics of Face Photographs: Attractiveness Perception Depends on Low-Level Image Properties

    PubMed Central

    Langner, Oliver; Wiese, Holger; Redies, Christoph

    2015-01-01

    We investigated whether low-level processed image properties that are shared by natural scenes and artworks – but not veridical face photographs – affect the perception of facial attractiveness and age. Specifically, we considered the slope of the radially averaged Fourier power spectrum in a log-log plot. This slope is a measure of the distribution of special frequency power in an image. Images of natural scenes and artworks possess – compared to face images – a relatively shallow slope (i.e., increased high spatial frequency power). Since aesthetic perception might be based on the efficient processing of images with natural scene statistics, we assumed that the perception of facial attractiveness might also be affected by these properties. We calculated Fourier slope and other beauty-associated measurements in face images and correlated them with ratings of attractiveness and age of the depicted persons (Study 1). We found that Fourier slope – in contrast to the other tested image properties – did not predict attractiveness ratings when we controlled for age. In Study 2A, we overlaid face images with random-phase patterns with different statistics. Patterns with a slope similar to those in natural scenes and artworks resulted in lower attractiveness and higher age ratings. In Studies 2B and 2C, we directly manipulated the Fourier slope of face images and found that images with shallower slopes were rated as more attractive. Additionally, attractiveness of unaltered faces was affected by the Fourier slope of a random-phase background (Study 3). Faces in front of backgrounds with statistics similar to natural scenes and faces were rated as more attractive. We conclude that facial attractiveness ratings are affected by specific image properties. An explanation might be the efficient coding hypothesis. PMID:25835539

  20. Teacher Candidates' Perceptions of Scientists: Images and Attributes

    ERIC Educational Resources Information Center

    McCarthy, Deborah

    2015-01-01

    The masculine image of scientists as elderly men wearing white coats and glasses, working alone in the laboratory has been documented since the 1950s. Because it is important that teacher candidates have a scientifically literate image of scientists due to the impact they have on their future students, this investigation is salient. This study…

  1. A Novel Image Quality Assessment With Globally and Locally Consilient Visual Quality Perception.

    PubMed

    Bae, Sung-Ho; Kim, Munchurl

    2016-05-01

    Computational models for image quality assessment (IQA) have been developed by exploring effective features that are consistent with the characteristics of a human visual system (HVS) for visual quality perception. In this paper, we first reveal that many existing features used in computational IQA methods can hardly characterize visual quality perception for local image characteristics and various distortion types. To solve this problem, we propose a new IQA method, called the structural contrast-quality index (SC-QI), by adopting a structural contrast index (SCI), which can well characterize local and global visual quality perceptions for various image characteristics with structural-distortion types. In addition to SCI, we devise some other perceptually important features for our SC-QI that can effectively reflect the characteristics of HVS for contrast sensitivity and chrominance component variation. Furthermore, we develop a modified SC-QI, called structural contrast distortion metric (SC-DM), which inherits desirable mathematical properties of valid distance metricability and quasi-convexity. So, it can effectively be used as a distance metric for image quality optimization problems. Extensive experimental results show that both SC-QI and SC-DM can very well characterize the HVS's properties of visual quality perception for local image characteristics and various distortion types, which is a distinctive merit of our methods compared with other IQA methods. As a result, both SC-QI and SC-DM have better performances with a strong consilience of global and local visual quality perception as well as with much lower computation complexity, compared with the state-of-the-art IQA methods. The MATLAB source codes of the proposed SC-QI and SC-DM are publicly available online at https://sites.google.com/site/sunghobaecv/iqa. PMID:27046873

  2. Perception of race-related features modulates neural activity associated with action observation and imitation.

    PubMed

    Earls, Holly A; Englander, Zoë A; Morris, James P

    2013-05-29

    The present study examines whether race-specific features affect biological motion perception. Activation of the neural action observation and imitation network was measured using functional MRI. During scanning, individuals were asked to imitate and observe basic hand movements of own-race and other-race actors. Results indicate that three key areas often associated with action observation and imitation, the inferior parietal lobule, superior parietal lobule, and superior temporal sulcus, were more active when participants imitated and observed hand movements of own-race relative to other-race actors. These findings indicate that several regions associated with the neural imitation/observation network are sensitive to race-related features. PMID:23571693

  3. Body-image perceptions across sex and age groups.

    PubMed

    Cullari, S; Rohrer, J M; Bahm, C

    1998-12-01

    Weight dissatisfaction, body dissatisfaction, and body-image distortion measures were used with 98 fifth and eighth graders and 57 undergraduate students. Measures included the Piers-Harris Self-concept Scale and the Kids Eating Disorder Survey for the young children, the Interpersonal Behavior Survey, and a seven-item mistaken beliefs scale for the college sample. Body dissatisfaction and Body-image distortion were assessed with a figure-drawing procedure. Significant differences in both weight dissatisfaction and body dissatisfaction were found between males and females in the eighth grade and undergraduate groups. There were no significant sex differences in body-image distortion in the fifth or eighth grades, but significant differences in body-image distortion between men and women were found in the college sample. The direction of body-image distortion for both the 20 men and the 37 women was consistent with their ideal weight. In the college sample, there was a significant correlation between body-image dissatisfaction and self-confidence for the women but not for the men. PMID:9885045

  4. New developments in observer performance methodology in medical imaging.

    PubMed

    Chakraborty, Dev P

    2011-11-01

    A common task in medical imaging is assessing whether a new imaging system, or a variant of an existing one, is an improvement over an existing imaging technology. Imaging systems are generally quite complex, consisting of several components-for example, image acquisition hardware, image processing and display hardware and software, and image interpretation by radiologists- each of which can affect performance. Although it may appear odd to include the radiologist as a "component" of the imaging chain, because the radiologist's decision determines subsequent patient care, the effect of the human interpretation has to be included. Physical measurements such as modulation transfer function, signal-to-noise ratio, are useful for characterizing the nonhuman parts of the imaging chain under idealized and often unrealistic conditions, such as uniform background phantoms and target objects with sharp edges. Measuring the performance of the entire imaging chain, including the radiologist, and using real clinical images requires different methods that fall under the rubric of observer performance methods or "ROC" analysis, that involve collecting rating data on images. The purpose of this work is to review recent developments in this field, particularly with respect to the free-response method, where location information is also collected. PMID:21978444

  5. Task-dependent calibration of auditory spatial perception through environmental visual observation.

    PubMed

    Tonelli, Alessia; Brayda, Luca; Gori, Monica

    2015-01-01

    Visual information is paramount to space perception. Vision influences auditory space estimation. Many studies show that simultaneous visual and auditory cues improve precision of the final multisensory estimate. However, the amount or the temporal extent of visual information, that is sufficient to influence auditory perception, is still unknown. It is therefore interesting to know if vision can improve auditory precision through a short-term environmental observation preceding the audio task and whether this influence is task-specific or environment-specific or both. To test these issues we investigate possible improvements of acoustic precision with sighted blindfolded participants in two audio tasks [minimum audible angle (MAA) and space bisection] and two acoustically different environments (normal room and anechoic room). With respect to a baseline of auditory precision, we found an improvement of precision in the space bisection task but not in the MAA after the observation of a normal room. No improvement was found when performing the same task in an anechoic chamber. In addition, no difference was found between a condition of short environment observation and a condition of full vision during the whole experimental session. Our results suggest that even short-term environmental observation can calibrate auditory spatial performance. They also suggest that echoes can be the cue that underpins visual calibration. Echoes may mediate the transfer of information from the visual to the auditory system. PMID:26082692

  6. Drumlin fields and glaciated mountains - A contrast in geomorphic perception from Seasat radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1981-01-01

    Digitally correlated Seasat synthetic-aperture radar (SAR) images of the Alaska Range, Alaska, and the drumlin-drift belt in Ireland are analyzed for the perception and identification of geomorphic features. The two terrains display strongly contrasted types of glacial topography whose identification in each case is related to the geometry of the Seasat imaging radar. Identification of terrain shape and form is important within the caveats imposed by the intrinsic distortions on the radar images. Image texture serves coarsely to distinguish topography. Image tones are scene-dependent and do not uniquely identify specific targets. Extensive alignments of linear and curvilinear features provide some of the more important image information from which to make geologic interpretations in each case.

  7. Parallel and Serial Grouping of Image Elements in Visual Perception

    ERIC Educational Resources Information Center

    Houtkamp, Roos; Roelfsema, Pieter R.

    2010-01-01

    The visual system groups image elements that belong to an object and segregates them from other objects and the background. Important cues for this grouping process are the Gestalt criteria, and most theories propose that these are applied in parallel across the visual scene. Here, we find that Gestalt grouping can indeed occur in parallel in some…

  8. Investigating Image-Based Perception and Reasoning in Geometry

    ERIC Educational Resources Information Center

    Campbell, Stephen R.; Handscomb, Kerry; Zaparyniuk, Nicholas E.; Sha, Li; Cimen, O. Arda; Shipulina, Olga V.

    2009-01-01

    Geometry is required for many secondary school students, and is often learned, taught, and assessed more in a heuristic image-based manner, than as a formal axiomatic deductive system. Students are required to prove general theorems, but diagrams are usually used. It follows that understanding how students engage in perceiving and reasoning about…

  9. Black Perceptions and Red Images: Indian and Black Literary Links.

    ERIC Educational Resources Information Center

    Ellison, Mary

    1983-01-01

    Examines themes and images in Black and American Indian folklore and written literature. Suggests that in the literature of both cultures, there are common elements that reflect an affinity between the two groups, born out of similar cultural patterns and the common experience of being oppressed by a dominant race. (Author/MJL)

  10. Modelling Subjectivity in Visual Perception of Orientation for Image Retrieval.

    ERIC Educational Resources Information Center

    Sanchez, D.; Chamorro-Martinez, J.; Vila, M. A.

    2003-01-01

    Discussion of multimedia libraries and the need for storage, indexing, and retrieval techniques focuses on the combination of computer vision and data mining techniques to model high-level concepts for image retrieval based on perceptual features of the human visual system. Uses fuzzy set theory to measure users' assessments and to capture users'…

  11. The influence of image valence on visual attention and perception of risk in drivers.

    PubMed

    Jones, M P; Chapman, P; Bailey, K

    2014-12-01

    Currently there is little research into the relationship between emotion and driving in the context of advertising and distraction. Research that has looked into this also has methodological limitations that could be affecting the results rather than emotional processing (Trick et al., 2012). The current study investigated the relationship between image valence and risk perception, eye movements and physiological reactions. Participants watched hazard perception clips which had emotional images from the international affective picture system overlaid onto them. They rated how hazardous or safe they felt, whilst eye movements, galvanic skin response and heart rate were recorded. Results suggested that participants were more aware of potential hazards when a neutral image had been shown, in comparison to positive and negative valenced images; that is, participants showed higher subjective ratings of risk, larger physiological responses and marginally longer fixation durations when viewing a hazard after a neutral image, but this effect was attenuated after emotional images. It appears that emotional images reduce sensitivity to potential hazards, and we suggest that future studies could apply these findings to higher fidelity paradigms such as driving simulators. PMID:25265192

  12. Visual perception studies to improve the perceived sharpness of television images

    NASA Astrophysics Data System (ADS)

    Glenn, William E.

    2002-06-01

    In this paper several properties of visual perception are used to describe the perceived sharpness of present HDTV transmission and display formats. A method is described that uses these properties to improve perceived sharpness without increasing the transmission bit rate. Because of the oblique effect in vision and the statistical orientation of lines in scenes, diagonal sampling reduces the required number of pixels in an image. Quantitatively, our measurements show that the number of pixels is reduced by a factor of 1.4 for the same perceived sharpness. Interlaced scanning reduces vertical resolution for several reasons involving spatial and temporal masking effects in visual perception. Progressive scan avoids these limitations. In addition, by taking advantage of the octave-wide tuning bands in visual perception, our measurements show that the perceived resolution in the vertical direction for a progressive scan can be double that of an interlaced scan. By using diagonal sampling, a 1920X1080 image with progressive scan at 60 frames per second requires the same transmission bit rate as a 1920X1080 cardinally sampled image scanned interlaced at 30 frames per second. This results in an image that appears to be much sharper than the 1080 line interlaced format without the interlace artifacts.

  13. How musical expertise shapes speech perception: evidence from auditory classification images

    PubMed Central

    Varnet, Léo; Wang, Tianyun; Peter, Chloe; Meunier, Fanny; Hoen, Michel

    2015-01-01

    It is now well established that extensive musical training percolates to higher levels of cognition, such as speech processing. However, the lack of a precise technique to investigate the specific listening strategy involved in speech comprehension has made it difficult to determine how musicians’ higher performance in non-speech tasks contributes to their enhanced speech comprehension. The recently developed Auditory Classification Image approach reveals the precise time-frequency regions used by participants when performing phonemic categorizations in noise. Here we used this technique on 19 non-musicians and 19 professional musicians. We found that both groups used very similar listening strategies, but the musicians relied more heavily on the two main acoustic cues, at the first formant onset and at the onsets of the second and third formants onsets. Additionally, they responded more consistently to stimuli. These observations provide a direct visualization of auditory plasticity resulting from extensive musical training and shed light on the level of functional transfer between auditory processing and speech perception. PMID:26399909

  14. Spaceborne radar observations: A guide for Magellan radar-image analysis

    NASA Technical Reports Server (NTRS)

    Ford, J. P.; Blom, R. G.; Crisp, J. A.; Elachi, Charles; Farr, T. G.; Saunders, R. Stephen; Theilig, E. E.; Wall, S. D.; Yewell, S. B.

    1989-01-01

    Geologic analyses of spaceborne radar images of Earth are reviewed and summarized with respect to detecting, mapping, and interpreting impact craters, volcanic landforms, eolian and subsurface features, and tectonic landforms. Interpretations are illustrated mostly with Seasat synthetic aperture radar and shuttle-imaging-radar images. Analogies are drawn for the potential interpretation of radar images of Venus, with emphasis on the effects of variation in Magellan look angle with Venusian latitude. In each landform category, differences in feature perception and interpretive capability are related to variations in imaging geometry, spatial resolution, and wavelength of the imaging radar systems. Impact craters and other radially symmetrical features may show apparent bilateral symmetry parallel to the illumination vector at low look angles. The styles of eruption and the emplacement of major and minor volcanic constructs can be interpreted from morphological features observed in images. Radar responses that are governed by small-scale surface roughness may serve to distinguish flow types, but do not provide unambiguous information. Imaging of sand dunes is rigorously constrained by specific angular relations between the illumination vector and the orientation and angle of repose of the dune faces, but is independent of radar wavelength. With a single look angle, conditions that enable shallow subsurface imaging to occur do not provide the information necessary to determine whether the radar has recorded surface or subsurface features. The topographic linearity of many tectonic landforms is enhanced on images at regional and local scales, but the detection of structural detail is a strong function of illumination direction. Nontopographic tectonic lineaments may appear in response to contrasts in small-surface roughness or dielectric constant. The breakpoint for rough surfaces will vary by about 25 percent through the Magellan viewing geometries from low to high

  15. Altering Visual Perception Abnormalities: A Marker for Body Image Concern

    PubMed Central

    Duncum, Anna J. F.; Mundy, Matthew E.

    2016-01-01

    The body image concern (BIC) continuum ranges from a healthy and positive body image, to clinical diagnoses of abnormal body image, like body dysmorphic disorder (BDD). BDD and non-clinical, yet high-BIC participants have demonstrated a local visual processing bias, characterised by reduced inversion effects. To examine whether this bias is a potential marker of BDD, the visual processing of individuals across the entire BIC continuum was examined. Dysmorphic Concern Questionnaire (DCQ; quantified BIC) scores were expected to correlate with higher discrimination accuracy and faster reaction times of inverted stimuli, indicating reduced inversion effects (occurring due to increased local visual processing). Additionally, an induced global or local processing bias via Navon stimulus presentation was expected to alter these associations. Seventy-four participants completed the DCQ and upright-inverted face and body stimulus discrimination task. Moderate positive associations were revealed between DCQ scores and accuracy rates for inverted face and body stimuli, indicating a graded local bias accompanying increases in BIC. This relationship supports a local processing bias as a marker for BDD, which has significant assessment implications. Furthermore, a moderate negative relationship was found between DCQ score and inverted face accuracy after inducing global processing, indicating the processing bias can temporarily be reversed in high BIC individuals. Navon stimuli were successfully able to alter the visual processing of individuals across the BIC continuum, which has important implications for treating BDD. PMID:27003715

  16. Altering Visual Perception Abnormalities: A Marker for Body Image Concern.

    PubMed

    Beilharz, Francesca L; Atkins, Kelly J; Duncum, Anna J F; Mundy, Matthew E

    2016-01-01

    The body image concern (BIC) continuum ranges from a healthy and positive body image, to clinical diagnoses of abnormal body image, like body dysmorphic disorder (BDD). BDD and non-clinical, yet high-BIC participants have demonstrated a local visual processing bias, characterised by reduced inversion effects. To examine whether this bias is a potential marker of BDD, the visual processing of individuals across the entire BIC continuum was examined. Dysmorphic Concern Questionnaire (DCQ; quantified BIC) scores were expected to correlate with higher discrimination accuracy and faster reaction times of inverted stimuli, indicating reduced inversion effects (occurring due to increased local visual processing). Additionally, an induced global or local processing bias via Navon stimulus presentation was expected to alter these associations. Seventy-four participants completed the DCQ and upright-inverted face and body stimulus discrimination task. Moderate positive associations were revealed between DCQ scores and accuracy rates for inverted face and body stimuli, indicating a graded local bias accompanying increases in BIC. This relationship supports a local processing bias as a marker for BDD, which has significant assessment implications. Furthermore, a moderate negative relationship was found between DCQ score and inverted face accuracy after inducing global processing, indicating the processing bias can temporarily be reversed in high BIC individuals. Navon stimuli were successfully able to alter the visual processing of individuals across the BIC continuum, which has important implications for treating BDD. PMID:27003715

  17. Fractal image perception provides novel insights into hierarchical cognition.

    PubMed

    Martins, M J; Fischmeister, F P; Puig-Waldmüller, E; Oh, J; Geissler, A; Robinson, S; Fitch, W T; Beisteiner, R

    2014-08-01

    Hierarchical structures play a central role in many aspects of human cognition, prominently including both language and music. In this study we addressed hierarchy in the visual domain, using a novel paradigm based on fractal images. Fractals are self-similar patterns generated by repeating the same simple rule at multiple hierarchical levels. Our hypothesis was that the brain uses different resources for processing hierarchies depending on whether it applies a "fractal" or a "non-fractal" cognitive strategy. We analyzed the neural circuits activated by these complex hierarchical patterns in an event-related fMRI study of 40 healthy subjects. Brain activation was compared across three different tasks: a similarity task, and two hierarchical tasks in which subjects were asked to recognize the repetition of a rule operating transformations either within an existing hierarchical level, or generating new hierarchical levels. Similar hierarchical images were generated by both rules and target images were identical. We found that when processing visual hierarchies, engagement in both hierarchical tasks activated the visual dorsal stream (occipito-parietal cortex, intraparietal sulcus and dorsolateral prefrontal cortex). In addition, the level-generating task specifically activated circuits related to the integration of spatial and categorical information, and with the integration of items in contexts (posterior cingulate cortex, retrosplenial cortex, and medial, ventral and anterior regions of temporal cortex). These findings provide interesting new clues about the cognitive mechanisms involved in the generation of new hierarchical levels as required for fractals. PMID:24699014

  18. Visual perception and stereoscopic imaging: an artist's perspective

    NASA Astrophysics Data System (ADS)

    Mason, Steve

    2015-03-01

    This paper continues my 2014 February IS and T/SPIE Convention exploration into the relationship of stereoscopic vision and consciousness (90141F-1). It was proposed then that by using stereoscopic imaging people may consciously experience, or see, what they are viewing and thereby help make them more aware of the way their brains manage and interpret visual information. Environmental imaging was suggested as a way to accomplish this. This paper is the result of further investigation, research, and follow-up imaging. A show of images, that is a result of this research, allows viewers to experience for themselves the effects of stereoscopy on consciousness. Creating dye-infused aluminum prints while employing ChromaDepth® 3D glasses, I hope to not only raise awareness of visual processing but also explore the differences and similarities between the artist and scientist―art increases right brain spatial consciousness, not only empirical thinking, while furthering the viewer's cognizance of the process of seeing. The artist must abandon preconceptions and expectations, despite what the evidence and experience may indicate in order to see what is happening in his work and to allow it to develop in ways he/she could never anticipate. This process is then revealed to the viewer in a show of work. It is in the experiencing, not just from the thinking, where insight is achieved. Directing the viewer's awareness during the experience using stereoscopic imaging allows for further understanding of the brain's function in the visual process. A cognitive transformation occurs, the preverbal "left/right brain shift," in order for viewers to "see" the space. Using what we know from recent brain research, these images will draw from certain parts of the brain when viewed in two dimensions and different ones when viewed stereoscopically, a shift, if one is looking for it, which is quite noticeable. People who have experienced these images in the context of examining their own

  19. Teacher Perceptions about Observation Conferences: What Do Teachers Think about Their Formative Supervision in One US School District?

    ERIC Educational Resources Information Center

    Range, Bret G.; Young, Suzie; Hvidston, David

    2013-01-01

    This study measured teachers' perceptions about the important elements of the pre- and post-observation conferences within one school district in a US state. Overall, respondents valued the post-observation conference more than the pre-observation conference and identified trusting relationships, constructive feedback, reflection and areas of…

  20. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images

    PubMed Central

    Levenson, Richard M.; Krupinski, Elizabeth A.; Navarro, Victor M.; Wasserman, Edward A.

    2015-01-01

    Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)—which share many visual system properties with humans—can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds’ histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task—namely, classification of suspicious mammographic densities (masses)—the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds’ successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools. PMID:26581091

  1. Pigeons (Columba livia) as Trainable Observers of Pathology and Radiology Breast Cancer Images.

    PubMed

    Levenson, Richard M; Krupinski, Elizabeth A; Navarro, Victor M; Wasserman, Edward A

    2015-01-01

    Pathologists and radiologists spend years acquiring and refining their medically essential visual skills, so it is of considerable interest to understand how this process actually unfolds and what image features and properties are critical for accurate diagnostic performance. Key insights into human behavioral tasks can often be obtained by using appropriate animal models. We report here that pigeons (Columba livia)-which share many visual system properties with humans-can serve as promising surrogate observers of medical images, a capability not previously documented. The birds proved to have a remarkable ability to distinguish benign from malignant human breast histopathology after training with differential food reinforcement; even more importantly, the pigeons were able to generalize what they had learned when confronted with novel image sets. The birds' histological accuracy, like that of humans, was modestly affected by the presence or absence of color as well as by degrees of image compression, but these impacts could be ameliorated with further training. Turning to radiology, the birds proved to be similarly capable of detecting cancer-relevant microcalcifications on mammogram images. However, when given a different (and for humans quite difficult) task-namely, classification of suspicious mammographic densities (masses)-the pigeons proved to be capable only of image memorization and were unable to successfully generalize when shown novel examples. The birds' successes and difficulties suggest that pigeons are well-suited to help us better understand human medical image perception, and may also prove useful in performance assessment and development of medical imaging hardware, image processing, and image analysis tools. PMID:26581091

  2. Digital image correlation of bone sequential microscopic observations.

    PubMed

    Budyn, Elisa; Jonvaux, Julien; Hoc, Thierry

    2012-08-01

    A method of image correlation is presented to study sequential microscopic observations of human Haversian cortical bone. Imaging biological tissues is sometimes challenging owing to their complex microstructures in particular when microcracks appear. Bone microfractures can be studied in micro compression tests where the progressive growth of small cracks is imaged by light microscopy. The two-dimensional displacement field on the sample surface is then tracked by various digital image correlation methods based on cross-correlation formulation. Because of the potential high number of sequential observations, the method calculates the displacements at given growth steps obtained either by direct comparison of the studied step and the undeformed initial state, called 'direct correlation', or by iterative comparisons of successive pairs of observations, called 'gradual correlation'. In the gradual procedure, two cases are studied, referred to as 'invariant gradual correlation' and 'varying gradual correlation', when the correlation domain is transferred till the last observation or reinitialised for each image pairs. As bone is highly heterogeneous, two types of correlation procedures are considered with or without domain partition (WDP or WODP) delimiting material and strong discontinuities. The precision of the methods is specifically evaluated for experimental observations. PMID:25099565

  3. Top-down influences on ambiguous perception: the role of stable and transient states of the observer

    PubMed Central

    Scocchia, Lisa; Valsecchi, Matteo; Triesch, Jochen

    2014-01-01

    The world as it appears to the viewer is the result of a complex process of inference performed by the brain. The validity of this apparently counter-intuitive assertion becomes evident whenever we face noisy, feeble or ambiguous visual stimulation: in these conditions, the state of the observer may play a decisive role in determining what is currently perceived. On this background, ambiguous perception and its amenability to top-down influences can be employed as an empirical paradigm to explore the principles of perception. Here we offer an overview of both classical and recent contributions on how stable and transient states of the observer can impact ambiguous perception. As to the influence of the stable states of the observer, we show that what is currently perceived can be influenced (1) by cognitive and affective aspects, such as meaning, prior knowledge, motivation, and emotional content and (2) by individual differences, such as gender, handedness, genetic inheritance, clinical conditions, and personality traits and by (3) learning and conditioning. As to the impact of transient states of the observer, we outline the effects of (4) attention and (5) voluntary control, which have attracted much empirical work along the history of ambiguous perception. In the huge literature on the topic we trace a difference between the observer's ability to control dominance (i.e., the maintenance of a specific percept in visual awareness) and reversal rate (i.e., the switching between two alternative percepts). Other transient states of the observer that have more recently drawn researchers' attention regard (6) the effects of imagery and visual working memory. (7) Furthermore, we describe the transient effects of prior history of perceptual dominance. (8) Finally, we address the currently available computational models of ambiguous perception and how they can take into account the crucial share played by the state of the observer in perceiving ambiguous displays. PMID

  4. Patient Perceptions of Participating in the RSNA Image Share Project: a Preliminary Study.

    PubMed

    Hiremath, Atheeth; Awan, Omer; Mendelson, David; Siegel, Eliot L

    2016-04-01

    The purpose of this study was to gauge patient perceptions of the RSNA Image Share Project (ISP), a pilot program that provides patients access to their imaging studies online via secure Personal Health Record (PHR) accounts. Two separate Institutional Review Board exempted surveys were distributed to patients depending on whether they decided to enroll or opt out of enrollment in the ISP. For patients that enrolled, a survey gauged baseline computer usage, perceptions of online access to images through the ISP, effect of patient access to images on patient-physician relationships, and interest in alternative use of images. The other survey documented the age and reasons for declining participation for those that opted out of enrolling in the ISP. Out of 564 patients, 470 enrolled in the ISP (83 % participation rate) and 456 of these 470 individuals completed the survey for a survey participation rate of 97 %. Patients who enrolled overwhelmingly perceived access to online images as beneficial and felt it bolstered their patient-physician relationship. Out of 564 patients, 94 declined enrollment in the ISP and all 94 individuals completed the survey for a survey participation rate of 100 %. Patients who declined to participate in the ISP cited unreliable access to Internet and existing availability of non-web-based intra-network images to their physicians. Patients who participated in the ISP found having a measure of control over their images to be beneficial and felt that patient-physician relationships could be negatively affected by challenges related to image accessibility. PMID:26452494

  5. Preliminary observations from the Auroral and Ionospheric Remote Sensing imager

    NASA Astrophysics Data System (ADS)

    Meng, Ching I.; Huffman, Robert E.

    1987-09-01

    The scientific objectives and the instrumentation of the Polar BEAR's Auroral and Ionospheric Remote Sensing (AIRS) experiment are described together with the techniques employed for global imaging and the results of preliminary observations. The AIRS four-color imager covers selected wavelengths in the visible/near UV and vacuum UV (VUV) ranges. The AIRS experiment also has advantages of narrow 3.0-nm VUV bandpath imaging, not possible with the use of interference filters, and of three alternative modes of operation (imaging, spectrometer, or photometer), possible by controlling the scan mirror and the spectrometer gridding motor. Because of the satellite's high altitude (about 1000 km), most of the auroral oval can be imaged.

  6. Assessment of scanning model observers with hybrid SPECT images

    NASA Astrophysics Data System (ADS)

    Gifford, H. C.; Pretorius, P. H.; King, M. A.

    2008-03-01

    The purpose of this work was to test procedures for applying scanning model observers in order to predict human-observer lesion-detection performance with hybrid images. Hybrid images consist of clinical backgrounds with simulated abnormalities. The basis for this investigation was detection and localization of solitary pulmonary nodules (SPN) in SPECT lung images, and our overall goal has been to determine the extent to which detection of SPN could be improved by proper modeling of the acquisition physics during the iterative reconstruction process. Towards this end, we conducted human-observer localization ROC (LROC) studies to optimize the number of iterations and the postfiltering of four rescaled block-iterative (RBI) reconstruction strategies with various combinations of attenuation correction (AC), scatter correction (SC), and system-resolution correction (RC). This observer data was then used to evaluate a scanning channelized nonprewhitening model observer. A standard "background-known-exactly" (BKE) task formulation overstated the prior knowledge and training that human observers had about the hybrid images. Results from a quasi-BKE task that preserved some degree of structural noise in the detection task demonstrated better agreement with the humans.

  7. Application of MCM image construction to IRAS comet observations

    NASA Technical Reports Server (NTRS)

    Schlapfer, Martin F.; Walker, Russell G.

    1994-01-01

    There is a wealth of IRAS comet data, obtained in both the survey and pointed observations modes. However, these measurements have remained largely untouched due to difficulties in removing instrumental effects from the data. We have developed a version of the Maximum Correlation Method for Image Construction algorithm (MCM) which operates in the moving coordinate system of the comet and properly treats both real cometary motion and apparent motion due to spacecraft parallax. This algorithm has been implemented on a 486/33 PC in FORTRAN and IDL codes. Preprocessing of the IRAS CRDD includes baseline removal, deglitching, and removal of long tails due to dielectric time constants of the detectors. The resulting images are virtually free from instrumental effects and have the highest possible spatial resolution consistent with the data sampling. We present examples of high resolution IRAS images constructed from survey observations of Comets P/Tempel 1 and P/Tempel 2, and pointed observations of IRAS-Araki-Alcock.

  8. Lightness perception in simple images: Testing the anchoring rules

    PubMed Central

    Radonjić, Ana; Gilchrist, Alan L.

    2014-01-01

    One approach toward understanding how vision computes surface lightness is to first determine what principles govern lightness in simple stimuli and then test whether these hold for more complex stimuli. Gilchrist (2006) proposed that in the simplest images that produce the experience of a surface (two surfaces differing in luminance that fill the entire visual field) lightness can be predicted based on two anchoring rules: the highest luminance rule and the area rule, plus a scale normalization. To test whether these anchoring rules hold when critical features of the stimuli are varied, we probed lightness in simple stimuli, painted onto the inside of hemispheric domes viewed under diffuse lighting. We find that although the highest luminance surface appears nearly white across a large variation in illumination (as predicted by the highest luminance rule), its lightness tends to increase as its luminance increases. This effect is small relative to the size of the overall luminance change. Further, we find that when the darker region fills more than half of the visual field, it appears to lighten with further increases in area but only if it is a single surface. Splitting the dark region into smaller sectors that cover an equal cumulative area diminishes or eliminates the area effect. PMID:25424860

  9. The perception-action dynamics of action competency are altered by both physical and observational training.

    PubMed

    Buchanan, John J; Ramos, Jorge; Robson, Nina

    2015-04-01

    Action competency is defined as the ability of an individual to self-evaluate their own performance capabilities. The current experiment demonstrated that physical and observational training with a motor skill alters action competency ratings in a similar manner. Using a pre-test and post-test protocol, the results revealed that action competency is constrained prior to training by the intrinsic dynamics of relative phase (ϕ), with in-phase (ϕ = 0°) and anti-phase (ϕ = 180°) patterns receiving higher competency ratings than other relative phase patterns. After 2 days of training, action competency ratings for two trained relative phase patterns, +60° and +120°, increased following physical practice or observational practice. A transfer test revealed that both physical performance ability and action competency ability transferred to the symmetry partners (-60° and -120°) of the two trained relative phase patterns following physical or observational training. The findings also revealed that relative motion direction acts as categorical information that helps to organize action production and facilitate action competency. The results are interpreted based on the coordination dynamics theory of perception-action coupling, and extend this theory by showing that visual perception, action production, and action competency are all constrained in a consistent manner by the dynamics of the order parameter relative phase. As a whole, the findings revealed that relative motion, relative phase, and possibly relative amplitude information are all distinct sources of information that contribute to the emergence of a kinematic understanding of action in the nervous system. PMID:25618008

  10. Observation of image pair creation and annihilation from superluminal scattering sources.

    PubMed

    Clerici, Matteo; Spalding, Gabriel C; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-04-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena. PMID:27152347

  11. Observation of image pair creation and annihilation from superluminal scattering sources

    PubMed Central

    Clerici, Matteo; Spalding, Gabriel C.; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M.; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-01-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena. PMID:27152347

  12. Brain imaging reveals neuronal circuitry underlying the crow's perception of human faces.

    PubMed

    Marzluff, John M; Miyaoka, Robert; Minoshima, Satoshi; Cross, Donna J

    2012-09-25

    Crows pay close attention to people and can remember specific faces for several years after a single encounter. In mammals, including humans, faces are evaluated by an integrated neural system involving the sensory cortex, limbic system, and striatum. Here we test the hypothesis that birds use a similar system by providing an imaging analysis of an awake, wild animal's brain as it performs an adaptive, complex cognitive task. We show that in vivo imaging of crow brain activity during exposure to familiar human faces previously associated with either capture (threatening) or caretaking (caring) activated several brain regions that allow birds to discriminate, associate, and remember visual stimuli, including the rostral hyperpallium, nidopallium, mesopallium, and lateral striatum. Perception of threatening faces activated circuitry including amygdalar, thalamic, and brainstem regions, known in humans and other vertebrates to be related to emotion, motivation, and conditioned fear learning. In contrast, perception of caring faces activated motivation and striatal regions. In our experiments and in nature, when perceiving a threatening face, crows froze and fixed their gaze (decreased blink rate), which was associated with activation of brain regions known in birds to regulate perception, attention, fear, and escape behavior. These findings indicate that, similar to humans, crows use sophisticated visual sensory systems to recognize faces and modulate behavioral responses by integrating visual information with expectation and emotion. Our approach has wide applicability and potential to improve our understanding of the neural basis for animal behavior. PMID:22984177

  13. On Alternative Approaches to 3D Image Perception: Monoscopic 3D Techniques

    NASA Astrophysics Data System (ADS)

    Blundell, Barry G.

    2015-06-01

    In the eighteenth century, techniques that enabled a strong sense of 3D perception to be experienced without recourse to binocular disparities (arising from the spatial separation of the eyes) underpinned the first significant commercial sales of 3D viewing devices and associated content. However following the advent of stereoscopic techniques in the nineteenth century, 3D image depiction has become inextricably linked to binocular parallax and outside the vision science and arts communities relatively little attention has been directed towards earlier approaches. Here we introduce relevant concepts and terminology and consider a number of techniques and optical devices that enable 3D perception to be experienced on the basis of planar images rendered from a single vantage point. Subsequently we allude to possible mechanisms for non-binocular parallax based 3D perception. Particular attention is given to reviewing areas likely to be thought-provoking to those involved in 3D display development, spatial visualization, HCI, and other related areas of interdisciplinary research.

  14. Stellar Source Selections for Image Validation of Earth Observation Satellite

    NASA Astrophysics Data System (ADS)

    Yu, Jiwoong; Park, Sang-Young; Lim, Dongwook; Lee, Dong-Han; Sohn, Young-Jong

    2011-12-01

    A method of stellar source selection for validating the quality of image is investigated for a low Earth orbit optical remote sensing satellite. Image performance of the optical payload needs to be validated after its launch into orbit. The stellar sources are ideal source points that can be used to validate the quality of optical images. For the image validation, stellar sources should be the brightest as possible in the charge-coupled device dynamic range. The time delayed and integration technique, which is used to observe the ground, is also performed to observe the selected stars. The relations between the incident radiance at aperture and V magnitude of a star are established using Gunn & Stryker's star catalogue of spectrum. Applying this result, an appropriate image performance index is determined, and suitable stars and areas of the sky scene are selected for the optical payload on a remote sensing satellite to observe. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit.

  15. Weight status and perception of body image in children: the effect of maternal immigrant status

    PubMed Central

    2012-01-01

    Background Recent studies have shown that body image perception is an important factor in weight control and may be influenced by culture and ethnicity. The aim of the present study was to assess the relationship between immigrant status of the mother and weight status and body image perception of the child. Methods In total, 2706 schoolchildren (1405 boys and 1301 girls) aged 8–9 years and their mothers participated in a cross-sectional survey in Emilia-Romagna region (northern Italy). Weight and height of the children were measured and Body Mass Index (BMI) was calculated. Actual and ideal body image perception by the children and by the mothers with respect to their children was evaluated according to Collins’ body image silhouettes. Results The BMI values were significantly lower in children of immigrants than in children of Italian mothers (F:17.27 vs 17.99 kg/m2; M:17.77 vs 18.13 kg/m2). The prevalence of overweight/obesity was lower, and the prevalence of underweight higher, in children of immigrant mothers than in those of Italian mothers (overweight- F:21.3 vs 29.1%; M. 28.3 vs 31.4%; underweight- F:5.16 vs 3.84%; M:6.63 vs 2.82%). The children's body image perception was consistent with the differing pattern of nutritional status. In the comparison between actual and ideal figures, the Feel-Ideal Difference Index (FID) scores resulted different between the subsample with foreign-born mother in comparison to the native one (significantly lower in daughters of immigrants) (FID- F: 0.31 vs 0.57; M: 0.35 vs 0.32). There were significant differences in the choice of the ideal figure of the child between immigrant mothers and Italian mothers (FID- F: -0.05 vs 0.19; M: -0.35 vs −0.03): the ideal figure values were higher in the immigrant mothers of male children and lower in the Italian mothers of female children. Conclusion Our results suggest that cultural and behavioral factors linked to ethnicity play an important role in the nutritional status of

  16. Exploring students' perceptions and performance on predict-observe-explain tasks in high school chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Vadapally, Praveen

    This study sought to understand the impact of gender and reasoning level on students' perceptions and performances of Predict-Observe-Explain (POE) laboratory tasks in a high school chemistry laboratory. Several literature reviews have reported that students at all levels have not developed the specific knowledge and skills that were expected from their laboratory work. Studies conducted over the last several decades have found that boys tend to be more successful than girls in science and mathematics courses. However, some recent studies have suggested that girls may be reducing this gender gap. This gender difference is the focal point of this research study, which was conducted at a mid-western, rural high school. The participants were 24 boys and 25 girls enrolled in two physical science classes taught by the same teacher. In this mixed methods study, qualitative and quantitative methods were implemented simultaneously over the entire period of the study. MANOVA statistics revealed significant effects due to gender and level of reasoning on the outcome variables, which were POE performances and perceptions of the chemistry laboratory environment. There were no significant interactions between these effects. For the qualitative method, IRB-approved information was collected, coded, grouped, and analyzed. This method was used to derive themes from students' responses on questionnaires and semi-structured interviews. Students with different levels of reasoning and gender were interviewed, and many of them expressed positive themes, which was a clear indication that they had enjoyed participating in the POE learning tasks and they had developed positive perceptions towards POE inquiry laboratory learning environment. When students are capable of formal reasoning, they can use an abstract scientific concept effectively and then relate it to the ideas they generate in their minds. Thus, instructors should factor the nature of students' thinking abilities into their

  17. Quality of life for our patients: how media images and messages: influence their perceptions.

    PubMed

    Carr, Ellen R

    2008-02-01

    Media messages and images shape patients' perceptions about quality of life (QOL) through various "old" media-literature, film, television, and music-and so-called "new" media-the Internet, e-mail, blogs, and cell phones. In this article, the author provides a brief overview of QOL from the academic perspectives of nursing, psychology, behavioral medicine, multicultural studies, and consumer marketing. Selected theories about mass communication are discussed, as well as new technologies and their impact on QOL in our society. Examples of media messages about QOL and the QOL experience reported by patients with cancer include an excerpt from the Canadian Broadcasting Corporation radio interview with author Carol Shields, the 60 Minutes television interview focusing on Elizabeth Edwards (wife of presidential candidate John Edwards), and an excerpt from the 1994 filmThe Shawshank Redemption. Nurses are challenged to think about how they and their patients develop their perceptions about QOL through the media. PMID:18258574

  18. Document region classification using low-resolution images: a human visual perception approach

    NASA Astrophysics Data System (ADS)

    Chacon Murguia, Mario I.; Jordan, Jay B.

    1999-10-01

    This paper describes the design of a document region classifier. The regions of a document are classified as large text regions, LTR, and non-LTR. The foundations of the classifier are derived from human visual perception theories. The theories analyzed are texture discrimination based on textons, and perceptual grouping. Based on these theories, the classification task is stated as a texture discrimination problem and is implemented as a preattentive process. Once the foundations of the classifier are defined, engineering techniques are developed to extract features for deciding the class of information contained in the regions. The feature derived from the human visual perception theories is a measurement of periodicity of the blobs of the text regions. This feature is used to design a statistical classifier based on the minimum probability of error criterion to perform the classification of LTR and non-LTR. The method is test on free format low resolution document images achieving 93% of correct recognition.

  19. A toolbox and sample object perception data for equalization of natural images.

    PubMed

    Bainbridge, Wilma A; Oliva, Aude

    2015-12-01

    For psychologists and neuroscientists, careful selection of their stimuli is essential, so that low-level visual features such as color or spatial frequency do not serve as confounds between conditions of interest. Here, we detail the Natural Image Statistical Toolbox, which allows scientists to measure, visualize, and control stimulus sets along a set of low-level visual properties. Additionally, we provide a set of object images varying along several perceptual object properties, including physical size and interaction envelope size (i.e., the space around an object transversed during an interaction), serving as a test-bed for the Natural Image Statistical Toolbox. This stimulus set is also a highly characterized set useful to psychology and neuroscience studies on object perception. PMID:26693521

  20. A toolbox and sample object perception data for equalization of natural images

    PubMed Central

    Bainbridge, Wilma A.; Oliva, Aude

    2015-01-01

    For psychologists and neuroscientists, careful selection of their stimuli is essential, so that low-level visual features such as color or spatial frequency do not serve as confounds between conditions of interest. Here, we detail the Natural Image Statistical Toolbox, which allows scientists to measure, visualize, and control stimulus sets along a set of low-level visual properties. Additionally, we provide a set of object images varying along several perceptual object properties, including physical size and interaction envelope size (i.e., the space around an object transversed during an interaction), serving as a test-bed for the Natural Image Statistical Toolbox. This stimulus set is also a highly characterized set useful to psychology and neuroscience studies on object perception. PMID:26693521

  1. What do you think of my picture? Investigating factors of influence in profile images context perception

    NASA Astrophysics Data System (ADS)

    Mazza, F.; Da Silva, M. P.; Le Callet, P.; Heynderickx, I. E. J.

    2015-03-01

    Multimedia quality assessment has been an important research topic during the last decades. The original focus on artifact visibility has been extended during the years to aspects as image aesthetics, interestingness and memorability. More recently, Fedorovskaya proposed the concept of 'image psychology': this concept focuses on additional quality dimensions related to human content processing. While these additional dimensions are very valuable in understanding preferences, it is very hard to define, isolate and measure their effect on quality. In this paper we continue our research on face pictures investigating which image factors influence context perception. We collected perceived fit of a set of images to various content categories. These categories were selected based on current typologies in social networks. Logistic regression was adopted to model category fit based on images features. In this model we used both low level and high level features, the latter focusing on complex features related to image content. In order to extract these high level features, we relied on crowdsourcing, since computer vision algorithms are not yet sufficiently accurate for the features we needed. Our results underline the importance of some high level content features, e.g. the dress of the portrayed person and scene setting, in categorizing image.

  2. Field observations using an AOTF polarimetric imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Hamilton, Mike; Mahoney, Colin; Reyes, George

    1993-01-01

    This paper reports preliminary results of recent field observations using a prototype acousto-optic tunable filter (AOTF) polarimetric imaging spectrometer. The data illustrate application potentials for geoscience. The operation principle of this instrument is different from that of current airborne multispectral imaging instruments, such as AVIRIS. The AOTF instrument takes two orthogonally polarized images at a desired wavelength at one time, whereas AVIRIS takes a spectrum over a predetermined wavelength range at one pixel at a time and the image is constructed later. AVIRIS does not have any polarization measuring capability. The AOTF instrument could be a complement tool to AVIRIS. Polarization measurement is a desired capability for many applications in remote sensing. It is well know that natural light is often polarized due to various scattering phenomena in the atmosphere. Also, scattered light from canopies is reported to have a polarized component. To characterize objects of interest correctly requires a remote sensing imaging spectrometer capable of measuring object signal and background radiation in both intensity and polarization so that the characteristics of the object can be determined. The AORF instrument has the capability to do so. The AOTF instrument has other unique properties. For example, it can provide spectral images immediately after the observation. The instrument can also allow observations to be tailored in real time to perform the desired experiments and to collect only required data. Consequently, the performance in each mission can be increased with minimal resources. The prototype instrument was completed in the beginning of this year. A number of outdoor field experiments were performed with the objective to evaluate the capability of this new technology for remote sensing applications and to determine issues for further improvements.

  3. Patient perception of pain vs. observed pain behavior during a standardized electrodiagnostic test

    PubMed Central

    Verson, Josh; Haig, Andrew J.; Sandella, Danielle; Yamakawa, Karen S.J.; London, Zachary; Tomkins-Lane, Christy

    2014-01-01

    Introduction Clinicians often assume that observations of pain behavior are adequate for assessment of patient pain perception during procedures. This has not been tested during a standardized electrodiagnostic experience. Methods During a prospective trial including extensive, standardized electrodiagnostic testing on persons with lumbar stenosis, vascular claudication, and asymptomatic volunteers, the subjects and an observer rated levels of pain. Results In 60 subjects, observers significantly under-rated pain (Visual analog scale 3.17 ± 2.23 vs. 4.38 ± 2.01, t = -4.577, df = 59, P < 0.001). Perceived pain during testing related to bodily pain as measured by the visual analog scale, McGill, Pain Disability, and Quebec scales, but not age, duration of symptoms, Tampa kinesiphobia, Center for Epidemiological Studies Depression scale, or SF-36 health quality of life. Discussion Persons with worse pain syndromes may perceive more pain during testing than others. Clinicians and researchers need to understand that patients may have more pain than they recognize. PMID:24895249

  4. Space Telescope Imaging Spectrograph Coronagraphic Observations of β Pictoris

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; Lindler, Don J.; Lanz, Thierry M.; Cornett, Robert H.; Hubeny, Ivan; Maran, S. P.; Woodgate, Bruce

    2000-08-01

    We present new coronagraphic images of β Pictoris obtained with the Space Telescope Imaging Spectrograph (STIS) in 1997 September. The high-resolution images (0.1") clearly detect the circumstellar disk as close to the star as 0.75", corresponding to a projected radius of 15 AU. The images define the warp in the disk with greater precision and at closer radii to β Pic than do previous observations. They show that the warp can be modeled by the projection of two components: the main disk and a fainter component, which is inclined to the main component by 4°-5° and extends only as far as ~4" from the star. We interpret the main component as arising primarily in the outer disk and the tilted component as defining the inner region of the disk. The observed properties of the warped inner disk are inconsistent with a driving force from stellar radiation. However, warping induced by the gravitational potential of one or more planets is consistent with the data. Using models of planet-warped disks constructed by Larwood & Papaloizou, we derive possible masses of the perturbing object. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  5. Automated detection of meteors in observed image sequence

    NASA Astrophysics Data System (ADS)

    Šimberová, Stanislava; Suk, Tomáš

    2015-12-01

    We propose a new detection technique based on statistical characteristics of images in the video sequence. These characteristics displayed in time enable to catch any bright track during the whole sequence. We applied our method to the image datacubes that are created from camera pictures of the night sky. Meteor flying through the Earth's atmosphere leaves a light trail lasting a few seconds on the sky background. We developed a special technique to recognize this event automatically in the complete observed video sequence. For further analysis leading to the precise recognition of object we suggest to apply Fourier and Hough transformations.

  6. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  7. The Neurobiology of Speech Perception and Production-Can Functional Imaging Tell Us Anything We Did Not Already Know?

    ERIC Educational Resources Information Center

    Scott, Sophie K.

    2012-01-01

    Our understanding of the neurobiological basis for human speech production and perception has benefited from insights from psychology, neuropsychology and neurology. In this overview, I outline some of the ways that functional imaging has added to this knowledge and argue that, as a neuroanatomical tool, functional imaging has led to some…

  8. Toward a unified color space for perception-based image processing.

    PubMed

    Lissner, Ingmar; Urban, Philipp

    2012-03-01

    Image processing methods that utilize characteristics of the human visual system require color spaces with certain properties to operate effectively. After analyzing different types of perception-based image processing problems, we present a list of properties that a unified color space should have. Due to contradictory perceptual phenomena and geometric issues, a color space cannot incorporate all these properties. We therefore identify the most important properties and focus on creating opponent color spaces without cross contamination between color attributes (i.e., lightness, chroma, and hue) and with maximum perceptual uniformity induced by color-difference formulas. Color lookup tables define simple transformations from an initial color space to the new spaces. We calculate such tables using multigrid optimization considering the Hung and Berns data of constant perceived hue and the CMC, CIE94, and CIEDE2000 color-difference formulas. The resulting color spaces exhibit low cross contamination between color attributes and are only slightly less perceptually uniform than spaces optimized exclusively for perceptual uniformity. We compare the CIEDE2000-based space with commonly used color spaces in two examples of perception-based image processing. In both cases, standard methods show improved results if the new space is used. All color-space transformations and examples are provided as MATLAB codes on our website. PMID:21824846

  9. Would you hire me? Selfie portrait images perception in a recruitment context

    NASA Astrophysics Data System (ADS)

    Mazza, F.; Da Silva, M. P.; Le Callet, P.

    2014-02-01

    Human content perception has been underlined to be important in multimedia quality evaluation. Recently aesthetic considerations have been subject of research in this field. First attempts in aesthetics took into account perceived low-level features, especially taken from photography theory. However they demonstrated to be insuf- ficient to characterize human content perception. More recently image psychology started to be considered as higher cognitive feature impacting user perception. In this paper we follow this idea introducing social cognitive elements. Our experiments focus on the influence of different versions of portrait pictures in context where they are showed aside some completely unrelated informations; this can happen for example in social networks interactions between users, where profile pictures are present aside almost every user action. In particular, we tested this impact on resumes between professional portrait and self shot pictures. Moreover, as we run tests in crowdsourcing, we will discuss the use of this methodology for these tests. Our final aim is to analyse social biases' impact on multimedia aesthetics evaluation and how this bias influences messages that go along with pictures, as in public online platforms and social networks.

  10. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  11. Difference image analysis of defocused observations with CSTAR

    SciTech Connect

    Oelkers, Ryan J.; Macri, Lucas M.; Wang, Lifan; Ashley, Michael C. B.; Lawrence, Jon S.; Luong-Van, Daniel; Cui, Xiangqun; Gong, Xuefei; Qiang, Liu; Yang, Huigen; Yuan, Xiangyan; Zhou, Xu; Feng, Long-Long; Zhu, Zhenxi; Pennypacker, Carl R.; York, Donald G.

    2015-02-01

    The Chinese Small Telescope ARray carried out high-cadence time-series observations of 27 square degrees centered on the South Celestial Pole during the Antarctic winter seasons of 2008–2010. Aperture photometry of the 2008 and 2010 i-band images resulted in the discovery of over 200 variable stars. Yearly servicing left the array defocused for the 2009 winter season, during which the system also suffered from intermittent frosting and power failures. Despite these technical issues, nearly 800,000 useful images were obtained using g, r, and clear filters. We developed a combination of difference imaging and aperture photometry to compensate for the highly crowded, blended, and defocused frames. We present details of this approach, which may be useful for the analysis of time-series data from other small-aperture telescopes regardless of their image quality. Using this approach, we were able to recover 68 previously known variables and detected variability in 37 additional objects. We also have determined the observing statistics for Dome A during the 2009 winter season; we find the extinction due to clouds to be less than 0.1 and 0.4 mag for 40% and 63% of the dark time, respectively.

  12. Einstein imaging observations of clusters with a bimodal mass distribution

    NASA Technical Reports Server (NTRS)

    Forman, W.; Bechtold, J.; Blair, W.; Giacconi, R.; Van Speybroeck, L.; Jones, C.

    1981-01-01

    Einstein imaging observations of four X-ray clusters of galaxies characterized by a double X-ray surface brightness and thus mass distribution are presented. The clusters A98, A115, A1750 and SC 0627-54 were found to exhibit two enhancements in their X-ray surface brightness distributions in observations made with the Einstein Imaging Proportional Counter. Calculations of the probability that the clusters represent chance superpositions indicate that the double clusters are physically associated. The radial distributions of the components are inconsistent with those of single point sources, and have been used to derive cluster luminosities which are typical of rich clusters. Masses of the subclusters are also found to be typical of bound and virialized clusters with gas contributing 10%. Within the framework of the hierarchical theory of galactic clustering, the double clusters are suggested to represent an intermediate evolutionary stage before the merger of subclusters into a relaxed Coma-type cluster.

  13. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, Kozo; Boardsen, Scott A.; Garcia, Leonard N.; Green, James L.; Matsumoto, Hiroshi; Reinisch, Bodo W.

    2010-01-01

    We report IMAGE and Geotail simultaneous observations of a terrestrial myriametric radio burst (TMRB) detected on August 19, 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50 kHz), suggesting a fan beam-like emission pattern from a single discrete source. Analysis and comparisons with existing TMR radiations strongly suggest that the TMRB is a distinct emission perhaps resulting from dayside magnetic reconnection instigated by northward interplanetary field condition.

  14. Retinex Image Processing: Improved Fidelity To Direct Visual Observation

    NASA Technical Reports Server (NTRS)

    Jobson, Daniel J.; Rahman, Zia-Ur; Woodell, Glenn A.

    1996-01-01

    Recorded color images differ from direct human viewing by the lack of dynamic range compression and color constancy. Research is summarized which develops the center/surround retinex concept originated by Edwin Land through a single scale design to a multi-scale design with color restoration (MSRCR). The MSRCR synthesizes dynamic range compression, color constancy, and color rendition and, thereby, approaches fidelity to direct observation.

  15. Digital image processing of earth observation sensor data

    NASA Technical Reports Server (NTRS)

    Bernstein, R.

    1976-01-01

    This paper describes digital image processing techniques that were developed to precisely correct Landsat multispectral earth observation data and gives illustrations of the results achieved, e.g., geometric corrections with an error of less than one picture element, a relative error of one-fourth picture element, and no radiometric error effect. Techniques for enhancing the sensor data, digitally mosaicking multiple scenes, and extracting information are also illustrated.

  16. Comparison of Imager for Mars Pathfinder spectra with remote observations

    NASA Astrophysics Data System (ADS)

    Herkenhoff, K. E.; Johnson, J. R.; Lemmon, M.; Smith, P. H.

    2001-11-01

    The range of colors and albedos of materials at the Pathfinder landing site is similar to that observed in Viking Orbiter and HST images of Mars, but precise comparisons are hampered by the effects of atmospheric scattering in these data sets and differences in the effective wavelengths of the images. Such comparisons will allow the spectral units observed at the Pathfinder landing site to be placed into a global geologic context, and the composition, physical properties, and origins of Martian surface units to be inferred. We report our progress toward achieving these objectives by calibrating, modeling, and analyzing IMP multispectral observations of various surface materials and comparing them to the color and albedo units observed by the Viking Orbiter cameras, the WF/PC2 on HST, and the MOC wide-angle cameras on MGS. New digital terrain models (DTMs) have been derived from IMP stereo data, and new multispectral image cubes of IMP panoramas have been assembled using improved ISIS radiometric calibration, geometric registration and mosaicking software. The latest version of the IMP calibration software yields significantly different relative reflectances in some cases, but in general changes are small. We have also calibrated and assembled a mosaic of Insurance Pan images, which were losslessly compressed and taken under different illumination/viewing conditions than Super Pan; these data will be useful in better constraining the photometric and atmospheric models that are critically important to this investigation. Software tools were developed that evaluate and apply the University of Arizona atmospheric radiative transfer model. Scene reflectivity (as seen from orbit, in an arbitrary geometry) was simulated, including both direct and diffuse components to allow shadow brightness to be predicted. Surface normals from the new DTM were used to simulate sky brightness as a function of direction and predict the scene appearance for a given surface reflectivity.

  17. Correlation of radiologists' image quality perception with quantitative assessment parameters: just-noticeable difference vs. peak signal-to-noise ratios

    NASA Astrophysics Data System (ADS)

    Siddiqui, Khan M.; Siegel, Eliot L.; Reiner, Bruce I.; Johnson, Jeffrey P.

    2005-04-01

    The authors identify a fundamental disconnect between the ways in which industry and radiologists assess and even discuss product performance. What is needed is a quantitative methodology that can assess both subjective image quality and observer task performance. In this study, we propose and evaluate the use of a visual discrimination model (VDM) that assesses just-noticeable differences (JNDs) to serve this purpose. The study compares radiologists' subjective perceptions of image quality of computer tomography (CT) and computed radiography (CR) images with quantitative measures of peak signal-to-noise ratio (PSNR) and JNDs as measured by a VDM. The study included 4 CT and 6 CR studies with compression ratios ranging from lossless to 90:1 (total of 80 sets of images were generated [n = 1,200]). Eleven radiologists reviewed the images and rated them in terms of overall quality and readability and identified images not acceptable for interpretation. Normalized reader scores were correlated with compression, objective PSNR, and mean JND values. Results indicated a significantly higher correlation between observer performance and JND values than with PSNR methods. These results support the use of the VDM as a metric not only for the threshold discriminations for which it was calibrated, but also as a general image quality metric. This VDM is a highly promising, reproducible, and reliable adjunct or even alternative to human observer studies for research or to establish clinical guidelines for image compression, dose reductions, and evaluation of various display technologies.

  18. Probing the functions of contextual modulation by adapting images rather than observers

    PubMed Central

    Webster, Michael A.

    2014-01-01

    Countless visual aftereffects have illustrated how visual sensitivity and perception can be biased by adaptation to the recent temporal context. This contextual modulation has been proposed to serve a variety of functions, but the actual benefits of adaptation remain uncertain. We describe an approach we have recently developed for exploring these benefits by adapting images instead of observers, to simulate how images should appear under theoretically optimal states of adaptation. This allows the long-term consequences of adaptation to be evaluated in ways that are difficult to probe by adapting observers, and provides a common framework for understanding how visual coding changes when the environment or the observer changes, or for evaluating how the effects of temporal context depend on different models of visual coding or the adaptation processes. The approach is illustrated for the specific case of adaptation to color, for which the initial neural coding and adaptation processes are relatively well understood, but can in principle be applied to examine the consequences of adaptation for any stimulus dimension. A simple calibration that adjusts each neuron’s sensitivity according to the stimulus level it is exposed to is sufficient to normalize visual coding and generate a host of benefits, from increased efficiency to perceptual constancy to enhanced discrimination. This temporal normalization may also provide an important precursor for the effective operation of contextual mechanisms operating across space or feature dimensions. To the extent that the effects of adaptation can be predicted, images from new environments could be “pre-adapted” to match them to the observer, eliminating the need for observers to adapt. PMID:25281412

  19. Probing the functions of contextual modulation by adapting images rather than observers.

    PubMed

    Webster, Michael A

    2014-11-01

    Countless visual aftereffects have illustrated how visual sensitivity and perception can be biased by adaptation to the recent temporal context. This contextual modulation has been proposed to serve a variety of functions, but the actual benefits of adaptation remain uncertain. We describe an approach we have recently developed for exploring these benefits by adapting images instead of observers, to simulate how images should appear under theoretically optimal states of adaptation. This allows the long-term consequences of adaptation to be evaluated in ways that are difficult to probe by adapting observers, and provides a common framework for understanding how visual coding changes when the environment or the observer changes, or for evaluating how the effects of temporal context depend on different models of visual coding or the adaptation processes. The approach is illustrated for the specific case of adaptation to color, for which the initial neural coding and adaptation processes are relatively well understood, but can in principle be applied to examine the consequences of adaptation for any stimulus dimension. A simple calibration that adjusts each neuron's sensitivity according to the stimulus level it is exposed to is sufficient to normalize visual coding and generate a host of benefits, from increased efficiency to perceptual constancy to enhanced discrimination. This temporal normalization may also provide an important precursor for the effective operation of contextual mechanisms operating across space or feature dimensions. To the extent that the effects of adaptation can be predicted, images from new environments could be "pre-adapted" to match them to the observer, eliminating the need for observers to adapt. PMID:25281412

  20. Student and Teacher Perceptions of the Use of Multimedia Supported Predict-Observe-Explain Tasks To Probe Understanding.

    ERIC Educational Resources Information Center

    Kearney, Matthew; Treagust, David F.; Yeo, Shelley; Zadnik, Marjan G.

    2001-01-01

    Discusses student and teacher perceptions of a new development in the use of the predict-observe-explain (POE) strategy. This development involves the incorporation of POE tasks into a multimedia computer program that uses real-life, digital video clips of difficult, expensive, time consuming, or dangerous scenarios as stimuli for these tasks.…

  1. Exploring Teachers' Knowledge of Second Language Pronunciation Techniques: Teacher Cognitions, Observed Classroom Practices, and Student Perceptions

    ERIC Educational Resources Information Center

    Baker, Amanda

    2014-01-01

    This study explored some of the intricate connections between the cognitions (beliefs, knowledge, perceptions, attitudes) and pedagogical practices of five English language teachers, specifically in relation to pronunciation-oriented techniques. Integral to the study was the use of semistructured interviews, classroom observations, and stimulated…

  2. X-ray phase imaging-From static observation to dynamic observation-

    SciTech Connect

    Momose, A.; Yashiro, W.; Olbinado, M. P.; Harasse, S.

    2012-07-31

    We are attempting to expand the technology of X-ray grating phase imaging/tomography to enable dynamic observation. X-ray phase imaging has been performed mainly for static cases, and this challenge is significant since properties of materials (and hopefully their functions) would be understood by observing their dynamics in addition to their structure, which is an inherent advantage of X-ray imaging. Our recent activities in combination with white synchrotron radiation for this purpose are described. Taking advantage of the fact that an X-ray grating interferometer functions with X-rays of a broad energy bandwidth (and therefore high flux), movies of differential phase images and visibility images are obtained with a time resolution of a millisecond. The time resolution of X-ray phase tomography can therefore be a second. This study is performed as a part of a project to explore X-ray grating interferometry, and our other current activities are also briefly outlined.

  3. Impact of defective pixels in AMLCDs on the perception of medical images

    NASA Astrophysics Data System (ADS)

    Kimpe, Tom; Sneyders, Yuri

    2006-03-01

    With LCD displays, each pixel has its own individual transistor that controls the transmittance of that pixel. Occasionally, these individual transistors will short or alternatively malfunction, resulting in a defective pixel that always shows the same brightness. With ever increasing resolution of displays the number of defect pixels per display increases accordingly. State of the art processes are capable of producing displays with no more than one faulty transistor out of 3 million. A five Mega Pixel medical LCD panel contains 15 million individual sub pixels (3 sub pixels per pixel), each having an individual transistor. This means that a five Mega Pixel display on average will have 5 failing pixels. This paper investigates the visibility of defective pixels and analyzes the possible impact of defective pixels on the perception of medical images. JND simulations were done to study the effect of defective pixels on medical images. Our results indicate that defective LCD pixels can mask subtle features in medical images in an unexpectedly broad area around the defect and therefore may reduce the quality of diagnosis for specific high-demanding areas such as mammography. As a second contribution an innovative solution is proposed. A specialized image processing algorithm can make defective pixels completely invisible and moreover can also recover the information of the defect so that the radiologist perceives the medical image correctly. This correction algorithm has been validated with both JND simulations and psycho visual tests.

  4. Observer detection limits for a dedicated SPECT breast imaging system

    NASA Astrophysics Data System (ADS)

    Cutler, S. J.; Perez, K. L.; Barnhart, H. X.; Tornai, M. P.

    2010-04-01

    An observer-based contrast-detail study is performed in an effort to evaluate the limits of object detectability using a dedicated CZT-based breast SPECT imaging system under various imaging conditions. A custom geometric contrast-resolution phantom was developed that can be used for both positive ('hot') and negative contrasts ('cold'). The 3 cm long fillable tubes are arranged in six sectors having equal inner diameters ranging from 1 mm to 6 mm with plastic wall thicknesses of <0.25 mm, on a pitch of twice their inner diameters. Scans of the activity filled tubes using simple circular trajectories are obtained in a 215 mL uniform water filled cylinder, varying the rod:background concentration ratios from 10:1 to 1:10 simulating a large range of biological uptake ratios. The rod phantom is then placed inside a non-uniformly shaped 500 mL breast phantom and scans are again acquired using both simple and complex 3D trajectories for similarly varying contrasts. Summed slice and contiguous multi-slice images are evaluated by five independent readers, identifying the smallest distinguishable rod for each concentration and experimental setup. Linear and quadratic regression is used to compare the resulting contrast-detail curves. Results indicate that in a moderately low-noise 500 mL background, using the SPECT camera having 2.5 mm intrinsic pixels, the mean detectable rod was ~3.4 mm at a 10:1 ratio, degrading to ~5.2 mm with the 2.5:1 concentration ratio. The smallest object detail was observed using a 45° tilted trajectory acquisition. The complex 3D projected sine wave acquisition, however, had the most consistent combined intra- and inter-observer results, making it potentially the best imaging approach for consistent results.

  5. What visual illusions tell us about underlying neural mechanisms and observer strategies for tackling the inverse problem of achromatic perception

    PubMed Central

    Blakeslee, Barbara; McCourt, Mark E.

    2015-01-01

    Research in lightness perception centers on understanding the prior assumptions and processing strategies the visual system uses to parse the retinal intensity distribution (the proximal stimulus) into the surface reflectance and illumination components of the scene (the distal stimulus—ground truth). It is agreed that the visual system must compare different regions of the visual image to solve this inverse problem; however, the nature of the comparisons and the mechanisms underlying them are topics of intense debate. Perceptual illusions are of value because they reveal important information about these visual processing mechanisms. We propose a framework for lightness research that resolves confusions and paradoxes in the literature, and provides insight into the mechanisms the visual system employs to tackle the inverse problem. The main idea is that much of the debate and confusion in the literature stems from the fact that lightness, defined as apparent reflectance, is underspecified and refers to three different types of judgments that are not comparable. Under stimulus conditions containing a visible illumination component, such as a shadow boundary, observers can distinguish and match three independent dimensions of achromatic experience: apparent intensity (brightness), apparent local intensity ratio (brightness-contrast), and apparent reflectance (lightness). In the absence of a visible illumination boundary, however, achromatic vision reduces to two dimensions and, depending on stimulus conditions and observer instructions, judgments of lightness are identical to judgments of brightness or brightness-contrast. Furthermore, because lightness judgments are based on different information under different conditions, they can differ greatly in their degree of difficulty and in their accuracy. This may, in part, explain the large variability in lightness constancy across studies. PMID:25954181

  6. An integrative neural model of social perception, action observation, and theory of mind.

    PubMed

    Yang, Daniel Y-J; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A

    2015-04-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957

  7. Student perceptions regarding the usefulness of explicit discussion of "Structure of the Observed Learning Outcome" taxonomy.

    PubMed

    Prakash, E S; Narayan, K A; Sethuraman, K R

    2010-09-01

    One method of grading responses of the descriptive type is by using Structure of Observed Learning Outcomes (SOLO) taxonomy. The basis of this study was the expectation that if students were oriented to SOLO taxonomy, it would provide them an opportunity to understand some of the factors that teachers consider while grading descriptive responses and possibly develop strategies to improve scores. We first sampled the perceptions of 68 second-year undergraduate medical students doing the Respiratory System course regarding the usefulness of explicit discussion of SOLO taxonomy. Subsequently, in a distinct cohort of 20 second-year medical students doing the Central Nervous System course, we sought to determine whether explicit illustration of SOLO taxonomy combined with some advice on better answering descriptive test questions (to an experimental group) resulted in better student scores in a continuous assessment test compared with providing advice for better answering test questions but without any reference to SOLO taxonomy (the control group). Student ratings of the clarity of the presentation on SOLO taxonomy appeared satisfactory to the authors, as was student understanding of our presentation. The majority of participants indicated that knowledge of SOLO taxonomy would help them study and prepare better answers for questions of the descriptive type. Although scores in the experimental and control group were comparable, this experience nonetheless provided us with the motivation to orient students to SOLO taxonomy early on in the medical program and further research factors that affect students' development of strategies based on knowledge of SOLO taxonomy. PMID:20826769

  8. Habituation of Sleep to Road Traffic Noise Observed not by Polygraphy but by Perception

    NASA Astrophysics Data System (ADS)

    KUROIWA, M.; XIN, P.; SUZUKI, S.; SASAZAWA, Y.; KAWADA, T.; TAMURA, Y.

    2002-02-01

    The habituation of sleep to road traffic noise was investigated. Habituation of sleep is improvement of sleep quality. Nine male students aged 19-21 were exposed to tape-recorded road traffic noise ofLeq 49·6 dB(A) in an experimental bedroom. Among 17 nights, the first four and the last three nights were non-exposure nights and the other consecutive 10 were exposure nights. The polygraphic sleep parameters were: sleep stages S1, S2, S(3+4), rapid eye movements (REM), and so on. Subjective sleep quality was assessed by five scales of a self-rating sleep questionnaire named the OSA, sleepiness (F1), sleep maintenance (F2), worry (F3), integrated sleep feeling (F4), and sleep initiation (F5). In this experiment, the habituation of sleep to road traffic noise was observed clearly in all of the subjective sleep parameters of the OSA, though all of the polygraphic sleep parameters showed little or no evidence of habituation. This suggests that habituation to noise has two aspects, sensation and perception mechanisms, corresponding to sleep polygraphy and to questionnaire respectively.

  9. An integrative neural model of social perception, action observation, and theory of mind

    PubMed Central

    Yang, Daniel Y.-J.; Rosenblau, Gabriela; Keifer, Cara; Pelphrey, Kevin A.

    2016-01-01

    In the field of social neuroscience, major branches of research have been instrumental in describing independent components of typical and aberrant social information processing, but the field as a whole lacks a comprehensive model that integrates different branches. We review existing research related to the neural basis of three key neural systems underlying social information processing: social perception, action observation, and theory of mind. We propose an integrative model that unites these three processes and highlights the posterior superior temporal sulcus (pSTS), which plays a central role in all three systems. Furthermore, we integrate these neural systems with the dual system account of implicit and explicit social information processing. Large-scale meta-analyses based on Neurosynth confirmed that the pSTS is at the intersection of the three neural systems. Resting-state functional connectivity analysis with 1000 subjects confirmed that the pSTS is connected to all other regions in these systems. The findings presented in this review are specifically relevant for psychiatric research especially disorders characterized by social deficits such as autism spectrum disorder. PMID:25660957

  10. Center determination for trailed sources in astronomical observation images

    NASA Astrophysics Data System (ADS)

    Du, Jun Ju; Hu, Shao Ming; Chen, Xu; Guo, Di Fu

    2014-11-01

    Images with trailed sources can be obtained when observing near-Earth objects, such as small astroids, space debris, major planets and their satellites, no matter the telescopes track on sidereal speed or the speed of target. The low centering accuracy of these trailed sources is one of the most important sources of the astrometric uncertainty, but how to determine the central positions of the trailed sources accurately remains a significant challenge to image processing techniques, especially in the study of faint or fast moving objects. According to the conditions of one-meter telescope at Weihai Observatory of Shandong University, moment and point-spread-function (PSF) fitting were chosen to develop the image processing pipeline for space debris. The principles and the implementations of both two methods are introduced in this paper. And some simulated images containing trailed sources are analyzed with each technique. The results show that two methods are comparable to obtain the accurate central positions of trailed sources when the signal to noise (SNR) is high. But moment tends to fail for the objects with low SNR. Compared with moment, PSF fitting seems to be more robust and versatile. However, PSF fitting is quite time-consuming. Therefore, if there are enough bright stars in the field, or the high astronometric accuracy is not necessary, moment is competent. Otherwise, the combination of moment and PSF fitting is recommended.

  11. Difference Image Analysis of De-Focused 2009 CSTAR Observations

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Macri, L. M.; Wang, L.; PLATO; CSTAR

    2014-01-01

    The Chinese Small Telescope ARray (CSTAR) carried out high-cadence time-series observations of a 27-square degree region centered on the South Celestial Pole during the Antarctic winter seasons of 2008, 2009 and 2010. Analysis of the 2008 and 2010 data using aperture photometry resulted in the discovery of 198 variables with i < 15.3 mag. Routine servicing completed after the 2008 winter season left the telescope out of focus for the 2009 winter season. The telescope also suffered a power loss after ~2 months of observation. In spite of the telescope's technical issues, nearly 250,000 usable images were taken in the 'g', 'N', and 'r' bands. We used a combination of difference imaging and aperture photometry to compensate for the highly crowded, blended and out of focus images. We are able to recover more than 100 of the variables in the 'g'-band and have discovered about 20 objects to be explored further. We discuss the analysis of all of these objects in the 'N' and 'r' bands as well. We also present the preliminary results of the application of this technique to another time-series data set taken from Tolar Grande, Argentina during the 2013 southern winter. Ryan J. Oelkers would like to acknowledge the support of a grant from the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy.

  12. Improved SOT (Hinode mission) high resolution solar imaging observations

    NASA Astrophysics Data System (ADS)

    Goodarzi, H.; Koutchmy, S.; Adjabshirizadeh, A.

    2015-08-01

    We consider the best today available observations of the Sun free of turbulent Earth atmospheric effects, taken with the Solar Optical Telescope (SOT) onboard the Hinode spacecraft. Both the instrumental smearing and the observed stray light are analyzed in order to improve the resolution. The Point Spread Function (PSF) corresponding to the blue continuum Broadband Filter Imager (BFI) near 450 nm is deduced by analyzing (i) the limb of the Sun and (ii) images taken during the transit of the planet Venus in 2012. A combination of Gaussian and Lorentzian functions is selected to construct a PSF in order to remove both smearing due to the instrumental diffraction effects (PSF core) and the large-angle stray light due to the spiders and central obscuration (wings of the PSF) that are responsible for the parasitic stray light. A Max-likelihood deconvolution procedure based on an optimum number of iterations is discussed. It is applied to several solar field images, including the granulation near the limb. The normal non-magnetic granulation is compared to the abnormal granulation which we call magnetic. A new feature appearing for the first time at the extreme- limb of the disk (the last 100 km) is discussed in the context of the definition of the solar edge and of the solar diameter. A single sunspot is considered in order to illustrate how effectively the restoration works on the sunspot core. A set of 125 consecutive deconvolved images is assembled in a 45 min long movie illustrating the complexity of the dynamical behavior inside and around the sunspot.

  13. OBSERVATIONS OF RECONNECTING FLARE LOOPS WITH THE ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Warren, Harry P.; Sheeley, Neil R. Jr.; O'Brien, Casey M.

    2011-12-01

    Perhaps the most compelling evidence for the role of magnetic reconnection in solar flares comes from the supra-arcade downflows that have been observed above many post-flare loop arcades. These downflows are thought to be related to highly non-potential field lines that have reconnected and are propagating away from the current sheet. We present new observations of supra-arcade downflows taken with the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). The morphology and dynamics of the downflows observed with AIA provide new evidence for the role of magnetic reconnection in solar flares. With these new observations we are able to measure downflows originating at larger heights than in previous studies. We find, however, that the initial velocities measured here ({approx}144 km s{sup -1}) are well below the Alfven speed expected in the lower corona, and consistent with previous results. We also find no evidence that the downflows brighten with time, as would be expected from chromospheric evaporation. These observations suggest that simple two-dimensional models cannot explain the detailed observations of solar flares.

  14. A Psychophysical Imaging Method Evidencing Auditory Cue Extraction during Speech Perception: A Group Analysis of Auditory Classification Images

    PubMed Central

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme. PMID:25781470

  15. A psychophysical imaging method evidencing auditory cue extraction during speech perception: a group analysis of auditory classification images.

    PubMed

    Varnet, Léo; Knoblauch, Kenneth; Serniclaes, Willy; Meunier, Fanny; Hoen, Michel

    2015-01-01

    Although there is a large consensus regarding the involvement of specific acoustic cues in speech perception, the precise mechanisms underlying the transformation from continuous acoustical properties into discrete perceptual units remains undetermined. This gap in knowledge is partially due to the lack of a turnkey solution for isolating critical speech cues from natural stimuli. In this paper, we describe a psychoacoustic imaging method known as the Auditory Classification Image technique that allows experimenters to estimate the relative importance of time-frequency regions in categorizing natural speech utterances in noise. Importantly, this technique enables the testing of hypotheses on the listening strategies of participants at the group level. We exemplify this approach by identifying the acoustic cues involved in da/ga categorization with two phonetic contexts, Al- or Ar-. The application of Auditory Classification Images to our group of 16 participants revealed significant critical regions on the second and third formant onsets, as predicted by the literature, as well as an unexpected temporal cue on the first formant. Finally, through a cluster-based nonparametric test, we demonstrate that this method is sufficiently sensitive to detect fine modifications of the classification strategies between different utterances of the same phoneme. PMID:25781470

  16. Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach

    PubMed Central

    Mahmood, Faisal; Wong, Kian Foong; Agrawal, Abhishek; Elgendi, Mohamed; Shukla, Rohit; Ang, Natania; Ching, April; Dauwels, Justin; Chan, Alice H. D.

    2016-01-01

    The purpose of the study is to examine the effect of subliminal priming in terms of the perception of images influenced by words with positive, negative, and neutral emotional content, through electroencephalograms (EEGs). Participants were instructed to rate how much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words that exhibit positive, negative, and neutral connotations with respect to the images. Simultaneously, the EEGs were recorded. Statistical tests such as repeated measures ANOVAs and two-tailed paired-samples t-tests were performed to measure significant differences in the likability ratings among the three prime affect types; the results showed a strong shift in the likeness judgment for the images in the positively primed condition compared to the other two. The acquired EEGs were examined to assess the difference in brain activity associated with the three different conditions. The consistent results obtained confirmed the overall priming effect on participants’ explicit ratings. In addition, machine learning algorithms such as support vector machines (SVMs), and AdaBoost classifiers were applied to infer the prime affect type from the ERPs. The highest classification rates of 95.0% and 70.0% obtained respectively for average-trial binary classifier and average-trial multi-class further emphasize that the ERPs encode information about the different kinds of primes. PMID:26866807

  17. Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach.

    PubMed

    Mohan, Dhanya Menoth; Kumar, Parmod; Mahmood, Faisal; Wong, Kian Foong; Agrawal, Abhishek; Elgendi, Mohamed; Shukla, Rohit; Ang, Natania; Ching, April; Dauwels, Justin; Chan, Alice H D

    2016-01-01

    The purpose of the study is to examine the effect of subliminal priming in terms of the perception of images influenced by words with positive, negative, and neutral emotional content, through electroencephalograms (EEGs). Participants were instructed to rate how much they like the stimuli images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words that exhibit positive, negative, and neutral connotations with respect to the images. Simultaneously, the EEGs were recorded. Statistical tests such as repeated measures ANOVAs and two-tailed paired-samples t-tests were performed to measure significant differences in the likability ratings among the three prime affect types; the results showed a strong shift in the likeness judgment for the images in the positively primed condition compared to the other two. The acquired EEGs were examined to assess the difference in brain activity associated with the three different conditions. The consistent results obtained confirmed the overall priming effect on participants' explicit ratings. In addition, machine learning algorithms such as support vector machines (SVMs), and AdaBoost classifiers were applied to infer the prime affect type from the ERPs. The highest classification rates of 95.0% and 70.0% obtained respectively for average-trial binary classifier and average-trial multi-class further emphasize that the ERPs encode information about the different kinds of primes. PMID:26866807

  18. Body image emotions, perceptions, and cognitions distinguish physically active and inactive smokers

    PubMed Central

    Contreras, Gisèle A.; Sabiston, Catherine M.; O'Loughlin, Erin K.; Bélanger, Mathieu; O'Loughlin, Jennifer

    2015-01-01

    Objectives To determine if body image emotions (body-related shame and guilt, weight-related stress), perceptions (self-perceived overweight), or cognitions (trying to change weight) differ between adolescents characterized by smoking and physical activity (PA) behavior. Methods Data for this cross-sectional analysis were collected in 2010–11 and were available for 1017 participants (mean (SD) age = 16.8 (0.5) years). Participants were categorized according to smoking and PA status into four groups: inactive smokers, inactive non-smokers, active smokers and active non-smokers. Associations between body image emotions, perceptions and cognitions, and group membership were estimated in multinomial logistic regression. Results Participants who reported body-related shame were less likely (OR (95% CI) = 0.52 (0.29–0.94)) to be in the active smoker group than the inactive smoker group; those who reported body-related guilt and those trying to gain weight were more likely (2.14 (1.32–3.48) and 2.49 (1.22–5.08), respectively) to be in the active smoker group than the inactive smoker group; those who were stressed about weight and those perceiving themselves as overweight were less likely to be in the active non-smoker group than the inactive smoker group (0.79 (0.64–0.97) and 0.41 (0.19–0.89), respectively). Conclusion Body image emotions and cognitions differentiated the active smoker group from the other three groups. PMID:26844062

  19. The Image of E-Learning: Perceptions about a Chilean University and the E-Learning System in the Context of Chile

    ERIC Educational Resources Information Center

    Farcas, Daniel

    2010-01-01

    The purpose of this research is to determine the image of a Chilean university, as perceived by those inside and outside of the institution, in contrast with the general image of the e-learning system in Chile. The internal perceptions are those of current students and graduates of this Chilean university, while the external perceptions are those…

  20. Collaborative real-time motion video analysis by human observer and image exploitation algorithms

    NASA Astrophysics Data System (ADS)

    Hild, Jutta; Krüger, Wolfgang; Brüstle, Stefan; Trantelle, Patrick; Unmüßig, Gabriel; Heinze, Norbert; Peinsipp-Byma, Elisabeth; Beyerer, Jürgen

    2015-05-01

    Motion video analysis is a challenging task, especially in real-time applications. In most safety and security critical applications, a human observer is an obligatory part of the overall analysis system. Over the last years, substantial progress has been made in the development of automated image exploitation algorithms. Hence, we investigate how the benefits of automated video analysis can be integrated suitably into the current video exploitation systems. In this paper, a system design is introduced which strives to combine both the qualities of the human observer's perception and the automated algorithms, thus aiming to improve the overall performance of a real-time video analysis system. The system design builds on prior work where we showed the benefits for the human observer by means of a user interface which utilizes the human visual focus of attention revealed by the eye gaze direction for interaction with the image exploitation system; eye tracker-based interaction allows much faster, more convenient, and equally precise moving target acquisition in video images than traditional computer mouse selection. The system design also builds on prior work we did on automated target detection, segmentation, and tracking algorithms. Beside the system design, a first pilot study is presented, where we investigated how the participants (all non-experts in video analysis) performed in initializing an object tracking subsystem by selecting a target for tracking. Preliminary results show that the gaze + key press technique is an effective, efficient, and easy to use interaction technique when performing selection operations on moving targets in videos in order to initialize an object tracking function.

  1. Molecular and Ionized Hydrogen in 30 Doradus. I. Imaging Observations

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry C. C.; Seaquist, Ernest R.; Matzner, Christopher D.; Pellegrini, Eric W.

    2015-07-01

    We present the first fully calibrated H2 1-0 S(1) image of the entire 30 Doradus nebula. The observations were conducted using the NOAO Extremely Wide-field Infrared Imager (NEWFIRM) on the CTIO 4 m Blanco Telescope. Together with a NEWFIRM Brγ image of 30 Doradus, our data reveal the morphologies of the warm molecular gas and ionized gas in 30 Doradus. The brightest H2-emitting area, which extends from the northeast to the southwest of R136, is a photodissociation region (PDR) viewed face-on, while many clumps and pillar features located at the outer shells of 30 Doradus are PDRs viewed edge-on. Based on the morphologies of H2, Brγ, CO, and 8 μm emission, the H2 to Brγ line ratio, and Cloudy models, we find that the H2 emission is formed inside the PDRs of 30 Doradus, 2-3 pc to the ionization front of the H ii region, in a relatively low-density environment <104 cm-3. Comparisons with Brγ, 8 μm, and CO emission indicate that H2 emission is due to fluorescence, and provide no evidence for shock excited emission of this line.

  2. A CMOS TDI image sensor for Earth observation

    NASA Astrophysics Data System (ADS)

    Rushton, Joseph E.; Stefanov, Konstantin D.; Holland, Andrew D.; Endicott, James; Mayer, Frederic; Barbier, Frederic

    2015-09-01

    Time Delay and Integration (TDI) is used to increase the Signal to Noise Ratio (SNR) in image sensors when imaging fast moving objects. One important TDI application is in Earth observation from space. In order to operate in the space radiation environment, the effect that radiation damage has on the performance of the image sensors must be understood. This work looks at prototype TDI sensor pixel designs, produced by e2v technologies. The sensor is a CCD-like charge transfer device, allowing in-pixel charge summation, produced on a CMOS process. The use of a CMOS process allows potential advantages such as lower power consumption, smaller pixels, higher line rate and extra on-chip functionality which can simplify system design. CMOS also allows a dedicated output amplifier per column allowing fewer charge transfers and helping to facilitate higher line rates than CCDs. In this work the effect on the pixels of radiation damage from high energy protons, at doses relevant to a low Earth orbit mission, is presented. This includes the resulting changes in Charge Transfer inefficiency (CTI) and dark signal.

  3. First Radio Burst Imaging Observation From Mingantu Ultrawide Spectral Radioheliograph

    NASA Astrophysics Data System (ADS)

    Yan, Yihua; Chen, Linjie; Yu, Sijie; CSRH Team

    2015-08-01

    Radio imaging spectroscopy over wide range wavelength in dm/cm-bands will open new windows on solar flares and coronal mass ejections by tracing the radio emissions from accelerated electrons. The Chinese Spectral Radioheliograph (CSRH) with two arrays in 400MHz-2GHz /2-15GHz ranges with 64/532 frequency channels have been established in Mingantu Observing Station, Inner Mongolia of China, since 2013 and is in test observations now. CSRH is renamed as MUSER (Mingantu Ultrawide SpEctral Radioheliograph) after it's accomplishment We will introduce the progress and current status of CSRH. Some preliminary results of CSRH will be presented.On 11 Nov2014, the first burst event was registered by MUSER-I array at 400MHz-2GHz waveband. According to SGD event list there was a C-class flare peaked at 04:49UT in the disk center and the radio bursts around 04:22-04:24UT was attributed to this flare. However, MUSER-I image observation of the burst indicates that the radio burst peaked around 04:22UT was due to the eruption at the east limb of the Sun and connected to a CME appeared in that direction about 1 hour later. This demonstrate the importance of the spectroscopy observation of the solar radio burst.Acknowledgement: The CSRH team includes Wei Wang, Zhijun Chen, Fei Liu, Lihong Geng and Jian Zhang and CSRH project is supported by National Major Scientific Equipment R&D Project ZDYZ2009-3. The research was also supported by NSFC grants (11433006, 11221063), MOST grant (MOST2011CB811401), CAS Pilot-B Project (XDB09000000) and Marie Curie PIRSES- GA-295272-RADIOSUN.

  4. Bayesian Analysis of Hmi Images and Comparison to Tsi Variations and MWO Image Observables

    NASA Astrophysics Data System (ADS)

    Parker, D. G.; Ulrich, R. K.; Beck, J.; Tran, T. V.

    2015-12-01

    We have previously applied the Bayesian automatic classification system AutoClass to solar magnetogram and intensity images from the 150 Foot Solar Tower at Mount Wilson to identify classes of solar surface features associated with variations in total solar irradiance (TSI) and, using those identifications, modeled TSI time series with improved accuracy (r > 0.96). (Ulrich, et al, 2010) AutoClass identifies classes by a two-step process in which it: (1) finds, without human supervision, a set of class definitions based on specified attributes of a sample of the image data pixels, such as magnetic field and intensity in the case of MWO images, and (2) applies the class definitions thus found to new data sets to identify automatically in them the classes found in the sample set. HMI high resolution images capture four observables-magnetic field, continuum intensity, line depth and line width-in contrast to MWO's two observables-magnetic field and intensity. In this study, we apply AutoClass to the HMI observables for images from June, 2010 to December, 2014 to identify solar surface feature classes. We use contemporaneous TSI measurements to determine whether and how variations in the HMI classes are related to TSI variations and compare the characteristic statistics of the HMI classes to those found from MWO images. We also attempt to derive scale factors between the HMI and MWO magnetic and intensity observables.The ability to categorize automatically surface features in the HMI images holds out the promise of consistent, relatively quick and manageable analysis of the large quantity of data available in these images. Given that the classes found in MWO images using AutoClass have been found to improve modeling of TSI, application of AutoClass to the more complex HMI images should enhance understanding of the physical processes at work in solar surface features and their implications for the solar-terrestrial environment.Ulrich, R.K., Parker, D, Bertello, L. and

  5. Visual adaptation: softcopy image contribution to the observer's field of view

    NASA Astrophysics Data System (ADS)

    Toomey, R. J.; Curran, K.; D'Helft, C.; Joyce, M. B.; Stowe, J.; Ryan, J. T.; McEntee, M. F.; Manning, D. J.; Brennan, P. C.

    2008-03-01

    Purpose Detection of low-contrast details is highly dependent on the adaptation state of the eye. It is important therefore that the average luminance of the observer's field of view (FOV) matches those of softcopy radiological images. This study establishes the percentage of FOV filled by workstations at various viewing distances. Methods Five observers stood at viewing distances of 20, 30 and 50cm from a homogenous white surface and were instructed to continuously focus on a fixed object at a height appropriate level. A dark indicator was held at this object and then moved steadily until the observer could no longer perceive it in his/her peripheral vision. This was performed at 0°, 90°, 180° and 270° clockwise from the median sagittal plane. Distances were recorded, radii calculated and observer and mean FOV areas established. These values were then compared with areas of typical high and low specification workstations. Results Individual and mean FOVs were 7660, 15463 and 30075cm2 at viewing distances of 20, 30 and 50cm respectively. High and low specification monitors with respective areas of 1576.25 and 921.25cm2 contributed between 5 to 21% and 3 to 12% respectively to the total FOV depending on observer distance. Limited inter-observer variances were noted. Conclusions Radiology workstations typically comprise between only 3 and 21% of the observer's FOV. This demonstrates the importance of measuring ambient light levels and surface reflection coefficients in order to maximise adaptation and observer's perception of low contrast detail and minimise eye strain.

  6. Gender differences in body image and health perceptions among graduating seniors from a historically black college.

    PubMed

    Gross, Susan M; Gary, Tiffany L; Browne, Dorothy C; LaVeist, Thomas A

    2005-12-01

    This study's purpose was to identify gender differences in body size awareness and perceived impact of weight on social interactions and risk for disease among young African-American adults. A cross-sectional survey of 318 African-American graduating seniors from a historically black college or university (HBCU) was conducted. Data were collected on anthropometrics, body image, ideal weight, perceived risk for disease due to weight, and impact of weight on social interactions. Only 39% of males who were overweight perceived themselves as overweight compared with 68% of overweight females. Eighty percent of females and 63% of males expressed some body size dissatisfaction. Fewer obese males (38%) perceived a risk for disease due to their weight compared with obese females (64%), p<0.01. Males perceived greater impact than females of their weight on social interactions, with extremely obese males perceiving the greatest impact. Perceived risk for disease due to weight was related to body mass index, family weight history, body awareness and income, but not body size satisfaction. Findings suggest gender differences in the self-perception of body size, accuracy of body size perception, and understanding of acceptable weight ranges. Awareness of acceptable weight ranges and consequences of overweight needs to be raised. PMID:16396053

  7. The Saturn System as Observed by Cassini's Ultraviolet Imaging Spectrograph

    NASA Technical Reports Server (NTRS)

    Esposito, L. W.; Hansen, C. J.; Colwell, J.; Hendrix, A. R.; McClintock, W. E.; Shemansky, D. E.

    2005-01-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) has major new findings in all aspects of Saturn science: Saturn, its rings, Titan and the icy satellites, and the Saturn magnetosphere. Dynamic interactions between neutrals, ions, rings, moons and meteoroids produce a highly structured and time variable Saturn system. Highlights and outstanding new results will be reported, focusing on Saturn s moons and their interaction with their environment. The UVIS is one of Cassini s suite of remote sensing instruments. The UVIS instrument includes channels for extreme UV (55 to 110 nm) and far UV (110 to 190 nm) spectroscopic imaging, high speed photometry of stellar occultations, solar EUV occultation, and a hydrogen/deuterium absorption cell. UVIS has detected products of water dissociation, neutral oxygen and OH, which dominate the Saturn inner magnetosphere, in contrast to Jupiter, and H fills the entire magnetosphere apparently extending through the magnetopause at far greater density than the ion population. The O and OH and a fraction of the H are probably the products of water physical chemistry, and derived ultimately from water ice. Observed fluctuations indicate close interactions with plasma sources. Sputtering from the satellites water ice surfaces is insufficient to supply the observed mass. Stochastic events in the E ring may be the ultimate source.

  8. On the causes of plasmaspheric rotation variability: IMAGE EUV observations

    NASA Astrophysics Data System (ADS)

    Galvan, David A.; Moldwin, Mark B.; Sandel, Bill R.; Crowley, Geoff

    2010-01-01

    IMAGE EUV observations demonstrate that the plasmasphere usually does not corotate as assumed in simple convection models, even at low L shells. We carry out a statistical survey of plasmaspheric rotation rates over several months of IMAGE EUV data in 2001, using two different measurement techniques. We test the prevailing hypothesis, that subcorotation is due to enhanced auroral zone Joule heating driving equatorward thermospheric winds, by testing for correlation of rotation rates with several geomagnetic indices. Azimuthal features such as "notches" are tracked in local time over a single pass of the IMAGE satellite, both visually and using an automated cross-correlation routine. Each technique provides an estimate of the plasmasphere's rotation rate. We find a weak correlation between rotation rate and Dst, Kp, AE, the midnight boundary index (MBI), and Joule heating estimates from assimilative mapping of ionospheric electrodynamics (AMIE) at L = 2.5, but not at L = 3.5. In general, lower rotation rates correspond to higher auroral and geomagnetic activity. We also make the first direct observation of plasmaspheric superrotation. The plasmaspheric rotation rate is found to be highly variable on multiday timescales, but the typical state of the plasmasphere is subcorotation, with inferred mean values ranging from 88% to 95% of corotation, depending on L shell. In addition, a statistical analysis shows that rotation rates near dusk are generally lower than those at dawn, suggesting that local time and magnetospheric convection contribute to the variation in rotation rate as well. We conclude that the cause of variability in plasmaspheric rotation rate is a combination of storm phase, local-time-dependent convection, and westward ionospheric drift.

  9. Image quality in CT: From physical measurements to model observers.

    PubMed

    Verdun, F R; Racine, D; Ott, J G; Tapiovaara, M J; Toroi, P; Bochud, F O; Veldkamp, W J H; Schegerer, A; Bouwman, R W; Giron, I Hernandez; Marshall, N W; Edyvean, S

    2015-12-01

    Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment. PMID:26459319

  10. a Three-Dimensional Acoustical Imaging System for Zooplankton Observations

    NASA Astrophysics Data System (ADS)

    McGehee, Duncan Ewell

    This dissertation describes the design, testing, and use of a three-dimensional acoustical imaging system, called Fish TV, or FTV, for tracking zooplankton swimming in situ. There is an increasing recognition that three -dimensional tracks of individual plankters are needed for some studies in behavioral ecology including, for example, the role of individual behavior in patch formation and maintenance. Fish TV was developed in part to provide a means of examining zooplankton swimming behavior in a non-invasive way. The system works by forming a set of 64 acoustic beams in an 8 by 8 pattern, each beam 2 ^circ by 2^circ , for a total coverage of 16^circ by 16^circ. The 8 by 8 beams form two dimensions of the image; range provides the third dimension. The system described in the thesis produces three-dimensional images at the rate of approximately one per second. A set of laboratory and field experiments is described that demonstrates the capabilities of the system. The final field experiment was the in situ observation of zooplankton swimming behavior at a site in the San Diego Trough, 15 nautical miles southwest of San Diego. 314 plankters were tracked for one minute. It was observed that there was no connection between the acoustic size of the animals and their repertoire of swimming behaviors. Other contributions of the dissertation include the development of two novel methods for generating acoustic beams with low side lobes. The first is the method of dense random arrays. The second is the optimum mean square quantized aperture method. Both methods were developed originally as ways to "build a better beam pattern" for Fish TV, but also have general significance with respect to aperture theory.

  11. Processing Earth Observing images with Ames Stereo Pipeline

    NASA Astrophysics Data System (ADS)

    Beyer, R. A.; Moratto, Z. M.; Alexandrov, O.; Fong, T.; Shean, D. E.; Smith, B. E.

    2013-12-01

    ICESat with its GLAS instrument provided valuable elevation measurements of glaciers. The loss of this spacecraft caused a demand for alternative elevation sources. In response to that, we have improved our Ames Stereo Pipeline (ASP) software (version 2.1+) to ingest satellite imagery from Earth satellite sources in addition to its support of planetary missions. This enables the open source community a free method to generate digital elevation models (DEM) from Digital Globe stereo imagery and alternatively other cameras using RPC camera models. Here we present details of the software. ASP is a collection of utilities written in C++ and Python that implement stereogrammetry. It contains utilities to manipulate DEMs, project imagery, create KML image quad-trees, and perform simplistic 3D rendering. However its primary application is the creation of DEMs. This is achieved by matching every pixel between the images of a stereo observation via a hierarchical coarse-to-fine template matching method. Matched pixels between images represent a single feature that is triangulated using each image's camera model. The collection of triangulated features represents a point cloud that is then grid resampled to create a DEM. In order for ASP to match pixels/features between images, it requires a search range defined in pixel units. Total processing time is proportional to the area of the first image being matched multiplied by the area of the search range. An incorrect search range for ASP causes repeated false positive matches at each level of the image pyramid and causes excessive processing times with no valid DEM output. Therefore our system contains automatic methods for deducing what the correct search range should be. In addition, we provide options for reducing the overall search range by applying affine epipolar rectification, homography transform, or by map projecting against a prior existing low resolution DEM. Depending on the size of the images, parallax, and image

  12. The Relationship of Body Image Perception and Weight Status to Recent Change in Weight Status of the Adolescent Female.

    ERIC Educational Resources Information Center

    Fowler, Barbara Ann

    1989-01-01

    Investigated relationship of body image perception and weight status to recent change in weight status of adolescent females. Nonobese, overweight, and obese girls (N=90) aged 13 through 17 completed Body-Cathexis Scale and self-report recent change in weight status and demographic questionnaire. Results revealed significant positive correlation…

  13. Sociocultural Differences in Eating Disordered Behaviors and Body Image Perception: A Comparison between Puerto Rican and American College Women.

    ERIC Educational Resources Information Center

    Encarnacion-Garcia, Haydee

    This study investigated whether differences attributable to sociocultural factors existed in the eating-disorder behaviors and body image perception of Puerto Rican and U.S. college women. Participants (n=440) completed the Eating Disorder Inventory-2 and provided demographic information. Results indicated significant differences between the…

  14. Image and video compression/decompression based on human visual perception system and transform coding

    SciTech Connect

    Fu, Chi Yung., Petrich, L.I., Lee, M.

    1997-02-01

    The quantity of information has been growing exponentially, and the form and mix of information have been shifting into the image and video areas. However, neither the storage media nor the available bandwidth can accommodated the vastly expanding requirements for image information. A vital, enabling technology here is compression/decompression. Our compression work is based on a combination of feature-based algorithms inspired by the human visual- perception system (HVS), and some transform-based algorithms (such as our enhanced discrete cosine transform, wavelet transforms), vector quantization and neural networks. All our work was done on desktop workstations using the C++ programming language and commercially available software. During FY 1996, we explored and implemented an enhanced feature-based algorithms, vector quantization, and neural- network-based compression technologies. For example, we improved the feature compression for our feature-based algorithms by a factor of two to ten, a substantial improvement. We also found some promising results when using neural networks and applying them to some video sequences. In addition, we also investigated objective measures to characterize compression results, because traditional means such as the peak signal- to-noise ratio (PSNR) are not adequate to fully characterize the results, since such measures do not take into account the details of human visual perception. We have successfully used our one- year LDRD funding as seed money to explore new research ideas and concepts, the results of this work have led us to obtain external funding from the dud. At this point, we are seeking matching funds from DOE to match the dud funding so that we can bring such technologies into fruition. 9 figs., 2 tabs.

  15. Sea state variability observed by high resolution satellite radar images

    NASA Astrophysics Data System (ADS)

    Pleskachevsky, A.; Lehner, S.

    2012-04-01

    The spatial variability of the wave parameters is measured and investigated using new TerraSAR-X (TS-X) satellite SAR (Synthetic Aperture Radar) images. Wave groupiness, refraction and breaking of individual wave are studied. Space borne SAR is a unique sensor providing two dimensional information of the ocean surface. Due to its daylight, weather independency and global coverage, the TS-X radar is particularly suitable for many ocean and coastal observations and it acquires images of the sea surface with up to 1m resolution; individual ocean waves with wavelength below 30m are detectable. Two-dimensional information of the ocean surface, retrieved using TS-X data, is validated for different oceanographic applications: derivation of the fine resolved wind field (XMOD algorithm) and integrated sea state parameters (XWAVE algorithm). The algorithms are capable to take into account fine-scale effects in the coastal areas. This two-dimensional information can be successfully applied to validate numerical models. For this, wind field and sea state information retrieved from SAR images are given as input for a spectral numerical wave model (wind forcing and boundary condition). The model runs and sensitivity studies are carried out at a fine spatial horizontal resolution of 100m. The model results are compared to buoy time series at one location and with spatially distributed wave parameters obtained from SAR. The comparison shows the sensitivity of waves to local wind variations and the importance of local effects on wave behavior in coastal areas. Examples for the German Bight, North Sea and Rottenest Island, Australia are shown. The wave refraction, rendered by high resolution SAR images, is also studied. The wave ray tracking technique is applied. The wave rays show the propagation of the peak waves in the SAR-scenes and are estimated using image spectral analysis by deriving peak wavelength and direction. The changing of wavelength and direction in the rays allows

  16. Images of Bottomside Irregularities Observed at Topside Altitudes

    NASA Technical Reports Server (NTRS)

    Burke, William J.; Gentile, Louise C.; Shomo, Shannon R.; Roddy, Patrick A.; Pfaff, Robert F.

    2012-01-01

    We analyzed plasma and field measurements acquired by the Communication/ Navigation Outage Forecasting System (C/NOFS) satellite during an eight-hour period on 13-14 January 2010 when strong to moderate 250 MHz scintillation activity was observed at nearby Scintillation Network Decision Aid (SCINDA) ground stations. C/NOFS consistently detected relatively small-scale density and electric field irregularities embedded within large-scale (approx 100 km) structures at topside altitudes. Significant spectral power measured at the Fresnel (approx 1 km) scale size suggests that C/NOFS was magnetically conjugate to bottomside irregularities similar to those directly responsible for the observed scintillations. Simultaneous ion drift and plasma density measurements indicate three distinct types of large-scale irregularities: (1) upward moving depletions, (2) downward moving depletions, and (3) upward moving density enhancements. The first type has the characteristics of equatorial plasma bubbles; the second and third do not. The data suggest that both downward moving depletions and upward moving density enhancements and the embedded small-scale irregularities may be regarded as Alfvenic images of bottomside irregularities. This interpretation is consistent with predictions of previously reported theoretical modeling and with satellite observations of upward-directed Poynting flux in the low-latitude ionosphere.

  17. Instrument for the monochromatic observation of all sky auroral images.

    PubMed

    Mende, S B; Eather, R H; Aamodt, E K

    1977-06-01

    To investigate the dynamics of auroras and faint upper atmospheric emissions, a new type of imaging instrument was developed. The instrument is a wide field of view, narrow-spectral-band imaging system using an intensified S.E.C. TV camera in a time exposure mode. Pictures were taken at very low light levels of a few photons per exposure per resolution element. These pictures are displayed in the form of a pseudocolor presentation in which the color represents spectral ratios of two of the observed auroral spectral emission features. The spectral ratios play an important part in the interpretation of auroral particle dynamics. A digital picture processing facility is also part of the system which enables the digital manppulation of the pictures at standard TV rates. As an example, hydrogen auroras can be displayed having been corrected for nonspectral background by subtracting a picture obtained by a suitable background filter. The instrumentation was calibrated in the laboratory and was used in several field xperiments. Elaborate exposure sequences were developed to extend the dynamic range and to cover the large range of auroral brightnesses in a fairly linear manner. PMID:20168774

  18. Terrestrial Myriametric Radio Burst Observed by IMAGE and Geotail Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Hashimoto, KoZo; Kojima, Hirotsugu; Boardson, Scott A.; Garcia, Leonard N.; Matsumoto, Hiroshi; Green, James L.; Reinisch, Bodo W.

    2013-01-01

    We report the simultaneous detection of a terrestrial myriametric radio burst (TMRB) by IMAGE and Geotail on 19 August 2001. The TMRB was confined in time (0830-1006 UT) and frequency (12-50kHz). Comparisons with all known nonthermal myriametric radiation components reveal that the TMRB might be a distinct radiation with a source that is unrelated to the previously known radiation. Considerations of beaming from spin-modulation analysis and observing satellite and source locations suggest that the TMRB may have a fan beamlike radiation pattern emitted by a discrete, dayside source located along the poleward edge of magnetospheric cusp field lines. TMRB responsiveness to IMF Bz and By orientations suggests that a possible source of the TMRB could be due to dayside magnetic reconnection instigated by northward interplanetary field condition.

  19. Effects of Body Orientation and Retinal Image Pitch on the Perception of Gravity-Referenced Eye Level (GREL)

    NASA Technical Reports Server (NTRS)

    Cohen, Malcolm M.; Guzy, Larry T.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    It has been asserted that the pitch orientation of a visual array and of an observer's body jointly determine the perception of GREL. The current study formally tests this assertion over an extended range with multiple combinations of visual and body pitch orientations. Ten subjects were individually secured in a Circolectric bed surrounded by a room (pitchroom) with walls that could be pitched at various angles with respect to gravity. The bed and the walls of the room were independently adjusted to each of five positions relative to gravitational vertical: -15, -7.5, 0, +7.5, and +15 degrees, yielding 25 combinations of body x room pitch angles, and retinal image pitch (RIP) conditions ranging from -30 to +30 degrees. Each subject set a target to apparent GREL while viewing it against a background of two electroluminescent strips on the outer edges of the far wall of the room. As determined by ANOVA, the orientation of the room, and its interaction with that of the observer, significantly altered GREL (p less than 0.01). Regression analysis showed that GREL was best described as a linear summation of the weighted independent contributions from a body-referenced mechanism (B) and a visual mechanism given by the orientation of the background array on the retina (RIP). The equation for this relationship is: GREL = .74 (B) +.64 (RIP) - 1.42; r-squared = .994.

  20. Children's Drawings--Resource for Development and Observation of Perception of Numbers of Children

    ERIC Educational Resources Information Center

    Pavlovicová, Gabriela; Švecová, Valéria

    2011-01-01

    Children's drawings are one of the most appropriate approach to knowing children, their individuality and also their perceptions. Child is not always able to express their thoughts precisely, because their vocabulary is still incomplete and is gained just lately. In our paper we concentrate on drawing as a communication means, with which we can…

  1. Perceptions and Practices of Student Binge Drinking: An Observational Study of Residential College Students

    ERIC Educational Resources Information Center

    Clinkinbeard, Samantha S.; Johnson, Michael A.

    2013-01-01

    Professionals have debated the use of the term binge drinking over the past couple of decades, yet little attention has been paid to college student perceptions. We explored how students at one university qualitatively defined binge drinking; whether their own definitions coincided with those adopted by researchers; and whether students' own…

  2. Observing and recording instantaneous images on ATM television monitors

    NASA Technical Reports Server (NTRS)

    Patterson, N. P.; Delamere, W. A.; Tousey, R.

    1977-01-01

    A persistent image-converter device was utilized to make visible to the astronaut solar images that were isolated, instantaneous flashes on the ATM TV monitors. In addition, these instantaneous images, as well as normal TV images, were recorded with a Polaroid SX-70 camera for study by the astronauts.

  3. Radio Imaging Observations of Solar Activity Cycle and Its Anomaly

    NASA Astrophysics Data System (ADS)

    Shibasaki, K.

    2011-12-01

    The 24th solar activity cycle has started and relative sunspot numbers are increasing. However, their rate of increase is rather slow compared to previous cycles. Active region sizes are small, lifetime is short, and big (X-class) flares are rare so far. We study this anomalous situation using data from Nobeyama Radioheliograph (NoRH). Radio imaging observations have been done by NoRH since 1992. Nearly 20 years of daily radio images of the Sun at 17 GHz are used to synthesize a radio butterfly diagram. Due to stable operation of the instrument and a robust calibration method, uniform datasets are available covering the whole period of observation. The radio butterfly diagram shows bright features corresponding to active region belts and their migration toward low latitude as the solar cycle progresses. In the present solar activity cycle (24), increase of radio brightness is delayed and slow. There are also bright features around both poles (polar brightening). Their brightness show solar cycle dependence but peaks around solar minimum. Comparison between the last minimum and the previous one shows decrease of its brightness. This corresponds to weakening of polar magnetic field activity between them. In the northern pole, polar brightening is already weakened in 2011, which means it is close to solar maximum in the northern hemisphere. Southern pole does not show such feature yet. Slow rise of activity in active region belt, weakening of polar activity during the minimum, and large north-south asymmetry in polar activity imply that global solar activity and its synchronization are weakening.

  4. Stakeholders' Perceptions Regarding the Use of Patient Photographs Integrated with Medical Imaging Studies.

    PubMed

    Sadigh, Gelareh; Applegate, Kimberly E; Ng, Timothy W; Hendrix, Kamilah A; Tridandapani, Srini

    2016-06-01

    Integrating digital facial photographs of pediatric patients as identifiers (ID) with medical imaging (integrated photographic IDs) may increase the detection of mislabeled studies. The purpose of this study was to determine how different stakeholders would receive this novel technology. Parents or guardians of patients in a children's hospital outpatient radiology department, radiology faculty and residents, and radiology technologists and nurses were asked to complete a survey. The perception about the anticipated use of integrated photographic ID in different clinical scenarios was investigated, and its predictors were determined using logistic regression analysis. Four hundred ninety-eight parents responded (response rate 83 %); 96 and 97 % supported the use of integrated photographic ID, if it improves the radiologist's imaging interpretation or decreases the rate of mislabeled errors, respectively. Thirty-eight percent were worried that photographic IDs would impact patients' privacy. Ninety-four percent believed that they should be asked for their consent prior to obtaining their child's photograph. Seventy-eight radiologists responded (response rate 39 %); 63 and 59 % believed that the use of integrated photographic ID would result in improvement in accurate interpretation of images and identification of mislabeled patient errors, respectively. Forty-nine percent of radiologists had concern that integrated photographic ID would increase interpretation time. Fifty technologists and nurses responded (response rate 59 %); 71 and 73 % supported the technology if it resulted in more acute interpretation of images and identification of mislabeled patients, respectively. A majority of stakeholders support integrated photographic ID in order to improve safety. A majority of parents believe that consent should be obtained. PMID:26620199

  5. Dance and Music in "Gangnam Style": How Dance Observation Affects Meter Perception.

    PubMed

    Lee, Kyung Myun; Barrett, Karen Chan; Kim, Yeonhwa; Lim, Yeoeun; Lee, Kyogu

    2015-01-01

    Dance and music often co-occur as evidenced when viewing choreographed dances or singers moving while performing. This study investigated how the viewing of dance motions shapes sound perception. Previous research has shown that dance reflects the temporal structure of its accompanying music, communicating musical meter (i.e. a hierarchical organization of beats) via coordinated movement patterns that indicate where strong and weak beats occur. Experiments here investigated the effects of dance cues on meter perception, hypothesizing that dance could embody the musical meter, thereby shaping participant reaction times (RTs) to sound targets occurring at different metrical positions.In experiment 1, participants viewed a video with dance choreography indicating 4/4 meter (dance condition) or a series of color changes repeated in sequences of four to indicate 4/4 meter (picture condition). A sound track accompanied these videos and participants reacted to timbre targets at different metrical positions. Participants had the slowest RT's at the strongest beats in the dance condition only. In experiment 2, participants viewed the choreography of the horse-riding dance from Psy's "Gangnam Style" in order to examine how a familiar dance might affect meter perception. Moreover, participants in this experiment were divided into a group with experience dancing this choreography and a group without experience. Results again showed slower RTs to stronger metrical positions and the group with experience demonstrated a more refined perception of metrical hierarchy. Results likely stem from the temporally selective division of attention between auditory and visual domains. This study has implications for understanding: 1) the impact of splitting attention among different sensory modalities, and 2) the impact of embodiment, on perception of musical meter. Viewing dance may interfere with sound processing, particularly at critical metrical positions, but embodied familiarity with

  6. Dance and Music in “Gangnam Style”: How Dance Observation Affects Meter Perception

    PubMed Central

    Lee, Kyung Myun; Barrett, Karen Chan; Kim, Yeonhwa; Lim, Yeoeun; Lee, Kyogu

    2015-01-01

    Dance and music often co-occur as evidenced when viewing choreographed dances or singers moving while performing. This study investigated how the viewing of dance motions shapes sound perception. Previous research has shown that dance reflects the temporal structure of its accompanying music, communicating musical meter (i.e. a hierarchical organization of beats) via coordinated movement patterns that indicate where strong and weak beats occur. Experiments here investigated the effects of dance cues on meter perception, hypothesizing that dance could embody the musical meter, thereby shaping participant reaction times (RTs) to sound targets occurring at different metrical positions.In experiment 1, participants viewed a video with dance choreography indicating 4/4 meter (dance condition) or a series of color changes repeated in sequences of four to indicate 4/4 meter (picture condition). A sound track accompanied these videos and participants reacted to timbre targets at different metrical positions. Participants had the slowest RT’s at the strongest beats in the dance condition only. In experiment 2, participants viewed the choreography of the horse-riding dance from Psy’s “Gangnam Style” in order to examine how a familiar dance might affect meter perception. Moreover, participants in this experiment were divided into a group with experience dancing this choreography and a group without experience. Results again showed slower RTs to stronger metrical positions and the group with experience demonstrated a more refined perception of metrical hierarchy. Results likely stem from the temporally selective division of attention between auditory and visual domains. This study has implications for understanding: 1) the impact of splitting attention among different sensory modalities, and 2) the impact of embodiment, on perception of musical meter. Viewing dance may interfere with sound processing, particularly at critical metrical positions, but embodied

  7. Multitemporal observations of sugarcane by TerraSAR-X images.

    PubMed

    Baghdadi, Nicolas; Cresson, Rémi; Todoroff, Pierre; Moinet, Soizic

    2010-01-01

    The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired

  8. Multitemporal Observations of Sugarcane by TerraSAR-X Images

    PubMed Central

    Baghdadi, Nicolas; Cresson, Rémi; Todoroff, Pierre; Moinet, Soizic

    2010-01-01

    The objective of this study is to investigate the potential of TerraSAR-X (X-band) in monitoring sugarcane growth on Reunion Island (located in the Indian Ocean). Multi-temporal TerraSAR data acquired at various incidence angles (17°, 31°, 37°, 47°, 58°) and polarizations (HH, HV, VV) were analyzed in order to study the behaviour of SAR (synthetic aperture radar) signal as a function of sugarcane height and NDVI (Normalized Difference Vegetation Index). The potential of TerraSAR for mapping the sugarcane harvest was also studied. Radar signal increased quickly with crop height until a threshold height, which depended on polarization and incidence angle. Beyond this threshold, the signal increased only slightly, remained constant, or even decreased. The threshold height is slightly higher with cross polarization and higher incidence angles (47° in comparison with 17° and 31°). Results also showed that the co-polarizations channels (HH and VV) were well correlated. High correlation between SAR signal and NDVI calculated from SPOT-4/5 images was observed. TerraSAR data showed that after strong rains the soil contribution to the backscattering of sugarcane fields can be important for canes with heights of terminal visible dewlap (htvd) less than 50 cm (total cane heights around 155 cm). This increase in radar signal after strong rains could involve an ambiguity between young and mature canes. Indeed, the radar signal on TerraSAR images acquired in wet soil conditions could be of the same order for fields recently harvested and mature sugarcane fields, making difficult the detection of cuts. Finally, TerraSAR data at high spatial resolution were shown to be useful for monitoring sugarcane harvest when the fields are of small size or when the cut is spread out in time. The comparison between incidence angles of 17°, 37° and 58° shows that 37° is more suitable to monitor the sugarcane harvest. The cut is easily detectable on TerraSAR images for data acquired

  9. Galileo imaging observations of Lunar Maria and related deposits

    NASA Astrophysics Data System (ADS)

    Greeley, Ronald; Kadel, Steven D.; Williams, David A.; Gaddis, Lisa R.; Head, James W.; McEwen, Alfred S.; Murchie, Scott L.; Nagel, Engelbert; Neukum, Gerhard; Pieters, Carle M.; Sunshine, Jessica M.; Wagner, Roland; Belton, Michael J. S.

    The Galileo spacecraft imaged parts of the western limb and far side of the Moon in December 1990. Ratios of 0.41/0.56 μm filter images from the Solid State Imaging (SSI) experiment provided information on the titanium content of mare deposits; ratios of the 0.76/0.99 μm images indicated 1 μm absorptions associated with Fe2+ in mafic minerals. Mare ages were derived from crater statistics obtained from Lunar Orbiter images. Results on mare compositions in western Oceanus Procellarum and the Humorum basin are consistent with previous Earth-based observations, thus providing confidence in the use of Galileo data to extract compositional information. Mare units in the Grimaldi and Riccioli basins range in age from 3.25 to 3.48 Ga and consist of medium- to medium-high titanium (<4 to 7% TiO2) content lavas. The Schiller-Zucchius basin shows a higher 0.76/0.99 μm ratio than the surrounding highlands, indicating a potentially higher mafic mineral content consistent with previous interpretations that the area includes mare deposits blanketed by highland ejecta and light plains materials. The oldest mare materials in the Orientale basin occur in south-central Mare Orientale and are 3.7 Ga old; youngest mare materials are in Lacus Autumni and are 2.85 Ga old; these units are medium- to medium-high titanium (<4 to 7% TiO2) basalts. Thus, volcanism was active in Orientale for 0.85 Ga, but lavas were relatively constant in composition. Galileo data suggest that Mendel-Rydberg mare is similar to Mare Orientale; cryptomare are present as well. Thus, the mare lavas on the western limb and far side (to 178°E) are remarkably uniform in composition, being generally of medium- to medium-high titanium content and having relatively low 0.76/0.99 μm ratios. This region of the Moon is between two postulated large impact structures, the Procellarum and the South Pole-Aitken basins, and may have a relatively thick crust. In areas underlain by an inferred thinner crust, i.e., zones

  10. Dependence of the appearance-based perception of criminality, suggestibility, and trustworthiness on the level of pixelation of facial images.

    PubMed

    Nurmoja, Merle; Eamets, Triin; Härma, Hanne-Loore; Bachmann, Talis

    2012-10-01

    While the dependence of face identification on the level of pixelation-transform of the images of faces has been well studied, similar research on face-based trait perception is underdeveloped. Because depiction formats used for hiding individual identity in visual media and evidential material recorded by surveillance cameras often consist of pixelized images, knowing the effects of pixelation on person perception has practical relevance. Here, the results of two experiments are presented showing the effect of facial image pixelation on the perception of criminality, trustworthiness, and suggestibility. It appears that individuals (N = 46, M age = 21.5 yr., SD = 3.1 for criminality ratings; N = 94, M age = 27.4 yr., SD = 10.1 for other ratings) have the ability to discriminate between facial cues ndicative of these perceived traits from the coarse level of image pixelation (10-12 pixels per face horizontally) and that the discriminability increases with a decrease in the coarseness of pixelation. Perceived criminality and trustworthiness appear to be better carried by the pixelized images than perceived suggestibility. PMID:23265011

  11. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  12. Optically perceptible characteristics of sprites observed in Central Europe in 2007-2009

    NASA Astrophysics Data System (ADS)

    Bór, József

    2013-01-01

    Sprites are luminous optical emissions accompanying electric discharges in the mesosphere. 489 sprite events have been observed with a TV frame rate video system in Central Europe from Sopron (47.68°N, 16.58°E, ˜230 m MSL), Hungary between 2007 and 2009. Characteristic sprite forms, i.e., column, wishbone, tree, angel, and carrot have been identified in the set of records. Characteristic morphological properties corresponding to each type are given; earlier definitions and observations as well as the related theoretical considerations are reviewed. Based on the knowledge and experience from high-speed imaging in sprite observations, probable time sequences of streamer propagation directions were associated with the characteristic sprite types. It is suggested that different streamer propagation sequences corresponding to different dynamic processes may result in similar sprite forms. Several occasionally detectable sprite features are noted and described: tendrils, glows, puffs, beads, and spots. Spots are distinguished from the similar beads by their characteristic brightness, size, and location relative to the bright body of the sprite. The events observed in Central Europe have been classified by the number of individual sprites and by the variety of types appearing in them. More than 90% of the recorded sprites were found to occur in clusters rather than alone, and more than half of the sprite clusters contained more than one sprite types. Jellyfish and dancing sprite events are described as being special subsets of sprite clusters. Statistical analysis of the occurrences of morphological types, various sprite features, and event durations indicated that jellyfish sprites and clusters of column sprites with glows and tendrils do not tend to have long optical lifetimes. Sprite events with more morphological types, on the other hand, more likely have extended durations. The maximum of the encountered event duration was lower for events with many sprite

  13. Far-infrared Imaging Observations of the Chamaeleon Region

    NASA Astrophysics Data System (ADS)

    Ikeda, Norio; Kitamura, Yoshimi; Takita, Satoshi; Ueno, Munetaka; Suzuki, Toyoaki; Kawamura, Akiko; Kaneda, Hidehiro

    2012-01-01

    We have carried out far-infrared imaging observations toward the Chamaeleon star-forming region by the Far-Infrared Surveyor (FIS) on board the AKARI satellite. The AKARI images cover a total area of 33.79 deg2, corresponding to 210 pc2 at the distance to the source. Using the FIS bands of 65-160 μm and the COBE/DIRBE bands of 60-240 μm, we constructed column density maps of cold (11.7 K) and warm (22.1 K) dust components with a linear resolution of 0.04 pc. On the basis of their spatial distributions and physical properties, we interpret that the cold component corresponds to the molecular clouds and the warm one the cold H I clouds, which are thought to be in a transient phase between atomic and molecular media. The warm component is shown to be uniformly distributed at a large spatial scale of ~50 pc, while a several pc-scale gradient along the east-west direction is found in the distribution of the cold component. The former is consistent with a formation scenario of the cold H I clouds through the thermal instability in the warm neutral medium triggered by a 100 pc scale supernova explosion. This scenario, however, cannot produce the latter, several pc-scale gradient in molecular cloud mass. We conclude that the gravitational fragmentation of the cold H I cloud likely created the molecular clouds with spatial scale as small as several pc.

  14. FAR-INFRARED IMAGING OBSERVATIONS OF THE CHAMAELEON REGION

    SciTech Connect

    Ikeda, Norio; Kitamura, Yoshimi; Takita, Satoshi; Ueno, Munetaka; Suzuki, Toyoaki

    2012-01-20

    We have carried out far-infrared imaging observations toward the Chamaeleon star-forming region by the Far-Infrared Surveyor (FIS) on board the AKARI satellite. The AKARI images cover a total area of 33.79 deg{sup 2}, corresponding to 210 pc{sup 2} at the distance to the source. Using the FIS bands of 65-160 {mu}m and the COBE/DIRBE bands of 60-240 {mu}m, we constructed column density maps of cold (11.7 K) and warm (22.1 K) dust components with a linear resolution of 0.04 pc. On the basis of their spatial distributions and physical properties, we interpret that the cold component corresponds to the molecular clouds and the warm one the cold H I clouds, which are thought to be in a transient phase between atomic and molecular media. The warm component is shown to be uniformly distributed at a large spatial scale of {approx}50 pc, while a several pc-scale gradient along the east-west direction is found in the distribution of the cold component. The former is consistent with a formation scenario of the cold H I clouds through the thermal instability in the warm neutral medium triggered by a 100 pc scale supernova explosion. This scenario, however, cannot produce the latter, several pc-scale gradient in molecular cloud mass. We conclude that the gravitational fragmentation of the cold H I cloud likely created the molecular clouds with spatial scale as small as several pc.

  15. Perception of saturation in natural scenes.

    PubMed

    Schiller, Florian; Gegenfurtner, Karl R

    2016-03-01

    We measured how well perception of color saturation in natural scenes can be predicted by different measures that are available in the literature. We presented 80 color images of natural scenes or their gray-scale counterparts to our observers, who were asked to choose the pixel from each image that appeared to be the most saturated. We compared our observers' choices to the predictions of seven popular saturation measures. For the color images, all of the measures predicted perception of saturation quite well, with CIECAM02 performing best. Differences between the measures were small but systematic. When gray-scale images were viewed, observers still chose pixels whose counterparts in the color images were saturated above average. This indicates that image structure and prior knowledge can be relevant to perception of saturation. Nevertheless, our results also show that saturation in natural scenes can be specified quite well without taking these factors into account. PMID:26974924

  16. Neural portraits of perception: reconstructing face images from evoked brain activity.

    PubMed

    Cowen, Alan S; Chun, Marvin M; Kuhl, Brice A

    2014-07-01

    Recent neuroimaging advances have allowed visual experience to be reconstructed from patterns of brain activity. While neural reconstructions have ranged in complexity, they have relied almost exclusively on retinotopic mappings between visual input and activity in early visual cortex. However, subjective perceptual information is tied more closely to higher-level cortical regions that have not yet been used as the primary basis for neural reconstructions. Furthermore, no reconstruction studies to date have reported reconstructions of face images, which activate a highly distributed cortical network. Thus, we investigated (a) whether individual face images could be accurately reconstructed from distributed patterns of neural activity, and (b) whether this could be achieved even when excluding activity within occipital cortex. Our approach involved four steps. (1) Principal component analysis (PCA) was used to identify components that efficiently represented a set of training faces. (2) The identified components were then mapped, using a machine learning algorithm, to fMRI activity collected during viewing of the training faces. (3) Based on activity elicited by a new set of test faces, the algorithm predicted associated component scores. (4) Finally, these scores were transformed into reconstructed images. Using both objective and subjective validation measures, we show that our methods yield strikingly accurate neural reconstructions of faces even when excluding occipital cortex. This methodology not only represents a novel and promising approach for investigating face perception, but also suggests avenues for reconstructing 'offline' visual experiences-including dreams, memories, and imagination-which are chiefly represented in higher-level cortical areas. PMID:24650597

  17. Self-image and perception of mother and father in psychotic and borderline patients.

    PubMed

    Armelius, K; Granberg

    2000-02-01

    Psychotic and borderline patients rated their self-image and their perception of their mother and father using the Structural Analysis of Social Behavior model (SASB). The borderline patients had more negative images of themselves and their parents, especially their fathers, than did the psychotic patients and the normal subjects, while the psychotic patients' ratings did not differ much from those of the normal subjects. The self-image was related to the images of both parents for borderline patients and normal subjects, while for the psychotic patients only the image of the mother was important for the self-image. In addition, the psychotic patients did not differentiate between the poles of control and autonomy in the introjected self-image. It was concluded that borderline patients are characterized by negative attachment, while psychotic patients are characterized by poor separation from the mother and poor differentiation between autonomy and control. The paper also discusses how this may influence the patients' relations to others. Psychotische und Borderline Patienten beurteilten ihr Selbstbild und ihre Wahrnehmung von Mutter und Vater mit Hilfe der strukturalen Analyse sozialen Verhaltens (SASB). Die Borderline Patienten hattten negativere Selbstbilder und Elternbilder (speziell Vaterbilder) als die psychotischen Patienten und gesunde Personen. Die Beurteilungen der psychotischen Patienten unterschieden sich dagegen nicht besonders von jenen Gesunder. Das Selbstbild stand in Beziehung zu beiden Elternbildern bei den Borderline Patienten und den Gesunden, während bei den psychotischen Patienten nur das Mutterbild für das Selbstbild bedeutsam war. Außerdem konnte bei den psychotischen Patienten nicht zwischen den Polen der Kontrolle und Autonomie bzgl. der introjizierten Selbstbilder differenziert werden. Aus den Ergebnissen wird gefolgert, dass Borderline Patienten durch eine negative Bindung charackterisiert sind, psychotische Patienten dagegen durch

  18. Spectro-imaging observations of H3+ on Jupiter

    NASA Astrophysics Data System (ADS)

    Lellouch, Emmanuel

    2006-11-01

    Narrow-band filter, high-spectral-resolution (0.2cm-1) spectro-imaging infrared observations of Jupiter's auroral zones, acquired in October 1999 and October 2000 with the FTS/BEAR instrument at the Canada France Hawaii Telescope, have provided maps of the emission from the H2 S1(1) quadrupole line and several H3+ lines. H2 and H3+ emissions appear to be morphologically different, especially in the north, where the latter notably exhibits a ‘hot spot’ near λIII=150 170° System III longitude. The spectra include a total of 14 H3+ lines, including two hot lines from the 3ν2 ν2 band, detected on Jupiter for the first time. They can be used to determine H3+ column densities, rotational (Trot) and vibrational (Tvib) temperatures. We find the mean Tvib of the ν2=3 state to be lower (960±50K) than the mean Trot in v2=2 (1170±75K), indicating an underpopulation of the v2=3 level with respect to local thermodynamical equilibrium. Rotational temperatures and associated column densities are generally higher and lower, respectively, than inferred previously from ν2 observations. These features can be explained by the combination of both a large positive temperature gradient in the sub-microbar auroral atmosphere and non-local thermal equilibrium effects affecting preferentially hot and combination bands. Spatial variations in line intensities are mostly owing to correlated variations in the H3+ column densities. The thermostatic role played by H3+ at ionospheric levels may provide an explanation. The exception is the northern ‘hot spot’, which exhibits a Tvib about 250K higher than other regions.

  19. Lightning Imaging Sensor (LIS) for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Christian, Hugh J.; Blakeslee, Richard J.; Goodman, Steven J.

    1992-01-01

    Not only are scientific objectives and instrument characteristics given of a calibrated optical LIS for the EOS but also for the Tropical Rainfall Measuring Mission (TRMM) which was designed to acquire and study the distribution and variability of total lightning on a global basis. The LIS can be traced to a lightning mapper sensor planned for flight on the GOES meteorological satellites. The LIS consists of a staring imager optimized to detect and locate lightning. The LIS will detect and locate lightning with storm scale resolution (i.e., 5 to 10 km) over a large region of the Earth's surface along the orbital track of the satellite, mark the time of occurrence of the lightning, and measure the radiant energy. The LIS will have a nearly uniform 90 pct. detection efficiency within the area viewed by the sensor, and will detect intracloud and cloud-to-ground discharges during day and night conditions. Also, the LIS will monitor individual storms and storm systems long enough to obtain a measure of the lightning flashing rate when they are within the field of view of the LIS. The LIS attributes include low cost, low weight and power, low data rate, and important science. The LIS will study the hydrological cycle, general circulation and sea surface temperature variations, along with examinations of the electrical coupling of thunderstorms with the ionosphere and magnetosphere, and observations and modeling of the global electric circuit.

  20. Satellite observations and instrumentation for imaging energetic neutral atoms

    NASA Astrophysics Data System (ADS)

    Voss, Henry D.; Mobilia, Joseph; Collin, Henry L.; Imhof, William L.

    1992-06-01

    Direct measurements of energetic neutral atoms (ENA) and ions have been obtained with the cooled solid state detectors on the low altitude (220 km) three-axis stabilized S81-1/SEEP satellite and on the spinning 400 km X 5.5 Re CRRES satellite. During magnetic storms ENA and ion precipitation (E > 10 keV) is evident over the equatorial region from the LE spectrometer on the SEEP payload (ONR 804). The spinning motion of the CRRES satellite allows for simple mapping of the magnetosphere using the IMS-HI (ONR 307-8-3) neutral spectrometer. This instrument covers the energy range from 20 to 1000 keV and uses a 7 kG magnetic field to screen out protons less than about 50 MeV. ENA and the resulting low- altitude ion belt have been observed with the IMS-HI instrument. Recently, an advanced spectrometer (SEPS) has been developed to image electrons, ions, and neutrals on the despun platform of the POLAR satellite (approximately 1.8 X 9 Re) for launch in the mid-90's as part of the NASA ISTP/GGS program. For this instrument a 256 element solid state pixel array has been developed that interfaces to 256 amplifier strings using a custom 16 channel microcircuit chip. In addition, this instrument features a motor controlled iris wheel and anticoincidence electronics.

  1. [Right ventricular dysplasia and dilated cardiomyopathy observed by radionuclide images].

    PubMed

    Takamura, I; Ando, J; Miyamoto, A; Kobayashi, T; Sakamoto, S; Yasuda, H

    1985-12-01

    Four cases of right ventricular dysplasia (RVD) and 28 cases of dilated cardiomyopathy (DCM) were studied. RVD was characterized clinically by syncope, sustained recurrent ventricular tachycardia with left bundle branch block patterns on the surface electrocardiogram, and right heart failure. Furthermore, moderate to severe dilatation of the right ventricle and depressed right ventricular function were apparent on radionuclide angiography. However, left ventricular dilatation and depressed left ventricular function were documented in DCM. Right ventricular volume was proportional to left ventricular volume in DCM, however, right ventricular volume was disproportionately greater in RVD. On the T1-201 perfusion image, left ventricular perfusion defects were delineated in 10 of 26 patients with DCM, and in one of four RVD patients. During two to eight year follow-up periods, six patients died suddenly five of whom had left ventricular perfusion defects. However, in 19 patients without left ventricular perfusion defects, only one sudden death was observed. A connecting link between sudden death and left ventricular perfusion defect is suggested. PMID:3841888

  2. Investigating the Relationship of Sociodemographic and Personality Factors to Faculty Perceptions and Motivations Regarding the Use of Online Instruction in Radiologic and Imaging Sciences

    ERIC Educational Resources Information Center

    Washington, Angela E.

    2012-01-01

    The purpose of this quantitative correlational study was to investigate the relationship of sociodemographic and personality traits to faculty perceptions and motivations regarding the use of online instruction in radiologic and imaging sciences. A faculty perception and motivations survey of online instruction was administered online in order to…

  3. Observer Bias: An Interaction of Temperament Traits with Biases in the Semantic Perception of Lexical Material

    PubMed Central

    Trofimova, Ira

    2014-01-01

    The lexical approach is a method in differential psychology that uses people's estimations of verbal descriptors of human behavior in order to derive the structure of human individuality. The validity of the assumptions of this method about the objectivity of people's estimations is rarely questioned. Meanwhile the social nature of language and the presence of emotionality biases in cognition are well-recognized in psychology. A question remains, however, as to whether such an emotionality-capacities bias is strong enough to affect semantic perception of verbal material. For the lexical approach to be valid as a method of scientific investigations, such biases should not exist in semantic perception of the verbal material that is used by this approach. This article reports on two studies investigating differences between groups contrasted by 12 temperament traits (i.e. by energetic and other capacities, as well as emotionality) in the semantic perception of very general verbal material. Both studies contrasted the groups by a variety of capacities: endurance, lability and emotionality separately in physical, social-verbal and mental aspects of activities. Hypotheses of “background emotionality” and a “projection through capacities” were supported. Non-evaluative criteria for categorization (related to complexity, organization, stability and probability of occurrence of objects) followed the polarity of evaluative criteria, and did not show independence from this polarity. Participants with stronger physical or social endurance gave significantly more positive ratings to a variety of concepts, and participants with faster physical tempo gave more positive ratings to timing-related concepts. The results suggest that people's estimations of lexical material related to human behavior have emotionality, language- and dynamical capacities-related biases and therefore are unreliable. This questions the validity of the lexical approach as a method for the objective

  4. Near-infrared spectroscopy of image clarity perception in the human brain

    NASA Astrophysics Data System (ADS)

    Lugo, J. E.; Habak, C.; Doti, Rafael; Faubert, Jocelyn

    2014-09-01

    The perception of blur in humans is intrinsic to our visual system, and dioptric power can improve clarity in many cases. This was evaluated experimentally to establish the best correction with dioptric power shifts. We used Near Infrared Spectroscopy (NIRS) to measure Oxy-, Deoxy- and Total-hemoglobin concentration changes in the brain while viewing images and reading a Snellen chart. Participants were tested with their usual correction (no diopter power shift (0 D)), with a 0.25 diopter power shift (0.25 D), and with a 0.5 diopter power shift (0.5 D). The concept of Approximate Entropy (AE) was applied to quantify the regularity of these hemoglobin time series of finite length. AE computations are based on the likelihood that similar templates in a time series remain similar on the next incremental comparison, so that time series with large AE have high irregular fluctuation. We found that the dioptric power shift eliciting the highest AE indicates the clearest visual condition for subjects. This technique may impact the current way in which ophthalmic lenses are prescribed.

  5. Perception of the Image of a Child and Oneself in the Role of a Mother by Women Parenting Disabled Children

    PubMed Central

    Inevatkina, Svetlana Evgenyevna

    2015-01-01

    The article discusses the role of the parent-child interaction in the development of a young child with disabilities. It mentions possible distortions of the said interaction. In addition, the submitted material contains the results of an empirical study on the structure and content of the image of a child and perception of oneself in the role of a mother by women parenting children with disabilities. PMID:26156936

  6. New Percepts via Mental Imagery?

    PubMed

    Mast, Fred W; Tartaglia, Elisa M; Herzog, Michael H

    2012-01-01

    We are able to extract detailed information from mental images that we were not explicitly aware of during encoding. For example, we can discover a new figure when we rotate a previously seen image in our mind. However, such discoveries are not "really" new but just new "interpretations." In two recent publications, we have shown that mental imagery can lead to perceptual learning (Tartaglia et al., 2009, 2012). Observers imagined the central line of a bisection stimulus for thousands of trials. This training enabled observers to perceive bisection offsets that were invisible before training. Hence, it seems that perceptual learning via mental imagery leads to new percepts. We will argue, however, that these new percepts can occur only within "known" models. In this sense, perceptual learning via mental imagery exceeds new discoveries in mental images. Still, the effects of mental imagery on perceptual learning are limited. Only perception can lead to really new perceptual experience. PMID:23060830

  7. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    NASA Technical Reports Server (NTRS)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    1993-01-01

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  8. Observation of pressure ridges in SAR images of sea ice: Scattering theory and comparison with observations

    NASA Astrophysics Data System (ADS)

    Vesecky, J. F.; Daida, J. M.; Shuchman, R. A.; Onstott, R. H.; Camiso, J. C.

    Ridges and keels (hummocks and bummocks) in sea ice flows are important in sea ice research for both scientific and practical reasons. Sea ice movement and deformation is driven by internal and external stresses on the ice. Ridges and keels play important roles in both cases because they determine the external wind and current stresses via drag coefficients. For example, the drag coefficient over sea ice can vary by a factor of several depending on the fluid mechanical roughness length of the surface. This roughness length is thought to be strongly dependent on the ridge structures present. Thus, variations in ridge and keel structure can cause gradients in external stresses which must be balanced by internal stresses and possibly fracture of the ice. Ridging in sea ice is also a sign of fracture. In a practical sense, large ridges form the biggest impediment to surface travel over the ice or penetration through sea ice by ice-strengthened ships. Ridges also play an important role in the damage caused by sea ice to off-shore structures. Hence, observation and measurement of sea ice ridges is an important component of sea ice remote sensing. The research reported here builds on previous work, estimating the characteristics of ridges and leads in sea ice from SAR images. Our objective is to develop methods for quantitative measurement of sea ice ridges from SAR images. To make further progress, in particular, to estimate ridge height, a scattering model for ridges is needed. Our research approach for a ridge scattering model begins with a survey of the geometrical properties of ridges and a comparison with the characteristics of the surrounding ice. For this purpose we have used airborne optical laser (AOL) data collected during the 1987 Greenland Sea Experiment. These data were used to generate a spatial wavenumber spectrum for height variance for a typical ridge - the typical ridge is the average over 10 large ridges. Our first-order model radar scattering includes

  9. Curiosity's Mars Hand Lens Imager (MAHLI): Inital Observations and Activities

    NASA Technical Reports Server (NTRS)

    Edgett, K. S.; Yingst, R. A.; Minitti, M. E.; Robinson, M. L.; Kennedy, M. R.; Lipkaman, L. J.; Jensen, E. H.; Anderson, R. C.; Bean, K. M.; Beegle, L. W.; Carsten, J. L.; Collins, C. L.; Cooper, B.; Deen, R. G.; Gupta, S.

    2013-01-01

    MAHLI (Mars Hand Lens Imager) is a 2-megapixel focusable macro lens color camera on the turret on Curiosity's robotic arm. The investigation centers on stratigraphy, grain-scale texture, structure, mineralogy, and morphology of geologic materials at Curiosity's Gale robotic field site. MAHLI acquires focused images at working distances of 2.1 cm to infinity; for reference, at 2.1 cm the scale is 14 microns/pixel; at 6.9 cm it is 31 microns/pixel, like the Spirit and Opportunity Microscopic Imager (MI) cameras.

  10. There Goes My Image: The Perception of Male Librarians by Colleague, Student, and Self.

    ERIC Educational Resources Information Center

    Morrisey, Locke J.; Case, Donald O.

    1988-01-01

    This study used semantic differential scales to compare the perceptions of male librarians among undergraduates, graduate students, and university librarians. It was found that male librarians believe that they are viewed in a negative light, while other respondents reported positive perceptions of male librarians. (40 references) (Author/CLB)

  11. Student and Teacher Perceptions of the Use of Multimedia Supported Predict Observe Explain Tasks to Probe Understanding

    NASA Astrophysics Data System (ADS)

    Kearney, Matthew; Treagust, David F.; Yeo, Shelley; Zadnik, Marjan G.

    2001-08-01

    This paper discusses student and teacher perceptions of a new development in the use of the predict-observe-explain (POE) strategy. This development involves the incorporation of POE tasks into a multimedia computer program that uses real-life, digital video clips of difficult, expensive, time consuming or dangerous scenarios as stimuli for these tasks. The program was created by the first author to be used by pairs of secondary physics students to elicit their conceptions of force and motion and encourage discussion about these views. In this computer learning environment, students were required to type full sentence responses that were recorded by the computer for later analysis by the researcher. Other data sources for this study included audio and video recordings of student discussions, interviews with selected students and their teachers, classroom observations, and student questionnaires. This paper will report on some findings from the study, focussing on student and teacher perceptions of the computer-mediated POE tasks. The findings have implications for the effective use of multimedia to enhance meaningful learning in science classrooms.

  12. Gemini planet imager observational calibrations VII: on-sky polarimetric performance of the Gemini planet imager

    NASA Astrophysics Data System (ADS)

    Wiktorowicz, Sloane J.; Millar-Blanchaer, Max; Perrin, Marshall D.; Graham, James R.; Fitzgerald, Michael P.; Maire, Jérôme; Ingraham, Patrick; Savransky, Dmitry; Macintosh, Bruce A.; Thomas, Sandrine J.; Chilcote, Jeffrey K.; Draper, Zachary H.; Song, Inseok; Cardwell, Andrew; Goodsell, Stephen J.; Hartung, Markus; Hibon, Pascale; Rantakyrö, Fredrik; Sadakuni, Naru

    2014-07-01

    We present on-sky polarimetric observations with the Gemini Planet Imager (GPI) obtained at straight Cassegrain focus on the Gemini South 8-m telescope. Observations of polarimetric calibrator stars, ranging from nearly un- polarized to strongly polarized, enable determination of the combined telescope and instrumental polarization. We find the conversion of Stokes I to linear and circular instrumental polarization in the instrument frame to be I --> (QIP, UIP, PIP, VIP) = (-0.037 +/- 0.010%, +0.4338 +/- 0.0075%, 0.4354 +/- 0.0075%, -6.64 +/- 0.56%). Such precise measurement of instrumental polarization enables ~0.1% absolute accuracy in measurements of linear polarization, which together with GPI's high contrast will allow GPI to explore scattered light from circumstellar disk in unprecedented detail, conduct observations of a range of other astronomical bodies, and potentially even study polarized thermal emission from young exoplanets. Observations of unpolarized standard stars also let us quantify how well GPI's differential polarimetry mode can suppress the stellar PSF halo. We show that GPI polarimetry achieves cancellation of unpolarized starlight by factors of 100-200, reaching the photon noise limit for sensitivity to circumstellar scattered light for all but the smallest separations at which the calibration for instrumental polarization currently sets the limit.

  13. Negative Body Image Associated with Changes in the Visual Body Appearance Increases Pain Perception

    PubMed Central

    Osumi, Michihiro; Imai, Ryota; Ueta, Kozo; Nobusako, Satoshi; Morioka, Shu

    2014-01-01

    Changing the visual body appearance by use of as virtual reality system, funny mirror, or binocular glasses has been reported to be helpful in rehabilitation of pain. However, there are interindividual differences in the analgesic effect of changing the visual body image. We hypothesized that a negative body image associated with changing the visual body appearance causes interindividual differences in the analgesic effect although the relationship between the visual body appearance and analgesic effect has not been clarified. We investigated whether a negative body image associated with changes in the visual body appearance increased pain. Twenty-five healthy individuals participated in this study. To evoke a negative body image, we applied the method of rubber hand illusion. We created an “injured rubber hand” to evoke unpleasantness associated with pain, a “hairy rubber hand” to evoke unpleasantness associated with embarrassment, and a “twisted rubber hand” to evoke unpleasantness associated with deviation from the concept of normality. We also created a “normal rubber hand” as a control. The pain threshold was measured while the participant observed the rubber hand using a device that measured pain caused by thermal stimuli. Body ownership experiences were elicited by observation of the injured rubber hand and hairy rubber hand as well as the normal rubber hand. Participants felt more unpleasantness by observing the injured rubber hand and hairy rubber hand than the normal rubber hand and twisted rubber hand (p<0.001). The pain threshold was lower under the injured rubber hand condition than with the other conditions (p<0.001). We conclude that a negative body appearance associated with pain can increase pain sensitivity. PMID:25210738

  14. The Eye Gaze Direction of an Observed Person Can Bias Perception, Memory, and Attention in Adolescents with and without Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Freeth, M.; Ropar, D.; Chapman, P.; Mitchell, P.

    2010-01-01

    The reported experiments aimed to investigate whether a person and his or her gaze direction presented in the context of a naturalistic scene cause perception, memory, and attention to be biased in typically developing adolescents and high-functioning adolescents with autism spectrum disorder (ASD). A novel computerized image manipulation program…

  15. Observations of Beta Pictoris b with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Chilcote, J.; Graham, J.; Barman, T.; Fitzgerald, M.; Larkin, J.; Macintosh, B.; Bauman, B.; Burrows, A.; Cardwell, A.; De Rosa, R.; Dillon, D.; Doyon, R.; Dunn, J.; Erikson, D.; Gavel, D.; Goodsell, S.; Hartung, M.; Hibon, P.; Ingraham, P.; Kalas, P.; Konopacky, Q.; Maire, J.; Marchis, F.; Marley, M.; Mcbride, J.; Millar-Blanchaer, M.; Morzinski, K.; Norton, A.; Oppenheimer, B.; Palmer, D.; Patience, J.; Pueyo, L.; Rantakyro, F.; Sadakuni, N.; Saddlemyer, L.; Savransky, D.; Serio, A.; Soummer, R.; Sivaramakrishnan, A.; Song, I.; Thomas, S.; Wallace, K.; Wiktorowicz, S.; Wolff, S.

    2014-09-01

    Using the recently installed Gemini Planet Imager (GPI), we present measurements of the planetary companion to the nearby young star beta Pic. GPI is a facility class instrument located at Gemini South designed to image and provide low-resolution spectra of Jupiter sized, self-luminous planetary companions around young nearby stars. We present the current imaged spectrum and atmospheric models of the planet based upon GPI's R ˜50 integral field spectrograph. Further, we present a joint analysis of the GPI and NACO astrometry, and the Snellen et al. (2014) radial velocity measurement of beta Pic b that provides the first constraint on the argument of periastron, providing a causal link to the infalling, evaporating bodies.

  16. Dust Transport and Deposition Observed from the Terra-Moderate Image Spectrometer (MODIS) Space Observations

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2004-01-01

    Meteorological observations, in situ data and satellite images of dust episodes were used already in the 1970s to estimate that 100 tg of dust are transported from Africa over the Atlantic Ocean every year between June and August and deposited in the Atlantic Ocean and the Americas. Desert dust is a main source of nutrients to oceanic biota and the Amazon forest, but deteriorates air quality and caries pathogens as shown for Florida. Dust affects the Earth radiation budget, thus participating in climate change and feedback mechanisms. There is an urgent need for new tools for quantitative evaluation of the dust distribution, transport and deposition. The Terra spacecraft launched at the dawn of the last millennium provides first systematic well calibrated multispectral measurements from the MODIS instrument, for daily global analysis of aerosol. MODIS data are used here to distinguish dust from smoke and maritime aerosols and evaluate the African dust column concentration, transport and deposition. We found that 230 plus or minus 80 tg of dust are transported annually from Africa to the Atlantic Ocean, 30 tg return to Africa and Europe, 70 tg reach the Caribbean, 45 tg fertilize the Amazon Basin, 4 times as previous estimates thus explaining a paradox regarding the source of nutrition to the Amazon forest, and 120 plus or minus 40 tg are deposited in the Atlantic Ocean. The results are compared favorably with dust transport models for particle radius less than or equal to 12 microns. This study is a first example of quantitative use of MODIS aerosol for a geophysical study.

  17. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore P.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.

    1992-01-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  18. Ultraviolet Imaging Telescope observations of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Hennessy, Gregory S.; O'Connell, Robert W.; Cheng, Kwang P.; Bohlin, Ralph C.; Collins, Nicholas R.; Gull, Theodore R.; Hintzen, Paul; Isensee, Joan E.; Landsman, Wayne B.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1992-08-01

    We obtained ultraviolet images of the Crab Nebula with the Ultraviolet Imaging Telescope during the Astro-1 Space Shuttle mission in 1990 December. The UV continuum morphology of the Crab is generally similar to that in the optical region, but the wispy structures are less conspicuous in the UV and X-ray. UV line emission from the thermal filaments is not strong. UV spectral index maps with a resolution of 10 arcsecs show a significant gradient across the nebula, with the outer parts being redder, as expected from synchrotron losses. The location of the bluest synchrotron continuum does not coincide with the pulsar.

  19. Lunar and Planetary Science XXXV: Image Processing and Earth Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The titles in this section include: 1) Expansion in Geographic Information Services for PIGWAD; 2) Modernization of the Integrated Software for Imagers and Spectrometers; 3) Science-based Region-of-Interest Image Compression; 4) Topographic Analysis with a Stereo Matching Tool Kit; 5) Central Avra Valley Storage and Recovery Project (CAVSARP) Site, Tucson, Arizona: Floodwater and Soil Moisture Investigations with Extraterrestrial Applications; 6) ASE Floodwater Classifier Development for EO-1 HYPERION Imagery; 7) Autonomous Sciencecraft Experiment (ASE) Operations on EO-1 in 2004; 8) Autonomous Vegetation Cover Scene Classification of EO-1 Hyperion Hyperspectral Data; 9) Long-Term Continental Areal Reduction Produced by Tectonic Processes.

  20. A Multiagent System for Edge Detection and Continuity Perception on Fish Otolith Images

    NASA Astrophysics Data System (ADS)

    Guillaud, Anne; Troadec, Herve; Benzinou, Abdesslam; Le Bihan, Jean; Rodin, Vincent

    2002-12-01

    We present an algorithm for fish otolith growth ring detection using a multiagent system. Up to now, the identification of growth rings, for age estimation, is routinely achieved by human readers, but this task is tedious and depends on the reader subjectivity. One of the major problems encountered during an automatic contour detection is the lack of ring continuity perception. We present an approach to improve this continuity perception based on a 2D reconstruction of rings using a multiagent system. The originality of the approach is to use local edge detection achieved by agents and combine it with continuity perception that active contours allow.

  1. Observer performance with computer-generated images of /sup 201/Tl-Cl myocardial perfusion

    SciTech Connect

    Wiener, S.N.; Flynn, M.J.; Edelstein, J.

    1980-07-01

    The effect of simple image processing on the interpretation of /sup 201/Tl-Cl myocardial perfusion images was evaluated by ROC analysis. Polaroid images of the cathode ray tube of an Anger camera and computer-processed transparent images recorded in color and shades of gray were examined by multiple observers. A total of 198 observer responses was accumulated for each of five image formats. The observer responses were compared with results established by coronary angiography. Better observer performance was obtained for all computer-generated images except in the region of low false positive values. The response for color-scale formats were, in general, superior to those from the gray-scale formats. No significant improvement in observer performance resulted from the use of background subtraction with a rescaling of the 16-level gray scale to the residual information. When nine-point smoothing was applied to the color-scale display format, there was a poorer observer response.

  2. Pain Sensitivity and Observer Perception of Pain in Individuals with Autistic Spectrum Disorder

    PubMed Central

    Allely, C. S.

    2013-01-01

    The peer-reviewed literature investigating the relationship between pain expression and perception of pain in individuals with ASD is sparse. The aim of the present systematic PRIMSA review was twofold: first, to see what evidence there is for the widely held belief that individuals with ASD are insensitive to pain or have a high pain threshold in the peer-reviewed literature and, second, to examine whether individuals with ASD react or express pain differently. Fifteen studies investigating pain in individuals with ASD were identified. The case studies all reported pain insensitivity in individuals with ASD. However, the majority of the ten experimental studies reviewed indicate that the idea that individuals with ASD are pain insensitive needs to be challenged. The findings also highlight the strong possibility that not all children with ASD express their physical discomfort in the same way as a neurotypical child would (i.e., cry, moan, seek comfort, etc.) which may lead caregivers and the medical profession to interpret this as pain insensitivity or incorrectly lead them to believe that the child is in no pain. These results have important implications for the assessment and management of pain in children with ASD. PMID:23843740

  3. Advanced scanners and imaging systems for earth observations. [conferences

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Assessments of present and future sensors and sensor related technology are reported along with a description of user needs and applications. Five areas are outlined: (1) electromechanical scanners, (2) self-scanned solid state sensors, (3) electron beam imagers, (4) sensor related technology, and (5) user applications. Recommendations, charts, system designs, technical approaches, and bibliographies are included for each area.

  4. Cassini Imaging Science Subsystem observations of Titan's south polar cloud

    NASA Astrophysics Data System (ADS)

    West, R. A.; Del Genio, A. D.; Barbara, J. M.; Toledo, D.; Lavvas, P.; Rannou, P.; Turtle, E. P.; Perry, J.

    2016-05-01

    In May of 2012 images of Titan obtained by the Cassini Imaging Science Subsystem (ISS) showed a newly-formed cloud patch near the southern pole. The cloud has unusual morphology and texture suggesting that it is formed by condensation at an altitude much higher than expected for any of the known organics in Titan's atmosphere. We measured the altitude to be 300 ± 10 km from images when the feature was on the limb. Limb images suggest that the initial stages of the formation began in late 2011. It was just visible in images obtained in 2014 but is not expected to be visible in the future due to enveloping darkness as the season progresses. The feature has a slightly different color than the surrounding haze. Its optical thickness is near 2 at 889 nm wavelength and the particle imaginary refractive index must be less than 5 × 10-4 at that wavelength. Wind vectors derived from a time series show that it is rotating about a center offset by 4.5° from Titan's solid-body spin axis, consistent with that found from the temperature field by Achterberg et al. (Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A. [2008a]. Icarus 197, 549-555) and subsequent measurements. The feature rotates at an angular velocity near the rate expected for transport of angular momentum from the low latitudes to the pole. The clumpy texture of the feature resembles that of terrestrial cloud fields undergoing open cell convection, an unusual configuration initiated by downwelling.

  5. Observation angle and plane characterisation for ISAR imaging of LEO space objects

    NASA Astrophysics Data System (ADS)

    Chen, Jin; Fu, Tuo; Chen, Defeng; Gao, Meiguo

    2016-07-01

    For inverse synthetic aperture radar (ISAR) imaging of low Earth orbit (LEO) space objects, examining the variations in the image plane of the object over the entire visible arc period allows more direct characterisation of the variations in the object imaging. In this study, the ideal turntable model was extended to determine the observation geometry of near-circular LEO objects. Two approximations were applied to the observation model to calculate the image plane's normal and observation angles for near-circular orbit objects. One approximation treats the orbit of the space object as a standard arc relative to the Earth during the radar observation period, and the other omits the effect of the rotation of the Earth on the observations. First, the closed-form solution of the image plane normal in various attitude-stabilisation approaches was determined based on geometric models. The characteristics of the image plane and the observation angle of the near-circular orbit object were then analysed based on the common constraints of the radar line-of-sight (LOS). Subsequently, the variations in the image plane and the geometric constraints of the ISAR imaging were quantified. Based on the image plane's normal, the rotational angular velocity of the radar LOS was estimated. The cross-range direction of the ISAR image was then calibrated. Three-dimensional imaging was then reconstructed based on dual station interferometry. Finally, simulations were performed to verify the result of the three-dimensional interferometric reconstruction and to calculate the reconstruction's precision errors.

  6. Do You See What I Am? How Observers' Backgrounds Affect Their Perceptions of Multiracial Faces

    ERIC Educational Resources Information Center

    Herman, Melissa R.

    2010-01-01

    Although race is one of the most salient status characteristics in American society, many observers cannot distinguish the racial ancestries of multiracial youth. This paper examines how people perceive multiracial adolescents: specifically, I investigate whether observers perceive the adolescents as multiracial and whether these racial…

  7. Global Observation Information Networking: Using the Distributed Image Spreadsheet (DISS)

    NASA Technical Reports Server (NTRS)

    Hasler, Fritz

    1999-01-01

    The DISS and many other tools will be used to present visualizations which span the period from the original Suomi/Hasler animations of the first ATS-1 GEO weather satellite images in 1966 ....... to the latest 1999 NASA Earth Science Vision for the next 25 years. Hot off the SGI Onyx Graphics-Supercomputers are NASA's visualizations of Hurricanes Mitch, Georges, Fran and Linda. These storms have been recently featured on the covers of National Geographic, Time, Newsweek and Popular Science and used repeatedly this season on National and International network TV. Results will be presented from a new paper on automatic wind measurements in Hurricane Luis from 1-min GOES images that appeared in the November BAMS.

  8. African American male and female student perceptions of Pulvers Body Images: implications for obesity, health care, and prevention.

    PubMed

    Brown, Sherine R; Hossain, Mian Bazle; Bronner, Yvonne

    2014-08-01

    Differences in male and female perception response to the Pulvers Body Image Scale (PBIS) were examined among 356 freshmen African American students attending an urban historically Black college/university (HBCU). Participants completed a questionnaire identifying images that best represented their current, healthy, and ideal body image. Compared with males, more females selected the normal body image as their ideal (63.3% vs. 15.3%) and healthy body shape (59.3% vs. 15.3%) (p<.001). Compared with females, more males selected the overweight body image as their ideal (44.6% vs. 30.2%) and healthy body shape (52.2% vs. 36.2%) (p<.01). Similarly, more males selected the obese body image as their ideal (40.1% vs. 6.5%) and healthy body shape (32.5% vs. 4.5%) compared with females (p<.001). Male freshmen at an HBCU perceive a larger body image as healthy and ideal more often than their female counterparts, thereby increasing the potential for their weight-related health risks. PMID:25130243

  9. Localization of human cortical areas activated on perception of ordered and chaotic images.

    PubMed

    Fokin, V A; Shelepin, Yu E; Kharauzov, A K; Trufanov, G E; Sevost'yanov, A V; Pronin, S V; Koskin, S A

    2008-09-01

    The aims of this study were to identify the locations of areas in the human cortex responsible for describing fragmented test images of different degrees of ordering and to identify the areas taking decisions regarding stimuli of this type. The locations of higher visual functions were determined by functional magnetic resonance imaging (fMRI) using a scanner fitted with a superconducting magnet and a field strength of 1.5 T. The blood oxygen level-dependent (BOLD) method was based on measurements of the level of hemoglobin oxygenation in the blood supplied to the brain. This level was taken to be proportional to the extent of neuron activation in the corresponding part of the gray matter. Stimuli were matrixes consisting of Gabor elements of different orientations. The measure of matrix ordering was the ratio of the number of Gabor elements with identical orientations to the total number of elements in the image. Brain neurons were activated by simultaneous changes in the orientations of all the elements, leading to substitution of one matrix by another. Substitution of the orientation was perceived by observers as rotation of the elements in the matrix. Stimulation by matrixes with a high level of ordering was found to activate the occipital areas of the cortex, V1 and V2 (BA17-BA18), while presentation of matrixes with random element orientations also activated the parietal-temporal cortex, V3, V4, V5 (BA19), and the parietal area (BA7). Brain zones responsible for taking decisions regarding the level of order or chaos in the organization of the stimuli are located in different but close areas of the prefrontal and frontal cortex of the brain, including BA6, BA9, and BA10. The results are assessed in terms of concepts of the roles and interactions of different areas of the human brain during recognition of fragmented images of different degrees of complexity. PMID:18720013

  10. The dynamic effect of reading direction habit on spatial asymmetry of image perception.

    PubMed

    Afsari, Zaeinab; Ossandón, José P; König, Peter

    2016-09-01

    Exploration of images after stimulus onset is initially biased to the left. Here, we studied the causes of such an asymmetry and investigated effects of reading habits, text primes, and priming by systematically biased eye movements on this spatial bias in visual exploration. Bilinguals first read text primes with right-to-left (RTL) or left-to-right (LTR) reading directions and subsequently explored natural images. In Experiment 1, native RTL speakers showed a leftward free-viewing shift after reading LTR primes but a weaker rightward bias after reading RTL primes. This demonstrates that reading direction dynamically influences the spatial bias. However, native LTR speakers who learned an RTL language late in life showed a leftward bias after reading either LTR or RTL primes, which suggests the role of habit formation in the production of the spatial bias. In Experiment 2, LTR bilinguals showed a slightly enhanced leftward bias after reading LTR text primes in their second language. This might contribute to the differences of native RTL and LTR speakers observed in Experiment 1. In Experiment 3, LTR bilinguals read normal (LTR, habitual reading) and mirrored left-to-right (mLTR, nonhabitual reading) texts. We observed a strong leftward bias in both cases, indicating that the bias direction is influenced by habitual reading direction and is not secondary to the actual reading direction. This is confirmed in Experiment 4, in which LTR participants were asked to follow RTL and LTR moving dots in prior image presentation and showed no change in the normal spatial bias. In conclusion, the horizontal bias is a dynamic property and is modulated by habitual reading direction. PMID:27611064

  11. Stellar Imager - Observing the Universe in High Definition

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth

    2009-01-01

    Stellar Imager (SI) is a space-based, UV Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new 'discovery space' for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates. and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future spacebased sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. S1 is a 'Landmark/Discovery Mission' in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled enhanced by an Ares V' launch, although a incrementally-deployed version could be launched using smaller rockets.

  12. Imaging-based observational databases for clinical problem solving: the role of informatics

    PubMed Central

    Bui, Alex A T; Hsu, William; Arnold, Corey; El-Saden, Suzie; Aberle, Denise R; Taira, Ricky K

    2013-01-01

    Imaging has become a prevalent tool in the diagnosis and treatment of many diseases, providing a unique in vivo, multi-scale view of anatomic and physiologic processes. With the increased use of imaging and its progressive technical advances, the role of imaging informatics is now evolving—from one of managing images, to one of integrating the full scope of clinical information needed to contextualize and link observations across phenotypic and genotypic scales. Several challenges exist for imaging informatics, including the need for methods to transform clinical imaging studies and associated data into structured information that can be organized and analyzed. We examine some of these challenges in establishing imaging-based observational databases that can support the creation of comprehensive disease models. The development of these databases and ensuing models can aid in medical decision making and knowledge discovery and ultimately, transform the use of imaging to support individually-tailored patient care. PMID:23775172

  13. RecceMan: an interactive recognition assistance for image-based reconnaissance: synergistic effects of human perception and computational methods for object recognition, identification, and infrastructure analysis

    NASA Astrophysics Data System (ADS)

    El Bekri, Nadia; Angele, Susanne; Ruckhäberle, Martin; Peinsipp-Byma, Elisabeth; Haelke, Bruno

    2015-10-01

    This paper introduces an interactive recognition assistance system for imaging reconnaissance. This system supports aerial image analysts on missions during two main tasks: Object recognition and infrastructure analysis. Object recognition concentrates on the classification of one single object. Infrastructure analysis deals with the description of the components of an infrastructure and the recognition of the infrastructure type (e.g. military airfield). Based on satellite or aerial images, aerial image analysts are able to extract single object features and thereby recognize different object types. It is one of the most challenging tasks in the imaging reconnaissance. Currently, there are no high potential ATR (automatic target recognition) applications available, as consequence the human observer cannot be replaced entirely. State-of-the-art ATR applications cannot assume in equal measure human perception and interpretation. Why is this still such a critical issue? First, cluttered and noisy images make it difficult to automatically extract, classify and identify object types. Second, due to the changed warfare and the rise of asymmetric threats it is nearly impossible to create an underlying data set containing all features, objects or infrastructure types. Many other reasons like environmental parameters or aspect angles compound the application of ATR supplementary. Due to the lack of suitable ATR procedures, the human factor is still important and so far irreplaceable. In order to use the potential benefits of the human perception and computational methods in a synergistic way, both are unified in an interactive assistance system. RecceMan® (Reconnaissance Manual) offers two different modes for aerial image analysts on missions: the object recognition mode and the infrastructure analysis mode. The aim of the object recognition mode is to recognize a certain object type based on the object features that originated from the image signatures. The

  14. [The development of the skin-optical perception of color and images in blind schoolchildren on an "internal visual screen"].

    PubMed

    Mizrakhi, V M; Protsiuk, R G

    2000-03-01

    In profound impairement of vision the function of colour and seen objects perception is absent, with the person being unable to orient himself in space. The uncovered sensory sensations of colour allowed their use in training the blind in recognizing the colour of paper, fabric, etc. Further study in those having become blind will, we believe, help in finding eligible people and relevant approaches toward educating the blind, which will make for development of the trainee's ability to recognize images on the "inner visual screen". PMID:10862485

  15. Brain imaging signatures of the relationship between epidermal nerve fibers and heat pain perception.

    PubMed

    Tseng, Ming-Tsung; Kong, Yazhuo; Chiang, Ming-Chang; Chao, Chi-Chao; Tseng, Wen-Yih I; Hsieh, Sung-Tsang

    2015-11-15

    Although the small-diameter primary afferent fibers in the skin promptly respond to nociceptive stimuli and convey sensory inputs to the central nervous system, the neural signatures that underpin the relationship between cutaneous afferent fibers and pain perception remain elusive. We combined skin biopsy at the lateral aspect of the distal leg, which is used to quantify cutaneous afferent fibers, with fMRI, which is used to assess brain responses and functional connectivity, to investigate the relationship between cutaneous sensory nerves and the corresponding pain perception in the brain after applying heat pain stimulation to the dorsum of the right foot in healthy subjects. During painful stimulation, the degree of cutaneous innervation, as measured by epidermal nerve fiber density, was correlated with individual blood oxygen level-dependent (BOLD) signals of the posterior insular cortex and of the thalamus, periaqueductal gray, and rostral ventromedial medulla. Pain perception was associated with the activation of the anterior insular cortex and with the functional connectivity from the anterior insular cortex to the primary somatosensory cortex during painful stimulation. Most importantly, both epidermal nerve fiber density and activity in the posterior insular cortex showed a positive correlation with the strength of coupling under pain between the anterior insular cortex and the primary somatosensory cortex. Thus, our findings support the notion that the neural circuitry subserving pain perception interacts with the cerebral correlates of peripheral nociceptive fibers, which implicates an indirect role for skin nerves in human pain perception. PMID:26279210

  16. Involvement of the Extrageniculate System in the Perception of Optical Illusions: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Tabei, Ken-ichi; Satoh, Masayuki; Kida, Hirotaka; Kizaki, Moeni; Sakuma, Haruno; Sakuma, Hajime; Tomimoto, Hidekazu

    2015-01-01

    Research on the neural processing of optical illusions can provide clues for understanding the neural mechanisms underlying visual perception. Previous studies have shown that some visual areas contribute to the perception of optical illusions such as the Kanizsa triangle and Müller-Lyer figure; however, the neural mechanisms underlying the processing of these and other optical illusions have not been clearly identified. Using functional magnetic resonance imaging (fMRI), we determined which brain regions are active during the perception of optical illusions. For our study, we enrolled 18 participants. The illusory optical stimuli consisted of many kana letters, which are Japanese phonograms. During the shape task, participants stated aloud whether they perceived the shapes of two optical illusions as being the same or not. During the word task, participants read aloud the kana letters in the stimuli. A direct comparison between the shape and word tasks showed activation of the right inferior frontal gyrus, left medial frontal gyrus, and right pulvinar. It is well known that there are two visual pathways, the geniculate and extrageniculate systems, which belong to the higher-level and primary visual systems, respectively. The pulvinar belongs to the latter system, and the findings of the present study suggest that the extrageniculate system is involved in the cognitive processing of optical illusions. PMID:26083375

  17. Student Perceptions Regarding the Usefulness of Explicit Discussion of "Structure of the Observed Learning Outcome" Taxonomy

    ERIC Educational Resources Information Center

    Prakash, E. S.; Narayan, K. A.; Sethuraman, K. R.

    2010-01-01

    One method of grading responses of the descriptive type is by using Structure of Observed Learning Outcomes (SOLO) taxonomy. The basis of this study was the expectation that if students were oriented to SOLO taxonomy, it would provide them an opportunity to understand some of the factors that teachers consider while grading descriptive responses…

  18. Influences of Teacher Delivery, Student Engagement, and Observation Focus on Preservice Teachers' Perceptions of Teaching Effectiveness

    ERIC Educational Resources Information Center

    Napoles, Jessica; MacLeod, Rebecca B.

    2016-01-01

    The purpose of this study was to examine how teacher delivery, student engagement, and observation focus influenced preservice teachers' ratings of teaching effectiveness. Participants (N = 84 preservice teachers) viewed short teaching excerpts of orchestral and choral rehearsals wherein the teacher displayed either high or low teacher delivery,…

  19. Three Mars years: viking lander 1 imaging observations.

    PubMed

    Arvidson, R E; Guinness, E A; Moore, H J; Tillman, J; Wall, S D

    1983-11-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material. PMID:17746178

  20. Some Important Observations Concerning Human Visual Image Coding

    NASA Astrophysics Data System (ADS)

    Overington, Ian

    1986-05-01

    During some 20 years of research into thresholds of visual performance we have required to explore deeply the developing knowledge in both physiology, neurophysiology and, to a lesser extent, anatomy of primate vision. Over the last few years, as interest in computer vision has grown, it has become clear to us that a number of aspects of image processing and coding by human vision are very simple yet powerful, but appear to have been largely overlooked or misrepresented in classical computer vision literature. The paper discusses some important aspects of early visual processing. It then endeavours to demonstrate some of the simple yet powerful coding procedures which we believe are or may be used by human vision and which may be applied directly to computer vision.

  1. Observing temperature fluctuations in humans using infrared imaging

    PubMed Central

    Liu, Wei-Min; Meyer, Joseph; Scully, Christopher G.; Elster, Eric; Gorbach, Alexander M.

    2013-01-01

    In this work we demonstrate that functional infrared imaging is capable of detecting low frequency temperature fluctuations in intact human skin and revealing spatial, temporal, spectral, and time-frequency based differences among three tissue classes: microvasculature, large sub-cutaneous veins, and the remaining surrounding tissue of the forearm. We found that large veins have stronger contractility in the range of 0.005-0.06 Hz compared to the other two tissue classes. Wavelet phase coherence and power spectrum correlation analysis show that microvasculature and skin areas without vessels visible by IR have high phase coherence in the lowest three frequency ranges (0.005-0.0095 Hz, 0.0095-0.02 Hz, and 0.02-0.06 Hz), whereas large veins oscillate independently. PMID:23538682

  2. Three mars years: Viking lander 1 imaging observations

    USGS Publications Warehouse

    Arvidson, R. E.; Guinness, E.A.; Moore, H.J.; Tillman, J.; Wall, S.D.

    1983-01-01

    The Mutch Memorial Station (Viking Lander 1) on Mars acquired imaging and meteorological data over a period of 2245 martian days (3:3 martian years). This article discusses the deposition and erosion of thin deposits (ten to hundreds of micrometers) of bright red dust associated with global dust storms, and the removal of centimeter amounts of material in selected areas during a dust storm late in the third winter. Atmospheric pressure data acquired during the period of intense erosion imply that baroclinic disturbances and strong diurnal solar tidal heating combined to produce strong winds. Erosion occurred principally in areas where soil cohesion was reduced by earlier surface sampler activities. Except for redistribution of thin layers of materials, the surface appears to be remarkably stable, perhaps because of cohesion of the undisturbed surface material.

  3. Radiometric Calibration of the Earth Observing System's Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Slater, Philip N. (Principal Investigator)

    1997-01-01

    The work on the grant was mainly directed towards developing new, accurate, redundant methods for the in-flight, absolute radiometric calibration of satellite multispectral imaging systems and refining the accuracy of methods already in use. Initially the work was in preparation for the calibration of MODIS and HIRIS (before the development of that sensor was canceled), with the realization it would be applicable to most imaging multi- or hyper-spectral sensors provided their spatial or spectral resolutions were not too coarse. The work on the grant involved three different ground-based, in-flight calibration methods reflectance-based radiance-based and diffuse-to-global irradiance ratio used with the reflectance-based method. This continuing research had the dual advantage of: (1) developing several independent methods to create the redundancy that is essential for the identification and hopefully the elimination of systematic errors; and (2) refining the measurement techniques and algorithms that can be used not only for improving calibration accuracy but also for the reverse process of retrieving ground reflectances from calibrated remote-sensing data. The grant also provided the support necessary for us to embark on other projects such as the ratioing radiometer approach to on-board calibration (this has been further developed by SBRS as the 'solar diffuser stability monitor' and is incorporated into the most important on-board calibration system for MODIS)- another example of the work, which was a spin-off from the grant funding, was a study of solar diffuser materials. Journal citations, titles and abstracts of publications authored by faculty, staff, and students are also attached.

  4. Observation of moist convection in Jupiter's atmosphere. Galileo Imaging Team

    PubMed

    Gierasch; Ingersoll; Banfield; Ewald; Helfenstein; Simon-Miller; Vasavada; Breneman; Senske

    2000-02-10

    The energy source driving Jupiter's active meteorology is not understood. There are two main candidates: a poorly understood internal heat source and sunlight. Here we report observations of an active storm system possessing both lightning and condensation of water. The storm has a vertical extent of at least 50 km and a length of about 4,000 km. Previous observations of lightning on Jupiter have revealed both its frequency of occurrence and its spatial distribution, but they did not permit analysis of the detailed cloud structure and its dynamics. The present observations reveal the storm (on the day side of the planet) at the same location and within just a few hours of a lightning detection (on the night side). We estimate that the total vertical transport of heat by storms like the one observed here is of the same order as the planet's internal heat source. We therefore conclude that moist convection-similar to large clusters of thunderstorm cells on the Earth-is a dominant factor in converting heat flow into kinetic energy in the jovian atmosphere. PMID:10688191

  5. Visual motion integration for perception and pursuit

    NASA Technical Reports Server (NTRS)

    Stone, L. S.; Beutter, B. R.; Lorenceau, J.

    2000-01-01

    To examine the relationship between visual motion processing for perception and pursuit, we measured the pursuit eye-movement and perceptual responses to the same complex-motion stimuli. We show that humans can both perceive and pursue the motion of line-figure objects, even when partial occlusion makes the resulting image motion vastly different from the underlying object motion. Our results show that both perception and pursuit can perform largely accurate motion integration, i.e. the selective combination of local motion signals across the visual field to derive global object motion. Furthermore, because we manipulated perceived motion while keeping image motion identical, the observed parallel changes in perception and pursuit show that the motion signals driving steady-state pursuit and perception are linked. These findings disprove current pursuit models whose control strategy is to minimize retinal image motion, and suggest a new framework for the interplay between visual cortex and cerebellum in visuomotor control.

  6. A New Human Perception-Based Over-Exposure Detection Method for Color Images

    PubMed Central

    Yoon, Yeo-Jin; Byun, Keun-Yung; Lee, Dae-Hong; Jung, Seung-Won; Ko, Sung-Jea

    2014-01-01

    To correct an over-exposure within an image, the over-exposed region (OER) must first be detected. Detecting the OER accurately has a significant effect on the performance of the over-exposure correction. However, the results of conventional OER detection methods, which generally use the brightness and color information of each pixel, often deviate from the actual OER perceived by the human eye. To overcome this problem, in this paper, we propose a novel method for detecting the perceived OER more accurately. Based on the observation that recognizing the OER in an image is dependent on the saturation sensitivity of the human visual system (HVS), we detect the OER by thresholding the saturation value of each pixel. Here, a function of the proposed method, which is designed based on the results of a subjective evaluation on the saturation sensitivity of the HVS, adaptively determines the saturation threshold value using the color and the perceived brightness of each pixel. Experimental results demonstrate that the proposed method accurately detects the perceived OER, and furthermore, the over-exposure correction can be improved by adopting the proposed OER detection method. PMID:25225876

  7. Improving Resolution and Depth of Astronomical Observations via Modern Mathematical Methods for Image Analysis

    NASA Astrophysics Data System (ADS)

    Castellano, M.; Ottaviani, D.; Fontana, A.; Merlin, E.; Pilo, S.; Falcone, M.

    2015-09-01

    In the past years modern mathematical methods for image analysis have led to a revolution in many fields, from computer vision to scientific imaging. However, some recently developed image processing techniques successfully exploited by other sectors have been rarely, if ever, experimented on astronomical observations. We present here tests of two classes of variational image enhancement techniques: "structure-texture decomposition" and "super-resolution" showing that they are effective in improving the quality of observations. Structure-texture decomposition allows to recover faint sources previously hidden by the background noise, effectively increasing the depth of available observations. Super-resolution yields an higher-resolution and a better sampled image out of a set of low resolution frames, thus mitigating problematics in data analysis arising from the difference in resolution/sampling between different instruments, as in the case of EUCLID VIS and NIR imagers.

  8. The perception of visual images encoded in musical form: a study in cross-modality information transfer.

    PubMed

    Cronly-Dillon, J; Persaud, K; Gregory, R P

    1999-12-01

    This study demonstrates the ability of blind (previously sighted) and blindfolded (sighted) subjects in reconstructing and identifying a number of visual targets transformed into equivalent musical representations. Visual images are deconstructed through a process which selectively segregates different features of the image into separate packages. These are then encoded in sound and presented as a polyphonic musical melody which resembles a Baroque fugue with many voices, allowing subjects to analyse the component voices selectively in combination, or separately in sequence, in a manner which allows a subject to patch together and bind the different features of the object mentally into a mental percept of a single recognizable entity. The visual targets used in this study included a variety of geometrical figures, simple high-contrast line drawings of man-made objects, natural and urban scenes, etc., translated into sound and presented to the subject in polyphonic musical form. PMID:10643086

  9. Perceptions and Positionings of Colleges in New York City: A Longitudinal Study of Brand Images

    ERIC Educational Resources Information Center

    Clark, Sylvia D.

    2005-01-01

    A study of high school seniors' perceptions of colleges, conducted in 1979, was replicated 23 years later. The study affords an opportunity to examine perceptual changes over time and provides an additional perspective on the positioning of colleges, apart from other well-known surveys. This information may be useful for those involved in…

  10. The Blackberry Image: Self-Identified Perceptions and Motivations Associated with College Student Blackberry Use

    ERIC Educational Resources Information Center

    Firmin, Michael W.; Firmin, Ruth L.; Orient, Katlyn M.; Edwards, Anna J.; Cunliff, Jennifer M.

    2012-01-01

    We report the results of a qualitative research study conducted with university students regarding their phenomenological perspectives of BlackBerry use. Three key themes inductively emerged throughout the interview and analysis process regarding self-perceptions college students reported regarding their own BlackBerry use. First, students offered…

  11. Radiometric calibration of the Earth observing system's imaging sensors

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1987-01-01

    Philosophy, requirements, and methods of calibration of multispectral space sensor systems as applicable to the Earth Observing System (EOS) are discussed. Vicarious methods for calibration of low spatial resolution systems, with respect to the Advanced Very High Resolution Radiometer (AVHRR), are then summarized. Finally, a theoretical introduction is given to a new vicarious method of calibration using the ratio of diffuse-to-global irradiance at the Earth's surfaces as the key input. This may provide an additional independent method for in-flight calibration.

  12. ALMA and the Future of Millimeter Imaging Observations

    NASA Astrophysics Data System (ADS)

    Wilner, David J.

    2016-01-01

    The Nearby Young Moving Groups sample the critical age when primordial disks around stars complete their transformation into planetary systems with associated debris. Millimeter wavelengths provide direct access to cool material in these circumstellar disks. The high angular resolution of interferometry at these long wavelengths enables resolved observations of solids in an optically thin regime, as well as the thermal, chemical, and dynamical structure of gas, if present. In this contribution, I briefly review the evolving landscape of millimeter telescopes, with emphasis on the revolutionary capabilities of the new international Atacama Large Millimeter/submillimeter Array (ALMA) and describe pertinent early science results.

  13. Data processing assessment for the Lunar Geoscience Observer imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Irigoyen, R. E.; Liaw, H. M.

    1988-01-01

    On the Lunar Geoscience Observer project, a Visible and Infrared Mapping Spectrometer instrument has been proposed. This instrument will have science data input rates in the hundreds of kilobits per second (kbps) and an average telemetry output data rate of 4 kbps. Techniques that can be used to reduce the throughput of the instrument are editing, summing and averaging, data compression, data preprocessing, pattern recognition and snapshot data taking. Due to instrument limitations in the buffer memory size and processing speeds, a careful selection of the available techniques must be made.

  14. Observer perceptions of moral obligations in groups with a history of victimization.

    PubMed

    Warner, Ruth H; Branscombe, Nyla R

    2012-07-01

    The authors investigated when observers assign contemporary group members moral obligations based on their group's victimization history. In Experiment 1, Americans perceived Israelis as obligated to help Sudanese genocide victims and as guiltworthy for not helping if reminded of the Holocaust and its descendants were linked to this history. In Experiment 2, participants perceived Israelis as more obligated to help and guiltworthy for not helping when the Holocaust was presented as a unique victimization event compared with when genocide was presented as pervasive. Experiments 3 and 4 replicated the effects of Experiment 1 with Cambodians as the victimized group. Experiment 5 demonstrated that participants perceived Cambodians as having more obligations under high just world threat compared with low just world threat. Perceiving victimized groups as incurring obligations is one just world restoration method of providing meaning to collective injustice. PMID:22427385

  15. Brightness perception under transient glare conditions with myopic observers wearing contact lenses and spectacles

    NASA Astrophysics Data System (ADS)

    Issolio, Luis; Lopez-Gil, Norberto; Colombo, Elisa M.; Miro, Ignacio

    2001-08-01

    Transient glare reduces the perceived brightness for stimulus luminances within the scotopic-mesopic range. This work studies this effect in myopic observers with lens and spectacles corrections and in one emmetrope. The task of the subject consists of compare brightness of two uniform luminance fields sequentially displayed, one of which had a reference luminance of 1 cd/m2. The reference stimulus was presented under glare condition the angle between the glare source and the lie of sight was 10 degrees. The reference field and he glare source were onset at the same time. Subjects had to report which field was brighter with respect to one another. A YES-NO method with constant stimulus was adopted to determine the perceptual matching luminance. Then duration of each stimulus was 300 msec and the interval between both of them was 1.2 msec. We found the effect of the transient glare is stronger as myopic subjects wear glasses corrections than they wear contact lens and the effect is even less for emmetropic subject with the naked eyes. Results could be explained considering an additional ectoptic light veil due to scattering on the glasses and lens.

  16. Imaging Analysis of Near-Field Recording Technique for Observation of Biological Specimens

    NASA Astrophysics Data System (ADS)

    Moriguchi, Chihiro; Ohta, Akihiro; Egami, Chikara; Kawata, Yoshimasa; Terakawa, Susumu; Tsuchimori, Masaaki; Watanabe, Osamu

    2006-07-01

    We present an analysis of the properties of an imaging based on a near-field recording technique in comparison with simulation results. In the system, the optical field distributions localized near the specimens are recorded as the surface topographic distributions of a photosensitive film. It is possible to observe both soft and moving specimens, because the system does not require a scanning probe to obtain the observed image. The imaging properties are evaluated using fine structures of paramecium, and we demonstrate that it is possible to observe minute differences of refractive indices.

  17. Generalization Evaluation of Machine Learning Numerical Observers for Image Quality Assessment.

    PubMed

    Kalayeh, Mahdi M; Marin, Thibault; Brankov, Jovan G

    2013-06-01

    In this paper, we present two new numerical observers (NO) based on machine learning for image quality assessment. The proposed NOs aim to predict human observer performance in a cardiac perfusion-defect detection task for single-photon emission computed tomography (SPECT) images. Human observer (HumO) studies are now considered to be the gold standard for task-based evaluation of medical images. However such studies are impractical for use in early stages of development for imaging devices and algorithms, because they require extensive involvement of trained human observers who must evaluate a large number of images. To address this problem, numerical observers (also called model observers) have been developed as a surrogate for human observers. The channelized Hotelling observer (CHO), with or without internal noise model, is currently the most widely used NO of this kind. In our previous work we argued that development of a NO model to predict human observers' performance can be viewed as a machine learning (or system identification) problem. This consideration led us to develop a channelized support vector machine (CSVM) observer, a kernel-based regression model that greatly outperformed the popular and widely used CHO. This was especially evident when the numerical observers were evaluated in terms of generalization performance. To evaluate generalization we used a typical situation for the practical use of a numerical observer: after optimizing the NO (which for a CHO might consist of adjusting the internal noise model) based upon a broad set of reconstructed images, we tested it on a broad (but different) set of images obtained by a different reconstruction method. In this manuscript we aim to evaluate two new regression models that achieve accuracy higher than the CHO and comparable to our earlier CSVM method, while dramatically reducing model complexity and computation time. The new models are defined in a Bayesian machine-learning framework: a channelized

  18. Patients with eating disorders and their siblings. An investigation of body image perceptions.

    PubMed

    Benninghoven, Dieter; Tetsch, Nina; Jantschek, Günter

    2008-03-01

    Little is known about body images of siblings of patients with eating disorders. In this study we investigated body images of patients with anorexia or bulimia nervosa and of the patients' brothers and sisters. A computer program was employed that allows modeling perceived and desired body images of patients and family members. Patients, siblings and male and female control subjects rated their body images. The selected images were compared with anthropometric data. All subjects also filled out a body image questionnaire. Data from 30 patients, 38 siblings, and 60 control subjects are presented. Siblings did not differ from healthy control subjects. Self-ideal discrepancy was different in patients with anorexia and their sisters. Body image was more negative in patients than in their sisters. Siblings of patients with eating disorders seem to be rather unimpaired in terms of body image disturbances. PMID:17849079

  19. The advantages of using a Lucky Imaging camera for observations of microlensing events

    NASA Astrophysics Data System (ADS)

    Sajadian, Sedighe; Rahvar, Sohrab; Dominik, Martin; Hundertmark, Markus

    2016-05-01

    In this work, we study the advantages of using a Lucky Imaging camera for the observations of potential planetary microlensing events. Our aim is to reduce the blending effect and enhance exoplanet signals in binary lensing systems composed of an exoplanet and the corresponding parent star. We simulate planetary microlensing light curves based on present microlensing surveys and follow-up telescopes where one of them is equipped with a Lucky Imaging camera. This camera is used at the Danish 1.54-m follow-up telescope. Using a specific observational strategy, for an Earth-mass planet in the resonance regime, where the detection probability in crowded fields is smaller, Lucky Imaging observations improve the detection efficiency which reaches 2 per cent. Given the difficulty of detecting the signal of an Earth-mass planet in crowded-field imaging even in the resonance regime with conventional cameras, we show that Lucky Imaging can substantially improve the detection efficiency.

  20. Visual Perception-Based Statistical Modeling of Complex Grain Image for Product Quality Monitoring and Supervision on Assembly Production Line.

    PubMed

    Liu, Jinping; Tang, Zhaohui; Zhang, Jin; Chen, Qing; Xu, Pengfei; Liu, Wenzhong

    2016-01-01

    Computer vision as a fast, low-cost, noncontact, and online monitoring technology has been an important tool to inspect product quality, particularly on a large-scale assembly production line. However, the current industrial vision system is far from satisfactory in the intelligent perception of complex grain images, comprising a large number of local homogeneous fragmentations or patches without distinct foreground and background. We attempt to solve this problem based on the statistical modeling of spatial structures of grain images. We present a physical explanation in advance to indicate that the spatial structures of the complex grain images are subject to a representative Weibull distribution according to the theory of sequential fragmentation, which is well known in the continued comminution of ore grinding. To delineate the spatial structure of the grain image, we present a method of multiscale and omnidirectional Gaussian derivative filtering. Then, a product quality classifier based on sparse multikernel-least squares support vector machine is proposed to solve the low-confidence classification problem of imbalanced data distribution. The proposed method is applied on the assembly line of a food-processing enterprise to classify (or identify) automatically the production quality of rice. The experiments on the real application case, compared with the commonly used methods, illustrate the validity of our method. PMID:26986726

  1. Visual Perception-Based Statistical Modeling of Complex Grain Image for Product Quality Monitoring and Supervision on Assembly Production Line

    PubMed Central

    Chen, Qing; Xu, Pengfei; Liu, Wenzhong

    2016-01-01

    Computer vision as a fast, low-cost, noncontact, and online monitoring technology has been an important tool to inspect product quality, particularly on a large-scale assembly production line. However, the current industrial vision system is far from satisfactory in the intelligent perception of complex grain images, comprising a large number of local homogeneous fragmentations or patches without distinct foreground and background. We attempt to solve this problem based on the statistical modeling of spatial structures of grain images. We present a physical explanation in advance to indicate that the spatial structures of the complex grain images are subject to a representative Weibull distribution according to the theory of sequential fragmentation, which is well known in the continued comminution of ore grinding. To delineate the spatial structure of the grain image, we present a method of multiscale and omnidirectional Gaussian derivative filtering. Then, a product quality classifier based on sparse multikernel–least squares support vector machine is proposed to solve the low-confidence classification problem of imbalanced data distribution. The proposed method is applied on the assembly line of a food-processing enterprise to classify (or identify) automatically the production quality of rice. The experiments on the real application case, compared with the commonly used methods, illustrate the validity of our method. PMID:26986726

  2. Perception of Solar Eclipses Captured by Art Explains How Imaging Misrepresented the Source of the Solar Wind

    PubMed Central

    2015-01-01

    The visible corona revealed by the natural phenomenon of solar eclipses has been studied for 150 years. A turning point has been the discovery that the true spatial distribution of coronal brightness can neither be seen nor imaged on account of its unprecedented dynamic range. Howard Russell Butler (1856–1934), the painter of solar eclipses in the early 20th century, possessed the extraordinary skill of painting from memory what he saw for only a brief time. His remarkable but forgotten eclipse paintings are, therefore, ideal for capturing and representing best the perceptual experience of the visible corona. Explained here is how by bridging the eras of visual (late 19th century) and imaging investigations (since the latter half of the 20th century), Butler’s paintings reveal why white-light images misled researching and understanding the Sun’s atmosphere, the solar wind. The closure in understanding solar eclipses through the convergence of perception, art, imaging, science and the history of science promises to enrich the experience of viewing and photographing the first solar eclipse of the 21st century in the United States on 21st August 2017. PMID:27551356

  3. Perception of Solar Eclipses Captured by Art Explains How Imaging Misrepresented the Source of the Solar Wind.

    PubMed

    Woo, Richard

    2015-12-01

    The visible corona revealed by the natural phenomenon of solar eclipses has been studied for 150 years. A turning point has been the discovery that the true spatial distribution of coronal brightness can neither be seen nor imaged on account of its unprecedented dynamic range. Howard Russell Butler (1856-1934), the painter of solar eclipses in the early 20th century, possessed the extraordinary skill of painting from memory what he saw for only a brief time. His remarkable but forgotten eclipse paintings are, therefore, ideal for capturing and representing best the perceptual experience of the visible corona. Explained here is how by bridging the eras of visual (late 19th century) and imaging investigations (since the latter half of the 20th century), Butler's paintings reveal why white-light images misled researching and understanding the Sun's atmosphere, the solar wind. The closure in understanding solar eclipses through the convergence of perception, art, imaging, science and the history of science promises to enrich the experience of viewing and photographing the first solar eclipse of the 21st century in the United States on 21st August 2017. PMID:27551356

  4. Development of Fluorescence Imaging Lidar for Boat-Based Coral Observation

    NASA Astrophysics Data System (ADS)

    Sasano, Masahiko; Imasato, Motonobu; Yamano, Hiroya; Oguma, Hiroyuki

    2016-06-01

    A fluorescence imaging lidar system installed in a boat-towable buoy has been developed for the observation of reef-building corals. Long-range fluorescent images of the sea bed can be recorded in the daytime with this system. The viability of corals is clear in these fluorescent images because of the innate fluorescent proteins. In this study, the specifications and performance of the system are shown.

  5. Demonstration of brain noise on human EEG signals in perception of bistable images

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Runnova, Anastasiya E.; Kurovskaya, Maria K.; Pavlov, Alexey N.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-03-01

    In this report we studied human brain activity in the case of bistable visual perception. We proposed a new approach for quantitative characterization of this activity based on analysis of EEG oscillatory patterns and evoked potentials. Accordingly to theoretical background, obtained experimental EEG data and results of its analysis we studied a characteristics of brain activity during decision-making. Also we have shown that decisionmaking process has the special patterns on the EEG data.

  6. Chemical contrast observed in thermal images of blood-stained fabrics exposed to steam.

    PubMed

    O'Brien, Wayne L; Boltin, Nicholas D; Lu, Zhenyu; Cassidy, Brianna M; Belliveau, Raymond G; Straub, Emory J; DeJong, Stephanie A; Morgan, Stephen L; Myrick, M L

    2015-09-21

    Thermal imaging is not ordinarily a good way to visualize chemical contrast. In recent work, however, we observed strong and reproducible images with chemical contrasts on blood-stained fabrics, especially on more hydrophobic fabrics like acrylic and polyester. PMID:26225800

  7. Asymptotic normality of kernel estimators for images observed under the radon transform in fan beam design

    NASA Astrophysics Data System (ADS)

    Proksch, Katharina

    2013-10-01

    We consider a nonparametric, two-dimensional regression model that describes observations of Radon transformed images, i.e., an inverse regression model. Reconstructions from deterministic fan beam design by a certain kind of kernel-type estimators are considered and their asymptotic properties are investigated. The problem discussed is related to medical imaging procedures such as computerized tomography (CT).

  8. Evaluation of the channelized Hotelling observer for signal detection in 2D tomographic imaging

    NASA Astrophysics Data System (ADS)

    LaRoque, Samuel J.; Sidky, Emil Y.; Edwards, Darrin C.; Pan, Xiaochuan

    2007-03-01

    Signal detection by the channelized Hotelling (ch-Hotelling) observer is studied for tomographic application by employing a small, tractable 2D model of a computed tomography (CT) system. The primary goal of this manuscript is to develop a practical method for evaluating the ch-Hotelling observer that can generalize to larger 3D cone-beam CT systems. The use of the ch-Hotelling observer for evaluating tomographic image reconstruction algorithms is also demonstrated. For a realistic model for CT, the ch-Hotelling observer can be a good approximation to the ideal observer. The ch-Hotelling observer is applied to both the projection data and the reconstructed images. The difference in signal-to-noise ratio for signal detection in both of these domains provides a metric for evaluating the image reconstruction algorithm.

  9. The need for hard X-ray imaging observations at the next solar maximum

    NASA Technical Reports Server (NTRS)

    Emslie, A. Gordon

    1988-01-01

    Canonical models of solar hard X-ray bursts; associated length and time scales; the adequacies and inadequacies of previous observations; theoretical modeling predictions; arcsecond imaging of solar hard X-rays are outlined.

  10. Numerical surrogates for human observers in myocardial motion evaluation from SPECT image

    PubMed Central

    Marin, Thibault; Kalayehis, Mahdi M.; Parages, Felipe M.; Brankov, Jovan G.

    2014-01-01

    In medical imaging, the gold standard for image-quality assessment is a task-based approach in which one evaluates human observer performance for a given diagnostic task (e.g., detection of a myocardial perfusion or motion defect). To facilitate practical task-based image-quality assessment, model observers are needed as approximate surrogates for human observers. In cardiac-gated SPECT imaging, diagnosis relies on evaluation of the myocardial motion as well as perfusion. Model observers for the perfusion-defect detection task have been studied previously, but little effort has been devoted toward development of a model observer for cardiac-motion defect detection. In this work describe two model observers for predicting human observer performance in detection of cardiac-motion defects. Both proposed methods rely on motion features extracted using previously reported deformable mesh model for myocardium motion estimation. The first method is based on a Hotelling linear discriminant that is similar in concept to that used commonly for perfusion-defect detection. In the second method, based on relevance vector machines (RVM) for regression, we compute average human observer performance by first directly predicting individual human observer scores, and then using multi reader receiver operating characteristic (ROC) analysis. Our results suggest that the proposed RVM model observer can predict human observer performance accurately, while the new Hotelling motion-defect detector is somewhat less effective. PMID:23981533

  11. Further Explorations of the Facing Bias in Biological Motion Perception: Perspective Cues, Observer Sex, and Response Times

    PubMed Central

    Schouten, Ben; Davila, Alex; Verfaillie, Karl

    2013-01-01

    The human visual system has evolved to be highly sensitive to visual information about other persons and their movements as is illustrated by the effortless perception of point-light figures or ‘biological motion’. When presented orthographically, a point-light walker is interpreted in two anatomically plausible ways: As ‘facing the viewer’ or as ‘facing away’ from the viewer. However, human observers show a ‘facing bias’: They perceive such a point-light walker as facing towards them in about 70-80% of the cases. In studies exploring the role of social and biological relevance as a possible account for the facing bias, we found a ‘figure gender effect’: Male point-light figures elicit a stronger facing bias than female point-light figures. Moreover, we also found an ‘observer gender effect’: The ‘figure gender effect’ was stronger for male than for female observers. In the present study we presented to 11 males and 11 females point-light walkers of which, very subtly, the perspective information was manipulated by modifying the earlier reported ‘perspective technique’. Proportions of ‘facing the viewer’ responses and reaction times were recorded. Results show that human observers, even in the absence of local shape or size cues, easily pick up on perspective cues, confirming recent demonstrations of high visual sensitivity to cues on whether another person is potentially approaching. We also found a consistent difference in how male and female observers respond to stimulus variations (figure gender or perspective cues) that cause variations in the perceived in-depth orientation of a point-light walker. Thus, the ‘figure gender effect’ is possibly caused by changes in the relative locations and motions of the dots that the perceptual system tends to interpret as perspective cues. Third, reaction time measures confirmed the existence of the facing bias and recent research showing faster detection of approaching than receding

  12. Patients' and Observers' Perceptions of Involvement Differ. Validation Study on Inter-Relating Measures for Shared Decision Making

    PubMed Central

    Kasper, Jürgen; Heesen, Christoph; Köpke, Sascha; Fulcher, Gary; Geiger, Friedemann

    2011-01-01

    Objective Patient involvement into medical decisions as conceived in the shared decision making method (SDM) is essential in evidence based medicine. However, it is not conclusively evident how best to define, realize and evaluate involvement to enable patients making informed choices. We aimed at investigating the ability of four measures to indicate patient involvement. While use and reporting of these instruments might imply wide overlap regarding the addressed constructs this assumption seems questionable with respect to the diversity of the perspectives from which the assessments are administered. Methods The study investigated a nested cohort (N = 79) of a randomized trial evaluating a patient decision aid on immunotherapy for multiple sclerosis. Convergent validities were calculated between observer ratings of videotaped physician-patient consultations (OPTION) and patients' perceptions of the communication (Shared Decision Making Questionnaire, Control Preference Scale & Decisional Conflict Scale). Results OPTION reliability was high to excellent. Communication performance was low according to OPTION and high according to the three patient administered measures. No correlations were found between observer and patient judges, neither for means nor for single items. Patient report measures showed some moderate correlations. Conclusion Existing SDM measures do not refer to a single construct. A gold standard is missing to decide whether any of these measures has the potential to indicate patient involvement. Practice Implications Pronounced heterogeneity of the underpinning constructs implies difficulties regarding the interpretation of existing evidence on the efficacy of SDM. Consideration of communication theory and basic definitions of SDM would recommend an inter-subjective focus of measurement. Trial Registration Controlled-Trials.com ISRCTN25267500. PMID:22043310

  13. High dynamic range imaging pipeline: perception-motivated representation of visual content

    NASA Astrophysics Data System (ADS)

    Mantiuk, Rafal; Krawczyk, Grzegorz; Mantiuk, Radoslaw; Seidel, Hans-Peter

    2007-02-01

    The advances in high dynamic range (HDR) imaging, especially in the display and camera technology, have a significant impact on the existing imaging systems. The assumptions of the traditional low-dynamic range imaging, designed for paper print as a major output medium, are ill suited for the range of visual material that is shown on modern displays. For example, the common assumption that the brightest color in an image is white can be hardly justified for high contrast LCD displays, not to mention next generation HDR displays, that can easily create bright highlights and the impression of self-luminous colors. We argue that high dynamic range representation can encode images regardless of the technology used to create and display them, with the accuracy that is only constrained by the limitations of the human eye and not a particular output medium. To facilitate the research on high dynamic range imaging, we have created a software package (http://pfstools.sourceforge.net/) capable of handling HDR data on all stages of image and video processing. The software package is available as open source under the General Public License and includes solutions for high quality image acquisition from multiple exposures, a range of tone mapping algorithms and a visual difference predictor for HDR images. Examples of shell scripts demonstrate how the software can be used for processing single images as well as video sequences.

  14. Model observer design for detecting multiple abnormalities in anatomical background images

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.; Park, Subok

    2016-03-01

    As psychophysical studies are resource-intensive to conduct, model observers are commonly used to assess and optimize medical imaging quality. Existing model observers were typically designed to detect at most one signal. However, in clinical practice, there may be multiple abnormalities in a single image set (e.g., multifocal and multicentric breast cancers (MMBC)), which can impact treatment planning. Prevalence of signals can be different across anatomical regions, and human observers do not know the number or location of signals a priori. As new imaging techniques have the potential to improve multiple-signal detection (e.g., digital breast tomosynthesis may be more effective for diagnosis of MMBC than planar mammography), image quality assessment approaches addressing such tasks are needed. In this study, we present a model-observer mechanism to detect multiple signals in the same image dataset. To handle the high dimensionality of images, a novel implementation of partial least squares (PLS) was developed to estimate different sets of efficient channels directly from the images. Without any prior knowledge of the background or the signals, the PLS channels capture interactions between signals and the background which provide discriminant image information. Corresponding linear decision templates are employed to generate both image-level and location-specific scores on the presence of signals. Our preliminary results show that the model observer using PLS channels, compared to our first attempts with Laguerre-Gauss channels, can achieve high performance with a reasonably small number of channels, and the optimal design of the model observer may vary as the tasks of clinical interest change.

  15. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces

    PubMed Central

    Cuaya, Laura V.; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs’ brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs. PMID:26934715

  16. Our Faces in the Dog's Brain: Functional Imaging Reveals Temporal Cortex Activation during Perception of Human Faces.

    PubMed

    Cuaya, Laura V; Hernández-Pérez, Raúl; Concha, Luis

    2016-01-01

    Dogs have a rich social relationship with humans. One fundamental aspect of it is how dogs pay close attention to human faces in order to guide their behavior, for example, by recognizing their owner and his/her emotional state using visual cues. It is well known that humans have specific brain regions for the processing of other human faces, yet it is unclear how dogs' brains process human faces. For this reason, our study focuses on describing the brain correlates of perception of human faces in dogs using functional magnetic resonance imaging (fMRI). We trained seven domestic dogs to remain awake, still and unrestrained inside an MRI scanner. We used a visual stimulation paradigm with block design to compare activity elicited by human faces against everyday objects. Brain activity related to the perception of faces changed significantly in several brain regions, but mainly in the bilateral temporal cortex. The opposite contrast (i.e., everyday objects against human faces) showed no significant brain activity change. The temporal cortex is part of the ventral visual pathway, and our results are consistent with reports in other species like primates and sheep, that suggest a high degree of evolutionary conservation of this pathway for face processing. This study introduces the temporal cortex as candidate to process human faces, a pillar of social cognition in dogs. PMID:26934715

  17. Metrics of medical image quality: task-based model observers vs. image discrimination/perceptual difference models

    NASA Astrophysics Data System (ADS)

    Eckstein, Miguel P.; Zhang, Yani; Pham, Binh T.

    2004-05-01

    There have been two distinct approaches to develop human vision models that can be used to perform automated evaluation and optimization of medical image quality: linear task based model observers vs. perceptual difference/image discrimination models. Although these two approaches are very different there has been little work directly comparing them in their ability to optimize human performance in clinically relevant tasks. We compared the effectiveness of these two types of metrics of image quality to perform automated computer optimization of JPEG 2000 image compression encoder settings using test images that combined real x-ray coronary angiogram backgrounds with simulated filling defects of 184 different size/shapes. A genetic algorithm was used to optimize the JPEG 2000 encoder settings with respect to: a) a particular task based model observer performance (non-prewhitening matched filter with an eye filter, NPWE; b) a particular perceptual difference/image discrimination model error metric (DCTune2.0; NASA Ames Research Center). A subsequent human psychophysical study was conducted to evaluate the effect of the two different optimized compression encoder settings on visual detection of the simulated filling defect in one of four locations (four alternative forced choice; 4 AFC). Results show that optimizing JPEG 2000 encoder settings with respect to both the NPWE performance and DCTune 2.0 perceptual error lead to improved human task performance relative to human performance with the default encoder settings. However, the NPWE-optimization led to much greater human performance improvement than the perceptual difference model optimization.

  18. Comparison of image compression techniques for high quality based on properties of visual perception

    NASA Astrophysics Data System (ADS)

    Algazi, V. Ralph; Reed, Todd R.

    1991-12-01

    The growing interest and importance of high quality imaging has several roots: Imaging and graphics, or more broadly multimedia, as the predominant means of man-machine interaction on computers, and the rapid maturing of advanced television technology. Because of their economic importance, proposed advanced television standards are being discussed and evaluated for rapid adoption. These advanced standards are based on well known image compression techniques, used for very low bit rate video communications as well. In this paper, we examine the expected improvement in image quality that advanced television and imaging techniques should bring about. We then examine and discuss the data compression techniques which are commonly used, to determine if they are capable of providing the achievable gain in quality, and to assess some of their limitations. We also discuss briefly the potential of these techniques for very high quality imaging and display applications, which extend beyond the range of existing and proposed television standards.

  19. Greek intensive and emergency care nurses' perception of their public image: a phenomenological approach.

    PubMed

    Karanikola, Maria N K; Papathanassoglou, Elizabeth D E; Nicolaou, Christiana; Koutroubas, Anna; Lemonidou, Chrysoula

    2011-01-01

    The public image of the nurse constitutes an important factor for recruitment into the profession, retention, and also for work satisfaction. The aim of this qualitative study was to disclose the way nurses internalize their professional public image and professional worth, as well as nurses' feelings about that image. Findings showed that although nurses have made a tremendous effort to improve the public image of their profession, negative nursing stereotypes still persist. Therefore, nurses have to actively participate in policy making and enhance their educational and cultural profile through the media. PMID:21307691

  20. Spatio-temporal Hotelling observer for signal detection from image sequences

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.

    2010-01-01

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  1. Spatio-temporal Hotelling observer for signal detection from image sequences.

    PubMed

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  2. The effect of priming a thin ideal on the subsequent perception of conceptually related body image words.

    PubMed

    Markis, Teresa A; McLennan, Conor T

    2011-09-01

    Our research examined the effects of thin ideal priming on the perception of body image words in participants without an eating disorder. Half of the participants were primed by viewing thin models, and half were primed with gender-neutral shoes. Subsequently, all participants (N=56) completed a Stroop task for three categories of words: neutral (BOOKS), shoe (CLOGS), and body (THIGHS). Lastly, all participants completed a body dissatisfaction questionnaire. We predicted that body dissatisfaction scores would be correlated with the Stroop effect. We found a significant correlation between body dissatisfaction and the body effect of slower color naming times for the body related words compared to the neutral words. Our study demonstrates that body dissatisfaction and a brief priming with thin models results in subsequent differences in performing a Stroop task in a non clinical population of female participants. PMID:21664199

  3. What Can Be Learned from IMAGE? Teachers' Perceptions of the Educational Value of an Art Package. CAL Research Group Technical Report No. 70.

    ERIC Educational Resources Information Center

    Scrimshaw, Peter

    In evaluating IMAGE, an open-ended computer assisted learning program designed to enable English children to produce, modify, and print artwork created on the computer, teachers' perceptions of the program were focused on what the software package can do and what can be learned from using the program. Eighty teachers utilized the package in their…

  4. High-Definition Television (HDTV) Images for Earth Observations and Earth Science Applications

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Holland, S. Douglas; Runco, Susan K.; Pitts, David E.; Whitehead, Victor S.; Andrefouet, Serge M.

    2000-01-01

    As part of Detailed Test Objective 700-17A, astronauts acquired Earth observation images from orbit using a high-definition television (HDTV) camcorder, Here we provide a summary of qualitative findings following completion of tests during missions STS (Space Transport System)-93 and STS-99. We compared HDTV imagery stills to images taken using payload bay video cameras, Hasselblad film camera, and electronic still camera. We also evaluated the potential for motion video observations of changes in sunlight and the use of multi-aspect viewing to image aerosols. Spatial resolution and color quality are far superior in HDTV images compared to National Television Systems Committee (NTSC) video images. Thus, HDTV provides the first viable option for video-based remote sensing observations of Earth from orbit. Although under ideal conditions, HDTV images have less spatial resolution than medium-format film cameras, such as the Hasselblad, under some conditions on orbit, the HDTV image acquired compared favorably with the Hasselblad. Of particular note was the quality of color reproduction in the HDTV images HDTV and electronic still camera (ESC) were not compared with matched fields of view, and so spatial resolution could not be compared for the two image types. However, the color reproduction of the HDTV stills was truer than colors in the ESC images. As HDTV becomes the operational video standard for Space Shuttle and Space Station, HDTV has great potential as a source of Earth-observation data. Planning for the conversion from NTSC to HDTV video standards should include planning for Earth data archiving and distribution.

  5. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    SciTech Connect

    Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun Wang, Kaige

    2015-04-27

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  6. Technologies of diffractive imaging system for high-resolution earth observation from geostationary orbit

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoli; Su, Yun; Jiao, Jianchao

    2013-08-01

    High-resolution earth observation from geostationary orbit (GEO) is a good way to satisfy the increased time resolution for resource, environment and disaster monitor. Earth observation from geostationary orbit will require optical remote sensor with ultra-large aperture. Given size, weight and launch ability constraints, as well as cost consideration, the traditional monolithic aperture optical system couldn't satisfy the need. This paper gives a new method, the diffractive imaging system. Diffract ive imaging system is a feasible way to realize high-resolution earth observation from geostationary orbit. The principle of diffract ive imaging system is introduced firstly, then, the primary design of remote sensor with 1m resolution from geostationary orbit using diffractive imaging system is analyzed. Finally, the key technologies are analyzed and feasible solutions are given.

  7. Observer assessment of multi-pinhole SPECT geometries for prostate cancer imaging: a simulation study

    NASA Astrophysics Data System (ADS)

    Kalantari, Faraz; Sen, Anando; Gifford, Howard C.

    2014-03-01

    SPECT imaging using In-111 ProstaScint is an FDA-approved method for diagnosing prostate cancer metastases within the pelvis. However, conventional medium-energy parallel-hole (MEPAR) collimators produce poor image quality and we are investigating the use of multipinhole (MPH) imaging as an alternative. This paper presents a method for evaluating MPH designs that makes use of sampling-sensitive (SS) mathematical model observers for tumor detectionlocalization tasks. Key to our approach is the redefinition of a normal (or background) reference image that is used with scanning model observers. We used this approach to compare different MPH configurations for the task of small-tumor detection in the prostate and surrounding lymph nodes. Four configurations used 10, 20, 30, and 60 pinholes evenly spaced over a complete circular orbit. A fixed-count acquisition protocol was assumed. Spherical tumors were placed within a digital anthropomorphic phantom having a realistic Prostascint biodistribution. Imaging data sets were generated with an analytical projector and reconstructed volumes were obtained with the OSEM algorithm. The MPH configurations were compared in a localization ROC (LROC) study with 2D pelvic images and both human and model observers. Regular and SS versions of the scanning channelized nonprewhitening (CNPW) and visual-search (VS) model observers were applied. The SS models demonstrated the highest correlations with the average human-observer results

  8. Turkish Primary Students' Perceptions about Scientist and What Factors Affecting the Image of the Scientists

    ERIC Educational Resources Information Center

    Turkmen, Hakan

    2008-01-01

    Students' views of science and scientists have been widely studied. The purpose of this study is to analyze image of scientist from drawn picture of scientists using The Draw-a-Scientist Test (DAST) by 5th grade students and to analyze where this image comes from students minds in changing Turkish educational perspective. Two hundred eighty seven…

  9. Perceptions of Body Image and Psychosocial Development: An Examination of First-Year Female College Students

    ERIC Educational Resources Information Center

    Buckley, Jennifer Lynne

    2011-01-01

    The purpose of this study was to help higher education practitioners and researchers better understand the role that body image plays in first-year traditional-aged college females' development of physical competence and also provide new insights regarding the role that body image plays in the psychosocial development of first-year…

  10. 12-Month-Old Infants' Perception of Attention Direction in Static Video Images

    ERIC Educational Resources Information Center

    von Hofsten, Claes; Dahlstrom, Emma; Fredriksson, Ylva

    2005-01-01

    Twelve-month-old infants' ability to perceive gaze direction in static video images was investigated. The images showed a woman who performed attention-directing actions by looking or pointing toward 1 of 4 objects positioned in front of her (2 on each side). When the model just pointed at the objects, she looked straight ahead, and when she just…

  11. Research on Complicated Imaging Condition of GEO Optical High Resolution Earth Observing Satellite

    NASA Astrophysics Data System (ADS)

    Guo, Linghua

    2012-07-01

    The requirement for high time and space resolution of optical remote sensing satellite in disaster, land resources, environment, marine monitoring and meteorology observation, etc is getting urgent and strict. For that reason, a remote sensing satellite system solely located in MEO or LEO cannot operate continuous observation and Surveillance. GEO optical high resolution earth observing satellite in the other hand can keep the mesoscale and microscale target under continuous surveillance by controlling line of sight(LOS), and can provide imaging observation of an extensive region in a short time. The advantages of GEO satellite such as real-time observation of the mesoscale and microscale target, rapid response of key events, have been recognized by lots of countries and become a new trend of remote sensing satellite. As many advantages as the GEO remote sensing satellite has, its imaging condition is more complicated. Many new characteristics of imaging observation and imaging quality need to be discussed. We analyze each factor in the remote sensing link, using theoretical analysis and modeling simulation to get coefficient of each factor to represent its effect on imaging system. Such research achievements can provide reference for satellite mission analysis and system design.

  12. Objectively measuring signal detectability, contrast, blur and noise in medical images using channelized joint observers

    NASA Astrophysics Data System (ADS)

    Goossens, Bart; Luong, Hiêp; Platiša, Ljiljana; Philips, Wilfried

    2013-03-01

    To improve imaging systems and image processing techniques, objective image quality assessment is essential. Model observers adopting a task-based quality assessment strategy by estimating signal detectability measures, have shown to be quite successful to this end. At the same time, costly and time-consuming human observer experiments can be avoided. However, optimizing images in terms of signal detectability alone, still allows a lot of freedom in terms of the imaging parameters. More specifically, fixing the signal detectability defines a manifold in the imaging parameter space on which different "possible" solutions reside. In this article, we present measures that can be used to distinguish these possible solutions from each other, in terms of image quality factors such as signal blur, noise and signal contrast. Our approach is based on an extended channelized joint observer (CJO) that simultaneously estimates the signal amplitude, scale and detectability. As an application, we use this technique to design k-space trajectories for MRI acquisition. Our technique allows to compare the different spiral trajectories in terms of blur, noise and contrast, even when the signal detectability is estimated to be equal.

  13. Atmospheric gravity waves observed in OH airglow images from 78°N

    NASA Astrophysics Data System (ADS)

    Dyrland, M. E.; Holmen, S. E.; Sigernes, F.; Taylor, M. J.; Pautet, P.; Hall, C. M.; Tsutsumi, M.; Lorentzen, D. A.

    2012-12-01

    Atmospheric gravity waves play an essential role in determining the global circulation and thermal balance of the atmosphere. Airglow imagers are important tools for characterizing atmospheric gravity waves in the mesopause region and there are few placed in High Arctic locations. An airglow imager was installed at the Kjell Henriksen Observatory (KHO) located close to Longyearbyen on the Norwegian Arctic archipelago Svalbard (78°N, 16°E) in November 2010. The imager has a wide band filter and also bandpass filters to obtain the intensity of two different rotational lines of the OH(6-2) vibrational band. Two winter seasons of airglow data (2010/2011 and 2011/2012) have been analyzed. From the 395 measurement days, only about 17% had clear sky periods. Analysis of the images with low auroral contamination shows that gravity waves can be detected by the imager, however the number of wave events observed were relatively few. The characteristics of the observed waves have been found by FFT analysis. By using mesospheric wind data from the nearby Nippon/Norway Svalbard Meteor Radar (NSMR), the intrinsic properties of the gravity waves have also been retrieved. The predominant propagation direction of the gravity waves observed is northwestward. Temperatures obtained from combining the observed ratio of the bandpass images and background intensity measured by a co-located spectrometer is also presented.

  14. Comparing Auroral Far Ultraviolet Images and Coincident Ionosonde Observations of the Auroral E Region

    NASA Astrophysics Data System (ADS)

    Knight, H. K., Jr.; Galkin, I. A.; Reinisch, B. W.

    2014-12-01

    Comparisons are being made between auroral ionospheric E region parameters derived from two types of observations: satellite-based far ultraviolet (FUV) imagers and ground-based ionosondes. The FUV imagers are: 1) NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics Global Ultraviolet Imager (TIMED/GUVI) and 2) DMSP's Special Sensor Ultraviolet Spectrographic Imager (SSUSI). The ionosondes are five high latitude Digisondes included in the Global Ionospheric Radio Observatory (GIRO) (Reinisch and Galkin, EPS, 2011). The purpose of the comparisons is to determine whether auroral FUV remote sensing algorithms that derive E region parameters from Lyman-Birge-Hopfield (LBH) emissions are biased in the presence of proton aurora. Earlier comparisons between FUV images and in situ auroral particle flux observations (e.g., Knight et al., JGR, 2012) indicate that proton aurora is much more efficient than electron aurora in producing LBH emission, and to be consistent with these findings the FUV-ionosonde comparisons would have to show that auroral FUV-derived NmE (maximum E region electron density) is biased high in the presence of proton precipitation. The advantage of making comparisons with Digisonde observations of the E region (as opposed to incoherent scatter radar) is that Digisondes remain in operation continuously over extended periods of time (i.e. years) and record observations every few minutes, making it possible to gather large numbers of FUV image-coincident observations for statistical studies. The subject of how to interpret auroral E region traces in ionograms has not been studied much up to now, however, and we are making progress in that area. We have found that a modified version of the rules from Piggott and Rawer, U.R.S.I. Handbook of Ionogram Interpretation and Reduction(1972) gives a large number of usable ionograms and good correlation with auroral FUV observations. The figure shows an example of an auroral FUV image with the locations

  15. Image-domain sampling properties of the Hotelling Observer in CT using filtered back-projection

    NASA Astrophysics Data System (ADS)

    Sanchez, Adrian A.; Sidky, Emil Y.; Pan, Xiaochuan

    2015-03-01

    The Hotelling Observer (HO),1 along with its channelized variants,2 has been proposed for image quality evaluation in x-ray CT.3,4 In this work, we investigate HO performance for a detection task in parallel-beam FBP as a function of two image-domain sampling parameters, namely pixel size and field-of-view. These two parameters are of central importance in adapting HO methods to use in CT, since the large number of pixels in a single image makes direct computation of HO performance for a full image infeasible in most cases. Reduction of the number of image pixels and/or restriction of the image to a region-of-interest (ROI) has the potential to make direct computation of HO statistics feasible in CT, provided that the signal and noise properties lead to redundant information in some regions of the image. For small signals, we hypothesize that reduction of image pixel size and enlargement of the image field-of-view are approximately equivalent means of gaining additional information relevant to a detection task. The rationale for this hypothesis is that the backprojection operation in FBP introduces long range correlations so that, for small signals, the reconstructed signal outside of a small ROI is not linearly independent of the signal within the ROI. In this work, we perform a preliminary investigation of this hypothesis by sweeping these two sampling parameters and computing HO performance for a signal detection task.

  16. The study of enhanced earth observations on a satellite image chain

    NASA Astrophysics Data System (ADS)

    Yong, Sang-Soon; Choi, Myungjin; Ra, Sung-Woong

    2011-10-01

    The Multi-Spectral Camera (MSC) on the KOrea Multi-Propose SATellite (KOMPSAT)-2 was developed and launched as a main payload to provide a One(1) m panchromatic image and four(4) band four(4) m multi-spectral images at an altitude of 685 km covering a swath width of 15 km. These images, archived around the world, are a useful resource for space applications in agriculture, cartography, geology, forestry, regional planning, surveillance, and national security. The image quality of KOMPSAT-2 depends upon its image chain, which is comprised of an on-board system in the satellite and a processing system at the ground station. Therefore, in this study we determine the factors that have a major impact on the image quality through an investigation of the entire image chain. Consequently, two methods, involving a compression algorithm and a deconvolution technique, were determined as having a significant influence on the KOMPSAT-2 image quality. The compression algorithm of KOMPSAT-2 is rate-controlled JPEG-like algorithm that controls the mismatch between the input and output data rate. The ability to control the input/output data rate may be useful during the operation of the satellite but can also lower the overall image quality. The deconvolution technique may increase the sharpness of images, but it can also amplify the image noise level. Therefore, we propose methods of wavelet-based compression and denoising as an alternative to currently existing algorithms. Satisfactory results were obtained through experimentation with these two algorithms, and they are expected to be successfully implemented into the future KOMPSAT series to yield high-quality images for enhanced earth observation.

  17. Intriguing transmission electron microscopy images observed for perpendicularly oriented cylindrical microdomains of block copolymers

    NASA Astrophysics Data System (ADS)

    Ohnogi, Hiroshi; Isshiki, Toshiyuki; Sasaki, Sono; Sakurai, Shinichi

    2014-08-01

    Intriguing images of dislocation structures were observed by the transmission electron microscopy (TEM) technique for hexagonally packed cylindrical microdomains in a block copolymer (polystyrene-block-polyethylenebutylene-block-polystyrene triblock copolymer) film. The polystyrene (PS) cylinders were embedded in the polyethylenebutylene (PEB) matrix and oriented perpendicular to the surface of the thin section for the TEM observations. In order to understand such strange dislocation structures, we applied an image processing technique using two-dimensional Fourier transform (FT) and inverse Fourier transform (IFT) methods. It was found that these intriguing images were not ascribed to real dislocation structures but were fake ones due to the moiré effect caused by the overlapping of hexagons with a slightly mismatched orientation. Furthermore, grain boundaries in the ultrathin section can be identified by image processing using FT and IFT methods.Intriguing images of dislocation structures were observed by the transmission electron microscopy (TEM) technique for hexagonally packed cylindrical microdomains in a block copolymer (polystyrene-block-polyethylenebutylene-block-polystyrene triblock copolymer) film. The polystyrene (PS) cylinders were embedded in the polyethylenebutylene (PEB) matrix and oriented perpendicular to the surface of the thin section for the TEM observations. In order to understand such strange dislocation structures, we applied an image processing technique using two-dimensional Fourier transform (FT) and inverse Fourier transform (IFT) methods. It was found that these intriguing images were not ascribed to real dislocation structures but were fake ones due to the moiré effect caused by the overlapping of hexagons with a slightly mismatched orientation. Furthermore, grain boundaries in the ultrathin section can be identified by image processing using FT and IFT methods. Electronic supplementary information (ESI) available. See DOI: 10.1039/c

  18. Self-Image Perception of 171 Children and Adolescents With Cleft Lip and Palate From 22 Countries

    PubMed Central

    Abd-Elsayed, Alaa A.; Delgado, Sergio V.; Livingstone, Morgan

    2013-01-01

    Background Cleft lip (CL) and cleft palate (CP) are among the most common congenital deformities of the head and neck. They are associated with many problems, physical and psychological. We describe 171 children and adolescents with CL/CP from 22 countries who were asked to draw their faces in a self-image perception drawing 2 hours before surgery to repair their deformities. Methods The aim of the study was to explore whether children and adolescents with CL and CP perceived themselves as deformed when given the opportunity to draw their faces before surgery to repair their deformities. Children were asked to lie down on a large piece of paper to have their body outline traced. Subsequently, the children were asked to draw their faces within the outline. Results All of the children included in this study drew their faces with normal mouths. Conclusion None of the 171 patients with CL/CP drew their deformity when asked to draw their faces; the reasons are not clear. The children may have wanted to compensate for their disability with the constructive use of fantasy as they anticipated the surgery to repair their CL/CP. An additional hypothesis is that the children felt the need to draw an image that they knew represented their parents' desires. PMID:23789006

  19. Performance of PHOTONIS' low light level CMOS imaging sensor for long range observation

    NASA Astrophysics Data System (ADS)

    Bourree, Loig E.

    2014-05-01

    Identification of potential threats in low-light conditions through imaging is commonly achieved through closed-circuit television (CCTV) and surveillance cameras by combining the extended near infrared (NIR) response (800-10000nm wavelengths) of the imaging sensor with NIR LED or laser illuminators. Consequently, camera systems typically used for purposes of long-range observation often require high-power lasers in order to generate sufficient photons on targets to acquire detailed images at night. While these systems may adequately identify targets at long-range, the NIR illumination needed to achieve such functionality can easily be detected and therefore may not be suitable for covert applications. In order to reduce dependency on supplemental illumination in low-light conditions, the frame rate of the imaging sensors may be reduced to increase the photon integration time and thus improve the signal to noise ratio of the image. However, this may hinder the camera's ability to image moving objects with high fidelity. In order to address these particular drawbacks, PHOTONIS has developed a CMOS imaging sensor (CIS) with a pixel architecture and geometry designed specifically to overcome these issues in low-light level imaging. By combining this CIS with field programmable gate array (FPGA)-based image processing electronics, PHOTONIS has achieved low-read noise imaging with enhanced signal-to-noise ratio at quarter moon illumination, all at standard video frame rates. The performance of this CIS is discussed herein and compared to other commercially available CMOS and CCD for long-range observation applications.

  20. Differential use of image enhancement techniques by experienced and inexperienced observers.

    PubMed

    Krupinski, Elizabeth A; Roehrig, Hans; Dallas, William; Fan, Jiahua

    2005-12-01

    Full-field digital mammography (FFDM) systems are currently being used to acquire mammograms in digital format, but digital displays are less than ideal compared to traditional film-screen display. Certain physical properties of softcopy displays [e.g., modulation transfer function (MTF)] are less than optimal compared to film. We developed methods to compensate for some of these softcopy display deficiencies, based on careful physical characterization of the displays and image-processing software. A series of 100 FFDM and 60 digitized images was shown to six observers-half experienced (mammographers) and half inexperienced (radiology residents). The observers had to decide if a mass or microcalcification cluster was present and classify it as benign or malignant. A window could be activated that brought the image detail within the window to full resolution and corrected for the nonisotropic MTF of the Cathode Ray Tube (CRT) display. Experienced readers had better diagnostic performance and took less time to view the images. Experienced readers used window/level more than inexperienced readers, but inexperienced readers used magnification and the MTF compensation tool more often. Use of the magnification and the MTF tool increased reader decision confidence. Experienced and inexperienced readers use image-processing tools differently, with certain tools increasing reader confidence. Understanding how observers use image-processing tools may help in the development of better and more automated user interfaces. PMID:16142436

  1. Visual perception enhancement for detection of cancerous oral tissue by multi-spectral imaging

    NASA Astrophysics Data System (ADS)

    Wang, Hsiang-Chen; Tsai, Meng-Tsan; Chiang, Chun-Ping

    2013-05-01

    Color reproduction systems based on the multi-spectral imaging technique (MSI) for both directly estimating reflection spectra and direct visualization of oral tissues using various light sources are proposed. Images from three oral cancer patients were taken as the experimental samples, and spectral differences between pre-cancerous and normal oral mucosal tissues were calculated at three time points during 5-aminolevulinic acid photodynamic therapy (ALA-PDT) to analyze whether they were consistent with disease processes. To check the successful treatment of oral cancer with ALA-PDT, oral cavity images by swept source optical coherence tomography (SS-OCT) are demonstrated. This system can also reproduce images under different light sources. For pre-cancerous detection, the oral images after the second ALA-PDT are assigned as the target samples. By using RGB LEDs with various correlated color temperatures (CCTs) for color difference comparison, the light source with a CCT of about 4500 K was found to have the best ability to enhance the color difference between pre-cancerous and normal oral mucosal tissues in the oral cavity. Compared with the fluorescent lighting commonly used today, the color difference can be improved by 39.2% from 16.5270 to 23.0023. Hence, this light source and spectral analysis increase the efficiency of the medical diagnosis of oral cancer and aid patients in receiving early treatment.

  2. High-precision image aided inertial navigation with known features: observability analysis and performance evaluation.

    PubMed

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  3. Lava flow surface textures - SIR-B radar image texture, field observations, and terrain measurements

    NASA Technical Reports Server (NTRS)

    Gaddis, Lisa R.; Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1990-01-01

    SIR-B images, field observations, and small-scale (cm) terrain measurements are used to study lave flow surface textures related to emplacement processes of a single Hawaiian lava flow. Although smooth pahoehoe textures are poorly characterized on the SIR-B data, rougher pahoehoe types and the a'a flow portion show image textures attributed to spatial variations in surface roughness. Field observations of six distinct lava flow textural units are described and used to interpret modes of emplacement. The radar smooth/rough boundary between pahoehoe and a'a occurs at a vertical relief of about 10 cm on this lava flow. While direct observation and measurement most readily yield information related to lava eruption and emplacement processes, analyses of remote sensing data such as those acquired by imaging radars and altimeters can provide a means of quantifying surface texture, identifying the size and distribution of flow components, and delineating textural unit boundaries.

  4. High-Precision Image Aided Inertial Navigation with Known Features: Observability Analysis and Performance Evaluation

    PubMed Central

    Jiang, Weiping; Wang, Li; Niu, Xiaoji; Zhang, Quan; Zhang, Hui; Tang, Min; Hu, Xiangyun

    2014-01-01

    A high-precision image-aided inertial navigation system (INS) is proposed as an alternative to the carrier-phase-based differential Global Navigation Satellite Systems (CDGNSSs) when satellite-based navigation systems are unavailable. In this paper, the image/INS integrated algorithm is modeled by a tightly-coupled iterative extended Kalman filter (IEKF). Tightly-coupled integration ensures that the integrated system is reliable, even if few known feature points (i.e., less than three) are observed in the images. A new global observability analysis of this tightly-coupled integration is presented to guarantee that the system is observable under the necessary conditions. The analysis conclusions were verified by simulations and field tests. The field tests also indicate that high-precision position (centimeter-level) and attitude (half-degree-level)-integrated solutions can be achieved in a global reference. PMID:25330046

  5. Image observation of diffraction spots using FZP and coherent X-ray beam

    SciTech Connect

    Suzuki, Takuya; Yoshizuka, Kazuharu; Takano, Hidekazu; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2004-05-12

    New small angle X-ray dispersion speckle method by the condensing optical system using FZP (Fresnel zone plate) was performed. And single crystal diffraction spot image was observed using this optical system. High photon flux with the FZP of 100-micron-diameter is obtained than that with a 5-micron-diameter pinhole. S/N ratio of data improved and measurement time also became short. The minimum beam size focused with the FZP was 0.25 {mu}m. The speckle image resulting from the non-ordering structure and periodic structure of 10nm order is successfully observed. This optical system was applicable also to diffraction spot image observation. We show a possibility that the information of the periodic and/or random structural analysis with sub-{mu}m order which were unsuitable with the conventional single crystal x-ray diffraction analysis.

  6. An Investigation of Relationships Between Fifth Grade Students' Perception of the Physical Classroom Environment and Observed Environmental Factors.

    ERIC Educational Resources Information Center

    Faust, Russell Weidner

    An exploratory field study was conducted in 42 self-contained, elementary grade classrooms in 18 school buildings. Subjects were 1,030 fifth-grade students. The purpose of the study was to determine the range of physical environmental conditions in the classrooms; and how students' perceptions of the physical environment (1) describe the…

  7. On the effect of subliminal priming on subjective perception of images: a machine learning approach.

    PubMed

    Kumar, Parmod; Mahmood, Faisal; Mohan, Dhanya Menoth; Wong, Ken; Agrawal, Abhishek; Elgendi, Mohamed; Shukla, Rohit; Dauwels, Justin; Chan, Alice H D

    2014-01-01

    The research presented in this article investigates the influence of subliminal prime words on peoples' judgment about images, through electroencephalograms (EEGs). In this cross domain priming paradigm, the participants are asked to rate how much they like the stimulus images, on a 7-point Likert scale, after being subliminally exposed to masked lexical prime words, with EEG recorded simultaneously. Statistical analysis tools are used to analyze the effect of priming on behavior, and machine learning techniques to infer the primes from EEGs. The experiment reveals strong effects of subliminal priming on the participants' explicit rating of images. The subjective judgment affected by the priming makes visible change in event-related potentials (ERPs); results show larger ERP amplitude for the negative primes compared with positive and neutral primes. In addition, Support Vector Machine (SVM) based classifiers are proposed to infer the prime types from the average ERPs, which yields a classification rate of 70%. PMID:25571224

  8. Observations of Io's Active Volcanoes from IRTF: Imaging and Occultation Lightcurves

    NASA Astrophysics Data System (ADS)

    Rathbun, J. A.; Spencer, J. R.

    2014-12-01

    We have been observing Ionian volcanism from NASA's Infrared Telescope Facility (IRTF) for more than two decades. The frequency of our observations increases dramatically when spacecraft are observing Io in order to complement the data returned by the spacecraft. The Japanese Space Agency's (JAXA) Hisaki (Sprint-A) mission recently observd the Jupiter system from earth orbit, monitoring the Io Plasma Torus and Jovian aurora. In order to investigate the possible influence of Io volcanism on the torus, we observed Io's volcanoes from the IRTF in Hawaii between September 2013 and May 2014. We imaged Io at 2.2, 3.5, and 4.8 microns in eclipse and reflected sunlight. We also observed Io during occultation by Jupiter, which allows us to locate and characterize individual volcanic eruptions, with greater spatial accuracy, on the Jupiter-facing hemisphere. The 2013 3.5 micron images of a sunlit Io showed no obvious bright volcanic features. However, further increases in spatial resolution is possible with shift-and-add processing of short exposure images. Preliminary occultation lightcurves from 2013 show moderate levels of activity at Kaneheliki/Janus and Loki, the two volcanic centers most often observed in occultation lightcurves. Loki was much brighter in 2013 than during the New Horizons flyby in 2007, but not as bright as during the Galileo era (see figure). From February 2014 through May 2014, due to a planned upgrade on the SPEX instrument and an unplanned required repair on the NSFCam2 instrument (both of which we have used previously), we exclusively used the CSHELL instrument as an imager. Unfortunately, CSHELL was not designed for imaging and has limited spatial resolution and photometric precision, complicating image analysis.

  9. Effect of heading perception on microsaccade dynamics.

    PubMed

    Piras, Alessandro; Raffi, Milena; Persiani, Michela; Perazzolo, Monica; Squatrito, Salvatore

    2016-10-01

    The present study shows the relationship between microsaccades and heading perception. Recent research demonstrates that microsaccades during fixation are necessary to overcome loss of vision due to continuous stimulation of the retinal receptors, even at the potential cost of a decrease in visual acuity. The goal of oculomotor fixational mechanisms might be not retinal stabilization, but controlled image motion adjusted to be optimal for visual processing. Thus, patterns of microsaccades may be exploited to help to understand the oculomotor system, aspects of visual perception, and the dynamics of visual attention. We presented an expansion optic flow in which the dot speed simulated a heading directed to the left or to the right of the subject, who had to signal the perceived heading by making a saccade toward the perceived direction. We recorded microsaccades during the optic flow stimulation to investigate their characteristics before and after the response. The time spent on heading perception was similar between right and left direction, and response latency was shorter during correct than incorrect responses. Furthermore, we observed that correct heading perception is associated with longer, larger and faster microsaccade characteristics. The time-course of microsaccade rate shows a modulation across the perception process similar to that seen for other local perception tasks, while the main direction is oriented toward the opposite side with respect to the perceived heading. Microsaccades enhance visual perception and, therefore, represent a fundamental motor process, with a specific effect for the build-up of global visual perception of space. PMID:27327105

  10. Computational assessment of mammography accreditation phantom images and correlation with human observer analysis

    NASA Astrophysics Data System (ADS)

    Barufaldi, Bruno; Lau, Kristen C.; Schiabel, Homero; Maidment, D. A.

    2015-03-01

    Routine performance of basic test procedures and dose measurements are essential for assuring high quality of mammograms. International guidelines recommend that breast care providers ascertain that mammography systems produce a constant high quality image, using as low a radiation dose as is reasonably achievable. The main purpose of this research is to develop a framework to monitor radiation dose and image quality in a mixed breast screening and diagnostic imaging environment using an automated tracking system. This study presents a module of this framework, consisting of a computerized system to measure the image quality of the American College of Radiology mammography accreditation phantom. The methods developed combine correlation approaches, matched filters, and data mining techniques. These methods have been used to analyze radiological images of the accreditation phantom. The classification of structures of interest is based upon reports produced by four trained readers. As previously reported, human observers demonstrate great variation in their analysis due to the subjectivity of human visual inspection. The software tool was trained with three sets of 60 phantom images in order to generate decision trees using the software WEKA (Waikato Environment for Knowledge Analysis). When tested with 240 images during the classification step, the tool correctly classified 88%, 99%, and 98%, of fibers, speck groups and masses, respectively. The variation between the computer classification and human reading was comparable to the variation between human readers. This computerized system not only automates the quality control procedure in mammography, but also decreases the subjectivity in the expert evaluation of the phantom images.

  11. Combination of detection and estimation tasks using channelized scanning linear observer for CT imaging systems

    NASA Astrophysics Data System (ADS)

    Tseng, Hsin-Wu; Fan, Jiahua; Kupinski, Matthew A.

    2015-03-01

    Maintaining or even improving image quality while lowering patient dose is always the desire in clinical CT imaging. Iterative reconstruction (IR) algorithms have been designed to help reduce dose and/or provide better image quality. In this work, the channelized scanning linear observer (CSLO) is applied to study the combination of detection and estimation task performance using CT image data. The purpose of this work is to design a task-­-based approach to quantitatively evaluate image-­-quality for different reconstruction algorithms. Low-­-contrast objects embedded in head-­-size and body-­-size phantoms are imaged multiple times and reconstructed by FBP and an IR algorithm for this study. Independent signal present and absent ROIs cropped from images are channelized by Difference of Gauss channels for CSLO training and testing. Estimation receiver operating characteristic (EROC) curves and the area under EROC curve (EAUC) are calculated by CSLO as the figure of merit. The One-­- Shot method is used to compute the variance of the EAUC values. Results suggest that the IR algorithm studied in this work could efficiently reduce the dose approximately 54% to achieve an image quality comparable to conventional FBP reconstruction for the combined detection and estimation tasks.

  12. The role of bicycle sharing systems in normalising the image of cycling: An observational study of London cyclists

    PubMed Central

    Goodman, Anna; Green, Judith; Woodcock, James

    2014-01-01

    Bicycle sharing systems are increasingly popular around the world and have the potential to increase the visibility of people cycling in everyday clothing. This may in turn help normalise the image of cycling, and reduce perceptions that cycling is ‘risky’ or ‘only for sporty people’. This paper sought to compare the use of specialist cycling clothing between users of the London bicycle sharing system (LBSS) and cyclists using personal bicycles. To do this, we observed 3594 people on bicycles at 35 randomly-selected locations across central and inner London. The 592 LBSS users were much less likely to wear helmets (16% vs. 64% among personal-bicycle cyclists), high-visibility clothes (11% vs. 35%) and sports clothes (2% vs. 25%). In total, 79% of LBSS users wore none of these types of specialist cycling clothing, as compared to only 30% of personal-bicycle cyclists. This was true of male and female LBSS cyclists alike (all p>0.25 for interaction). We conclude that bicycle sharing systems may not only encourage cycling directly, by providing bicycles to rent, but also indirectly, by increasing the number and diversity of cycling ‘role models’ visible. PMID:25568838

  13. Magnetic resonance imaging findings in juvenile spondyloarthropathy and effects of treatment observed on subsequent imaging

    PubMed Central

    2014-01-01

    Background Magnetic resonance imaging (MRI) is often used to diagnose and monitor treatment effects of juvenile spondyloarthropathy (SpA). Our objective was to describe MRI findings in juvenile SpA and determine predictors of active sacroiliitis and response to treatment. Methods Children who had MRI of the sacroiliac (SI) joints and were referred to the pediatric rheumatology clinic from 2009 to 2012 were retrospectively studied. The clinical parameters, laboratory studies and findings on MRI were collected and a composite score ratio (CR) was calculated for both SI joints on each MRI study based on a semi-quantitative scale that included evaluation of bone marrow edema (BME), synovial enhancement (SE), and erosions (ER). The findings on MRI were correlated with clinical and laboratory values. Results 50 subjects who underwent 76 MRI for suspected or known SpA were included in the study. Sacroiliitis was seen in 48 MRIs in 32 subjects. Of the subjects with sacroiliitis, mean age ± standard deviation was 13.7 ± 2.6 years, 71% were male and 41% were HLA B27 positive. SE without BME was seen in 31% cases of sacroiliitis. In subjects with sacroiliitis, 79% also had hip arthritis and 41% had enthesitis of the pelvic region on MRI. In 38% of subjects with sacroiliitis, physical exam was not indicative of sacroiliitis or hip arthritis. Longitudinal data were available for 13 subjects. Sacroiliitis on MRI improved in 9 subjects with the greatest improvement in MRI composite score ratio after initiation of etanercept therapy. CR improvement was due to improvement of BME and SE components, while the ER score remained the same or worsened in all but 1 subject. Conclusion History, physical exam or laboratory data may not predict sacroiliitis in children. Magnetic resonance imaging plays a valuable role in the initial evaluation and later treatment monitoring of children with spondyloarthropathy. Synovial enhancement is significantly reduced after treatment, and

  14. Actual defect observation results of an extreme-ultraviolet blank mask by coherent diffraction imaging

    NASA Astrophysics Data System (ADS)

    Harada, Tetsuo; Hashimoto, Hiraku; Amano, Tsuyoshi; Kinoshita, Hiroo; Watanabe, Takeo

    2016-03-01

    Extreme-ultraviolet (EUV) lithography poses a number of challenges, one of which is the production of a defect-free mask. To observe the defects on an EUV mask in a quantitative phase image, we have developed a microcoherent EUV scatterometry microscope. The intensity and phase images of the defects are reconstructed using ptychography. We observe four actual defects on an EUV blank mask using the microscope. The reconstructed shapes of the actual defects correspond well to those measured by atomic force microscopy (AFM). Our microscope should therefore function as an essential review tool in characterizing defects.

  15. Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations and numerical simulations

    NASA Technical Reports Server (NTRS)

    Darouzet, Fabien; DeKeyser, Johan; Decreau, Pierrette; Gallagher, Dennis; Pierrard, Viviane; Lemaire, Joseph; Dandouras, Iannis; Matsui, Hiroshi; Dunlop, Malcolm; Andre, Mats

    2005-01-01

    Plasmaspheric plumes have been routinely observed by CLUSTER and IMAGE. The CLUSTER mission provides high time resolution four-point measurements of the plasmasphere near perigee. Total electron density profiles can be derived from the plasma frequency and/or from the spacecraft potential (note that the electron spectrometer is usually not operating inside the plasmasphere); ion velocity is also measured onboard these satellites (but ion density is not reliable because of instrumental limitations). The EUV imager onboard the IMAGE spacecraft provides global images of the plasmasphere with a spatial resolution of 0.1 RE every 10 minutes; such images acquired near apogee from high above the pole show the geometry of plasmaspheric plumes, their evolution and motion. We present coordinated observations for 3 plume events and compare CLUSTER in-situ data (panel A) with global images of the plasmasphere obtained from IMAGE (panel B), and with numerical simulations for the formation of plumes based on a model that includes the interchange instability mechanism (panel C). In particular, we study the geometry and the orientation of plasmaspheric plumes by using a four-point analysis method, the spatial gradient. We also compare several aspects of their motion as determined by different methods: (i) inner and outer plume boundary velocity calculated from time delays of this boundary observed by the wave experiment WHISPER on the four spacecraft, (ii) ion velocity derived from the ion spectrometer CIS onboard CLUSTER, (iii) drift velocity measured by the electron drift instrument ED1 onboard CLUSTER and (iv) global velocity determined from successive EUV images. These different techniques consistently indicate that plasmaspheric plumes rotate around the Earth, with their foot fully co-rotating, but with their tip rotating slower and moving farther out.

  16. Investigation of Prospective Primary Mathematics Teachers' Perceptions and Images for Quadrilaterals

    ERIC Educational Resources Information Center

    Turnuklu, Elif; Gundogdu Alayli, Funda; Akkas, Elif Nur

    2013-01-01

    The object of this study was to show how prospective elementary mathematics teachers define and classify the quadrilaterals and to find out their images. This research was a qualitative study. It was conducted with 36 prospective elementary mathematics teachers studying at 3rd and 4th years in an educational faculty. The data were collected by…

  17. The Image of Teachers: The Perception of Others as Impulses for the Professionalisation of Teaching

    ERIC Educational Resources Information Center

    Grunder, Hans-Ulrich

    2016-01-01

    This article describes the images of teachers as constructs of a public interest in education and schools. It uses the portrayals of teachers as a productive impulse to reflect on what the professionalisation of teaching practice in schools and classrooms could imply, in particular focusing on the characteristics of accomplished teachers and poor…

  18. Effective Patient Education in Medical Imaging: Public Perceptions of Radiation Exposure Risk.

    ERIC Educational Resources Information Center

    Ludwig, Rebecca L.; Turner, Lori W.

    2002-01-01

    In a cross-sectional survey of 200 adults, less than half agreed with experts on the risks of radiation exposure; 75-90% thought that medical imaging providers should be highly regulated; and less than one-quarter knew that most radiation damage is not permanent. (SK)

  19. 3D space perception as embodied cognition in the history of art images

    NASA Astrophysics Data System (ADS)

    Tyler, Christopher W.

    2014-02-01

    Embodied cognition is a concept that provides a deeper understanding of the aesthetics of art images. This study considers the role of embodied cognition in the appreciation of 3D pictorial space, 4D action space, its extension through mirror reflection to embodied self-­-cognition, and its relation to the neuroanatomical organization of the aesthetic response.

  20. Response reliability observed with voltage-sensitive dye imaging of cortical layer 2/3: the probability of activation hypothesis.

    PubMed

    Gollnick, Clare A; Millard, Daniel C; Ortiz, Alexander D; Bellamkonda, Ravi V; Stanley, Garrett B

    2016-06-01

    A central assertion in the study of neural processing is that our perception of the environment directly reflects the activity of our sensory neurons. This assertion reinforces the intuition that the strength of a sensory input directly modulates the amount of neural activity observed in response to that sensory feature: an increase in the strength of the input yields a graded increase in the amount of neural activity. However, cortical activity across a range of sensory pathways can be sparse, with individual neurons having remarkably low firing rates, often exhibiting suprathreshold activity on only a fraction of experimental trials. To compensate for this observed apparent unreliability, it is assumed that instead the local population of neurons, although not explicitly measured, does reliably represent the strength of the sensory input. This assumption, however, is largely untested. In this study, using wide-field voltage-sensitive dye (VSD) imaging of the somatosensory cortex in the anesthetized rat, we show that whisker deflection velocity, or stimulus strength, is not encoded by the magnitude of the population response at the level of cortex. Instead, modulation of whisker deflection velocity affects the likelihood of the cortical response, impacting the magnitude, rate of change, and spatial extent of the cortical response. An ideal observer analysis of the cortical response points to a probabilistic code based on repeated sampling across cortical columns and/or time, which we refer to as the probability of activation hypothesis. This hypothesis motivates a range of testable predictions for both future electrophysiological and future behavioral studies. PMID:26864758

  1. A Cross-sectional Study of the Pattern of Body Image Perception among Female Students of BBM College in Vijayapur, North Karnataka

    PubMed Central

    Patil, Shailaja S.; Angadi, Mahabaleshwar Mahantappa; Pattankar, Tanuja P.

    2016-01-01

    Introduction Body image is an essential aspect of young girls’ self-definition and individual identity which is influenced by various biological, psychological and social factors. Excessive concern about body image, body image misconception are leading to dissatisfaction, disturbed eating patterns, affecting the nutritional status and also leading to depression and anxiety disorders. This concept of body image has been less explored in Indian context, especially among young girls. Aims The objectives of the study were to assess the body image perception among young college going girls, using a visual analog scale and to compare body image perception and satisfaction with their BMI levels and weight changing methods adopted. Materials and Methods An exploratory cross-sectional study was conducted among 63 female students studying BBM course at a private commerce institution in Vijayapur city. Data was collected using a self administered questionnaire containing details of basic socio-demographic information and a validated visual analogue scale. Height was measured by Seca Stadiometer, weight was measured using Digital weighing machine and Body Mass Index levels were calculated. Percentages were calculated for descriptive variables. Chi-square test was applied for analysing categorical variables. Spearman Rank correlation test was applied for analysing ordinal data. Results A 39.7% of participants were underweight and 15.9% were overweight/obese. Majority of underweight and overweight girls (72% and 89%, respectively) perceived themselves as normal weight. Body image satisfaction of participants was found to be significantly associated with their body image perception, mothers’ educational status and also with relatives’ and peer group’s opinions about their body weight. Unhealthy weight changing patterns like skipping meals (13%), increasing quantity and frequency of meals (17%) were reported among study participants Conclusion This exploratory study

  2. Monte Carlo Radiative Transfer Modeling of Lightning Observed in Galileo Images of Jupiter

    NASA Technical Reports Server (NTRS)

    Dyudine, U. A.; Ingersoll, Andrew P.

    2002-01-01

    We study lightning on Jupiter and the clouds illuminated by the lightning using images taken by the Galileo orbiter. The Galileo images have a resolution of 25 km/pixel and axe able to resolve the shape of the single lightning spots in the images, which have full widths at half the maximum intensity in the range of 90-160 km. We compare the measured lightning flash images with simulated images produced by our ED Monte Carlo light-scattering model. The model calculates Monte Carlo scattering of photons in a ED opacity distribution. During each scattering event, light is partially absorbed. The new direction of the photon after scattering is chosen according to a Henyey-Greenstein phase function. An image from each direction is produced by accumulating photons emerging from the cloud in a small range (bins) of emission angles. Lightning bolts are modeled either as points or vertical lines. Our results suggest that some of the observed scattering patterns axe produced in a 3-D cloud rather than in a plane-parallel cloud layer. Lightning is estimated to occur at least as deep as the bottom of the expected water cloud. For the six cases studied, we find that the clouds above the lightning are optically thick (tau > 5). Jovian flashes are more regular and circular than the largest terrestrial flashes observed from space. On Jupiter there is nothing equivalent to the 30-40-km horizontal flashes which axe seen on Earth.

  3. Observation of sea-ice dynamics using synthetic aperture radar images: Automated analysis

    NASA Technical Reports Server (NTRS)

    Vesecky, John F.; Samadani, Ramin; Smith, Martha P.; Daida, Jason M.; Bracewell, Ronald N.

    1988-01-01

    The European Space Agency's ERS-1 satellite, as well as others planned to follow, is expected to carry synthetic-aperture radars (SARs) over the polar regions beginning in 1989. A key component in utilization of these SAR data is an automated scheme for extracting the sea-ice velocity field from a time sequence of SAR images of the same geographical region. Two techniques for automated sea-ice tracking, image pyramid area correlation (hierarchical correlation) and feature tracking, are described. Each technique is applied to a pair of Seasat SAR sea-ice images. The results compare well with each other and with manually tracked estimates of the ice velocity. The advantages and disadvantages of these automated methods are pointed out. Using these ice velocity field estimates it is possible to construct one sea-ice image from the other member of the pair. Comparing the reconstructed image with the observed image, errors in the estimated velocity field can be recognized and a useful probable error display created automatically to accompany ice velocity estimates. It is suggested that this error display may be useful in segmenting the sea ice observed into regions that move as rigid plates of significant ice velocity shear and distortion.

  4. PATHOLOGIC BASIS FOR RIM ENHANCEMENT OBSERVED IN COMPUTED TOMOGRAPHIC IMAGES OF FELINE NASOPHARYNGEAL POLYPS.

    PubMed

    Lamb, Christopher R; Sibbing, Kendall; Priestnall, Simon L

    2016-03-01

    In postcontrast computed tomographic (CT) images, feline nasopharyngeal polyps typically demonstrate enhancement of the peripheral rim. Computed tomographic images and histologic specimens of a case series of 22 cats with surgically removed nasopharyngeal polyps were reviewed retrospectively in an attempt to elucidate the origin of rim enhancement. Polyps were present in the tympanic cavity in 15 (68%) cats (three with extension into the nasopharynx), only in the nasopharynx in four (18%) cats, and only in the external ear canal in the remaining three (14%) cats. All polyps had variable degrees of epithelial injury. Hemorrhage and inflammatory infiltration were significantly more marked in the superficial stroma whereas edema was significantly more marked in the core stroma. In noncontrast CT images (n = 22), the tympanic bulla was thickened in all 15 cats with a polyp in the tympanic cavity and enlarged in eight (53%) of these cats. In postcontrast CT images (n = 15), an outer zone of relatively increased attenuation compatible with a rim was observed in 11 (73%) polyps. The magnitude and extent of rim enhancement in CT images was positively correlated with the histologic grade of inflammation in the superficial stroma and negatively correlated with the grade of edema in the superficial stroma. It appears that inflammation is the major determinant of contrast medium accumulation in feline nasopharyngeal polyps, and the tendency for inflammation to affect predominantly the superficial layers explains the frequent observation of a rim in postcontrast CT images. PMID:26763944

  5. Results of the study of the vestibular apparatus and the functions of the perception of space in cosmonauts (pre- and post-flight observations)

    NASA Technical Reports Server (NTRS)

    Yakovleva, I. Y.; Kornilova, L. N.; Tarasov, I. K.; Alekseyev, V. N.

    1980-01-01

    The effect of the set of space flight factors caused a change in the activity of the vestibular apparatus and the spatial perception function. More significant and longer shifts were observed during expeditions of great duration. The detected disorders (increase in reactivity of the otolithic apparatus, decrease in sensitivity of the cupula receptor, deterioration in the perception accuracy, etc.) had a definite tendency to be restored. The primary damage to the otolithic reflex (changes were found in practically all the subjects) is probably caused by the specific effect of zero gravitation, and apparently, may be one of the trigger mechanisms for discrepancy in the activity of the sensory systems, disorders in the correcting function of the cerebellum, and central vestibular formations.

  6. Image enhancement filters significantly improve reading performance for low vision observers

    NASA Technical Reports Server (NTRS)

    Lawton, T. B.

    1992-01-01

    As people age, so do their photoreceptors; many photoreceptors in central vision stop functioning when a person reaches their late sixties or early seventies. Low vision observers with losses in central vision, those with age-related maculopathies, were studied. Low vision observers no longer see high spatial frequencies, being unable to resolve fine edge detail. We developed image enhancement filters to compensate for the low vision observer's losses in contrast sensitivity to intermediate and high spatial frequencies. The filters work by boosting the amplitude of the less visible intermediate spatial frequencies. The lower spatial frequencies. These image enhancement filters not only reduce the magnification needed for reading by up to 70 percent, but they also increase the observer's reading speed by 2-4 times. A summary of this research is presented.

  7. A stereo matching model observer for stereoscopic viewing of 3D medical images

    NASA Astrophysics Data System (ADS)

    Wen, Gezheng; Markey, Mia K.; Muralidlhar, Gautam S.

    2014-03-01

    Stereoscopic viewing of 3D medical imaging data has the potential to increase the detection of abnormalities. We present a new stereo model observer inspired by the characteristics of stereopsis in human vision. Given a stereo pair of images of an object (i.e., left and right images separated by a small displacement), the model observer rst nds the corresponding points between the two views, and then fuses them together to create a 2D cyclopean view. Assuming that the cyclopean view has extracted most of the 3D information presented in the stereo pair, a channelized Hotelling observer (CHO) can be utilized to make decisions. We conduct a simulation study that attempts to mimic the detection of breast lesions on stereoscopic viewing of breast tomosynthesis projection images. We render voxel datasets that contain random 3D power-law noise to model normal breast tissues with various breast densities. 3D Gaussian signal is added to some of the datasets to model the presence of a breast lesion. By changing the separation angle between the two views, multiple stereo pairs of projection images are generated for each voxel dataset. The performance of the model is evaluated in terms of the accuracy of binary decisions on the presence of the simulated lesions.

  8. Comparisons of Body Image Perceptions of a Sample of Black and White Women with Rheumatoid Arthritis and Fibromyalgia in the US

    PubMed Central

    Boyington, Josephine E.A; Schoster, Britta; Callahan, Leigh F

    2015-01-01

    Objective : To explore the disease-related, body image (BI) perceptions of women diagnosed with, rheumatoid arthritis (RA) and fibromyalgia (FM). Methods : A purposive sample of twenty-seven females participated in individual semi-structured phone interviews to elicit BI perceptions relative to pain, activity limitations and coping measures. Sessions were digitally recorded, transcribed verbatim, and content analyzed. Results : Body image perceptions relative to 5 major themes emerged in the analysis. They focused on Pain, Disease Impact on Physical and Mental Function, Weight, Diseased-Induced Fears and, Coping measures. Pain was a common experience of all participants. Other troubling factors verbalized by participants included dislike and shame of visibly affected body parts, and disease-induced social, psychological and physical limitations. RA participants thought that manifested joint changes, such as swelling and redness, undergirded their prompt diagnosis and receipt of health care. Contrarily, women with fibromyalgia perceived that the lack of visible, disease-related, physical signs led to a discounting of their disease, which led to delayed health care and subsequent frustrations and anger. All but one participant used prayer and meditation as a coping measure. Conclusion : The body image perceptions evidenced by the majority of participants were generally negative and included specific focus on their disease-affected body parts (e.g. joints), mental function, self-identity, health care experiences, activity limitations and overall quality of life. Given the global effect of RA and FM, assessment and integration of findings about the BI perceptions of individuals with FM and RA may help define suitable interdisciplinary strategies for managing these conditions and improving participants’ quality of life. PMID:25674181

  9. Inter- and Intra-Observer Variability in Prostate Definition With Tissue Harmonic and Brightness Mode Imaging

    SciTech Connect

    Sandhu, Gurpreet Kaur; Dunscombe, Peter; Meyer, Tyler; Pavamani, Simon; Khan, Rao

    2012-01-01

    Purpose: The objective of this study was to compare the relative utility of tissue harmonic (H) and brightness (B) transrectal ultrasound (TRUS) images of the prostate by studying interobserver and intraobserver variation in prostate delineation. Methods and Materials: Ten patients with early-stage disease were randomly selected. TRUS images of prostates were acquired using B and H modes. The prostates on all images were contoured by an experienced radiation oncologist (RO) and five equally trained observers. The observers were blinded to information regarding patient and imaging mode. The volumes of prostate glands and areas of midgland slices were calculated. Volumes contoured were compared among the observers and between observer group and RO. Contours on one patient were repeated five times by four observers to evaluate the intraobserver variability. Results: A one-sample Student t-test showed the volumes outlined by five observers are in agreement (p > 0.05) with the RO. Paired Student t-test showed prostate volumes (p = 0.008) and midgland areas (p = 0.006) with H mode were significantly smaller than that with B mode. Two-factor analysis of variances showed significant interobserver variability (p < 0.001) in prostate volumes and areas. Inter- and intraobserver consistency was quantified as the standard deviation of mean volumes and areas, and concordance indices. It was found that for small glands ({<=}35 cc) H mode provided greater interobserver consistency; however, for large glands ({>=}35 cc), B mode provided more consistent estimates. Conclusions: H mode provided superior inter- and intraobserver agreement in prostate volume definition for small to medium prostates. In large glands, H mode does not exhibit any additional advantage. Although harmonic imaging has not proven advantageous for all cases, its utilization seems to be judicious for small prostates.

  10. The SWAP EUV imager onboard PROBA2: 3 years of observations

    NASA Astrophysics Data System (ADS)

    West, Matthew; Berghmans, David; Seaton, Daniel

    The Sun Watcher with Active Pixels and Image Processing (SWAP) imager is an EUV solar telescope on board ESA's Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54x54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. The SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS-APS detector. I will present what has been learnt from 3 years of SWAP operations, the advantages of the CMOS detector and SWAPs setup, and a few unique PROBA2/SWAP observations.

  11. The Sheath Transport Observer for the Redistribution of Mass (STORM) Imager

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Sibeck, David G.; Porter, F. Scott; Burch, J.; Carter, J. A.; Cravens, Thomas; Kuntz, Kip; Omidi, N.; Read, A.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2010-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversies surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  12. The Sheath Transport Observer for the Redistribution of Mass (STORM) Image

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael; Sibeck, David G.; Porter, F. Scott; Carter, J. A.; Cravens, Thomas; Omidi, N.; Robertson, Ina; Sembay, S.; Snowden, Steven L.

    2008-01-01

    All of the solar wind energy that powers magnetospheric processes passes through the magnetosheath and magnetopause. Global images of the magnetosheath and magnetopause boundary layers will resolve longstanding controversy surrounding fundamental phenomena that occur at the magnetopause and provide information needed to improve operational space weather models. Recent developments showing that soft X-rays (0.15-1 keV) result from high charge state solar wind ions undergoing charge exchange recombination through collisions with exospheric neutral atoms has led to the realization that soft X-ray imaging can provide global maps of the high-density shocked solar wind within the magnetosheath and cusps, regions lying between the lower density solar wind and magnetosphere. We discuss an instrument concept called the Sheath Transport Observer for the Redistribution of Mass (STORM), an X-ray imager suitable for simultaneously imaging the dayside magnetosheath, the magnetopause boundary layers, and the cusps.

  13. EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.

    1988-01-01

    The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.

  14. Optical perception for detection of cutaneous T-cell lymphoma by multi-spectral imaging

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Ping; Wang, Hsiang-Chen; Chen, Shih-Hua; Tsai, Chung-Hung; Yang, Jen-Hung

    2014-12-01

    In this study, the spectrum of each picture element of the patient’s skin image was obtained by multi-spectral imaging technology. Spectra of normal or pathological skin were collected from 15 patients. Principal component analysis and principal component scores of skin spectra were employed to distinguish the spectral characteristics with different diseases. Finally, skin regions with suspected cutaneous T-cell lymphoma (CTCL) lesions were successfully predicted by evaluation and classification of the spectra of pathological skin. The sensitivity and specificity of this technique were 89.65% and 95.18% after the analysis of about 109 patients. The probability of atopic dermatitis and psoriasis patients misinterpreted as CTCL were 5.56% and 4.54%, respectively.

  15. Polarization Perception Device

    NASA Technical Reports Server (NTRS)

    Whitehead, Victor S. (Inventor); Coulson, Kinsell L. (Inventor)

    1997-01-01

    A polarization perception device comprises a base and a polarizing filter having opposite broad sides and a centerline perpendicular thereto. The filter is mounted on the base for relative rotation and with a major portion of the area of the filter substantially unobstructed on either side. A motor on the base automatically moves the filter angularly about its centerline at a speed slow enough to permit changes in light transmission by virtue of such movement to be perceived as light-dark pulses by a human observer, but fast enough so that the light phase of each such pulse occurs prior to fading of the light phase image of the preceding pulse from the observer's retina. In addition to an observer viewing a scene in real time through the filter while it is so angularly moved, or instead of such observation, the scene can be photographed, filmed or taped by a camera whose lens is positioned behind the filter.

  16. Polarization perception device

    NASA Technical Reports Server (NTRS)

    Whitehead, Victor S. (Inventor); Coulson, Kinsel L. (Inventor)

    1992-01-01

    A polarization perception device comprises a base and a polarizing filter having opposite broad sides and a centerline perpendicular thereto. The filter is mounted on the base for relative rotation and with a major portion of the area of the filter substantially unobstructed on either side. A motor on the base automatically moves the filter angularly about its centerline at a speed slow enough to permit changes in light transmission by virtue of such movement to be perceived as light-dark pulses by a human observer, but fast enough so that the light phase of each such pulse occurs prior to fading of the light phase image of the preceding pulse from the observer's retina. In addition to an observer viewing a scene in real time through the filter while it is so angularly moved, or instead of such observation, the scene can be photographed, filmed or taped by a camera whose lens is positioned behind the filter.

  17. Egocentric Direction and Position Perceptions are Dissociable Based on Only Static Lane Edge Information

    PubMed Central

    Nakashima, Ryoichi; Iwai, Ritsuko; Ueda, Sayako; Kumada, Takatsune

    2015-01-01

    When observers perceive several objects in a space, at the same time, they should effectively perceive their own position as a viewpoint. However, little is known about observers’ percepts of their own spatial location based on the visual scene information viewed from them. Previous studies indicate that two distinct visual spatial processes exist in the locomotion situation: the egocentric position perception and egocentric direction perception. Those studies examined such perceptions in information rich visual environments where much dynamic and static visual information was available. This study examined these two perceptions in information of impoverished environments, including only static lane edge information (i.e., limited information). We investigated the visual factors associated with static lane edge information that may affect these perceptions. Especially, we examined the effects of the two factors on egocentric direction and position perceptions. One is the “uprightness factor” that “far” visual information is seen at upper location than “near” visual information. The other is the “central vision factor” that observers usually look at “far” visual information using central vision (i.e., foveal vision) whereas ‘near’ visual information using peripheral vision. Experiment 1 examined the effect of the “uprightness factor” using normal and inverted road images. Experiment 2 examined the effect of the “central vision factor” using normal and transposed road images where the upper half of the normal image was presented under the lower half. Experiment 3 aimed to replicate the results of Experiments 1 and 2. Results showed that egocentric direction perception is interfered with image inversion or image transposition, whereas egocentric position perception is robust against these image transformations. That is, both “uprightness” and “central vision” factors are important for egocentric direction perception, but not

  18. Moderate resolution imaging spectroradiometer (MODIS) and observations of the land surface

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Toll, D. L.; Lawrence, W. T.

    1992-01-01

    The moderate resolution imaging spectroradiometer (MODIS) is a NASA facility instrument that is being designed for flight on the Earth Observing System (EOS) series of missions. It is designed to measure biophysical states and dynamics of the land, atmosphere, and ocean. Plans are required for use of other instruments that will be accompanying MODIS on the EOS missions, such as the High-Resolution Imaging Spectrometer (HIRIS) and the Multi-angle Imaging Spectro-Radiometer (MISR). The HIRIS instrument, a spectrometer operating in the visible to shortwave infrared parts of the spectrum, would be employed in combination with the MODIS to understand the impact of sampling the spectrum and the effects of land cover mixtures within the MODIS pixel. The MISR will help in understanding the effects of anisotropy in reflected solar radiation. Both instruments will work in combination with MODIS to better quantify the effects of the atmosphere on observations of surface properties.

  19. Performance comparison of breast imaging modalities using a 4AFC human observer study

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Rashidnasab, Alaleh; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Segars, William P.; Wells, Kevin

    2015-03-01

    This work compares the visibility of spheres and simulated masses in 2D-mammography and tomosynthesis systems using human observer studies. Performing comparison studies between breast imaging systems poses a number of practical challenges within a clinical environment. We therefore adopted a simulation approach which included synthetic breast blocks, a validated lesion simulation model and a set of validated image modelling tools as a viable alternative to clinical trials. A series of 4-alternative forced choice (4AFC) human observer experiments has been conducted for signal detection tasks using masses and spheres as targets. Five physicists participated in the study viewing images with a 5mm target at a range of contrast levels and 60 trials per experimental condition. The results showed that tomosynthesis has a lower threshold contrast than 2D-mammography for masses and spheres, and that detection studies using spheres may produce overly-optimistic threshold contrast values.

  20. Hyperspectral imaging Fourier transform spectrometers for astronomical and remote sensing observations

    NASA Astrophysics Data System (ADS)

    Rafert, J. Bruce; Sellar, R. Glenn; Holbert, Eirik; Blatt, Joel H.; Tyler, David W.; Durham, Susan E.; Newby, Harold D.

    1994-06-01

    The Florida Institue of Technology and the Phillips Laboratory have developed several advanced visible (0.4-0.8 micrometers ) imaging fourier transform spectrometer (IFTS) brassboards, which simultaneously acquire one spatial and one spectral dimension of the hyperspectral image cube. The initial versions of these instruments may be scanned across a scene or configured with a scan mirror to pick up the second spatial dimension of the image cube. The current visible hyperspectral imagers possess a combination of features, including (1) low to moderate spectral resolution for hundreds/thousands of spectral channels, (2) robust design, with no moving parts, (3) detector limited free spectral range, (4) detector-limited spatial and spectral resolution, and (5) field widened operation. The utility of this type of instrument reaches its logical conclusion however, with an instrument designed to acquire all three dimensions of the hyperspectral image cube (both spatial and one spectral) simultaneously. In this paper we present the (1) detailed optical system designs for the brassboard instruments, (2) the current data acquisition system, (3) data reduction and analysis techniques unique to hyperspectral sensor systems which operate with photometric accuracy, and (4) several methods to modify the basic instrument design to allow simultaneous acquistion of the entire hyperspectral image cube. The hyperspectral sensor systems which are being developed and whose utility is being pioneered by Florida Tech and the Phillips Laboratory are applicable to numerous DoD and civil applications including (1) space object identification, (2) radiometrically correct satellite image and spectral signature database observations, (3) simultaneous spactial/spectral observations of booster plumes for strategic and surrogate tactical missile signature identification, and (4) spatial/spectral visible and IR astronomical observations with photometric accuracy.

  1. Wide-field direct CCD observations supporting the Astro-1 Space Shuttle mission's Ultraviolet Imaging Telescope

    NASA Technical Reports Server (NTRS)

    Hintzen, Paul; Angione, Ron; Talbert, Freddie; Cheng, K.-P.; Smith, Eric; Stecher, Theodore P.

    1993-01-01

    Wide field direct CCD observations are being obtained to support and complement the vacuum-ultraviolet (VUV) images provided by Astro's Ultraviolet Imaging Telescope (UIT) during a Space Shuttle flight in December 1990. Because of the wide variety of projects addressed by UIT, the fields observed include (1) galactic supernova remnants such as the Cygnus Loop and globular clusters such as Omega Cen and M79; (2) the Magellanic Clouds, M33, M81, and other galaxies in the Local Group; and (3) rich clusters of galaxies, principally the Perseus cluster and Abell 1367. Ground-based observations have been obtained for virtually all of the Astro-1 UIT fields. The optical images allow identification of individual UV sources in each field and provide the long baseline in wavelength necessary for accurate analysis of UV-bright sources. To facilitate use of our optical images for analysis of UIT data and other projects, we plan to archive them, with the UIT images, at the National Space Science Data Center (NSSDC), where they will be universally accessible via anonymous FTP. The UIT, one of three telescopes comprising the Astro spacecraft, is a 38-cm f/9 Ritchey-Chretien telescope on which high quantum efficiency, solar-blind image tubes are used to record VUV images on photographic film. Five filters with passbands centered between 1250A and 2500A provide both VUV colors and a measurement of extinction via the 2200A dust feature. The resulting calibrated VUV pictures are 40 arcminutes in diameter at 2.5 arcseconds resolution. The capabilities of UIT, therefore, complement HST's WFPC: the latter has 40 times greater collecting area, while UIT's usable field has 170 times WFPC's field area.

  2. Large-scale imaging of cortical dynamics during sensory perception and behavior.

    PubMed

    Wekselblatt, Joseph B; Flister, Erik D; Piscopo, Denise M; Niell, Cristopher M

    2016-06-01

    Sensory-driven behaviors engage a cascade of cortical regions to process sensory input and generate motor output. To investigate the temporal dynamics of neural activity at this global scale, we have improved and integrated tools to perform functional imaging across large areas of cortex using a transgenic mouse expressing the genetically encoded calcium sensor GCaMP6s, together with a head-fixed visual discrimination behavior. This technique allows imaging of activity across the dorsal surface of cortex, with spatial resolution adequate to detect differential activity in local regions at least as small as 100 μm. Imaging during an orientation discrimination task reveals a progression of activity in different cortical regions associated with different phases of the task. After cortex-wide patterns of activity are determined, we demonstrate the ability to select a region that displayed conspicuous responses for two-photon microscopy and find that activity in populations of individual neurons in that region correlates with locomotion in trained mice. We expect that this paradigm will be a useful probe of information flow and network processing in brain-wide circuits involved in many sensory and cognitive processes. PMID:26912600

  3. How does increasingly plainer cigarette packaging influence adult smokers’ perceptions about brand image? An experimental study

    PubMed Central

    Wakefield, M A; Germain, D; Durkin, S J

    2008-01-01

    Background: Cigarette packaging is a key marketing strategy for promoting brand image. Plain packaging has been proposed to limit brand image, but tobacco companies would resist removal of branding design elements. Method: A 3 (brand types) × 4 (degree of plain packaging) between-subject experimental design was used, using an internet online method, to expose 813 adult Australian smokers to one randomly selected cigarette pack, after which respondents completed ratings of the pack. Results: Compared with current cigarette packs with full branding, cigarette packs that displayed progressively fewer branding design elements were perceived increasingly unfavourably in terms of smokers’ appraisals of the packs, the smokers who might smoke such packs, and the inferred experience of smoking a cigarette from these packs. For example, cardboard brown packs with the number of enclosed cigarettes displayed on the front of the pack and featuring only the brand name in small standard font at the bottom of the pack face were rated as significantly less attractive and popular than original branded packs. Smokers of these plain packs were rated as significantly less trendy/stylish, less sociable/outgoing and less mature than smokers of the original pack. Compared with original packs, smokers inferred that cigarettes from these plain packs would be less rich in tobacco, less satisfying and of lower quality tobacco. Conclusion: Plain packaging policies that remove most brand design elements are likely to be most successful in removing cigarette brand image associations. PMID:18827035

  4. IMAGING AND SPECTROSCOPIC OBSERVATIONS OF MAGNETIC RECONNECTION AND CHROMOSPHERIC EVAPORATION IN A SOLAR FLARE

    SciTech Connect

    Tian, Hui; Reeves, Katharine K.; Raymond, John C.; Chen, Bin; Murphy, Nicholas A.; Li, Gang; Guo, Fan; Liu, Wei

    2014-12-20

    Magnetic reconnection is believed to be the dominant energy release mechanism in solar flares. The standard flare model predicts both downward and upward outflow plasmas with speeds close to the coronal Alfvén speed. Yet, spectroscopic observations of such outflows, especially the downflows, are extremely rare. With observations of the newly launched Interface Region Imaging Spectrograph (IRIS), we report the detection of a greatly redshifted (∼125 km s{sup –1} along the line of sight) Fe XXI 1354.08 Å emission line with a ∼100 km s{sup –1} nonthermal width at the reconnection site of a flare. The redshifted Fe XXI feature coincides spatially with the loop-top X-ray source observed by RHESSI. We interpret this large redshift as the signature of downward-moving reconnection outflow/hot retracting loops. Imaging observations from both IRIS and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory also reveal the eruption and reconnection processes. Fast downward-propagating blobs along these loops are also found from cool emission lines (e.g., Si IV, O IV, C II, Mg II) and images of AIA and IRIS. Furthermore, the entire Fe XXI line is blueshifted by ∼260 km s{sup –1} at the loop footpoints, where the cool lines mentioned above all exhibit obvious redshift, a result that is consistent with the scenario of chromospheric evaporation induced by downward-propagating nonthermal electrons from the reconnection site.

  5. The Cassini Campaign observations of the Jupiter aurora by the Ultraviolet Imaging Spectrograph and the Space Telescope Imaging Spectrograph

    NASA Astrophysics Data System (ADS)

    Ajello, Joseph M.; Pryor, Wayne; Esposito, Larry; Stewart, Ian; McClintock, William; Gustin, Jacques; Grodent, Denis; Gérard, J.-C.; Clarke, John T.

    2005-11-01

    We have analyzed the Cassini Ultraviolet Imaging Spectrometer (UVIS) observations of the Jupiter aurora with an auroral atmosphere two-stream electron transport code. The observations of Jupiter by UVIS took place during the Cassini Campaign. The Cassini Campaign included support spectral and imaging observations by the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS). A major result for the UVIS observations was the identification of a large color variation between the far ultraviolet (FUV: 1100-1700 Å) and extreme ultraviolet (EUV: 800-1100 Å) spectral regions. This change probably occurs because of a large variation in the ratio of the soft electron flux (10-3000 eV) responsible for the EUV aurora to the hard electron flux (˜15-22 keV) responsible for the FUV aurora. On the basis of this result a new color ratio for integrated intensities for EUV and FUV was defined ( 4πI/4πI) which varied by approximately a factor of 6. The FUV color ratio ( 4πI/4πI) was more stable with a variation of less than 50% for the observations studied. The medium resolution (0.9 Å FWHM, G140M grating) FUV observations (1295-1345 Å and 1495-1540 Å) by STIS on 13 January 2001, on the other hand, were analyzed by a spectral modeling technique using a recently developed high-spectral resolution model for the electron-excited H 2 rotational lines. The STIS FUV data were analyzed with a model that considered the Lyman band spectrum (B Σu+1→XΣg+1) as composed of an allowed direct excitation component (X Σg+1→BΣu+1) and an optically forbidden component (X Σg+1→EF,GK,HH¯,…Σg+1 followed by the cascade transition Σg+1→BΣu+1). The medium-resolution spectral regions for the Jupiter aurora were carefully chosen to emphasize the cascade component. The ratio of the two components is a direct measurement of the mean secondary electron energy of the aurora. The mean secondary electron energy of the aurora varies between 50 and 200 eV for the polar

  6. Observation of MSTIDs in Geomagnetic Conjugate Points, observed by all-sky images of OI 630.0 nm emission

    NASA Astrophysics Data System (ADS)

    Stefanello, Michel; Schuch, Nelson Jorge; Sarzi Machado, Cristiano; Pimenta, Alexandre; Vestena Bilibio, Anderson; Amorim, Danielle; Andrioli, Vania Fatima

    Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are characterized as wave-like structures which propagate in the ionospheric F region of low and medium latitudes. Its origin is attributed to electrodynamics instabilities processes explained by Perkins Plasma Instability Theory. This study presents an observation of simultaneous occurrence of Medium Scale Traveling Ionospheric Disturbance (MSTID) in both hemispheres, during geomagnetically quiet nights. All-sky images of OI 630.0 nm emission were obtained with two imagers localized in geomagnetic conjugate points: Southern Space Observatory (29.4ºS, 53.8ºW), in São Martinho da Serra, Southern Brazil, and Arecibo Observatory (18.3ºN, 66.7ºW), in Puerto Rico. Using two digisondes installed at Falkland Islands (51.4ºS, 57.5ºW) and Puerto Rico (18.5ºN, 67.1ºW), it was investigated the behavior of F region during the occurrence the MSTIDs. Data from GPS receivers installed at Santa Maria (29.7ºS, 53.7ºW) and Virgin Islands (17.7ºN, 64.7ºW) were employed to calculate the variation of the Total Electronic Content (TEC). The analysis of TEC allows to identify the occurrence of ionospheric irregularities, such as MSTIDs.

  7. Development of an AutoFlat program for the acquisition of effective flat images in the automated observation system

    NASA Astrophysics Data System (ADS)

    Yoon, Joh-Na; Kim, Yonggi; Kim, Dong-Heun; Yim, Hong-Suh

    2013-12-01

    The purpose of this study is to develop an observation program for obtaining effective flat images that are necessary for photometric observation. The development of the program was achieved by improving the existing method for obtaining twilight flat images. The existing method for obtaining twilight flat images acquires flat images by observing the sky light after sunset or light before sunrise. The decision of when to observe flat images at each night is solely dependent on the judgment of an observer, and thus the obtained flat images for particular nights may not be clean. Especially, in the case of the observatories where an automated observation system is in operation, there is a difficulty that an observer should pay attention during sunrise and sunset in order to obtain flat images. In this study, a computer program is developed to improve this inconvenience and to efficiently perform photometric observation in the observatories where an automated observation system is applied. This program can obtain flat images by calculating the time for obtaining flat images automatically and the exposure time using a numerically calculated function. When obtaining twilight flat images at dusk and at dawn, the developed program performs automated observation and provides effective flat images by acquiring appropriate exposure time considering the sunrise and sunset times that vary depending on the day of observation. The code for performing this task was added to Obs Tool II (Yoon et al. 2006), which is the automated observation system of the Chungbuk National University Observatory, and the usefulness of the developed program was examined by performing an actual automated observation. If this program is applied to other observatories where automated observation is in operation, it is expected that stable and highquality flat images could be obtained, which can be used for the pre-processing of photometric observation data.

  8. Categorical perception.

    PubMed

    Goldstone, Robert L; Hendrickson, Andrew T

    2010-01-01

    Categorical perception (CP) is the phenomenon by which the categories possessed by an observer influences the observers' perception. Experimentally, CP is revealed when an observer's ability to make perceptual discriminations between things is better when those things belong to different categories rather than the same category, controlling for the physical difference between the things. We consider several core questions related to CP: Is it caused by innate and/or learned categories, how early in the information processing stream do categories influence perception, and what is the relation between ongoing linguistic processing and CP? CP for both speech and visual entities are surveyed, as are computational and mathematical models of CP. CP is an important phenomenon in cognitive science because it represents an essential adaptation of perception to support categorizations that an organism needs to make. Sensory signals that could be linearly related to physical qualities are warped in a nonlinear manner, transforming analog inputs into quasi-digital, quasi-symbolic encodings. Copyright © 2009 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. PMID:26272840

  9. Supernova Remnants and Nucleosynthesis (fos 30): Augmentation Cycle 2 Observations - Imaging

    NASA Astrophysics Data System (ADS)

    Davidsen, Arthur

    1991-07-01

    Overall program: UV and optical spectra of four supernova remnants (SNRs) will be used to study a number of problems related to abundances, grain destruction, interstellar medium properties and physical conditions in SNR shocks. Representatives of three of the main classes of SNRs (Crab-nebula like, Balmer-line and "normal") will be studied in the LMC, where reasonably low reddening permits UV observations. An oxygen-rich SNR in NGC 4449 will be observed, taking advantage of the small FOS slits to isolate the SNR from surrounding H II emission. Two M33 SNRs that were previously part of this proposal have been dropped due to time limitations. This proposal is augmented time to obtain early acq images of two LMC remnants and spectra of N49, which had early acq images in Cy. 0. NOTE: SPECTROSCOPY AND IMAGING ORIGINALLY IN THE CYCLE 2 PROPOSAL 4108 HAVE BEEN SPLIT BY STSCI INTO TWO SEPARATE PROPOSALS TO ALLOW FOR SCHEDULING OF CYCLE 2 EARLY ACQ IMAGING ( THIS PROPOSAL ) SINCE CYCLE 2 SPECTROSCOPY DEPENDS ON MEASUREMENT OF EARLY ACQ IMAGING OF OTHER TARGETS FROM EARLIER CYCLES.

  10. Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images

    SciTech Connect

    Tsekenis, S. A.; McCann, H.; Tait, N.

    2015-03-15

    We present a novel framework and experimental method for the quantification of spatial resolution of a tomography system. The framework adopts the “black box” view of an imaging system, considering only its input and output. The tomography system is locally stimulated with a step input, viz., a sharp edge. The output, viz., the reconstructed images, is analysed by Fourier decomposition of their spatial frequency components, and the local limiting spatial resolution is determined using a cut-off threshold. At no point is an observer involved in the process. The framework also includes a means of translating the quantification region in the imaging space, thus creating a spatially resolved map of objectively quantified spatial resolution. As a case-study, the framework is experimentally applied using a gaseous propane phantom measured by a well-established chemical species tomography system. A spatial resolution map consisting of 28 regions is produced. In isolated regions, the indicated performance is 4-times better than that suggested in the literature and varies by 57% across the imaging space. A mechanism based on adjacent but non-interacting beams is hypothesised to explain the observed behaviour. The mechanism suggests that, as also independently concluded by other methods, a geometrically regular beam array maintains maximum objectivity in reconstructions. We believe that the proposed framework, methodology, and findings will be of value in the design and performance evaluation of tomographic imaging arrays and systems.

  11. Method for optimizing channelized quadratic observers for binary classification of large-dimensional image datasets

    PubMed Central

    Kupinski, M. K.; Clarkson, E.

    2015-01-01

    We present a new method for computing optimized channels for channelized quadratic observers (CQO) that is feasible for high-dimensional image data. The method for calculating channels is applicable in general and optimal for Gaussian distributed image data. Gradient-based algorithms for determining the channels are presented for five different information-based figures of merit (FOMs). Analytic solutions for the optimum channels for each of the five FOMs are derived for the case of equal mean data for both classes. The optimum channels for three of the FOMs under the equal mean condition are shown to be the same. This result is critical since some of the FOMs are much easier to compute. Implementing the CQO requires a set of channels and the first- and second-order statistics of channelized image data from both classes. The dimensionality reduction from M measurements to L channels is a critical advantage of CQO since estimating image statistics from channelized data requires smaller sample sizes and inverting a smaller covariance matrix is easier. In a simulation study we compare the performance of ideal and Hotelling observers to CQO. The optimal CQO channels are calculated using both eigenanalysis and a new gradient-based algorithm for maximizing Jeffrey's divergence (J). Optimal channel selection without eigenanalysis makes the J-CQO on large-dimensional image data feasible. PMID:26366764

  12. Optical observation, image-processing, and detection of space debris in geosynchronous Earth orbit

    NASA Astrophysics Data System (ADS)

    Oda, Hiroshi; Kurosaki, Hirohisa; Yanagisawa, Toshifumi; Tagawa, Makoto

    We report on optical observations and an efficient detection method of space debris in the geosynchronous Earth orbit (GEO). We operate our new Australia Remote Observatory (ARO) where an 18 cm optical telescope with a charged-coupled device (CCD) camera covering a 3.14-degree field of view is used for GEO debris survey, and analyse datasets of successive CCD images using the line detection method (Yanagisawa and Nakajima 2005). In our operation, the exposure time of each CCD image is set to be 3 seconds, and the time interval of each images is about 4.7 seconds. We can detect faint signals (down to about 1.8 sigma of background noise) by applying the line detection method to 18 CCD images. As a result, we detected about 300 GEO objects up to magnitude of 14 among 5 nights data, and found that a certain amount of our detections are new objects that are not contained in the two-line-element (TLE) data provided by the U.S. Strategic Command (USSTRATCOM). We conclude that our ARO posses a high efficiency detection of GEO objects despite the use of comparatively-inexpensive observation and analysis system. We also describe the image-processing method specialised for the detection of GEO objects (not for usual astronomical objects like stars) in this paper.

  13. Solid Hydrogen Experiments for Atomic Propellants: Particle Formation, Imaging, Observations, and Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2005-01-01

    This report presents particle formation observations and detailed analyses of the images from experiments that were conducted on the formation of solid hydrogen particles in liquid helium. Hydrogen was frozen into particles in liquid helium, and observed with a video camera. The solid hydrogen particle sizes and the total mass of hydrogen particles were estimated. These newly analyzed data are from the test series held on February 28, 2001. Particle sizes from previous testing in 1999 and the testing in 2001 were similar. Though the 2001 testing created similar particles sizes, many new particle formation phenomena were observed: microparticles and delayed particle formation. These experiment image analyses are some of the first steps toward visually characterizing these particles, and they allow designers to understand what issues must be addressed in atomic propellant feed system designs for future aerospace vehicles.

  14. VLBI observations of SN 2011dh: imaging of the youngest radio supernova

    NASA Astrophysics Data System (ADS)

    Martí-Vidal, I.; Tudose, V.; Paragi, Z.; Yang, J.; Marcaide, J. M.; Guirado, J. C.; Ros, E.; Alberdi, A.; Pérez-Torres, M. A.; Argo, M. K.; van der Horst, A. J.; Garrett, M. A.; Stockdale, C. J.; Weiler, K. W.

    2011-11-01

    We report on the VLBI detection of supernova SN 2011dh at 22 GHz using a subset of the EVN array. The observations took place 14 days after the discovery of the supernova, thus resulting in a VLBI image of the youngest radio-loud supernova ever. We provide revised coordinates for the supernova with milli-arcsecond precision, linked to the ICRF. The recovered flux density is a factor ~2 below the EVLA flux density reported by other authors at the same frequency and epoch of our observations. This discrepancy could be due to extended emission detected with the EVLA or to calibration problems in the VLBI and/or EVLA observations.

  15. Auditory and visual distance perception: The proximity-image effect revisited

    NASA Astrophysics Data System (ADS)

    Zahorik, Pavel

    2003-04-01

    The proximity-image effect [M. B. Gardner, J. Acoust. Soc. Am. 43, 163 (1968)] describes a phenomenon in which the apparent distance of an auditory target is determined by the distance of the nearest plausible visual target rather than by acoustic distance cues. Here this effect is examined using a single visual target (an un-energized loudspeaker) and invisible virtual sound sources. These sources were synthesized from binaural impulse-response measurements at distances ranging from 1 to 5 m (0.25-m steps) in the semi-reverberant room (7.7 m×4.2 m×2.7 m) in which the experiment was conducted. Listeners (n=11) were asked whether or not the auditory target appeared to be at the same distance as the visual target. Within a block of trials, the visual target was placed at a fixed distance of 1.5, 3, or 4.5 m, and the auditory target varied randomly from trial-to-trial over the sample of measurement distances. The resulting psychometric functions are consistent with the proximity-image effect, and can be predicted using a simple model of sensory integration and decision in which perceived auditory space is both compressed in distance and has lower resolution than perceived visual space. [Work supported by NIH-NEI.

  16. Optical Observation, Image-processing, and Detection of Space Debris in Geosynchronous Earth Orbit

    NASA Astrophysics Data System (ADS)

    Oda, H.; Yanagisawa, T.; Kurosaki, H.; Tagawa, M.

    2014-09-01

    We report on optical observations and an efficient detection method of space debris in the geosynchronous Earth orbit (GEO). We operate our new Australia Remote Observatory (ARO) where an 18 cm optical telescope with a charged-coupled device (CCD) camera covering a 3.14-degree field of view is used for GEO debris survey, and analyse datasets of successive CCD images using the line detection method (Yanagisawa and Nakajima 2005). In our operation, the exposure time of each CCD image is set to be 3 seconds (or 5 seconds), and the time interval of CCD shutter open is about 4.7 seconds (or 6.7 seconds). In the line detection method, a sufficient number of sample objects are taken from each image based on their shape and intensity, which includes not only faint signals but also background noise (we take 500 sample objects from each image in this paper). Then we search a sequence of sample objects aligning in a straight line in the successive images to exclude the noise sample. We succeed in detecting faint signals (down to about 1.8 sigma of background noise) by applying the line detection method to 18 CCD images. As a result, we detected about 300 GEO objects up to magnitude of 15.5 among 5 nights data. We also calculate orbits of objects detected using the Simplified General Perturbations Satellite Orbit Model 4(SGP4), and identify the objects listed in the two-line-element (TLE) data catalogue publicly provided by the U.S. Strategic Command (USSTRATCOM). We found that a certain amount of our detections are new objects that are not contained in the catalogue. We conclude that our ARO and detection method posse a high efficiency detection of GEO objects despite the use of comparatively-inexpensive observation and analysis system. We also describe the image-processing specialized for the detection of GEO objects (not for usual astronomical objects like stars) in this paper.

  17. Concentric gravity waves over northern China observed by an airglow imager network and satellites

    NASA Astrophysics Data System (ADS)

    Xu, Jiyao; Li, Qinzeng; Yue, Jia; Hoffmann, Lars; Straka, William C.; Wang, Cuimei; Liu, Mohan; Yuan, Wei; Han, Sai; Miller, Steven D.; Sun, Longchang; Liu, Xiao; Liu, Weijun; Yang, Jing; Ning, Baiqi

    2015-11-01

    The first no-gap OH airglow all-sky imager network was established in northern China in February 2012. The network is composed of six all-sky airglow imagers that make observations of OH airglow gravity waves and cover an area of about 2000 km east and west and about 1400 km south and north. An unusual outbreak of Concentric Gravity Wave (CGW) events were observed by the network nearly every night during the first half of August 2013. These events were coincidentally observed by satellite sensors from Fengyun-2 (FY-2), Atmospheric Infrared Sounder (AIRS)/Aqua, and Visible Infrared Imaging Radiometer Suite (VIIRS)/Suomi National Polar-orbiting Partnership (NPP). Combination of the ground imager network with satellites provides multilevel observations of the CGWs from the stratosphere to the mesopause region. In this paper, two representative CGW events in August 2013 are studied in detail: first is the CGW on the night of 13 August 2013, likely launched by a single thunderstorm. The temporal and spatial analyses indicate that the CGW horizontal wavelengths follow freely propagating waves based on a GW dispersion relation within 300 km from the storm center. In contrast, the more distant observed gravity wave field exhibits a smaller horizontal wavelength of ~20 km, and our analysis strongly suggest this wave field represents a ducted wave. A second event, exhibiting multiple CGWs, was induced by two very strong thunderstorms on 9 August 2013. Multiscale waves with horizontal wavelengths ranging from less than 10 km to 200 km were observed.

  18. Observation of a water-depletion region surrounding loblolly pine roots by magnetic resonance imaging

    SciTech Connect

    MacFall, J.S.; Kramer, P.J. ); Johnson, G.A. )

    1990-02-01

    Magnetic resonance imaging was used to study sand containing various amounts of water and roots of loblolly pine planted into similar sand. Spin-lattice (T1) relaxation times of sand with water contents ranging from 0 to 25% (wt/wt) ranged from 472 to 1,265 ms and increased with water content. Spin-spin (T2) relaxation times ranged from 54 to 76 ms and did not change in a discernible pattern with water content. Based on water content and measured T1 and T2 values, the signal intensity of sand/water images was predicted to increase with water content in a linear fashion, with the slop of the lines increasing with the time of acquisition repetition (TR). Measured signal intensity from images of sand with various water contents was found to follow a similar pattern. This allows interpretation of dark images of sand/water to be regions of low water content, and bright images to have comparatively greater water content. Images of loblolly pine seedling roots planted in identical sand showed the formation of a distinct water-depletion region first around the woody taproot and later showed the region extended and expanded around the lateral roots and clusters of mycorrhizal short roots. This observation strongly suggests that water uptake is occurring through the suberized region of the woody taproot.

  19. Exact confidence intervals for channelized Hotelling observer performance in image quality studies.

    PubMed

    Wunderlich, Adam; Noo, Frederic; Gallas, Brandon D; Heilbrun, Marta E

    2015-02-01

    Task-based assessments of image quality constitute a rigorous, principled approach to the evaluation of imaging system performance. To conduct such assessments, it has been recognized that mathematical model observers are very useful, particularly for purposes of imaging system development and optimization. One type of model observer that has been widely applied in the medical imaging community is the channelized Hotelling observer (CHO), which is well-suited to known-location discrimination tasks. In the present work, we address the need for reliable confidence interval estimators of CHO performance. Specifically, we show that the bias associated with point estimates of CHO performance can be overcome by using confidence intervals proposed by Reiser for the Mahalanobis distance. In addition, we find that these intervals are well-defined with theoretically-exact coverage probabilities, which is a new result not proved by Reiser. The confidence intervals are tested with Monte Carlo simulation and demonstrated with two examples comparing X-ray CT reconstruction strategies. Moreover, commonly-used training/testing approaches are discussed and compared to the exact confidence intervals. MATLAB software implementing the estimators described in this work is publicly available at http://code.google.com/p/iqmodelo/. PMID:25265629

  20. Qualities of sequential chromospheric brightenings observed in Hα and UV images

    SciTech Connect

    Kirk, Michael S.; Balasubramaniam, K. S.; Jackiewicz, Jason; McAteer, R. T. James

    2014-12-01

    Chromospheric flare ribbons observed in Hα appear well-organized when first examined: ribbons impulsively brighten, morphologically evolve, and exponentially decay back to pre-flare levels. Upon closer inspection of the Hα flares, there is often a significant number of compact areas brightening in concert with the flare eruption but are spatially separated from the evolving flare ribbon. One class of these brightenings is known as sequential chromospheric brightenings (SCBs). SCBs are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. In the past decade there have been several previous investigations of SCBs. These studies have exclusively relied upon Hα images to discover and analyze these ephemeral brightenings. This work employs the automated detection algorithm of Kirk et al. to extract the physical qualities of SCBs in observations of ground-based Hα images and complementary Atmospheric Imaging Assembly images in He II, C IV, and 1700 Å. The metadata produced in this tracking process are then culled using complementary Doppler velocities to isolate three distinguishable types of SCBs. From a statistical analysis, we find that the SCBs at the chromospheric Hα layer appear earlier and last longer than their corresponding signatures measured in AIA. From this multi-layer analysis, we infer that SCBs are spatially constrained to the mid-chromosphere. We also derive an energy budget to explain SCBs which have a postulated energy of not more than 0.01% of the total flare energy.

  1. Qualities of Sequential Chromospheric Brightenings Observed in Hα and UV Images

    NASA Astrophysics Data System (ADS)

    Kirk, Michael S.; Balasubramaniam, K. S.; Jackiewicz, Jason; McAteer, R. T. James

    2014-12-01

    Chromospheric flare ribbons observed in Hα appear well-organized when first examined: ribbons impulsively brighten, morphologically evolve, and exponentially decay back to pre-flare levels. Upon closer inspection of the Hα flares, there is often a significant number of compact areas brightening in concert with the flare eruption but are spatially separated from the evolving flare ribbon. One class of these brightenings is known as sequential chromospheric brightenings (SCBs). SCBs are often observed in the immediate vicinity of erupting flares and are associated with coronal mass ejections. In the past decade there have been several previous investigations of SCBs. These studies have exclusively relied upon Hα images to discover and analyze these ephemeral brightenings. This work employs the automated detection algorithm of Kirk et al. to extract the physical qualities of SCBs in observations of ground-based Hα images and complementary Atmospheric Imaging Assembly images in He II, C IV, and 1700 Å. The metadata produced in this tracking process are then culled using complementary Doppler velocities to isolate three distinguishable types of SCBs. From a statistical analysis, we find that the SCBs at the chromospheric Hα layer appear earlier and last longer than their corresponding signatures measured in AIA. From this multi-layer analysis, we infer that SCBs are spatially constrained to the mid-chromosphere. We also derive an energy budget to explain SCBs which have a postulated energy of not more than 0.01% of the total flare energy.

  2. Earth observation photo taken by JPL with the Shuttle Imaging Radar-A

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Earth observation photo taken by the Jet Propulsion Laboratory (JPL) with the Shuttle Imaging Radar-A (SIR-A). This image shows a 50 by 100 kilometer (30 by 60 mile) area of the Imperial Valley in Southern California and neighboring Mexico. The checkered patterns represent agricultural fields where different types of crops in different stages of growth are cultivated. The very bright areas are (top left to lower right) the U.S. towns of Brawley, Imperial, El Centro, Calexico and the Mexican city of Mexicali. The bright L-shaped line (upper right) is the All-American water canal.

  3. Internal wave observations made with an airborne synthetic aperture imaging radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.; Apel, J. R.

    1976-01-01

    Synthetic aperture L-band radar flown aboard the NASA CV-990 has observed periodic striations on the ocean surface off the coast of Alaska which have been interpreted as tidally excited oceanic internal waves of less than 500 m length. These radar images are compared to photographic imagery of similar waves taken from Landsat 1. Both the radar and Landsat images reveal variations in reflectivity across each wave in a packet that range from low to high to normal. The variations point to the simultaneous existence of two mechanisms for the surface signatures of internal waves: roughening due to wave-current interactions, and smoothing due to slick formation.

  4. Dayside Proton Aurora: Comparisons between Global MHD Simulations and Image Observations

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Fuselier, S. A.; Petrinec, S.; Frey, H. U.; Burch, J. L.

    2003-01-01

    The IMAGE mission provides a unique opportunity to evaluate the accuracy of current global models of the solar wind interaction with the Earth's magnetosphere. In particular, images of proton auroras from the Far Ultraviolet Instrument (FUV) onboard the IMAGE spacecraft are well suited to support investigations of the response of the Earth's magnetosphere to interplanetary disturbances. Accordingly, we have modeled two events that occurred on June 8 and July 28, 2000, using plasma and magnetic field parameters measured upstream of the bow shock as input to three-dimensional magnetohydrodynamic (MHD) simulations. This paper begins with a discussion of images of proton auroras from the FUV SI-12 instrument in comparison with the simulation results. The comparison showed a very good agreement between intensifications in the auroral emissions measured by FUV SI-12 and the enhancement of plasma flows into the dayside ionosphere predicted by the global simulations. Subsequently, the IMAGE observations are analyzed in the context of the dayside magnetosphere's topological changes in magnetic field and plasma flows inferred from the simulation results. Finding include that the global dynamics of the auroral proton precipitation patterns observed by IMAGE are consistent with magnetic field reconnection occurring as a continuous process while the iMF changes in direction and the solar wind dynamic pressure varies. The global simulations also indicate that some of the transient patterns observed by IMAGE are consistent with sporadic reconnection processes. Global merging patterns found in the simulations agree with the antiparallel merging model. though locally component merging might broaden the merging region, especially in the region where shocked solar wind discontinuities first reach the magnetopause. Finally, the simulations predict the accretion of plasma near the bow shock in the regions threaded by newly open field lines on which plasma flows into the dayside

  5. Computational and human observer image quality evaluation of low dose, knowledge-based CT iterative reconstruction

    SciTech Connect

    Eck, Brendan L.; Fahmi, Rachid; Miao, Jun; Brown, Kevin M.; Zabic, Stanislav; Raihani, Nilgoun; Wilson, David L.

    2015-10-15

    Purpose: Aims in this study are to (1) develop a computational model observer which reliably tracks the detectability of human observers in low dose computed tomography (CT) images reconstructed with knowledge-based iterative reconstruction (IMR™, Philips Healthcare) and filtered back projection (FBP) across a range of independent variables, (2) use the model to evaluate detectability trends across reconstructions and make predictions of human observer detectability, and (3) perform human observer studies based on model predictions to demonstrate applications of the model in CT imaging. Methods: Detectability (d′) was evaluated in phantom studies across a range of conditions. Images were generated using a numerical CT simulator. Trained observers performed 4-alternative forced choice (4-AFC) experiments across dose (1.3, 2.7, 4.0 mGy), pin size (4, 6, 8 mm), contrast (0.3%, 0.5%, 1.0%), and reconstruction (FBP, IMR), at fixed display window. A five-channel Laguerre–Gauss channelized Hotelling observer (CHO) was developed with internal noise added to the decision variable and/or to channel outputs, creating six different internal noise models. Semianalytic internal noise computation was tested against Monte Carlo and used to accelerate internal noise parameter optimization. Model parameters were estimated from all experiments at once using maximum likelihood on the probability correct, P{sub C}. Akaike information criterion (AIC) was used to compare models of different orders. The best model was selected according to AIC and used to predict detectability in blended FBP-IMR images, analyze trends in IMR detectability improvements, and predict dose savings with IMR. Predicted dose savings were compared against 4-AFC study results using physical CT phantom images. Results: Detection in IMR was greater than FBP in all tested conditions. The CHO with internal noise proportional to channel output standard deviations, Model-k4, showed the best trade-off between fit

  6. Body image and appearance perceptions from immigrant adolescents in Canada: An interpretive description.

    PubMed

    Kimber, Melissa; Georgiades, Katholiki; Jack, Susan M; Couturier, Jennifer; Wahoush, Olive

    2015-09-01

    Body dissatisfaction has been linked to a number of poor health outcomes, including eating disorders. However, very few studies have investigated body dissatisfaction among immigrant adolescents. Using inductive qualitative inquiry, this study recruited a purposeful sample of immigrant adolescents (N=18, 78% female) with an eating disorder (n=8) and without an eating disorder (n=10). All adolescents were between 16 and 19 years of age (M=16.80, SD=0.89) and were recruited from three municipalities in Ontario. Each adolescent participated in a face-to-face, qualitative interview. Content analysis revealed descriptions of body image that were similar across the sample. The main themes emerging from this work include (a) the "moderately slim" and "moderately muscular" ideal, (b) the "slim and curvy paradox," (c) "ideal" privilege, (d) having an "expected" appearance, and (e) wishful comparisons. Findings have implications for reducing appearance-related dissatisfaction among immigrant adolescents in Canada. PMID:26363357

  7. MEDXVIEWER: PROVIDING A WEB-ENABLED WORKSTATION ENVIRONMENT FOR COLLABORATIVE AND REMOTE MEDICAL IMAGING VIEWING, PERCEPTION STUDIES AND READER TRAINING.

    PubMed

    Looney, P T; Young, K C; Halling-Brown, M D

    2016-06-01

    MedXViewer (Medical eXtensible Viewer) has been developed to address the need for workstation-independent, picture archiving and communication system (PACS)-less viewing and interaction with anonymised medical images. The aim of this paper is to describe the design and features of MedXViewer as well as to introduce the new features available in the latest release (version 1.2). MedXViewer currently supports digital mammography and tomosynthesis. The flexible software design used to develop MedXViewer allows it to be easily extended to support other imaging modalities. Regions of interest can be drawn by a user, and any associated information about a mark, an image or a study can be added. The questions and settings can be easily configured depending on the need of the research allowing both ROC and FROC studies to be performed. Complex tree-like questions can be asked where a given answer presents the user to new questions. The hanging protocol can be specified for each study. Panning, windowing, zooming and moving through slices are all available while modality-specific features can be easily enabled, e.g. quadrant zooming in digital mammography and tomosynthesis studies. MedXViewer can integrate with a web-based image database OPTIMAM Medical Image Database allowing results and images to be stored centrally. The software can, alternatively, run without a network connection where the images and results can be encrypted and stored locally on a machine or external drive. MedXViewer has been used for running remote paper-less observer studies and is capable of providing a training infrastructure and coordinating remote collaborative viewing sessions. PMID:26628613

  8. Interactions between Coronal Mass Ejections Viewed in Coordinated Imaging and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Liu, Ying D.; Luhmann, Janet G.; Moestl, Christian; Martinez-Oliveros, Juan C.; Bale, Stewart D.; Lin, Robert P.; Harrison, Richard A.; Temmer, Manuela; Webb, David F.; Odstrcil, Dusan

    2013-01-01

    The successive coronal mass ejections (CMEs) from 2010 July 30 - August 1 present us the first opportunity to study CME-CME interactions with unprecedented heliospheric imaging and in situ observations from multiple vantage points. We describe two cases of CME interactions: merging of two CMEs launched close in time and overtaking of a preceding CME by a shock wave. The first two CMEs on August 1 interact close to the Sun and form a merged front, which then overtakes the July 30 CME near 1 AU, as revealed by wide-angle imaging observations. Connections between imaging observations and in situ signatures at 1 AU suggest that the merged front is a shock wave, followed by two ejecta observed at Wind which seem to have already merged. In situ measurements show that the CME from July 30 is being overtaken by the shock at 1 AU and is significantly compressed, accelerated and heated. The interaction between the preceding ejecta and shock also results in variations in the shock strength and structure on a global scale, as shown by widely separated in situ measurements from Wind and STEREO B. These results indicate important implications of CME-CME interactions for shock propagation, particle acceleration and space weather forecasting.

  9. Current and future solar observation using focusing hard X-ray imagers

    NASA Astrophysics Data System (ADS)

    Glesener, Lindsay; Caspi, Amir; Christe, Steven; Hannah, Iain; Hudson, Hugh S.; Hurford, Gordon J.; Grefenstette, Brian; Krucker, Sam; Marsh, Andrew; Mewaldt, Richard A.; Pivovaroff, Michael; Shih, Albert Y.; Smith, David M.; Vogel, Julia; White, Stephen M.

    2014-06-01

    The efficient processes that accelerate particles in solar flares are not currently understood. Hard X-rays (HXRs) are one of the best diagnostics of flare-accelerated electrons, and therefore of acceleration processes. Past and current solar HXR observers rely on indirect Fourier imaging and thus lack the necessary sensitivity and imaging dynamic range to make detailed studies of faint HXR sources in the solar corona (where particle acceleration is thought to occur). A future generation of solar HXR observers will instead likely rely on direct HXR focusing, which can provide far superior sensitivity and imaging dynamic range.The first wave of focused solar HXR studies is already underway, including sounding rocket and high-altitude balloon payloads, and, in the near future, solar observation by the NuSTAR astrophysics observatory. This poster will (1) summarize the capabilities of current solar HXR instruments, comparing the science that can be done from each platform, and (2) discuss the scientific power of a future, dedicated, spaceborne observatory optimized to observe HXRs from the Sun.

  10. Structural anomalies in undoped Gallium Arsenide observed in high resolution diffraction imaging with monochromatic synchrotron radiation

    NASA Technical Reports Server (NTRS)

    Steiner, B.; Kuriyama, M.; Dobbyn, R. C.; Laor, U.; Larson, D.; Brown, M.

    1988-01-01

    Novel, streak-like disruption features restricted to the plane of diffraction have recently been observed in images obtained by synchrotron radiation diffraction from undoped, semi-insulating gallium arsenide crystals. These features were identified as ensembles of very thin platelets or interfaces lying in (110) planes, and a structural model consisting of antiphase domain boundaries was proposed. We report here the other principal features observed in high resolution monochromatic synchrotron radiation diffraction images: (quasi) cellular structure; linear, very low-angle subgrain boundaries in (110) directions, and surface stripes in a (110) direction. In addition, we report systematic differences in the acceptance angle for images involving various diffraction vectors. When these observations are considered together, a unifying picture emerges. The presence of ensembles of thin (110) antiphase platelet regions or boundaries is generally consistent not only with the streak-like diffraction features but with the other features reported here as well. For the formation of such regions we propose two mechanisms, operating in parallel, that appear to be consistent with the various defect features observed by a variety of techniques.

  11. GEOMETRIC TRIANGULATION OF IMAGING OBSERVATIONS TO TRACK CORONAL MASS EJECTIONS CONTINUOUSLY OUT TO 1 AU

    SciTech Connect

    Liu Ying; Luhmann, Janet G.; Bale, Stuart D.; Lin, Robert P.; Davies, Jackie A.; Vourlidas, Angelos

    2010-02-10

    We describe a geometric triangulation technique, based on time-elongation maps constructed from imaging observations, to track coronal mass ejections (CMEs) continuously in the heliosphere and predict their impact on the Earth. Taking advantage of stereoscopic imaging observations from the Solar Terrestrial Relations Observatory, this technique can determine the propagation direction and radial distance of CMEs from their birth in the corona all the way to 1 AU. The efficacy of the method is demonstrated by its application to the 2008 December 12 CME, which manifests as a magnetic cloud (MC) from in situ measurements at the Earth. The predicted arrival time and radial velocity at the Earth are well confirmed by the in situ observations around the MC. Our method reveals non-radial motions and velocity changes of the CME over large distances in the heliosphere. It also associates the flux-rope structure measured in situ with the dark cavity of the CME in imaging observations. Implementation of the technique, which is expected to be a routine possibility in the future, may indicate a substantial advance in CME studies as well as space weather forecasting.

  12. Solar Flares Observed with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI)

    NASA Technical Reports Server (NTRS)

    Holman, Gordon D.

    2004-01-01

    Solar flares are impressive examples of explosive energy release in unconfined, magnetized plasma. It is generally believed that the flare energy is derived from the coronal magnetic field. However, we have not been able to establish the specific energy release mechanism(s) or the relative partitioning of the released energy between heating, particle acceleration (electrons and ions), and mass motions. NASA's RHESSI Mission was designed to study the acceleration and evolution of electrons and ions in flares by observing the X-ray and gamma-ray emissions these energetic particles produce. This is accomplished through the combination of high-resolution spectroscopy and spectroscopic imaging, including the first images of flares in gamma rays. RHESSI has observed over 12,000 solar flares since its launch on February 5, 2002. I will demonstrate how we use the RHESSI spectra to deduce physical properties of accelerated electrons and hot plasma in flares. Using images to estimate volumes, w e typically find that the total energy in accelerated electrons is comparable to that in the thermal plasma. I will also present flare observations that provide strong support for the presence of magnetic reconnection in a large-scale, vertical current sheet in the solar corona. RHESSI observations such as these are allowing us to probe more deeply into the physics of solar flares.

  13. Geometric Triangulation of Imaging Observations to Track Coronal Mass Ejections Continuously Out to 1 AU

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Davies, Jackie A.; Luhmann, Janet G.; Vourlidas, Angelos; Bale, Stuart D.; Lin, Robert P.

    2010-02-01

    We describe a geometric triangulation technique, based on time-elongation maps constructed from imaging observations, to track coronal mass ejections (CMEs) continuously in the heliosphere and predict their impact on the Earth. Taking advantage of stereoscopic imaging observations from the Solar Terrestrial Relations Observatory, this technique can determine the propagation direction and radial distance of CMEs from their birth in the corona all the way to 1 AU. The efficacy of the method is demonstrated by its application to the 2008 December 12 CME, which manifests as a magnetic cloud (MC) from in situ measurements at the Earth. The predicted arrival time and radial velocity at the Earth are well confirmed by the in situ observations around the MC. Our method reveals non-radial motions and velocity changes of the CME over large distances in the heliosphere. It also associates the flux-rope structure measured in situ with the dark cavity of the CME in imaging observations. Implementation of the technique, which is expected to be a routine possibility in the future, may indicate a substantial advance in CME studies as well as space weather forecasting.

  14. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    SciTech Connect

    Johannsen, Tim; Psaltis, Dimitrios E-mail: dpsaltis@email.arizona.ed

    2010-07-20

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate or oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of {approx}10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a {approx}< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.

  15. Direct observation of receptors and images in simple and compound eyes.

    PubMed

    Land, M F

    1990-01-01

    The relation between the quality of the optical image and the fineness of the retinal mosaic has been studied in eyes of three different optical types: the simple eyes of spiders, the superposition compound eyes of moths, and the apposition compound eyes of butterflies. In all three it is possible to observe both the receptor mosaic and the image in the living eye, using appropriate ophthalmoscopic techniques. Whereas in humans the retinal sampling frequency approaches the optical cut-off frequency quite closely, in diurnal insects of both types the image is undersampled by a factor of 2-3, and in crepuscular spiders this factor may be greater than 100. Reasons for these differences are discussed. PMID:2288086

  16. Use of dust storm observations on satellite images to identify areas vulnerable to severe wind erosion

    USGS Publications Warehouse

    Breed, C.S.; McCauley, J.F.

    1986-01-01

    Blowing dust is symptomatic of severe wind erosion and deterioration of soils in areas undergoing dessication and/or devegetation. Dust plumes on satellite images can commonly be traced to sources in marginally arable semiarid areas where protective lag gravels or vegetation have been removed and soils are dry, as demonstrated for the Portales Valley, New Mexico. Images from Landsat and manned orbiters such as Skylab and the Space Shuttle are useful for illustrating the regional relations of airborne dust plumes to source areas. Geostationary satellites such as GOES are useful in tracking the time-histories of episodic dust storms. These events sometimes go unrecognized by weather observers and are the precursors of long-term land degradation trends. In areas where soil maps and meteorological data are inadequate, satellite images provide a means for identifying problem areas where measures are needed to control or mitigate wind erosion. ?? 1986 D. Reidel Publishing Company.

  17. Local Force Interactions and Image Contrast Reversal on Graphite Observed with Noncontact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur; Goetzen, Jan; Altman, Eric; Schwarz, Udo

    Surface interactions of graphene-based nanostructures remain a topic of considerable interest in nanotechnology. Similarly, tip-dependent imaging contrasts have attracted attention as they allow conclusions to be made about the surface's chemical structure and local reactivity. In this talk, we present noncontact atomic force microscopy data recorded in the attractive regime on highly oriented pyrolytic graphite that reveals image contrast reversal for the first time. While larger tip-sample separations feature bright spots on atomic sites, the maximum of the tip-sample interaction flips to the hollow site positions upon further approach, which represents the contrast predominantly observed in previous studies during attractive-mode imaging. This cross over of the local chemical interaction is confirmed in force spectroscopy experiments. The results will be discussed in light of recent theoretical simulations that have predicted the occurrence of such contrast reversal for specific tip terminations.

  18. The capability of the ultraviolet imaging telescope for observing interstellar dust

    NASA Technical Reports Server (NTRS)

    Stecher, Theodore P.

    1989-01-01

    The Ultraviolet Imaging Telescope (UIT) was designed to be able to obtain deep images of nearby galaxies with a single frame. This ability makes it ideal for many imaging problems of the interstellar dust. The instrument has a forty arc-minute field of view with two arc-second resolution. It has 11 ultraviolet filters and a grating which is used as a grism for full field spectroscopy. In a thirty minute exposure (one orbital night) the limiting magnitude for hot objects is V = 25, or a UV mag of 22 for point sources and a UV mag of 26 for extended sources. Programs are planned for the observation of dust in reflection nebulae H II regions, planetaries, dark nebulae, the diffuse galactic light, and dust in other galaxies are planned. The UIT was integrated into the Astro Spacelab Payload and is scheduled to be launched on the Columbia in Nov. 1989.

  19. Theoretical Model Images and Spectra for Comparison with HESSI and Microwave Observations of Solar Flares

    NASA Technical Reports Server (NTRS)

    Fisher, Richard R. (Technical Monitor); Holman, G. D.; Sui, L.; McTiernan, J. M.; Petrosian, V.

    2003-01-01

    We have computed bremsstrahlung and gyrosynchrotron images and spectra from a model flare loop. Electrons with a power-law energy distribution are continuously injected at the top of a semi-circular magnetic loop. The Fokker-Planck equation is integrated to obtain the steady-state electron distribution throughout the loop. Coulomb scattering and energy losses and magnetic mirroring are included in the model. The resulting electron distributions are used to compute the radiative emissions. Sample images and spectra are presented. We are developing these models for the interpretation of the High Energy Solar Spectroscopic Imager (HESSI) x-ray/gamma ray data and coordinated microwave observations. The Fokker-Planck and radiation codes are available on the Web at http://hesperia.gsfc.nasa.gov/hessi/modelware.htm This work is supported in part by the NASA Sun-Earth Connection Program.

  20. Earth FUV Dayglow Response to the 20 January 2005 Solar Flare: TIMED and IMAGE Observations

    NASA Astrophysics Data System (ADS)

    Retherford, K. D.; Gladstone, R.; Solomon, S. C.; Immel, T. J.

    2005-05-01

    An X-class solar flare occurred on 20 January 2005 when the TIMED and IMAGE spacecraft were both well positioned to observe the response of Earth's dayglow emission intensity. Brightness enhancements during the flare relative to just before were determined at tangent altitudes of peak emission viewed toward the limb with TIMED. The TIMED observations were made at low solar zenith angles and show flare enhancements of roughly 15%, 30%, 30%, and 60%, respectively, for OI 130.4 nm, OI 135.6 nm, N2 LBH Short, and N2 LBH Long modes of the TIMED/GUVI instrument. However, GUVI observations of HI Lyman-alpha emission brightness do not show a significant brightness change. This lack of change in HI Lyman-alpha dayglow brightness is consistent with no significant change (<2%) in the solar Lyman-alpha flux observed with TIMED/SEE. Enhancements of emissions produced by photodissociation and photoelectron impact excitation sources are studied with IMAGE observations following Immel et al., JGR, 2003. Simulations of dayglow limb profiles to compare with the observations are produced using the NRLMSIS atmosphere model, the IRI90 ionosphere model, the GLOW photoelectron model, and the REDISTER radiative transfer model. The combined datasets enable a better study of the airglow sources most affected by the EUV and x-ray components of solar irradiance variability. We report our preliminary analysis of the response of FUV dayglow emissions to this event.

  1. Three-dimensional numerical simulation of MHD waves observed by the Extreme Ultraviolet Imaging Telescope

    NASA Astrophysics Data System (ADS)

    Wu, S. T.; Zheng, Huinan; Wang, S.; Thompson, B. J.; Plunkett, S. P.; Zhao, X. P.; Dryer, M.

    2001-11-01

    We investigate the global large amplitude waves propagating across the solar disk as observed by the SOHO/Extreme Ultraviolet Imaging Telescope (EIT). These waves appear to be similar to those observed in Hα in the chromosphere and which are known as ``Moreton waves,'' associated with large solar flares [Moreton, 1960, 1964]. Uchida [1968] interpreted these Moreton waves as the propagation of a hydromagnetics disturbance in the corona with its wavefront intersecting the chromosphere to produce the Moreton wave as observed in movie sequences of Hα images. To search for an understanding of the physical characteristics of these newly observed EIT waves, we constructed a three-dimensional, time-dependent, numerical magnetohydrodynamic (MHD) model. Measured global magnetic fields, obtained from the Wilcox Solar Observatory (WSO) at Stanford University, are used as the initial magnetic field to investigate hydromagnetics wave propagation in a three-dimensional spherical geometry. Using magnetohydrodynamic wave theory together with simulation, we are able to identify these observed EIT waves as fast mode MHD waves dominated by the acoustic mode, called magnetosonic waves. The results to be presented include the following: (1) comparison of observed and simulated morphology projected on the disk and the distance-time curves on the solar disk; (2) three-dimensional evolution of the disturbed magnetic field lines at various viewing angles; (3) evolution of the plasma density profile at a specific location as a function of latitude; and (4) computed Friedrich's diagrams to identify the MHD wave characteristics.

  2. Differential perceptions of body image and body weight among adults of different socioeconomic status in a sub-urban population.

    PubMed

    Maruf, Fatai A; Akinpelu, Aderonke O; Udoji, Nwannedimma V

    2014-05-01

    This study explored the association of socioeconomic status with individuals' perception of their body image (BI) and body weight (BW) among adults in a sub-urban Nigerian population. The cross-sectional sample comprised 1521 residents (775 males and 746 females) of the town of Nnewi. Perceived BI was assessed using figural representations of different sizes for males and females. Perceived BW was determined by presenting participants with BW category options to choose from. Body mass index (BMI) was calculated from objectively measured BW and height using standardized procedures. Actual BW categories were derived from participants' BMIs using WHO criteria. Perceived BI and BW differed from actual BW among unskilled and non-tertiary males (p<0.001) and female (p<0.001 to p<0.04) in all BW categories whereas these variables differed (p<0.001) among skilled and tertiary males and females in normal weight, overweight and obese categories. Perceived BW differed (p<0.001) from actual BW among unskilled and non-tertiary males in underweight, overweight and obese categories whereas these variables differed (p<0.001) among unskilled and non-tertiary females, skilled and tertiary males and females in overweight and obese categories. Underweight 'unskilled' and 'non-tertiary' males perceived their BI to be different from their actual BW (p<0.001). Overweight and obese 'skilled' and 'unskilled', and 'tertiary' and 'non-tertiary', males and females perceived their BI and BW to be different from their actual BW (p<0.001). Significant differences in perceived BI existed between 'skilled' and 'unskilled' (p<0.001), and 'tertiary' and 'non-tertiary' (p=0.005), overweight males, and between 'skilled' and 'unskilled' (p<0.001), and 'tertiary' and 'non-tertiary' (p=0.008), normal-weight females. The 'skilled' participants had a lower risk of perceiving a larger BI (OR 0.51, 95% CI 0.41-0.64; p<0.001) and larger BW (OR 0.71, 95% CI 0.53-0.96; p=0.03) than the 'unskilled' participants

  3. Observations of barium ion jets in the magnetosphere using Doppler imaging systems and very sensitive imaging systems using imaging photon detectors

    NASA Technical Reports Server (NTRS)

    Rees, D.; Conboy, J.; Heinz, W.; Heppner, J. P.

    1985-01-01

    Observations of four shaped charge releases from rockets launched from Alaska are described. Results demonstrate that imaging and Doppler imaging instruments, based on exploiting the imaging photon detector, provide additional insight into the motion and development of low intensity targets such as the fast ion jets produced by shaped charge releases. It is possible to trace the motion of fast ion jets to very great distances, of the order of 50,000 km, outward along the Earth's magnetic field, when the conditions are suitable for the outward (upward) motion and/or acceleration of such ion jets. It is shown that ion jets, which fade below the lower sensitivity threshold of previous instruments, do not always disappear. There is no evidence of an abrupt field-aligned shear-type acceleration.

  4. Examining Periodic Solar-Wind Density Structures Observed in the SECCHI Heliospheric Imagers

    NASA Technical Reports Server (NTRS)

    Viall, Nicholeen M.; Spence, Harlan E.; Vourlidas, Angelos; Howard, Russell

    2010-01-01

    We present an analysis of small-scale, periodic, solar-wind density enhancements (length scales as small as approximately equals 1000 Mm) observed in images from the Heliospheric Imager (HI) aboard STEREO-A. We discuss their possible relationship to periodic fluctuations of the proton density that have been identified at 1 AU using in-situ plasma measurements. Specifically, Viall, Kepko, and Spence examined 11 years of in-situ solar-wind density measurements at 1 AU and demonstrated that not only turbulent structures, but also nonturbulent, periodic density structures exist in the solar wind with scale sizes of hundreds to one thousand Mm. In a subsequent paper, Viall, Spence, and Kasper analyzed the alpha-to-proton solar-wind abundance ratio measured during one such event of periodic density structures, demonstrating that the plasma behavior was highly suggestive that either temporally or spatially varying coronal source plasma created those density structures. Large periodic density structures observed at 1 AU, which were generated in the corona, can be observable in coronal and heliospheric white-light images if they possess sufficiently high density contrast. Indeed, we identify such periodic density structures as they enter the HI field of view and follow them as they advect with the solar wind through the images. The smaller, periodic density structures that we identify in the images are comparable in size to the larger structures analyzed in-situ at 1 AU, yielding further evidence that periodic density enhancements are a consequence of coronal activity as the solar wind is formed.

  5. Fabry-Pérot based narrow band imager for solar filament observations

    NASA Astrophysics Data System (ADS)

    Dhara, Sajal Kumar; Ravindra, Belur; Banyal, Ravinder Kumar

    2016-01-01

    We have recently developed a narrow band imager (NBI) using an air gap based Fabry-Pérot (FP) interferometer at the Indian Institute of Astrophysics, Bangalore. Narrow band imaging is achieved by using an FP interferometer working in combination with an order sorting pre-filter. The NBI can be tuned to a different wavelength position on the line profile by changing the plate separation of the FP. The interferometer has a 50 mm clear aperture with a bandpass of ∼247.8 mÅ and a free spectral range of ∼5.3 Å at λ = 656.3 nm. The developed NBI is used to observe the solar filament in the Hα wavelength. The instrument is being used to image the Sun at chromospheric height and it is also able to scan the Hα spectral line profile at different wavelength positions. We have also made Doppler velocity maps at chromospheric height by taking the blue and red wing images at ±176 mÅ wavelength positions separately away from the line center of the spectral line. In this paper, we present a description of the NBI including lab test results of individual components and some initial observations carried out with this instrument.

  6. Multi-observation PET image analysis for patient follow-up quantitation and therapy assessment

    NASA Astrophysics Data System (ADS)

    David, S.; Visvikis, D.; Roux, C.; Hatt, M.

    2011-09-01

    In positron emission tomography (PET) imaging, an early therapeutic response is usually characterized by variations of semi-quantitative parameters restricted to maximum SUV measured in PET scans during the treatment. Such measurements do not reflect overall tumor volume and radiotracer uptake variations. The proposed approach is based on multi-observation image analysis for merging several PET acquisitions to assess tumor metabolic volume and uptake variations. The fusion algorithm is based on iterative estimation using a stochastic expectation maximization (SEM) algorithm. The proposed method was applied to simulated and clinical follow-up PET images. We compared the multi-observation fusion performance to threshold-based methods, proposed for the assessment of the therapeutic response based on functional volumes. On simulated datasets the adaptive threshold applied independently on both images led to higher errors than the ASEM fusion and on clinical datasets it failed to provide coherent measurements for four patients out of seven due to aberrant delineations. The ASEM method demonstrated improved and more robust estimation of the evaluation leading to more pertinent measurements. Future work will consist in extending the methodology and applying it to clinical multi-tracer datasets in order to evaluate its potential impact on the biological tumor volume definition for radiotherapy applications.

  7. Imaging-based observations of low-latitude auroras during 2001-2004 at Nayoro, Japan

    NASA Astrophysics Data System (ADS)

    Suzuki, Hidehiko; Chino, Haruka; Sano, Yasuo; Kadokura, Akira; Ejiri, Mitsumu K.; Taguchi, Makoto

    2015-07-01

    Color images of six low-latitude auroral events observed using color digital cameras at Nayoro (142.5° E, 44.4° N), Hokkaido, Japan, from 2001 to 2004, were analyzed to determine the events' locations and times of occurrence. Geographical azimuthal and elevation angles of the images' pixels were determined precisely by using the positions of the stars captured in the images. Horizontal regions covered by these auroral events were directly indicated by mapping the color images onto geographical maps and assuming that the emission layer's altitude is the lowest or highest value of a visible-level red aurora, as determined by the OI 630.0nm emission. The estimated geomagnetic latitudes and L values of these low-latitude auroral events were in the 39-50° range and below L < 2.5, respectively. This investigation indicates that four of the six auroral events were the same as those that were reported previously based on high-sensitivity optical observations at other sites on Hokkaido (Rikubetsu and Moshiri). Although the previous study is lacking information about the maximal brightness level of the red auroral events, the present investigation suggests that these four low-latitude auroral events reached the visible level. In addition, two new events were reported in this study. The present work provides essential information such as the morphology and appearance of visible auroras, which are extremely rare in mid- or low-latitude regions.

  8. Demonstration of Imaging Fourier Transform Spectrometer (FTS) Performance for Planetary and Geostationary Earth Observing

    NASA Technical Reports Server (NTRS)

    Revercomb, Henry E.; Sromovsky, Lawrence A.; Fry, Patrick M.; Best, Fred A.; LaPorte, Daniel D.

    2001-01-01

    The combination of massively parallel spatial sampling and accurate spectral radiometry offered by imaging FTS makes it extremely attractive for earth and planetary remote sensing. We constructed a breadboard instrument to help assess the potential for planetary applications of small imaging FTS instruments in the 1 - 5 micrometer range. The results also support definition of the NASA Geostationary Imaging FTS (GIFTS) instrument that will make key meteorological and climate observations from geostationary earth orbit. The Planetary Imaging FTS (PIFTS) breadboard is based on a custom miniaturized Bomen interferometer that uses corner cube reflectors, a wishbone pivoting voice-coil delay scan mechanism, and a laser diode metrology system. The interferometer optical output is measured by a commercial infrared camera procured from Santa Barbara Focalplane. It uses an InSb 128x128 detector array that covers the entire FOV of the instrument when coupled with a 25 mm focal length commercial camera lens. With appropriate lenses and cold filters the instrument can be used from the visible to 5 micrometers. The delay scan is continuous, but slow, covering the maximum range of +/- 0.4 cm in 37.56 sec at a rate of 500 image frames per second. Image exposures are timed to be centered around predicted zero crossings. The design allows for prediction algorithms that account for the most recent fringe rate so that timing jitter produced by scan speed variations can be minimized. Response to a fixed source is linear with exposure time nearly to the point of saturation. Linearity with respect to input variations was demonstrated to within 0.16% using a 3-point blackbody calibration. Imaging of external complex scenes was carried out at low and high spectral resolution. These require full complex calibration to remove background contributions that vary dramatically over the instrument FOV. Testing is continuing to demonstrate the precise radiometric accuracy and noise characteristics.

  9. Potential for observing and discriminating impact craters and comparable volcanic landforms on Magellan radar images

    NASA Technical Reports Server (NTRS)

    Ford, J. P.

    1989-01-01

    Observations of small terrestrial craters by Seasat synthetic aperture radar (SAR) at high resolution (approx. 25 m) and of comparatively large Venusian craters by Venera 15/16 images at low resolution (1000 to 2000 m) and shorter wavelength show similarities in the radar responses to crater morphology. At low incidence angles, the responses are dominated by large scale slope effects on the order of meters; consequently it is difficult to locate the precise position of crater rims on the images. Abrupt contrasts in radar response to changing slope (hence incidence angle) across a crater produce sharp tonal boundaries normal to the illumination. Crater morphology that is radially symmetrical appears on images to have bilateral symmetry parallel to the illumination vector. Craters are compressed in the distal sector and drawn out in the proximal sector. At higher incidence angles obtained with the viewing geometry of SIR-A, crater morphology appears less compressed on the images. At any radar incidence angle, the distortion of a crater outline is minimal across the medial sector, in a direction normal to the illumination. Radar bright halos surround some craters imaged by SIR-A and Venera 15 and 16. The brightness probably denotes the radar response to small scale surface roughness of the surrounding ejecta blankets. Similarities in the radar responses of small terrestrial impact craters and volcanic craters of comparable dimensions emphasize the difficulties in discriminating an impact origin from a volcanic origin in the images. Similar difficulties will probably apply in discriminating the origin of small Venusian craters, if they exist. Because of orbital considerations, the nominal incidence angel of Magellan radar at the center of the imaging swath will vary from about 45 deg at 10 deg N latitude to about 16 deg at the north pole and at 70 deg S latitude. Impact craters and comparable volcanic landforms will show bilateral symmetry parallel to the illumination

  10. Potential for observing and discriminating impact craters and comparable volcanic landforms on Magellan radar images

    NASA Astrophysics Data System (ADS)

    Ford, J. P.

    Observations of small terrestrial craters by Seasat synthetic aperture radar (SAR) at high resolution (approx. 25 m) and of comparatively large Venusian craters by Venera 15/16 images at low resolution (1000 to 2000 m) and shorter wavelength show similarities in the radar responses to crater morphology. At low incidence angles, the responses are dominated by large scale slope effects on the order of meters; consequently it is difficult to locate the precise position of crater rims on the images. Abrupt contrasts in radar response to changing slope (hence incidence angle) across a crater produce sharp tonal boundaries normal to the illumination. Crater morphology that is radially symmetrical appears on images to have bilateral symmetry parallel to the illumination vector. Craters are compressed in the distal sector and drawn out in the proximal sector. At higher incidence angles obtained with the viewing geometry of SIR-A, crater morphology appears less compressed on the images. At any radar incidence angle, the distortion of a crater outline is minimal across the medial sector, in a direction normal to the illumination. Radar bright halos surround some craters imaged by SIR-A and Venera 15 and 16. The brightness probably denotes the radar response to small scale surface roughness of the surrounding ejecta blankets. Similarities in the radar responses of small terrestrial impact craters and volcanic craters of comparable dimensions emphasize the difficulties in discriminating an impact origin from a volcanic origin in the images. Similar difficulties will probably apply in discriminating the origin of small Venusian craters, if they exist. Because of orbital considerations, the nominal incidence angel of Magellan radar at the center of the imaging swath will vary from about 45 deg at 10 deg N latitude to about 16 deg at the north pole and at 70 deg S latitude. Impact craters and comparable volcanic landforms will show bilateral symmetry parallel to the illumination

  11. Characteristics of the mirror image of precipitation observed by TRMM precipitation radar

    NASA Astrophysics Data System (ADS)

    Li, Ji; Nakamura, Kenji

    2000-12-01

    Mirror image is a virtual image of precipitation below the ocean surface when we use an airborne or a spaceborne radar to view the rainfall over ocean. It is due to a double reflection, that is energy reflected form the sea surface goes to the precipitation and back to the radar via a second reflection at sea surface. We investigated the mirror image characteristics using TRMM Precipitation Radar data and found: 1) The radar can detect the mirror image clearly over the ocean, 2) the mirror image echo corresponds well to the direct rain echo at nadir and near nadir incidence angle, 3) in a weak rain region, mirror echo intensity is nearly proportional to the direct echo power except near noise level, 4) in the strong rain region, rain attenuation effect clearly appears, and 5) the ratio of mirror echo power to direct echo power is affected by the rain attenuation which varies with the bright band height and the range of the target rain from surface. Further, we performed a simple simulation in order to confirm the above characteristics. The signal fluctuation, noise contamination, rain attention and surface cross section are taken into account in the simulation, and the results of simulation confirmed the observation results.

  12. Ways of incorporating photographic images in learning and assessing high school biology: A study of visual perception and visual cognition

    NASA Astrophysics Data System (ADS)

    Nixon, Brenda Chaumont

    This study evaluated the cognitive benefits and costs of incorporating biology-textbook and student-generated photographic images into the learning and assessment processes within a 10th grade biology classroom. The study implemented Wandersee's (2000) 20-Q Model of Image-Based Biology Test-Item Design (20-Q Model) to explore the use of photographic images to assess students' understanding of complex biological processes. A thorough review of the students' textbook using ScaleMaster R with PC Interface was also conducted. The photographs, diagrams, and other representations found in the textbook were measured to determine the percentage of each graphic depicted in the book and comparisons were made to the text. The theoretical framework that guided the research included Human Constructivist tenets espoused by Mintzes, Wandersee and Novak (2000). Physiological and cognitive factors of images and image-based learning as described by Robin (1992), Solso (1997) and Wandersee (2000) were examined. Qualitative case study design presented by Yin (1994), Denzin and Lincoln (1994) was applied and data were collected through interviews, observations, student activities, student and school artifacts and Scale Master IIRTM measurements. The results of the study indicate that although 24% of the high school biology textbook is devoted to photographic images which contribute significantly to textbook cost, the teacher and students paid little attention to photographic images other than as aesthetic elements for creating biological ambiance, wasting valuable opportunities for learning. The analysis of the photographs corroborated findings published by the Association American Association for the Advancement of Science that indicated "While most of the books are lavishly illustrated, these representations are rarely helpful, because they are too abstract, needlessly complicated, or inadequately explained" (Roseman, 2000, p. 2). The findings also indicate that applying the 20-Q

  13. High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and ɛ Eridani

    NASA Astrophysics Data System (ADS)

    Janson, Markus; Quanz, Sascha P.; Carson, Joseph C.; Thalmann, Christian; Lafrenière, David; Amara, Adam

    2015-02-01

    Stars with debris disks are intriguing targets for direct-imaging exoplanet searches, owing both to previous detections of wide planets in debris disk systems, and to commonly existing morphological features in the disks themselves that may be indicative of a planetary influence. Here we present observations of three of the most nearby young stars, which are also known to host massive debris disks: Vega, Fomalhaut, and ɛ Eri. The Spitzer Space Telescope is used at a range of orientation angles for each star to supply a deep contrast through angular differential imaging combined with high-contrast algorithms. The observations provide the opportunity to probe substantially colder bound planets (120-330 K) than is possible with any other technique or instrument. For Vega, some apparently very red candidate point sources detected in the 4.5 μm image remain to be tested for common proper motion. The images are sensitive to ~2 Mjup companions at 150 AU in this system. The observations presented here represent the first search for planets around Vega using Spitzer. The upper 4.5 μm flux limit on Fomalhaut b could be further constrained relative to previous data. In the case of ɛ Eri, planets below both the effective temperature and the mass of Jupiter could be probed from 80 AU and outward, although no such planets were found. The data sensitively probe the regions around the edges of the debris rings in the systems where planets can be expected to reside. These observations validate previous results showing that more than an order of magnitude improvement in performance in the contrast-limited regime can be acquired with respect to conventional methods by applying sophisticated high-contrast techniques to space-based telescopes, thanks to the high degree of PSF stability provided in this environment.

  14. Atmospheric Correction Prototype Algorithm for High Spatial Resolution Multispectral Earth Observing Imaging Systems

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary

    2006-01-01

    This viewgraph presentation reviews the creation of a prototype algorithm for atmospheric correction using high spatial resolution earth observing imaging systems. The objective of the work was to evaluate accuracy of a prototype algorithm that uses satellite-derived atmospheric products to generate scene reflectance maps for high spatial resolution (HSR) systems. This presentation focused on preliminary results of only the satellite-based atmospheric correction algorithm.

  15. Body Image Satisfaction, Eating Attitudes and Perceptions of Female Body Silhouettes in Rural South African Adolescents.

    PubMed

    Pedro, Titilola M; Micklesfield, Lisa K; Kahn, Kathleen; Tollman, Stephen M; Pettifor, John M; Norris, Shane A

    2016-01-01

    This study aims to examine the associations between BMI, disordered eating attitude, body dissatisfaction in female adolescents, and descriptive attributes assigned to silhouettes of varying sizes in male and female adolescents, aged 11 to 15, in rural South Africa. Height and weight were measured to determine BMI. Age and sex-specific cut-offs for underweight and overweight/obesity were determined using the International Obesity Task Force cut-offs. Body image satisfaction using Feel-Ideal Discrepancy (FID) scores, Eating Attitudes Test-26 (EAT-26), and perceptual female silhouettes were collected through self-administered questionnaires in 385 adolescents from the Agincourt Health and Socio-Demographic Surveillance System (HSDSS). Participants self-reported their Tanner pubertal stage and were classified as early pubertal (< = Tanner stage 2), and mid to post pubertal (Tanner stage > 2). Mid to post pubertal boys and girls were significantly heavier, taller, and had higher BMI values than their early pubertal counterparts (all p<0.001). The prevalence of overweight and obesity was higher in the girls than the boys in both pubertal stages. The majority (83.5%) of the girls demonstrated body dissatisfaction (a desire to be thinner or fatter). The girls who wanted to be fatter had a significantly higher BMI than the girls who wanted to be thinner (p<0.001). There were no differences in EAT-26 scores between pubertal groups, within the same sex, and between boys and girls within the two pubertal groups. The majority of the boys and the girls in both pubertal groups perceived the underweight silhouettes to be "unhappy" and "weak" and the majority of girls in both pubertal groups perceived the normal silhouettes to be the "best". These findings suggest a need for policy intervention that will address a healthy body size among South African adolescents. PMID:27171420

  16. Body Image Satisfaction, Eating Attitudes and Perceptions of Female Body Silhouettes in Rural South African Adolescents

    PubMed Central

    Micklesfield, Lisa K.; Kahn, Kathleen; Tollman, Stephen M.; Pettifor, John M.; Norris, Shane A.

    2016-01-01

    This study aims to examine the associations between BMI, disordered eating attitude, body dissatisfaction in female adolescents, and descriptive attributes assigned to silhouettes of varying sizes in male and female adolescents, aged 11 to 15, in rural South Africa. Height and weight were measured to determine BMI. Age and sex-specific cut-offs for underweight and overweight/obesity were determined using the International Obesity Task Force cut-offs. Body image satisfaction using Feel-Ideal Discrepancy (FID) scores, Eating Attitudes Test-26 (EAT-26), and perceptual female silhouettes were collected through self-administered questionnaires in 385 adolescents from the Agincourt Health and Socio-Demographic Surveillance System (HSDSS). Participants self-reported their Tanner pubertal stage and were classified as early pubertal (< = Tanner stage 2), and mid to post pubertal (Tanner stage > 2). Mid to post pubertal boys and girls were significantly heavier, taller, and had higher BMI values than their early pubertal counterparts (all p<0.001). The prevalence of overweight and obesity was higher in the girls than the boys in both pubertal stages. The majority (83.5%) of the girls demonstrated body dissatisfaction (a desire to be thinner or fatter). The girls who wanted to be fatter had a significantly higher BMI than the girls who wanted to be thinner (p<0.001). There were no differences in EAT-26 scores between pubertal groups, within the same sex, and between boys and girls within the two pubertal groups. The majority of the boys and the girls in both pubertal groups perceived the underweight silhouettes to be “unhappy” and “weak” and the majority of girls in both pubertal groups perceived the normal silhouettes to be the “best”. These findings suggest a need for policy intervention that will address a healthy body size among South African adolescents. PMID:27171420

  17. Expanding Imaging Capabilities for Microfluidics: Applicability of Darkfield Internal Reflection Illumination (DIRI) to Observations in Microfluidics

    PubMed Central

    Kawano, Yoshihiro; Otsuka, Chino; Sanzo, James; Higgins, Christopher; Nirei, Tatsuo; Schilling, Tobias; Ishikawa, Takuji

    2015-01-01

    Microfluidics is used increasingly for engineering and biomedical applications due to recent advances in microfabrication technologies. Visualization of bubbles, tracer particles, and cells in a microfluidic device is important for designing a device and analyzing results. However, with conventional methods, it is difficult to observe the channel geometry and such particles simultaneously. To overcome this limitation, we developed a Darkfield Internal Reflection Illumination (DIRI) system that improved the drawbacks of a conventional darkfield illuminator. This study was performed to investigate its utility in the field of microfluidics. The results showed that the developed system could clearly visualize both microbubbles and the channel wall by utilizing brightfield and DIRI illumination simultaneously. The methodology is useful not only for static phenomena, such as clogging, but also for dynamic phenomena, such as the detection of bubbles flowing in a channel. The system was also applied to simultaneous fluorescence and DIRI imaging. Fluorescent tracer beads and channel walls were observed clearly, which may be an advantage for future microparticle image velocimetry (μPIV) analysis, especially near a wall. Two types of cell stained with different colors, and the channel wall, can be recognized using the combined confocal and DIRI system. Whole-slide imaging was also conducted successfully using this system. The tiling function significantly expands the observing area of microfluidics. The developed system will be useful for a wide variety of engineering and biomedical applications for the growing field of microfluidics. PMID:25748425

  18. Comet Shoemaker-Levy 9/Jupiter collision observed with a high resolution speckle imaging system

    SciTech Connect

    Gravel, D.

    1994-11-15

    During the week of July 16, 1994, comet Shoemaker-Levy 9, broken into 20 plus pieces by tidal forces on its last orbit, smashed into the planet Jupiter, releasing the explosive energy of 500 thousand megatons. A team of observers from LLNL used the LLNL Speckle Imaging Camera mounted on the University of California`s Lick Observatory 3 Meter Telescope to capture continuous sequences of planet images during the comet encounter. Post processing with the bispectral phase reconstruction algorithm improves the resolution by removing much of the blurring due to atmospheric turbulence. High resolution images of the planet surface showing the aftermath of the impact are probably the best that were obtained from any ground-based telescope. We have been looking at the regions of the fragment impacts to try to discern any dynamic behavior of the spots left on Jupiter`s cloud tops. Such information can lead to conclusions about the nature of the comet and of Jupiter`s atmosphere. So far, the Hubble Space Telescope has observed expanding waves from the G impact whose mechanism is enigmatic since they appear to be too slow to be sound waves and too fast to be gravity waves, given the present knowledge of Jupiter`s atmosphere. Some of our data on the G and L impact region complements the Hubble observations but, so far, is inconclusive about spot dynamics.

  19. Interaction between Coronal Mass Ejections Viewed in Coordinated Imaging and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Luhmann, J. G.; Moestl, C.; Martinez Oliveros, J. C.; Harrison, R.; Temmer, M.; Bale, S.; Lin, R. P.

    2011-12-01

    Interaction between coronal mass ejections (CMEs), which is expected to be a frequent phenomenon, has important implications for both space weather and basic plasma physics. First, the interaction alters the global heliospheric configuration, which may lead to favorable conditions for geomagnetic storm generation. Second, the interaction implies significant energy and momentum transfer between the interacting CMEs where magnetic reconnection may take place. Third, in case a shock is driven by the trailing CME, interesting physical processes may occur when the shock is propagating through the preceding one, such as modifications in the shock strength, particle intensity and transport. There are successive CMEs on July 30 - August 1, 2011, which presents us the first opportunity to study CME-CME interaction with unprecedented heliospheric imaging and in situ observations from a fleet of spacecraft. The first two CMEs on August 1 interact close to the Sun and form a merged front, which then overtakes the July 30 CME near 1 AU, as revealed by wide-angle imaging observations. In situ measurements indicate that the first two CMEs on August 1 seem to have already merged at 0.7 and 1 AU, and at 1 AU their shock is propagating into the CME from July 30. We will report and discuss the CME-CME interaction signatures from the coordinated imaging and in situ observations in this presentation.

  20. Versatile illumination platform and fast optical switch to give standard observation camera gated active imaging capacity

    NASA Astrophysics Data System (ADS)

    Grasser, R.; Peyronneaudi, Benjamin; Yon, Kevin; Aubry, Marie

    2015-10-01

    CILAS, subsidiary of Airbus Defense and Space, develops, manufactures and sales laser-based optronics equipment for defense and homeland security applications. Part of its activity is related to active systems for threat detection, recognition and identification. Active surveillance and active imaging systems are often required to achieve identification capacity in case for long range observation in adverse conditions. In order to ease the deployment of active imaging systems often complex and expensive, CILAS suggests a new concept. It consists on the association of two apparatus working together. On one side, a patented versatile laser platform enables high peak power laser illumination for long range observation. On the other side, a small camera add-on works as a fast optical switch to select photons with specific time of flight only. The association of the versatile illumination platform and the fast optical switch presents itself as an independent body, so called "flash module", giving to virtually any passive observation systems gated active imaging capacity in NIR and SWIR.

  1. THE STRUCTURE OF A SELF-GRAVITATING PROTOPLANETARY DISK AND ITS IMPLICATIONS FOR DIRECT IMAGING OBSERVATIONS

    SciTech Connect

    Muto, Takayuki

    2011-09-20

    We consider the effects of self-gravity on the hydrostatic balance in the vertical direction of a gaseous disk and discuss the possible signature of the self-gravity that may be captured by direct imaging observations of protoplanetary disks in the future. In this paper, we consider a vertically isothermal disk in order to isolate the effects of self-gravity. The specific disk model we consider in this paper is the one with a radial surface density gap, at which the Toomre's Q-parameter of the disk varies rapidly in the radial direction. We calculate the vertical structure of the disk including the effects of self-gravity. We then calculate the scattered light and the dust thermal emission. We find that if the disk is massive enough and the effects of self-gravity come into play, a weak bump-like structure at the gap edge appears in the near-infrared (NIR) scattered light, while no such bump-like structure is seen in the submillimeter (sub-mm) dust continuum image. The appearance of the bump is caused by the variation of the height of the surface in the NIR wavelength. If such a bump-like feature is detected in future direct imaging observations, combined with sub-mm observations, it will give us useful information about the physical states of the disk.

  2. New color images of transient luminous events from dedicated observations on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yair, Yoav; Rubanenko, Lior; Mezuman, Keren; Elhalel, Gal; Pariente, Meidad; Glickman-Pariente, Maya; Ziv, Baruch; Takahashi, Yukihiro; Inoue, Tomohiro

    2013-09-01

    During July-August 2011, Expedition 28/29 JAXA astronaut Satoshi Furukawa conducted TLE observations from the International Space Station in conjunction with the “Cosmic Shore” program produced by NHK. An EMCCD normal video-rate color TV camera was used to conduct directed observations from the Earth-pointing Cupola module. The target selection was based on the methodology developed for the MEIDEX sprite campaign on board the space shuttle Columbia in January 2003 (Ziv et al., 2004). The observation geometry was pre-determined and uploaded daily to the ISS with pointing options to limb, oblique or nadir, based on the predicted location of the storm with regards to the ISS. The pointing angle was rotated in real-time according to visual eyesight by the astronaut. We present results of 10 confirmed TLEs: 8 sprites, 1 sprite halo and 1 gigantic jet, out of <2 h of video. Sprites tend to appear in a single frame simultaneously with maximum lightning brightness. Unique images (a) from nadir of a sprite horizontally displaced form the lightning light and (b) from the oblique view of a sprite halo, enable the calculation of dimensions and volumes occupied by these TLEs. Since time stamping on the ISS images was accurate within 1 s, matching with ELF and WWLLN data for the parent lightning location is limited. Nevertheless, the results prove that the ISS is an ideal platform for lightning and TLE observations, and careful operational procedures greatly enhance the value of observation time.

  3. Imaging observations of X-ray albedo in a compact disc flare

    NASA Astrophysics Data System (ADS)

    Battaglia, Marina; Kontar, Eduard

    X-rays from solar flare sources are an important diagnostic tool for particle acceleration and transport in the solar atmosphere. However, the observed flux at Earth is composed of direct emission and photons which are Compton backscattered from the photosphere. This contribu-tion can account for up to 40 We present imaging observations of a compact flare on the solar disc. The source full-width-half maximum was determined at different energies using X-ray visibility forward fitting. The observed source size increases and decreases with energy with a maximum size at about 40 keV, contrary to observations made in limb events. The behavior is consistent with predictions from Monte Carlo simulations of X-ray photon transport in which X-ray visibilities were computed from simulated maps and fitted using visibility forward fit.

  4. Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) scientific objectives

    NASA Astrophysics Data System (ADS)

    Riese, M.; Oelhaf, H.; Preusse, P.; Blank, J.; Ern, M.; Friedl-Vallon, F.; Fischer, H.; Guggenmoser, T.; Höpfner, M.; Hoor, P.; Kaufmann, M.; Orphal, J.; Plöger, F.; Spang, R.; Suminska-Ebersoldt, O.; Ungermann, J.; Vogel, B.; Woiwode, W.

    2014-07-01

    The upper troposphere/lower stratosphere (UTLS) represents an important part of the climate system. Even small changes in the composition and dynamic structure of this region have significant radiative effects. Quantifying the underlying physical and chemical processes therefore represents a crucial task. Currently, there is a lack of UTLS observations with sufficient three-dimensional resolution. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) aircraft instrument addresses this observational lack by providing observations of numerous trace constituents as well as temperature and cloud structures with an unprecedented combination of vertical resolution (up to 300 m) and horizontal resolution (about 30 km × 30 km). As a result, important scientific questions concerning stratosphere-troposphere exchange, the occurrence of subvisible cirrus clouds in the lowermost stratosphere (LMS), polar chemistry, and gravity wave processes can be addressed, as reviewed in this paper.

  5. Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) scientific objectives

    NASA Astrophysics Data System (ADS)

    Riese, M.; Oelhaf, H.; Preusse, P.; Blank, J.; Ern, M.; Friedl-Vallon, F.; Fischer, H.; Guggenmoser, T.; Höpfner, M.; Hoor, P.; Kaufmann, M.; Orphal, J.; Plöger, F.; Spang, R.; Suminska-Ebersoldt, O.; Ungermann, J.; Vogel, B.; Woiwode, W.

    2014-02-01

    The upper troposphere/lower stratosphere (UTLS) plays a crucial role in the climate system. Changes in the composition and dynamic structure of this atmospheric region result in particularly large changes in the atmospheric radiation balance. Quantifying the physical and chemical processes that control UTLS composition therefore represents an important task. Currently, there is a lack of UTLS observations with sufficient three-dimensional resolution. The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) aircraft instrument addresses this observational lack by providing observations of numerous trace constituents as well as temperature and cloud structures with an unprecedented combination of vertical resolution (up to 300 m) and horizontal resolution (up to 20 km × 20 km). As a result, important scientific questions concerning stratosphere-troposphere-exchange, the occurrence of subvisible cirrus clouds in the lowermost stratosphere (LMS), polar chemistry and gravity wave processes can be addressed, as reviewed in this paper.

  6. Gamma-ray burst observations with new generation imaging atmospheric Cerenkov Telescopes in the FERMI era

    SciTech Connect

    Covino, S.; Campana, S.; Galante, N.; Gaug, M.; Longo, F.; Scapin, V.

    2009-04-08

    After the launch and successful beginning of operations of the FERMI satellite, the topics related to high-energy observations of gamma-ray bursts have obtained a considerable attention by the scientific community. Undoubtedly, the diagnostic power of high-energy observations in constraining the emission processes and the physical conditions of gamma-ray burst is relevant. We briefly discuss how gamma-ray burst observations with ground-based imaging array Cerenkov telescopes, in the GeV-TeV range, can compete and cooperate with FERMI observations, in the MeV-GeV range, to allow researchers to obtain a more detailed and complete picture of the prompt and afterglow phases of gamma-ray bursts.

  7. The Combined Effect of Subjective Body Image and Body Mass Index (Distorted Body Weight Perception) on Suicidal Ideation

    PubMed Central

    Shin, Jaeyong; Choi, Young; Han, Kyu-Tae; Cheon, Sung-Youn; Kim, Jae-Hyun; Lee, Sang Gyu; Park, Eun-Cheol

    2015-01-01

    Objectives: Mental health disorders and suicide are an important and growing public health concern in Korea. Evidence has shown that both globally and in Korea, obesity is associated with an increased risk of developing some psychiatric disorders. Therefore, we examined the association between distorted body weight perception (BWP) and suicidal ideation. Methods: Data were obtained from the 2007-2012 Korea National Health and Nutritional Evaluation Survey (KNHANES), an annual cross-sectional nationwide survey that included 14 276 men and 19 428 women. Multiple logistic regression analyses were conducted to investigate the associations between nine BWP categories, which combined body image (BI) and body mass index (BMI) categories, and suicidal ideation. Moreover, the fitness of our models was verified using the Akaike information criterion. Results: Consistent with previous studies, suicidal ideation was associated with marital status, household income, education level, and perceived health status in both genders. Only women were significantly more likely to have distorted BWP; there was no relationship among men. In category B1 (low BMI and normal BI), women (odds ratio [OR], 2.25; 95% confidence interval [CI], 1.48 to 3.42) were more likely to express suicidal ideation than women in category B2 (normal BMI and normal BI) were. Women in overweight BWP category C2 (normal BMI and fat BI) also had an increased OR for suicidal ideation (OR, 2.25; 95% CI, 1.48 to 3.42). Those in normal BWP categories were not likely to have suicidal ideation. Among women in the underweight BWP categories, only the OR for those in category A2 (normal BMI and thin BI) was significant (OR, 1.34; 95% CI, 1.13 to 1.59). Conclusions: Distorted BWP should be considered an important factor in the prevention of suicide and for the improvement of mental health among Korean adults, especially Korean women with distorted BWPs. PMID:25857647

  8. Reduction in white matter connectivity, revealed by diffusion tensor imaging, may account for age-related changes in face perception.

    PubMed

    Thomas, Cibu; Moya, Linda; Avidan, Galia; Humphreys, Kate; Jung, Kwan Jin; Peterson, Mary A; Behrmann, Marlene

    2008-02-01

    An age-related decline in face processing, even under conditions in which learning and memory are not implicated, has been well documented, but the mechanism underlying this perceptual alteration remains unknown. Here, we examine whether this behavioral change may be accounted for by a reduction in white matter connectivity with age. To this end, we acquired diffusion tensor imaging data from 28 individuals aged 18 to 86 years and quantified the number of fibers, voxels, and fractional anisotropy of the two major tracts that pass through the fusiform gyrus, the pre-eminent face processing region in the ventral temporal cortex. We also measured the ability of a subset of these individuals to make fine-grained discriminations between pairs of faces and between pairs of cars. There was a significant reduction in the structural integrity of the inferior fronto-occipital fasciculus (IFOF) in the right hemisphere as a function of age on all dependent measures and there were also some changes in the left hemisphere, albeit to a lesser extent. There was also a clear age-related decrement in accuracy of perceptual discrimination, especially for more challenging perceptual discriminations, and this held to a greater degree for faces than for cars. Of greatest relevance, there was a robust association between the reduction of IFOF integrity in the right hemisphere and the decline in face perception, suggesting that the alteration in structural connectivity between the right ventral temporal and frontal cortices may account for the age-related difficulties in face processing. PMID:18275334

  9. Optimal strategies for observation of active galactic nuclei variability with Imaging Atmospheric Cherenkov Telescopes

    NASA Astrophysics Data System (ADS)

    Giomi, Matteo; Gerard, Lucie; Maier, Gernot

    2016-07-01

    Variable emission is one of the defining characteristic of active galactic nuclei (AGN). While providing precious information on the nature and physics of the sources, variability is often challenging to observe with time- and field-of-view-limited astronomical observatories such as Imaging Atmospheric Cherenkov Telescopes (IACTs). In this work, we address two questions relevant for the observation of sources characterized by AGN-like variability: what is the most time-efficient way to detect such sources, and what is the observational bias that can be introduced by the choice of the observing strategy when conducting blind surveys of the sky. Different observing strategies are evaluated using simulated light curves and realistic instrument response functions of the Cherenkov Telescope Array (CTA), a future gamma-ray observatory. We show that strategies that makes use of very small observing windows, spread over large periods of time, allows for a faster detection of the source, and are less influenced by the variability properties of the sources, as compared to strategies that concentrate the observing time in a small number of large observing windows. Although derived using CTA as an example, our conclusions are conceptually valid for any IACTs facility, and in general, to all observatories with small field of view and limited duty cycle.

  10. Initial Observations and Activities of Curiosity's Mars Hand Lens Imager (MAHLI) at the Gale Field Site

    NASA Astrophysics Data System (ADS)

    Aileen Yingst, R.; Edgett, Kenneth; MSL Science Team

    2013-04-01

    the dust and sand obscuration, the observables are unclear —grains 300-500 µm size in the Bathurst Inlet images and 300-500 µm-sized rhombus-shaped crystals in the rock, Jake Matijevic have been observed by some workers. Sand and granules (as well as dust), exhibiting a variety of colors, shapes, and other grain attributes, were deposited on rover hardware during descent. As noted above, sand as well as dust also mantles the rocks observed by MAHLI; in one case the cohesive properties of this material was demonstrated by the presence of a "micro landslide" on a rock named Burwash. At the Rocknest sand shadow, a variety of coarse to very coarse sand grains of differing color, shape, luster, angularity, and roundness were observed, including glassy spheroids and ellipsoids (perhaps formed from impact melt droplets) and clear, translucent grains. The fine to very fine sands sieved (≤ 150 µm) and delivered to the rover's observation tray exhibited at least four distinct grain types, including clear, translucent crystal fragments.

  11. Stereo imaging with spaceborne radars

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Kobrick, M.

    1983-01-01

    Stereo viewing is a valuable tool in photointerpretation and is used for the quantitative reconstruction of the three dimensional shape of a topographical surface. Stereo viewing refers to a visual perception of space by presenting an overlapping image pair to an observer so that a three dimensional model is formed in the brain. Some of the observer's function is performed by machine correlation of the overlapping images - so called automated stereo correlation. The direct perception of space with two eyes is often called natural binocular vision; techniques of generating three dimensional models of the surface from two sets of monocular image measurements is the topic of stereology.

  12. The Anisotropy of the Microwave Background to l=3500: Mosaic Observations with the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Pearson, T. J.; Mason, B. S.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J. L.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Using the Cosmic Background Imager, a 13-element interferometer array operating in the 26-36 GHz frequency band, we have observed 40 deg (sup 2) of sky in three pairs of fields, each approximately 145 feet x 165 feet, using overlapping pointings: (mosaicing). We present images and power spectra of the cosmic microwave background radiation in these mosaic fields. We remove ground radiation and other low-level contaminating signals by differencing matched observations of the fields in each pair. The primary foreground contamination is due to point sources (radio galaxies and quasars). We have subtracted the strongest sources from the data using higher-resolution measurements, and we have projected out the response to other sources of known position in the power-spectrum analysis. The images show features on scales approximately 6 feet-15 feet, corresponding to masses approximately 5-80 x 10(exp 14) solar mass at the surface of last scattering, which are likely to be the seeds of clusters of galaxies. The power spectrum estimates have a resolution delta l approximately 200 and are consistent with earlier results in the multipole range l approximately less than 1000. The power spectrum is detected with high signal-to-noise ratio in the range 300 approximately less than l approximately less than 1700. For 1700 approximately less than l approximately less than 3000 the observations are consistent with the results from more sensitive CBI deep-field observations. The results agree with the extrapolation of cosmological models fitted to observations at lower l, and show the predicted drop at high l (the "damping tail").

  13. Reducing Tick-Borne Disease in Alabama: Linking Health Risk Perception with Spatial Analysis Using the NASA Earth Observing System

    NASA Technical Reports Server (NTRS)

    Hemmings, S.; Renneboog, N.; Firsing, S.; Capilouto, E.; Harden, J.; Hyden, R.; Tipre, M.; Zhang, Y.

    2010-01-01

    Lyme disease (LD) accounts for most vector-borne disease reports in the U.S., and although its existence in Alabama remains controversial, other tick-borne illnesses (TBI) such as Southern Tick-Associated Rash Illness (STARI) pose a health concern in the state. Phase One of the Marshall Space Flight Center-UAB DEVELOP study of TBI identified the presence of the chain of infection for LD (Ixodes scapularis ticks carrying Borrelia burgdorferi bacteria) and STARI (Amblyomma americanum ticks and an as-yet-unconfirmed agent) in Alabama. Both LD and STARI are associated with the development of erythema migrans rashes around an infected tick bite, and while treatable with oral antibiotics, a review of educational resources available to state residents revealed low levels of prevention information. To improve prevention, recognition, and treatment of TBI in Alabama, Phase Two builds a health communication campaign based on vector habitat mapping and risk perception assessment. NASA Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery identified likely tick habitats using remotely sensed measurements of vegetation vigor (Normalized Difference Vegetation Index) and soil moisture. Likely tick habitats, identified as those containing both high vegetation density and soil moisture, included Oak Mountain State Park, Bankhead National Forest, and Talladega National Forest. To target a high-risk group -- outdoor recreation program participants at Alabama universities -- the study developed a behavior survey instrument based on existing studies of LD risk factors and theoretical constructs from the Social Ecological Model and Health Belief Model. The survey instrument was amended to include geographic variables in the assessment of TBI knowledge, attitudes, and prevention behaviors, and the vector habitat model will be expanded to incorporate additional environmental variables and in situ data. Remotely sensed environmental data combined with

  14. Demonstration of imaging Fourier Transform Spectrometer (FTS) performance for planetary and geostationary Earth observing

    NASA Astrophysics Data System (ADS)

    Revercomb, Henry E.; Sromovsky, Lawrence A.; Fry, Patrick M.; Best, Fred A.; LaPorte, Daniel D.

    2001-02-01

    The combination of massively parallel spatial sampling and accurate spectral radiometry offered by imaging FTS makes it extremely attractive for earth and planetary remote sensing. We constructed a breadboard instrument to help assess the potential for planetary applications of small imaging FTS instruments in the 1-5 micrometers range. The results also support definition of the NASA Geostationary Imaging FTS instrument that will make key meteorological and climate observations from geostationary earth orbit. The PIFTS pivoting voice- coil delay scan mechanism, and laser diode metrology system. The interferometer optical output is measured by a commercial IR camera procured from Santa Barbara Focal plane. It uses an InSb 128 by 128 detector array that covers the entire FOV of the instrument when coupled with a 25-mm focal length commercial camera lens. With appropriate lenses and cold filters the instrument can be used from the visible to 5 micrometers . The delay scan is continuos, but slow, covering the maximum range of +/- 0.4 cm in 37.56 sec at a rate of 500 image frames per second. Image exposures are timed to be centered around predicted zero crossings. The design allows for prediction algorithms that account for the most recent fringe rate so that timing jitter produced by scan speed variations can be minimized. Response to a fixed source is linear with exposure time nearly to the point of saturation. Linearity with respect to input variations was demonstrated to within 0.16 percent using a 3-point blackbody calibration. Imaging of external complex scenes was carried out at low and high spectral resolution. These require full complex calibration to remove background contributions that vary dramatically over the instrument FOV. Testing is continuing to demonstrate the precise radiometric accuracy and noise characteristics.

  15. Gemini Planet Imager Observations of the AU Microscopii Debris Disk: Asymmetries within One Arcsecond

    NASA Astrophysics Data System (ADS)

    Wang, Jason J.; Graham, James R.; Pueyo, Laurent; Nielsen, Eric L.; Millar-Blanchaer, Max; De Rosa, Robert J.; Kalas, Paul; Ammons, S. Mark; Bulger, Joanna; Cardwell, Andrew; Chen, Christine; Chiang, Eugene; Chilcote, Jeffrey K.; Doyon, René; Draper, Zachary H.; Duchêne, Gaspard; Esposito, Thomas M.; Fitzgerald, Michael P.; Goodsell, Stephen J.; Greenbaum, Alexandra Z.; Hartung, Markus; Hibon, Pascale; Hinkley, Sasha; Hung, Li-Wei; Ingraham, Patrick; Larkin, James E.; Macintosh, Bruce; Maire, Jerome; Marchis, Franck; Marois, Christian; Matthews, Brenda C.; Morzinski, Katie M.; Oppenheimer, Rebecca; Patience, Jenny; Perrin, Marshall D.; Rajan, Abhijith; Rantakyrö, Fredrik T.; Sadakuni, Naru; Serio, Andrew; Sivaramakrishnan, Anand; Soummer, Rémi; Thomas, Sandrine; Ward-Duong, Kimberly; Wiktorowicz, Sloane J.; Wolff, Schuyler G.

    2015-10-01

    We present Gemini Planet Imager (GPI) observations of AU Microscopii, a young M dwarf with an edge-on, dusty debris disk. Integral field spectroscopy and broadband imaging polarimetry were obtained during the commissioning of GPI. In our broadband imaging polarimetry observations, we detect the disk only in total intensity and find asymmetries in the morphology of the disk between the southeast (SE) and northwest (NW) sides. The SE side of the disk exhibits a bump at 1″ (10 AU projected separation) that is three times more vertically extended and three times fainter in peak surface brightness than the NW side at similar separations. This part of the disk is also vertically offset by 69 ± 30 mas to the northeast at 1″ when compared to the established disk midplane and is consistent with prior Atacama Large Millimeter/submillimeter Array and Hubble Space Telescope/Space Telescope Imaging Spectrograph observations. We see hints that the SE bump might be a result of detecting a horizontal sliver feature above the main disk that could be the disk backside. Alternatively, when including the morphology of the NW side, where the disk midplane is offset in the opposite direction ∼50 mas between 0.″4 and 1.″2, the asymmetries suggest a warp-like feature. Using our integral field spectroscopy data to search for planets, we are 50% complete for ∼4 MJup planets at 4 AU. We detect a source, resolved only along the disk plane, that could either be a candidate planetary mass companion or a compact clump in the disk.

  16. On the Active Region Bright Grains Observed in the Transition Region Imaging Channels of IRIS

    NASA Astrophysics Data System (ADS)

    Skogsrud, H.; Rouppe van der Voort, L.; De Pontieu, B.

    2016-02-01

    The Interface Region Imaging Spectrograph (IRIS) provides spectroscopy and narrow band slit-jaw (SJI) imaging of the solar chromosphere and transition region at unprecedented spatial and temporal resolutions. Combined with high-resolution context spectral imaging of the photosphere and chromosphere as provided by the Swedish 1 m Solar Telescope (SST), we can now effectively trace dynamic phenomena through large parts of the solar atmosphere in both space and time. IRIS SJI 1400 images from active regions, which primarily sample the transition region with the Si iv 1394 and 1403 Å lines, reveal ubiquitous bright “grains” which are short-lived (two to five minute) bright roundish small patches of sizes 0.″5-1.″7 that generally move limbward with velocities up to about 30 km s-1. In this paper, we show that many bright grains are the result of chromospheric shocks impacting the transition region. These shocks are associated with dynamic fibrils (DFs), most commonly observed in Hα. We find that the grains show the strongest emission in the ascending phase of the DF, that the emission is strongest toward the top of the DF, and that the grains correspond to a blueshift and broadening of the Si iv lines. We note that the SJI 1400 grains can also be observed in the SJI 1330 channel which is dominated by C ii lines. Our observations show that a significant part of the active region transition region dynamics is driven from the chromosphere below rather than from coronal activity above. We conclude that the shocks that drive DFs also play an important role in the heating of the upper chromosphere and lower transition region.

  17. IMAGE Observations of Sounder Stimulated and Naturally Occurring Fast Z mode Cavity Noise

    NASA Astrophysics Data System (ADS)

    Sonwalkar, V. S.; Taylor, C.; Reddy, A.

    2015-12-01

    We report first observations of sounder stimulated and naturally occurring fast Z mode (ZM) cavity noise detected by the Radio Plasma Imager (RPI) on the IMAGE satellite. The fast Z mode cavity noise is a banded, structure-less radio emission trapped inside fast Z mode cavities, which are characterized by a minimum (fz,min) in fast Z mode cut-off frequency (fz) along a geomagnetic field line [Gurnett et al., JGR, 1983]. Fast Z mode waves reflect at fz ~ f, where f is the wave frequency. Waves in the frequency range fz,min < f < fz,max, where fz,max is the maximum fz above fz,min altitude, are trapped within the cavity as they bounce back and forth between reflection altitudes (fz ~ f) above and below the fz,min altitude. These trapped waves will be observed by a satellite passing through the cavity. The observed cavity noise lower cutoff is at the local Z mode cut-off frequency (fz,Sat) and the upper cut-off is presumably close to fz,max. The cavity noise is observed typically inside the plasmasphere. Comparison of cavity noise as observed on the plasmagram obtained during active sounding with that observed on the dynamic spectra obtained from the interspersed passive wave measurements indicate that the cavity noise is either stimulated by transmissions from the sounder (RPI) or is of natural origin. The sounder stimulated noise is often accompanied by fast Z mode echoes. The naturally occurring cavity noise is observed on both the plasmagram and the dynamic spectra. We believe the stimulated cavity noise is generated due to scattering from small-scale irregularities of waves transmitted by RPI. One potential candidate for the source of naturally occurring Z mode cavity noise is the ring current electrons that can generate fast ZM waves via higher order cyclotron resonance [Nishimura et al., Earth Planets Space, 2007].

  18. Detection of facilities in satellite imagery using semi-supervised image classification and auxiliary contextual observables

    SciTech Connect

    Harvey, Neal R; Ruggiero, Christy E; Pawley, Norma H; Brumby, Steven P; Macdonald, Brian; Balick, Lee; Oyer, Alden

    2009-01-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervised assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.

  19. Detection of facilities in satellite imagery using semi-supervized image classification and auxiliary contextual observables

    NASA Astrophysics Data System (ADS)

    Harvey, Neal R.; Ruggiero, C.; Pawley, N. H.; MacDonald, B.; Oyer, A.; Balick, L.; Brumby, S. P.

    2009-05-01

    Detecting complex targets, such as facilities, in commercially available satellite imagery is a difficult problem that human analysts try to solve by applying world knowledge. Often there are known observables that can be extracted by pixel-level feature detectors that can assist in the facility detection process. Individually, each of these observables is not sufficient for an accurate and reliable detection, but in combination, these auxiliary observables may provide sufficient context for detection by a machine learning algorithm. We describe an approach for automatic detection of facilities that uses an automated feature extraction algorithm to extract auxiliary observables, and a semi-supervised assisted target recognition algorithm to then identify facilities of interest. We illustrate the approach using an example of finding schools in Quickbird image data of Albuquerque, New Mexico. We use Los Alamos National Laboratory's Genie Pro automated feature extraction algorithm to find a set of auxiliary features that should be useful in the search for schools, such as parking lots, large buildings, sports fields and residential areas and then combine these features using Genie Pro's assisted target recognition algorithm to learn a classifier that finds schools in the image data.

  20. Low-altitude image striations associated with bottomside equatorial spread F: Observations and theory

    SciTech Connect

    Vickrey, J.F.; Kelley, M.C.; Pfaff, R.; Goldman, S.R.

    1984-05-01

    Ionspheric plasma instabilities are usually discussed in terms of local parameters. However, because electric fields of scale size lambda> or approx. =1 km map along magnetic field lines, plasma populations far away from a locally unstable region may be affected by the instability process and vice versa. We present observations of electron density variations in the F/sub 1/ region of the ionosphere at two locations near the magnetic equator. Oscillations in electron number density that were confined to a narrow wavelength regime were observed in a region of the ionosphere with a very weak vertical density gradient. Since magnetic flux tube interchange instabilities cannot create structure in such an environment we suggest that these are ''images'' of instabilities occurring elsewhere along the magnetic field line. A simple steady state theory of image formation is developed that is in good agreement with the observations. Moreover, this theory predicts a scale size dependent ''effective diffusion'' process in the F region that may dominate over classical cross-field diffusion at kilometer scale sizes. Such a scale size dependent diffusion process is required to explain recent scintillation observations of decaying equatorial plumes.

  1. Lunar absolute reflectance as observed by Chang'E-1 Imaging Interferometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Ling, ZongCheng; Liu, JianZhong; Wu, ZhongChen; Li, Bo; Ni, YuHeng

    2015-08-01

    Lunar absolute reflectance, which describes the fraction of solar radiation reflected by the Moon, is fundamental for the Chang'E-1 Imaging Interferometer (IIM) to map lunar mineralogical and elemental distributions. Recent observations made by the Spectral Irradiance Monitor (SIM) onboard the Solar Radiation and Climate Experiment (SORCE) spacecraft indicate that temporal variation in the solar radiation might have non-negligible influence on reflectance calculation, and the SIM measurements are different from the two previously used solar irradiances, i.e., ATLAS3 and Newkur. To provide reliable science results, we examined solar irradiance variability with the SIM daily observations, derived lunar absolute reflectances from the IIM 2A radiance with the SIM, ATLAS3 and Newkur data, and compared them with the Chandrayaan-1 Moon Mineralogy Mapper (M3), the Robotic Lunar Observatory (ROLO) and the Kaguya Multispectral Imager (MI) results. The temporal variability of the SIM solar irradiance is 0.25%-1.1% in the IIM spectral range, and less than 0.2% during the IIM observations. Nevertheless, the differences between the SIM measurements and the ATLAS3 and Newkur data can respectively rise up to 8% and 5% at particular IIM bands, resulting in discrepancy between which might affect compositional mapping. The IIM absolute reflectance we derived for the Moon using the SIM data, except for the last two bands, is consistent with the ROLO and the MI observations, although it is lower.

  2. HIRIS - NASAS's High-Resolution Imaging Spectrometer for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Dozier, J.

    1992-01-01

    Modern Earth science is beginning to examine interactions among the different terrestrial components at all temporal and spatial scales. Such a global perspective requires an integrated remote-sensing program, the Earth Observing System (EOS), which uses instruments throughout the electromagnetic spectrum to collect data about the Earth's surface, oceans and atmosphere over a range of selected scales. At the finest scales, we will require instruments capable of detailed sampling both spatially and spectrally. We have designed the High-Resoulution Imaging Spectrometer (HIRIS) to acquire simultaneous images in 192 spectral bands in the dominant wavelengths of the solar spectrum, 0.4 to 2.5 micrometers, at a spectral sampling interval of 10 nm. The ground instantaneous field of view (GIFOV) will be 30 m over a 24 km swath. A pointing capability will allow image acquisition up to +52 deg/-30 deg down track and +/-45 deg or more cross-track. Thus we will be able to study surface spectral bidirectional reflectance properties and variations in atmospheric attenuation with viewing angle. The cross-track pointing will also allow multiple viewing opportunities during one 16-day orbital revisit cycle, so that any part of the Earth may be imaged in a two-day period.

  3. Functional magnetic resonance imaging in intact plants--quantitative observation of flow in plant vessels.

    PubMed

    Kuchenbrod, E; Kahler, E; Thürmer, F; Deichmann, R; Zimmermann, U; Haase, A

    1998-04-01

    Quantitative magnetic resonance (MR) images of flow velocities in intact corn plants were acquired using magnetization-prepared MR microscopy. A phase contrast flow imaging technique was used to quantitate water flow velocities and total volume flow rates in small xylem vessels. The simultaneous measurement of the transpiration of the whole plant was achieved by using a closed climate chamber within the MR magnet. The total volume flow rate and the transpiration values were in close correlation. Functional magnetic resonance imaging in intact plants was performed by light stimulation of the transpiration inside of the magnet. The change in the flow velocities in the xylem vessels of single vascular bundles was in correlation with the changes in the transpiration. Significant differences were observed between the xylem vessels in different vascular bundles. Furthermore, flow velocity measurements were performed on excised plant stems and visualized by the uptake of the MR contrast agent, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). A comparison between the phase contrast flow imaging and the contrast media uptake showed to be in good agreement with each other. PMID:9621974

  4. VLBI observations of the gravitational lens system 0957+561 - Structure and relative magnification of the A and B images

    NASA Technical Reports Server (NTRS)

    Gorenstein, M. V.; Shapiro, I. I.; Bonometti, R. J.; Cohen, N. L.; Rogers, A. E. E.

    1988-01-01

    Gravitationally lensed images of the quasar 0957+561 have been observed at 13 cm wavelength using a six-antenna VLBI array with nearly milliarcsecond resolution. Models of the observed surface brightness distribution of each of the A and B images provide support of the gravitational lens hypothesis. A value of the magnitude of the relative image magnification A/B of 0.64 + or - 0.03 is obtained.

  5. Solar corona synoptic observations from SOHO with an extreme ultraviolet imaging telescope

    NASA Technical Reports Server (NTRS)

    Delaboudiniere, Jean-Pierre; Gabriel, A. H.; Artzner, G. E.; Dere, Ken; Howard, Russell A.; Michels, D.; Catura, Richard; Lemen, J.; Stern, R.; Gurman, Joseph B.

    1992-01-01

    The major scientific objective of the EUV Imaging Telescope (EIT) is to study the evolution of coronal structure over a wide range of spatial and temporal scales and temperatures. A second strategic objective is to provide full disk synoptic maps of the global corona to aid in unifying SOHO (Solar and Heliospheric Observatory)/Cluster investigations. EIT will also provide images to support the planning of detailed spectroscopic investigations by the CDS (Coronal Diagnostic Spectrometer) and SUMER spectrometers in SOHO. EIT observations will be made in four narrow spectral bands, centered at 171 A (Fe 9), 195 A(Fe 12), 284 A (Fe 15), and 304 A (He 2) representing restricted temperature domains within a wide temperature range from 40,000 to 3,000,000 K. The results will be images of the solar atmosphere from the upper chromosphere and transition region to the active region corona. These maps, made at appropriate time intervals, will be used to study the fine structures in the solar corona and to relate their dynamic properties to the underlying chromosphere and photosphere. Dynamic events in the inner corona will be related to white light transients in the outer corona, and observations of the internal structure of coronal holes will be used to investigate origins of the solar wind.

  6. A Decameter Stationary Type IV Burst in Imaging Observations on 2014 September 6

    NASA Astrophysics Data System (ADS)

    Koval, Artem; Stanislavsky, Aleksander; Chen, Yao; Feng, Shiwei; Konovalenko, Aleksander; Volvach, Yaroslav

    2016-08-01

    First-of-its-kind radio imaging of a decameter solar stationary type IV radio burst has been presented in this paper. On 2014 September 6 the observations of type IV burst radio emission were carried out with the two-dimensional heliograph based on the Ukrainian T-shaped radio telescope (UTR-2), together with other telescope arrays. Starting at ˜09:55 UT and for ˜3 hr, the radio emission was kept within the observational session of UTR-2. The interesting observation covered the full evolution of this burst, “from birth to death.” During the event lifetime, two C-class solar X-ray flares with peak times 11:29 UT and 12:24 UT took place. The time profile of this burst in radio has a double-humped shape that can be explained by injection of energetic electrons, accelerated by the two flares, into the burst source. According to the heliographic observations, we suggest that the burst source was confined within a high coronal loop, which was part of a relatively slow coronal mass ejection. The latter has been developed for several hours before the onset of the event. Through analysis of about 1.5 × 106 heliograms (3700 temporal frames with 4096 images in each frame that correspond to the number of frequency channels), the radio burst source imaging shows a fascinating dynamical evolution. Both space-based (GOES, SDO, SOHO, STEREO) data and various ground-based instrumentation (ORFEES, NDA, RSTO, NRH) records have been used for this study.

  7. A Decameter Stationary Type IV Burst in Imaging Observations on 2014 September 6

    NASA Astrophysics Data System (ADS)

    Koval, Artem; Stanislavsky, Aleksander; Chen, Yao; Feng, Shiwei; Konovalenko, Aleksander; Volvach, Yaroslav

    2016-08-01

    First-of-its-kind radio imaging of a decameter solar stationary type IV radio burst has been presented in this paper. On 2014 September 6 the observations of type IV burst radio emission were carried out with the two-dimensional heliograph based on the Ukrainian T-shaped radio telescope (UTR-2), together with other telescope arrays. Starting at ∼09:55 UT and for ∼3 hr, the radio emission was kept within the observational session of UTR-2. The interesting observation covered the full evolution of this burst, “from birth to death.” During the event lifetime, two C-class solar X-ray flares with peak times 11:29 UT and 12:24 UT took place. The time profile of this burst in radio has a double-humped shape that can be explained by injection of energetic electrons, accelerated by the two flares, into the burst source. According to the heliographic observations, we suggest that the burst source was confined within a high coronal loop, which was part of a relatively slow coronal mass ejection. The latter has been developed for several hours before the onset of the event. Through analysis of about 1.5 × 106 heliograms (3700 temporal frames with 4096 images in each frame that correspond to the number of frequency channels), the radio burst source imaging shows a fascinating dynamical evolution. Both space-based (GOES, SDO, SOHO, STEREO) data and various ground-based instrumentation (ORFEES, NDA, RSTO, NRH) records have been used for this study.

  8. Observation of lateral mandibular protuberance in Taiwan macaque (Macaca cyclopis) using computed tomography imaging.

    PubMed

    Kondo, Shintaro; Naitoh, Munetaka; Futagami, Chiharu; Hanamura, Hajime; Goto, Kenichi; Ariji, Eiichiro; Takai, Masanaru

    2009-01-01

    Morphological characteristics of the protuberance on the external surface of the mandible in Taiwan macaque (Macaca cyclopis) was investigated using cone-beam computed tomography. We observed 49 skulls of M. cyclopis. Of 7 skulls with deciduous and mixed dentitions in which M2s did not erupt, the protuberance was not found. Of the 13 skulls with mixed and permanent dentitions in which M2s had erupted, a palpable protuberance was found in one specimen. Of the 29 samples in which M3s had erupted completely, a perceptible protuberance was found in 2 samples, and palpable protuberance was found in 8 samples. Thus, the protuberance was found in 10 samples of the 29 samples with complete dentitions (34.5%), and the emergence of the protuberance may have been related to mandibular growth. In the case of the well-developed protuberance, it extended from the P4 to M3 region but did not extend to the mental foramina. By using cone-beam computed tomography, it was determined that the protuberance was composed of cortical bone and was the thickest in M2 region. Since the protuberance consisted of homogeneous cortical bone, it was considered to be the result of normal bone growth similar to the mandibular torus in humans. PMID:19828971

  9. Observations of the O2 atmospheric band nightglow by the High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Burrage, M. D.; Arvin, N.; Skinner, W. R.; Hays, P. B.

    1994-01-01

    During nighttime operation the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) measures both the horizontal wind field at about 94 km altitude and the limb brightness of the O2(b(sup 1) Sigma(sup +)(sub g) - Chi(cubed)Sigma(sup +)(sub g)) (0,0) atmospheric band airglow. The dominant feature of the observed emission is a latitudinal and local time dependence which is consistent with the (1,1) diurnal tidal mode. A survey of the available data set from November 1991 to July 1993 reveals a semiannual variation in the peak brightness observed at the equator, with maxima observed at the equinoxes and minima at the solstices. These results are consistent with the long-term variations in the diurnal tidal amplitudes detected in HRDI wind measurements.

  10. Comparison of HRDI wind measurements with radar and rocket observations. [High Resolution Doppler Imager

    NASA Technical Reports Server (NTRS)

    Burrage, M. D.; Skinner, W. R.; Marshall, A. R.; Hays, P. B.; Lieberman, R. S.; Franke, S. J.; Gell, D. A.; Ortland, D. A.; Morton, Y. T.; Schmidlin, F. J.

    1993-01-01

    Wind fields in the mesosphere and lower thermosphere are obtained with the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) by observing the Doppler shifts of emission lines in the O2 Atmospheric band. The validity of the measured winds depends on an accurate knowledge of the positions on the detector of the observed lines in the absence of a wind-induced Doppler shift. These positions have been determined to an accuracy of approximately 5 m/s from the comparison of winds measured by HRDI with those obtained by MF radars. Excellent agreement is found between HRDI measured winds and winds observed with radars and rockets. In addition, the sensitivity of HRDI to migrating tides and other large scale waves is demonstrated.

  11. MAPIR: An Airborne Polarmetric Imaging Radiometer in Support of Hydrologic Satellite Observations

    NASA Technical Reports Server (NTRS)

    Laymon, C.; Al-Hamdan, M.; Crosson, W.; Limaye, A.; McCracken, J.; Meyer, P.; Richeson, J.; Sims, W.; Srinivasan, K.; Varnevas, K.

    2010-01-01

    In this age of dwindling water resources and increasing demands, accurate estimation of water balance components at every scale is more critical to end users than ever before. Several near-term Earth science satellite missions are aimed at global hydrologic observations. The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC to support algorithm development and validation efforts in support of these missions. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity. MAPIR has achieved Technical Readiness Level 6 with flight heritage on two very different aircraft, the NASA P-3B, and a Piper Navajo.

  12. In vivo observation of tree drought response with low-field NMR and neutron imaging

    DOE PAGESBeta

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-05-01

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature inmore » the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. Lastly, these results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment.« less

  13. In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging

    PubMed Central

    Malone, Michael W.; Yoder, Jacob; Hunter, James F.; Espy, Michelle A.; Dickman, Lee T.; Nelson, Ron O.; Vogel, Sven C.; Sandin, Henrik J.; Sevanto, Sanna

    2016-01-01

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment. PMID:27200037

  14. First light observations with TIFR Near Infrared Imaging Camera (TIRCAM-II)

    NASA Astrophysics Data System (ADS)

    Ojha, D. K.; Ghosh, S. K.; D'Costa, S. L. A.; Naik, M. B.; Sandimani, P. R.; Poojary, S. S.; Bhagat, S. B.; Jadhav, R. B.; Meshram, G. S.; Bakalkar, C. B.; Ramaprakash, A. N.; Mohan, V.; Joshi, J.

    TIFR near infrared imaging camera (TIRCAM-II) is based on the Aladdin III Quadrant InSb focal plane array (512×512 pixels; 27.6 μm pixel size; sensitive between 1 - 5.5 μm). TIRCAM-II had its first engineering run with the 2 m IUCAA telescope at Girawali during February - March 2011. The first light observations with TIRCAM-II were quite successful. Several infrared standard with TIRCAM-II were quite successful. Several infrared standard stars, the Trapezium Cluster in Orion region, McNeil's nebula, etc., were observed in the J, K and in a narrow-band at 3.6 μm (nbL). In the nbL band, some bright stars could be detected from the Girawali site. The performance of TIRCAM-II is discussed in the light of preliminary observations in near infrared bands.

  15. In vivo Observation of Tree Drought Response with Low-Field NMR and Neutron Imaging.

    PubMed

    Malone, Michael W; Yoder, Jacob; Hunter, James F; Espy, Michelle A; Dickman, Lee T; Nelson, Ron O; Vogel, Sven C; Sandin, Henrik J; Sevanto, Sanna

    2016-01-01

    Using a simple low-field NMR system, we monitored water content in a living tree in a greenhouse over 2 months. By continuously running the system, we observed changes in tree water content on a scale of half an hour. The data showed a diurnal change in water content consistent both with previous NMR and biological observations. Neutron imaging experiments show that our NMR signal is primarily due to water being rapidly transported through the plant, and not to other sources of hydrogen, such as water in cytoplasm, or water in cell walls. After accounting for the role of temperature in the observed NMR signal, we demonstrate a change in the diurnal signal behavior due to simulated drought conditions for the tree. These results illustrate the utility of our system to perform noninvasive measurements of tree water content outside of a temperature controlled environment. PMID:27200037

  16. Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images.

    PubMed

    Richard, Samuel; Siewerdsen, Jeffrey H

    2008-11-01

    Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index (d') and area under the receiver operating characteristic (Az). Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of Az as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance. PMID:19070238

  17. Comparison of model and human observer performance for detection and discrimination tasks using dual-energy x-ray images

    SciTech Connect

    Richard, Samuel; Siewerdsen, Jeffrey H.

    2008-11-15

    Model observer performance, computed theoretically using cascaded systems analysis (CSA), was compared to the performance of human observers in detection and discrimination tasks. Dual-energy (DE) imaging provided a wide range of acquisition and decomposition parameters for which observer performance could be predicted and measured. This work combined previously derived observer models (e.g., Fisher-Hotelling and non-prewhitening) with CSA modeling of the DE image noise-equivalent quanta (NEQ) and imaging task (e.g., sphere detection, shape discrimination, and texture discrimination) to yield theoretical predictions of detectability index (d{sup '}) and area under the receiver operating characteristic (A{sub Z}). Theoretical predictions were compared to human observer performance assessed using 9-alternative forced-choice tests to yield measurement of A{sub Z} as a function of DE image acquisition parameters (viz., allocation of dose between the low- and high-energy images) and decomposition technique [viz., three DE image decomposition algorithms: standard log subtraction (SLS), simple-smoothing of the high-energy image (SSH), and anti-correlated noise reduction (ACNR)]. Results showed good agreement between theory and measurements over a broad range of imaging conditions. The incorporation of an eye filter and internal noise in the observer models demonstrated improved correspondence with human observer performance. Optimal acquisition and decomposition parameters were shown to depend on the imaging task; for example, ACNR and SSH yielded the greatest performance in the detection of soft-tissue and bony lesions, respectively. This study provides encouraging evidence that Fourier-based modeling of NEQ computed via CSA and imaging task provides a good approximation to human observer performance for simple imaging tasks, helping to bridge the gap between Fourier metrics of detector performance (e.g., NEQ) and human observer performance.

  18. Observables Processing for the Helioseismic and Magnetic Imager Instrument on the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Couvidat, S.; Schou, J.; Hoeksema, J. T.; Bogart, R. S.; Bush, R. I.; Duvall, T. L.; Liu, Y.; Norton, A. A.; Scherrer, P. H.

    2016-08-01

    NASA's Solar Dynamics Observatory (SDO) spacecraft was launched 11 February 2010 with three instruments onboard, including the Helioseismic and Magnetic Imager (HMI). After commissioning, HMI began normal operations on 1 May 2010 and has subsequently observed the Sun's entire visible disk almost continuously. HMI collects sequences of polarized filtergrams taken at a fixed cadence with two 4096 × 4096 cameras, from which are computed arcsecond-resolution maps of photospheric observables that include line-of-sight velocity and magnetic field, continuum intensity, line width, line depth, and the Stokes polarization parameters [ I, Q, U, V]. Two processing pipelines have been implemented at the SDO Joint Science Operations Center (JSOC) at Stanford University to compute these observables from calibrated Level-1 filtergrams, one that computes line-of-sight quantities every 45 seconds and the other, primarily for the vector magnetic field, that computes averages on a 720-second cadence. Corrections are made for static and temporally changing CCD characteristics, bad pixels, image alignment and distortion, polarization irregularities, filter-element uncertainty and nonuniformity, as well as Sun-spacecraft velocity. We detail the functioning of these two pipelines, explain known issues affecting the measurements of the resulting physical quantities, and describe how regular updates to the instrument calibration impact them. We also describe how the scheme for computing the observables is optimized for actual HMI observations. Initial calibration of HMI was performed on the ground using a variety of light sources and calibration sequences. During the five years of the SDO prime mission, regular calibration sequences have been taken on orbit to improve and regularly update the instrument calibration, and to monitor changes in the HMI instrument. This has resulted in several changes in the observables processing that are detailed here. The instrument more than satisfies all

  19. Observables Processing for the Helioseismic and Magnetic Imager Instrument on the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Couvidat, S.; Schou, J.; Hoeksema, J. T.; Bogart, R. S.; Bush, R. I.; Duvall, T. L.; Liu, Y.; Norton, A. A.; Scherrer, P. H.

    2016-08-01

    NASA's Solar Dynamics Observatory (SDO) spacecraft was launched 11 February 2010 with three instruments onboard, including the Helioseismic and Magnetic Imager (HMI). After commissioning, HMI began normal operations on 1 May 2010 and has subsequently observed the Sun's entire visible disk almost continuously. HMI collects sequences of polarized filtergrams taken at a fixed cadence with two 4096 × 4096 cameras, from which are computed arcsecond-resolution maps of photospheric observables that include line-of-sight velocity and magnetic field, continuum intensity, line width, line depth, and the Stokes polarization parameters [I, Q, U, V]. Two processing pipelines have been implemented at the SDO Joint Science Operations Center (JSOC) at Stanford University to compute these observables from calibrated Level-1 filtergrams, one that computes line-of-sight quantities every 45 seconds and the other, primarily for the vector magnetic field, that computes averages on a 720-second cadence. Corrections are made for static and temporally changing CCD characteristics, bad pixels, image alignment and distortion, polarization irregularities, filter-element uncertainty and nonuniformity, as well as Sun-spacecraft velocity. We detail the functioning of these two pipelines, explain known issues affecting the measurements of the resulting physical quantities, and describe how regular updates to the instrument calibration impact them. We also describe how the scheme for computing the observables is optimized for actual HMI observations. Initial calibration of HMI was performed on the ground using a variety of light sources and calibration sequences. During the five years of the SDO prime mission, regular calibration sequences have been taken on orbit to improve and regularly update the instrument calibration, and to monitor changes in the HMI instrument. This has resulted in several changes in the observables processing that are detailed here. The instrument more than satisfies all

  20. "Observing and Analyzing" Images from a Simulated High-Redshift Universe

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Windhorst, Rogier A.; Scannapieco, Evan; Thacker, Robert J.

    2015-09-01

    We investigate the high-redshift evolution of the rest-frame UV-luminosity function (LF) of galaxies via hydrodynamical cosmological simulations, coupled with an emulated observational astronomy pipeline that provides a direct comparison with observations. We do this by creating mock images and synthetic galaxy catalogs of ≈100 arcmin-2 fields from the numerical model at redshifts ≈4.5 to 10.4. We include the effects of dust extinction and the point-spread function (PSF) for the Hubble WFC3 camera for comparison with space observations. We also include the expected zodiacal background to predict its effect on space observations, including future missions such as the James Webb Space Telescope (JWST). When our model catalogs are fitted to Schechter function parameters, we predict that the faint-end slope (α) of the LF evolves as α = -1.16-0.12z over the redshift range z ≈ 4.5-7.7, in excellent agreement with observations from, e.g., Hathi and coworkers. However, for redshifts z ≈ 6-10.4, α(z) appears to display a shallower evolution, α = -1.79-0.03z. Augmenting the simulations with more detailed physics—specifically stellar winds and supernovae (SN)—produces similar results. The model shows an overproduction of galaxies, especially at faint magnitudes, compared with the observations, although the discrepancy is reduced when dust extinction is taken into account.

  1. Initial lunar calibration observations by the EO-1 Hyperion imaging spectrometer

    USGS Publications Warehouse

    Kieffer, H.H.; Jarecke, P.; Pearlman, Jay

    2002-01-01

    The Moon provides an exo-atmospheric radiance source that can be used to determine trends in instrument radio-metric responsivity with high precision. Lunar observations can also be used for absolute radiometric calibration; knowledge of the radiometric scale will steadily improve through independent study of lunar spectral photometry and with sharing of the Moon as a calibration target by increasing numbers of spacecraft, each with its own calibration history. EO-1 calibration includes periodic observation of the Moon by all three of its instruments. Observations are normally made with a phase angle of about 7 degrees (or about 12 hours from the time of Full Moon). Also, SeaWiFS has been making observations at such phase angles for several years, and observations of the Moon by instrument pairs, even if at different times, can be used to transfer absolute calibration. A challenge for EO-1 is pointing to include the entire full Moon in the narrow Hyperion scan. Three Hyperion observations in early 2001 covering an order-of-magnitude difference in lunar irradiance show good agreement for responsivity; the SWIR detector has undergone some changes in responsivity. Small discrepancies of calibration with wavelength could be smoothed using the Moon as a source. Off-axis scattered light response and cross-track response variations can be assessed using the lunar image.

  2. Simulated lesion, human observer performance comparison between thin-section dedicated breast CT images versus computed thick-section simulated projection images of the breast

    PubMed Central

    Chen, L; Boone, JM; Abbey, CK; Hargreaves, J; Bateni, C; Lindfors, KK; Yang, K; Nosratieh, A; Hernandez, A; Gazi, P

    2015-01-01

    Objectives The objective of this study was to compare the lesion detection performance of human observers between thin-section computed tomography images of the breast, with thick-section (>40 mm) simulated projection images of the breast. Methods Three radiologists and six physicists each executed a two alterative force choice (2AFC) study involving simulated spherical lesions placed mathematically into breast images produced on a prototype dedicated breast CT scanner. The breast image data sets from 88 patients were used to create 352 pairs of image data. Spherical lesions with diameters of 1, 2, 3, 5, and 11 mm were simulated and adaptively positioned into 3D breast CT image data sets; the native thin section (0.33 mm) images were averaged to produce images with different slice thicknesses; average section thicknesses of 0.33 mm, 0.71 mm, 1.5 mm, and 2.9 mm were representative of breast CT; the average 43 mm slice thickness served to simulate simulated projection images of the breast. Results The percent correct of the human observer’s responses were evaluated in the 2AFC experiments. Radiologists lesion detection performance was significantly (p<0.05) better in the case of thin-section images, compared to thick section images similar to mammography, for all but the 1 mm lesion diameter lesions. For example, the average of three radiologist’s performance for 3 mm diameter lesions was 92 % correct for thin section breast CT images while it was 67 % for the simulated projection images. A gradual reduction in observer performance was observed as the section thickness increased beyond about 1 mm. While a performance difference based on breast density was seen in both breast CT and the projection image results, the average radiologist performance using breast CT images in dense breasts outperformed the performance using simulated projection images in fatty breasts for all lesion diameters except 11 mm. The average radiologist performance outperformed that of the

  3. Water Uptake by Dry Beans Observed by Micro-magnetic Resonance Imaging

    PubMed Central

    KIKUCHI, KAORI; KOIZUMI, MIKA; ISHIDA, NOBUAKI; KANO, HIROMI

    2006-01-01

    • Background and Aims Water uptake by dry kidney beans (Phaseolus vulgaris ‘Rajma’) and adzuki beans (Vigna angularis) was traced using micro-magnetic resonance imaging in order to elucidate the channel of water entry, the manner of water delivery and the timing of swelling of the seeds. • Methods Magnetic resonance images of beans absorbing water were continuously measured with the single-point imaging method for 16 h or 20 h at 15-min intervals. With this technique, it was possible to detect and visualize the location of water in the beans, at a low water content, in the initial stages of water entry. • Key Results Water was taken up through a specified tissue, the lens, near the hilum, and distributed primarily to the testa. When water reached the radicle, it began to be incorporated into cotyledons with considerable swelling of the seeds. Water uptake took place within a short time for kidney beans. The initial process of water entry was associated with mechanical vibration of the seed. Rapid hydration of the testa and the swelling of the cotyledons were then observed. Water was supplied to cotyledons through the adaxial epidermis. In contrast, it took a long time, approx. 7 h, to activate the water channel of the lens for adzuki beans which have a tightly fitting testa. Steeping of the testa was not uniform, which induced temporary slanting before enlargement of the seed. • Conclusions The activation of the lens as the sole water channel, the delivery of water to the radicle within the testa, the swelling of the cotyledons, and the further increment of water are physiologically different processes during imbibition, and were separated by locating water in various tissues and by analysing the time course of water uptake using magnetic resonance imaging with the single-point imaging method. PMID:16845137

  4. Computed tomography and magnetic resonance imaging observations of rhabdomyosarcoma in the head and neck

    PubMed Central

    ZHU, JINGQI; ZHANG, JIANHUA; TANG, GUANGYU; HU, SHIYOU; ZHOU, GUOXING; LIU, YONGKANG; DAI, LINGLING; WANG, ZHONGQIU

    2014-01-01

    Head and neck (HN) rhabdomyosarcoma (RMS) is an aggressive malignancy, which is rarely encountered and is commonly misdiagnosed as another type of tumor. The aim of the present study was to investigate the computed tomography (CT) and magnetic resonance imaging (MRI) features of HNRMS and analyze the correlations between the imaging observations and the pathological subtypes. A total of 10 HNRMS patients (three males and seven females; median age, 16 years) were reviewed retrospectively by only CT (n=1), only MRI (n=2), as well as CT and MRI (n=7). In addition, the clinical data, imaging observations and pathological results were recorded and analyzed. The origins of the 10 HNRMSs (eight embryonal and two alveolar subtypes) included the ethmoid sinus (n=4), maxillary sinus (n=1), orbit (n=3), nasopharynx (n=1) and frontotemporal subcutaneous area (n=1). On the CT and MRI images, the soft-tissue masses exhibited ill-defined borders (n=9), bony destruction (n=10), multi-cavity growth (n=7) and cervical lymph node metastasis (n=2), whereas calcification and hemorrhaging were not identified. On CT, eight of the HNRMSs appeared slightly hypodense (2/8) or isodense (6/8) with homogeneous enhancement (4/4). On T1-weighted images (WI), nine tumors exhibited isointensity (9/9) and on T2WI, six tumors demonstrated homogeneous hyperintensity with homogeneous enhancement on contrast-enhanced (CE)-T1WI. In addition, three embryonal RMSs, which originated from the ethmoid sinus, exhibited heterogeneous hyperintensity on T2WI and nodule-shaped enhancement patterns on CE-T1WI. The results of the present study indicated that MRI may accurately demonstrate the location and extent of HNRMS and that the imaging features of HNRMS may be similar to those of other tumors. However, a tumor exhibiting heterogeneous hyperintensity on T2WI and a nodule-shaped enhancement pattern on CE-T1WI in the ethmoid sinus may present specific MRI features, which clearly indicates the botryoid subtype of

  5. Does the Association between Depressive Symptomatology and Physical Activity Depend on Body Image Perception? A Survey of Students from Seven Universities in the UK

    PubMed Central

    El Ansari, Walid; Stock, Christiane; Phillips, Ceri; Mabhala, Andi; Stoate, Mary; Adetunji, Hamed; Deeny, Pat; John, Jill; Davies, Shan; Parke, Sian; Hu, Xiaoling; Snelgrove, Sherrill

    2011-01-01

    This cross-sectional study assessed the association between depression and PA in university students of both genders and the role of body image perception as a potential effect modifier. Undergraduate students (N = 3706) from seven universities in the UK completed a self-administered questionnaire that assessed sociodemographic information; a range of health, health behaviour and health awareness related factors; the modified version of Beck’s Depression Inventory (M-BDI); educational achievement, and different levels of physical activity (PA), such as moderate PA (at least 5 days per week moderate exercise of at least 30 minutes), and vigorous PA (at least 3 days per week vigorous exercise of at least 20 minutes). Only 12.4% of the sample achieved the international recommended level for moderate PA, and 33.1% achieved the recommendations for vigorous PA. Both moderate and vigorous PA were inversely related to the M-BDI score. Physically active students, regardless of the type of PA, were significantly more likely to perceive their health as good, to have higher health awareness, to perform strengthening exercises, and to be males. The stratified analyses indicated that the association between depression and PA differed by body image. In students perceiving their body image as ‘just right’, moderate (>4th percentile) and high (>5th percentile) M-BDI scores were inversely related to vigorous PA. However, in students who perceived their body image as ‘overweight’, the inverse association was only significant in those with high M-BDI scores. We conclude that the positive effect of PA on depression could be down modulated by the negative impact of a ‘distorted’ body image on depression. The practical implications of these findings are that PA programmes targeting persons with depressive symptoms should include effective components to enhance body image perception. PMID:21556187

  6. Observations of the far ultraviolet airflow by the Ultraviolet Limb Imaging experiment on STS-39

    NASA Technical Reports Server (NTRS)

    Budzien, S. A.; Feldman, P. D.; Conway, R. R.

    1994-01-01

    The Ultraviolet Limb Imaging (UVLIM) experiment flew on STS-39 in the spring of 1991 to observe the Earth's thermospheric airglow and included a far ultraviolet (1080-1800 A) spectrometer. We present first results from this spectrometer, including a spectroscopic analysis at 6-A resolution of H, O, N, and N2 dayglow emissions and modeling of the observed limb-scan profiles of dayglow emissions. The observed N2 Lyman-Birge-Hopfield (LBH) emission reflects a vibrational population distribution in the a(1 Pi)(sub g) state that differs significantly from those predicted for direct electron excitation and excitation with cascade from the a('1 Sigma)(sub u)(-) and w(1 Delta)(sub u) states. The vibrational population distribution and LBH brightness suggest a total cascade rate 45% that of direct excitation, in contrast to laboratory measurements. For the first time, pronounced limb brightening is observed in both the N I lambda 1200 limb emission profiles, as expected for emissions excited by N2 dissociation which produces kinetically fast N fragments; however, optically thick components of these features are also observed. Preliminary modeling of the OI lambda 1356, HI lambda 1216, and OI lambda 1304 and OI lambda 1641 emissions agrees to within roughly 10% of the observed limb-scan profiles, but the models underestimate the N2 LBH profiles by a factor of 1.4-1.6, consistent with the inferred cascade effect. Other findings include: an OI lambda 1152/lambda 1356 intensity ratio that is inconsistent with the large cascade contribution to OI lambda 1356 from np 5P states required by laboratory and nightglow observations; nightglow observations of the tropical ultraviolet arcs exhibit a wide range of OI lambda 1356/lambda 1304 intensity ratios and illustrate the complicated observing geometry and radiative transfer effects that must be modeled; and we find a 3-sigma upper limit of 8.5 R to the total LBH vehicle glow emission.

  7. Two Types of Aurora on Mars as Observed by MAVEN's Imaging UltraViolet Spectrograph

    NASA Astrophysics Data System (ADS)

    Schneider, N. M.; Deighan, J.; Jain, S.; Stiepen, A.; Stewart, I. F.; Larson, D. E.; Mitchell, D. L.; Mazelle, C. X.; Lee, C.; Lillis, R. J.; Evans, J. S.; Brain, D. A.; Stevens, M. H.; McClintock, W. E.; Chaffin, M.; Crismani, M. M. J.; Holsclaw, G. M.; Lefèvre, F.; Lo, D.; Clarke, J. T.; Montmessin, F.; Jakosky, B. M.

    2015-12-01

    The Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft has detected two distinct types of auroral emission on Mars. First, we report the discovery of a low altitude, diffuse aurora spanning much of Mars' northern hemisphere coincident with a solar energetic particle outburst. IUVS observed northerly latitudes during late December 2014, detecting auroral emission in virtually all nightside observations for ~5 days spanning virtually all geographic longitudes. The vertical profile showed emission down to ~70 km altitude (1 microbar), deeper than confirmed at any other planet. The onset and duration of emission coincide with the observed arrival of solar energetic particles up to 200 keV precipitating directly and deeply into the atmosphere. Preliminary modeling of the precipitation, energy deposition and spectral line emission yields good matches to the observations. These observations represent a new class of planetary auroras produced in the Martian middle atmosphere. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit aurora more globally than Earth. Second, we confirm the existence of small patches of discrete aurora near crustal magnetic fields in Mars' southern hemisphere, as observed previously by SPICAM on Mars Express (Bertaux et al., Nature, 435, 790-794 (2005)). IUVS observed southern latitudes in July and August 2015, detecting discrete auroral emission in ~1% of suitable observations. Limb scans resolved both vertically and along-slit indicate this type of auroral emission was patchy on the scale of ~40 km, and located at higher altitudes ~140 km. The higher altitudes imply a lower energy of precipitating particles. The mix of spectral emissions also differed signficiantly from the discrete aurora, indicating different excitation and quenching processes. We will discuss the observed properties of the aurora and associated charged particle precipitation, as well as the broader implications of this high

  8. Two Types of Aurora on Mars as Observed by MAVEN's Imaging UltraViolet Spectrograph

    NASA Astrophysics Data System (ADS)

    Schneider, Nicholas M.; Deighan, J.; Jain, S. K.; Stiepen, A.; Larson, D.; Mitchell, D. L.; Lee, C. O.; Lillis, R.; Brain, D.; McClintock, W. E.; Chaffin, M. S.; Crismani, M.; Holsclaw, G. M.; Jakosky, B. M.; Mazelle, C.; Evans, J. S.; Stewart, A. I. F.; Stevens, M. H.; Clarke, J. T.; Montmessin, F.; Lefevre, F.; Lo, D.

    2015-11-01

    The Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft has detected two distinct types of auroral emission on Mars. First, we report the discovery of a low altitude, diffuse aurora spanning much of Mars’ northern hemisphere coincident with a solar energetic particle outburst. IUVS observed northerly latitudes during late December 2014, detecting auroral emission in virtually all nightside observations for ~5 days spanning virtually all geographic longitudes. The vertical profile showed emission down to ~70 km altitude (1 microbar), deeper than confirmed at any other planet. The onset and duration of emission coincide with the observed arrival of solar energetic particles up to 200 keV precipitating directly and deeply into the atmosphere. Preliminary modeling of the precipitation, energy deposition and spectral line emission yields good matches to the observations. These observations represent a new class of planetary auroras produced in the Martian middle atmosphere. Given minimal magnetic fields over most of the planet, Mars is likely to exhibit aurora more globally than Earth.Second, we confirm the existence of small patches of discrete aurora near crustal magnetic fields in Mars' southern hemisphere, as observed previously by SPICAM on Mars Express (Bertaux et al., Nature, 435, 790-794 (2005)). IUVS observed southern latitudes in July and August 2015, detecting discrete auroral emission in ~1% of suitable observations. Limb scans resolved both vertically and along-slit indicate this type of auroral emission was patchy on the scale of ~40 km, and located at higher altitudes ~140 km. The higher altitudes imply a lower energy of precipitating particles. The mix of spectral emissions also differed signficiantly from the diffuse aurora, indicating different excitation and quenching processes.We will discuss the observed properties of the aurora and associated charged particle precipitation, as well as the broader implications of this high

  9. Solar Polar Imager: Observing Coronal Transients from a New Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Liewer, P. C.

    2013-12-01

    The heliophysics community has long recognized the need for a mission to observe the Sun and corona from a polar perspective. One mission concept, the Solar Polar Imager (SPI), has been studied extensively (Liewer et al in NASA Space Science Vision Missions, 2008). In this concept, a solar sail is used to place a spacecraft in a circular 0.48-AU heliocentric orbit with an inclination of ~75 degrees. This orbit enables crucial observations not possible from lower latitude perspectives. Magnetograph and Doppler observations from a polar vantage point would revolutionize our understanding of the mechanism of solar activity cycles, polar magnetic field reversals, the internal structure and dynamics of the Sun and its atmosphere. The rapid 4-month polar orbit combined with both in situ and remote sensing instrumentation further enables unprecedented studies of the physical connection between the Sun, the solar wind, and solar energetic particles. From the polar perspective, white light imagers could be used to track CMEs and predict their arrival at Earth (as demonstrated by STEREO). SPI is also well suited to study the relative roles of CME-driven shock versus flare-associated processes in solar energetic particle acceleration. With the circular 0.48 AU orbit, solar energetic particles could be more easily traced to their sources and their variation with latitude can be studied at a constant radius. This talk will discuss the science objectives, instrumentation and mission design for the SPI mission.

  10. Cusp/cleft region as observed by the Viking UV imager

    SciTech Connect

    Garbe, G.P.; Murphree, J.S.; Cogger, L.L. ); Woch, J. )

    1993-04-01

    The authors report data taken by the Viking satellite at mid-altitudes (11,000-13,000 km) during northern hemispheric crossings of the cusp/cleft region. Particle signatures were used to divide the region into different categories. Data was looked at from the ultraviolet imager and particle diagnostics, when available. The authors discuss in detail two cases of crossing the cusp/cleft region, in order to look at the dynamics of a specific event, as opposed to other data analyses which have used large data sets to acquire good statistics, but which can thereby obscure dynamics of the actual events. Particle data were taken by the electron spectrometer ESP 1 and the ion spectrometer PISP 1/2. They looked at the spectral range 0.01 to 40 keV. The UV imager recorded 1 sec exposures of the auroral distribution once per minute. The data shows instantaneous observations of emissions, and does so for a narrow path swept by the satellite. Data indicate that the entire region is not a homogeneous region, but rather a very dynamic object. Conclusions include that the emissions observed are located at the footprint of the cleft region. The cusp region is located poleward of the region with continuous emission. The emission is observed to remain at a constant magnetic latitude during the period with IMF data, though B[sub z] swung 8nT during a 30 minute period.

  11. Obtaining coincident image observations for Mission to Planet Earth science data return

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.; Farrell, James P.

    1994-01-01

    One objective of the Mission to Planet Earth (MTPE) program involves comparing data from various instruments on multiple spacecraft to obtain a total picture of the Earth's systems. To correlate image data from instruments on different spacecraft, these spacecraft must be able to image the same location on the Earth at approximately the same time. Depending on the orbits of the spacecraft involved, complicated operational details must be considered to obtain such observations. If the spacecraft are in similar orbits, close formation flying or synchronization techniques may be used to assure coincident observations. If the orbits are dissimilar, the launch time of the second satellite may need to be restricted in order to align its orbit with that of the first satellite launched. This paper examines strategies for obtaining coincident observations for spacecraft in both similar and dissimilar orbits. Although these calculations may be performed easily for coplanar spacecraft, the non-coplanar case involves additional considerations which are incorporated into the algorithms presented herein.

  12. Sensory suppression of brain responses to self-generated sounds is observed with and without the perception of agency.

    PubMed

    Timm, Jana; Schönwiesner, Marc; Schröger, Erich; SanMiguel, Iria

    2016-07-01

    Stimuli caused by our own movements are given special treatment in the brain. Self-generated sounds evoke a smaller brain response than externally generated ones. This attenuated response may reflect a predictive mechanism to differentiate the sensory consequences of one's own actions from other sensory input. It may also relate to the feeling of being the agent of the movement and its effects, but little is known about how sensory suppression of brain responses to self-generated sounds is related to judgments of agency. To address this question, we recorded event-related potentials in response to sounds initiated by button presses. In one condition, participants perceived agency over the production of the sounds, whereas in another condition, participants experience an illusory lack of agency caused by changes in the delay between actions and effects. We compared trials in which the timing of button press and sound was physically identical, but participants' agency judgment differed. Results show reduced amplitudes of the auditory N1 component in response to self-generated sounds irrespective of agency experience, whilst P2 effects correlate with the perception of agency. Our findings suggest that suppression of the auditory N1 component to self-generated sounds does not depend on adaptation to specific action-effect time delays, and does not determine agency judgments, however, the suppression of the P2 component might relate more directly to the experience of agency. PMID:27137101

  13. Ultraviolet imaging telescope and optical emission-line observations of H II regions in M81

    NASA Technical Reports Server (NTRS)

    Hill, Jesse K.; Cheng, K.-P.; Bohlin, Ralph C.; Cornett, Robert H.; Hintzen, P. M. N.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Smith, Eric P.; Stecher, Theodore P.

    1995-01-01

    Images of the type Sab spiral galaxy M81 were obtained in far-UV and near-UV bands by the Ultraviolet Imaging Telescope (UIT) during the Astro-1 Spacelab mission of 1990 December. Magnitudes in the two UV bands are determined for 52 H II regions from the catalog of Petit, Sivan, & Karachentsev (1988). Fluxes of the H-alpha and H-beta emission lines are determined from CCD images. Extinctions for the brightest H II regions are determined from observed Balmer decrements. Fainter H II regions are assigned the average of published radio-H-alpha extinctions for several bright H II regions. The radiative transfer models of Witt, Thronson, & Capuano (1992) are shown to predict a relationship between Balmer Decrement and H-alpha extinction consistent with observed line and radio fluxes for the brightest 7 H II regions and are used to estimate the UV extinction. Ratios of Lyman continuum with ratios predicted by model spectra computed for initial mass function (IMF) slope equal to -1.0 and stellar masses ranging from 5 to 120 solar mass. Ages and masses are estimated by comparing the H-alpha and far-UV fluxes and their ratio with the models. The total of the estimated stellar masses for the 52 H II regions is 1.4 x 10(exp 5) solar mass. The star-formation rate inferred for M81 from the observed UV and H-alpha fluxes is low for a spiral galaxy at approximately 0.13 solar mass/yr, but consistent with the low star-formation rates obtained by Kennicutt (1983) and Caldwell et al. (1991) for early-type spirals.

  14. Science objectives and observing strategy for the OMEGA imaging spectrometer on Mars-Express

    NASA Astrophysics Data System (ADS)

    Erard, S.; Bibring, J.-P.; Drossart, P.; Forget, F.; Schmitt, B.; OMEGA Team

    2003-04-01

    The science objectives of OMEGA, which were first defined at the time of instruments selection for Mars-Express, were recently updated to integrate new results from MGS and Odyssey concerning three main fields: Martian surface and atmosphere, and polar processes. Thematic categories of observations are derived from the scientific objectives whenever spectral observations from OMEGA are expected to provide insights to Mars present situation and evolution. Targets within these categories are selected on the basis of their expected usefulness, which is related to their intrinsic properties and to the instrument capabilities. The whole surface will be mapped at low resolution (~5 km/pixel) in the course of the nominal mission, and possibly routinely at very coarse resolution to monitor time-varying processes from apocenter. However, only 5% of the surface can be observed at high resolution (up to 350 m/pixel) owing to constraints on telemetry rate. HR targets are therefore selected on the basis of telemetry constraints, orbital parameters, observing opportunities (visibility under given conditions), and spacecraft functionalities (e.g., depointing capacity), then prioritized within each category according to the probability to perform significant observations with OMEGA (in many situations, according to the estimated dust coverage). Target selection is performed interactively between OMEGA co-Is, in close contact with teams from other MEx experiments (mostly HRSC, PFS and Spicam) and other missions (e.g., MER and MRO). Most HR surface targets are selected on the basis of deep examination of Viking, THEMIS, and MOC HR images. Other surface targets include areas presenting unusual spectral properties in previous observations, or suspected to exhibit signatures of hydrothermal activity. Proposed landing sites and suggested source areas for the SNC meteorites are also included. Atmospheric/polar objectives more often translate as particular observing modes, sometimes at HR

  15. Observations of the quasi 2-day wave from the High Resolution Doppler Imager on UARS

    NASA Technical Reports Server (NTRS)

    Wu, D. L.; Hays, P. B.; Skinner, W. R.; Marshall, A. R.; Burrage, M. D.; Lieberman, R. S.; Ortland, D. A.

    1993-01-01

    A strong westward traveling oscillation, with a period of 2 days and zonal wave number 3, is observed in the mesospheric and lower thermospheric winds from the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS). The important events happen in January, July, and September/October, of which the occurrence in January is the strongest with an amplitude over 60 m/s. Detailed analyses for the periods of January 1992 and January 1993 reveal a cause-and-effect relationship in the wave developing process at 95 km. The global structures of the wave amplitude and phase are also presented.

  16. Use of digital images to observe forest phenology and drought stress

    NASA Astrophysics Data System (ADS)

    Ahrends, H. E.; Etzold, S.; Eugster, W.; Buchmann, N.; Jeanneret, F.; Wanner, H.

    2009-04-01

    Phenological data that complement research studies of climate impacts on ecosystems need to be estimated with both temporal and spatial accuracy. Forest phenology can be monitored by satellite, but the realism of remote sensing products such as the NDVI (Normalized Difference Vegetation Index) still heavily depends on ground based validation data. Ground based data is often observer-biased and the number of observations strongly varies in time and space. Recent studies have demonstrated the successful application of digital camera images for spring phenological monitoring in ecosystem studies. Objective of the present study therefore was to test the application of digital images from standard RGB-cameras for regional monitoring and modelling the seasonality of forest physiology and for detecting species-specific reactions on environmental impacts such as drought. A digital camera was mounted on the uppermost platform of a fluxtower at the CarboEurope site Lägeren (northern Switzerland). Daily images of the mixed forest from four years were used to derive the timing of greenup, leaf maturity, senescence and dormancy of two different tree species (beech and ash) between 2005 and 2008. Based on the image color values a vegetation index was computed. Time series of the vegetation index were jointly analyzed with standard meteorological data and eddy covariance measurements of ecosystem carbon dioxide and water vapour exchange. Generally the observation of phenologial phases was successful but complex for the end of the vegetation period, e.g. due to early leaf coloring caused by summer heat, and a less pronounced starting date of leaf senescence compared with spring greenup. Spring CO2 flux characteristics could be explained by leaf emergence dates of dominant tree species. A drought period in 2006 influenced index values for beech but not for the highly drought-tolerant ash trees. Phenological data showed significant correlation with carbon dioxide exchange

  17. Earth Observing-1 Advanced Land Imager: Dark Current and Noise Characterization and Anomalous Detectors

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.

  18. Use of the Hotelling observer to optimize image reconstruction in digital breast tomosynthesis.

    PubMed

    Sánchez, Adrian A; Sidky, Emil Y; Pan, Xiaochuan

    2016-01-01

    We propose an implementation of the Hotelling observer that can be applied to the optimization of linear image reconstruction algorithms in digital breast tomosynthesis. The method is based on considering information within a specific region of interest, and it is applied to the optimization of algorithms for detectability of microcalcifications. Several linear algorithms are considered: simple back-projection, filtered back-projection, back-projection filtration, and [Formula: see text]-tomography. The optimized algorithms are then evaluated through the reconstruction of phantom data. The method appears robust across algorithms and parameters and leads to the generation of algorithm implementations which subjectively appear optimized for the task of interest. PMID:26702408

  19. Spectral and Imaging Observations of a White-light Solar Flare in the Mid-infrared

    NASA Astrophysics Data System (ADS)

    Penn, Matt; Krucker, Säm; Hudson, Hugh; Jhabvala, Murzy; Jennings, Don; Lunsford, Allen; Kaufmann, Pierre

    2016-03-01

    We report high-resolution observations at mid-infrared wavelengths of a minor solar flare, SOL2014-09-24T17:50 (C7.0), using Quantum Well Infrared Photodetector cameras at an auxiliary of the McMath-Pierce telescope. The flare emissions, the first simultaneous observations in two mid-infrared bands at 5.2 and 8.2 μ {{m}} with white-light and hard X-ray coverage, revealed impulsive time variability with increases on timescales of ˜4 s followed by exponential decay at ˜10 s in two bright regions separated by about 13\\prime\\prime . The brightest source is compact, unresolved spatially at the diffraction limit (1\\_\\_AMP\\_\\_farcs;72 at 5.2 μ {{m}}). We identify the IR sources as flare ribbons also seen in white-light emission at 6173 Å observed by SDO/HMI, with twin hard X-ray sources observed by Reuven Ramaty High Energy Solar Spectroscopic Imager, and with EUV sources (e.g., 94 Å) observed by SDO/AIA. The two infrared points have nearly the same flux density (fν, W m-2 Hz) and extrapolate to a level of about an order of magnitude below that observed in the visible band by HMI, but with a flux of more than two orders of magnitude above the free-free continuum from the hot (˜15 MK) coronal flare loop observed in the X-ray range. The observations suggest that the IR emission is optically thin; this constraint and others suggest major contributions from a density less than about 4× {10}13 cm-3. We tentatively interpret this emission mechanism as predominantly free-free emission in a highly ionized but cool and rather dense chromospheric region.

  20. Canadian adolescent perceptions and knowledge about the social determinants of health: an observational study of Kingston, Ontario youth

    PubMed Central

    2013-01-01

    Background Upstream social determinants of health (SDH) have become widely acknowledged as lying at the root of poor health outcomes in Canada and globally. The Commission on the Social Determinants of Health maintains that educating the public about the SDH is a key step towards population health equity. Little is known about adolescent perceptions of the determinants of health. Curriculum in Ontario is lacking in SDH content, placing a much greater emphasis on individual, lifestyle behaviors, such as diet, physical activity, and safe sex practices. Identifying a gap in SDH knowledge within the adolescent population is required to advocate for health curriculum revision to include SDH material. Methods Student sociodemographic information was obtained through a self-administered questionnaire. Concept mapping exercises were used to determine students’ knowledge of the determinants of health and the SDH. Knowledge was approximated by the relative number of SDH concepts present in student maps. Poisson regression analysis was used to determine correlations between sociodemographic characteristics and SDH knowledge. Results Concept maps indicated that students attributed their health primarily to physical determinants versus social determinants; 44% of maps contained no SDH content. Statistical analyses indicated that students’ SDH knowledge varied by their relative socioeconomic status (SES). Conclusions Findings suggest that 1) there is an SDH knowledge gap in the adolescent population, and 2) an inequity in adolescent SDH knowledge exists across socio-economic factors. Current Ontario health curriculum requires revision to include SDH material, which will require greater communication and collaboration from both educational institutions and health agencies in Canada. PMID:23981811

  1. The great beauty: a neuroaesthetic study by neuroelectric imaging during the observation of the real Michelangelo's Moses sculpture.

    PubMed

    Babiloni, F; Cherubino, P; Graziani, I; Trettel, A; Bagordo, G M; Cundari, C; Borghini, G; Arico, P; Maglione, A G; Vecchiato, G

    2014-01-01

    Recent studies have been showed as the perception of real or displayed masterpieces by ancient or modern painters generate stable neuroelectrical correlates in humans. In this study, we collected the neuroelectrical brain activity correlated with the observation of the real sculpture of Michelangelo's Moses within the church where it is actually installed in a group of healthy subjects. In addition to the cerebral activity also the heart rate (HR) and the galvanic skin response (GSR) were collected simultaneously, to assess the emotional engage of the investigated population. The Moses sculpture was observed by the group from three different point of views, each one revealing different details of the sculpture. In addition, in each location the light conditions related to the specific observation of the sculpture were explicitly changed. Results showed that cerebral activity of the subjects varied significantly across the three different views and for light condition against no light condition (p<;0.04). Furthermore, the emotional engage estimated on the whole population is higher for a point of observation in which the Mose's face is directed toward the eyes of the observers (p<;0.02). Finally, the cerebral appreciation of the investigated group was found maximum from a perspective in which all the details of the sculpture could be easily grab by the eyes. Results suggested how the perception of the sculpture depends critically by the point of view of the observers and how such point of view can produce separate emotional and cerebral responses. PMID:25571598

  2. Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) observations during several 2013 NASA field campaigns

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Garay, M. J.; Xu, F.; Kalashnikova, O.; Rheingans, B.; Geier, S.; Val, S.; Bull, M.; Jovanovic, V.; Bruegge, C.; Seidel, F. C.; Daugherty, B.; Chipman, R.; Davis, A.

    2013-12-01

    The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) is an ultraviolet/visible/near-infrared pushbroom camera mounted on a single-axis gimbal to acquire multiangle imagery over a ×67° along-track range. The instrument flies aboard NASA's high-altitude ER-2 aircraft, and acquires Earth imagery with ~10 m spatial resolution across an 11-km wide swath. Intensity (I) images are obtained in eight spectral bands (355, 380, 445, 470, 555, 660, 865, and 935 nm). Dual photoelastic modulators (PEMs), achromatic quarter-wave plates, and wire-grid polarizers enable imagery of the linear polarization Stokes components Q and U at 470, 660, and 865 nm. The data are used to derive degree of linear polarization (DOLP) and angle of linear polarization (AOLP). Example flight data acquired during various NASA field campaigns in 2013, including the Aerosol-Cloud-Ecosystem (ACE) Polarimeter Definition Experiment (PODEX), Hyperspectral Infrared Imager (HyspIRI), and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) are presented. Observations of aerosols, low- and mid-level cloud fields, cirrus, and different types of surfaces under clear skies were obtained for a variety of land and ocean targets. Radiance and polarization imagery for several scenes, along with modeling of aerosol, cloud, and surface scattering, are presented to illustrate quantitatively some of the instrument's capabilities. Laboratory and vicarious calibration results are also discussed.

  3. A fast SWIR imager for observations of transient features in OH airglow

    NASA Astrophysics Data System (ADS)

    Hannawald, Patrick; Schmidt, Carsten; Wüst, Sabine; Bittner, Michael

    2016-04-01

    Since December 2013 the new imaging system FAIM (Fast Airglow IMager) for the study of smaller-scale features (both in space and time) is in routine operation at the NDMC (Network for the Detection of Mesospheric Change) station at DLR (German Aerospace Center) in Oberpfaffenhofen (48.1° N, 11.3° E).Covering the brightest OH vibrational bands between 1 and 1.7 µm, this imaging system can acquire two frames per second. The field of view is approximately 55 km times 60 km at the mesopause heights. A mean spatial resolution of 200 m at a zenith angle of 45° and up to 120 m for zenith conditions are achieved. The observations show a large variety of atmospheric waves.This paper introduces the instrument and compares the FAIM data with spectrally resolved GRIPS (GRound-based Infrared P-branch Spectrometer) data. In addition, a case study of a breaking gravity wave event, which we assume to be associated with Kelvin-Helmholtz instabilities, is discussed.

  4. Imaging observations of Jupiter's sodium magneto-nebula during the Ulysses encounter

    NASA Technical Reports Server (NTRS)

    Mendillo, Michael; Flynn, Brian; Baumgardner, Jeffrey

    1992-01-01

    Jupiter's great sodium nebula represents the largest visible structure traversed by the Ulysses spacecraft during its encounter with the planet in February 1992. Ground-based imaging conducted on Mount Haleakala, Hawaii, revealed a nebula that extended to at least +/- 300 Jovian radii; it was somewhat smaller in scale and less bright than previously observed. Analysis of observations and results of modeling studies suggest reduced volcanic activity on the moon Io, higher ion temperatures in the plasma torus, lower total plasma content in the torus, and fast neutral atomic clouds along the Ulysses inbound trajectory through the magnetosphere. Far fewer neutrals were encountered by the spacecraft along its postencounter, out-of-ecliptic trajectory.

  5. Observation of Snow Cover Variations at Mt. Kilimanjaro Using Landsat TM and ETM+ Images

    NASA Astrophysics Data System (ADS)

    Park, S.; Jung, H.; Lee, M.; Jung, H.

    2012-12-01

    Since the industrial revolution began, CO2 levels have been increasing with climate change. The objectives of this study are to quantitatively analyze snow cover area and distribution according to height changes with respect to time and to statistically predict the date of snow cover disappearance using remote sensing data over Mt. Kilimanjaro, Tanzania. Total numbers of 23 Landsat-5 TM and Landsat-7 ETM+ images are used for observing the snow cover variation, spanning the 27 years from June 1984 to July 2011. For this observation of snow cover variations, the following steps are applied: 1) atmospheric correction is performed on each image using the cosine approximation (COST) atmospheric correction algorithm, 2) the snow cover area is extracted from the normalized difference snow index (NDSI) algorithm, 3) the minimum height is determined using SRTM DEM and extracted snow cover area, and 4) the date of snow cover disappearance is predicted using a linear regression model. Among 23 images, seventeen images of the dry season are used for analyzing snow cover changes. Results show that snow cover area for about 30 years are largely changed from 9.01 km2 to 2.54 km2, equivalent to a 73% reduction. The minimum height of snow cover increased by approximately 290 m, from 4,603 m to 4,893 m. Linear regression model result shows that the snow cover area decreased by about 0.34 km2/yr and the minimum height of snow cover increased by about 9.85 m/yr. Moreover, L-band synthetic aperture radar (SAR) images are used to analyze seasonal variation of snow cover from 2006 to 2011. The results indicate that snow cover area of Mt. Kilimanjaro has fast decreased according to global warming. *This work was researched by the supporting project to educate GIS experts; Distribution of elevatio